1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #include "tensorflow/core/util/bcast.h"
17 
18 #include "tensorflow/core/platform/logging.h"
19 namespace tensorflow {
20 
21 /* static */
Reverse(Vec * shape)22 void BCast::Reverse(Vec* shape) { std::reverse(shape->begin(), shape->end()); }
23 
BCast(const Vec & sx,const Vec & sy,const bool fewer_dims_optimization)24 BCast::BCast(const Vec& sx, const Vec& sy, const bool fewer_dims_optimization) {
25   if (sx == sy && TF_PREDICT_TRUE(fewer_dims_optimization)) {
26     // Fast path for common case of identical shapes for sx and sy
27     int64 elements = 1;
28     const int n = sx.size();
29     output_.resize(n);
30     for (int i = 0; i < n; i++) {
31       const int64 dim = sx[i];
32       elements *= dim;
33       output_[i] = dim;
34     }
35     result_.push_back(elements);
36     x_reshape_.push_back(elements);
37     y_reshape_.push_back(elements);
38     x_bcast_.push_back(1);
39     y_bcast_.push_back(1);
40     // grad_x_reduce_ and grad_y_reduce_ are left as empty
41   } else {
42     // Reverse the shape of x and y for convenience.
43     // After the reverse, 0-th is the inner-most dimension.
44     Vec x = sx;
45     Vec y = sy;
46     Reverse(&x);
47     Reverse(&y);
48 
49     // 1-extend and align x and y so that they are the same size.
50     if (x.size() > y.size()) {
51       y.resize(x.size(), 1);
52     } else {
53       x.resize(y.size(), 1);
54     }
55 
56     // Going through each dimension starting from the inner-most
57     // dimension, compares dimension of x and y. They are compatible if
58     // they are equal or either is 1.
59     enum State {
60       UNKNOWN,
61       SAME,
62       X_ONE,
63       Y_ONE,
64     };
65     State prev = UNKNOWN;
66     const int64 n = x.size();
67     for (int i = 0; i < n; ++i) {
68       // Output shape.
69       State curr = UNKNOWN;
70       const int64 x_i = x[i];  // i-th dimension of x.
71       const int64 y_i = y[i];  // i-th dimension of y.
72       int64 o_i;               // i-th dimension of the output.
73       int64 bx_i;              // i-th broadcast for x.
74       int64 by_i;              // i-th broadcast for y.
75       // Invariant:
76       //   o_i = x_i * bx_i = y_i * by_i
77       if (x_i == y_i) {
78         // No broadcast.
79         o_i = x_i;
80         bx_i = 1;
81         by_i = 1;
82         curr = SAME;
83       } else if (x_i == 1) {
84         // x broadcast to y on this dimension.
85         o_i = y_i;
86         bx_i = y_i;
87         by_i = 1;
88         grad_x_reduce_idx_.push_back(n - 1 - i);
89         curr = X_ONE;
90       } else if (y_i == 1) {
91         // y broadcast to x on this dimension.
92         o_i = x_i;
93         bx_i = 1;
94         by_i = x_i;
95         grad_y_reduce_idx_.push_back(n - 1 - i);
96         curr = Y_ONE;
97       } else {
98         valid_ = false;
99         return;
100       }
101       output_.push_back(o_i);
102       // Reshape/broadcast.
103       // Invariant:
104       //  result[i] == x_reshape[i] * x_bcast[i] == y_reshape_[i] * y_bcast_[i]
105       if (curr == SAME && x_i == 1) {
106         // Both side are 1s.
107         grad_x_reduce_idx_.push_back(n - 1 - i);
108         grad_y_reduce_idx_.push_back(n - 1 - i);
109         if (!TF_PREDICT_TRUE(fewer_dims_optimization)) {
110           result_.push_back(o_i);
111           x_reshape_.push_back(x_i);
112           x_bcast_.push_back(bx_i);
113           y_reshape_.push_back(y_i);
114           y_bcast_.push_back(by_i);
115         }
116         continue;
117       } else if (TF_PREDICT_TRUE(fewer_dims_optimization) && prev == curr) {
118         // It is a run of the same cases(no broadcast, x broadcast to y, y
119         // broadcast to x). We can reshape the input so that fewer dimensions
120         // are involved in the intermediate computation.
121         result_.back() *= o_i;
122         x_reshape_.back() *= x_i;
123         x_bcast_.back() *= bx_i;
124         y_reshape_.back() *= y_i;
125         y_bcast_.back() *= by_i;
126       } else {
127         result_.push_back(o_i);
128         x_reshape_.push_back(x_i);
129         x_bcast_.push_back(bx_i);
130         y_reshape_.push_back(y_i);
131         y_bcast_.push_back(by_i);
132       }
133       prev = curr;
134     }
135 
136     if (result_.empty()) {
137       // Can happen when both x and y are effectively scalar.
138       result_.push_back(1);
139       x_reshape_.push_back(1);
140       x_bcast_.push_back(1);
141       y_reshape_.push_back(1);
142       y_bcast_.push_back(1);
143     }
144 
145     // Reverse all vectors since x and y were reversed at very
146     // beginning.
147     Reverse(&x_reshape_);
148     Reverse(&x_bcast_);
149     Reverse(&y_reshape_);
150     Reverse(&y_bcast_);
151     Reverse(&result_);
152     Reverse(&output_);
153     Reverse(&grad_x_reduce_idx_);
154     Reverse(&grad_y_reduce_idx_);
155   }
156 }
157 
FromShape(const TensorShape & shape)158 BCast::Vec BCast::FromShape(const TensorShape& shape) {
159   const int N = shape.dims();
160   BCast::Vec ret(N);
161   for (int i = 0; i < N; ++i) {
162     ret[i] = shape.dim_size(i);
163   }
164   return ret;
165 }
166 
ToShape(const BCast::Vec & vec)167 TensorShape BCast::ToShape(const BCast::Vec& vec) {
168   TensorShape shape(vec);
169   return shape;
170 }
171 
172 }  // end namespace tensorflow
173