1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include <limits.h>  // For LONG_MIN, LONG_MAX.
6 
7 #if V8_TARGET_ARCH_ARM
8 
9 #include "src/assembler-inl.h"
10 #include "src/base/bits.h"
11 #include "src/base/division-by-constant.h"
12 #include "src/base/utils/random-number-generator.h"
13 #include "src/bootstrapper.h"
14 #include "src/callable.h"
15 #include "src/code-factory.h"
16 #include "src/code-stubs.h"
17 #include "src/counters.h"
18 #include "src/debug/debug.h"
19 #include "src/double.h"
20 #include "src/external-reference-table.h"
21 #include "src/frames-inl.h"
22 #include "src/instruction-stream.h"
23 #include "src/objects-inl.h"
24 #include "src/register-configuration.h"
25 #include "src/runtime/runtime.h"
26 #include "src/snapshot/snapshot.h"
27 #include "src/wasm/wasm-code-manager.h"
28 
29 #include "src/arm/macro-assembler-arm.h"
30 
31 namespace v8 {
32 namespace internal {
33 
MacroAssembler(Isolate * isolate,const AssemblerOptions & options,void * buffer,int size,CodeObjectRequired create_code_object)34 MacroAssembler::MacroAssembler(Isolate* isolate,
35                                const AssemblerOptions& options, void* buffer,
36                                int size, CodeObjectRequired create_code_object)
37     : TurboAssembler(isolate, options, buffer, size, create_code_object) {
38   if (create_code_object == CodeObjectRequired::kYes) {
39     // Unlike TurboAssembler, which can be used off the main thread and may not
40     // allocate, macro assembler creates its own copy of the self-reference
41     // marker in order to disambiguate between self-references during nested
42     // code generation (e.g.: codegen of the current object triggers stub
43     // compilation through CodeStub::GetCode()).
44     code_object_ = Handle<HeapObject>::New(
45         *isolate->factory()->NewSelfReferenceMarker(), isolate);
46   }
47 }
48 
RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,Register exclusion1,Register exclusion2,Register exclusion3) const49 int TurboAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
50                                                     Register exclusion1,
51                                                     Register exclusion2,
52                                                     Register exclusion3) const {
53   int bytes = 0;
54   RegList exclusions = 0;
55   if (exclusion1 != no_reg) {
56     exclusions |= exclusion1.bit();
57     if (exclusion2 != no_reg) {
58       exclusions |= exclusion2.bit();
59       if (exclusion3 != no_reg) {
60         exclusions |= exclusion3.bit();
61       }
62     }
63   }
64 
65   RegList list = (kCallerSaved | lr.bit()) & ~exclusions;
66 
67   bytes += NumRegs(list) * kPointerSize;
68 
69   if (fp_mode == kSaveFPRegs) {
70     bytes += DwVfpRegister::NumRegisters() * DwVfpRegister::kSizeInBytes;
71   }
72 
73   return bytes;
74 }
75 
PushCallerSaved(SaveFPRegsMode fp_mode,Register exclusion1,Register exclusion2,Register exclusion3)76 int TurboAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1,
77                                     Register exclusion2, Register exclusion3) {
78   int bytes = 0;
79   RegList exclusions = 0;
80   if (exclusion1 != no_reg) {
81     exclusions |= exclusion1.bit();
82     if (exclusion2 != no_reg) {
83       exclusions |= exclusion2.bit();
84       if (exclusion3 != no_reg) {
85         exclusions |= exclusion3.bit();
86       }
87     }
88   }
89 
90   RegList list = (kCallerSaved | lr.bit()) & ~exclusions;
91   stm(db_w, sp, list);
92 
93   bytes += NumRegs(list) * kPointerSize;
94 
95   if (fp_mode == kSaveFPRegs) {
96     SaveFPRegs(sp, lr);
97     bytes += DwVfpRegister::NumRegisters() * DwVfpRegister::kSizeInBytes;
98   }
99 
100   return bytes;
101 }
102 
PopCallerSaved(SaveFPRegsMode fp_mode,Register exclusion1,Register exclusion2,Register exclusion3)103 int TurboAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1,
104                                    Register exclusion2, Register exclusion3) {
105   int bytes = 0;
106   if (fp_mode == kSaveFPRegs) {
107     RestoreFPRegs(sp, lr);
108     bytes += DwVfpRegister::NumRegisters() * DwVfpRegister::kSizeInBytes;
109   }
110 
111   RegList exclusions = 0;
112   if (exclusion1 != no_reg) {
113     exclusions |= exclusion1.bit();
114     if (exclusion2 != no_reg) {
115       exclusions |= exclusion2.bit();
116       if (exclusion3 != no_reg) {
117         exclusions |= exclusion3.bit();
118       }
119     }
120   }
121 
122   RegList list = (kCallerSaved | lr.bit()) & ~exclusions;
123   ldm(ia_w, sp, list);
124 
125   bytes += NumRegs(list) * kPointerSize;
126 
127   return bytes;
128 }
129 
LoadFromConstantsTable(Register destination,int constant_index)130 void TurboAssembler::LoadFromConstantsTable(Register destination,
131                                             int constant_index) {
132   DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(
133       Heap::kBuiltinsConstantsTableRootIndex));
134 
135   // The ldr call below could end up clobbering ip when the offset does not fit
136   // into 12 bits (and thus needs to be loaded from the constant pool). In that
137   // case, we need to be extra-careful and temporarily use another register as
138   // the target.
139 
140   const uint32_t offset =
141       FixedArray::kHeaderSize + constant_index * kPointerSize - kHeapObjectTag;
142   const bool could_clobber_ip = !is_uint12(offset);
143 
144   Register reg = destination;
145   if (could_clobber_ip) {
146     Push(r7);
147     reg = r7;
148   }
149 
150   LoadRoot(reg, Heap::kBuiltinsConstantsTableRootIndex);
151   ldr(destination, MemOperand(reg, offset));
152 
153   if (could_clobber_ip) {
154     DCHECK_EQ(reg, r7);
155     Pop(r7);
156   }
157 }
158 
LoadRootRelative(Register destination,int32_t offset)159 void TurboAssembler::LoadRootRelative(Register destination, int32_t offset) {
160   ldr(destination, MemOperand(kRootRegister, offset));
161 }
162 
LoadRootRegisterOffset(Register destination,intptr_t offset)163 void TurboAssembler::LoadRootRegisterOffset(Register destination,
164                                             intptr_t offset) {
165   if (offset == 0) {
166     Move(destination, kRootRegister);
167   } else {
168     add(destination, kRootRegister, Operand(offset));
169   }
170 }
171 
Jump(Register target,Condition cond)172 void TurboAssembler::Jump(Register target, Condition cond) { bx(target, cond); }
173 
Jump(intptr_t target,RelocInfo::Mode rmode,Condition cond)174 void TurboAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
175                           Condition cond) {
176   mov(pc, Operand(target, rmode), LeaveCC, cond);
177 }
178 
Jump(Address target,RelocInfo::Mode rmode,Condition cond)179 void TurboAssembler::Jump(Address target, RelocInfo::Mode rmode,
180                           Condition cond) {
181   DCHECK(!RelocInfo::IsCodeTarget(rmode));
182   Jump(static_cast<intptr_t>(target), rmode, cond);
183 }
184 
Jump(Handle<Code> code,RelocInfo::Mode rmode,Condition cond)185 void TurboAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
186                           Condition cond) {
187   DCHECK(RelocInfo::IsCodeTarget(rmode));
188   if (FLAG_embedded_builtins) {
189     int builtin_index = Builtins::kNoBuiltinId;
190     bool target_is_isolate_independent_builtin =
191         isolate()->builtins()->IsBuiltinHandle(code, &builtin_index) &&
192         Builtins::IsIsolateIndependent(builtin_index);
193     if (target_is_isolate_independent_builtin &&
194         options().use_pc_relative_calls_and_jumps) {
195       int32_t code_target_index = AddCodeTarget(code);
196       b(code_target_index * kInstrSize, cond, RelocInfo::RELATIVE_CODE_TARGET);
197       return;
198     } else if (root_array_available_ && options().isolate_independent_code) {
199       UseScratchRegisterScope temps(this);
200       Register scratch = temps.Acquire();
201       IndirectLoadConstant(scratch, code);
202       add(scratch, scratch, Operand(Code::kHeaderSize - kHeapObjectTag));
203       Jump(scratch, cond);
204       return;
205     } else if (target_is_isolate_independent_builtin &&
206                options().inline_offheap_trampolines) {
207       // Inline the trampoline.
208       RecordCommentForOffHeapTrampoline(builtin_index);
209       EmbeddedData d = EmbeddedData::FromBlob();
210       Address entry = d.InstructionStartOfBuiltin(builtin_index);
211       // Use ip directly instead of using UseScratchRegisterScope, as we do not
212       // preserve scratch registers across calls.
213       mov(ip, Operand(entry, RelocInfo::OFF_HEAP_TARGET));
214       Jump(ip, cond);
215       return;
216     }
217   }
218   // 'code' is always generated ARM code, never THUMB code
219   Jump(static_cast<intptr_t>(code.address()), rmode, cond);
220 }
221 
Call(Register target,Condition cond)222 void TurboAssembler::Call(Register target, Condition cond) {
223   // Block constant pool for the call instruction sequence.
224   BlockConstPoolScope block_const_pool(this);
225   blx(target, cond);
226 }
227 
Call(Address target,RelocInfo::Mode rmode,Condition cond,TargetAddressStorageMode mode,bool check_constant_pool)228 void TurboAssembler::Call(Address target, RelocInfo::Mode rmode, Condition cond,
229                           TargetAddressStorageMode mode,
230                           bool check_constant_pool) {
231   // Check if we have to emit the constant pool before we block it.
232   if (check_constant_pool) MaybeCheckConstPool();
233   // Block constant pool for the call instruction sequence.
234   BlockConstPoolScope block_const_pool(this);
235 
236   bool old_predictable_code_size = predictable_code_size();
237   if (mode == NEVER_INLINE_TARGET_ADDRESS) {
238     set_predictable_code_size(true);
239   }
240 
241   // Use ip directly instead of using UseScratchRegisterScope, as we do not
242   // preserve scratch registers across calls.
243 
244   // Call sequence on V7 or later may be :
245   //  movw  ip, #... @ call address low 16
246   //  movt  ip, #... @ call address high 16
247   //  blx   ip
248   //                      @ return address
249   // Or for pre-V7 or values that may be back-patched
250   // to avoid ICache flushes:
251   //  ldr   ip, [pc, #...] @ call address
252   //  blx   ip
253   //                      @ return address
254 
255   mov(ip, Operand(target, rmode));
256   blx(ip, cond);
257 
258   if (mode == NEVER_INLINE_TARGET_ADDRESS) {
259     set_predictable_code_size(old_predictable_code_size);
260   }
261 }
262 
Call(Handle<Code> code,RelocInfo::Mode rmode,Condition cond,TargetAddressStorageMode mode,bool check_constant_pool)263 void TurboAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode,
264                           Condition cond, TargetAddressStorageMode mode,
265                           bool check_constant_pool) {
266   DCHECK(RelocInfo::IsCodeTarget(rmode));
267   if (FLAG_embedded_builtins) {
268     int builtin_index = Builtins::kNoBuiltinId;
269     bool target_is_isolate_independent_builtin =
270         isolate()->builtins()->IsBuiltinHandle(code, &builtin_index) &&
271         Builtins::IsIsolateIndependent(builtin_index);
272     if (target_is_isolate_independent_builtin &&
273         options().use_pc_relative_calls_and_jumps) {
274       int32_t code_target_index = AddCodeTarget(code);
275       bl(code_target_index * kInstrSize, cond, RelocInfo::RELATIVE_CODE_TARGET);
276       return;
277     } else if (root_array_available_ && options().isolate_independent_code) {
278       // Use ip directly instead of using UseScratchRegisterScope, as we do not
279       // preserve scratch registers across calls.
280       IndirectLoadConstant(ip, code);
281       add(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
282       Call(ip, cond);
283       return;
284     } else if (target_is_isolate_independent_builtin &&
285                options().inline_offheap_trampolines) {
286       // Inline the trampoline.
287       RecordCommentForOffHeapTrampoline(builtin_index);
288       EmbeddedData d = EmbeddedData::FromBlob();
289       Address entry = d.InstructionStartOfBuiltin(builtin_index);
290       // Use ip directly instead of using UseScratchRegisterScope, as we do not
291       // preserve scratch registers across calls.
292       mov(ip, Operand(entry, RelocInfo::OFF_HEAP_TARGET));
293       Call(ip, cond);
294       return;
295     }
296   }
297   // 'code' is always generated ARM code, never THUMB code
298   Call(code.address(), rmode, cond, mode);
299 }
300 
Ret(Condition cond)301 void TurboAssembler::Ret(Condition cond) { bx(lr, cond); }
302 
Drop(int count,Condition cond)303 void TurboAssembler::Drop(int count, Condition cond) {
304   if (count > 0) {
305     add(sp, sp, Operand(count * kPointerSize), LeaveCC, cond);
306   }
307 }
308 
Drop(Register count,Condition cond)309 void TurboAssembler::Drop(Register count, Condition cond) {
310   add(sp, sp, Operand(count, LSL, kPointerSizeLog2), LeaveCC, cond);
311 }
312 
Ret(int drop,Condition cond)313 void TurboAssembler::Ret(int drop, Condition cond) {
314   Drop(drop, cond);
315   Ret(cond);
316 }
317 
Call(Label * target)318 void TurboAssembler::Call(Label* target) { bl(target); }
319 
Push(Handle<HeapObject> handle)320 void TurboAssembler::Push(Handle<HeapObject> handle) {
321   UseScratchRegisterScope temps(this);
322   Register scratch = temps.Acquire();
323   mov(scratch, Operand(handle));
324   push(scratch);
325 }
326 
Push(Smi * smi)327 void TurboAssembler::Push(Smi* smi) {
328   UseScratchRegisterScope temps(this);
329   Register scratch = temps.Acquire();
330   mov(scratch, Operand(smi));
331   push(scratch);
332 }
333 
Move(Register dst,Smi * smi)334 void TurboAssembler::Move(Register dst, Smi* smi) { mov(dst, Operand(smi)); }
335 
Move(Register dst,Handle<HeapObject> value)336 void TurboAssembler::Move(Register dst, Handle<HeapObject> value) {
337   if (FLAG_embedded_builtins) {
338     if (root_array_available_ && options().isolate_independent_code) {
339       IndirectLoadConstant(dst, value);
340       return;
341     }
342   }
343   mov(dst, Operand(value));
344 }
345 
Move(Register dst,ExternalReference reference)346 void TurboAssembler::Move(Register dst, ExternalReference reference) {
347   if (FLAG_embedded_builtins) {
348     if (root_array_available_ && options().isolate_independent_code) {
349       IndirectLoadExternalReference(dst, reference);
350       return;
351     }
352   }
353   mov(dst, Operand(reference));
354 }
355 
Move(Register dst,Register src,Condition cond)356 void TurboAssembler::Move(Register dst, Register src, Condition cond) {
357   if (dst != src) {
358     mov(dst, src, LeaveCC, cond);
359   }
360 }
361 
Move(SwVfpRegister dst,SwVfpRegister src,Condition cond)362 void TurboAssembler::Move(SwVfpRegister dst, SwVfpRegister src,
363                           Condition cond) {
364   if (dst != src) {
365     vmov(dst, src, cond);
366   }
367 }
368 
Move(DwVfpRegister dst,DwVfpRegister src,Condition cond)369 void TurboAssembler::Move(DwVfpRegister dst, DwVfpRegister src,
370                           Condition cond) {
371   if (dst != src) {
372     vmov(dst, src, cond);
373   }
374 }
375 
Move(QwNeonRegister dst,QwNeonRegister src)376 void TurboAssembler::Move(QwNeonRegister dst, QwNeonRegister src) {
377   if (dst != src) {
378     vmov(dst, src);
379   }
380 }
381 
Swap(Register srcdst0,Register srcdst1)382 void TurboAssembler::Swap(Register srcdst0, Register srcdst1) {
383   DCHECK(srcdst0 != srcdst1);
384   UseScratchRegisterScope temps(this);
385   Register scratch = temps.Acquire();
386   mov(scratch, srcdst0);
387   mov(srcdst0, srcdst1);
388   mov(srcdst1, scratch);
389 }
390 
Swap(DwVfpRegister srcdst0,DwVfpRegister srcdst1)391 void TurboAssembler::Swap(DwVfpRegister srcdst0, DwVfpRegister srcdst1) {
392   DCHECK(srcdst0 != srcdst1);
393   DCHECK(VfpRegisterIsAvailable(srcdst0));
394   DCHECK(VfpRegisterIsAvailable(srcdst1));
395 
396   if (CpuFeatures::IsSupported(NEON)) {
397     vswp(srcdst0, srcdst1);
398   } else {
399     UseScratchRegisterScope temps(this);
400     DwVfpRegister scratch = temps.AcquireD();
401     vmov(scratch, srcdst0);
402     vmov(srcdst0, srcdst1);
403     vmov(srcdst1, scratch);
404   }
405 }
406 
Swap(QwNeonRegister srcdst0,QwNeonRegister srcdst1)407 void TurboAssembler::Swap(QwNeonRegister srcdst0, QwNeonRegister srcdst1) {
408   DCHECK(srcdst0 != srcdst1);
409   vswp(srcdst0, srcdst1);
410 }
411 
Mls(Register dst,Register src1,Register src2,Register srcA,Condition cond)412 void MacroAssembler::Mls(Register dst, Register src1, Register src2,
413                          Register srcA, Condition cond) {
414   if (CpuFeatures::IsSupported(ARMv7)) {
415     CpuFeatureScope scope(this, ARMv7);
416     mls(dst, src1, src2, srcA, cond);
417   } else {
418     UseScratchRegisterScope temps(this);
419     Register scratch = temps.Acquire();
420     DCHECK(srcA != scratch);
421     mul(scratch, src1, src2, LeaveCC, cond);
422     sub(dst, srcA, scratch, LeaveCC, cond);
423   }
424 }
425 
426 
And(Register dst,Register src1,const Operand & src2,Condition cond)427 void MacroAssembler::And(Register dst, Register src1, const Operand& src2,
428                          Condition cond) {
429   if (!src2.IsRegister() && !src2.MustOutputRelocInfo(this) &&
430       src2.immediate() == 0) {
431     mov(dst, Operand::Zero(), LeaveCC, cond);
432   } else if (!(src2.InstructionsRequired(this) == 1) &&
433              !src2.MustOutputRelocInfo(this) &&
434              CpuFeatures::IsSupported(ARMv7) &&
435              base::bits::IsPowerOfTwo(src2.immediate() + 1)) {
436     CpuFeatureScope scope(this, ARMv7);
437     ubfx(dst, src1, 0,
438         WhichPowerOf2(static_cast<uint32_t>(src2.immediate()) + 1), cond);
439   } else {
440     and_(dst, src1, src2, LeaveCC, cond);
441   }
442 }
443 
444 
Ubfx(Register dst,Register src1,int lsb,int width,Condition cond)445 void MacroAssembler::Ubfx(Register dst, Register src1, int lsb, int width,
446                           Condition cond) {
447   DCHECK_LT(lsb, 32);
448   if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) {
449     int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
450     and_(dst, src1, Operand(mask), LeaveCC, cond);
451     if (lsb != 0) {
452       mov(dst, Operand(dst, LSR, lsb), LeaveCC, cond);
453     }
454   } else {
455     CpuFeatureScope scope(this, ARMv7);
456     ubfx(dst, src1, lsb, width, cond);
457   }
458 }
459 
460 
Sbfx(Register dst,Register src1,int lsb,int width,Condition cond)461 void MacroAssembler::Sbfx(Register dst, Register src1, int lsb, int width,
462                           Condition cond) {
463   DCHECK_LT(lsb, 32);
464   if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) {
465     int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
466     and_(dst, src1, Operand(mask), LeaveCC, cond);
467     int shift_up = 32 - lsb - width;
468     int shift_down = lsb + shift_up;
469     if (shift_up != 0) {
470       mov(dst, Operand(dst, LSL, shift_up), LeaveCC, cond);
471     }
472     if (shift_down != 0) {
473       mov(dst, Operand(dst, ASR, shift_down), LeaveCC, cond);
474     }
475   } else {
476     CpuFeatureScope scope(this, ARMv7);
477     sbfx(dst, src1, lsb, width, cond);
478   }
479 }
480 
481 
Bfc(Register dst,Register src,int lsb,int width,Condition cond)482 void TurboAssembler::Bfc(Register dst, Register src, int lsb, int width,
483                          Condition cond) {
484   DCHECK_LT(lsb, 32);
485   if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) {
486     int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
487     bic(dst, src, Operand(mask));
488   } else {
489     CpuFeatureScope scope(this, ARMv7);
490     Move(dst, src, cond);
491     bfc(dst, lsb, width, cond);
492   }
493 }
494 
Load(Register dst,const MemOperand & src,Representation r)495 void MacroAssembler::Load(Register dst,
496                           const MemOperand& src,
497                           Representation r) {
498   DCHECK(!r.IsDouble());
499   if (r.IsInteger8()) {
500     ldrsb(dst, src);
501   } else if (r.IsUInteger8()) {
502     ldrb(dst, src);
503   } else if (r.IsInteger16()) {
504     ldrsh(dst, src);
505   } else if (r.IsUInteger16()) {
506     ldrh(dst, src);
507   } else {
508     ldr(dst, src);
509   }
510 }
511 
Store(Register src,const MemOperand & dst,Representation r)512 void MacroAssembler::Store(Register src,
513                            const MemOperand& dst,
514                            Representation r) {
515   DCHECK(!r.IsDouble());
516   if (r.IsInteger8() || r.IsUInteger8()) {
517     strb(src, dst);
518   } else if (r.IsInteger16() || r.IsUInteger16()) {
519     strh(src, dst);
520   } else {
521     if (r.IsHeapObject()) {
522       AssertNotSmi(src);
523     } else if (r.IsSmi()) {
524       AssertSmi(src);
525     }
526     str(src, dst);
527   }
528 }
529 
LoadRoot(Register destination,Heap::RootListIndex index,Condition cond)530 void TurboAssembler::LoadRoot(Register destination, Heap::RootListIndex index,
531                               Condition cond) {
532   ldr(destination, MemOperand(kRootRegister, RootRegisterOffset(index)), cond);
533 }
534 
535 
RecordWriteField(Register object,int offset,Register value,Register dst,LinkRegisterStatus lr_status,SaveFPRegsMode save_fp,RememberedSetAction remembered_set_action,SmiCheck smi_check)536 void MacroAssembler::RecordWriteField(Register object, int offset,
537                                       Register value, Register dst,
538                                       LinkRegisterStatus lr_status,
539                                       SaveFPRegsMode save_fp,
540                                       RememberedSetAction remembered_set_action,
541                                       SmiCheck smi_check) {
542   // First, check if a write barrier is even needed. The tests below
543   // catch stores of Smis.
544   Label done;
545 
546   // Skip barrier if writing a smi.
547   if (smi_check == INLINE_SMI_CHECK) {
548     JumpIfSmi(value, &done);
549   }
550 
551   // Although the object register is tagged, the offset is relative to the start
552   // of the object, so so offset must be a multiple of kPointerSize.
553   DCHECK(IsAligned(offset, kPointerSize));
554 
555   add(dst, object, Operand(offset - kHeapObjectTag));
556   if (emit_debug_code()) {
557     Label ok;
558     tst(dst, Operand(kPointerSize - 1));
559     b(eq, &ok);
560     stop("Unaligned cell in write barrier");
561     bind(&ok);
562   }
563 
564   RecordWrite(object, dst, value, lr_status, save_fp, remembered_set_action,
565               OMIT_SMI_CHECK);
566 
567   bind(&done);
568 
569   // Clobber clobbered input registers when running with the debug-code flag
570   // turned on to provoke errors.
571   if (emit_debug_code()) {
572     mov(value, Operand(bit_cast<int32_t>(kZapValue + 4)));
573     mov(dst, Operand(bit_cast<int32_t>(kZapValue + 8)));
574   }
575 }
576 
SaveRegisters(RegList registers)577 void TurboAssembler::SaveRegisters(RegList registers) {
578   DCHECK_GT(NumRegs(registers), 0);
579   RegList regs = 0;
580   for (int i = 0; i < Register::kNumRegisters; ++i) {
581     if ((registers >> i) & 1u) {
582       regs |= Register::from_code(i).bit();
583     }
584   }
585 
586   stm(db_w, sp, regs);
587 }
588 
RestoreRegisters(RegList registers)589 void TurboAssembler::RestoreRegisters(RegList registers) {
590   DCHECK_GT(NumRegs(registers), 0);
591   RegList regs = 0;
592   for (int i = 0; i < Register::kNumRegisters; ++i) {
593     if ((registers >> i) & 1u) {
594       regs |= Register::from_code(i).bit();
595     }
596   }
597   ldm(ia_w, sp, regs);
598 }
599 
CallRecordWriteStub(Register object,Register address,RememberedSetAction remembered_set_action,SaveFPRegsMode fp_mode)600 void TurboAssembler::CallRecordWriteStub(
601     Register object, Register address,
602     RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode) {
603   // TODO(albertnetymk): For now we ignore remembered_set_action and fp_mode,
604   // i.e. always emit remember set and save FP registers in RecordWriteStub. If
605   // large performance regression is observed, we should use these values to
606   // avoid unnecessary work.
607 
608   Callable const callable =
609       Builtins::CallableFor(isolate(), Builtins::kRecordWrite);
610   RegList registers = callable.descriptor().allocatable_registers();
611 
612   SaveRegisters(registers);
613 
614   Register object_parameter(callable.descriptor().GetRegisterParameter(
615       RecordWriteDescriptor::kObject));
616   Register slot_parameter(
617       callable.descriptor().GetRegisterParameter(RecordWriteDescriptor::kSlot));
618   Register isolate_parameter(callable.descriptor().GetRegisterParameter(
619       RecordWriteDescriptor::kIsolate));
620   Register remembered_set_parameter(callable.descriptor().GetRegisterParameter(
621       RecordWriteDescriptor::kRememberedSet));
622   Register fp_mode_parameter(callable.descriptor().GetRegisterParameter(
623       RecordWriteDescriptor::kFPMode));
624 
625   Push(object);
626   Push(address);
627 
628   Pop(slot_parameter);
629   Pop(object_parameter);
630 
631   Move(isolate_parameter, ExternalReference::isolate_address(isolate()));
632   Move(remembered_set_parameter, Smi::FromEnum(remembered_set_action));
633   Move(fp_mode_parameter, Smi::FromEnum(fp_mode));
634   Call(callable.code(), RelocInfo::CODE_TARGET);
635 
636   RestoreRegisters(registers);
637 }
638 
639 // Will clobber 3 registers: object, address, and value. The register 'object'
640 // contains a heap object pointer. The heap object tag is shifted away.
641 // A scratch register also needs to be available.
RecordWrite(Register object,Register address,Register value,LinkRegisterStatus lr_status,SaveFPRegsMode fp_mode,RememberedSetAction remembered_set_action,SmiCheck smi_check)642 void MacroAssembler::RecordWrite(Register object, Register address,
643                                  Register value, LinkRegisterStatus lr_status,
644                                  SaveFPRegsMode fp_mode,
645                                  RememberedSetAction remembered_set_action,
646                                  SmiCheck smi_check) {
647   DCHECK(object != value);
648   if (emit_debug_code()) {
649     {
650       UseScratchRegisterScope temps(this);
651       Register scratch = temps.Acquire();
652       ldr(scratch, MemOperand(address));
653       cmp(scratch, value);
654     }
655     Check(eq, AbortReason::kWrongAddressOrValuePassedToRecordWrite);
656   }
657 
658   if (remembered_set_action == OMIT_REMEMBERED_SET &&
659       !FLAG_incremental_marking) {
660     return;
661   }
662 
663   // First, check if a write barrier is even needed. The tests below
664   // catch stores of smis and stores into the young generation.
665   Label done;
666 
667   if (smi_check == INLINE_SMI_CHECK) {
668     JumpIfSmi(value, &done);
669   }
670 
671   CheckPageFlag(value,
672                 value,  // Used as scratch.
673                 MemoryChunk::kPointersToHereAreInterestingMask, eq, &done);
674   CheckPageFlag(object,
675                 value,  // Used as scratch.
676                 MemoryChunk::kPointersFromHereAreInterestingMask,
677                 eq,
678                 &done);
679 
680   // Record the actual write.
681   if (lr_status == kLRHasNotBeenSaved) {
682     push(lr);
683   }
684   CallRecordWriteStub(object, address, remembered_set_action, fp_mode);
685   if (lr_status == kLRHasNotBeenSaved) {
686     pop(lr);
687   }
688 
689   bind(&done);
690 
691   // Count number of write barriers in generated code.
692   isolate()->counters()->write_barriers_static()->Increment();
693   {
694     UseScratchRegisterScope temps(this);
695     IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1,
696                      temps.Acquire(), value);
697   }
698 
699   // Clobber clobbered registers when running with the debug-code flag
700   // turned on to provoke errors.
701   if (emit_debug_code()) {
702     mov(address, Operand(bit_cast<int32_t>(kZapValue + 12)));
703     mov(value, Operand(bit_cast<int32_t>(kZapValue + 16)));
704   }
705 }
706 
PushCommonFrame(Register marker_reg)707 void TurboAssembler::PushCommonFrame(Register marker_reg) {
708   if (marker_reg.is_valid()) {
709     if (marker_reg.code() > fp.code()) {
710       stm(db_w, sp, fp.bit() | lr.bit());
711       mov(fp, Operand(sp));
712       Push(marker_reg);
713     } else {
714       stm(db_w, sp, marker_reg.bit() | fp.bit() | lr.bit());
715       add(fp, sp, Operand(kPointerSize));
716     }
717   } else {
718     stm(db_w, sp, fp.bit() | lr.bit());
719     mov(fp, sp);
720   }
721 }
722 
PushStandardFrame(Register function_reg)723 void TurboAssembler::PushStandardFrame(Register function_reg) {
724   DCHECK(!function_reg.is_valid() || function_reg.code() < cp.code());
725   stm(db_w, sp, (function_reg.is_valid() ? function_reg.bit() : 0) | cp.bit() |
726                     fp.bit() | lr.bit());
727   int offset = -StandardFrameConstants::kContextOffset;
728   offset += function_reg.is_valid() ? kPointerSize : 0;
729   add(fp, sp, Operand(offset));
730 }
731 
732 
733 // Push and pop all registers that can hold pointers.
PushSafepointRegisters()734 void MacroAssembler::PushSafepointRegisters() {
735   // Safepoints expect a block of contiguous register values starting with r0.
736   DCHECK_EQ(kSafepointSavedRegisters, (1 << kNumSafepointSavedRegisters) - 1);
737   // Safepoints expect a block of kNumSafepointRegisters values on the
738   // stack, so adjust the stack for unsaved registers.
739   const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
740   DCHECK_GE(num_unsaved, 0);
741   sub(sp, sp, Operand(num_unsaved * kPointerSize));
742   stm(db_w, sp, kSafepointSavedRegisters);
743 }
744 
PopSafepointRegisters()745 void MacroAssembler::PopSafepointRegisters() {
746   const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
747   ldm(ia_w, sp, kSafepointSavedRegisters);
748   add(sp, sp, Operand(num_unsaved * kPointerSize));
749 }
750 
SafepointRegisterStackIndex(int reg_code)751 int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
752   // The registers are pushed starting with the highest encoding,
753   // which means that lowest encodings are closest to the stack pointer.
754   DCHECK(reg_code >= 0 && reg_code < kNumSafepointRegisters);
755   return reg_code;
756 }
757 
VFPCanonicalizeNaN(const DwVfpRegister dst,const DwVfpRegister src,const Condition cond)758 void TurboAssembler::VFPCanonicalizeNaN(const DwVfpRegister dst,
759                                         const DwVfpRegister src,
760                                         const Condition cond) {
761   // Subtracting 0.0 preserves all inputs except for signalling NaNs, which
762   // become quiet NaNs. We use vsub rather than vadd because vsub preserves -0.0
763   // inputs: -0.0 + 0.0 = 0.0, but -0.0 - 0.0 = -0.0.
764   vsub(dst, src, kDoubleRegZero, cond);
765 }
766 
VFPCompareAndSetFlags(const SwVfpRegister src1,const SwVfpRegister src2,const Condition cond)767 void TurboAssembler::VFPCompareAndSetFlags(const SwVfpRegister src1,
768                                            const SwVfpRegister src2,
769                                            const Condition cond) {
770   // Compare and move FPSCR flags to the normal condition flags.
771   VFPCompareAndLoadFlags(src1, src2, pc, cond);
772 }
773 
VFPCompareAndSetFlags(const SwVfpRegister src1,const float src2,const Condition cond)774 void TurboAssembler::VFPCompareAndSetFlags(const SwVfpRegister src1,
775                                            const float src2,
776                                            const Condition cond) {
777   // Compare and move FPSCR flags to the normal condition flags.
778   VFPCompareAndLoadFlags(src1, src2, pc, cond);
779 }
780 
VFPCompareAndSetFlags(const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)781 void TurboAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1,
782                                            const DwVfpRegister src2,
783                                            const Condition cond) {
784   // Compare and move FPSCR flags to the normal condition flags.
785   VFPCompareAndLoadFlags(src1, src2, pc, cond);
786 }
787 
VFPCompareAndSetFlags(const DwVfpRegister src1,const double src2,const Condition cond)788 void TurboAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1,
789                                            const double src2,
790                                            const Condition cond) {
791   // Compare and move FPSCR flags to the normal condition flags.
792   VFPCompareAndLoadFlags(src1, src2, pc, cond);
793 }
794 
VFPCompareAndLoadFlags(const SwVfpRegister src1,const SwVfpRegister src2,const Register fpscr_flags,const Condition cond)795 void TurboAssembler::VFPCompareAndLoadFlags(const SwVfpRegister src1,
796                                             const SwVfpRegister src2,
797                                             const Register fpscr_flags,
798                                             const Condition cond) {
799   // Compare and load FPSCR.
800   vcmp(src1, src2, cond);
801   vmrs(fpscr_flags, cond);
802 }
803 
VFPCompareAndLoadFlags(const SwVfpRegister src1,const float src2,const Register fpscr_flags,const Condition cond)804 void TurboAssembler::VFPCompareAndLoadFlags(const SwVfpRegister src1,
805                                             const float src2,
806                                             const Register fpscr_flags,
807                                             const Condition cond) {
808   // Compare and load FPSCR.
809   vcmp(src1, src2, cond);
810   vmrs(fpscr_flags, cond);
811 }
812 
VFPCompareAndLoadFlags(const DwVfpRegister src1,const DwVfpRegister src2,const Register fpscr_flags,const Condition cond)813 void TurboAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1,
814                                             const DwVfpRegister src2,
815                                             const Register fpscr_flags,
816                                             const Condition cond) {
817   // Compare and load FPSCR.
818   vcmp(src1, src2, cond);
819   vmrs(fpscr_flags, cond);
820 }
821 
VFPCompareAndLoadFlags(const DwVfpRegister src1,const double src2,const Register fpscr_flags,const Condition cond)822 void TurboAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1,
823                                             const double src2,
824                                             const Register fpscr_flags,
825                                             const Condition cond) {
826   // Compare and load FPSCR.
827   vcmp(src1, src2, cond);
828   vmrs(fpscr_flags, cond);
829 }
830 
VmovHigh(Register dst,DwVfpRegister src)831 void TurboAssembler::VmovHigh(Register dst, DwVfpRegister src) {
832   if (src.code() < 16) {
833     const LowDwVfpRegister loc = LowDwVfpRegister::from_code(src.code());
834     vmov(dst, loc.high());
835   } else {
836     vmov(NeonS32, dst, src, 1);
837   }
838 }
839 
VmovHigh(DwVfpRegister dst,Register src)840 void TurboAssembler::VmovHigh(DwVfpRegister dst, Register src) {
841   if (dst.code() < 16) {
842     const LowDwVfpRegister loc = LowDwVfpRegister::from_code(dst.code());
843     vmov(loc.high(), src);
844   } else {
845     vmov(NeonS32, dst, 1, src);
846   }
847 }
848 
VmovLow(Register dst,DwVfpRegister src)849 void TurboAssembler::VmovLow(Register dst, DwVfpRegister src) {
850   if (src.code() < 16) {
851     const LowDwVfpRegister loc = LowDwVfpRegister::from_code(src.code());
852     vmov(dst, loc.low());
853   } else {
854     vmov(NeonS32, dst, src, 0);
855   }
856 }
857 
VmovLow(DwVfpRegister dst,Register src)858 void TurboAssembler::VmovLow(DwVfpRegister dst, Register src) {
859   if (dst.code() < 16) {
860     const LowDwVfpRegister loc = LowDwVfpRegister::from_code(dst.code());
861     vmov(loc.low(), src);
862   } else {
863     vmov(NeonS32, dst, 0, src);
864   }
865 }
866 
VmovExtended(Register dst,int src_code)867 void TurboAssembler::VmovExtended(Register dst, int src_code) {
868   DCHECK_LE(SwVfpRegister::kNumRegisters, src_code);
869   DCHECK_GT(SwVfpRegister::kNumRegisters * 2, src_code);
870   if (src_code & 0x1) {
871     VmovHigh(dst, DwVfpRegister::from_code(src_code / 2));
872   } else {
873     VmovLow(dst, DwVfpRegister::from_code(src_code / 2));
874   }
875 }
876 
VmovExtended(int dst_code,Register src)877 void TurboAssembler::VmovExtended(int dst_code, Register src) {
878   DCHECK_LE(SwVfpRegister::kNumRegisters, dst_code);
879   DCHECK_GT(SwVfpRegister::kNumRegisters * 2, dst_code);
880   if (dst_code & 0x1) {
881     VmovHigh(DwVfpRegister::from_code(dst_code / 2), src);
882   } else {
883     VmovLow(DwVfpRegister::from_code(dst_code / 2), src);
884   }
885 }
886 
VmovExtended(int dst_code,int src_code)887 void TurboAssembler::VmovExtended(int dst_code, int src_code) {
888   if (src_code == dst_code) return;
889 
890   if (src_code < SwVfpRegister::kNumRegisters &&
891       dst_code < SwVfpRegister::kNumRegisters) {
892     // src and dst are both s-registers.
893     vmov(SwVfpRegister::from_code(dst_code),
894          SwVfpRegister::from_code(src_code));
895     return;
896   }
897   DwVfpRegister dst_d_reg = DwVfpRegister::from_code(dst_code / 2);
898   DwVfpRegister src_d_reg = DwVfpRegister::from_code(src_code / 2);
899   int dst_offset = dst_code & 1;
900   int src_offset = src_code & 1;
901   if (CpuFeatures::IsSupported(NEON)) {
902     UseScratchRegisterScope temps(this);
903     DwVfpRegister scratch = temps.AcquireD();
904     // On Neon we can shift and insert from d-registers.
905     if (src_offset == dst_offset) {
906       // Offsets are the same, use vdup to copy the source to the opposite lane.
907       vdup(Neon32, scratch, src_d_reg, src_offset);
908       // Here we are extending the lifetime of scratch.
909       src_d_reg = scratch;
910       src_offset = dst_offset ^ 1;
911     }
912     if (dst_offset) {
913       if (dst_d_reg == src_d_reg) {
914         vdup(Neon32, dst_d_reg, src_d_reg, 0);
915       } else {
916         vsli(Neon64, dst_d_reg, src_d_reg, 32);
917       }
918     } else {
919       if (dst_d_reg == src_d_reg) {
920         vdup(Neon32, dst_d_reg, src_d_reg, 1);
921       } else {
922         vsri(Neon64, dst_d_reg, src_d_reg, 32);
923       }
924     }
925     return;
926   }
927 
928   // Without Neon, use the scratch registers to move src and/or dst into
929   // s-registers.
930   UseScratchRegisterScope temps(this);
931   LowDwVfpRegister d_scratch = temps.AcquireLowD();
932   LowDwVfpRegister d_scratch2 = temps.AcquireLowD();
933   int s_scratch_code = d_scratch.low().code();
934   int s_scratch_code2 = d_scratch2.low().code();
935   if (src_code < SwVfpRegister::kNumRegisters) {
936     // src is an s-register, dst is not.
937     vmov(d_scratch, dst_d_reg);
938     vmov(SwVfpRegister::from_code(s_scratch_code + dst_offset),
939          SwVfpRegister::from_code(src_code));
940     vmov(dst_d_reg, d_scratch);
941   } else if (dst_code < SwVfpRegister::kNumRegisters) {
942     // dst is an s-register, src is not.
943     vmov(d_scratch, src_d_reg);
944     vmov(SwVfpRegister::from_code(dst_code),
945          SwVfpRegister::from_code(s_scratch_code + src_offset));
946   } else {
947     // Neither src or dst are s-registers. Both scratch double registers are
948     // available when there are 32 VFP registers.
949     vmov(d_scratch, src_d_reg);
950     vmov(d_scratch2, dst_d_reg);
951     vmov(SwVfpRegister::from_code(s_scratch_code + dst_offset),
952          SwVfpRegister::from_code(s_scratch_code2 + src_offset));
953     vmov(dst_d_reg, d_scratch2);
954   }
955 }
956 
VmovExtended(int dst_code,const MemOperand & src)957 void TurboAssembler::VmovExtended(int dst_code, const MemOperand& src) {
958   if (dst_code < SwVfpRegister::kNumRegisters) {
959     vldr(SwVfpRegister::from_code(dst_code), src);
960   } else {
961     UseScratchRegisterScope temps(this);
962     LowDwVfpRegister scratch = temps.AcquireLowD();
963     // TODO(bbudge) If Neon supported, use load single lane form of vld1.
964     int dst_s_code = scratch.low().code() + (dst_code & 1);
965     vmov(scratch, DwVfpRegister::from_code(dst_code / 2));
966     vldr(SwVfpRegister::from_code(dst_s_code), src);
967     vmov(DwVfpRegister::from_code(dst_code / 2), scratch);
968   }
969 }
970 
VmovExtended(const MemOperand & dst,int src_code)971 void TurboAssembler::VmovExtended(const MemOperand& dst, int src_code) {
972   if (src_code < SwVfpRegister::kNumRegisters) {
973     vstr(SwVfpRegister::from_code(src_code), dst);
974   } else {
975     // TODO(bbudge) If Neon supported, use store single lane form of vst1.
976     UseScratchRegisterScope temps(this);
977     LowDwVfpRegister scratch = temps.AcquireLowD();
978     int src_s_code = scratch.low().code() + (src_code & 1);
979     vmov(scratch, DwVfpRegister::from_code(src_code / 2));
980     vstr(SwVfpRegister::from_code(src_s_code), dst);
981   }
982 }
983 
ExtractLane(Register dst,QwNeonRegister src,NeonDataType dt,int lane)984 void TurboAssembler::ExtractLane(Register dst, QwNeonRegister src,
985                                  NeonDataType dt, int lane) {
986   int size = NeonSz(dt);  // 0, 1, 2
987   int byte = lane << size;
988   int double_word = byte >> kDoubleSizeLog2;
989   int double_byte = byte & (kDoubleSize - 1);
990   int double_lane = double_byte >> size;
991   DwVfpRegister double_source =
992       DwVfpRegister::from_code(src.code() * 2 + double_word);
993   vmov(dt, dst, double_source, double_lane);
994 }
995 
ExtractLane(Register dst,DwVfpRegister src,NeonDataType dt,int lane)996 void TurboAssembler::ExtractLane(Register dst, DwVfpRegister src,
997                                  NeonDataType dt, int lane) {
998   int size = NeonSz(dt);  // 0, 1, 2
999   int byte = lane << size;
1000   int double_byte = byte & (kDoubleSize - 1);
1001   int double_lane = double_byte >> size;
1002   vmov(dt, dst, src, double_lane);
1003 }
1004 
ExtractLane(SwVfpRegister dst,QwNeonRegister src,int lane)1005 void TurboAssembler::ExtractLane(SwVfpRegister dst, QwNeonRegister src,
1006                                  int lane) {
1007   int s_code = src.code() * 4 + lane;
1008   VmovExtended(dst.code(), s_code);
1009 }
1010 
ReplaceLane(QwNeonRegister dst,QwNeonRegister src,Register src_lane,NeonDataType dt,int lane)1011 void TurboAssembler::ReplaceLane(QwNeonRegister dst, QwNeonRegister src,
1012                                  Register src_lane, NeonDataType dt, int lane) {
1013   Move(dst, src);
1014   int size = NeonSz(dt);  // 0, 1, 2
1015   int byte = lane << size;
1016   int double_word = byte >> kDoubleSizeLog2;
1017   int double_byte = byte & (kDoubleSize - 1);
1018   int double_lane = double_byte >> size;
1019   DwVfpRegister double_dst =
1020       DwVfpRegister::from_code(dst.code() * 2 + double_word);
1021   vmov(dt, double_dst, double_lane, src_lane);
1022 }
1023 
ReplaceLane(QwNeonRegister dst,QwNeonRegister src,SwVfpRegister src_lane,int lane)1024 void TurboAssembler::ReplaceLane(QwNeonRegister dst, QwNeonRegister src,
1025                                  SwVfpRegister src_lane, int lane) {
1026   Move(dst, src);
1027   int s_code = dst.code() * 4 + lane;
1028   VmovExtended(s_code, src_lane.code());
1029 }
1030 
LslPair(Register dst_low,Register dst_high,Register src_low,Register src_high,Register shift)1031 void TurboAssembler::LslPair(Register dst_low, Register dst_high,
1032                              Register src_low, Register src_high,
1033                              Register shift) {
1034   DCHECK(!AreAliased(dst_high, src_low));
1035   DCHECK(!AreAliased(dst_high, shift));
1036   UseScratchRegisterScope temps(this);
1037   Register scratch = temps.Acquire();
1038 
1039   Label less_than_32;
1040   Label done;
1041   rsb(scratch, shift, Operand(32), SetCC);
1042   b(gt, &less_than_32);
1043   // If shift >= 32
1044   and_(scratch, shift, Operand(0x1F));
1045   lsl(dst_high, src_low, Operand(scratch));
1046   mov(dst_low, Operand(0));
1047   jmp(&done);
1048   bind(&less_than_32);
1049   // If shift < 32
1050   lsl(dst_high, src_high, Operand(shift));
1051   orr(dst_high, dst_high, Operand(src_low, LSR, scratch));
1052   lsl(dst_low, src_low, Operand(shift));
1053   bind(&done);
1054 }
1055 
LslPair(Register dst_low,Register dst_high,Register src_low,Register src_high,uint32_t shift)1056 void TurboAssembler::LslPair(Register dst_low, Register dst_high,
1057                              Register src_low, Register src_high,
1058                              uint32_t shift) {
1059   DCHECK(!AreAliased(dst_high, src_low));
1060   Label less_than_32;
1061   Label done;
1062   if (shift == 0) {
1063     Move(dst_high, src_high);
1064     Move(dst_low, src_low);
1065   } else if (shift == 32) {
1066     Move(dst_high, src_low);
1067     Move(dst_low, Operand(0));
1068   } else if (shift >= 32) {
1069     shift &= 0x1F;
1070     lsl(dst_high, src_low, Operand(shift));
1071     mov(dst_low, Operand(0));
1072   } else {
1073     lsl(dst_high, src_high, Operand(shift));
1074     orr(dst_high, dst_high, Operand(src_low, LSR, 32 - shift));
1075     lsl(dst_low, src_low, Operand(shift));
1076   }
1077 }
1078 
LsrPair(Register dst_low,Register dst_high,Register src_low,Register src_high,Register shift)1079 void TurboAssembler::LsrPair(Register dst_low, Register dst_high,
1080                              Register src_low, Register src_high,
1081                              Register shift) {
1082   DCHECK(!AreAliased(dst_low, src_high));
1083   DCHECK(!AreAliased(dst_low, shift));
1084   UseScratchRegisterScope temps(this);
1085   Register scratch = temps.Acquire();
1086 
1087   Label less_than_32;
1088   Label done;
1089   rsb(scratch, shift, Operand(32), SetCC);
1090   b(gt, &less_than_32);
1091   // If shift >= 32
1092   and_(scratch, shift, Operand(0x1F));
1093   lsr(dst_low, src_high, Operand(scratch));
1094   mov(dst_high, Operand(0));
1095   jmp(&done);
1096   bind(&less_than_32);
1097   // If shift < 32
1098 
1099   lsr(dst_low, src_low, Operand(shift));
1100   orr(dst_low, dst_low, Operand(src_high, LSL, scratch));
1101   lsr(dst_high, src_high, Operand(shift));
1102   bind(&done);
1103 }
1104 
LsrPair(Register dst_low,Register dst_high,Register src_low,Register src_high,uint32_t shift)1105 void TurboAssembler::LsrPair(Register dst_low, Register dst_high,
1106                              Register src_low, Register src_high,
1107                              uint32_t shift) {
1108   DCHECK(!AreAliased(dst_low, src_high));
1109   Label less_than_32;
1110   Label done;
1111   if (shift == 32) {
1112     mov(dst_low, src_high);
1113     mov(dst_high, Operand(0));
1114   } else if (shift > 32) {
1115     shift &= 0x1F;
1116     lsr(dst_low, src_high, Operand(shift));
1117     mov(dst_high, Operand(0));
1118   } else if (shift == 0) {
1119     Move(dst_low, src_low);
1120     Move(dst_high, src_high);
1121   } else {
1122     lsr(dst_low, src_low, Operand(shift));
1123     orr(dst_low, dst_low, Operand(src_high, LSL, 32 - shift));
1124     lsr(dst_high, src_high, Operand(shift));
1125   }
1126 }
1127 
AsrPair(Register dst_low,Register dst_high,Register src_low,Register src_high,Register shift)1128 void TurboAssembler::AsrPair(Register dst_low, Register dst_high,
1129                              Register src_low, Register src_high,
1130                              Register shift) {
1131   DCHECK(!AreAliased(dst_low, src_high));
1132   DCHECK(!AreAliased(dst_low, shift));
1133   UseScratchRegisterScope temps(this);
1134   Register scratch = temps.Acquire();
1135 
1136   Label less_than_32;
1137   Label done;
1138   rsb(scratch, shift, Operand(32), SetCC);
1139   b(gt, &less_than_32);
1140   // If shift >= 32
1141   and_(scratch, shift, Operand(0x1F));
1142   asr(dst_low, src_high, Operand(scratch));
1143   asr(dst_high, src_high, Operand(31));
1144   jmp(&done);
1145   bind(&less_than_32);
1146   // If shift < 32
1147   lsr(dst_low, src_low, Operand(shift));
1148   orr(dst_low, dst_low, Operand(src_high, LSL, scratch));
1149   asr(dst_high, src_high, Operand(shift));
1150   bind(&done);
1151 }
1152 
AsrPair(Register dst_low,Register dst_high,Register src_low,Register src_high,uint32_t shift)1153 void TurboAssembler::AsrPair(Register dst_low, Register dst_high,
1154                              Register src_low, Register src_high,
1155                              uint32_t shift) {
1156   DCHECK(!AreAliased(dst_low, src_high));
1157   Label less_than_32;
1158   Label done;
1159   if (shift == 32) {
1160     mov(dst_low, src_high);
1161     asr(dst_high, src_high, Operand(31));
1162   } else if (shift > 32) {
1163     shift &= 0x1F;
1164     asr(dst_low, src_high, Operand(shift));
1165     asr(dst_high, src_high, Operand(31));
1166   } else if (shift == 0) {
1167     Move(dst_low, src_low);
1168     Move(dst_high, src_high);
1169   } else {
1170     lsr(dst_low, src_low, Operand(shift));
1171     orr(dst_low, dst_low, Operand(src_high, LSL, 32 - shift));
1172     asr(dst_high, src_high, Operand(shift));
1173   }
1174 }
1175 
StubPrologue(StackFrame::Type type)1176 void TurboAssembler::StubPrologue(StackFrame::Type type) {
1177   UseScratchRegisterScope temps(this);
1178   Register scratch = temps.Acquire();
1179   mov(scratch, Operand(StackFrame::TypeToMarker(type)));
1180   PushCommonFrame(scratch);
1181 }
1182 
Prologue()1183 void TurboAssembler::Prologue() { PushStandardFrame(r1); }
1184 
EnterFrame(StackFrame::Type type,bool load_constant_pool_pointer_reg)1185 void TurboAssembler::EnterFrame(StackFrame::Type type,
1186                                 bool load_constant_pool_pointer_reg) {
1187   // r0-r3: preserved
1188   UseScratchRegisterScope temps(this);
1189   Register scratch = temps.Acquire();
1190   mov(scratch, Operand(StackFrame::TypeToMarker(type)));
1191   PushCommonFrame(scratch);
1192 }
1193 
LeaveFrame(StackFrame::Type type)1194 int TurboAssembler::LeaveFrame(StackFrame::Type type) {
1195   // r0: preserved
1196   // r1: preserved
1197   // r2: preserved
1198 
1199   // Drop the execution stack down to the frame pointer and restore
1200   // the caller frame pointer and return address.
1201   mov(sp, fp);
1202   int frame_ends = pc_offset();
1203   ldm(ia_w, sp, fp.bit() | lr.bit());
1204   return frame_ends;
1205 }
1206 
EnterExitFrame(bool save_doubles,int stack_space,StackFrame::Type frame_type)1207 void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space,
1208                                     StackFrame::Type frame_type) {
1209   DCHECK(frame_type == StackFrame::EXIT ||
1210          frame_type == StackFrame::BUILTIN_EXIT);
1211   UseScratchRegisterScope temps(this);
1212   Register scratch = temps.Acquire();
1213 
1214   // Set up the frame structure on the stack.
1215   DCHECK_EQ(2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement);
1216   DCHECK_EQ(1 * kPointerSize, ExitFrameConstants::kCallerPCOffset);
1217   DCHECK_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset);
1218   mov(scratch, Operand(StackFrame::TypeToMarker(frame_type)));
1219   PushCommonFrame(scratch);
1220   // Reserve room for saved entry sp and code object.
1221   sub(sp, fp, Operand(ExitFrameConstants::kFixedFrameSizeFromFp));
1222   if (emit_debug_code()) {
1223     mov(scratch, Operand::Zero());
1224     str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset));
1225   }
1226   Move(scratch, CodeObject());
1227   str(scratch, MemOperand(fp, ExitFrameConstants::kCodeOffset));
1228 
1229   // Save the frame pointer and the context in top.
1230   Move(scratch, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
1231                                           isolate()));
1232   str(fp, MemOperand(scratch));
1233   Move(scratch,
1234        ExternalReference::Create(IsolateAddressId::kContextAddress, isolate()));
1235   str(cp, MemOperand(scratch));
1236 
1237   // Optionally save all double registers.
1238   if (save_doubles) {
1239     SaveFPRegs(sp, scratch);
1240     // Note that d0 will be accessible at
1241     //   fp - ExitFrameConstants::kFrameSize -
1242     //   DwVfpRegister::kNumRegisters * kDoubleSize,
1243     // since the sp slot and code slot were pushed after the fp.
1244   }
1245 
1246   // Reserve place for the return address and stack space and align the frame
1247   // preparing for calling the runtime function.
1248   const int frame_alignment = MacroAssembler::ActivationFrameAlignment();
1249   sub(sp, sp, Operand((stack_space + 1) * kPointerSize));
1250   if (frame_alignment > 0) {
1251     DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
1252     and_(sp, sp, Operand(-frame_alignment));
1253   }
1254 
1255   // Set the exit frame sp value to point just before the return address
1256   // location.
1257   add(scratch, sp, Operand(kPointerSize));
1258   str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset));
1259 }
1260 
ActivationFrameAlignment()1261 int TurboAssembler::ActivationFrameAlignment() {
1262 #if V8_HOST_ARCH_ARM
1263   // Running on the real platform. Use the alignment as mandated by the local
1264   // environment.
1265   // Note: This will break if we ever start generating snapshots on one ARM
1266   // platform for another ARM platform with a different alignment.
1267   return base::OS::ActivationFrameAlignment();
1268 #else  // V8_HOST_ARCH_ARM
1269   // If we are using the simulator then we should always align to the expected
1270   // alignment. As the simulator is used to generate snapshots we do not know
1271   // if the target platform will need alignment, so this is controlled from a
1272   // flag.
1273   return FLAG_sim_stack_alignment;
1274 #endif  // V8_HOST_ARCH_ARM
1275 }
1276 
LeaveExitFrame(bool save_doubles,Register argument_count,bool argument_count_is_length)1277 void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count,
1278                                     bool argument_count_is_length) {
1279   ConstantPoolUnavailableScope constant_pool_unavailable(this);
1280   UseScratchRegisterScope temps(this);
1281   Register scratch = temps.Acquire();
1282 
1283   // Optionally restore all double registers.
1284   if (save_doubles) {
1285     // Calculate the stack location of the saved doubles and restore them.
1286     const int offset = ExitFrameConstants::kFixedFrameSizeFromFp;
1287     sub(r3, fp, Operand(offset + DwVfpRegister::kNumRegisters * kDoubleSize));
1288     RestoreFPRegs(r3, scratch);
1289   }
1290 
1291   // Clear top frame.
1292   mov(r3, Operand::Zero());
1293   Move(scratch, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
1294                                           isolate()));
1295   str(r3, MemOperand(scratch));
1296 
1297   // Restore current context from top and clear it in debug mode.
1298   Move(scratch,
1299        ExternalReference::Create(IsolateAddressId::kContextAddress, isolate()));
1300   ldr(cp, MemOperand(scratch));
1301 #ifdef DEBUG
1302   mov(r3, Operand(Context::kInvalidContext));
1303   Move(scratch,
1304        ExternalReference::Create(IsolateAddressId::kContextAddress, isolate()));
1305   str(r3, MemOperand(scratch));
1306 #endif
1307 
1308   // Tear down the exit frame, pop the arguments, and return.
1309   mov(sp, Operand(fp));
1310   ldm(ia_w, sp, fp.bit() | lr.bit());
1311   if (argument_count.is_valid()) {
1312     if (argument_count_is_length) {
1313       add(sp, sp, argument_count);
1314     } else {
1315       add(sp, sp, Operand(argument_count, LSL, kPointerSizeLog2));
1316     }
1317   }
1318 }
1319 
MovFromFloatResult(const DwVfpRegister dst)1320 void TurboAssembler::MovFromFloatResult(const DwVfpRegister dst) {
1321   if (use_eabi_hardfloat()) {
1322     Move(dst, d0);
1323   } else {
1324     vmov(dst, r0, r1);
1325   }
1326 }
1327 
1328 
1329 // On ARM this is just a synonym to make the purpose clear.
MovFromFloatParameter(DwVfpRegister dst)1330 void TurboAssembler::MovFromFloatParameter(DwVfpRegister dst) {
1331   MovFromFloatResult(dst);
1332 }
1333 
PrepareForTailCall(const ParameterCount & callee_args_count,Register caller_args_count_reg,Register scratch0,Register scratch1)1334 void TurboAssembler::PrepareForTailCall(const ParameterCount& callee_args_count,
1335                                         Register caller_args_count_reg,
1336                                         Register scratch0, Register scratch1) {
1337 #if DEBUG
1338   if (callee_args_count.is_reg()) {
1339     DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0,
1340                        scratch1));
1341   } else {
1342     DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1));
1343   }
1344 #endif
1345 
1346   // Calculate the end of destination area where we will put the arguments
1347   // after we drop current frame. We add kPointerSize to count the receiver
1348   // argument which is not included into formal parameters count.
1349   Register dst_reg = scratch0;
1350   add(dst_reg, fp, Operand(caller_args_count_reg, LSL, kPointerSizeLog2));
1351   add(dst_reg, dst_reg,
1352       Operand(StandardFrameConstants::kCallerSPOffset + kPointerSize));
1353 
1354   Register src_reg = caller_args_count_reg;
1355   // Calculate the end of source area. +kPointerSize is for the receiver.
1356   if (callee_args_count.is_reg()) {
1357     add(src_reg, sp, Operand(callee_args_count.reg(), LSL, kPointerSizeLog2));
1358     add(src_reg, src_reg, Operand(kPointerSize));
1359   } else {
1360     add(src_reg, sp,
1361         Operand((callee_args_count.immediate() + 1) * kPointerSize));
1362   }
1363 
1364   if (FLAG_debug_code) {
1365     cmp(src_reg, dst_reg);
1366     Check(lo, AbortReason::kStackAccessBelowStackPointer);
1367   }
1368 
1369   // Restore caller's frame pointer and return address now as they will be
1370   // overwritten by the copying loop.
1371   ldr(lr, MemOperand(fp, StandardFrameConstants::kCallerPCOffset));
1372   ldr(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1373 
1374   // Now copy callee arguments to the caller frame going backwards to avoid
1375   // callee arguments corruption (source and destination areas could overlap).
1376 
1377   // Both src_reg and dst_reg are pointing to the word after the one to copy,
1378   // so they must be pre-decremented in the loop.
1379   Register tmp_reg = scratch1;
1380   Label loop, entry;
1381   b(&entry);
1382   bind(&loop);
1383   ldr(tmp_reg, MemOperand(src_reg, -kPointerSize, PreIndex));
1384   str(tmp_reg, MemOperand(dst_reg, -kPointerSize, PreIndex));
1385   bind(&entry);
1386   cmp(sp, src_reg);
1387   b(ne, &loop);
1388 
1389   // Leave current frame.
1390   mov(sp, dst_reg);
1391 }
1392 
InvokePrologue(const ParameterCount & expected,const ParameterCount & actual,Label * done,bool * definitely_mismatches,InvokeFlag flag)1393 void MacroAssembler::InvokePrologue(const ParameterCount& expected,
1394                                     const ParameterCount& actual, Label* done,
1395                                     bool* definitely_mismatches,
1396                                     InvokeFlag flag) {
1397   bool definitely_matches = false;
1398   *definitely_mismatches = false;
1399   Label regular_invoke;
1400 
1401   // Check whether the expected and actual arguments count match. If not,
1402   // setup registers according to contract with ArgumentsAdaptorTrampoline:
1403   //  r0: actual arguments count
1404   //  r1: function (passed through to callee)
1405   //  r2: expected arguments count
1406 
1407   // The code below is made a lot easier because the calling code already sets
1408   // up actual and expected registers according to the contract if values are
1409   // passed in registers.
1410   DCHECK(actual.is_immediate() || actual.reg() == r0);
1411   DCHECK(expected.is_immediate() || expected.reg() == r2);
1412 
1413   if (expected.is_immediate()) {
1414     DCHECK(actual.is_immediate());
1415     mov(r0, Operand(actual.immediate()));
1416     if (expected.immediate() == actual.immediate()) {
1417       definitely_matches = true;
1418     } else {
1419       const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
1420       if (expected.immediate() == sentinel) {
1421         // Don't worry about adapting arguments for builtins that
1422         // don't want that done. Skip adaption code by making it look
1423         // like we have a match between expected and actual number of
1424         // arguments.
1425         definitely_matches = true;
1426       } else {
1427         *definitely_mismatches = true;
1428         mov(r2, Operand(expected.immediate()));
1429       }
1430     }
1431   } else {
1432     if (actual.is_immediate()) {
1433       mov(r0, Operand(actual.immediate()));
1434       cmp(expected.reg(), Operand(actual.immediate()));
1435       b(eq, &regular_invoke);
1436     } else {
1437       cmp(expected.reg(), Operand(actual.reg()));
1438       b(eq, &regular_invoke);
1439     }
1440   }
1441 
1442   if (!definitely_matches) {
1443     Handle<Code> adaptor = BUILTIN_CODE(isolate(), ArgumentsAdaptorTrampoline);
1444     if (flag == CALL_FUNCTION) {
1445       Call(adaptor);
1446       if (!*definitely_mismatches) {
1447         b(done);
1448       }
1449     } else {
1450       Jump(adaptor, RelocInfo::CODE_TARGET);
1451     }
1452     bind(&regular_invoke);
1453   }
1454 }
1455 
CheckDebugHook(Register fun,Register new_target,const ParameterCount & expected,const ParameterCount & actual)1456 void MacroAssembler::CheckDebugHook(Register fun, Register new_target,
1457                                     const ParameterCount& expected,
1458                                     const ParameterCount& actual) {
1459   Label skip_hook;
1460 
1461   ExternalReference debug_hook_active =
1462       ExternalReference::debug_hook_on_function_call_address(isolate());
1463   Move(r4, debug_hook_active);
1464   ldrsb(r4, MemOperand(r4));
1465   cmp(r4, Operand(0));
1466   b(eq, &skip_hook);
1467 
1468   {
1469     // Load receiver to pass it later to DebugOnFunctionCall hook.
1470     if (actual.is_reg()) {
1471       mov(r4, actual.reg());
1472     } else {
1473       mov(r4, Operand(actual.immediate()));
1474     }
1475     ldr(r4, MemOperand(sp, r4, LSL, kPointerSizeLog2));
1476     FrameScope frame(this,
1477                      has_frame() ? StackFrame::NONE : StackFrame::INTERNAL);
1478     if (expected.is_reg()) {
1479       SmiTag(expected.reg());
1480       Push(expected.reg());
1481     }
1482     if (actual.is_reg()) {
1483       SmiTag(actual.reg());
1484       Push(actual.reg());
1485     }
1486     if (new_target.is_valid()) {
1487       Push(new_target);
1488     }
1489     Push(fun);
1490     Push(fun);
1491     Push(r4);
1492     CallRuntime(Runtime::kDebugOnFunctionCall);
1493     Pop(fun);
1494     if (new_target.is_valid()) {
1495       Pop(new_target);
1496     }
1497     if (actual.is_reg()) {
1498       Pop(actual.reg());
1499       SmiUntag(actual.reg());
1500     }
1501     if (expected.is_reg()) {
1502       Pop(expected.reg());
1503       SmiUntag(expected.reg());
1504     }
1505   }
1506   bind(&skip_hook);
1507 }
1508 
InvokeFunctionCode(Register function,Register new_target,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag)1509 void MacroAssembler::InvokeFunctionCode(Register function, Register new_target,
1510                                         const ParameterCount& expected,
1511                                         const ParameterCount& actual,
1512                                         InvokeFlag flag) {
1513   // You can't call a function without a valid frame.
1514   DCHECK(flag == JUMP_FUNCTION || has_frame());
1515   DCHECK(function == r1);
1516   DCHECK_IMPLIES(new_target.is_valid(), new_target == r3);
1517 
1518   // On function call, call into the debugger if necessary.
1519   CheckDebugHook(function, new_target, expected, actual);
1520 
1521   // Clear the new.target register if not given.
1522   if (!new_target.is_valid()) {
1523     LoadRoot(r3, Heap::kUndefinedValueRootIndex);
1524   }
1525 
1526   Label done;
1527   bool definitely_mismatches = false;
1528   InvokePrologue(expected, actual, &done, &definitely_mismatches, flag);
1529   if (!definitely_mismatches) {
1530     // We call indirectly through the code field in the function to
1531     // allow recompilation to take effect without changing any of the
1532     // call sites.
1533     Register code = kJavaScriptCallCodeStartRegister;
1534     ldr(code, FieldMemOperand(function, JSFunction::kCodeOffset));
1535     add(code, code, Operand(Code::kHeaderSize - kHeapObjectTag));
1536     if (flag == CALL_FUNCTION) {
1537       Call(code);
1538     } else {
1539       DCHECK(flag == JUMP_FUNCTION);
1540       Jump(code);
1541     }
1542 
1543     // Continue here if InvokePrologue does handle the invocation due to
1544     // mismatched parameter counts.
1545     bind(&done);
1546   }
1547 }
1548 
InvokeFunction(Register fun,Register new_target,const ParameterCount & actual,InvokeFlag flag)1549 void MacroAssembler::InvokeFunction(Register fun, Register new_target,
1550                                     const ParameterCount& actual,
1551                                     InvokeFlag flag) {
1552   // You can't call a function without a valid frame.
1553   DCHECK(flag == JUMP_FUNCTION || has_frame());
1554 
1555   // Contract with called JS functions requires that function is passed in r1.
1556   DCHECK(fun == r1);
1557 
1558   Register expected_reg = r2;
1559   Register temp_reg = r4;
1560 
1561   ldr(temp_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
1562   ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
1563   ldrh(expected_reg,
1564        FieldMemOperand(temp_reg,
1565                        SharedFunctionInfo::kFormalParameterCountOffset));
1566 
1567   ParameterCount expected(expected_reg);
1568   InvokeFunctionCode(fun, new_target, expected, actual, flag);
1569 }
1570 
InvokeFunction(Register function,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag)1571 void MacroAssembler::InvokeFunction(Register function,
1572                                     const ParameterCount& expected,
1573                                     const ParameterCount& actual,
1574                                     InvokeFlag flag) {
1575   // You can't call a function without a valid frame.
1576   DCHECK(flag == JUMP_FUNCTION || has_frame());
1577 
1578   // Contract with called JS functions requires that function is passed in r1.
1579   DCHECK(function == r1);
1580 
1581   // Get the function and setup the context.
1582   ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
1583 
1584   InvokeFunctionCode(r1, no_reg, expected, actual, flag);
1585 }
1586 
MaybeDropFrames()1587 void MacroAssembler::MaybeDropFrames() {
1588   // Check whether we need to drop frames to restart a function on the stack.
1589   ExternalReference restart_fp =
1590       ExternalReference::debug_restart_fp_address(isolate());
1591   Move(r1, restart_fp);
1592   ldr(r1, MemOperand(r1));
1593   tst(r1, r1);
1594   Jump(BUILTIN_CODE(isolate(), FrameDropperTrampoline), RelocInfo::CODE_TARGET,
1595        ne);
1596 }
1597 
PushStackHandler()1598 void MacroAssembler::PushStackHandler() {
1599   // Adjust this code if not the case.
1600   STATIC_ASSERT(StackHandlerConstants::kSize == 2 * kPointerSize);
1601   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
1602 
1603   Push(Smi::kZero);  // Padding.
1604   // Link the current handler as the next handler.
1605   mov(r6, Operand(ExternalReference::Create(IsolateAddressId::kHandlerAddress,
1606                                             isolate())));
1607   ldr(r5, MemOperand(r6));
1608   push(r5);
1609   // Set this new handler as the current one.
1610   str(sp, MemOperand(r6));
1611 }
1612 
1613 
PopStackHandler()1614 void MacroAssembler::PopStackHandler() {
1615   UseScratchRegisterScope temps(this);
1616   Register scratch = temps.Acquire();
1617   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1618   pop(r1);
1619   mov(scratch, Operand(ExternalReference::Create(
1620                    IsolateAddressId::kHandlerAddress, isolate())));
1621   str(r1, MemOperand(scratch));
1622   add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
1623 }
1624 
1625 
CompareObjectType(Register object,Register map,Register type_reg,InstanceType type)1626 void MacroAssembler::CompareObjectType(Register object,
1627                                        Register map,
1628                                        Register type_reg,
1629                                        InstanceType type) {
1630   UseScratchRegisterScope temps(this);
1631   const Register temp = type_reg == no_reg ? temps.Acquire() : type_reg;
1632 
1633   ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
1634   CompareInstanceType(map, temp, type);
1635 }
1636 
1637 
CompareInstanceType(Register map,Register type_reg,InstanceType type)1638 void MacroAssembler::CompareInstanceType(Register map,
1639                                          Register type_reg,
1640                                          InstanceType type) {
1641   ldrh(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
1642   cmp(type_reg, Operand(type));
1643 }
1644 
1645 
CompareRoot(Register obj,Heap::RootListIndex index)1646 void MacroAssembler::CompareRoot(Register obj,
1647                                  Heap::RootListIndex index) {
1648   UseScratchRegisterScope temps(this);
1649   Register scratch = temps.Acquire();
1650   DCHECK(obj != scratch);
1651   LoadRoot(scratch, index);
1652   cmp(obj, scratch);
1653 }
1654 
CallStub(CodeStub * stub,Condition cond)1655 void MacroAssembler::CallStub(CodeStub* stub,
1656                               Condition cond) {
1657   DCHECK(AllowThisStubCall(stub));  // Stub calls are not allowed in some stubs.
1658   Call(stub->GetCode(), RelocInfo::CODE_TARGET, cond, CAN_INLINE_TARGET_ADDRESS,
1659        false);
1660 }
1661 
CallStubDelayed(CodeStub * stub)1662 void TurboAssembler::CallStubDelayed(CodeStub* stub) {
1663   DCHECK(AllowThisStubCall(stub));  // Stub calls are not allowed in some stubs.
1664 
1665   // Block constant pool for the call instruction sequence.
1666   BlockConstPoolScope block_const_pool(this);
1667 
1668 #ifdef DEBUG
1669   Label start;
1670   bind(&start);
1671 #endif
1672 
1673   // Call sequence on V7 or later may be :
1674   //  movw  ip, #... @ call address low 16
1675   //  movt  ip, #... @ call address high 16
1676   //  blx   ip
1677   //                      @ return address
1678   // Or for pre-V7 or values that may be back-patched
1679   // to avoid ICache flushes:
1680   //  ldr   ip, [pc, #...] @ call address
1681   //  blx   ip
1682   //                      @ return address
1683 
1684   mov(ip, Operand::EmbeddedCode(stub));
1685   blx(ip, al);
1686 
1687   DCHECK_EQ(kCallStubSize, SizeOfCodeGeneratedSince(&start));
1688 }
1689 
TailCallStub(CodeStub * stub,Condition cond)1690 void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond) {
1691   Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond);
1692 }
1693 
AllowThisStubCall(CodeStub * stub)1694 bool TurboAssembler::AllowThisStubCall(CodeStub* stub) {
1695   return has_frame() || !stub->SometimesSetsUpAFrame();
1696 }
1697 
TryDoubleToInt32Exact(Register result,DwVfpRegister double_input,LowDwVfpRegister double_scratch)1698 void MacroAssembler::TryDoubleToInt32Exact(Register result,
1699                                            DwVfpRegister double_input,
1700                                            LowDwVfpRegister double_scratch) {
1701   DCHECK(double_input != double_scratch);
1702   vcvt_s32_f64(double_scratch.low(), double_input);
1703   vmov(result, double_scratch.low());
1704   vcvt_f64_s32(double_scratch, double_scratch.low());
1705   VFPCompareAndSetFlags(double_input, double_scratch);
1706 }
1707 
TryInlineTruncateDoubleToI(Register result,DwVfpRegister double_input,Label * done)1708 void TurboAssembler::TryInlineTruncateDoubleToI(Register result,
1709                                                 DwVfpRegister double_input,
1710                                                 Label* done) {
1711   UseScratchRegisterScope temps(this);
1712   SwVfpRegister single_scratch = SwVfpRegister::no_reg();
1713   if (temps.CanAcquireVfp<SwVfpRegister>()) {
1714     single_scratch = temps.AcquireS();
1715   } else {
1716     // Re-use the input as a scratch register. However, we can only do this if
1717     // the input register is d0-d15 as there are no s32+ registers.
1718     DCHECK_LT(double_input.code(), LowDwVfpRegister::kNumRegisters);
1719     LowDwVfpRegister double_scratch =
1720         LowDwVfpRegister::from_code(double_input.code());
1721     single_scratch = double_scratch.low();
1722   }
1723   vcvt_s32_f64(single_scratch, double_input);
1724   vmov(result, single_scratch);
1725 
1726   Register scratch = temps.Acquire();
1727   // If result is not saturated (0x7FFFFFFF or 0x80000000), we are done.
1728   sub(scratch, result, Operand(1));
1729   cmp(scratch, Operand(0x7FFFFFFE));
1730   b(lt, done);
1731 }
1732 
TruncateDoubleToI(Isolate * isolate,Zone * zone,Register result,DwVfpRegister double_input,StubCallMode stub_mode)1733 void TurboAssembler::TruncateDoubleToI(Isolate* isolate, Zone* zone,
1734                                        Register result,
1735                                        DwVfpRegister double_input,
1736                                        StubCallMode stub_mode) {
1737   Label done;
1738 
1739   TryInlineTruncateDoubleToI(result, double_input, &done);
1740 
1741   // If we fell through then inline version didn't succeed - call stub instead.
1742   push(lr);
1743   sub(sp, sp, Operand(kDoubleSize));  // Put input on stack.
1744   vstr(double_input, MemOperand(sp, 0));
1745 
1746   if (stub_mode == StubCallMode::kCallWasmRuntimeStub) {
1747     Call(wasm::WasmCode::kDoubleToI, RelocInfo::WASM_STUB_CALL);
1748   } else {
1749     Call(BUILTIN_CODE(isolate, DoubleToI), RelocInfo::CODE_TARGET);
1750   }
1751   ldr(result, MemOperand(sp, 0));
1752 
1753   add(sp, sp, Operand(kDoubleSize));
1754   pop(lr);
1755 
1756   bind(&done);
1757 }
1758 
CallRuntimeWithCEntry(Runtime::FunctionId fid,Register centry)1759 void TurboAssembler::CallRuntimeWithCEntry(Runtime::FunctionId fid,
1760                                            Register centry) {
1761   const Runtime::Function* f = Runtime::FunctionForId(fid);
1762   // TODO(1236192): Most runtime routines don't need the number of
1763   // arguments passed in because it is constant. At some point we
1764   // should remove this need and make the runtime routine entry code
1765   // smarter.
1766   mov(r0, Operand(f->nargs));
1767   Move(r1, ExternalReference::Create(f));
1768   DCHECK(!AreAliased(centry, r0, r1));
1769   add(centry, centry, Operand(Code::kHeaderSize - kHeapObjectTag));
1770   Call(centry);
1771 }
1772 
CallRuntime(const Runtime::Function * f,int num_arguments,SaveFPRegsMode save_doubles)1773 void MacroAssembler::CallRuntime(const Runtime::Function* f,
1774                                  int num_arguments,
1775                                  SaveFPRegsMode save_doubles) {
1776   // All parameters are on the stack.  r0 has the return value after call.
1777 
1778   // If the expected number of arguments of the runtime function is
1779   // constant, we check that the actual number of arguments match the
1780   // expectation.
1781   CHECK(f->nargs < 0 || f->nargs == num_arguments);
1782 
1783   // TODO(1236192): Most runtime routines don't need the number of
1784   // arguments passed in because it is constant. At some point we
1785   // should remove this need and make the runtime routine entry code
1786   // smarter.
1787   mov(r0, Operand(num_arguments));
1788   Move(r1, ExternalReference::Create(f));
1789   Handle<Code> code =
1790       CodeFactory::CEntry(isolate(), f->result_size, save_doubles);
1791   Call(code, RelocInfo::CODE_TARGET);
1792 }
1793 
TailCallRuntime(Runtime::FunctionId fid)1794 void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) {
1795   const Runtime::Function* function = Runtime::FunctionForId(fid);
1796   DCHECK_EQ(1, function->result_size);
1797   if (function->nargs >= 0) {
1798     // TODO(1236192): Most runtime routines don't need the number of
1799     // arguments passed in because it is constant. At some point we
1800     // should remove this need and make the runtime routine entry code
1801     // smarter.
1802     mov(r0, Operand(function->nargs));
1803   }
1804   JumpToExternalReference(ExternalReference::Create(fid));
1805 }
1806 
JumpToExternalReference(const ExternalReference & builtin,bool builtin_exit_frame)1807 void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin,
1808                                              bool builtin_exit_frame) {
1809 #if defined(__thumb__)
1810   // Thumb mode builtin.
1811   DCHECK_EQ(builtin.address() & 1, 1);
1812 #endif
1813   Move(r1, builtin);
1814   Handle<Code> code = CodeFactory::CEntry(isolate(), 1, kDontSaveFPRegs,
1815                                           kArgvOnStack, builtin_exit_frame);
1816   Jump(code, RelocInfo::CODE_TARGET);
1817 }
1818 
JumpToInstructionStream(Address entry)1819 void MacroAssembler::JumpToInstructionStream(Address entry) {
1820   mov(kOffHeapTrampolineRegister, Operand(entry, RelocInfo::OFF_HEAP_TARGET));
1821   Jump(kOffHeapTrampolineRegister);
1822 }
1823 
LoadWeakValue(Register out,Register in,Label * target_if_cleared)1824 void MacroAssembler::LoadWeakValue(Register out, Register in,
1825                                    Label* target_if_cleared) {
1826   cmp(in, Operand(kClearedWeakHeapObject));
1827   b(eq, target_if_cleared);
1828 
1829   and_(out, in, Operand(~kWeakHeapObjectMask));
1830 }
1831 
IncrementCounter(StatsCounter * counter,int value,Register scratch1,Register scratch2)1832 void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
1833                                       Register scratch1, Register scratch2) {
1834   DCHECK_GT(value, 0);
1835   if (FLAG_native_code_counters && counter->Enabled()) {
1836     Move(scratch2, ExternalReference::Create(counter));
1837     ldr(scratch1, MemOperand(scratch2));
1838     add(scratch1, scratch1, Operand(value));
1839     str(scratch1, MemOperand(scratch2));
1840   }
1841 }
1842 
1843 
DecrementCounter(StatsCounter * counter,int value,Register scratch1,Register scratch2)1844 void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
1845                                       Register scratch1, Register scratch2) {
1846   DCHECK_GT(value, 0);
1847   if (FLAG_native_code_counters && counter->Enabled()) {
1848     Move(scratch2, ExternalReference::Create(counter));
1849     ldr(scratch1, MemOperand(scratch2));
1850     sub(scratch1, scratch1, Operand(value));
1851     str(scratch1, MemOperand(scratch2));
1852   }
1853 }
1854 
Assert(Condition cond,AbortReason reason)1855 void TurboAssembler::Assert(Condition cond, AbortReason reason) {
1856   if (emit_debug_code())
1857     Check(cond, reason);
1858 }
1859 
Check(Condition cond,AbortReason reason)1860 void TurboAssembler::Check(Condition cond, AbortReason reason) {
1861   Label L;
1862   b(cond, &L);
1863   Abort(reason);
1864   // will not return here
1865   bind(&L);
1866 }
1867 
Abort(AbortReason reason)1868 void TurboAssembler::Abort(AbortReason reason) {
1869   Label abort_start;
1870   bind(&abort_start);
1871   const char* msg = GetAbortReason(reason);
1872 #ifdef DEBUG
1873   RecordComment("Abort message: ");
1874   RecordComment(msg);
1875 #endif
1876 
1877   // Avoid emitting call to builtin if requested.
1878   if (trap_on_abort()) {
1879     stop(msg);
1880     return;
1881   }
1882 
1883   if (should_abort_hard()) {
1884     // We don't care if we constructed a frame. Just pretend we did.
1885     FrameScope assume_frame(this, StackFrame::NONE);
1886     Move32BitImmediate(r0, Operand(static_cast<int>(reason)));
1887     PrepareCallCFunction(1, 0, r1);
1888     Move(r1, ExternalReference::abort_with_reason());
1889     // Use Call directly to avoid any unneeded overhead. The function won't
1890     // return anyway.
1891     Call(r1);
1892     return;
1893   }
1894 
1895   Move(r1, Smi::FromInt(static_cast<int>(reason)));
1896 
1897   // Disable stub call restrictions to always allow calls to abort.
1898   if (!has_frame()) {
1899     // We don't actually want to generate a pile of code for this, so just
1900     // claim there is a stack frame, without generating one.
1901     FrameScope scope(this, StackFrame::NONE);
1902     Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET);
1903   } else {
1904     Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET);
1905   }
1906   // will not return here
1907 }
1908 
LoadNativeContextSlot(int index,Register dst)1909 void MacroAssembler::LoadNativeContextSlot(int index, Register dst) {
1910   ldr(dst, NativeContextMemOperand());
1911   ldr(dst, ContextMemOperand(dst, index));
1912 }
1913 
1914 
InitializeRootRegister()1915 void TurboAssembler::InitializeRootRegister() {
1916   ExternalReference roots_array_start =
1917       ExternalReference::roots_array_start(isolate());
1918   mov(kRootRegister, Operand(roots_array_start));
1919   add(kRootRegister, kRootRegister, Operand(kRootRegisterBias));
1920 }
1921 
SmiTag(Register reg,SBit s)1922 void MacroAssembler::SmiTag(Register reg, SBit s) {
1923   add(reg, reg, Operand(reg), s);
1924 }
1925 
SmiTag(Register dst,Register src,SBit s)1926 void MacroAssembler::SmiTag(Register dst, Register src, SBit s) {
1927   add(dst, src, Operand(src), s);
1928 }
1929 
UntagAndJumpIfSmi(Register dst,Register src,Label * smi_case)1930 void MacroAssembler::UntagAndJumpIfSmi(
1931     Register dst, Register src, Label* smi_case) {
1932   STATIC_ASSERT(kSmiTag == 0);
1933   SmiUntag(dst, src, SetCC);
1934   b(cc, smi_case);  // Shifter carry is not set for a smi.
1935 }
1936 
SmiTst(Register value)1937 void MacroAssembler::SmiTst(Register value) {
1938   tst(value, Operand(kSmiTagMask));
1939 }
1940 
JumpIfSmi(Register value,Label * smi_label)1941 void TurboAssembler::JumpIfSmi(Register value, Label* smi_label) {
1942   tst(value, Operand(kSmiTagMask));
1943   b(eq, smi_label);
1944 }
1945 
JumpIfEqual(Register x,int32_t y,Label * dest)1946 void TurboAssembler::JumpIfEqual(Register x, int32_t y, Label* dest) {
1947   cmp(x, Operand(y));
1948   b(eq, dest);
1949 }
1950 
JumpIfLessThan(Register x,int32_t y,Label * dest)1951 void TurboAssembler::JumpIfLessThan(Register x, int32_t y, Label* dest) {
1952   cmp(x, Operand(y));
1953   b(lt, dest);
1954 }
1955 
JumpIfNotSmi(Register value,Label * not_smi_label)1956 void MacroAssembler::JumpIfNotSmi(Register value, Label* not_smi_label) {
1957   tst(value, Operand(kSmiTagMask));
1958   b(ne, not_smi_label);
1959 }
1960 
JumpIfEitherSmi(Register reg1,Register reg2,Label * on_either_smi)1961 void MacroAssembler::JumpIfEitherSmi(Register reg1,
1962                                      Register reg2,
1963                                      Label* on_either_smi) {
1964   STATIC_ASSERT(kSmiTag == 0);
1965   tst(reg1, Operand(kSmiTagMask));
1966   tst(reg2, Operand(kSmiTagMask), ne);
1967   b(eq, on_either_smi);
1968 }
1969 
AssertNotSmi(Register object)1970 void MacroAssembler::AssertNotSmi(Register object) {
1971   if (emit_debug_code()) {
1972     STATIC_ASSERT(kSmiTag == 0);
1973     tst(object, Operand(kSmiTagMask));
1974     Check(ne, AbortReason::kOperandIsASmi);
1975   }
1976 }
1977 
1978 
AssertSmi(Register object)1979 void MacroAssembler::AssertSmi(Register object) {
1980   if (emit_debug_code()) {
1981     STATIC_ASSERT(kSmiTag == 0);
1982     tst(object, Operand(kSmiTagMask));
1983     Check(eq, AbortReason::kOperandIsNotASmi);
1984   }
1985 }
1986 
AssertConstructor(Register object)1987 void MacroAssembler::AssertConstructor(Register object) {
1988   if (emit_debug_code()) {
1989     STATIC_ASSERT(kSmiTag == 0);
1990     tst(object, Operand(kSmiTagMask));
1991     Check(ne, AbortReason::kOperandIsASmiAndNotAConstructor);
1992     push(object);
1993     ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
1994     ldrb(object, FieldMemOperand(object, Map::kBitFieldOffset));
1995     tst(object, Operand(Map::IsConstructorBit::kMask));
1996     pop(object);
1997     Check(ne, AbortReason::kOperandIsNotAConstructor);
1998   }
1999 }
2000 
AssertFunction(Register object)2001 void MacroAssembler::AssertFunction(Register object) {
2002   if (emit_debug_code()) {
2003     STATIC_ASSERT(kSmiTag == 0);
2004     tst(object, Operand(kSmiTagMask));
2005     Check(ne, AbortReason::kOperandIsASmiAndNotAFunction);
2006     push(object);
2007     CompareObjectType(object, object, object, JS_FUNCTION_TYPE);
2008     pop(object);
2009     Check(eq, AbortReason::kOperandIsNotAFunction);
2010   }
2011 }
2012 
2013 
AssertBoundFunction(Register object)2014 void MacroAssembler::AssertBoundFunction(Register object) {
2015   if (emit_debug_code()) {
2016     STATIC_ASSERT(kSmiTag == 0);
2017     tst(object, Operand(kSmiTagMask));
2018     Check(ne, AbortReason::kOperandIsASmiAndNotABoundFunction);
2019     push(object);
2020     CompareObjectType(object, object, object, JS_BOUND_FUNCTION_TYPE);
2021     pop(object);
2022     Check(eq, AbortReason::kOperandIsNotABoundFunction);
2023   }
2024 }
2025 
AssertGeneratorObject(Register object)2026 void MacroAssembler::AssertGeneratorObject(Register object) {
2027   if (!emit_debug_code()) return;
2028   tst(object, Operand(kSmiTagMask));
2029   Check(ne, AbortReason::kOperandIsASmiAndNotAGeneratorObject);
2030 
2031   // Load map
2032   Register map = object;
2033   push(object);
2034   ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
2035 
2036   // Check if JSGeneratorObject
2037   Label do_check;
2038   Register instance_type = object;
2039   CompareInstanceType(map, instance_type, JS_GENERATOR_OBJECT_TYPE);
2040   b(eq, &do_check);
2041 
2042   // Check if JSAsyncGeneratorObject (See MacroAssembler::CompareInstanceType)
2043   cmp(instance_type, Operand(JS_ASYNC_GENERATOR_OBJECT_TYPE));
2044 
2045   bind(&do_check);
2046   // Restore generator object to register and perform assertion
2047   pop(object);
2048   Check(eq, AbortReason::kOperandIsNotAGeneratorObject);
2049 }
2050 
AssertUndefinedOrAllocationSite(Register object,Register scratch)2051 void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
2052                                                      Register scratch) {
2053   if (emit_debug_code()) {
2054     Label done_checking;
2055     AssertNotSmi(object);
2056     CompareRoot(object, Heap::kUndefinedValueRootIndex);
2057     b(eq, &done_checking);
2058     ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
2059     CompareInstanceType(scratch, scratch, ALLOCATION_SITE_TYPE);
2060     Assert(eq, AbortReason::kExpectedUndefinedOrCell);
2061     bind(&done_checking);
2062   }
2063 }
2064 
2065 
CheckFor32DRegs(Register scratch)2066 void TurboAssembler::CheckFor32DRegs(Register scratch) {
2067   Move(scratch, ExternalReference::cpu_features());
2068   ldr(scratch, MemOperand(scratch));
2069   tst(scratch, Operand(1u << VFP32DREGS));
2070 }
2071 
SaveFPRegs(Register location,Register scratch)2072 void TurboAssembler::SaveFPRegs(Register location, Register scratch) {
2073   CpuFeatureScope scope(this, VFP32DREGS, CpuFeatureScope::kDontCheckSupported);
2074   CheckFor32DRegs(scratch);
2075   vstm(db_w, location, d16, d31, ne);
2076   sub(location, location, Operand(16 * kDoubleSize), LeaveCC, eq);
2077   vstm(db_w, location, d0, d15);
2078 }
2079 
RestoreFPRegs(Register location,Register scratch)2080 void TurboAssembler::RestoreFPRegs(Register location, Register scratch) {
2081   CpuFeatureScope scope(this, VFP32DREGS, CpuFeatureScope::kDontCheckSupported);
2082   CheckFor32DRegs(scratch);
2083   vldm(ia_w, location, d0, d15);
2084   vldm(ia_w, location, d16, d31, ne);
2085   add(location, location, Operand(16 * kDoubleSize), LeaveCC, eq);
2086 }
2087 
2088 template <typename T>
FloatMaxHelper(T result,T left,T right,Label * out_of_line)2089 void TurboAssembler::FloatMaxHelper(T result, T left, T right,
2090                                     Label* out_of_line) {
2091   // This trivial case is caught sooner, so that the out-of-line code can be
2092   // completely avoided.
2093   DCHECK(left != right);
2094 
2095   if (CpuFeatures::IsSupported(ARMv8)) {
2096     CpuFeatureScope scope(this, ARMv8);
2097     VFPCompareAndSetFlags(left, right);
2098     b(vs, out_of_line);
2099     vmaxnm(result, left, right);
2100   } else {
2101     Label done;
2102     VFPCompareAndSetFlags(left, right);
2103     b(vs, out_of_line);
2104     // Avoid a conditional instruction if the result register is unique.
2105     bool aliased_result_reg = result == left || result == right;
2106     Move(result, right, aliased_result_reg ? mi : al);
2107     Move(result, left, gt);
2108     b(ne, &done);
2109     // Left and right are equal, but check for +/-0.
2110     VFPCompareAndSetFlags(left, 0.0);
2111     b(eq, out_of_line);
2112     // The arguments are equal and not zero, so it doesn't matter which input we
2113     // pick. We have already moved one input into the result (if it didn't
2114     // already alias) so there's nothing more to do.
2115     bind(&done);
2116   }
2117 }
2118 
2119 template <typename T>
FloatMaxOutOfLineHelper(T result,T left,T right)2120 void TurboAssembler::FloatMaxOutOfLineHelper(T result, T left, T right) {
2121   DCHECK(left != right);
2122 
2123   // ARMv8: At least one of left and right is a NaN.
2124   // Anything else: At least one of left and right is a NaN, or both left and
2125   // right are zeroes with unknown sign.
2126 
2127   // If left and right are +/-0, select the one with the most positive sign.
2128   // If left or right are NaN, vadd propagates the appropriate one.
2129   vadd(result, left, right);
2130 }
2131 
2132 template <typename T>
FloatMinHelper(T result,T left,T right,Label * out_of_line)2133 void TurboAssembler::FloatMinHelper(T result, T left, T right,
2134                                     Label* out_of_line) {
2135   // This trivial case is caught sooner, so that the out-of-line code can be
2136   // completely avoided.
2137   DCHECK(left != right);
2138 
2139   if (CpuFeatures::IsSupported(ARMv8)) {
2140     CpuFeatureScope scope(this, ARMv8);
2141     VFPCompareAndSetFlags(left, right);
2142     b(vs, out_of_line);
2143     vminnm(result, left, right);
2144   } else {
2145     Label done;
2146     VFPCompareAndSetFlags(left, right);
2147     b(vs, out_of_line);
2148     // Avoid a conditional instruction if the result register is unique.
2149     bool aliased_result_reg = result == left || result == right;
2150     Move(result, left, aliased_result_reg ? mi : al);
2151     Move(result, right, gt);
2152     b(ne, &done);
2153     // Left and right are equal, but check for +/-0.
2154     VFPCompareAndSetFlags(left, 0.0);
2155     // If the arguments are equal and not zero, it doesn't matter which input we
2156     // pick. We have already moved one input into the result (if it didn't
2157     // already alias) so there's nothing more to do.
2158     b(ne, &done);
2159     // At this point, both left and right are either 0 or -0.
2160     // We could use a single 'vorr' instruction here if we had NEON support.
2161     // The algorithm used is -((-L) + (-R)), which is most efficiently expressed
2162     // as -((-L) - R).
2163     if (left == result) {
2164       DCHECK(right != result);
2165       vneg(result, left);
2166       vsub(result, result, right);
2167       vneg(result, result);
2168     } else {
2169       DCHECK(left != result);
2170       vneg(result, right);
2171       vsub(result, result, left);
2172       vneg(result, result);
2173     }
2174     bind(&done);
2175   }
2176 }
2177 
2178 template <typename T>
FloatMinOutOfLineHelper(T result,T left,T right)2179 void TurboAssembler::FloatMinOutOfLineHelper(T result, T left, T right) {
2180   DCHECK(left != right);
2181 
2182   // At least one of left and right is a NaN. Use vadd to propagate the NaN
2183   // appropriately. +/-0 is handled inline.
2184   vadd(result, left, right);
2185 }
2186 
FloatMax(SwVfpRegister result,SwVfpRegister left,SwVfpRegister right,Label * out_of_line)2187 void TurboAssembler::FloatMax(SwVfpRegister result, SwVfpRegister left,
2188                               SwVfpRegister right, Label* out_of_line) {
2189   FloatMaxHelper(result, left, right, out_of_line);
2190 }
2191 
FloatMin(SwVfpRegister result,SwVfpRegister left,SwVfpRegister right,Label * out_of_line)2192 void TurboAssembler::FloatMin(SwVfpRegister result, SwVfpRegister left,
2193                               SwVfpRegister right, Label* out_of_line) {
2194   FloatMinHelper(result, left, right, out_of_line);
2195 }
2196 
FloatMax(DwVfpRegister result,DwVfpRegister left,DwVfpRegister right,Label * out_of_line)2197 void TurboAssembler::FloatMax(DwVfpRegister result, DwVfpRegister left,
2198                               DwVfpRegister right, Label* out_of_line) {
2199   FloatMaxHelper(result, left, right, out_of_line);
2200 }
2201 
FloatMin(DwVfpRegister result,DwVfpRegister left,DwVfpRegister right,Label * out_of_line)2202 void TurboAssembler::FloatMin(DwVfpRegister result, DwVfpRegister left,
2203                               DwVfpRegister right, Label* out_of_line) {
2204   FloatMinHelper(result, left, right, out_of_line);
2205 }
2206 
FloatMaxOutOfLine(SwVfpRegister result,SwVfpRegister left,SwVfpRegister right)2207 void TurboAssembler::FloatMaxOutOfLine(SwVfpRegister result, SwVfpRegister left,
2208                                        SwVfpRegister right) {
2209   FloatMaxOutOfLineHelper(result, left, right);
2210 }
2211 
FloatMinOutOfLine(SwVfpRegister result,SwVfpRegister left,SwVfpRegister right)2212 void TurboAssembler::FloatMinOutOfLine(SwVfpRegister result, SwVfpRegister left,
2213                                        SwVfpRegister right) {
2214   FloatMinOutOfLineHelper(result, left, right);
2215 }
2216 
FloatMaxOutOfLine(DwVfpRegister result,DwVfpRegister left,DwVfpRegister right)2217 void TurboAssembler::FloatMaxOutOfLine(DwVfpRegister result, DwVfpRegister left,
2218                                        DwVfpRegister right) {
2219   FloatMaxOutOfLineHelper(result, left, right);
2220 }
2221 
FloatMinOutOfLine(DwVfpRegister result,DwVfpRegister left,DwVfpRegister right)2222 void TurboAssembler::FloatMinOutOfLine(DwVfpRegister result, DwVfpRegister left,
2223                                        DwVfpRegister right) {
2224   FloatMinOutOfLineHelper(result, left, right);
2225 }
2226 
2227 static const int kRegisterPassedArguments = 4;
2228 
CalculateStackPassedWords(int num_reg_arguments,int num_double_arguments)2229 int TurboAssembler::CalculateStackPassedWords(int num_reg_arguments,
2230                                               int num_double_arguments) {
2231   int stack_passed_words = 0;
2232   if (use_eabi_hardfloat()) {
2233     // In the hard floating point calling convention, we can use
2234     // all double registers to pass doubles.
2235     if (num_double_arguments > DoubleRegister::NumRegisters()) {
2236       stack_passed_words +=
2237           2 * (num_double_arguments - DoubleRegister::NumRegisters());
2238     }
2239   } else {
2240     // In the soft floating point calling convention, every double
2241     // argument is passed using two registers.
2242     num_reg_arguments += 2 * num_double_arguments;
2243   }
2244   // Up to four simple arguments are passed in registers r0..r3.
2245   if (num_reg_arguments > kRegisterPassedArguments) {
2246     stack_passed_words += num_reg_arguments - kRegisterPassedArguments;
2247   }
2248   return stack_passed_words;
2249 }
2250 
PrepareCallCFunction(int num_reg_arguments,int num_double_arguments,Register scratch)2251 void TurboAssembler::PrepareCallCFunction(int num_reg_arguments,
2252                                           int num_double_arguments,
2253                                           Register scratch) {
2254   int frame_alignment = ActivationFrameAlignment();
2255   int stack_passed_arguments = CalculateStackPassedWords(
2256       num_reg_arguments, num_double_arguments);
2257   if (frame_alignment > kPointerSize) {
2258     UseScratchRegisterScope temps(this);
2259     if (!scratch.is_valid()) scratch = temps.Acquire();
2260     // Make stack end at alignment and make room for num_arguments - 4 words
2261     // and the original value of sp.
2262     mov(scratch, sp);
2263     sub(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize));
2264     DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
2265     and_(sp, sp, Operand(-frame_alignment));
2266     str(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
2267   } else if (stack_passed_arguments > 0) {
2268     sub(sp, sp, Operand(stack_passed_arguments * kPointerSize));
2269   }
2270 }
2271 
MovToFloatParameter(DwVfpRegister src)2272 void TurboAssembler::MovToFloatParameter(DwVfpRegister src) {
2273   DCHECK(src == d0);
2274   if (!use_eabi_hardfloat()) {
2275     vmov(r0, r1, src);
2276   }
2277 }
2278 
2279 
2280 // On ARM this is just a synonym to make the purpose clear.
MovToFloatResult(DwVfpRegister src)2281 void TurboAssembler::MovToFloatResult(DwVfpRegister src) {
2282   MovToFloatParameter(src);
2283 }
2284 
MovToFloatParameters(DwVfpRegister src1,DwVfpRegister src2)2285 void TurboAssembler::MovToFloatParameters(DwVfpRegister src1,
2286                                           DwVfpRegister src2) {
2287   DCHECK(src1 == d0);
2288   DCHECK(src2 == d1);
2289   if (!use_eabi_hardfloat()) {
2290     vmov(r0, r1, src1);
2291     vmov(r2, r3, src2);
2292   }
2293 }
2294 
CallCFunction(ExternalReference function,int num_reg_arguments,int num_double_arguments)2295 void TurboAssembler::CallCFunction(ExternalReference function,
2296                                    int num_reg_arguments,
2297                                    int num_double_arguments) {
2298   UseScratchRegisterScope temps(this);
2299   Register scratch = temps.Acquire();
2300   Move(scratch, function);
2301   CallCFunctionHelper(scratch, num_reg_arguments, num_double_arguments);
2302 }
2303 
CallCFunction(Register function,int num_reg_arguments,int num_double_arguments)2304 void TurboAssembler::CallCFunction(Register function, int num_reg_arguments,
2305                                    int num_double_arguments) {
2306   CallCFunctionHelper(function, num_reg_arguments, num_double_arguments);
2307 }
2308 
CallCFunction(ExternalReference function,int num_arguments)2309 void TurboAssembler::CallCFunction(ExternalReference function,
2310                                    int num_arguments) {
2311   CallCFunction(function, num_arguments, 0);
2312 }
2313 
CallCFunction(Register function,int num_arguments)2314 void TurboAssembler::CallCFunction(Register function, int num_arguments) {
2315   CallCFunction(function, num_arguments, 0);
2316 }
2317 
CallCFunctionHelper(Register function,int num_reg_arguments,int num_double_arguments)2318 void TurboAssembler::CallCFunctionHelper(Register function,
2319                                          int num_reg_arguments,
2320                                          int num_double_arguments) {
2321   DCHECK_LE(num_reg_arguments + num_double_arguments, kMaxCParameters);
2322   DCHECK(has_frame());
2323   // Make sure that the stack is aligned before calling a C function unless
2324   // running in the simulator. The simulator has its own alignment check which
2325   // provides more information.
2326 #if V8_HOST_ARCH_ARM
2327   if (emit_debug_code()) {
2328     int frame_alignment = base::OS::ActivationFrameAlignment();
2329     int frame_alignment_mask = frame_alignment - 1;
2330     if (frame_alignment > kPointerSize) {
2331       DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
2332       Label alignment_as_expected;
2333       tst(sp, Operand(frame_alignment_mask));
2334       b(eq, &alignment_as_expected);
2335       // Don't use Check here, as it will call Runtime_Abort possibly
2336       // re-entering here.
2337       stop("Unexpected alignment");
2338       bind(&alignment_as_expected);
2339     }
2340   }
2341 #endif
2342 
2343   // Just call directly. The function called cannot cause a GC, or
2344   // allow preemption, so the return address in the link register
2345   // stays correct.
2346   Call(function);
2347   int stack_passed_arguments = CalculateStackPassedWords(
2348       num_reg_arguments, num_double_arguments);
2349   if (ActivationFrameAlignment() > kPointerSize) {
2350     ldr(sp, MemOperand(sp, stack_passed_arguments * kPointerSize));
2351   } else {
2352     add(sp, sp, Operand(stack_passed_arguments * kPointerSize));
2353   }
2354 }
2355 
CheckPageFlag(Register object,Register scratch,int mask,Condition cc,Label * condition_met)2356 void TurboAssembler::CheckPageFlag(Register object, Register scratch, int mask,
2357                                    Condition cc, Label* condition_met) {
2358   DCHECK(cc == eq || cc == ne);
2359   Bfc(scratch, object, 0, kPageSizeBits);
2360   ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
2361   tst(scratch, Operand(mask));
2362   b(cc, condition_met);
2363 }
2364 
GetRegisterThatIsNotOneOf(Register reg1,Register reg2,Register reg3,Register reg4,Register reg5,Register reg6)2365 Register GetRegisterThatIsNotOneOf(Register reg1,
2366                                    Register reg2,
2367                                    Register reg3,
2368                                    Register reg4,
2369                                    Register reg5,
2370                                    Register reg6) {
2371   RegList regs = 0;
2372   if (reg1.is_valid()) regs |= reg1.bit();
2373   if (reg2.is_valid()) regs |= reg2.bit();
2374   if (reg3.is_valid()) regs |= reg3.bit();
2375   if (reg4.is_valid()) regs |= reg4.bit();
2376   if (reg5.is_valid()) regs |= reg5.bit();
2377   if (reg6.is_valid()) regs |= reg6.bit();
2378 
2379   const RegisterConfiguration* config = RegisterConfiguration::Default();
2380   for (int i = 0; i < config->num_allocatable_general_registers(); ++i) {
2381     int code = config->GetAllocatableGeneralCode(i);
2382     Register candidate = Register::from_code(code);
2383     if (regs & candidate.bit()) continue;
2384     return candidate;
2385   }
2386   UNREACHABLE();
2387 }
2388 
ComputeCodeStartAddress(Register dst)2389 void TurboAssembler::ComputeCodeStartAddress(Register dst) {
2390   // We can use the register pc - 8 for the address of the current instruction.
2391   sub(dst, pc, Operand(pc_offset() + Instruction::kPcLoadDelta));
2392 }
2393 
ResetSpeculationPoisonRegister()2394 void TurboAssembler::ResetSpeculationPoisonRegister() {
2395   mov(kSpeculationPoisonRegister, Operand(-1));
2396 }
2397 
2398 }  // namespace internal
2399 }  // namespace v8
2400 
2401 #endif  // V8_TARGET_ARCH_ARM
2402