1 /* libFLAC - Free Lossless Audio Codec library
2  * Copyright (C) 2000-2009  Josh Coalson
3  * Copyright (C) 2011-2016  Xiph.Org Foundation
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * - Redistributions of source code must retain the above copyright
10  * notice, this list of conditions and the following disclaimer.
11  *
12  * - Redistributions in binary form must reproduce the above copyright
13  * notice, this list of conditions and the following disclaimer in the
14  * documentation and/or other materials provided with the distribution.
15  *
16  * - Neither the name of the Xiph.org Foundation nor the names of its
17  * contributors may be used to endorse or promote products derived from
18  * this software without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
24  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
27  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
28  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
29  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #ifdef HAVE_CONFIG_H
34 #  include <config.h>
35 #endif
36 
37 #include "private/cpu.h"
38 
39 #ifndef FLAC__INTEGER_ONLY_LIBRARY
40 #ifndef FLAC__NO_ASM
41 #if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && defined FLAC__HAS_X86INTRIN
42 #include "private/fixed.h"
43 #ifdef FLAC__SSE2_SUPPORTED
44 
45 #include <emmintrin.h> /* SSE2 */
46 #include <math.h>
47 #include "private/macros.h"
48 #include "share/compat.h"
49 #include "FLAC/assert.h"
50 
51 #ifdef FLAC__CPU_IA32
52 #define m128i_to_i64(dest, src) _mm_storel_epi64((__m128i*)&dest, src)
53 #else
54 #define m128i_to_i64(dest, src) dest = _mm_cvtsi128_si64(src)
55 #endif
56 
57 FLAC__SSE_TARGET("sse2")
FLAC__fixed_compute_best_predictor_intrin_sse2(const FLAC__int32 data[],unsigned data_len,float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])58 unsigned FLAC__fixed_compute_best_predictor_intrin_sse2(const FLAC__int32 data[], unsigned data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1])
59 {
60 	FLAC__uint32 total_error_0, total_error_1, total_error_2, total_error_3, total_error_4;
61 	unsigned i, order;
62 
63 	__m128i total_err0, total_err1, total_err2;
64 
65 	{
66 		FLAC__int32 itmp;
67 		__m128i last_error;
68 
69 		last_error = _mm_cvtsi32_si128(data[-1]);							// 0   0   0   le0
70 		itmp = data[-2];
71 		last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
72 		last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp));	// 0   0   le0 le1
73 		itmp -= data[-3];
74 		last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
75 		last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp));	// 0   le0 le1 le2
76 		itmp -= data[-3] - data[-4];
77 		last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
78 		last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp));	// le0 le1 le2 le3
79 
80 		total_err0 = total_err1 = _mm_setzero_si128();
81 		for(i = 0; i < data_len; i++) {
82 			__m128i err0, err1, tmp;
83 			err0 = _mm_cvtsi32_si128(data[i]);								// 0   0   0   e0
84 			err1 = _mm_shuffle_epi32(err0, _MM_SHUFFLE(0,0,0,0));			// e0  e0  e0  e0
85 #if 1 /* OPT_SSE */
86 			err1 = _mm_sub_epi32(err1, last_error);
87 			last_error = _mm_srli_si128(last_error, 4);						// 0   le0 le1 le2
88 			err1 = _mm_sub_epi32(err1, last_error);
89 			last_error = _mm_srli_si128(last_error, 4);						// 0   0   le0 le1
90 			err1 = _mm_sub_epi32(err1, last_error);
91 			last_error = _mm_srli_si128(last_error, 4);						// 0   0   0   le0
92 			err1 = _mm_sub_epi32(err1, last_error);							// e1  e2  e3  e4
93 #else
94 			last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 8));	// le0  le1  le2+le0  le3+le1
95 			last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 4));	// le0  le1+le0  le2+le0+le1  le3+le1+le2+le0
96 			err1 = _mm_sub_epi32(err1, last_error);							// e1  e2  e3  e4
97 #endif
98 			tmp = _mm_slli_si128(err0, 12);									// e0   0   0   0
99 			last_error = _mm_srli_si128(err1, 4);							//  0  e1  e2  e3
100 			last_error = _mm_or_si128(last_error, tmp);						// e0  e1  e2  e3
101 
102 			tmp = _mm_srai_epi32(err0, 31);
103 			err0 = _mm_xor_si128(err0, tmp);
104 			err0 = _mm_sub_epi32(err0, tmp);
105 			tmp = _mm_srai_epi32(err1, 31);
106 			err1 = _mm_xor_si128(err1, tmp);
107 			err1 = _mm_sub_epi32(err1, tmp);
108 
109 			total_err0 = _mm_add_epi32(total_err0, err0);					// 0   0   0   te0
110 			total_err1 = _mm_add_epi32(total_err1, err1);					// te1 te2 te3 te4
111 		}
112 	}
113 
114 	total_error_0 = _mm_cvtsi128_si32(total_err0);
115 	total_err2 = total_err1;											// te1  te2  te3  te4
116 	total_err1 = _mm_srli_si128(total_err1, 8);							//  0    0   te1  te2
117 	total_error_4 = _mm_cvtsi128_si32(total_err2);
118 	total_error_2 = _mm_cvtsi128_si32(total_err1);
119 	total_err2 = _mm_srli_si128(total_err2,	4);							//  0   te1  te2  te3
120 	total_err1 = _mm_srli_si128(total_err1, 4);							//  0    0    0   te1
121 	total_error_3 = _mm_cvtsi128_si32(total_err2);
122 	total_error_1 = _mm_cvtsi128_si32(total_err1);
123 
124 	/* prefer higher order */
125 	if(total_error_0 < flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4))
126 		order = 0;
127 	else if(total_error_1 < flac_min(flac_min(total_error_2, total_error_3), total_error_4))
128 		order = 1;
129 	else if(total_error_2 < flac_min(total_error_3, total_error_4))
130 		order = 2;
131 	else if(total_error_3 < total_error_4)
132 		order = 3;
133 	else
134 		order = 4;
135 
136 	/* Estimate the expected number of bits per residual signal sample. */
137 	/* 'total_error*' is linearly related to the variance of the residual */
138 	/* signal, so we use it directly to compute E(|x|) */
139 	FLAC__ASSERT(data_len > 0 || total_error_0 == 0);
140 	FLAC__ASSERT(data_len > 0 || total_error_1 == 0);
141 	FLAC__ASSERT(data_len > 0 || total_error_2 == 0);
142 	FLAC__ASSERT(data_len > 0 || total_error_3 == 0);
143 	FLAC__ASSERT(data_len > 0 || total_error_4 == 0);
144 
145 	residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0);
146 	residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0);
147 	residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0);
148 	residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0);
149 	residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0);
150 
151 	return order;
152 }
153 
154 FLAC__SSE_TARGET("sse2")
FLAC__fixed_compute_best_predictor_wide_intrin_sse2(const FLAC__int32 data[],unsigned data_len,float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])155 unsigned FLAC__fixed_compute_best_predictor_wide_intrin_sse2(const FLAC__int32 data[], unsigned data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1])
156 {
157 	FLAC__uint64 total_error_0, total_error_1, total_error_2, total_error_3, total_error_4;
158 	unsigned i, order;
159 
160 	__m128i total_err0, total_err1, total_err3;
161 
162 	{
163 		FLAC__int32 itmp;
164 		__m128i last_error, zero = _mm_setzero_si128();
165 
166 		last_error = _mm_cvtsi32_si128(data[-1]);							// 0   0   0   le0
167 		itmp = data[-2];
168 		last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
169 		last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp));	// 0   0   le0 le1
170 		itmp -= data[-3];
171 		last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
172 		last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp));	// 0   le0 le1 le2
173 		itmp -= data[-3] - data[-4];
174 		last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
175 		last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp));	// le0 le1 le2 le3
176 
177 		total_err0 = total_err1 = total_err3 = _mm_setzero_si128();
178 		for(i = 0; i < data_len; i++) {
179 			__m128i err0, err1, tmp;
180 			err0 = _mm_cvtsi32_si128(data[i]);								// 0   0   0   e0
181 			err1 = _mm_shuffle_epi32(err0, _MM_SHUFFLE(0,0,0,0));			// e0  e0  e0  e0
182 #if 1 /* OPT_SSE */
183 			err1 = _mm_sub_epi32(err1, last_error);
184 			last_error = _mm_srli_si128(last_error, 4);						// 0   le0 le1 le2
185 			err1 = _mm_sub_epi32(err1, last_error);
186 			last_error = _mm_srli_si128(last_error, 4);						// 0   0   le0 le1
187 			err1 = _mm_sub_epi32(err1, last_error);
188 			last_error = _mm_srli_si128(last_error, 4);						// 0   0   0   le0
189 			err1 = _mm_sub_epi32(err1, last_error);							// e1  e2  e3  e4
190 #else
191 			last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 8));	// le0  le1  le2+le0  le3+le1
192 			last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 4));	// le0  le1+le0  le2+le0+le1  le3+le1+le2+le0
193 			err1 = _mm_sub_epi32(err1, last_error);							// e1  e2  e3  e4
194 #endif
195 			tmp = _mm_slli_si128(err0, 12);									// e0   0   0   0
196 			last_error = _mm_srli_si128(err1, 4);							//  0  e1  e2  e3
197 			last_error = _mm_or_si128(last_error, tmp);						// e0  e1  e2  e3
198 
199 			tmp = _mm_srai_epi32(err0, 31);
200 			err0 = _mm_xor_si128(err0, tmp);
201 			err0 = _mm_sub_epi32(err0, tmp);
202 			tmp = _mm_srai_epi32(err1, 31);
203 			err1 = _mm_xor_si128(err1, tmp);
204 			err1 = _mm_sub_epi32(err1, tmp);
205 
206 			total_err0 = _mm_add_epi64(total_err0, err0);					//        0       te0
207 			err0 = _mm_unpacklo_epi32(err1, zero);							//   0  |e3|   0  |e4|
208 			err1 = _mm_unpackhi_epi32(err1, zero);							//   0  |e1|   0  |e2|
209 			total_err3 = _mm_add_epi64(total_err3, err0);					//       te3      te4
210 			total_err1 = _mm_add_epi64(total_err1, err1);					//       te1      te2
211 		}
212 	}
213 
214 	m128i_to_i64(total_error_0, total_err0);
215 	m128i_to_i64(total_error_4, total_err3);
216 	m128i_to_i64(total_error_2, total_err1);
217 	total_err3 = _mm_srli_si128(total_err3,	8);							//         0      te3
218 	total_err1 = _mm_srli_si128(total_err1, 8);							//         0      te1
219 	m128i_to_i64(total_error_3, total_err3);
220 	m128i_to_i64(total_error_1, total_err1);
221 
222 	/* prefer higher order */
223 	if(total_error_0 < flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4))
224 		order = 0;
225 	else if(total_error_1 < flac_min(flac_min(total_error_2, total_error_3), total_error_4))
226 		order = 1;
227 	else if(total_error_2 < flac_min(total_error_3, total_error_4))
228 		order = 2;
229 	else if(total_error_3 < total_error_4)
230 		order = 3;
231 	else
232 		order = 4;
233 
234 	/* Estimate the expected number of bits per residual signal sample. */
235 	/* 'total_error*' is linearly related to the variance of the residual */
236 	/* signal, so we use it directly to compute E(|x|) */
237 	FLAC__ASSERT(data_len > 0 || total_error_0 == 0);
238 	FLAC__ASSERT(data_len > 0 || total_error_1 == 0);
239 	FLAC__ASSERT(data_len > 0 || total_error_2 == 0);
240 	FLAC__ASSERT(data_len > 0 || total_error_3 == 0);
241 	FLAC__ASSERT(data_len > 0 || total_error_4 == 0);
242 
243 	residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0);
244 	residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0);
245 	residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0);
246 	residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0);
247 	residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0);
248 
249 	return order;
250 }
251 
252 #endif /* FLAC__SSE2_SUPPORTED */
253 #endif /* (FLAC__CPU_IA32 || FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN */
254 #endif /* FLAC__NO_ASM */
255 #endif /* FLAC__INTEGER_ONLY_LIBRARY */
256