1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines simple local analyses for load instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/Loads.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/ValueTracking.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/GlobalAlias.h"
19 #include "llvm/IR/GlobalVariable.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/IR/Operator.h"
24 #include "llvm/IR/Statepoint.h"
25 
26 using namespace llvm;
27 
isAligned(const Value * Base,const APInt & Offset,unsigned Align,const DataLayout & DL)28 static bool isAligned(const Value *Base, const APInt &Offset, unsigned Align,
29                       const DataLayout &DL) {
30   APInt BaseAlign(Offset.getBitWidth(), Base->getPointerAlignment(DL));
31 
32   if (!BaseAlign) {
33     Type *Ty = Base->getType()->getPointerElementType();
34     if (!Ty->isSized())
35       return false;
36     BaseAlign = DL.getABITypeAlignment(Ty);
37   }
38 
39   APInt Alignment(Offset.getBitWidth(), Align);
40 
41   assert(Alignment.isPowerOf2() && "must be a power of 2!");
42   return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
43 }
44 
isAligned(const Value * Base,unsigned Align,const DataLayout & DL)45 static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) {
46   Type *Ty = Base->getType();
47   assert(Ty->isSized() && "must be sized");
48   APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
49   return isAligned(Base, Offset, Align, DL);
50 }
51 
52 /// Test if V is always a pointer to allocated and suitably aligned memory for
53 /// a simple load or store.
isDereferenceableAndAlignedPointer(const Value * V,unsigned Align,const APInt & Size,const DataLayout & DL,const Instruction * CtxI,const DominatorTree * DT,SmallPtrSetImpl<const Value * > & Visited)54 static bool isDereferenceableAndAlignedPointer(
55     const Value *V, unsigned Align, const APInt &Size, const DataLayout &DL,
56     const Instruction *CtxI, const DominatorTree *DT,
57     SmallPtrSetImpl<const Value *> &Visited) {
58   // Already visited?  Bail out, we've likely hit unreachable code.
59   if (!Visited.insert(V).second)
60     return false;
61 
62   // Note that it is not safe to speculate into a malloc'd region because
63   // malloc may return null.
64 
65   // bitcast instructions are no-ops as far as dereferenceability is concerned.
66   if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V))
67     return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, Size,
68                                               DL, CtxI, DT, Visited);
69 
70   bool CheckForNonNull = false;
71   APInt KnownDerefBytes(Size.getBitWidth(),
72                         V->getPointerDereferenceableBytes(DL, CheckForNonNull));
73   if (KnownDerefBytes.getBoolValue()) {
74     if (KnownDerefBytes.uge(Size))
75       if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT))
76         return isAligned(V, Align, DL);
77   }
78 
79   // For GEPs, determine if the indexing lands within the allocated object.
80   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
81     const Value *Base = GEP->getPointerOperand();
82 
83     APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
84     if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
85         !Offset.urem(APInt(Offset.getBitWidth(), Align)).isMinValue())
86       return false;
87 
88     // If the base pointer is dereferenceable for Offset+Size bytes, then the
89     // GEP (== Base + Offset) is dereferenceable for Size bytes.  If the base
90     // pointer is aligned to Align bytes, and the Offset is divisible by Align
91     // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
92     // aligned to Align bytes.
93 
94     // Offset and Size may have different bit widths if we have visited an
95     // addrspacecast, so we can't do arithmetic directly on the APInt values.
96     return isDereferenceableAndAlignedPointer(
97         Base, Align, Offset + Size.sextOrTrunc(Offset.getBitWidth()),
98         DL, CtxI, DT, Visited);
99   }
100 
101   // For gc.relocate, look through relocations
102   if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
103     return isDereferenceableAndAlignedPointer(
104         RelocateInst->getDerivedPtr(), Align, Size, DL, CtxI, DT, Visited);
105 
106   if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
107     return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, Size,
108                                               DL, CtxI, DT, Visited);
109 
110   if (auto CS = ImmutableCallSite(V))
111     if (auto *RP = getArgumentAliasingToReturnedPointer(CS))
112       return isDereferenceableAndAlignedPointer(RP, Align, Size, DL, CtxI, DT,
113                                                 Visited);
114 
115   // If we don't know, assume the worst.
116   return false;
117 }
118 
isDereferenceableAndAlignedPointer(const Value * V,unsigned Align,const APInt & Size,const DataLayout & DL,const Instruction * CtxI,const DominatorTree * DT)119 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
120                                               const APInt &Size,
121                                               const DataLayout &DL,
122                                               const Instruction *CtxI,
123                                               const DominatorTree *DT) {
124   SmallPtrSet<const Value *, 32> Visited;
125   return ::isDereferenceableAndAlignedPointer(V, Align, Size, DL, CtxI, DT,
126                                               Visited);
127 }
128 
isDereferenceableAndAlignedPointer(const Value * V,unsigned Align,const DataLayout & DL,const Instruction * CtxI,const DominatorTree * DT)129 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
130                                               const DataLayout &DL,
131                                               const Instruction *CtxI,
132                                               const DominatorTree *DT) {
133   // When dereferenceability information is provided by a dereferenceable
134   // attribute, we know exactly how many bytes are dereferenceable. If we can
135   // determine the exact offset to the attributed variable, we can use that
136   // information here.
137   Type *VTy = V->getType();
138   Type *Ty = VTy->getPointerElementType();
139 
140   // Require ABI alignment for loads without alignment specification
141   if (Align == 0)
142     Align = DL.getABITypeAlignment(Ty);
143 
144   if (!Ty->isSized())
145     return false;
146 
147   SmallPtrSet<const Value *, 32> Visited;
148   return ::isDereferenceableAndAlignedPointer(
149       V, Align, APInt(DL.getIndexTypeSizeInBits(VTy), DL.getTypeStoreSize(Ty)), DL,
150       CtxI, DT, Visited);
151 }
152 
isDereferenceablePointer(const Value * V,const DataLayout & DL,const Instruction * CtxI,const DominatorTree * DT)153 bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL,
154                                     const Instruction *CtxI,
155                                     const DominatorTree *DT) {
156   return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT);
157 }
158 
159 /// Test if A and B will obviously have the same value.
160 ///
161 /// This includes recognizing that %t0 and %t1 will have the same
162 /// value in code like this:
163 /// \code
164 ///   %t0 = getelementptr \@a, 0, 3
165 ///   store i32 0, i32* %t0
166 ///   %t1 = getelementptr \@a, 0, 3
167 ///   %t2 = load i32* %t1
168 /// \endcode
169 ///
AreEquivalentAddressValues(const Value * A,const Value * B)170 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
171   // Test if the values are trivially equivalent.
172   if (A == B)
173     return true;
174 
175   // Test if the values come from identical arithmetic instructions.
176   // Use isIdenticalToWhenDefined instead of isIdenticalTo because
177   // this function is only used when one address use dominates the
178   // other, which means that they'll always either have the same
179   // value or one of them will have an undefined value.
180   if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
181       isa<GetElementPtrInst>(A))
182     if (const Instruction *BI = dyn_cast<Instruction>(B))
183       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
184         return true;
185 
186   // Otherwise they may not be equivalent.
187   return false;
188 }
189 
190 /// Check if executing a load of this pointer value cannot trap.
191 ///
192 /// If DT and ScanFrom are specified this method performs context-sensitive
193 /// analysis and returns true if it is safe to load immediately before ScanFrom.
194 ///
195 /// If it is not obviously safe to load from the specified pointer, we do
196 /// a quick local scan of the basic block containing \c ScanFrom, to determine
197 /// if the address is already accessed.
198 ///
199 /// This uses the pointee type to determine how many bytes need to be safe to
200 /// load from the pointer.
isSafeToLoadUnconditionally(Value * V,unsigned Align,const DataLayout & DL,Instruction * ScanFrom,const DominatorTree * DT)201 bool llvm::isSafeToLoadUnconditionally(Value *V, unsigned Align,
202                                        const DataLayout &DL,
203                                        Instruction *ScanFrom,
204                                        const DominatorTree *DT) {
205   // Zero alignment means that the load has the ABI alignment for the target
206   if (Align == 0)
207     Align = DL.getABITypeAlignment(V->getType()->getPointerElementType());
208   assert(isPowerOf2_32(Align));
209 
210   // If DT is not specified we can't make context-sensitive query
211   const Instruction* CtxI = DT ? ScanFrom : nullptr;
212   if (isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT))
213     return true;
214 
215   int64_t ByteOffset = 0;
216   Value *Base = V;
217   Base = GetPointerBaseWithConstantOffset(V, ByteOffset, DL);
218 
219   if (ByteOffset < 0) // out of bounds
220     return false;
221 
222   Type *BaseType = nullptr;
223   unsigned BaseAlign = 0;
224   if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
225     // An alloca is safe to load from as load as it is suitably aligned.
226     BaseType = AI->getAllocatedType();
227     BaseAlign = AI->getAlignment();
228   } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
229     // Global variables are not necessarily safe to load from if they are
230     // interposed arbitrarily. Their size may change or they may be weak and
231     // require a test to determine if they were in fact provided.
232     if (!GV->isInterposable()) {
233       BaseType = GV->getType()->getElementType();
234       BaseAlign = GV->getAlignment();
235     }
236   }
237 
238   PointerType *AddrTy = cast<PointerType>(V->getType());
239   uint64_t LoadSize = DL.getTypeStoreSize(AddrTy->getElementType());
240 
241   // If we found a base allocated type from either an alloca or global variable,
242   // try to see if we are definitively within the allocated region. We need to
243   // know the size of the base type and the loaded type to do anything in this
244   // case.
245   if (BaseType && BaseType->isSized()) {
246     if (BaseAlign == 0)
247       BaseAlign = DL.getPrefTypeAlignment(BaseType);
248 
249     if (Align <= BaseAlign) {
250       // Check if the load is within the bounds of the underlying object.
251       if (ByteOffset + LoadSize <= DL.getTypeAllocSize(BaseType) &&
252           ((ByteOffset % Align) == 0))
253         return true;
254     }
255   }
256 
257   if (!ScanFrom)
258     return false;
259 
260   // Otherwise, be a little bit aggressive by scanning the local block where we
261   // want to check to see if the pointer is already being loaded or stored
262   // from/to.  If so, the previous load or store would have already trapped,
263   // so there is no harm doing an extra load (also, CSE will later eliminate
264   // the load entirely).
265   BasicBlock::iterator BBI = ScanFrom->getIterator(),
266                        E = ScanFrom->getParent()->begin();
267 
268   // We can at least always strip pointer casts even though we can't use the
269   // base here.
270   V = V->stripPointerCasts();
271 
272   while (BBI != E) {
273     --BBI;
274 
275     // If we see a free or a call which may write to memory (i.e. which might do
276     // a free) the pointer could be marked invalid.
277     if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
278         !isa<DbgInfoIntrinsic>(BBI))
279       return false;
280 
281     Value *AccessedPtr;
282     unsigned AccessedAlign;
283     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
284       AccessedPtr = LI->getPointerOperand();
285       AccessedAlign = LI->getAlignment();
286     } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
287       AccessedPtr = SI->getPointerOperand();
288       AccessedAlign = SI->getAlignment();
289     } else
290       continue;
291 
292     Type *AccessedTy = AccessedPtr->getType()->getPointerElementType();
293     if (AccessedAlign == 0)
294       AccessedAlign = DL.getABITypeAlignment(AccessedTy);
295     if (AccessedAlign < Align)
296       continue;
297 
298     // Handle trivial cases.
299     if (AccessedPtr == V)
300       return true;
301 
302     if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
303         LoadSize <= DL.getTypeStoreSize(AccessedTy))
304       return true;
305   }
306   return false;
307 }
308 
309 /// DefMaxInstsToScan - the default number of maximum instructions
310 /// to scan in the block, used by FindAvailableLoadedValue().
311 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
312 /// threading in part by eliminating partially redundant loads.
313 /// At that point, the value of MaxInstsToScan was already set to '6'
314 /// without documented explanation.
315 cl::opt<unsigned>
316 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
317   cl::desc("Use this to specify the default maximum number of instructions "
318            "to scan backward from a given instruction, when searching for "
319            "available loaded value"));
320 
FindAvailableLoadedValue(LoadInst * Load,BasicBlock * ScanBB,BasicBlock::iterator & ScanFrom,unsigned MaxInstsToScan,AliasAnalysis * AA,bool * IsLoad,unsigned * NumScanedInst)321 Value *llvm::FindAvailableLoadedValue(LoadInst *Load,
322                                       BasicBlock *ScanBB,
323                                       BasicBlock::iterator &ScanFrom,
324                                       unsigned MaxInstsToScan,
325                                       AliasAnalysis *AA, bool *IsLoad,
326                                       unsigned *NumScanedInst) {
327   // Don't CSE load that is volatile or anything stronger than unordered.
328   if (!Load->isUnordered())
329     return nullptr;
330 
331   return FindAvailablePtrLoadStore(
332       Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB,
333       ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst);
334 }
335 
FindAvailablePtrLoadStore(Value * Ptr,Type * AccessTy,bool AtLeastAtomic,BasicBlock * ScanBB,BasicBlock::iterator & ScanFrom,unsigned MaxInstsToScan,AliasAnalysis * AA,bool * IsLoadCSE,unsigned * NumScanedInst)336 Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy,
337                                        bool AtLeastAtomic, BasicBlock *ScanBB,
338                                        BasicBlock::iterator &ScanFrom,
339                                        unsigned MaxInstsToScan,
340                                        AliasAnalysis *AA, bool *IsLoadCSE,
341                                        unsigned *NumScanedInst) {
342   if (MaxInstsToScan == 0)
343     MaxInstsToScan = ~0U;
344 
345   const DataLayout &DL = ScanBB->getModule()->getDataLayout();
346 
347   // Try to get the store size for the type.
348   uint64_t AccessSize = DL.getTypeStoreSize(AccessTy);
349 
350   Value *StrippedPtr = Ptr->stripPointerCasts();
351 
352   while (ScanFrom != ScanBB->begin()) {
353     // We must ignore debug info directives when counting (otherwise they
354     // would affect codegen).
355     Instruction *Inst = &*--ScanFrom;
356     if (isa<DbgInfoIntrinsic>(Inst))
357       continue;
358 
359     // Restore ScanFrom to expected value in case next test succeeds
360     ScanFrom++;
361 
362     if (NumScanedInst)
363       ++(*NumScanedInst);
364 
365     // Don't scan huge blocks.
366     if (MaxInstsToScan-- == 0)
367       return nullptr;
368 
369     --ScanFrom;
370     // If this is a load of Ptr, the loaded value is available.
371     // (This is true even if the load is volatile or atomic, although
372     // those cases are unlikely.)
373     if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
374       if (AreEquivalentAddressValues(
375               LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) &&
376           CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
377 
378         // We can value forward from an atomic to a non-atomic, but not the
379         // other way around.
380         if (LI->isAtomic() < AtLeastAtomic)
381           return nullptr;
382 
383         if (IsLoadCSE)
384             *IsLoadCSE = true;
385         return LI;
386       }
387 
388     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
389       Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
390       // If this is a store through Ptr, the value is available!
391       // (This is true even if the store is volatile or atomic, although
392       // those cases are unlikely.)
393       if (AreEquivalentAddressValues(StorePtr, StrippedPtr) &&
394           CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(),
395                                                AccessTy, DL)) {
396 
397         // We can value forward from an atomic to a non-atomic, but not the
398         // other way around.
399         if (SI->isAtomic() < AtLeastAtomic)
400           return nullptr;
401 
402         if (IsLoadCSE)
403           *IsLoadCSE = false;
404         return SI->getOperand(0);
405       }
406 
407       // If both StrippedPtr and StorePtr reach all the way to an alloca or
408       // global and they are different, ignore the store. This is a trivial form
409       // of alias analysis that is important for reg2mem'd code.
410       if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
411           (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
412           StrippedPtr != StorePtr)
413         continue;
414 
415       // If we have alias analysis and it says the store won't modify the loaded
416       // value, ignore the store.
417       if (AA && !isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize)))
418         continue;
419 
420       // Otherwise the store that may or may not alias the pointer, bail out.
421       ++ScanFrom;
422       return nullptr;
423     }
424 
425     // If this is some other instruction that may clobber Ptr, bail out.
426     if (Inst->mayWriteToMemory()) {
427       // If alias analysis claims that it really won't modify the load,
428       // ignore it.
429       if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize)))
430         continue;
431 
432       // May modify the pointer, bail out.
433       ++ScanFrom;
434       return nullptr;
435     }
436   }
437 
438   // Got to the start of the block, we didn't find it, but are done for this
439   // block.
440   return nullptr;
441 }
442