1 //===------------ ARMDecoderEmitter.cpp - Decoder Generator ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the ARM Disassembler.
11 // It contains the tablegen backend that emits the decoder functions for ARM and
12 // Thumb.  The disassembler core includes the auto-generated file, invokes the
13 // decoder functions, and builds up the MCInst based on the decoded Opcode.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #define DEBUG_TYPE "arm-decoder-emitter"
18 
19 #include "ARMDecoderEmitter.h"
20 #include "CodeGenTarget.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include "llvm/TableGen/Record.h"
25 
26 #include <vector>
27 #include <map>
28 #include <string>
29 
30 using namespace llvm;
31 
32 /////////////////////////////////////////////////////
33 //                                                 //
34 //  Enums and Utilities for ARM Instruction Format //
35 //                                                 //
36 /////////////////////////////////////////////////////
37 
38 #define ARM_FORMATS                   \
39   ENTRY(ARM_FORMAT_PSEUDO,         0) \
40   ENTRY(ARM_FORMAT_MULFRM,         1) \
41   ENTRY(ARM_FORMAT_BRFRM,          2) \
42   ENTRY(ARM_FORMAT_BRMISCFRM,      3) \
43   ENTRY(ARM_FORMAT_DPFRM,          4) \
44   ENTRY(ARM_FORMAT_DPSOREGREGFRM,     5) \
45   ENTRY(ARM_FORMAT_LDFRM,          6) \
46   ENTRY(ARM_FORMAT_STFRM,          7) \
47   ENTRY(ARM_FORMAT_LDMISCFRM,      8) \
48   ENTRY(ARM_FORMAT_STMISCFRM,      9) \
49   ENTRY(ARM_FORMAT_LDSTMULFRM,    10) \
50   ENTRY(ARM_FORMAT_LDSTEXFRM,     11) \
51   ENTRY(ARM_FORMAT_ARITHMISCFRM,  12) \
52   ENTRY(ARM_FORMAT_SATFRM,        13) \
53   ENTRY(ARM_FORMAT_EXTFRM,        14) \
54   ENTRY(ARM_FORMAT_VFPUNARYFRM,   15) \
55   ENTRY(ARM_FORMAT_VFPBINARYFRM,  16) \
56   ENTRY(ARM_FORMAT_VFPCONV1FRM,   17) \
57   ENTRY(ARM_FORMAT_VFPCONV2FRM,   18) \
58   ENTRY(ARM_FORMAT_VFPCONV3FRM,   19) \
59   ENTRY(ARM_FORMAT_VFPCONV4FRM,   20) \
60   ENTRY(ARM_FORMAT_VFPCONV5FRM,   21) \
61   ENTRY(ARM_FORMAT_VFPLDSTFRM,    22) \
62   ENTRY(ARM_FORMAT_VFPLDSTMULFRM, 23) \
63   ENTRY(ARM_FORMAT_VFPMISCFRM,    24) \
64   ENTRY(ARM_FORMAT_THUMBFRM,      25) \
65   ENTRY(ARM_FORMAT_MISCFRM,       26) \
66   ENTRY(ARM_FORMAT_NEONGETLNFRM,  27) \
67   ENTRY(ARM_FORMAT_NEONSETLNFRM,  28) \
68   ENTRY(ARM_FORMAT_NEONDUPFRM,    29) \
69   ENTRY(ARM_FORMAT_NLdSt,         30) \
70   ENTRY(ARM_FORMAT_N1RegModImm,   31) \
71   ENTRY(ARM_FORMAT_N2Reg,         32) \
72   ENTRY(ARM_FORMAT_NVCVT,         33) \
73   ENTRY(ARM_FORMAT_NVecDupLn,     34) \
74   ENTRY(ARM_FORMAT_N2RegVecShL,   35) \
75   ENTRY(ARM_FORMAT_N2RegVecShR,   36) \
76   ENTRY(ARM_FORMAT_N3Reg,         37) \
77   ENTRY(ARM_FORMAT_N3RegVecSh,    38) \
78   ENTRY(ARM_FORMAT_NVecExtract,   39) \
79   ENTRY(ARM_FORMAT_NVecMulScalar, 40) \
80   ENTRY(ARM_FORMAT_NVTBL,         41) \
81   ENTRY(ARM_FORMAT_DPSOREGIMMFRM, 42)
82 
83 // ARM instruction format specifies the encoding used by the instruction.
84 #define ENTRY(n, v) n = v,
85 typedef enum {
86   ARM_FORMATS
87   ARM_FORMAT_NA
88 } ARMFormat;
89 #undef ENTRY
90 
91 // Converts enum to const char*.
stringForARMFormat(ARMFormat form)92 static const char *stringForARMFormat(ARMFormat form) {
93 #define ENTRY(n, v) case n: return #n;
94   switch(form) {
95     ARM_FORMATS
96   case ARM_FORMAT_NA:
97   default:
98     return "";
99   }
100 #undef ENTRY
101 }
102 
103 enum {
104   IndexModeNone = 0,
105   IndexModePre  = 1,
106   IndexModePost = 2,
107   IndexModeUpd  = 3
108 };
109 
110 /////////////////////////
111 //                     //
112 //  Utility functions  //
113 //                     //
114 /////////////////////////
115 
116 /// byteFromBitsInit - Return the byte value from a BitsInit.
117 /// Called from getByteField().
byteFromBitsInit(BitsInit & init)118 static uint8_t byteFromBitsInit(BitsInit &init) {
119   int width = init.getNumBits();
120 
121   assert(width <= 8 && "Field is too large for uint8_t!");
122 
123   int index;
124   uint8_t mask = 0x01;
125 
126   uint8_t ret = 0;
127 
128   for (index = 0; index < width; index++) {
129     if (static_cast<BitInit*>(init.getBit(index))->getValue())
130       ret |= mask;
131 
132     mask <<= 1;
133   }
134 
135   return ret;
136 }
137 
getByteField(const Record & def,const char * str)138 static uint8_t getByteField(const Record &def, const char *str) {
139   BitsInit *bits = def.getValueAsBitsInit(str);
140   return byteFromBitsInit(*bits);
141 }
142 
getBitsField(const Record & def,const char * str)143 static BitsInit &getBitsField(const Record &def, const char *str) {
144   BitsInit *bits = def.getValueAsBitsInit(str);
145   return *bits;
146 }
147 
148 /// sameStringExceptSuffix - Return true if the two strings differ only in RHS's
149 /// suffix.  ("VST4d8", "VST4d8_UPD", "_UPD") as input returns true.
150 static
sameStringExceptSuffix(const StringRef LHS,const StringRef RHS,const StringRef Suffix)151 bool sameStringExceptSuffix(const StringRef LHS, const StringRef RHS,
152                             const StringRef Suffix) {
153 
154   if (RHS.startswith(LHS) && RHS.endswith(Suffix))
155     return RHS.size() == LHS.size() + Suffix.size();
156 
157   return false;
158 }
159 
160 /// thumbInstruction - Determine whether we have a Thumb instruction.
161 /// See also ARMInstrFormats.td.
thumbInstruction(uint8_t Form)162 static bool thumbInstruction(uint8_t Form) {
163   return Form == ARM_FORMAT_THUMBFRM;
164 }
165 
166 // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
167 // for a bit value.
168 //
169 // BIT_UNFILTERED is used as the init value for a filter position.  It is used
170 // only for filter processings.
171 typedef enum {
172   BIT_TRUE,      // '1'
173   BIT_FALSE,     // '0'
174   BIT_UNSET,     // '?'
175   BIT_UNFILTERED // unfiltered
176 } bit_value_t;
177 
ValueSet(bit_value_t V)178 static bool ValueSet(bit_value_t V) {
179   return (V == BIT_TRUE || V == BIT_FALSE);
180 }
ValueNotSet(bit_value_t V)181 static bool ValueNotSet(bit_value_t V) {
182   return (V == BIT_UNSET);
183 }
Value(bit_value_t V)184 static int Value(bit_value_t V) {
185   return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
186 }
bitFromBits(BitsInit & bits,unsigned index)187 static bit_value_t bitFromBits(BitsInit &bits, unsigned index) {
188   if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index)))
189     return bit->getValue() ? BIT_TRUE : BIT_FALSE;
190 
191   // The bit is uninitialized.
192   return BIT_UNSET;
193 }
194 // Prints the bit value for each position.
dumpBits(raw_ostream & o,BitsInit & bits)195 static void dumpBits(raw_ostream &o, BitsInit &bits) {
196   unsigned index;
197 
198   for (index = bits.getNumBits(); index > 0; index--) {
199     switch (bitFromBits(bits, index - 1)) {
200     case BIT_TRUE:
201       o << "1";
202       break;
203     case BIT_FALSE:
204       o << "0";
205       break;
206     case BIT_UNSET:
207       o << "_";
208       break;
209     default:
210       assert(0 && "unexpected return value from bitFromBits");
211     }
212   }
213 }
214 
215 // Enums for the available target names.
216 typedef enum {
217   TARGET_ARM = 0,
218   TARGET_THUMB
219 } TARGET_NAME_t;
220 
221 // FIXME: Possibly auto-detected?
222 #define BIT_WIDTH 32
223 
224 // Forward declaration.
225 class ARMFilterChooser;
226 
227 // Representation of the instruction to work on.
228 typedef bit_value_t insn_t[BIT_WIDTH];
229 
230 /// Filter - Filter works with FilterChooser to produce the decoding tree for
231 /// the ISA.
232 ///
233 /// It is useful to think of a Filter as governing the switch stmts of the
234 /// decoding tree in a certain level.  Each case stmt delegates to an inferior
235 /// FilterChooser to decide what further decoding logic to employ, or in another
236 /// words, what other remaining bits to look at.  The FilterChooser eventually
237 /// chooses a best Filter to do its job.
238 ///
239 /// This recursive scheme ends when the number of Opcodes assigned to the
240 /// FilterChooser becomes 1 or if there is a conflict.  A conflict happens when
241 /// the Filter/FilterChooser combo does not know how to distinguish among the
242 /// Opcodes assigned.
243 ///
244 /// An example of a conflict is
245 ///
246 /// Conflict:
247 ///                     111101000.00........00010000....
248 ///                     111101000.00........0001........
249 ///                     1111010...00........0001........
250 ///                     1111010...00....................
251 ///                     1111010.........................
252 ///                     1111............................
253 ///                     ................................
254 ///     VST4q8a         111101000_00________00010000____
255 ///     VST4q8b         111101000_00________00010000____
256 ///
257 /// The Debug output shows the path that the decoding tree follows to reach the
258 /// the conclusion that there is a conflict.  VST4q8a is a vst4 to double-spaced
259 /// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
260 ///
261 /// The encoding info in the .td files does not specify this meta information,
262 /// which could have been used by the decoder to resolve the conflict.  The
263 /// decoder could try to decode the even/odd register numbering and assign to
264 /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
265 /// version and return the Opcode since the two have the same Asm format string.
266 class ARMFilter {
267 protected:
268   ARMFilterChooser *Owner; // points to the FilterChooser who owns this filter
269   unsigned StartBit; // the starting bit position
270   unsigned NumBits; // number of bits to filter
271   bool Mixed; // a mixed region contains both set and unset bits
272 
273   // Map of well-known segment value to the set of uid's with that value.
274   std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
275 
276   // Set of uid's with non-constant segment values.
277   std::vector<unsigned> VariableInstructions;
278 
279   // Map of well-known segment value to its delegate.
280   std::map<unsigned, ARMFilterChooser*> FilterChooserMap;
281 
282   // Number of instructions which fall under FilteredInstructions category.
283   unsigned NumFiltered;
284 
285   // Keeps track of the last opcode in the filtered bucket.
286   unsigned LastOpcFiltered;
287 
288   // Number of instructions which fall under VariableInstructions category.
289   unsigned NumVariable;
290 
291 public:
getNumFiltered()292   unsigned getNumFiltered() { return NumFiltered; }
getNumVariable()293   unsigned getNumVariable() { return NumVariable; }
getSingletonOpc()294   unsigned getSingletonOpc() {
295     assert(NumFiltered == 1);
296     return LastOpcFiltered;
297   }
298   // Return the filter chooser for the group of instructions without constant
299   // segment values.
getVariableFC()300   ARMFilterChooser &getVariableFC() {
301     assert(NumFiltered == 1);
302     assert(FilterChooserMap.size() == 1);
303     return *(FilterChooserMap.find((unsigned)-1)->second);
304   }
305 
306   ARMFilter(const ARMFilter &f);
307   ARMFilter(ARMFilterChooser &owner, unsigned startBit, unsigned numBits,
308             bool mixed);
309 
310   ~ARMFilter();
311 
312   // Divides the decoding task into sub tasks and delegates them to the
313   // inferior FilterChooser's.
314   //
315   // A special case arises when there's only one entry in the filtered
316   // instructions.  In order to unambiguously decode the singleton, we need to
317   // match the remaining undecoded encoding bits against the singleton.
318   void recurse();
319 
320   // Emit code to decode instructions given a segment or segments of bits.
321   void emit(raw_ostream &o, unsigned &Indentation);
322 
323   // Returns the number of fanout produced by the filter.  More fanout implies
324   // the filter distinguishes more categories of instructions.
325   unsigned usefulness() const;
326 }; // End of class Filter
327 
328 // These are states of our finite state machines used in FilterChooser's
329 // filterProcessor() which produces the filter candidates to use.
330 typedef enum {
331   ATTR_NONE,
332   ATTR_FILTERED,
333   ATTR_ALL_SET,
334   ATTR_ALL_UNSET,
335   ATTR_MIXED
336 } bitAttr_t;
337 
338 /// ARMFilterChooser - FilterChooser chooses the best filter among a set of Filters
339 /// in order to perform the decoding of instructions at the current level.
340 ///
341 /// Decoding proceeds from the top down.  Based on the well-known encoding bits
342 /// of instructions available, FilterChooser builds up the possible Filters that
343 /// can further the task of decoding by distinguishing among the remaining
344 /// candidate instructions.
345 ///
346 /// Once a filter has been chosen, it is called upon to divide the decoding task
347 /// into sub-tasks and delegates them to its inferior FilterChoosers for further
348 /// processings.
349 ///
350 /// It is useful to think of a Filter as governing the switch stmts of the
351 /// decoding tree.  And each case is delegated to an inferior FilterChooser to
352 /// decide what further remaining bits to look at.
353 class ARMFilterChooser {
354   static TARGET_NAME_t TargetName;
355 
356 protected:
357   friend class ARMFilter;
358 
359   // Vector of codegen instructions to choose our filter.
360   const std::vector<const CodeGenInstruction*> &AllInstructions;
361 
362   // Vector of uid's for this filter chooser to work on.
363   const std::vector<unsigned> Opcodes;
364 
365   // Vector of candidate filters.
366   std::vector<ARMFilter> Filters;
367 
368   // Array of bit values passed down from our parent.
369   // Set to all BIT_UNFILTERED's for Parent == NULL.
370   bit_value_t FilterBitValues[BIT_WIDTH];
371 
372   // Links to the FilterChooser above us in the decoding tree.
373   ARMFilterChooser *Parent;
374 
375   // Index of the best filter from Filters.
376   int BestIndex;
377 
378 public:
setTargetName(TARGET_NAME_t tn)379   static void setTargetName(TARGET_NAME_t tn) { TargetName = tn; }
380 
ARMFilterChooser(const ARMFilterChooser & FC)381   ARMFilterChooser(const ARMFilterChooser &FC) :
382       AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes),
383       Filters(FC.Filters), Parent(FC.Parent), BestIndex(FC.BestIndex) {
384     memcpy(FilterBitValues, FC.FilterBitValues, sizeof(FilterBitValues));
385   }
386 
ARMFilterChooser(const std::vector<const CodeGenInstruction * > & Insts,const std::vector<unsigned> & IDs)387   ARMFilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
388                 const std::vector<unsigned> &IDs) :
389       AllInstructions(Insts), Opcodes(IDs), Filters(), Parent(NULL),
390       BestIndex(-1) {
391     for (unsigned i = 0; i < BIT_WIDTH; ++i)
392       FilterBitValues[i] = BIT_UNFILTERED;
393 
394     doFilter();
395   }
396 
ARMFilterChooser(const std::vector<const CodeGenInstruction * > & Insts,const std::vector<unsigned> & IDs,bit_value_t (& ParentFilterBitValues)[BIT_WIDTH],ARMFilterChooser & parent)397   ARMFilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
398                    const std::vector<unsigned> &IDs,
399                    bit_value_t (&ParentFilterBitValues)[BIT_WIDTH],
400                    ARMFilterChooser &parent) :
401       AllInstructions(Insts), Opcodes(IDs), Filters(), Parent(&parent),
402       BestIndex(-1) {
403     for (unsigned i = 0; i < BIT_WIDTH; ++i)
404       FilterBitValues[i] = ParentFilterBitValues[i];
405 
406     doFilter();
407   }
408 
409   // The top level filter chooser has NULL as its parent.
isTopLevel()410   bool isTopLevel() { return Parent == NULL; }
411 
412   // This provides an opportunity for target specific code emission.
413   void emitTopHook(raw_ostream &o);
414 
415   // Emit the top level typedef and decodeInstruction() function.
416   void emitTop(raw_ostream &o, unsigned &Indentation);
417 
418   // This provides an opportunity for target specific code emission after
419   // emitTop().
420   void emitBot(raw_ostream &o, unsigned &Indentation);
421 
422 protected:
423   // Populates the insn given the uid.
insnWithID(insn_t & Insn,unsigned Opcode) const424   void insnWithID(insn_t &Insn, unsigned Opcode) const {
425     if (AllInstructions[Opcode]->isPseudo)
426       return;
427 
428     BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
429 
430     for (unsigned i = 0; i < BIT_WIDTH; ++i)
431       Insn[i] = bitFromBits(Bits, i);
432 
433     // Set Inst{21} to 1 (wback) when IndexModeBits == IndexModeUpd.
434     Record *R = AllInstructions[Opcode]->TheDef;
435     if (R->getValue("IndexModeBits") &&
436         getByteField(*R, "IndexModeBits") == IndexModeUpd)
437       Insn[21] = BIT_TRUE;
438   }
439 
440   // Returns the record name.
nameWithID(unsigned Opcode) const441   const std::string &nameWithID(unsigned Opcode) const {
442     return AllInstructions[Opcode]->TheDef->getName();
443   }
444 
445   // Populates the field of the insn given the start position and the number of
446   // consecutive bits to scan for.
447   //
448   // Returns false if there exists any uninitialized bit value in the range.
449   // Returns true, otherwise.
450   bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
451       unsigned NumBits) const;
452 
453   /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
454   /// filter array as a series of chars.
455   void dumpFilterArray(raw_ostream &o, bit_value_t (&filter)[BIT_WIDTH]);
456 
457   /// dumpStack - dumpStack traverses the filter chooser chain and calls
458   /// dumpFilterArray on each filter chooser up to the top level one.
459   void dumpStack(raw_ostream &o, const char *prefix);
460 
bestFilter()461   ARMFilter &bestFilter() {
462     assert(BestIndex != -1 && "BestIndex not set");
463     return Filters[BestIndex];
464   }
465 
466   // Called from Filter::recurse() when singleton exists.  For debug purpose.
467   void SingletonExists(unsigned Opc);
468 
PositionFiltered(unsigned i)469   bool PositionFiltered(unsigned i) {
470     return ValueSet(FilterBitValues[i]);
471   }
472 
473   // Calculates the island(s) needed to decode the instruction.
474   // This returns a lit of undecoded bits of an instructions, for example,
475   // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
476   // decoded bits in order to verify that the instruction matches the Opcode.
477   unsigned getIslands(std::vector<unsigned> &StartBits,
478       std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
479       insn_t &Insn);
480 
481   // The purpose of this function is for the API client to detect possible
482   // Load/Store Coprocessor instructions.  If the coprocessor number is of
483   // the instruction is either 10 or 11, the decoder should not report the
484   // instruction as LDC/LDC2/STC/STC2, but should match against Advanced SIMD or
485   // VFP instructions.
LdStCopEncoding1(unsigned Opc)486   bool LdStCopEncoding1(unsigned Opc) {
487     const std::string &Name = nameWithID(Opc);
488     if (Name == "LDC_OFFSET" || Name == "LDC_OPTION" ||
489         Name == "LDC_POST" || Name == "LDC_PRE" ||
490         Name == "LDCL_OFFSET" || Name == "LDCL_OPTION" ||
491         Name == "LDCL_POST" || Name == "LDCL_PRE" ||
492         Name == "STC_OFFSET" || Name == "STC_OPTION" ||
493         Name == "STC_POST" || Name == "STC_PRE" ||
494         Name == "STCL_OFFSET" || Name == "STCL_OPTION" ||
495         Name == "STCL_POST" || Name == "STCL_PRE")
496       return true;
497     else
498       return false;
499   }
500 
501   // Emits code to decode the singleton.  Return true if we have matched all the
502   // well-known bits.
503   bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,unsigned Opc);
504 
505   // Emits code to decode the singleton, and then to decode the rest.
506   void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
507                             ARMFilter &Best);
508 
509   // Assign a single filter and run with it.
510   void runSingleFilter(ARMFilterChooser &owner, unsigned startBit,
511                        unsigned numBit, bool mixed);
512 
513   // reportRegion is a helper function for filterProcessor to mark a region as
514   // eligible for use as a filter region.
515   void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
516       bool AllowMixed);
517 
518   // FilterProcessor scans the well-known encoding bits of the instructions and
519   // builds up a list of candidate filters.  It chooses the best filter and
520   // recursively descends down the decoding tree.
521   bool filterProcessor(bool AllowMixed, bool Greedy = true);
522 
523   // Decides on the best configuration of filter(s) to use in order to decode
524   // the instructions.  A conflict of instructions may occur, in which case we
525   // dump the conflict set to the standard error.
526   void doFilter();
527 
528   // Emits code to decode our share of instructions.  Returns true if the
529   // emitted code causes a return, which occurs if we know how to decode
530   // the instruction at this level or the instruction is not decodeable.
531   bool emit(raw_ostream &o, unsigned &Indentation);
532 };
533 
534 ///////////////////////////
535 //                       //
536 // Filter Implmenetation //
537 //                       //
538 ///////////////////////////
539 
ARMFilter(const ARMFilter & f)540 ARMFilter::ARMFilter(const ARMFilter &f) :
541   Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
542   FilteredInstructions(f.FilteredInstructions),
543   VariableInstructions(f.VariableInstructions),
544   FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered),
545   LastOpcFiltered(f.LastOpcFiltered), NumVariable(f.NumVariable) {
546 }
547 
ARMFilter(ARMFilterChooser & owner,unsigned startBit,unsigned numBits,bool mixed)548 ARMFilter::ARMFilter(ARMFilterChooser &owner, unsigned startBit, unsigned numBits,
549     bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits),
550                   Mixed(mixed) {
551   assert(StartBit + NumBits - 1 < BIT_WIDTH);
552 
553   NumFiltered = 0;
554   LastOpcFiltered = 0;
555   NumVariable = 0;
556 
557   for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
558     insn_t Insn;
559 
560     // Populates the insn given the uid.
561     Owner->insnWithID(Insn, Owner->Opcodes[i]);
562 
563     uint64_t Field;
564     // Scans the segment for possibly well-specified encoding bits.
565     bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
566 
567     if (ok) {
568       // The encoding bits are well-known.  Lets add the uid of the
569       // instruction into the bucket keyed off the constant field value.
570       LastOpcFiltered = Owner->Opcodes[i];
571       FilteredInstructions[Field].push_back(LastOpcFiltered);
572       ++NumFiltered;
573     } else {
574       // Some of the encoding bit(s) are unspecfied.  This contributes to
575       // one additional member of "Variable" instructions.
576       VariableInstructions.push_back(Owner->Opcodes[i]);
577       ++NumVariable;
578     }
579   }
580 
581   assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
582          && "Filter returns no instruction categories");
583 }
584 
~ARMFilter()585 ARMFilter::~ARMFilter() {
586   std::map<unsigned, ARMFilterChooser*>::iterator filterIterator;
587   for (filterIterator = FilterChooserMap.begin();
588        filterIterator != FilterChooserMap.end();
589        filterIterator++) {
590     delete filterIterator->second;
591   }
592 }
593 
594 // Divides the decoding task into sub tasks and delegates them to the
595 // inferior FilterChooser's.
596 //
597 // A special case arises when there's only one entry in the filtered
598 // instructions.  In order to unambiguously decode the singleton, we need to
599 // match the remaining undecoded encoding bits against the singleton.
recurse()600 void ARMFilter::recurse() {
601   std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
602 
603   bit_value_t BitValueArray[BIT_WIDTH];
604   // Starts by inheriting our parent filter chooser's filter bit values.
605   memcpy(BitValueArray, Owner->FilterBitValues, sizeof(BitValueArray));
606 
607   unsigned bitIndex;
608 
609   if (VariableInstructions.size()) {
610     // Conservatively marks each segment position as BIT_UNSET.
611     for (bitIndex = 0; bitIndex < NumBits; bitIndex++)
612       BitValueArray[StartBit + bitIndex] = BIT_UNSET;
613 
614     // Delegates to an inferior filter chooser for further processing on this
615     // group of instructions whose segment values are variable.
616     FilterChooserMap.insert(std::pair<unsigned, ARMFilterChooser*>(
617                               (unsigned)-1,
618                               new ARMFilterChooser(Owner->AllInstructions,
619                                                    VariableInstructions,
620                                                    BitValueArray,
621                                                    *Owner)
622                               ));
623   }
624 
625   // No need to recurse for a singleton filtered instruction.
626   // See also Filter::emit().
627   if (getNumFiltered() == 1) {
628     //Owner->SingletonExists(LastOpcFiltered);
629     assert(FilterChooserMap.size() == 1);
630     return;
631   }
632 
633   // Otherwise, create sub choosers.
634   for (mapIterator = FilteredInstructions.begin();
635        mapIterator != FilteredInstructions.end();
636        mapIterator++) {
637 
638     // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
639     for (bitIndex = 0; bitIndex < NumBits; bitIndex++) {
640       if (mapIterator->first & (1ULL << bitIndex))
641         BitValueArray[StartBit + bitIndex] = BIT_TRUE;
642       else
643         BitValueArray[StartBit + bitIndex] = BIT_FALSE;
644     }
645 
646     // Delegates to an inferior filter chooser for further processing on this
647     // category of instructions.
648     FilterChooserMap.insert(std::pair<unsigned, ARMFilterChooser*>(
649                               mapIterator->first,
650                               new ARMFilterChooser(Owner->AllInstructions,
651                                                    mapIterator->second,
652                                                    BitValueArray,
653                                                    *Owner)
654                               ));
655   }
656 }
657 
658 // Emit code to decode instructions given a segment or segments of bits.
emit(raw_ostream & o,unsigned & Indentation)659 void ARMFilter::emit(raw_ostream &o, unsigned &Indentation) {
660   o.indent(Indentation) << "// Check Inst{";
661 
662   if (NumBits > 1)
663     o << (StartBit + NumBits - 1) << '-';
664 
665   o << StartBit << "} ...\n";
666 
667   o.indent(Indentation) << "switch (fieldFromInstruction(insn, "
668                         << StartBit << ", " << NumBits << ")) {\n";
669 
670   std::map<unsigned, ARMFilterChooser*>::iterator filterIterator;
671 
672   bool DefaultCase = false;
673   for (filterIterator = FilterChooserMap.begin();
674        filterIterator != FilterChooserMap.end();
675        filterIterator++) {
676 
677     // Field value -1 implies a non-empty set of variable instructions.
678     // See also recurse().
679     if (filterIterator->first == (unsigned)-1) {
680       DefaultCase = true;
681 
682       o.indent(Indentation) << "default:\n";
683       o.indent(Indentation) << "  break; // fallthrough\n";
684 
685       // Closing curly brace for the switch statement.
686       // This is unconventional because we want the default processing to be
687       // performed for the fallthrough cases as well, i.e., when the "cases"
688       // did not prove a decoded instruction.
689       o.indent(Indentation) << "}\n";
690 
691     } else
692       o.indent(Indentation) << "case " << filterIterator->first << ":\n";
693 
694     // We arrive at a category of instructions with the same segment value.
695     // Now delegate to the sub filter chooser for further decodings.
696     // The case may fallthrough, which happens if the remaining well-known
697     // encoding bits do not match exactly.
698     if (!DefaultCase) { ++Indentation; ++Indentation; }
699 
700     bool finished = filterIterator->second->emit(o, Indentation);
701     // For top level default case, there's no need for a break statement.
702     if (Owner->isTopLevel() && DefaultCase)
703       break;
704     if (!finished)
705       o.indent(Indentation) << "break;\n";
706 
707     if (!DefaultCase) { --Indentation; --Indentation; }
708   }
709 
710   // If there is no default case, we still need to supply a closing brace.
711   if (!DefaultCase) {
712     // Closing curly brace for the switch statement.
713     o.indent(Indentation) << "}\n";
714   }
715 }
716 
717 // Returns the number of fanout produced by the filter.  More fanout implies
718 // the filter distinguishes more categories of instructions.
usefulness() const719 unsigned ARMFilter::usefulness() const {
720   if (VariableInstructions.size())
721     return FilteredInstructions.size();
722   else
723     return FilteredInstructions.size() + 1;
724 }
725 
726 //////////////////////////////////
727 //                              //
728 // Filterchooser Implementation //
729 //                              //
730 //////////////////////////////////
731 
732 // Define the symbol here.
733 TARGET_NAME_t ARMFilterChooser::TargetName;
734 
735 // This provides an opportunity for target specific code emission.
emitTopHook(raw_ostream & o)736 void ARMFilterChooser::emitTopHook(raw_ostream &o) {
737   if (TargetName == TARGET_ARM) {
738     // Emit code that references the ARMFormat data type.
739     o << "static const ARMFormat ARMFormats[] = {\n";
740     for (unsigned i = 0, e = AllInstructions.size(); i != e; ++i) {
741       const Record &Def = *(AllInstructions[i]->TheDef);
742       const std::string &Name = Def.getName();
743       if (Def.isSubClassOf("InstARM") || Def.isSubClassOf("InstThumb"))
744         o.indent(2) <<
745           stringForARMFormat((ARMFormat)getByteField(Def, "Form"));
746       else
747         o << "  ARM_FORMAT_NA";
748 
749       o << ",\t// Inst #" << i << " = " << Name << '\n';
750     }
751     o << "  ARM_FORMAT_NA\t// Unreachable.\n";
752     o << "};\n\n";
753   }
754 }
755 
756 // Emit the top level typedef and decodeInstruction() function.
emitTop(raw_ostream & o,unsigned & Indentation)757 void ARMFilterChooser::emitTop(raw_ostream &o, unsigned &Indentation) {
758   // Run the target specific emit hook.
759   emitTopHook(o);
760 
761   switch (BIT_WIDTH) {
762   case 8:
763     o.indent(Indentation) << "typedef uint8_t field_t;\n";
764     break;
765   case 16:
766     o.indent(Indentation) << "typedef uint16_t field_t;\n";
767     break;
768   case 32:
769     o.indent(Indentation) << "typedef uint32_t field_t;\n";
770     break;
771   case 64:
772     o.indent(Indentation) << "typedef uint64_t field_t;\n";
773     break;
774   default:
775     assert(0 && "Unexpected instruction size!");
776   }
777 
778   o << '\n';
779 
780   o.indent(Indentation) << "static field_t " <<
781     "fieldFromInstruction(field_t insn, unsigned startBit, unsigned numBits)\n";
782 
783   o.indent(Indentation) << "{\n";
784 
785   ++Indentation; ++Indentation;
786   o.indent(Indentation) << "assert(startBit + numBits <= " << BIT_WIDTH
787                         << " && \"Instruction field out of bounds!\");\n";
788   o << '\n';
789   o.indent(Indentation) << "field_t fieldMask;\n";
790   o << '\n';
791   o.indent(Indentation) << "if (numBits == " << BIT_WIDTH << ")\n";
792 
793   ++Indentation; ++Indentation;
794   o.indent(Indentation) << "fieldMask = (field_t)-1;\n";
795   --Indentation; --Indentation;
796 
797   o.indent(Indentation) << "else\n";
798 
799   ++Indentation; ++Indentation;
800   o.indent(Indentation) << "fieldMask = ((1 << numBits) - 1) << startBit;\n";
801   --Indentation; --Indentation;
802 
803   o << '\n';
804   o.indent(Indentation) << "return (insn & fieldMask) >> startBit;\n";
805   --Indentation; --Indentation;
806 
807   o.indent(Indentation) << "}\n";
808 
809   o << '\n';
810 
811   o.indent(Indentation) <<"static uint16_t decodeInstruction(field_t insn) {\n";
812 
813   ++Indentation; ++Indentation;
814   // Emits code to decode the instructions.
815   emit(o, Indentation);
816 
817   o << '\n';
818   o.indent(Indentation) << "return 0;\n";
819   --Indentation; --Indentation;
820 
821   o.indent(Indentation) << "}\n";
822 
823   o << '\n';
824 }
825 
826 // This provides an opportunity for target specific code emission after
827 // emitTop().
emitBot(raw_ostream & o,unsigned & Indentation)828 void ARMFilterChooser::emitBot(raw_ostream &o, unsigned &Indentation) {
829   if (TargetName != TARGET_THUMB) return;
830 
831   // Emit code that decodes the Thumb ISA.
832   o.indent(Indentation)
833     << "static uint16_t decodeThumbInstruction(field_t insn) {\n";
834 
835   ++Indentation; ++Indentation;
836 
837   // Emits code to decode the instructions.
838   emit(o, Indentation);
839 
840   o << '\n';
841   o.indent(Indentation) << "return 0;\n";
842 
843   --Indentation; --Indentation;
844 
845   o.indent(Indentation) << "}\n";
846 }
847 
848 // Populates the field of the insn given the start position and the number of
849 // consecutive bits to scan for.
850 //
851 // Returns false if and on the first uninitialized bit value encountered.
852 // Returns true, otherwise.
fieldFromInsn(uint64_t & Field,insn_t & Insn,unsigned StartBit,unsigned NumBits) const853 bool ARMFilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
854     unsigned StartBit, unsigned NumBits) const {
855   Field = 0;
856 
857   for (unsigned i = 0; i < NumBits; ++i) {
858     if (Insn[StartBit + i] == BIT_UNSET)
859       return false;
860 
861     if (Insn[StartBit + i] == BIT_TRUE)
862       Field = Field | (1ULL << i);
863   }
864 
865   return true;
866 }
867 
868 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
869 /// filter array as a series of chars.
dumpFilterArray(raw_ostream & o,bit_value_t (& filter)[BIT_WIDTH])870 void ARMFilterChooser::dumpFilterArray(raw_ostream &o,
871     bit_value_t (&filter)[BIT_WIDTH]) {
872   unsigned bitIndex;
873 
874   for (bitIndex = BIT_WIDTH; bitIndex > 0; bitIndex--) {
875     switch (filter[bitIndex - 1]) {
876     case BIT_UNFILTERED:
877       o << ".";
878       break;
879     case BIT_UNSET:
880       o << "_";
881       break;
882     case BIT_TRUE:
883       o << "1";
884       break;
885     case BIT_FALSE:
886       o << "0";
887       break;
888     }
889   }
890 }
891 
892 /// dumpStack - dumpStack traverses the filter chooser chain and calls
893 /// dumpFilterArray on each filter chooser up to the top level one.
dumpStack(raw_ostream & o,const char * prefix)894 void ARMFilterChooser::dumpStack(raw_ostream &o, const char *prefix) {
895   ARMFilterChooser *current = this;
896 
897   while (current) {
898     o << prefix;
899     dumpFilterArray(o, current->FilterBitValues);
900     o << '\n';
901     current = current->Parent;
902   }
903 }
904 
905 // Called from Filter::recurse() when singleton exists.  For debug purpose.
SingletonExists(unsigned Opc)906 void ARMFilterChooser::SingletonExists(unsigned Opc) {
907   insn_t Insn0;
908   insnWithID(Insn0, Opc);
909 
910   errs() << "Singleton exists: " << nameWithID(Opc)
911          << " with its decoding dominating ";
912   for (unsigned i = 0; i < Opcodes.size(); ++i) {
913     if (Opcodes[i] == Opc) continue;
914     errs() << nameWithID(Opcodes[i]) << ' ';
915   }
916   errs() << '\n';
917 
918   dumpStack(errs(), "\t\t");
919   for (unsigned i = 0; i < Opcodes.size(); i++) {
920     const std::string &Name = nameWithID(Opcodes[i]);
921 
922     errs() << '\t' << Name << " ";
923     dumpBits(errs(),
924              getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
925     errs() << '\n';
926   }
927 }
928 
929 // Calculates the island(s) needed to decode the instruction.
930 // This returns a list of undecoded bits of an instructions, for example,
931 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
932 // decoded bits in order to verify that the instruction matches the Opcode.
getIslands(std::vector<unsigned> & StartBits,std::vector<unsigned> & EndBits,std::vector<uint64_t> & FieldVals,insn_t & Insn)933 unsigned ARMFilterChooser::getIslands(std::vector<unsigned> &StartBits,
934     std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
935     insn_t &Insn) {
936   unsigned Num, BitNo;
937   Num = BitNo = 0;
938 
939   uint64_t FieldVal = 0;
940 
941   // 0: Init
942   // 1: Water (the bit value does not affect decoding)
943   // 2: Island (well-known bit value needed for decoding)
944   int State = 0;
945   int Val = -1;
946 
947   for (unsigned i = 0; i < BIT_WIDTH; ++i) {
948     Val = Value(Insn[i]);
949     bool Filtered = PositionFiltered(i);
950     switch (State) {
951     default:
952       assert(0 && "Unreachable code!");
953       break;
954     case 0:
955     case 1:
956       if (Filtered || Val == -1)
957         State = 1; // Still in Water
958       else {
959         State = 2; // Into the Island
960         BitNo = 0;
961         StartBits.push_back(i);
962         FieldVal = Val;
963       }
964       break;
965     case 2:
966       if (Filtered || Val == -1) {
967         State = 1; // Into the Water
968         EndBits.push_back(i - 1);
969         FieldVals.push_back(FieldVal);
970         ++Num;
971       } else {
972         State = 2; // Still in Island
973         ++BitNo;
974         FieldVal = FieldVal | Val << BitNo;
975       }
976       break;
977     }
978   }
979   // If we are still in Island after the loop, do some housekeeping.
980   if (State == 2) {
981     EndBits.push_back(BIT_WIDTH - 1);
982     FieldVals.push_back(FieldVal);
983     ++Num;
984   }
985 
986   assert(StartBits.size() == Num && EndBits.size() == Num &&
987          FieldVals.size() == Num);
988   return Num;
989 }
990 
991 // Emits code to decode the singleton.  Return true if we have matched all the
992 // well-known bits.
emitSingletonDecoder(raw_ostream & o,unsigned & Indentation,unsigned Opc)993 bool ARMFilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
994                                          unsigned Opc) {
995   std::vector<unsigned> StartBits;
996   std::vector<unsigned> EndBits;
997   std::vector<uint64_t> FieldVals;
998   insn_t Insn;
999   insnWithID(Insn, Opc);
1000 
1001   // This provides a good opportunity to check for possible Ld/St Coprocessor
1002   // Opcode and escapes if the coproc # is either 10 or 11.  It is a NEON/VFP
1003   // instruction is disguise.
1004   if (TargetName == TARGET_ARM && LdStCopEncoding1(Opc)) {
1005     o.indent(Indentation);
1006     // A8.6.51 & A8.6.188
1007     // If coproc = 0b101?, i.e, slice(insn, 11, 8) = 10 or 11, escape.
1008     o << "if (fieldFromInstruction(insn, 9, 3) == 5) break; // fallthrough\n";
1009   }
1010 
1011   // Look for islands of undecoded bits of the singleton.
1012   getIslands(StartBits, EndBits, FieldVals, Insn);
1013 
1014   unsigned Size = StartBits.size();
1015   unsigned I, NumBits;
1016 
1017   // If we have matched all the well-known bits, just issue a return.
1018   if (Size == 0) {
1019     o.indent(Indentation) << "return " << Opc << "; // " << nameWithID(Opc)
1020                           << '\n';
1021     return true;
1022   }
1023 
1024   // Otherwise, there are more decodings to be done!
1025 
1026   // Emit code to match the island(s) for the singleton.
1027   o.indent(Indentation) << "// Check ";
1028 
1029   for (I = Size; I != 0; --I) {
1030     o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} ";
1031     if (I > 1)
1032       o << "&& ";
1033     else
1034       o << "for singleton decoding...\n";
1035   }
1036 
1037   o.indent(Indentation) << "if (";
1038 
1039   for (I = Size; I != 0; --I) {
1040     NumBits = EndBits[I-1] - StartBits[I-1] + 1;
1041     o << "fieldFromInstruction(insn, " << StartBits[I-1] << ", " << NumBits
1042       << ") == " << FieldVals[I-1];
1043     if (I > 1)
1044       o << " && ";
1045     else
1046       o << ")\n";
1047   }
1048 
1049   o.indent(Indentation) << "  return " << Opc << "; // " << nameWithID(Opc)
1050                         << '\n';
1051 
1052   return false;
1053 }
1054 
1055 // Emits code to decode the singleton, and then to decode the rest.
emitSingletonDecoder(raw_ostream & o,unsigned & Indentation,ARMFilter & Best)1056 void ARMFilterChooser::emitSingletonDecoder(raw_ostream &o,
1057                                             unsigned &Indentation,
1058                                             ARMFilter &Best) {
1059 
1060   unsigned Opc = Best.getSingletonOpc();
1061 
1062   emitSingletonDecoder(o, Indentation, Opc);
1063 
1064   // Emit code for the rest.
1065   o.indent(Indentation) << "else\n";
1066 
1067   Indentation += 2;
1068   Best.getVariableFC().emit(o, Indentation);
1069   Indentation -= 2;
1070 }
1071 
1072 // Assign a single filter and run with it.  Top level API client can initialize
1073 // with a single filter to start the filtering process.
runSingleFilter(ARMFilterChooser & owner,unsigned startBit,unsigned numBit,bool mixed)1074 void ARMFilterChooser::runSingleFilter(ARMFilterChooser &owner,
1075                                        unsigned startBit,
1076                                        unsigned numBit, bool mixed) {
1077   Filters.clear();
1078   ARMFilter F(*this, startBit, numBit, true);
1079   Filters.push_back(F);
1080   BestIndex = 0; // Sole Filter instance to choose from.
1081   bestFilter().recurse();
1082 }
1083 
1084 // reportRegion is a helper function for filterProcessor to mark a region as
1085 // eligible for use as a filter region.
reportRegion(bitAttr_t RA,unsigned StartBit,unsigned BitIndex,bool AllowMixed)1086 void ARMFilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
1087                                     unsigned BitIndex, bool AllowMixed) {
1088   if (RA == ATTR_MIXED && AllowMixed)
1089     Filters.push_back(ARMFilter(*this, StartBit, BitIndex - StartBit, true));
1090   else if (RA == ATTR_ALL_SET && !AllowMixed)
1091     Filters.push_back(ARMFilter(*this, StartBit, BitIndex - StartBit, false));
1092 }
1093 
1094 // FilterProcessor scans the well-known encoding bits of the instructions and
1095 // builds up a list of candidate filters.  It chooses the best filter and
1096 // recursively descends down the decoding tree.
filterProcessor(bool AllowMixed,bool Greedy)1097 bool ARMFilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
1098   Filters.clear();
1099   BestIndex = -1;
1100   unsigned numInstructions = Opcodes.size();
1101 
1102   assert(numInstructions && "Filter created with no instructions");
1103 
1104   // No further filtering is necessary.
1105   if (numInstructions == 1)
1106     return true;
1107 
1108   // Heuristics.  See also doFilter()'s "Heuristics" comment when num of
1109   // instructions is 3.
1110   if (AllowMixed && !Greedy) {
1111     assert(numInstructions == 3);
1112 
1113     for (unsigned i = 0; i < Opcodes.size(); ++i) {
1114       std::vector<unsigned> StartBits;
1115       std::vector<unsigned> EndBits;
1116       std::vector<uint64_t> FieldVals;
1117       insn_t Insn;
1118 
1119       insnWithID(Insn, Opcodes[i]);
1120 
1121       // Look for islands of undecoded bits of any instruction.
1122       if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
1123         // Found an instruction with island(s).  Now just assign a filter.
1124         runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1,
1125                         true);
1126         return true;
1127       }
1128     }
1129   }
1130 
1131   unsigned BitIndex, InsnIndex;
1132 
1133   // We maintain BIT_WIDTH copies of the bitAttrs automaton.
1134   // The automaton consumes the corresponding bit from each
1135   // instruction.
1136   //
1137   //   Input symbols: 0, 1, and _ (unset).
1138   //   States:        NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
1139   //   Initial state: NONE.
1140   //
1141   // (NONE) ------- [01] -> (ALL_SET)
1142   // (NONE) ------- _ ----> (ALL_UNSET)
1143   // (ALL_SET) ---- [01] -> (ALL_SET)
1144   // (ALL_SET) ---- _ ----> (MIXED)
1145   // (ALL_UNSET) -- [01] -> (MIXED)
1146   // (ALL_UNSET) -- _ ----> (ALL_UNSET)
1147   // (MIXED) ------ . ----> (MIXED)
1148   // (FILTERED)---- . ----> (FILTERED)
1149 
1150   bitAttr_t bitAttrs[BIT_WIDTH];
1151 
1152   // FILTERED bit positions provide no entropy and are not worthy of pursuing.
1153   // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
1154   for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex)
1155     if (FilterBitValues[BitIndex] == BIT_TRUE ||
1156         FilterBitValues[BitIndex] == BIT_FALSE)
1157       bitAttrs[BitIndex] = ATTR_FILTERED;
1158     else
1159       bitAttrs[BitIndex] = ATTR_NONE;
1160 
1161   for (InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
1162     insn_t insn;
1163 
1164     insnWithID(insn, Opcodes[InsnIndex]);
1165 
1166     for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex) {
1167       switch (bitAttrs[BitIndex]) {
1168       case ATTR_NONE:
1169         if (insn[BitIndex] == BIT_UNSET)
1170           bitAttrs[BitIndex] = ATTR_ALL_UNSET;
1171         else
1172           bitAttrs[BitIndex] = ATTR_ALL_SET;
1173         break;
1174       case ATTR_ALL_SET:
1175         if (insn[BitIndex] == BIT_UNSET)
1176           bitAttrs[BitIndex] = ATTR_MIXED;
1177         break;
1178       case ATTR_ALL_UNSET:
1179         if (insn[BitIndex] != BIT_UNSET)
1180           bitAttrs[BitIndex] = ATTR_MIXED;
1181         break;
1182       case ATTR_MIXED:
1183       case ATTR_FILTERED:
1184         break;
1185       }
1186     }
1187   }
1188 
1189   // The regionAttr automaton consumes the bitAttrs automatons' state,
1190   // lowest-to-highest.
1191   //
1192   //   Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
1193   //   States:        NONE, ALL_SET, MIXED
1194   //   Initial state: NONE
1195   //
1196   // (NONE) ----- F --> (NONE)
1197   // (NONE) ----- S --> (ALL_SET)     ; and set region start
1198   // (NONE) ----- U --> (NONE)
1199   // (NONE) ----- M --> (MIXED)       ; and set region start
1200   // (ALL_SET) -- F --> (NONE)        ; and report an ALL_SET region
1201   // (ALL_SET) -- S --> (ALL_SET)
1202   // (ALL_SET) -- U --> (NONE)        ; and report an ALL_SET region
1203   // (ALL_SET) -- M --> (MIXED)       ; and report an ALL_SET region
1204   // (MIXED) ---- F --> (NONE)        ; and report a MIXED region
1205   // (MIXED) ---- S --> (ALL_SET)     ; and report a MIXED region
1206   // (MIXED) ---- U --> (NONE)        ; and report a MIXED region
1207   // (MIXED) ---- M --> (MIXED)
1208 
1209   bitAttr_t RA = ATTR_NONE;
1210   unsigned StartBit = 0;
1211 
1212   for (BitIndex = 0; BitIndex < BIT_WIDTH; BitIndex++) {
1213     bitAttr_t bitAttr = bitAttrs[BitIndex];
1214 
1215     assert(bitAttr != ATTR_NONE && "Bit without attributes");
1216 
1217     switch (RA) {
1218     case ATTR_NONE:
1219       switch (bitAttr) {
1220       case ATTR_FILTERED:
1221         break;
1222       case ATTR_ALL_SET:
1223         StartBit = BitIndex;
1224         RA = ATTR_ALL_SET;
1225         break;
1226       case ATTR_ALL_UNSET:
1227         break;
1228       case ATTR_MIXED:
1229         StartBit = BitIndex;
1230         RA = ATTR_MIXED;
1231         break;
1232       default:
1233         assert(0 && "Unexpected bitAttr!");
1234       }
1235       break;
1236     case ATTR_ALL_SET:
1237       switch (bitAttr) {
1238       case ATTR_FILTERED:
1239         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1240         RA = ATTR_NONE;
1241         break;
1242       case ATTR_ALL_SET:
1243         break;
1244       case ATTR_ALL_UNSET:
1245         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1246         RA = ATTR_NONE;
1247         break;
1248       case ATTR_MIXED:
1249         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1250         StartBit = BitIndex;
1251         RA = ATTR_MIXED;
1252         break;
1253       default:
1254         assert(0 && "Unexpected bitAttr!");
1255       }
1256       break;
1257     case ATTR_MIXED:
1258       switch (bitAttr) {
1259       case ATTR_FILTERED:
1260         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1261         StartBit = BitIndex;
1262         RA = ATTR_NONE;
1263         break;
1264       case ATTR_ALL_SET:
1265         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1266         StartBit = BitIndex;
1267         RA = ATTR_ALL_SET;
1268         break;
1269       case ATTR_ALL_UNSET:
1270         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1271         RA = ATTR_NONE;
1272         break;
1273       case ATTR_MIXED:
1274         break;
1275       default:
1276         assert(0 && "Unexpected bitAttr!");
1277       }
1278       break;
1279     case ATTR_ALL_UNSET:
1280       assert(0 && "regionAttr state machine has no ATTR_UNSET state");
1281     case ATTR_FILTERED:
1282       assert(0 && "regionAttr state machine has no ATTR_FILTERED state");
1283     }
1284   }
1285 
1286   // At the end, if we're still in ALL_SET or MIXED states, report a region
1287   switch (RA) {
1288   case ATTR_NONE:
1289     break;
1290   case ATTR_FILTERED:
1291     break;
1292   case ATTR_ALL_SET:
1293     reportRegion(RA, StartBit, BitIndex, AllowMixed);
1294     break;
1295   case ATTR_ALL_UNSET:
1296     break;
1297   case ATTR_MIXED:
1298     reportRegion(RA, StartBit, BitIndex, AllowMixed);
1299     break;
1300   }
1301 
1302   // We have finished with the filter processings.  Now it's time to choose
1303   // the best performing filter.
1304   BestIndex = 0;
1305   bool AllUseless = true;
1306   unsigned BestScore = 0;
1307 
1308   for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
1309     unsigned Usefulness = Filters[i].usefulness();
1310 
1311     if (Usefulness)
1312       AllUseless = false;
1313 
1314     if (Usefulness > BestScore) {
1315       BestIndex = i;
1316       BestScore = Usefulness;
1317     }
1318   }
1319 
1320   if (!AllUseless)
1321     bestFilter().recurse();
1322 
1323   return !AllUseless;
1324 } // end of FilterChooser::filterProcessor(bool)
1325 
1326 // Decides on the best configuration of filter(s) to use in order to decode
1327 // the instructions.  A conflict of instructions may occur, in which case we
1328 // dump the conflict set to the standard error.
doFilter()1329 void ARMFilterChooser::doFilter() {
1330   unsigned Num = Opcodes.size();
1331   assert(Num && "FilterChooser created with no instructions");
1332 
1333   // Heuristics: Use Inst{31-28} as the top level filter for ARM ISA.
1334   if (TargetName == TARGET_ARM && Parent == NULL) {
1335     runSingleFilter(*this, 28, 4, false);
1336     return;
1337   }
1338 
1339   // Try regions of consecutive known bit values first.
1340   if (filterProcessor(false))
1341     return;
1342 
1343   // Then regions of mixed bits (both known and unitialized bit values allowed).
1344   if (filterProcessor(true))
1345     return;
1346 
1347   // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
1348   // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
1349   // well-known encoding pattern.  In such case, we backtrack and scan for the
1350   // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
1351   if (Num == 3 && filterProcessor(true, false))
1352     return;
1353 
1354   // If we come to here, the instruction decoding has failed.
1355   // Set the BestIndex to -1 to indicate so.
1356   BestIndex = -1;
1357 }
1358 
1359 // Emits code to decode our share of instructions.  Returns true if the
1360 // emitted code causes a return, which occurs if we know how to decode
1361 // the instruction at this level or the instruction is not decodeable.
emit(raw_ostream & o,unsigned & Indentation)1362 bool ARMFilterChooser::emit(raw_ostream &o, unsigned &Indentation) {
1363   if (Opcodes.size() == 1)
1364     // There is only one instruction in the set, which is great!
1365     // Call emitSingletonDecoder() to see whether there are any remaining
1366     // encodings bits.
1367     return emitSingletonDecoder(o, Indentation, Opcodes[0]);
1368 
1369   // Choose the best filter to do the decodings!
1370   if (BestIndex != -1) {
1371     ARMFilter &Best = bestFilter();
1372     if (Best.getNumFiltered() == 1)
1373       emitSingletonDecoder(o, Indentation, Best);
1374     else
1375       bestFilter().emit(o, Indentation);
1376     return false;
1377   }
1378 
1379   // If we reach here, there is a conflict in decoding.  Let's resolve the known
1380   // conflicts!
1381   if ((TargetName == TARGET_ARM || TargetName == TARGET_THUMB) &&
1382       Opcodes.size() == 2) {
1383     // Resolve the known conflict sets:
1384     //
1385     // 1. source registers are identical => VMOVDneon; otherwise => VORRd
1386     // 2. source registers are identical => VMOVQ; otherwise => VORRq
1387     // 3. LDR, LDRcp => return LDR for now.
1388     // FIXME: How can we distinguish between LDR and LDRcp?  Do we need to?
1389     // 4. tLDMIA, tLDMIA_UPD => Rn = Inst{10-8}, reglist = Inst{7-0},
1390     //    wback = registers<Rn> = 0
1391     // NOTE: (tLDM, tLDM_UPD) resolution must come before Advanced SIMD
1392     //       addressing mode resolution!!!
1393     // 5. VLD[234]LN*/VST[234]LN* vs. VLD[234]LN*_UPD/VST[234]LN*_UPD conflicts
1394     //    are resolved returning the non-UPD versions of the instructions if the
1395     //    Rm field, i.e., Inst{3-0} is 0b1111.  This is specified in A7.7.1
1396     //    Advanced SIMD addressing mode.
1397     const std::string &name1 = nameWithID(Opcodes[0]);
1398     const std::string &name2 = nameWithID(Opcodes[1]);
1399     if ((name1 == "VMOVDneon" && name2 == "VORRd") ||
1400         (name1 == "VMOVQ" && name2 == "VORRq")) {
1401       // Inserting the opening curly brace for this case block.
1402       --Indentation; --Indentation;
1403       o.indent(Indentation) << "{\n";
1404       ++Indentation; ++Indentation;
1405 
1406       o.indent(Indentation)
1407         << "field_t N = fieldFromInstruction(insn, 7, 1), "
1408         << "M = fieldFromInstruction(insn, 5, 1);\n";
1409       o.indent(Indentation)
1410         << "field_t Vn = fieldFromInstruction(insn, 16, 4), "
1411         << "Vm = fieldFromInstruction(insn, 0, 4);\n";
1412       o.indent(Indentation)
1413         << "return (N == M && Vn == Vm) ? "
1414         << Opcodes[0] << " /* " << name1 << " */ : "
1415         << Opcodes[1] << " /* " << name2 << " */ ;\n";
1416 
1417       // Inserting the closing curly brace for this case block.
1418       --Indentation; --Indentation;
1419       o.indent(Indentation) << "}\n";
1420       ++Indentation; ++Indentation;
1421 
1422       return true;
1423     }
1424     if (name1 == "LDR" && name2 == "LDRcp") {
1425       o.indent(Indentation)
1426         << "return " << Opcodes[0]
1427         << "; // Returning LDR for {LDR, LDRcp}\n";
1428       return true;
1429     }
1430     if (name1 == "tLDMIA" && name2 == "tLDMIA_UPD") {
1431       // Inserting the opening curly brace for this case block.
1432       --Indentation; --Indentation;
1433       o.indent(Indentation) << "{\n";
1434       ++Indentation; ++Indentation;
1435 
1436       o.indent(Indentation)
1437         << "unsigned Rn = fieldFromInstruction(insn, 8, 3), "
1438         << "list = fieldFromInstruction(insn, 0, 8);\n";
1439       o.indent(Indentation)
1440         << "return ((list >> Rn) & 1) == 0 ? "
1441         << Opcodes[1] << " /* " << name2 << " */ : "
1442         << Opcodes[0] << " /* " << name1 << " */ ;\n";
1443 
1444       // Inserting the closing curly brace for this case block.
1445       --Indentation; --Indentation;
1446       o.indent(Indentation) << "}\n";
1447       ++Indentation; ++Indentation;
1448 
1449       return true;
1450     }
1451     if (sameStringExceptSuffix(name1, name2, "_UPD")) {
1452       o.indent(Indentation)
1453         << "return fieldFromInstruction(insn, 0, 4) == 15 ? " << Opcodes[0]
1454         << " /* " << name1 << " */ : " << Opcodes[1] << "/* " << name2
1455         << " */ ; // Advanced SIMD addressing mode\n";
1456       return true;
1457     }
1458 
1459     // Otherwise, it does not belong to the known conflict sets.
1460   }
1461 
1462   // We don't know how to decode these instructions!  Return 0 and dump the
1463   // conflict set!
1464   o.indent(Indentation) << "return 0;" << " // Conflict set: ";
1465   for (int i = 0, N = Opcodes.size(); i < N; ++i) {
1466     o << nameWithID(Opcodes[i]);
1467     if (i < (N - 1))
1468       o << ", ";
1469     else
1470       o << '\n';
1471   }
1472 
1473   // Print out useful conflict information for postmortem analysis.
1474   errs() << "Decoding Conflict:\n";
1475 
1476   dumpStack(errs(), "\t\t");
1477 
1478   for (unsigned i = 0; i < Opcodes.size(); i++) {
1479     const std::string &Name = nameWithID(Opcodes[i]);
1480 
1481     errs() << '\t' << Name << " ";
1482     dumpBits(errs(),
1483              getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
1484     errs() << '\n';
1485   }
1486 
1487   return true;
1488 }
1489 
1490 
1491 ////////////////////////////////////////////
1492 //                                        //
1493 //  ARMDEBackend                          //
1494 //  (Helper class for ARMDecoderEmitter)  //
1495 //                                        //
1496 ////////////////////////////////////////////
1497 
1498 class ARMDecoderEmitter::ARMDEBackend {
1499 public:
ARMDEBackend(ARMDecoderEmitter & frontend,RecordKeeper & Records)1500   ARMDEBackend(ARMDecoderEmitter &frontend, RecordKeeper &Records) :
1501     NumberedInstructions(),
1502     Opcodes(),
1503     Frontend(frontend),
1504     Target(Records),
1505     FC(NULL)
1506   {
1507     if (Target.getName() == "ARM")
1508       TargetName = TARGET_ARM;
1509     else {
1510       errs() << "Target name " << Target.getName() << " not recognized\n";
1511       assert(0 && "Unknown target");
1512     }
1513 
1514     // Populate the instructions for our TargetName.
1515     populateInstructions();
1516   }
1517 
~ARMDEBackend()1518   ~ARMDEBackend() {
1519     if (FC) {
1520       delete FC;
1521       FC = NULL;
1522     }
1523   }
1524 
getInstructionsByEnumValue(std::vector<const CodeGenInstruction * > & NumberedInstructions)1525   void getInstructionsByEnumValue(std::vector<const CodeGenInstruction*>
1526                                                 &NumberedInstructions) {
1527     // We must emit the PHI opcode first...
1528     std::string Namespace = Target.getInstNamespace();
1529     assert(!Namespace.empty() && "No instructions defined.");
1530 
1531     NumberedInstructions = Target.getInstructionsByEnumValue();
1532   }
1533 
1534   bool populateInstruction(const CodeGenInstruction &CGI, TARGET_NAME_t TN);
1535 
1536   void populateInstructions();
1537 
1538   // Emits disassembler code for instruction decoding.  This delegates to the
1539   // FilterChooser instance to do the heavy lifting.
1540   void emit(raw_ostream &o);
1541 
1542 protected:
1543   std::vector<const CodeGenInstruction*> NumberedInstructions;
1544   std::vector<unsigned> Opcodes;
1545   // Special case for the ARM chip, which supports ARM and Thumb ISAs.
1546   // Opcodes2 will be populated with the Thumb opcodes.
1547   std::vector<unsigned> Opcodes2;
1548   ARMDecoderEmitter &Frontend;
1549   CodeGenTarget Target;
1550   ARMFilterChooser *FC;
1551 
1552   TARGET_NAME_t TargetName;
1553 };
1554 
1555 bool ARMDecoderEmitter::
populateInstruction(const CodeGenInstruction & CGI,TARGET_NAME_t TN)1556 ARMDEBackend::populateInstruction(const CodeGenInstruction &CGI,
1557                                   TARGET_NAME_t TN) {
1558   const Record &Def = *CGI.TheDef;
1559   const StringRef Name = Def.getName();
1560   uint8_t Form = getByteField(Def, "Form");
1561 
1562   BitsInit &Bits = getBitsField(Def, "Inst");
1563 
1564   // If all the bit positions are not specified; do not decode this instruction.
1565   // We are bound to fail!  For proper disassembly, the well-known encoding bits
1566   // of the instruction must be fully specified.
1567   //
1568   // This also removes pseudo instructions from considerations of disassembly,
1569   // which is a better design and less fragile than the name matchings.
1570   if (Bits.allInComplete()) return false;
1571 
1572   // Ignore "asm parser only" instructions.
1573   if (Def.getValueAsBit("isAsmParserOnly"))
1574     return false;
1575 
1576   if (TN == TARGET_ARM) {
1577     if (Form == ARM_FORMAT_PSEUDO)
1578       return false;
1579     if (thumbInstruction(Form))
1580       return false;
1581 
1582     // Tail calls are other patterns that generate existing instructions.
1583     if (Name == "TCRETURNdi" || Name == "TCRETURNdiND" ||
1584         Name == "TCRETURNri" || Name == "TCRETURNriND" ||
1585         Name == "TAILJMPd"  || Name == "TAILJMPdt" ||
1586         Name == "TAILJMPdND" || Name == "TAILJMPdNDt" ||
1587         Name == "TAILJMPr"  || Name == "TAILJMPrND" ||
1588         Name == "MOVr_TC")
1589       return false;
1590 
1591     // Delegate ADR disassembly to the more generic ADDri/SUBri instructions.
1592     if (Name == "ADR")
1593       return false;
1594 
1595     //
1596     // The following special cases are for conflict resolutions.
1597     //
1598 
1599     // A8-598: VEXT
1600     // Vector Extract extracts elements from the bottom end of the second
1601     // operand vector and the top end of the first, concatenates them and
1602     // places the result in the destination vector.  The elements of the
1603     // vectors are treated as being 8-bit bitfields.  There is no distinction
1604     // between data types.  The size of the operation can be specified in
1605     // assembler as vext.size.  If the value is 16, 32, or 64, the syntax is
1606     // a pseudo-instruction for a VEXT instruction specifying the equivalent
1607     // number of bytes.
1608     //
1609     // Variants VEXTd16, VEXTd32, VEXTd8, and VEXTdf are reduced to VEXTd8;
1610     // variants VEXTq16, VEXTq32, VEXTq8, and VEXTqf are reduced to VEXTq8.
1611     if (Name == "VEXTd16" || Name == "VEXTd32" || Name == "VEXTdf" ||
1612         Name == "VEXTq16" || Name == "VEXTq32" || Name == "VEXTqf")
1613       return false;
1614   } else if (TN == TARGET_THUMB) {
1615     if (!thumbInstruction(Form))
1616       return false;
1617 
1618     // A8.6.25 BX.  Use the generic tBX_Rm, ignore tBX_RET and tBX_RET_vararg.
1619     if (Name == "tBX_RET" || Name == "tBX_RET_vararg")
1620       return false;
1621 
1622     // Ignore tADR, prefer tADDrPCi.
1623     if (Name == "tADR")
1624       return false;
1625 
1626     // Delegate t2ADR disassembly to the more generic t2ADDri12/t2SUBri12
1627     // instructions.
1628     if (Name == "t2ADR")
1629       return false;
1630 
1631     // Ignore tADDrSP, tADDspr, and tPICADD, prefer the generic tADDhirr.
1632     // Ignore t2SUBrSPs, prefer the t2SUB[S]r[r|s].
1633     // Ignore t2ADDrSPs, prefer the t2ADD[S]r[r|s].
1634     if (Name == "tADDrSP" || Name == "tADDspr" || Name == "tPICADD" ||
1635         Name == "t2SUBrSPs" || Name == "t2ADDrSPs")
1636       return false;
1637 
1638     // FIXME: Use ldr.n to work around a Darwin assembler bug.
1639     // Introduce a workaround with tLDRpciDIS opcode.
1640     if (Name == "tLDRpci")
1641       return false;
1642 
1643     // Ignore t2LDRDpci, prefer the generic t2LDRDi8, t2LDRD_PRE, t2LDRD_POST.
1644     if (Name == "t2LDRDpci")
1645       return false;
1646 
1647     // Resolve conflicts:
1648     //
1649     //   t2LDMIA_RET conflict with t2LDM (ditto)
1650     //   tMOVCCi conflicts with tMOVi8
1651     //   tMOVCCr conflicts with tMOVgpr2gpr
1652     //   tLDRcp conflicts with tLDRspi
1653     //   t2MOVCCi16 conflicts with tMOVi16
1654     if (Name == "t2LDMIA_RET" ||
1655         Name == "tMOVCCi" || Name == "tMOVCCr" ||
1656         Name == "tLDRcp" ||
1657         Name == "t2MOVCCi16")
1658       return false;
1659   }
1660 
1661   DEBUG({
1662       // Dumps the instruction encoding format.
1663       switch (TargetName) {
1664       case TARGET_ARM:
1665       case TARGET_THUMB:
1666         errs() << Name << " " << stringForARMFormat((ARMFormat)Form);
1667         break;
1668       }
1669 
1670       errs() << " ";
1671 
1672       // Dumps the instruction encoding bits.
1673       dumpBits(errs(), Bits);
1674 
1675       errs() << '\n';
1676 
1677       // Dumps the list of operand info.
1678       for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
1679         const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
1680         const std::string &OperandName = Info.Name;
1681         const Record &OperandDef = *Info.Rec;
1682 
1683         errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
1684       }
1685     });
1686 
1687   return true;
1688 }
1689 
populateInstructions()1690 void ARMDecoderEmitter::ARMDEBackend::populateInstructions() {
1691   getInstructionsByEnumValue(NumberedInstructions);
1692 
1693   unsigned numUIDs = NumberedInstructions.size();
1694   if (TargetName == TARGET_ARM) {
1695     for (unsigned uid = 0; uid < numUIDs; uid++) {
1696       // filter out intrinsics
1697       if (!NumberedInstructions[uid]->TheDef->isSubClassOf("InstARM"))
1698         continue;
1699 
1700       if (populateInstruction(*NumberedInstructions[uid], TargetName))
1701         Opcodes.push_back(uid);
1702     }
1703 
1704     // Special handling for the ARM chip, which supports two modes of execution.
1705     // This branch handles the Thumb opcodes.
1706     for (unsigned uid = 0; uid < numUIDs; uid++) {
1707       // filter out intrinsics
1708       if (!NumberedInstructions[uid]->TheDef->isSubClassOf("InstARM")
1709           && !NumberedInstructions[uid]->TheDef->isSubClassOf("InstThumb"))
1710         continue;
1711 
1712       if (populateInstruction(*NumberedInstructions[uid], TARGET_THUMB))
1713         Opcodes2.push_back(uid);
1714     }
1715 
1716     return;
1717   }
1718 
1719   // For other targets.
1720   for (unsigned uid = 0; uid < numUIDs; uid++) {
1721     Record *R = NumberedInstructions[uid]->TheDef;
1722     if (R->getValueAsString("Namespace") == "TargetOpcode")
1723       continue;
1724 
1725     if (populateInstruction(*NumberedInstructions[uid], TargetName))
1726       Opcodes.push_back(uid);
1727   }
1728 }
1729 
1730 // Emits disassembler code for instruction decoding.  This delegates to the
1731 // FilterChooser instance to do the heavy lifting.
emit(raw_ostream & o)1732 void ARMDecoderEmitter::ARMDEBackend::emit(raw_ostream &o) {
1733   switch (TargetName) {
1734   case TARGET_ARM:
1735     Frontend.EmitSourceFileHeader("ARM/Thumb Decoders", o);
1736     break;
1737   default:
1738     assert(0 && "Unreachable code!");
1739   }
1740 
1741   o << "#include \"llvm/Support/DataTypes.h\"\n";
1742   o << "#include <assert.h>\n";
1743   o << '\n';
1744   o << "namespace llvm {\n\n";
1745 
1746   ARMFilterChooser::setTargetName(TargetName);
1747 
1748   switch (TargetName) {
1749   case TARGET_ARM: {
1750     // Emit common utility and ARM ISA decoder.
1751     FC = new ARMFilterChooser(NumberedInstructions, Opcodes);
1752     // Reset indentation level.
1753     unsigned Indentation = 0;
1754     FC->emitTop(o, Indentation);
1755     delete FC;
1756 
1757     // Emit Thumb ISA decoder as well.
1758     ARMFilterChooser::setTargetName(TARGET_THUMB);
1759     FC = new ARMFilterChooser(NumberedInstructions, Opcodes2);
1760     // Reset indentation level.
1761     Indentation = 0;
1762     FC->emitBot(o, Indentation);
1763     break;
1764   }
1765   default:
1766     assert(0 && "Unreachable code!");
1767   }
1768 
1769   o << "\n} // End llvm namespace \n";
1770 }
1771 
1772 /////////////////////////
1773 //  Backend interface  //
1774 /////////////////////////
1775 
initBackend()1776 void ARMDecoderEmitter::initBackend()
1777 {
1778   Backend = new ARMDEBackend(*this, Records);
1779 }
1780 
run(raw_ostream & o)1781 void ARMDecoderEmitter::run(raw_ostream &o)
1782 {
1783   Backend->emit(o);
1784 }
1785 
shutdownBackend()1786 void ARMDecoderEmitter::shutdownBackend()
1787 {
1788   delete Backend;
1789   Backend = NULL;
1790 }
1791