1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements inlining of a function into a call site, resolving
11 // parameters and the return value as appropriate.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/iterator_range.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BlockFrequencyInfo.h"
27 #include "llvm/Analysis/CallGraph.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/ProfileSummaryInfo.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Argument.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/CallSite.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DIBuilder.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/User.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Transforms/Utils/Cloning.h"
64 #include "llvm/Transforms/Utils/ValueMapper.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstdint>
68 #include <iterator>
69 #include <limits>
70 #include <string>
71 #include <utility>
72 #include <vector>
73 
74 using namespace llvm;
75 using ProfileCount = Function::ProfileCount;
76 
77 static cl::opt<bool>
78 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
79   cl::Hidden,
80   cl::desc("Convert noalias attributes to metadata during inlining."));
81 
82 static cl::opt<bool>
83 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
84   cl::init(true), cl::Hidden,
85   cl::desc("Convert align attributes to assumptions during inlining."));
86 
InlineFunction(CallInst * CI,InlineFunctionInfo & IFI,AAResults * CalleeAAR,bool InsertLifetime)87 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
88                           AAResults *CalleeAAR, bool InsertLifetime) {
89   return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime);
90 }
91 
InlineFunction(InvokeInst * II,InlineFunctionInfo & IFI,AAResults * CalleeAAR,bool InsertLifetime)92 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
93                           AAResults *CalleeAAR, bool InsertLifetime) {
94   return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime);
95 }
96 
97 namespace {
98 
99   /// A class for recording information about inlining a landing pad.
100   class LandingPadInliningInfo {
101     /// Destination of the invoke's unwind.
102     BasicBlock *OuterResumeDest;
103 
104     /// Destination for the callee's resume.
105     BasicBlock *InnerResumeDest = nullptr;
106 
107     /// LandingPadInst associated with the invoke.
108     LandingPadInst *CallerLPad = nullptr;
109 
110     /// PHI for EH values from landingpad insts.
111     PHINode *InnerEHValuesPHI = nullptr;
112 
113     SmallVector<Value*, 8> UnwindDestPHIValues;
114 
115   public:
LandingPadInliningInfo(InvokeInst * II)116     LandingPadInliningInfo(InvokeInst *II)
117         : OuterResumeDest(II->getUnwindDest()) {
118       // If there are PHI nodes in the unwind destination block, we need to keep
119       // track of which values came into them from the invoke before removing
120       // the edge from this block.
121       BasicBlock *InvokeBB = II->getParent();
122       BasicBlock::iterator I = OuterResumeDest->begin();
123       for (; isa<PHINode>(I); ++I) {
124         // Save the value to use for this edge.
125         PHINode *PHI = cast<PHINode>(I);
126         UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
127       }
128 
129       CallerLPad = cast<LandingPadInst>(I);
130     }
131 
132     /// The outer unwind destination is the target of
133     /// unwind edges introduced for calls within the inlined function.
getOuterResumeDest() const134     BasicBlock *getOuterResumeDest() const {
135       return OuterResumeDest;
136     }
137 
138     BasicBlock *getInnerResumeDest();
139 
getLandingPadInst() const140     LandingPadInst *getLandingPadInst() const { return CallerLPad; }
141 
142     /// Forward the 'resume' instruction to the caller's landing pad block.
143     /// When the landing pad block has only one predecessor, this is
144     /// a simple branch. When there is more than one predecessor, we need to
145     /// split the landing pad block after the landingpad instruction and jump
146     /// to there.
147     void forwardResume(ResumeInst *RI,
148                        SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
149 
150     /// Add incoming-PHI values to the unwind destination block for the given
151     /// basic block, using the values for the original invoke's source block.
addIncomingPHIValuesFor(BasicBlock * BB) const152     void addIncomingPHIValuesFor(BasicBlock *BB) const {
153       addIncomingPHIValuesForInto(BB, OuterResumeDest);
154     }
155 
addIncomingPHIValuesForInto(BasicBlock * src,BasicBlock * dest) const156     void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
157       BasicBlock::iterator I = dest->begin();
158       for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
159         PHINode *phi = cast<PHINode>(I);
160         phi->addIncoming(UnwindDestPHIValues[i], src);
161       }
162     }
163   };
164 
165 } // end anonymous namespace
166 
167 /// Get or create a target for the branch from ResumeInsts.
getInnerResumeDest()168 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
169   if (InnerResumeDest) return InnerResumeDest;
170 
171   // Split the landing pad.
172   BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
173   InnerResumeDest =
174     OuterResumeDest->splitBasicBlock(SplitPoint,
175                                      OuterResumeDest->getName() + ".body");
176 
177   // The number of incoming edges we expect to the inner landing pad.
178   const unsigned PHICapacity = 2;
179 
180   // Create corresponding new PHIs for all the PHIs in the outer landing pad.
181   Instruction *InsertPoint = &InnerResumeDest->front();
182   BasicBlock::iterator I = OuterResumeDest->begin();
183   for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
184     PHINode *OuterPHI = cast<PHINode>(I);
185     PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
186                                         OuterPHI->getName() + ".lpad-body",
187                                         InsertPoint);
188     OuterPHI->replaceAllUsesWith(InnerPHI);
189     InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
190   }
191 
192   // Create a PHI for the exception values.
193   InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
194                                      "eh.lpad-body", InsertPoint);
195   CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
196   InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
197 
198   // All done.
199   return InnerResumeDest;
200 }
201 
202 /// Forward the 'resume' instruction to the caller's landing pad block.
203 /// When the landing pad block has only one predecessor, this is a simple
204 /// branch. When there is more than one predecessor, we need to split the
205 /// landing pad block after the landingpad instruction and jump to there.
forwardResume(ResumeInst * RI,SmallPtrSetImpl<LandingPadInst * > & InlinedLPads)206 void LandingPadInliningInfo::forwardResume(
207     ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
208   BasicBlock *Dest = getInnerResumeDest();
209   BasicBlock *Src = RI->getParent();
210 
211   BranchInst::Create(Dest, Src);
212 
213   // Update the PHIs in the destination. They were inserted in an order which
214   // makes this work.
215   addIncomingPHIValuesForInto(Src, Dest);
216 
217   InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
218   RI->eraseFromParent();
219 }
220 
221 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
getParentPad(Value * EHPad)222 static Value *getParentPad(Value *EHPad) {
223   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
224     return FPI->getParentPad();
225   return cast<CatchSwitchInst>(EHPad)->getParentPad();
226 }
227 
228 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
229 
230 /// Helper for getUnwindDestToken that does the descendant-ward part of
231 /// the search.
getUnwindDestTokenHelper(Instruction * EHPad,UnwindDestMemoTy & MemoMap)232 static Value *getUnwindDestTokenHelper(Instruction *EHPad,
233                                        UnwindDestMemoTy &MemoMap) {
234   SmallVector<Instruction *, 8> Worklist(1, EHPad);
235 
236   while (!Worklist.empty()) {
237     Instruction *CurrentPad = Worklist.pop_back_val();
238     // We only put pads on the worklist that aren't in the MemoMap.  When
239     // we find an unwind dest for a pad we may update its ancestors, but
240     // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
241     // so they should never get updated while queued on the worklist.
242     assert(!MemoMap.count(CurrentPad));
243     Value *UnwindDestToken = nullptr;
244     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
245       if (CatchSwitch->hasUnwindDest()) {
246         UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
247       } else {
248         // Catchswitch doesn't have a 'nounwind' variant, and one might be
249         // annotated as "unwinds to caller" when really it's nounwind (see
250         // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
251         // parent's unwind dest from this.  We can check its catchpads'
252         // descendants, since they might include a cleanuppad with an
253         // "unwinds to caller" cleanupret, which can be trusted.
254         for (auto HI = CatchSwitch->handler_begin(),
255                   HE = CatchSwitch->handler_end();
256              HI != HE && !UnwindDestToken; ++HI) {
257           BasicBlock *HandlerBlock = *HI;
258           auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
259           for (User *Child : CatchPad->users()) {
260             // Intentionally ignore invokes here -- since the catchswitch is
261             // marked "unwind to caller", it would be a verifier error if it
262             // contained an invoke which unwinds out of it, so any invoke we'd
263             // encounter must unwind to some child of the catch.
264             if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
265               continue;
266 
267             Instruction *ChildPad = cast<Instruction>(Child);
268             auto Memo = MemoMap.find(ChildPad);
269             if (Memo == MemoMap.end()) {
270               // Haven't figured out this child pad yet; queue it.
271               Worklist.push_back(ChildPad);
272               continue;
273             }
274             // We've already checked this child, but might have found that
275             // it offers no proof either way.
276             Value *ChildUnwindDestToken = Memo->second;
277             if (!ChildUnwindDestToken)
278               continue;
279             // We already know the child's unwind dest, which can either
280             // be ConstantTokenNone to indicate unwind to caller, or can
281             // be another child of the catchpad.  Only the former indicates
282             // the unwind dest of the catchswitch.
283             if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
284               UnwindDestToken = ChildUnwindDestToken;
285               break;
286             }
287             assert(getParentPad(ChildUnwindDestToken) == CatchPad);
288           }
289         }
290       }
291     } else {
292       auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
293       for (User *U : CleanupPad->users()) {
294         if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
295           if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
296             UnwindDestToken = RetUnwindDest->getFirstNonPHI();
297           else
298             UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
299           break;
300         }
301         Value *ChildUnwindDestToken;
302         if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
303           ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
304         } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
305           Instruction *ChildPad = cast<Instruction>(U);
306           auto Memo = MemoMap.find(ChildPad);
307           if (Memo == MemoMap.end()) {
308             // Haven't resolved this child yet; queue it and keep searching.
309             Worklist.push_back(ChildPad);
310             continue;
311           }
312           // We've checked this child, but still need to ignore it if it
313           // had no proof either way.
314           ChildUnwindDestToken = Memo->second;
315           if (!ChildUnwindDestToken)
316             continue;
317         } else {
318           // Not a relevant user of the cleanuppad
319           continue;
320         }
321         // In a well-formed program, the child/invoke must either unwind to
322         // an(other) child of the cleanup, or exit the cleanup.  In the
323         // first case, continue searching.
324         if (isa<Instruction>(ChildUnwindDestToken) &&
325             getParentPad(ChildUnwindDestToken) == CleanupPad)
326           continue;
327         UnwindDestToken = ChildUnwindDestToken;
328         break;
329       }
330     }
331     // If we haven't found an unwind dest for CurrentPad, we may have queued its
332     // children, so move on to the next in the worklist.
333     if (!UnwindDestToken)
334       continue;
335 
336     // Now we know that CurrentPad unwinds to UnwindDestToken.  It also exits
337     // any ancestors of CurrentPad up to but not including UnwindDestToken's
338     // parent pad.  Record this in the memo map, and check to see if the
339     // original EHPad being queried is one of the ones exited.
340     Value *UnwindParent;
341     if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
342       UnwindParent = getParentPad(UnwindPad);
343     else
344       UnwindParent = nullptr;
345     bool ExitedOriginalPad = false;
346     for (Instruction *ExitedPad = CurrentPad;
347          ExitedPad && ExitedPad != UnwindParent;
348          ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
349       // Skip over catchpads since they just follow their catchswitches.
350       if (isa<CatchPadInst>(ExitedPad))
351         continue;
352       MemoMap[ExitedPad] = UnwindDestToken;
353       ExitedOriginalPad |= (ExitedPad == EHPad);
354     }
355 
356     if (ExitedOriginalPad)
357       return UnwindDestToken;
358 
359     // Continue the search.
360   }
361 
362   // No definitive information is contained within this funclet.
363   return nullptr;
364 }
365 
366 /// Given an EH pad, find where it unwinds.  If it unwinds to an EH pad,
367 /// return that pad instruction.  If it unwinds to caller, return
368 /// ConstantTokenNone.  If it does not have a definitive unwind destination,
369 /// return nullptr.
370 ///
371 /// This routine gets invoked for calls in funclets in inlinees when inlining
372 /// an invoke.  Since many funclets don't have calls inside them, it's queried
373 /// on-demand rather than building a map of pads to unwind dests up front.
374 /// Determining a funclet's unwind dest may require recursively searching its
375 /// descendants, and also ancestors and cousins if the descendants don't provide
376 /// an answer.  Since most funclets will have their unwind dest immediately
377 /// available as the unwind dest of a catchswitch or cleanupret, this routine
378 /// searches top-down from the given pad and then up. To avoid worst-case
379 /// quadratic run-time given that approach, it uses a memo map to avoid
380 /// re-processing funclet trees.  The callers that rewrite the IR as they go
381 /// take advantage of this, for correctness, by checking/forcing rewritten
382 /// pads' entries to match the original callee view.
getUnwindDestToken(Instruction * EHPad,UnwindDestMemoTy & MemoMap)383 static Value *getUnwindDestToken(Instruction *EHPad,
384                                  UnwindDestMemoTy &MemoMap) {
385   // Catchpads unwind to the same place as their catchswitch;
386   // redirct any queries on catchpads so the code below can
387   // deal with just catchswitches and cleanuppads.
388   if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
389     EHPad = CPI->getCatchSwitch();
390 
391   // Check if we've already determined the unwind dest for this pad.
392   auto Memo = MemoMap.find(EHPad);
393   if (Memo != MemoMap.end())
394     return Memo->second;
395 
396   // Search EHPad and, if necessary, its descendants.
397   Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
398   assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
399   if (UnwindDestToken)
400     return UnwindDestToken;
401 
402   // No information is available for this EHPad from itself or any of its
403   // descendants.  An unwind all the way out to a pad in the caller would
404   // need also to agree with the unwind dest of the parent funclet, so
405   // search up the chain to try to find a funclet with information.  Put
406   // null entries in the memo map to avoid re-processing as we go up.
407   MemoMap[EHPad] = nullptr;
408 #ifndef NDEBUG
409   SmallPtrSet<Instruction *, 4> TempMemos;
410   TempMemos.insert(EHPad);
411 #endif
412   Instruction *LastUselessPad = EHPad;
413   Value *AncestorToken;
414   for (AncestorToken = getParentPad(EHPad);
415        auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
416        AncestorToken = getParentPad(AncestorToken)) {
417     // Skip over catchpads since they just follow their catchswitches.
418     if (isa<CatchPadInst>(AncestorPad))
419       continue;
420     // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
421     // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
422     // call to getUnwindDestToken, that would mean that AncestorPad had no
423     // information in itself, its descendants, or its ancestors.  If that
424     // were the case, then we should also have recorded the lack of information
425     // for the descendant that we're coming from.  So assert that we don't
426     // find a null entry in the MemoMap for AncestorPad.
427     assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
428     auto AncestorMemo = MemoMap.find(AncestorPad);
429     if (AncestorMemo == MemoMap.end()) {
430       UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
431     } else {
432       UnwindDestToken = AncestorMemo->second;
433     }
434     if (UnwindDestToken)
435       break;
436     LastUselessPad = AncestorPad;
437     MemoMap[LastUselessPad] = nullptr;
438 #ifndef NDEBUG
439     TempMemos.insert(LastUselessPad);
440 #endif
441   }
442 
443   // We know that getUnwindDestTokenHelper was called on LastUselessPad and
444   // returned nullptr (and likewise for EHPad and any of its ancestors up to
445   // LastUselessPad), so LastUselessPad has no information from below.  Since
446   // getUnwindDestTokenHelper must investigate all downward paths through
447   // no-information nodes to prove that a node has no information like this,
448   // and since any time it finds information it records it in the MemoMap for
449   // not just the immediately-containing funclet but also any ancestors also
450   // exited, it must be the case that, walking downward from LastUselessPad,
451   // visiting just those nodes which have not been mapped to an unwind dest
452   // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
453   // they are just used to keep getUnwindDestTokenHelper from repeating work),
454   // any node visited must have been exhaustively searched with no information
455   // for it found.
456   SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
457   while (!Worklist.empty()) {
458     Instruction *UselessPad = Worklist.pop_back_val();
459     auto Memo = MemoMap.find(UselessPad);
460     if (Memo != MemoMap.end() && Memo->second) {
461       // Here the name 'UselessPad' is a bit of a misnomer, because we've found
462       // that it is a funclet that does have information about unwinding to
463       // a particular destination; its parent was a useless pad.
464       // Since its parent has no information, the unwind edge must not escape
465       // the parent, and must target a sibling of this pad.  This local unwind
466       // gives us no information about EHPad.  Leave it and the subtree rooted
467       // at it alone.
468       assert(getParentPad(Memo->second) == getParentPad(UselessPad));
469       continue;
470     }
471     // We know we don't have information for UselesPad.  If it has an entry in
472     // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
473     // added on this invocation of getUnwindDestToken; if a previous invocation
474     // recorded nullptr, it would have had to prove that the ancestors of
475     // UselessPad, which include LastUselessPad, had no information, and that
476     // in turn would have required proving that the descendants of
477     // LastUselesPad, which include EHPad, have no information about
478     // LastUselessPad, which would imply that EHPad was mapped to nullptr in
479     // the MemoMap on that invocation, which isn't the case if we got here.
480     assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
481     // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
482     // information that we'd be contradicting by making a map entry for it
483     // (which is something that getUnwindDestTokenHelper must have proved for
484     // us to get here).  Just assert on is direct users here; the checks in
485     // this downward walk at its descendants will verify that they don't have
486     // any unwind edges that exit 'UselessPad' either (i.e. they either have no
487     // unwind edges or unwind to a sibling).
488     MemoMap[UselessPad] = UnwindDestToken;
489     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
490       assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
491       for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
492         auto *CatchPad = HandlerBlock->getFirstNonPHI();
493         for (User *U : CatchPad->users()) {
494           assert(
495               (!isa<InvokeInst>(U) ||
496                (getParentPad(
497                     cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
498                 CatchPad)) &&
499               "Expected useless pad");
500           if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
501             Worklist.push_back(cast<Instruction>(U));
502         }
503       }
504     } else {
505       assert(isa<CleanupPadInst>(UselessPad));
506       for (User *U : UselessPad->users()) {
507         assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
508         assert((!isa<InvokeInst>(U) ||
509                 (getParentPad(
510                      cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
511                  UselessPad)) &&
512                "Expected useless pad");
513         if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
514           Worklist.push_back(cast<Instruction>(U));
515       }
516     }
517   }
518 
519   return UnwindDestToken;
520 }
521 
522 /// When we inline a basic block into an invoke,
523 /// we have to turn all of the calls that can throw into invokes.
524 /// This function analyze BB to see if there are any calls, and if so,
525 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
526 /// nodes in that block with the values specified in InvokeDestPHIValues.
HandleCallsInBlockInlinedThroughInvoke(BasicBlock * BB,BasicBlock * UnwindEdge,UnwindDestMemoTy * FuncletUnwindMap=nullptr)527 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
528     BasicBlock *BB, BasicBlock *UnwindEdge,
529     UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
530   for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
531     Instruction *I = &*BBI++;
532 
533     // We only need to check for function calls: inlined invoke
534     // instructions require no special handling.
535     CallInst *CI = dyn_cast<CallInst>(I);
536 
537     if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
538       continue;
539 
540     // We do not need to (and in fact, cannot) convert possibly throwing calls
541     // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
542     // invokes.  The caller's "segment" of the deoptimization continuation
543     // attached to the newly inlined @llvm.experimental_deoptimize
544     // (resp. @llvm.experimental.guard) call should contain the exception
545     // handling logic, if any.
546     if (auto *F = CI->getCalledFunction())
547       if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
548           F->getIntrinsicID() == Intrinsic::experimental_guard)
549         continue;
550 
551     if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
552       // This call is nested inside a funclet.  If that funclet has an unwind
553       // destination within the inlinee, then unwinding out of this call would
554       // be UB.  Rewriting this call to an invoke which targets the inlined
555       // invoke's unwind dest would give the call's parent funclet multiple
556       // unwind destinations, which is something that subsequent EH table
557       // generation can't handle and that the veirifer rejects.  So when we
558       // see such a call, leave it as a call.
559       auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
560       Value *UnwindDestToken =
561           getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
562       if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
563         continue;
564 #ifndef NDEBUG
565       Instruction *MemoKey;
566       if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
567         MemoKey = CatchPad->getCatchSwitch();
568       else
569         MemoKey = FuncletPad;
570       assert(FuncletUnwindMap->count(MemoKey) &&
571              (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
572              "must get memoized to avoid confusing later searches");
573 #endif // NDEBUG
574     }
575 
576     changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
577     return BB;
578   }
579   return nullptr;
580 }
581 
582 /// If we inlined an invoke site, we need to convert calls
583 /// in the body of the inlined function into invokes.
584 ///
585 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
586 /// block of the inlined code (the last block is the end of the function),
587 /// and InlineCodeInfo is information about the code that got inlined.
HandleInlinedLandingPad(InvokeInst * II,BasicBlock * FirstNewBlock,ClonedCodeInfo & InlinedCodeInfo)588 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
589                                     ClonedCodeInfo &InlinedCodeInfo) {
590   BasicBlock *InvokeDest = II->getUnwindDest();
591 
592   Function *Caller = FirstNewBlock->getParent();
593 
594   // The inlined code is currently at the end of the function, scan from the
595   // start of the inlined code to its end, checking for stuff we need to
596   // rewrite.
597   LandingPadInliningInfo Invoke(II);
598 
599   // Get all of the inlined landing pad instructions.
600   SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
601   for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
602        I != E; ++I)
603     if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
604       InlinedLPads.insert(II->getLandingPadInst());
605 
606   // Append the clauses from the outer landing pad instruction into the inlined
607   // landing pad instructions.
608   LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
609   for (LandingPadInst *InlinedLPad : InlinedLPads) {
610     unsigned OuterNum = OuterLPad->getNumClauses();
611     InlinedLPad->reserveClauses(OuterNum);
612     for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
613       InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
614     if (OuterLPad->isCleanup())
615       InlinedLPad->setCleanup(true);
616   }
617 
618   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
619        BB != E; ++BB) {
620     if (InlinedCodeInfo.ContainsCalls)
621       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
622               &*BB, Invoke.getOuterResumeDest()))
623         // Update any PHI nodes in the exceptional block to indicate that there
624         // is now a new entry in them.
625         Invoke.addIncomingPHIValuesFor(NewBB);
626 
627     // Forward any resumes that are remaining here.
628     if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
629       Invoke.forwardResume(RI, InlinedLPads);
630   }
631 
632   // Now that everything is happy, we have one final detail.  The PHI nodes in
633   // the exception destination block still have entries due to the original
634   // invoke instruction. Eliminate these entries (which might even delete the
635   // PHI node) now.
636   InvokeDest->removePredecessor(II->getParent());
637 }
638 
639 /// If we inlined an invoke site, we need to convert calls
640 /// in the body of the inlined function into invokes.
641 ///
642 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
643 /// block of the inlined code (the last block is the end of the function),
644 /// and InlineCodeInfo is information about the code that got inlined.
HandleInlinedEHPad(InvokeInst * II,BasicBlock * FirstNewBlock,ClonedCodeInfo & InlinedCodeInfo)645 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
646                                ClonedCodeInfo &InlinedCodeInfo) {
647   BasicBlock *UnwindDest = II->getUnwindDest();
648   Function *Caller = FirstNewBlock->getParent();
649 
650   assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
651 
652   // If there are PHI nodes in the unwind destination block, we need to keep
653   // track of which values came into them from the invoke before removing the
654   // edge from this block.
655   SmallVector<Value *, 8> UnwindDestPHIValues;
656   BasicBlock *InvokeBB = II->getParent();
657   for (Instruction &I : *UnwindDest) {
658     // Save the value to use for this edge.
659     PHINode *PHI = dyn_cast<PHINode>(&I);
660     if (!PHI)
661       break;
662     UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
663   }
664 
665   // Add incoming-PHI values to the unwind destination block for the given basic
666   // block, using the values for the original invoke's source block.
667   auto UpdatePHINodes = [&](BasicBlock *Src) {
668     BasicBlock::iterator I = UnwindDest->begin();
669     for (Value *V : UnwindDestPHIValues) {
670       PHINode *PHI = cast<PHINode>(I);
671       PHI->addIncoming(V, Src);
672       ++I;
673     }
674   };
675 
676   // This connects all the instructions which 'unwind to caller' to the invoke
677   // destination.
678   UnwindDestMemoTy FuncletUnwindMap;
679   for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
680        BB != E; ++BB) {
681     if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
682       if (CRI->unwindsToCaller()) {
683         auto *CleanupPad = CRI->getCleanupPad();
684         CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
685         CRI->eraseFromParent();
686         UpdatePHINodes(&*BB);
687         // Finding a cleanupret with an unwind destination would confuse
688         // subsequent calls to getUnwindDestToken, so map the cleanuppad
689         // to short-circuit any such calls and recognize this as an "unwind
690         // to caller" cleanup.
691         assert(!FuncletUnwindMap.count(CleanupPad) ||
692                isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
693         FuncletUnwindMap[CleanupPad] =
694             ConstantTokenNone::get(Caller->getContext());
695       }
696     }
697 
698     Instruction *I = BB->getFirstNonPHI();
699     if (!I->isEHPad())
700       continue;
701 
702     Instruction *Replacement = nullptr;
703     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
704       if (CatchSwitch->unwindsToCaller()) {
705         Value *UnwindDestToken;
706         if (auto *ParentPad =
707                 dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
708           // This catchswitch is nested inside another funclet.  If that
709           // funclet has an unwind destination within the inlinee, then
710           // unwinding out of this catchswitch would be UB.  Rewriting this
711           // catchswitch to unwind to the inlined invoke's unwind dest would
712           // give the parent funclet multiple unwind destinations, which is
713           // something that subsequent EH table generation can't handle and
714           // that the veirifer rejects.  So when we see such a call, leave it
715           // as "unwind to caller".
716           UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
717           if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
718             continue;
719         } else {
720           // This catchswitch has no parent to inherit constraints from, and
721           // none of its descendants can have an unwind edge that exits it and
722           // targets another funclet in the inlinee.  It may or may not have a
723           // descendant that definitively has an unwind to caller.  In either
724           // case, we'll have to assume that any unwinds out of it may need to
725           // be routed to the caller, so treat it as though it has a definitive
726           // unwind to caller.
727           UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
728         }
729         auto *NewCatchSwitch = CatchSwitchInst::Create(
730             CatchSwitch->getParentPad(), UnwindDest,
731             CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
732             CatchSwitch);
733         for (BasicBlock *PadBB : CatchSwitch->handlers())
734           NewCatchSwitch->addHandler(PadBB);
735         // Propagate info for the old catchswitch over to the new one in
736         // the unwind map.  This also serves to short-circuit any subsequent
737         // checks for the unwind dest of this catchswitch, which would get
738         // confused if they found the outer handler in the callee.
739         FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
740         Replacement = NewCatchSwitch;
741       }
742     } else if (!isa<FuncletPadInst>(I)) {
743       llvm_unreachable("unexpected EHPad!");
744     }
745 
746     if (Replacement) {
747       Replacement->takeName(I);
748       I->replaceAllUsesWith(Replacement);
749       I->eraseFromParent();
750       UpdatePHINodes(&*BB);
751     }
752   }
753 
754   if (InlinedCodeInfo.ContainsCalls)
755     for (Function::iterator BB = FirstNewBlock->getIterator(),
756                             E = Caller->end();
757          BB != E; ++BB)
758       if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
759               &*BB, UnwindDest, &FuncletUnwindMap))
760         // Update any PHI nodes in the exceptional block to indicate that there
761         // is now a new entry in them.
762         UpdatePHINodes(NewBB);
763 
764   // Now that everything is happy, we have one final detail.  The PHI nodes in
765   // the exception destination block still have entries due to the original
766   // invoke instruction. Eliminate these entries (which might even delete the
767   // PHI node) now.
768   UnwindDest->removePredecessor(InvokeBB);
769 }
770 
771 /// When inlining a call site that has !llvm.mem.parallel_loop_access metadata,
772 /// that metadata should be propagated to all memory-accessing cloned
773 /// instructions.
PropagateParallelLoopAccessMetadata(CallSite CS,ValueToValueMapTy & VMap)774 static void PropagateParallelLoopAccessMetadata(CallSite CS,
775                                                 ValueToValueMapTy &VMap) {
776   MDNode *M =
777     CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
778   if (!M)
779     return;
780 
781   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
782        VMI != VMIE; ++VMI) {
783     if (!VMI->second)
784       continue;
785 
786     Instruction *NI = dyn_cast<Instruction>(VMI->second);
787     if (!NI)
788       continue;
789 
790     if (MDNode *PM = NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) {
791         M = MDNode::concatenate(PM, M);
792       NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
793     } else if (NI->mayReadOrWriteMemory()) {
794       NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
795     }
796   }
797 }
798 
799 /// When inlining a function that contains noalias scope metadata,
800 /// this metadata needs to be cloned so that the inlined blocks
801 /// have different "unique scopes" at every call site. Were this not done, then
802 /// aliasing scopes from a function inlined into a caller multiple times could
803 /// not be differentiated (and this would lead to miscompiles because the
804 /// non-aliasing property communicated by the metadata could have
805 /// call-site-specific control dependencies).
CloneAliasScopeMetadata(CallSite CS,ValueToValueMapTy & VMap)806 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
807   const Function *CalledFunc = CS.getCalledFunction();
808   SetVector<const MDNode *> MD;
809 
810   // Note: We could only clone the metadata if it is already used in the
811   // caller. I'm omitting that check here because it might confuse
812   // inter-procedural alias analysis passes. We can revisit this if it becomes
813   // an efficiency or overhead problem.
814 
815   for (const BasicBlock &I : *CalledFunc)
816     for (const Instruction &J : I) {
817       if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope))
818         MD.insert(M);
819       if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias))
820         MD.insert(M);
821     }
822 
823   if (MD.empty())
824     return;
825 
826   // Walk the existing metadata, adding the complete (perhaps cyclic) chain to
827   // the set.
828   SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
829   while (!Queue.empty()) {
830     const MDNode *M = cast<MDNode>(Queue.pop_back_val());
831     for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
832       if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
833         if (MD.insert(M1))
834           Queue.push_back(M1);
835   }
836 
837   // Now we have a complete set of all metadata in the chains used to specify
838   // the noalias scopes and the lists of those scopes.
839   SmallVector<TempMDTuple, 16> DummyNodes;
840   DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
841   for (const MDNode *I : MD) {
842     DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None));
843     MDMap[I].reset(DummyNodes.back().get());
844   }
845 
846   // Create new metadata nodes to replace the dummy nodes, replacing old
847   // metadata references with either a dummy node or an already-created new
848   // node.
849   for (const MDNode *I : MD) {
850     SmallVector<Metadata *, 4> NewOps;
851     for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) {
852       const Metadata *V = I->getOperand(i);
853       if (const MDNode *M = dyn_cast<MDNode>(V))
854         NewOps.push_back(MDMap[M]);
855       else
856         NewOps.push_back(const_cast<Metadata *>(V));
857     }
858 
859     MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
860     MDTuple *TempM = cast<MDTuple>(MDMap[I]);
861     assert(TempM->isTemporary() && "Expected temporary node");
862 
863     TempM->replaceAllUsesWith(NewM);
864   }
865 
866   // Now replace the metadata in the new inlined instructions with the
867   // repacements from the map.
868   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
869        VMI != VMIE; ++VMI) {
870     if (!VMI->second)
871       continue;
872 
873     Instruction *NI = dyn_cast<Instruction>(VMI->second);
874     if (!NI)
875       continue;
876 
877     if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
878       MDNode *NewMD = MDMap[M];
879       // If the call site also had alias scope metadata (a list of scopes to
880       // which instructions inside it might belong), propagate those scopes to
881       // the inlined instructions.
882       if (MDNode *CSM =
883               CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
884         NewMD = MDNode::concatenate(NewMD, CSM);
885       NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
886     } else if (NI->mayReadOrWriteMemory()) {
887       if (MDNode *M =
888               CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
889         NI->setMetadata(LLVMContext::MD_alias_scope, M);
890     }
891 
892     if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
893       MDNode *NewMD = MDMap[M];
894       // If the call site also had noalias metadata (a list of scopes with
895       // which instructions inside it don't alias), propagate those scopes to
896       // the inlined instructions.
897       if (MDNode *CSM =
898               CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
899         NewMD = MDNode::concatenate(NewMD, CSM);
900       NI->setMetadata(LLVMContext::MD_noalias, NewMD);
901     } else if (NI->mayReadOrWriteMemory()) {
902       if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
903         NI->setMetadata(LLVMContext::MD_noalias, M);
904     }
905   }
906 }
907 
908 /// If the inlined function has noalias arguments,
909 /// then add new alias scopes for each noalias argument, tag the mapped noalias
910 /// parameters with noalias metadata specifying the new scope, and tag all
911 /// non-derived loads, stores and memory intrinsics with the new alias scopes.
AddAliasScopeMetadata(CallSite CS,ValueToValueMapTy & VMap,const DataLayout & DL,AAResults * CalleeAAR)912 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
913                                   const DataLayout &DL, AAResults *CalleeAAR) {
914   if (!EnableNoAliasConversion)
915     return;
916 
917   const Function *CalledFunc = CS.getCalledFunction();
918   SmallVector<const Argument *, 4> NoAliasArgs;
919 
920   for (const Argument &Arg : CalledFunc->args())
921     if (Arg.hasNoAliasAttr() && !Arg.use_empty())
922       NoAliasArgs.push_back(&Arg);
923 
924   if (NoAliasArgs.empty())
925     return;
926 
927   // To do a good job, if a noalias variable is captured, we need to know if
928   // the capture point dominates the particular use we're considering.
929   DominatorTree DT;
930   DT.recalculate(const_cast<Function&>(*CalledFunc));
931 
932   // noalias indicates that pointer values based on the argument do not alias
933   // pointer values which are not based on it. So we add a new "scope" for each
934   // noalias function argument. Accesses using pointers based on that argument
935   // become part of that alias scope, accesses using pointers not based on that
936   // argument are tagged as noalias with that scope.
937 
938   DenseMap<const Argument *, MDNode *> NewScopes;
939   MDBuilder MDB(CalledFunc->getContext());
940 
941   // Create a new scope domain for this function.
942   MDNode *NewDomain =
943     MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
944   for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
945     const Argument *A = NoAliasArgs[i];
946 
947     std::string Name = CalledFunc->getName();
948     if (A->hasName()) {
949       Name += ": %";
950       Name += A->getName();
951     } else {
952       Name += ": argument ";
953       Name += utostr(i);
954     }
955 
956     // Note: We always create a new anonymous root here. This is true regardless
957     // of the linkage of the callee because the aliasing "scope" is not just a
958     // property of the callee, but also all control dependencies in the caller.
959     MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
960     NewScopes.insert(std::make_pair(A, NewScope));
961   }
962 
963   // Iterate over all new instructions in the map; for all memory-access
964   // instructions, add the alias scope metadata.
965   for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
966        VMI != VMIE; ++VMI) {
967     if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
968       if (!VMI->second)
969         continue;
970 
971       Instruction *NI = dyn_cast<Instruction>(VMI->second);
972       if (!NI)
973         continue;
974 
975       bool IsArgMemOnlyCall = false, IsFuncCall = false;
976       SmallVector<const Value *, 2> PtrArgs;
977 
978       if (const LoadInst *LI = dyn_cast<LoadInst>(I))
979         PtrArgs.push_back(LI->getPointerOperand());
980       else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
981         PtrArgs.push_back(SI->getPointerOperand());
982       else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
983         PtrArgs.push_back(VAAI->getPointerOperand());
984       else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
985         PtrArgs.push_back(CXI->getPointerOperand());
986       else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
987         PtrArgs.push_back(RMWI->getPointerOperand());
988       else if (ImmutableCallSite ICS = ImmutableCallSite(I)) {
989         // If we know that the call does not access memory, then we'll still
990         // know that about the inlined clone of this call site, and we don't
991         // need to add metadata.
992         if (ICS.doesNotAccessMemory())
993           continue;
994 
995         IsFuncCall = true;
996         if (CalleeAAR) {
997           FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(ICS);
998           if (MRB == FMRB_OnlyAccessesArgumentPointees ||
999               MRB == FMRB_OnlyReadsArgumentPointees)
1000             IsArgMemOnlyCall = true;
1001         }
1002 
1003         for (Value *Arg : ICS.args()) {
1004           // We need to check the underlying objects of all arguments, not just
1005           // the pointer arguments, because we might be passing pointers as
1006           // integers, etc.
1007           // However, if we know that the call only accesses pointer arguments,
1008           // then we only need to check the pointer arguments.
1009           if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
1010             continue;
1011 
1012           PtrArgs.push_back(Arg);
1013         }
1014       }
1015 
1016       // If we found no pointers, then this instruction is not suitable for
1017       // pairing with an instruction to receive aliasing metadata.
1018       // However, if this is a call, this we might just alias with none of the
1019       // noalias arguments.
1020       if (PtrArgs.empty() && !IsFuncCall)
1021         continue;
1022 
1023       // It is possible that there is only one underlying object, but you
1024       // need to go through several PHIs to see it, and thus could be
1025       // repeated in the Objects list.
1026       SmallPtrSet<const Value *, 4> ObjSet;
1027       SmallVector<Metadata *, 4> Scopes, NoAliases;
1028 
1029       SmallSetVector<const Argument *, 4> NAPtrArgs;
1030       for (const Value *V : PtrArgs) {
1031         SmallVector<Value *, 4> Objects;
1032         GetUnderlyingObjects(const_cast<Value*>(V),
1033                              Objects, DL, /* LI = */ nullptr);
1034 
1035         for (Value *O : Objects)
1036           ObjSet.insert(O);
1037       }
1038 
1039       // Figure out if we're derived from anything that is not a noalias
1040       // argument.
1041       bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
1042       for (const Value *V : ObjSet) {
1043         // Is this value a constant that cannot be derived from any pointer
1044         // value (we need to exclude constant expressions, for example, that
1045         // are formed from arithmetic on global symbols).
1046         bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
1047                              isa<ConstantPointerNull>(V) ||
1048                              isa<ConstantDataVector>(V) || isa<UndefValue>(V);
1049         if (IsNonPtrConst)
1050           continue;
1051 
1052         // If this is anything other than a noalias argument, then we cannot
1053         // completely describe the aliasing properties using alias.scope
1054         // metadata (and, thus, won't add any).
1055         if (const Argument *A = dyn_cast<Argument>(V)) {
1056           if (!A->hasNoAliasAttr())
1057             UsesAliasingPtr = true;
1058         } else {
1059           UsesAliasingPtr = true;
1060         }
1061 
1062         // If this is not some identified function-local object (which cannot
1063         // directly alias a noalias argument), or some other argument (which,
1064         // by definition, also cannot alias a noalias argument), then we could
1065         // alias a noalias argument that has been captured).
1066         if (!isa<Argument>(V) &&
1067             !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
1068           CanDeriveViaCapture = true;
1069       }
1070 
1071       // A function call can always get captured noalias pointers (via other
1072       // parameters, globals, etc.).
1073       if (IsFuncCall && !IsArgMemOnlyCall)
1074         CanDeriveViaCapture = true;
1075 
1076       // First, we want to figure out all of the sets with which we definitely
1077       // don't alias. Iterate over all noalias set, and add those for which:
1078       //   1. The noalias argument is not in the set of objects from which we
1079       //      definitely derive.
1080       //   2. The noalias argument has not yet been captured.
1081       // An arbitrary function that might load pointers could see captured
1082       // noalias arguments via other noalias arguments or globals, and so we
1083       // must always check for prior capture.
1084       for (const Argument *A : NoAliasArgs) {
1085         if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
1086                                  // It might be tempting to skip the
1087                                  // PointerMayBeCapturedBefore check if
1088                                  // A->hasNoCaptureAttr() is true, but this is
1089                                  // incorrect because nocapture only guarantees
1090                                  // that no copies outlive the function, not
1091                                  // that the value cannot be locally captured.
1092                                  !PointerMayBeCapturedBefore(A,
1093                                    /* ReturnCaptures */ false,
1094                                    /* StoreCaptures */ false, I, &DT)))
1095           NoAliases.push_back(NewScopes[A]);
1096       }
1097 
1098       if (!NoAliases.empty())
1099         NI->setMetadata(LLVMContext::MD_noalias,
1100                         MDNode::concatenate(
1101                             NI->getMetadata(LLVMContext::MD_noalias),
1102                             MDNode::get(CalledFunc->getContext(), NoAliases)));
1103 
1104       // Next, we want to figure out all of the sets to which we might belong.
1105       // We might belong to a set if the noalias argument is in the set of
1106       // underlying objects. If there is some non-noalias argument in our list
1107       // of underlying objects, then we cannot add a scope because the fact
1108       // that some access does not alias with any set of our noalias arguments
1109       // cannot itself guarantee that it does not alias with this access
1110       // (because there is some pointer of unknown origin involved and the
1111       // other access might also depend on this pointer). We also cannot add
1112       // scopes to arbitrary functions unless we know they don't access any
1113       // non-parameter pointer-values.
1114       bool CanAddScopes = !UsesAliasingPtr;
1115       if (CanAddScopes && IsFuncCall)
1116         CanAddScopes = IsArgMemOnlyCall;
1117 
1118       if (CanAddScopes)
1119         for (const Argument *A : NoAliasArgs) {
1120           if (ObjSet.count(A))
1121             Scopes.push_back(NewScopes[A]);
1122         }
1123 
1124       if (!Scopes.empty())
1125         NI->setMetadata(
1126             LLVMContext::MD_alias_scope,
1127             MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
1128                                 MDNode::get(CalledFunc->getContext(), Scopes)));
1129     }
1130   }
1131 }
1132 
1133 /// If the inlined function has non-byval align arguments, then
1134 /// add @llvm.assume-based alignment assumptions to preserve this information.
AddAlignmentAssumptions(CallSite CS,InlineFunctionInfo & IFI)1135 static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
1136   if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
1137     return;
1138 
1139   AssumptionCache *AC = &(*IFI.GetAssumptionCache)(*CS.getCaller());
1140   auto &DL = CS.getCaller()->getParent()->getDataLayout();
1141 
1142   // To avoid inserting redundant assumptions, we should check for assumptions
1143   // already in the caller. To do this, we might need a DT of the caller.
1144   DominatorTree DT;
1145   bool DTCalculated = false;
1146 
1147   Function *CalledFunc = CS.getCalledFunction();
1148   for (Argument &Arg : CalledFunc->args()) {
1149     unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0;
1150     if (Align && !Arg.hasByValOrInAllocaAttr() && !Arg.hasNUses(0)) {
1151       if (!DTCalculated) {
1152         DT.recalculate(*CS.getCaller());
1153         DTCalculated = true;
1154       }
1155 
1156       // If we can already prove the asserted alignment in the context of the
1157       // caller, then don't bother inserting the assumption.
1158       Value *ArgVal = CS.getArgument(Arg.getArgNo());
1159       if (getKnownAlignment(ArgVal, DL, CS.getInstruction(), AC, &DT) >= Align)
1160         continue;
1161 
1162       CallInst *NewAsmp = IRBuilder<>(CS.getInstruction())
1163                               .CreateAlignmentAssumption(DL, ArgVal, Align);
1164       AC->registerAssumption(NewAsmp);
1165     }
1166   }
1167 }
1168 
1169 /// Once we have cloned code over from a callee into the caller,
1170 /// update the specified callgraph to reflect the changes we made.
1171 /// Note that it's possible that not all code was copied over, so only
1172 /// some edges of the callgraph may remain.
UpdateCallGraphAfterInlining(CallSite CS,Function::iterator FirstNewBlock,ValueToValueMapTy & VMap,InlineFunctionInfo & IFI)1173 static void UpdateCallGraphAfterInlining(CallSite CS,
1174                                          Function::iterator FirstNewBlock,
1175                                          ValueToValueMapTy &VMap,
1176                                          InlineFunctionInfo &IFI) {
1177   CallGraph &CG = *IFI.CG;
1178   const Function *Caller = CS.getCaller();
1179   const Function *Callee = CS.getCalledFunction();
1180   CallGraphNode *CalleeNode = CG[Callee];
1181   CallGraphNode *CallerNode = CG[Caller];
1182 
1183   // Since we inlined some uninlined call sites in the callee into the caller,
1184   // add edges from the caller to all of the callees of the callee.
1185   CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
1186 
1187   // Consider the case where CalleeNode == CallerNode.
1188   CallGraphNode::CalledFunctionsVector CallCache;
1189   if (CalleeNode == CallerNode) {
1190     CallCache.assign(I, E);
1191     I = CallCache.begin();
1192     E = CallCache.end();
1193   }
1194 
1195   for (; I != E; ++I) {
1196     const Value *OrigCall = I->first;
1197 
1198     ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
1199     // Only copy the edge if the call was inlined!
1200     if (VMI == VMap.end() || VMI->second == nullptr)
1201       continue;
1202 
1203     // If the call was inlined, but then constant folded, there is no edge to
1204     // add.  Check for this case.
1205     Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
1206     if (!NewCall)
1207       continue;
1208 
1209     // We do not treat intrinsic calls like real function calls because we
1210     // expect them to become inline code; do not add an edge for an intrinsic.
1211     CallSite CS = CallSite(NewCall);
1212     if (CS && CS.getCalledFunction() && CS.getCalledFunction()->isIntrinsic())
1213       continue;
1214 
1215     // Remember that this call site got inlined for the client of
1216     // InlineFunction.
1217     IFI.InlinedCalls.push_back(NewCall);
1218 
1219     // It's possible that inlining the callsite will cause it to go from an
1220     // indirect to a direct call by resolving a function pointer.  If this
1221     // happens, set the callee of the new call site to a more precise
1222     // destination.  This can also happen if the call graph node of the caller
1223     // was just unnecessarily imprecise.
1224     if (!I->second->getFunction())
1225       if (Function *F = CallSite(NewCall).getCalledFunction()) {
1226         // Indirect call site resolved to direct call.
1227         CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
1228 
1229         continue;
1230       }
1231 
1232     CallerNode->addCalledFunction(CallSite(NewCall), I->second);
1233   }
1234 
1235   // Update the call graph by deleting the edge from Callee to Caller.  We must
1236   // do this after the loop above in case Caller and Callee are the same.
1237   CallerNode->removeCallEdgeFor(CS);
1238 }
1239 
HandleByValArgumentInit(Value * Dst,Value * Src,Module * M,BasicBlock * InsertBlock,InlineFunctionInfo & IFI)1240 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
1241                                     BasicBlock *InsertBlock,
1242                                     InlineFunctionInfo &IFI) {
1243   Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
1244   IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
1245 
1246   Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
1247 
1248   // Always generate a memcpy of alignment 1 here because we don't know
1249   // the alignment of the src pointer.  Other optimizations can infer
1250   // better alignment.
1251   Builder.CreateMemCpy(Dst, /*DstAlign*/1, Src, /*SrcAlign*/1, Size);
1252 }
1253 
1254 /// When inlining a call site that has a byval argument,
1255 /// we have to make the implicit memcpy explicit by adding it.
HandleByValArgument(Value * Arg,Instruction * TheCall,const Function * CalledFunc,InlineFunctionInfo & IFI,unsigned ByValAlignment)1256 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
1257                                   const Function *CalledFunc,
1258                                   InlineFunctionInfo &IFI,
1259                                   unsigned ByValAlignment) {
1260   PointerType *ArgTy = cast<PointerType>(Arg->getType());
1261   Type *AggTy = ArgTy->getElementType();
1262 
1263   Function *Caller = TheCall->getFunction();
1264   const DataLayout &DL = Caller->getParent()->getDataLayout();
1265 
1266   // If the called function is readonly, then it could not mutate the caller's
1267   // copy of the byval'd memory.  In this case, it is safe to elide the copy and
1268   // temporary.
1269   if (CalledFunc->onlyReadsMemory()) {
1270     // If the byval argument has a specified alignment that is greater than the
1271     // passed in pointer, then we either have to round up the input pointer or
1272     // give up on this transformation.
1273     if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
1274       return Arg;
1275 
1276     AssumptionCache *AC =
1277         IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;
1278 
1279     // If the pointer is already known to be sufficiently aligned, or if we can
1280     // round it up to a larger alignment, then we don't need a temporary.
1281     if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, AC) >=
1282         ByValAlignment)
1283       return Arg;
1284 
1285     // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
1286     // for code quality, but rarely happens and is required for correctness.
1287   }
1288 
1289   // Create the alloca.  If we have DataLayout, use nice alignment.
1290   unsigned Align = DL.getPrefTypeAlignment(AggTy);
1291 
1292   // If the byval had an alignment specified, we *must* use at least that
1293   // alignment, as it is required by the byval argument (and uses of the
1294   // pointer inside the callee).
1295   Align = std::max(Align, ByValAlignment);
1296 
1297   Value *NewAlloca = new AllocaInst(AggTy, DL.getAllocaAddrSpace(),
1298                                     nullptr, Align, Arg->getName(),
1299                                     &*Caller->begin()->begin());
1300   IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
1301 
1302   // Uses of the argument in the function should use our new alloca
1303   // instead.
1304   return NewAlloca;
1305 }
1306 
1307 // Check whether this Value is used by a lifetime intrinsic.
isUsedByLifetimeMarker(Value * V)1308 static bool isUsedByLifetimeMarker(Value *V) {
1309   for (User *U : V->users()) {
1310     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
1311       switch (II->getIntrinsicID()) {
1312       default: break;
1313       case Intrinsic::lifetime_start:
1314       case Intrinsic::lifetime_end:
1315         return true;
1316       }
1317     }
1318   }
1319   return false;
1320 }
1321 
1322 // Check whether the given alloca already has
1323 // lifetime.start or lifetime.end intrinsics.
hasLifetimeMarkers(AllocaInst * AI)1324 static bool hasLifetimeMarkers(AllocaInst *AI) {
1325   Type *Ty = AI->getType();
1326   Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
1327                                        Ty->getPointerAddressSpace());
1328   if (Ty == Int8PtrTy)
1329     return isUsedByLifetimeMarker(AI);
1330 
1331   // Do a scan to find all the casts to i8*.
1332   for (User *U : AI->users()) {
1333     if (U->getType() != Int8PtrTy) continue;
1334     if (U->stripPointerCasts() != AI) continue;
1335     if (isUsedByLifetimeMarker(U))
1336       return true;
1337   }
1338   return false;
1339 }
1340 
1341 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry
1342 /// block. Allocas used in inalloca calls and allocas of dynamic array size
1343 /// cannot be static.
allocaWouldBeStaticInEntry(const AllocaInst * AI)1344 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
1345   return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
1346 }
1347 
1348 /// Update inlined instructions' line numbers to
1349 /// to encode location where these instructions are inlined.
fixupLineNumbers(Function * Fn,Function::iterator FI,Instruction * TheCall,bool CalleeHasDebugInfo)1350 static void fixupLineNumbers(Function *Fn, Function::iterator FI,
1351                              Instruction *TheCall, bool CalleeHasDebugInfo) {
1352   const DebugLoc &TheCallDL = TheCall->getDebugLoc();
1353   if (!TheCallDL)
1354     return;
1355 
1356   auto &Ctx = Fn->getContext();
1357   DILocation *InlinedAtNode = TheCallDL;
1358 
1359   // Create a unique call site, not to be confused with any other call from the
1360   // same location.
1361   InlinedAtNode = DILocation::getDistinct(
1362       Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
1363       InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
1364 
1365   // Cache the inlined-at nodes as they're built so they are reused, without
1366   // this every instruction's inlined-at chain would become distinct from each
1367   // other.
1368   DenseMap<const MDNode *, MDNode *> IANodes;
1369 
1370   for (; FI != Fn->end(); ++FI) {
1371     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
1372          BI != BE; ++BI) {
1373       if (DebugLoc DL = BI->getDebugLoc()) {
1374         auto IA = DebugLoc::appendInlinedAt(DL, InlinedAtNode, BI->getContext(),
1375                                             IANodes);
1376         auto IDL = DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), IA);
1377         BI->setDebugLoc(IDL);
1378         continue;
1379       }
1380 
1381       if (CalleeHasDebugInfo)
1382         continue;
1383 
1384       // If the inlined instruction has no line number, make it look as if it
1385       // originates from the call location. This is important for
1386       // ((__always_inline__, __nodebug__)) functions which must use caller
1387       // location for all instructions in their function body.
1388 
1389       // Don't update static allocas, as they may get moved later.
1390       if (auto *AI = dyn_cast<AllocaInst>(BI))
1391         if (allocaWouldBeStaticInEntry(AI))
1392           continue;
1393 
1394       BI->setDebugLoc(TheCallDL);
1395     }
1396   }
1397 }
1398 
1399 /// Update the block frequencies of the caller after a callee has been inlined.
1400 ///
1401 /// Each block cloned into the caller has its block frequency scaled by the
1402 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
1403 /// callee's entry block gets the same frequency as the callsite block and the
1404 /// relative frequencies of all cloned blocks remain the same after cloning.
updateCallerBFI(BasicBlock * CallSiteBlock,const ValueToValueMapTy & VMap,BlockFrequencyInfo * CallerBFI,BlockFrequencyInfo * CalleeBFI,const BasicBlock & CalleeEntryBlock)1405 static void updateCallerBFI(BasicBlock *CallSiteBlock,
1406                             const ValueToValueMapTy &VMap,
1407                             BlockFrequencyInfo *CallerBFI,
1408                             BlockFrequencyInfo *CalleeBFI,
1409                             const BasicBlock &CalleeEntryBlock) {
1410   SmallPtrSet<BasicBlock *, 16> ClonedBBs;
1411   for (auto const &Entry : VMap) {
1412     if (!isa<BasicBlock>(Entry.first) || !Entry.second)
1413       continue;
1414     auto *OrigBB = cast<BasicBlock>(Entry.first);
1415     auto *ClonedBB = cast<BasicBlock>(Entry.second);
1416     uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency();
1417     if (!ClonedBBs.insert(ClonedBB).second) {
1418       // Multiple blocks in the callee might get mapped to one cloned block in
1419       // the caller since we prune the callee as we clone it. When that happens,
1420       // we want to use the maximum among the original blocks' frequencies.
1421       uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency();
1422       if (NewFreq > Freq)
1423         Freq = NewFreq;
1424     }
1425     CallerBFI->setBlockFreq(ClonedBB, Freq);
1426   }
1427   BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
1428   CallerBFI->setBlockFreqAndScale(
1429       EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(),
1430       ClonedBBs);
1431 }
1432 
1433 /// Update the branch metadata for cloned call instructions.
updateCallProfile(Function * Callee,const ValueToValueMapTy & VMap,const ProfileCount & CalleeEntryCount,const Instruction * TheCall,ProfileSummaryInfo * PSI,BlockFrequencyInfo * CallerBFI)1434 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
1435                               const ProfileCount &CalleeEntryCount,
1436                               const Instruction *TheCall,
1437                               ProfileSummaryInfo *PSI,
1438                               BlockFrequencyInfo *CallerBFI) {
1439   if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() ||
1440       CalleeEntryCount.getCount() < 1)
1441     return;
1442   auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None;
1443   uint64_t CallCount =
1444       std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0,
1445                CalleeEntryCount.getCount());
1446 
1447   for (auto const &Entry : VMap)
1448     if (isa<CallInst>(Entry.first))
1449       if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
1450         CI->updateProfWeight(CallCount, CalleeEntryCount.getCount());
1451   for (BasicBlock &BB : *Callee)
1452     // No need to update the callsite if it is pruned during inlining.
1453     if (VMap.count(&BB))
1454       for (Instruction &I : BB)
1455         if (CallInst *CI = dyn_cast<CallInst>(&I))
1456           CI->updateProfWeight(CalleeEntryCount.getCount() - CallCount,
1457                                CalleeEntryCount.getCount());
1458 }
1459 
1460 /// Update the entry count of callee after inlining.
1461 ///
1462 /// The callsite's block count is subtracted from the callee's function entry
1463 /// count.
updateCalleeCount(BlockFrequencyInfo * CallerBFI,BasicBlock * CallBB,Instruction * CallInst,Function * Callee,ProfileSummaryInfo * PSI)1464 static void updateCalleeCount(BlockFrequencyInfo *CallerBFI, BasicBlock *CallBB,
1465                               Instruction *CallInst, Function *Callee,
1466                               ProfileSummaryInfo *PSI) {
1467   // If the callee has a original count of N, and the estimated count of
1468   // callsite is M, the new callee count is set to N - M. M is estimated from
1469   // the caller's entry count, its entry block frequency and the block frequency
1470   // of the callsite.
1471   auto CalleeCount = Callee->getEntryCount();
1472   if (!CalleeCount.hasValue() || !PSI)
1473     return;
1474   auto CallCount = PSI->getProfileCount(CallInst, CallerBFI);
1475   if (!CallCount.hasValue())
1476     return;
1477   // Since CallSiteCount is an estimate, it could exceed the original callee
1478   // count and has to be set to 0.
1479   if (CallCount.getValue() > CalleeCount.getCount())
1480     CalleeCount.setCount(0);
1481   else
1482     CalleeCount.setCount(CalleeCount.getCount() - CallCount.getValue());
1483   Callee->setEntryCount(CalleeCount);
1484 }
1485 
1486 /// This function inlines the called function into the basic block of the
1487 /// caller. This returns false if it is not possible to inline this call.
1488 /// The program is still in a well defined state if this occurs though.
1489 ///
1490 /// Note that this only does one level of inlining.  For example, if the
1491 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
1492 /// exists in the instruction stream.  Similarly this will inline a recursive
1493 /// function by one level.
InlineFunction(CallSite CS,InlineFunctionInfo & IFI,AAResults * CalleeAAR,bool InsertLifetime,Function * ForwardVarArgsTo)1494 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
1495                           AAResults *CalleeAAR, bool InsertLifetime,
1496                           Function *ForwardVarArgsTo) {
1497   Instruction *TheCall = CS.getInstruction();
1498   assert(TheCall->getParent() && TheCall->getFunction()
1499          && "Instruction not in function!");
1500 
1501   // If IFI has any state in it, zap it before we fill it in.
1502   IFI.reset();
1503 
1504   Function *CalledFunc = CS.getCalledFunction();
1505   if (!CalledFunc ||               // Can't inline external function or indirect
1506       CalledFunc->isDeclaration()) // call!
1507     return false;
1508 
1509   // The inliner does not know how to inline through calls with operand bundles
1510   // in general ...
1511   if (CS.hasOperandBundles()) {
1512     for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
1513       uint32_t Tag = CS.getOperandBundleAt(i).getTagID();
1514       // ... but it knows how to inline through "deopt" operand bundles ...
1515       if (Tag == LLVMContext::OB_deopt)
1516         continue;
1517       // ... and "funclet" operand bundles.
1518       if (Tag == LLVMContext::OB_funclet)
1519         continue;
1520 
1521       return false;
1522     }
1523   }
1524 
1525   // If the call to the callee cannot throw, set the 'nounwind' flag on any
1526   // calls that we inline.
1527   bool MarkNoUnwind = CS.doesNotThrow();
1528 
1529   BasicBlock *OrigBB = TheCall->getParent();
1530   Function *Caller = OrigBB->getParent();
1531 
1532   // GC poses two hazards to inlining, which only occur when the callee has GC:
1533   //  1. If the caller has no GC, then the callee's GC must be propagated to the
1534   //     caller.
1535   //  2. If the caller has a differing GC, it is invalid to inline.
1536   if (CalledFunc->hasGC()) {
1537     if (!Caller->hasGC())
1538       Caller->setGC(CalledFunc->getGC());
1539     else if (CalledFunc->getGC() != Caller->getGC())
1540       return false;
1541   }
1542 
1543   // Get the personality function from the callee if it contains a landing pad.
1544   Constant *CalledPersonality =
1545       CalledFunc->hasPersonalityFn()
1546           ? CalledFunc->getPersonalityFn()->stripPointerCasts()
1547           : nullptr;
1548 
1549   // Find the personality function used by the landing pads of the caller. If it
1550   // exists, then check to see that it matches the personality function used in
1551   // the callee.
1552   Constant *CallerPersonality =
1553       Caller->hasPersonalityFn()
1554           ? Caller->getPersonalityFn()->stripPointerCasts()
1555           : nullptr;
1556   if (CalledPersonality) {
1557     if (!CallerPersonality)
1558       Caller->setPersonalityFn(CalledPersonality);
1559     // If the personality functions match, then we can perform the
1560     // inlining. Otherwise, we can't inline.
1561     // TODO: This isn't 100% true. Some personality functions are proper
1562     //       supersets of others and can be used in place of the other.
1563     else if (CalledPersonality != CallerPersonality)
1564       return false;
1565   }
1566 
1567   // We need to figure out which funclet the callsite was in so that we may
1568   // properly nest the callee.
1569   Instruction *CallSiteEHPad = nullptr;
1570   if (CallerPersonality) {
1571     EHPersonality Personality = classifyEHPersonality(CallerPersonality);
1572     if (isScopedEHPersonality(Personality)) {
1573       Optional<OperandBundleUse> ParentFunclet =
1574           CS.getOperandBundle(LLVMContext::OB_funclet);
1575       if (ParentFunclet)
1576         CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
1577 
1578       // OK, the inlining site is legal.  What about the target function?
1579 
1580       if (CallSiteEHPad) {
1581         if (Personality == EHPersonality::MSVC_CXX) {
1582           // The MSVC personality cannot tolerate catches getting inlined into
1583           // cleanup funclets.
1584           if (isa<CleanupPadInst>(CallSiteEHPad)) {
1585             // Ok, the call site is within a cleanuppad.  Let's check the callee
1586             // for catchpads.
1587             for (const BasicBlock &CalledBB : *CalledFunc) {
1588               if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
1589                 return false;
1590             }
1591           }
1592         } else if (isAsynchronousEHPersonality(Personality)) {
1593           // SEH is even less tolerant, there may not be any sort of exceptional
1594           // funclet in the callee.
1595           for (const BasicBlock &CalledBB : *CalledFunc) {
1596             if (CalledBB.isEHPad())
1597               return false;
1598           }
1599         }
1600       }
1601     }
1602   }
1603 
1604   // Determine if we are dealing with a call in an EHPad which does not unwind
1605   // to caller.
1606   bool EHPadForCallUnwindsLocally = false;
1607   if (CallSiteEHPad && CS.isCall()) {
1608     UnwindDestMemoTy FuncletUnwindMap;
1609     Value *CallSiteUnwindDestToken =
1610         getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
1611 
1612     EHPadForCallUnwindsLocally =
1613         CallSiteUnwindDestToken &&
1614         !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
1615   }
1616 
1617   // Get an iterator to the last basic block in the function, which will have
1618   // the new function inlined after it.
1619   Function::iterator LastBlock = --Caller->end();
1620 
1621   // Make sure to capture all of the return instructions from the cloned
1622   // function.
1623   SmallVector<ReturnInst*, 8> Returns;
1624   ClonedCodeInfo InlinedFunctionInfo;
1625   Function::iterator FirstNewBlock;
1626 
1627   { // Scope to destroy VMap after cloning.
1628     ValueToValueMapTy VMap;
1629     // Keep a list of pair (dst, src) to emit byval initializations.
1630     SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
1631 
1632     auto &DL = Caller->getParent()->getDataLayout();
1633 
1634     // Calculate the vector of arguments to pass into the function cloner, which
1635     // matches up the formal to the actual argument values.
1636     CallSite::arg_iterator AI = CS.arg_begin();
1637     unsigned ArgNo = 0;
1638     for (Function::arg_iterator I = CalledFunc->arg_begin(),
1639          E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
1640       Value *ActualArg = *AI;
1641 
1642       // When byval arguments actually inlined, we need to make the copy implied
1643       // by them explicit.  However, we don't do this if the callee is readonly
1644       // or readnone, because the copy would be unneeded: the callee doesn't
1645       // modify the struct.
1646       if (CS.isByValArgument(ArgNo)) {
1647         ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
1648                                         CalledFunc->getParamAlignment(ArgNo));
1649         if (ActualArg != *AI)
1650           ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
1651       }
1652 
1653       VMap[&*I] = ActualArg;
1654     }
1655 
1656     // Add alignment assumptions if necessary. We do this before the inlined
1657     // instructions are actually cloned into the caller so that we can easily
1658     // check what will be known at the start of the inlined code.
1659     AddAlignmentAssumptions(CS, IFI);
1660 
1661     // We want the inliner to prune the code as it copies.  We would LOVE to
1662     // have no dead or constant instructions leftover after inlining occurs
1663     // (which can happen, e.g., because an argument was constant), but we'll be
1664     // happy with whatever the cloner can do.
1665     CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
1666                               /*ModuleLevelChanges=*/false, Returns, ".i",
1667                               &InlinedFunctionInfo, TheCall);
1668     // Remember the first block that is newly cloned over.
1669     FirstNewBlock = LastBlock; ++FirstNewBlock;
1670 
1671     if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
1672       // Update the BFI of blocks cloned into the caller.
1673       updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
1674                       CalledFunc->front());
1675 
1676     updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), TheCall,
1677                       IFI.PSI, IFI.CallerBFI);
1678     // Update the profile count of callee.
1679     updateCalleeCount(IFI.CallerBFI, OrigBB, TheCall, CalledFunc, IFI.PSI);
1680 
1681     // Inject byval arguments initialization.
1682     for (std::pair<Value*, Value*> &Init : ByValInit)
1683       HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
1684                               &*FirstNewBlock, IFI);
1685 
1686     Optional<OperandBundleUse> ParentDeopt =
1687         CS.getOperandBundle(LLVMContext::OB_deopt);
1688     if (ParentDeopt) {
1689       SmallVector<OperandBundleDef, 2> OpDefs;
1690 
1691       for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
1692         Instruction *I = dyn_cast_or_null<Instruction>(VH);
1693         if (!I) continue;  // instruction was DCE'd or RAUW'ed to undef
1694 
1695         OpDefs.clear();
1696 
1697         CallSite ICS(I);
1698         OpDefs.reserve(ICS.getNumOperandBundles());
1699 
1700         for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) {
1701           auto ChildOB = ICS.getOperandBundleAt(i);
1702           if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
1703             // If the inlined call has other operand bundles, let them be
1704             OpDefs.emplace_back(ChildOB);
1705             continue;
1706           }
1707 
1708           // It may be useful to separate this logic (of handling operand
1709           // bundles) out to a separate "policy" component if this gets crowded.
1710           // Prepend the parent's deoptimization continuation to the newly
1711           // inlined call's deoptimization continuation.
1712           std::vector<Value *> MergedDeoptArgs;
1713           MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
1714                                   ChildOB.Inputs.size());
1715 
1716           MergedDeoptArgs.insert(MergedDeoptArgs.end(),
1717                                  ParentDeopt->Inputs.begin(),
1718                                  ParentDeopt->Inputs.end());
1719           MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(),
1720                                  ChildOB.Inputs.end());
1721 
1722           OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
1723         }
1724 
1725         Instruction *NewI = nullptr;
1726         if (isa<CallInst>(I))
1727           NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I);
1728         else
1729           NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I);
1730 
1731         // Note: the RAUW does the appropriate fixup in VMap, so we need to do
1732         // this even if the call returns void.
1733         I->replaceAllUsesWith(NewI);
1734 
1735         VH = nullptr;
1736         I->eraseFromParent();
1737       }
1738     }
1739 
1740     // Update the callgraph if requested.
1741     if (IFI.CG)
1742       UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
1743 
1744     // For 'nodebug' functions, the associated DISubprogram is always null.
1745     // Conservatively avoid propagating the callsite debug location to
1746     // instructions inlined from a function whose DISubprogram is not null.
1747     fixupLineNumbers(Caller, FirstNewBlock, TheCall,
1748                      CalledFunc->getSubprogram() != nullptr);
1749 
1750     // Clone existing noalias metadata if necessary.
1751     CloneAliasScopeMetadata(CS, VMap);
1752 
1753     // Add noalias metadata if necessary.
1754     AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR);
1755 
1756     // Propagate llvm.mem.parallel_loop_access if necessary.
1757     PropagateParallelLoopAccessMetadata(CS, VMap);
1758 
1759     // Register any cloned assumptions.
1760     if (IFI.GetAssumptionCache)
1761       for (BasicBlock &NewBlock :
1762            make_range(FirstNewBlock->getIterator(), Caller->end()))
1763         for (Instruction &I : NewBlock) {
1764           if (auto *II = dyn_cast<IntrinsicInst>(&I))
1765             if (II->getIntrinsicID() == Intrinsic::assume)
1766               (*IFI.GetAssumptionCache)(*Caller).registerAssumption(II);
1767         }
1768   }
1769 
1770   // If there are any alloca instructions in the block that used to be the entry
1771   // block for the callee, move them to the entry block of the caller.  First
1772   // calculate which instruction they should be inserted before.  We insert the
1773   // instructions at the end of the current alloca list.
1774   {
1775     BasicBlock::iterator InsertPoint = Caller->begin()->begin();
1776     for (BasicBlock::iterator I = FirstNewBlock->begin(),
1777          E = FirstNewBlock->end(); I != E; ) {
1778       AllocaInst *AI = dyn_cast<AllocaInst>(I++);
1779       if (!AI) continue;
1780 
1781       // If the alloca is now dead, remove it.  This often occurs due to code
1782       // specialization.
1783       if (AI->use_empty()) {
1784         AI->eraseFromParent();
1785         continue;
1786       }
1787 
1788       if (!allocaWouldBeStaticInEntry(AI))
1789         continue;
1790 
1791       // Keep track of the static allocas that we inline into the caller.
1792       IFI.StaticAllocas.push_back(AI);
1793 
1794       // Scan for the block of allocas that we can move over, and move them
1795       // all at once.
1796       while (isa<AllocaInst>(I) &&
1797              allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
1798         IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
1799         ++I;
1800       }
1801 
1802       // Transfer all of the allocas over in a block.  Using splice means
1803       // that the instructions aren't removed from the symbol table, then
1804       // reinserted.
1805       Caller->getEntryBlock().getInstList().splice(
1806           InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
1807     }
1808     // Move any dbg.declares describing the allocas into the entry basic block.
1809     DIBuilder DIB(*Caller->getParent());
1810     for (auto &AI : IFI.StaticAllocas)
1811       replaceDbgDeclareForAlloca(AI, AI, DIB, DIExpression::NoDeref, 0,
1812                                  DIExpression::NoDeref);
1813   }
1814 
1815   SmallVector<Value*,4> VarArgsToForward;
1816   SmallVector<AttributeSet, 4> VarArgsAttrs;
1817   for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
1818        i < CS.getNumArgOperands(); i++) {
1819     VarArgsToForward.push_back(CS.getArgOperand(i));
1820     VarArgsAttrs.push_back(CS.getAttributes().getParamAttributes(i));
1821   }
1822 
1823   bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
1824   if (InlinedFunctionInfo.ContainsCalls) {
1825     CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
1826     if (CallInst *CI = dyn_cast<CallInst>(TheCall))
1827       CallSiteTailKind = CI->getTailCallKind();
1828 
1829     // For inlining purposes, the "notail" marker is the same as no marker.
1830     if (CallSiteTailKind == CallInst::TCK_NoTail)
1831       CallSiteTailKind = CallInst::TCK_None;
1832 
1833     for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
1834          ++BB) {
1835       for (auto II = BB->begin(); II != BB->end();) {
1836         Instruction &I = *II++;
1837         CallInst *CI = dyn_cast<CallInst>(&I);
1838         if (!CI)
1839           continue;
1840 
1841         // Forward varargs from inlined call site to calls to the
1842         // ForwardVarArgsTo function, if requested, and to musttail calls.
1843         if (!VarArgsToForward.empty() &&
1844             ((ForwardVarArgsTo &&
1845               CI->getCalledFunction() == ForwardVarArgsTo) ||
1846              CI->isMustTailCall())) {
1847           // Collect attributes for non-vararg parameters.
1848           AttributeList Attrs = CI->getAttributes();
1849           SmallVector<AttributeSet, 8> ArgAttrs;
1850           if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
1851             for (unsigned ArgNo = 0;
1852                  ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
1853               ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
1854           }
1855 
1856           // Add VarArg attributes.
1857           ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
1858           Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(),
1859                                      Attrs.getRetAttributes(), ArgAttrs);
1860           // Add VarArgs to existing parameters.
1861           SmallVector<Value *, 6> Params(CI->arg_operands());
1862           Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
1863           CallInst *NewCI =
1864               CallInst::Create(CI->getCalledFunction() ? CI->getCalledFunction()
1865                                                        : CI->getCalledValue(),
1866                                Params, "", CI);
1867           NewCI->setDebugLoc(CI->getDebugLoc());
1868           NewCI->setAttributes(Attrs);
1869           NewCI->setCallingConv(CI->getCallingConv());
1870           CI->replaceAllUsesWith(NewCI);
1871           CI->eraseFromParent();
1872           CI = NewCI;
1873         }
1874 
1875         if (Function *F = CI->getCalledFunction())
1876           InlinedDeoptimizeCalls |=
1877               F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
1878 
1879         // We need to reduce the strength of any inlined tail calls.  For
1880         // musttail, we have to avoid introducing potential unbounded stack
1881         // growth.  For example, if functions 'f' and 'g' are mutually recursive
1882         // with musttail, we can inline 'g' into 'f' so long as we preserve
1883         // musttail on the cloned call to 'f'.  If either the inlined call site
1884         // or the cloned call site is *not* musttail, the program already has
1885         // one frame of stack growth, so it's safe to remove musttail.  Here is
1886         // a table of example transformations:
1887         //
1888         //    f -> musttail g -> musttail f  ==>  f -> musttail f
1889         //    f -> musttail g ->     tail f  ==>  f ->     tail f
1890         //    f ->          g -> musttail f  ==>  f ->          f
1891         //    f ->          g ->     tail f  ==>  f ->          f
1892         //
1893         // Inlined notail calls should remain notail calls.
1894         CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
1895         if (ChildTCK != CallInst::TCK_NoTail)
1896           ChildTCK = std::min(CallSiteTailKind, ChildTCK);
1897         CI->setTailCallKind(ChildTCK);
1898         InlinedMustTailCalls |= CI->isMustTailCall();
1899 
1900         // Calls inlined through a 'nounwind' call site should be marked
1901         // 'nounwind'.
1902         if (MarkNoUnwind)
1903           CI->setDoesNotThrow();
1904       }
1905     }
1906   }
1907 
1908   // Leave lifetime markers for the static alloca's, scoping them to the
1909   // function we just inlined.
1910   if (InsertLifetime && !IFI.StaticAllocas.empty()) {
1911     IRBuilder<> builder(&FirstNewBlock->front());
1912     for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
1913       AllocaInst *AI = IFI.StaticAllocas[ai];
1914       // Don't mark swifterror allocas. They can't have bitcast uses.
1915       if (AI->isSwiftError())
1916         continue;
1917 
1918       // If the alloca is already scoped to something smaller than the whole
1919       // function then there's no need to add redundant, less accurate markers.
1920       if (hasLifetimeMarkers(AI))
1921         continue;
1922 
1923       // Try to determine the size of the allocation.
1924       ConstantInt *AllocaSize = nullptr;
1925       if (ConstantInt *AIArraySize =
1926           dyn_cast<ConstantInt>(AI->getArraySize())) {
1927         auto &DL = Caller->getParent()->getDataLayout();
1928         Type *AllocaType = AI->getAllocatedType();
1929         uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
1930         uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
1931 
1932         // Don't add markers for zero-sized allocas.
1933         if (AllocaArraySize == 0)
1934           continue;
1935 
1936         // Check that array size doesn't saturate uint64_t and doesn't
1937         // overflow when it's multiplied by type size.
1938         if (AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
1939             std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
1940                 AllocaTypeSize) {
1941           AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
1942                                         AllocaArraySize * AllocaTypeSize);
1943         }
1944       }
1945 
1946       builder.CreateLifetimeStart(AI, AllocaSize);
1947       for (ReturnInst *RI : Returns) {
1948         // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
1949         // call and a return.  The return kills all local allocas.
1950         if (InlinedMustTailCalls &&
1951             RI->getParent()->getTerminatingMustTailCall())
1952           continue;
1953         if (InlinedDeoptimizeCalls &&
1954             RI->getParent()->getTerminatingDeoptimizeCall())
1955           continue;
1956         IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
1957       }
1958     }
1959   }
1960 
1961   // If the inlined code contained dynamic alloca instructions, wrap the inlined
1962   // code with llvm.stacksave/llvm.stackrestore intrinsics.
1963   if (InlinedFunctionInfo.ContainsDynamicAllocas) {
1964     Module *M = Caller->getParent();
1965     // Get the two intrinsics we care about.
1966     Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
1967     Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
1968 
1969     // Insert the llvm.stacksave.
1970     CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
1971                              .CreateCall(StackSave, {}, "savedstack");
1972 
1973     // Insert a call to llvm.stackrestore before any return instructions in the
1974     // inlined function.
1975     for (ReturnInst *RI : Returns) {
1976       // Don't insert llvm.stackrestore calls between a musttail or deoptimize
1977       // call and a return.  The return will restore the stack pointer.
1978       if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
1979         continue;
1980       if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
1981         continue;
1982       IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
1983     }
1984   }
1985 
1986   // If we are inlining for an invoke instruction, we must make sure to rewrite
1987   // any call instructions into invoke instructions.  This is sensitive to which
1988   // funclet pads were top-level in the inlinee, so must be done before
1989   // rewriting the "parent pad" links.
1990   if (auto *II = dyn_cast<InvokeInst>(TheCall)) {
1991     BasicBlock *UnwindDest = II->getUnwindDest();
1992     Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
1993     if (isa<LandingPadInst>(FirstNonPHI)) {
1994       HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
1995     } else {
1996       HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
1997     }
1998   }
1999 
2000   // Update the lexical scopes of the new funclets and callsites.
2001   // Anything that had 'none' as its parent is now nested inside the callsite's
2002   // EHPad.
2003 
2004   if (CallSiteEHPad) {
2005     for (Function::iterator BB = FirstNewBlock->getIterator(),
2006                             E = Caller->end();
2007          BB != E; ++BB) {
2008       // Add bundle operands to any top-level call sites.
2009       SmallVector<OperandBundleDef, 1> OpBundles;
2010       for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
2011         Instruction *I = &*BBI++;
2012         CallSite CS(I);
2013         if (!CS)
2014           continue;
2015 
2016         // Skip call sites which are nounwind intrinsics.
2017         auto *CalledFn =
2018             dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
2019         if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow())
2020           continue;
2021 
2022         // Skip call sites which already have a "funclet" bundle.
2023         if (CS.getOperandBundle(LLVMContext::OB_funclet))
2024           continue;
2025 
2026         CS.getOperandBundlesAsDefs(OpBundles);
2027         OpBundles.emplace_back("funclet", CallSiteEHPad);
2028 
2029         Instruction *NewInst;
2030         if (CS.isCall())
2031           NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I);
2032         else
2033           NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I);
2034         NewInst->takeName(I);
2035         I->replaceAllUsesWith(NewInst);
2036         I->eraseFromParent();
2037 
2038         OpBundles.clear();
2039       }
2040 
2041       // It is problematic if the inlinee has a cleanupret which unwinds to
2042       // caller and we inline it into a call site which doesn't unwind but into
2043       // an EH pad that does.  Such an edge must be dynamically unreachable.
2044       // As such, we replace the cleanupret with unreachable.
2045       if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
2046         if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
2047           changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false);
2048 
2049       Instruction *I = BB->getFirstNonPHI();
2050       if (!I->isEHPad())
2051         continue;
2052 
2053       if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
2054         if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
2055           CatchSwitch->setParentPad(CallSiteEHPad);
2056       } else {
2057         auto *FPI = cast<FuncletPadInst>(I);
2058         if (isa<ConstantTokenNone>(FPI->getParentPad()))
2059           FPI->setParentPad(CallSiteEHPad);
2060       }
2061     }
2062   }
2063 
2064   if (InlinedDeoptimizeCalls) {
2065     // We need to at least remove the deoptimizing returns from the Return set,
2066     // so that the control flow from those returns does not get merged into the
2067     // caller (but terminate it instead).  If the caller's return type does not
2068     // match the callee's return type, we also need to change the return type of
2069     // the intrinsic.
2070     if (Caller->getReturnType() == TheCall->getType()) {
2071       auto NewEnd = llvm::remove_if(Returns, [](ReturnInst *RI) {
2072         return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
2073       });
2074       Returns.erase(NewEnd, Returns.end());
2075     } else {
2076       SmallVector<ReturnInst *, 8> NormalReturns;
2077       Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
2078           Caller->getParent(), Intrinsic::experimental_deoptimize,
2079           {Caller->getReturnType()});
2080 
2081       for (ReturnInst *RI : Returns) {
2082         CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
2083         if (!DeoptCall) {
2084           NormalReturns.push_back(RI);
2085           continue;
2086         }
2087 
2088         // The calling convention on the deoptimize call itself may be bogus,
2089         // since the code we're inlining may have undefined behavior (and may
2090         // never actually execute at runtime); but all
2091         // @llvm.experimental.deoptimize declarations have to have the same
2092         // calling convention in a well-formed module.
2093         auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
2094         NewDeoptIntrinsic->setCallingConv(CallingConv);
2095         auto *CurBB = RI->getParent();
2096         RI->eraseFromParent();
2097 
2098         SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(),
2099                                          DeoptCall->arg_end());
2100 
2101         SmallVector<OperandBundleDef, 1> OpBundles;
2102         DeoptCall->getOperandBundlesAsDefs(OpBundles);
2103         DeoptCall->eraseFromParent();
2104         assert(!OpBundles.empty() &&
2105                "Expected at least the deopt operand bundle");
2106 
2107         IRBuilder<> Builder(CurBB);
2108         CallInst *NewDeoptCall =
2109             Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
2110         NewDeoptCall->setCallingConv(CallingConv);
2111         if (NewDeoptCall->getType()->isVoidTy())
2112           Builder.CreateRetVoid();
2113         else
2114           Builder.CreateRet(NewDeoptCall);
2115       }
2116 
2117       // Leave behind the normal returns so we can merge control flow.
2118       std::swap(Returns, NormalReturns);
2119     }
2120   }
2121 
2122   // Handle any inlined musttail call sites.  In order for a new call site to be
2123   // musttail, the source of the clone and the inlined call site must have been
2124   // musttail.  Therefore it's safe to return without merging control into the
2125   // phi below.
2126   if (InlinedMustTailCalls) {
2127     // Check if we need to bitcast the result of any musttail calls.
2128     Type *NewRetTy = Caller->getReturnType();
2129     bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy;
2130 
2131     // Handle the returns preceded by musttail calls separately.
2132     SmallVector<ReturnInst *, 8> NormalReturns;
2133     for (ReturnInst *RI : Returns) {
2134       CallInst *ReturnedMustTail =
2135           RI->getParent()->getTerminatingMustTailCall();
2136       if (!ReturnedMustTail) {
2137         NormalReturns.push_back(RI);
2138         continue;
2139       }
2140       if (!NeedBitCast)
2141         continue;
2142 
2143       // Delete the old return and any preceding bitcast.
2144       BasicBlock *CurBB = RI->getParent();
2145       auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
2146       RI->eraseFromParent();
2147       if (OldCast)
2148         OldCast->eraseFromParent();
2149 
2150       // Insert a new bitcast and return with the right type.
2151       IRBuilder<> Builder(CurBB);
2152       Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
2153     }
2154 
2155     // Leave behind the normal returns so we can merge control flow.
2156     std::swap(Returns, NormalReturns);
2157   }
2158 
2159   // Now that all of the transforms on the inlined code have taken place but
2160   // before we splice the inlined code into the CFG and lose track of which
2161   // blocks were actually inlined, collect the call sites. We only do this if
2162   // call graph updates weren't requested, as those provide value handle based
2163   // tracking of inlined call sites instead.
2164   if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) {
2165     // Otherwise just collect the raw call sites that were inlined.
2166     for (BasicBlock &NewBB :
2167          make_range(FirstNewBlock->getIterator(), Caller->end()))
2168       for (Instruction &I : NewBB)
2169         if (auto CS = CallSite(&I))
2170           IFI.InlinedCallSites.push_back(CS);
2171   }
2172 
2173   // If we cloned in _exactly one_ basic block, and if that block ends in a
2174   // return instruction, we splice the body of the inlined callee directly into
2175   // the calling basic block.
2176   if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
2177     // Move all of the instructions right before the call.
2178     OrigBB->getInstList().splice(TheCall->getIterator(),
2179                                  FirstNewBlock->getInstList(),
2180                                  FirstNewBlock->begin(), FirstNewBlock->end());
2181     // Remove the cloned basic block.
2182     Caller->getBasicBlockList().pop_back();
2183 
2184     // If the call site was an invoke instruction, add a branch to the normal
2185     // destination.
2186     if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
2187       BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
2188       NewBr->setDebugLoc(Returns[0]->getDebugLoc());
2189     }
2190 
2191     // If the return instruction returned a value, replace uses of the call with
2192     // uses of the returned value.
2193     if (!TheCall->use_empty()) {
2194       ReturnInst *R = Returns[0];
2195       if (TheCall == R->getReturnValue())
2196         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2197       else
2198         TheCall->replaceAllUsesWith(R->getReturnValue());
2199     }
2200     // Since we are now done with the Call/Invoke, we can delete it.
2201     TheCall->eraseFromParent();
2202 
2203     // Since we are now done with the return instruction, delete it also.
2204     Returns[0]->eraseFromParent();
2205 
2206     // We are now done with the inlining.
2207     return true;
2208   }
2209 
2210   // Otherwise, we have the normal case, of more than one block to inline or
2211   // multiple return sites.
2212 
2213   // We want to clone the entire callee function into the hole between the
2214   // "starter" and "ender" blocks.  How we accomplish this depends on whether
2215   // this is an invoke instruction or a call instruction.
2216   BasicBlock *AfterCallBB;
2217   BranchInst *CreatedBranchToNormalDest = nullptr;
2218   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
2219 
2220     // Add an unconditional branch to make this look like the CallInst case...
2221     CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
2222 
2223     // Split the basic block.  This guarantees that no PHI nodes will have to be
2224     // updated due to new incoming edges, and make the invoke case more
2225     // symmetric to the call case.
2226     AfterCallBB =
2227         OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
2228                                 CalledFunc->getName() + ".exit");
2229 
2230   } else {  // It's a call
2231     // If this is a call instruction, we need to split the basic block that
2232     // the call lives in.
2233     //
2234     AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(),
2235                                           CalledFunc->getName() + ".exit");
2236   }
2237 
2238   if (IFI.CallerBFI) {
2239     // Copy original BB's block frequency to AfterCallBB
2240     IFI.CallerBFI->setBlockFreq(
2241         AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency());
2242   }
2243 
2244   // Change the branch that used to go to AfterCallBB to branch to the first
2245   // basic block of the inlined function.
2246   //
2247   TerminatorInst *Br = OrigBB->getTerminator();
2248   assert(Br && Br->getOpcode() == Instruction::Br &&
2249          "splitBasicBlock broken!");
2250   Br->setOperand(0, &*FirstNewBlock);
2251 
2252   // Now that the function is correct, make it a little bit nicer.  In
2253   // particular, move the basic blocks inserted from the end of the function
2254   // into the space made by splitting the source basic block.
2255   Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
2256                                      Caller->getBasicBlockList(), FirstNewBlock,
2257                                      Caller->end());
2258 
2259   // Handle all of the return instructions that we just cloned in, and eliminate
2260   // any users of the original call/invoke instruction.
2261   Type *RTy = CalledFunc->getReturnType();
2262 
2263   PHINode *PHI = nullptr;
2264   if (Returns.size() > 1) {
2265     // The PHI node should go at the front of the new basic block to merge all
2266     // possible incoming values.
2267     if (!TheCall->use_empty()) {
2268       PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
2269                             &AfterCallBB->front());
2270       // Anything that used the result of the function call should now use the
2271       // PHI node as their operand.
2272       TheCall->replaceAllUsesWith(PHI);
2273     }
2274 
2275     // Loop over all of the return instructions adding entries to the PHI node
2276     // as appropriate.
2277     if (PHI) {
2278       for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2279         ReturnInst *RI = Returns[i];
2280         assert(RI->getReturnValue()->getType() == PHI->getType() &&
2281                "Ret value not consistent in function!");
2282         PHI->addIncoming(RI->getReturnValue(), RI->getParent());
2283       }
2284     }
2285 
2286     // Add a branch to the merge points and remove return instructions.
2287     DebugLoc Loc;
2288     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2289       ReturnInst *RI = Returns[i];
2290       BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
2291       Loc = RI->getDebugLoc();
2292       BI->setDebugLoc(Loc);
2293       RI->eraseFromParent();
2294     }
2295     // We need to set the debug location to *somewhere* inside the
2296     // inlined function. The line number may be nonsensical, but the
2297     // instruction will at least be associated with the right
2298     // function.
2299     if (CreatedBranchToNormalDest)
2300       CreatedBranchToNormalDest->setDebugLoc(Loc);
2301   } else if (!Returns.empty()) {
2302     // Otherwise, if there is exactly one return value, just replace anything
2303     // using the return value of the call with the computed value.
2304     if (!TheCall->use_empty()) {
2305       if (TheCall == Returns[0]->getReturnValue())
2306         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2307       else
2308         TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
2309     }
2310 
2311     // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
2312     BasicBlock *ReturnBB = Returns[0]->getParent();
2313     ReturnBB->replaceAllUsesWith(AfterCallBB);
2314 
2315     // Splice the code from the return block into the block that it will return
2316     // to, which contains the code that was after the call.
2317     AfterCallBB->getInstList().splice(AfterCallBB->begin(),
2318                                       ReturnBB->getInstList());
2319 
2320     if (CreatedBranchToNormalDest)
2321       CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
2322 
2323     // Delete the return instruction now and empty ReturnBB now.
2324     Returns[0]->eraseFromParent();
2325     ReturnBB->eraseFromParent();
2326   } else if (!TheCall->use_empty()) {
2327     // No returns, but something is using the return value of the call.  Just
2328     // nuke the result.
2329     TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2330   }
2331 
2332   // Since we are now done with the Call/Invoke, we can delete it.
2333   TheCall->eraseFromParent();
2334 
2335   // If we inlined any musttail calls and the original return is now
2336   // unreachable, delete it.  It can only contain a bitcast and ret.
2337   if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
2338     AfterCallBB->eraseFromParent();
2339 
2340   // We should always be able to fold the entry block of the function into the
2341   // single predecessor of the block...
2342   assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
2343   BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
2344 
2345   // Splice the code entry block into calling block, right before the
2346   // unconditional branch.
2347   CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
2348   OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
2349 
2350   // Remove the unconditional branch.
2351   OrigBB->getInstList().erase(Br);
2352 
2353   // Now we can remove the CalleeEntry block, which is now empty.
2354   Caller->getBasicBlockList().erase(CalleeEntry);
2355 
2356   // If we inserted a phi node, check to see if it has a single value (e.g. all
2357   // the entries are the same or undef).  If so, remove the PHI so it doesn't
2358   // block other optimizations.
2359   if (PHI) {
2360     AssumptionCache *AC =
2361         IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;
2362     auto &DL = Caller->getParent()->getDataLayout();
2363     if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
2364       PHI->replaceAllUsesWith(V);
2365       PHI->eraseFromParent();
2366     }
2367   }
2368 
2369   return true;
2370 }
2371