1 //===------------ ARMDecoderEmitter.cpp - Decoder Generator ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the ARM Disassembler.
11 // It contains the tablegen backend that emits the decoder functions for ARM and
12 // Thumb. The disassembler core includes the auto-generated file, invokes the
13 // decoder functions, and builds up the MCInst based on the decoded Opcode.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #define DEBUG_TYPE "arm-decoder-emitter"
18
19 #include "ARMDecoderEmitter.h"
20 #include "CodeGenTarget.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include "llvm/TableGen/Record.h"
25
26 #include <vector>
27 #include <map>
28 #include <string>
29
30 using namespace llvm;
31
32 /////////////////////////////////////////////////////
33 // //
34 // Enums and Utilities for ARM Instruction Format //
35 // //
36 /////////////////////////////////////////////////////
37
38 #define ARM_FORMATS \
39 ENTRY(ARM_FORMAT_PSEUDO, 0) \
40 ENTRY(ARM_FORMAT_MULFRM, 1) \
41 ENTRY(ARM_FORMAT_BRFRM, 2) \
42 ENTRY(ARM_FORMAT_BRMISCFRM, 3) \
43 ENTRY(ARM_FORMAT_DPFRM, 4) \
44 ENTRY(ARM_FORMAT_DPSOREGREGFRM, 5) \
45 ENTRY(ARM_FORMAT_LDFRM, 6) \
46 ENTRY(ARM_FORMAT_STFRM, 7) \
47 ENTRY(ARM_FORMAT_LDMISCFRM, 8) \
48 ENTRY(ARM_FORMAT_STMISCFRM, 9) \
49 ENTRY(ARM_FORMAT_LDSTMULFRM, 10) \
50 ENTRY(ARM_FORMAT_LDSTEXFRM, 11) \
51 ENTRY(ARM_FORMAT_ARITHMISCFRM, 12) \
52 ENTRY(ARM_FORMAT_SATFRM, 13) \
53 ENTRY(ARM_FORMAT_EXTFRM, 14) \
54 ENTRY(ARM_FORMAT_VFPUNARYFRM, 15) \
55 ENTRY(ARM_FORMAT_VFPBINARYFRM, 16) \
56 ENTRY(ARM_FORMAT_VFPCONV1FRM, 17) \
57 ENTRY(ARM_FORMAT_VFPCONV2FRM, 18) \
58 ENTRY(ARM_FORMAT_VFPCONV3FRM, 19) \
59 ENTRY(ARM_FORMAT_VFPCONV4FRM, 20) \
60 ENTRY(ARM_FORMAT_VFPCONV5FRM, 21) \
61 ENTRY(ARM_FORMAT_VFPLDSTFRM, 22) \
62 ENTRY(ARM_FORMAT_VFPLDSTMULFRM, 23) \
63 ENTRY(ARM_FORMAT_VFPMISCFRM, 24) \
64 ENTRY(ARM_FORMAT_THUMBFRM, 25) \
65 ENTRY(ARM_FORMAT_MISCFRM, 26) \
66 ENTRY(ARM_FORMAT_NEONGETLNFRM, 27) \
67 ENTRY(ARM_FORMAT_NEONSETLNFRM, 28) \
68 ENTRY(ARM_FORMAT_NEONDUPFRM, 29) \
69 ENTRY(ARM_FORMAT_NLdSt, 30) \
70 ENTRY(ARM_FORMAT_N1RegModImm, 31) \
71 ENTRY(ARM_FORMAT_N2Reg, 32) \
72 ENTRY(ARM_FORMAT_NVCVT, 33) \
73 ENTRY(ARM_FORMAT_NVecDupLn, 34) \
74 ENTRY(ARM_FORMAT_N2RegVecShL, 35) \
75 ENTRY(ARM_FORMAT_N2RegVecShR, 36) \
76 ENTRY(ARM_FORMAT_N3Reg, 37) \
77 ENTRY(ARM_FORMAT_N3RegVecSh, 38) \
78 ENTRY(ARM_FORMAT_NVecExtract, 39) \
79 ENTRY(ARM_FORMAT_NVecMulScalar, 40) \
80 ENTRY(ARM_FORMAT_NVTBL, 41) \
81 ENTRY(ARM_FORMAT_DPSOREGIMMFRM, 42)
82
83 // ARM instruction format specifies the encoding used by the instruction.
84 #define ENTRY(n, v) n = v,
85 typedef enum {
86 ARM_FORMATS
87 ARM_FORMAT_NA
88 } ARMFormat;
89 #undef ENTRY
90
91 // Converts enum to const char*.
stringForARMFormat(ARMFormat form)92 static const char *stringForARMFormat(ARMFormat form) {
93 #define ENTRY(n, v) case n: return #n;
94 switch(form) {
95 ARM_FORMATS
96 case ARM_FORMAT_NA:
97 default:
98 return "";
99 }
100 #undef ENTRY
101 }
102
103 enum {
104 IndexModeNone = 0,
105 IndexModePre = 1,
106 IndexModePost = 2,
107 IndexModeUpd = 3
108 };
109
110 /////////////////////////
111 // //
112 // Utility functions //
113 // //
114 /////////////////////////
115
116 /// byteFromBitsInit - Return the byte value from a BitsInit.
117 /// Called from getByteField().
byteFromBitsInit(BitsInit & init)118 static uint8_t byteFromBitsInit(BitsInit &init) {
119 int width = init.getNumBits();
120
121 assert(width <= 8 && "Field is too large for uint8_t!");
122
123 int index;
124 uint8_t mask = 0x01;
125
126 uint8_t ret = 0;
127
128 for (index = 0; index < width; index++) {
129 if (static_cast<BitInit*>(init.getBit(index))->getValue())
130 ret |= mask;
131
132 mask <<= 1;
133 }
134
135 return ret;
136 }
137
getByteField(const Record & def,const char * str)138 static uint8_t getByteField(const Record &def, const char *str) {
139 BitsInit *bits = def.getValueAsBitsInit(str);
140 return byteFromBitsInit(*bits);
141 }
142
getBitsField(const Record & def,const char * str)143 static BitsInit &getBitsField(const Record &def, const char *str) {
144 BitsInit *bits = def.getValueAsBitsInit(str);
145 return *bits;
146 }
147
148 /// sameStringExceptSuffix - Return true if the two strings differ only in RHS's
149 /// suffix. ("VST4d8", "VST4d8_UPD", "_UPD") as input returns true.
150 static
sameStringExceptSuffix(const StringRef LHS,const StringRef RHS,const StringRef Suffix)151 bool sameStringExceptSuffix(const StringRef LHS, const StringRef RHS,
152 const StringRef Suffix) {
153
154 if (RHS.startswith(LHS) && RHS.endswith(Suffix))
155 return RHS.size() == LHS.size() + Suffix.size();
156
157 return false;
158 }
159
160 /// thumbInstruction - Determine whether we have a Thumb instruction.
161 /// See also ARMInstrFormats.td.
thumbInstruction(uint8_t Form)162 static bool thumbInstruction(uint8_t Form) {
163 return Form == ARM_FORMAT_THUMBFRM;
164 }
165
166 // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
167 // for a bit value.
168 //
169 // BIT_UNFILTERED is used as the init value for a filter position. It is used
170 // only for filter processings.
171 typedef enum {
172 BIT_TRUE, // '1'
173 BIT_FALSE, // '0'
174 BIT_UNSET, // '?'
175 BIT_UNFILTERED // unfiltered
176 } bit_value_t;
177
ValueSet(bit_value_t V)178 static bool ValueSet(bit_value_t V) {
179 return (V == BIT_TRUE || V == BIT_FALSE);
180 }
ValueNotSet(bit_value_t V)181 static bool ValueNotSet(bit_value_t V) {
182 return (V == BIT_UNSET);
183 }
Value(bit_value_t V)184 static int Value(bit_value_t V) {
185 return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
186 }
bitFromBits(BitsInit & bits,unsigned index)187 static bit_value_t bitFromBits(BitsInit &bits, unsigned index) {
188 if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index)))
189 return bit->getValue() ? BIT_TRUE : BIT_FALSE;
190
191 // The bit is uninitialized.
192 return BIT_UNSET;
193 }
194 // Prints the bit value for each position.
dumpBits(raw_ostream & o,BitsInit & bits)195 static void dumpBits(raw_ostream &o, BitsInit &bits) {
196 unsigned index;
197
198 for (index = bits.getNumBits(); index > 0; index--) {
199 switch (bitFromBits(bits, index - 1)) {
200 case BIT_TRUE:
201 o << "1";
202 break;
203 case BIT_FALSE:
204 o << "0";
205 break;
206 case BIT_UNSET:
207 o << "_";
208 break;
209 default:
210 assert(0 && "unexpected return value from bitFromBits");
211 }
212 }
213 }
214
215 // Enums for the available target names.
216 typedef enum {
217 TARGET_ARM = 0,
218 TARGET_THUMB
219 } TARGET_NAME_t;
220
221 // FIXME: Possibly auto-detected?
222 #define BIT_WIDTH 32
223
224 // Forward declaration.
225 class ARMFilterChooser;
226
227 // Representation of the instruction to work on.
228 typedef bit_value_t insn_t[BIT_WIDTH];
229
230 /// Filter - Filter works with FilterChooser to produce the decoding tree for
231 /// the ISA.
232 ///
233 /// It is useful to think of a Filter as governing the switch stmts of the
234 /// decoding tree in a certain level. Each case stmt delegates to an inferior
235 /// FilterChooser to decide what further decoding logic to employ, or in another
236 /// words, what other remaining bits to look at. The FilterChooser eventually
237 /// chooses a best Filter to do its job.
238 ///
239 /// This recursive scheme ends when the number of Opcodes assigned to the
240 /// FilterChooser becomes 1 or if there is a conflict. A conflict happens when
241 /// the Filter/FilterChooser combo does not know how to distinguish among the
242 /// Opcodes assigned.
243 ///
244 /// An example of a conflict is
245 ///
246 /// Conflict:
247 /// 111101000.00........00010000....
248 /// 111101000.00........0001........
249 /// 1111010...00........0001........
250 /// 1111010...00....................
251 /// 1111010.........................
252 /// 1111............................
253 /// ................................
254 /// VST4q8a 111101000_00________00010000____
255 /// VST4q8b 111101000_00________00010000____
256 ///
257 /// The Debug output shows the path that the decoding tree follows to reach the
258 /// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced
259 /// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
260 ///
261 /// The encoding info in the .td files does not specify this meta information,
262 /// which could have been used by the decoder to resolve the conflict. The
263 /// decoder could try to decode the even/odd register numbering and assign to
264 /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
265 /// version and return the Opcode since the two have the same Asm format string.
266 class ARMFilter {
267 protected:
268 ARMFilterChooser *Owner; // points to the FilterChooser who owns this filter
269 unsigned StartBit; // the starting bit position
270 unsigned NumBits; // number of bits to filter
271 bool Mixed; // a mixed region contains both set and unset bits
272
273 // Map of well-known segment value to the set of uid's with that value.
274 std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
275
276 // Set of uid's with non-constant segment values.
277 std::vector<unsigned> VariableInstructions;
278
279 // Map of well-known segment value to its delegate.
280 std::map<unsigned, ARMFilterChooser*> FilterChooserMap;
281
282 // Number of instructions which fall under FilteredInstructions category.
283 unsigned NumFiltered;
284
285 // Keeps track of the last opcode in the filtered bucket.
286 unsigned LastOpcFiltered;
287
288 // Number of instructions which fall under VariableInstructions category.
289 unsigned NumVariable;
290
291 public:
getNumFiltered()292 unsigned getNumFiltered() { return NumFiltered; }
getNumVariable()293 unsigned getNumVariable() { return NumVariable; }
getSingletonOpc()294 unsigned getSingletonOpc() {
295 assert(NumFiltered == 1);
296 return LastOpcFiltered;
297 }
298 // Return the filter chooser for the group of instructions without constant
299 // segment values.
getVariableFC()300 ARMFilterChooser &getVariableFC() {
301 assert(NumFiltered == 1);
302 assert(FilterChooserMap.size() == 1);
303 return *(FilterChooserMap.find((unsigned)-1)->second);
304 }
305
306 ARMFilter(const ARMFilter &f);
307 ARMFilter(ARMFilterChooser &owner, unsigned startBit, unsigned numBits,
308 bool mixed);
309
310 ~ARMFilter();
311
312 // Divides the decoding task into sub tasks and delegates them to the
313 // inferior FilterChooser's.
314 //
315 // A special case arises when there's only one entry in the filtered
316 // instructions. In order to unambiguously decode the singleton, we need to
317 // match the remaining undecoded encoding bits against the singleton.
318 void recurse();
319
320 // Emit code to decode instructions given a segment or segments of bits.
321 void emit(raw_ostream &o, unsigned &Indentation);
322
323 // Returns the number of fanout produced by the filter. More fanout implies
324 // the filter distinguishes more categories of instructions.
325 unsigned usefulness() const;
326 }; // End of class Filter
327
328 // These are states of our finite state machines used in FilterChooser's
329 // filterProcessor() which produces the filter candidates to use.
330 typedef enum {
331 ATTR_NONE,
332 ATTR_FILTERED,
333 ATTR_ALL_SET,
334 ATTR_ALL_UNSET,
335 ATTR_MIXED
336 } bitAttr_t;
337
338 /// ARMFilterChooser - FilterChooser chooses the best filter among a set of Filters
339 /// in order to perform the decoding of instructions at the current level.
340 ///
341 /// Decoding proceeds from the top down. Based on the well-known encoding bits
342 /// of instructions available, FilterChooser builds up the possible Filters that
343 /// can further the task of decoding by distinguishing among the remaining
344 /// candidate instructions.
345 ///
346 /// Once a filter has been chosen, it is called upon to divide the decoding task
347 /// into sub-tasks and delegates them to its inferior FilterChoosers for further
348 /// processings.
349 ///
350 /// It is useful to think of a Filter as governing the switch stmts of the
351 /// decoding tree. And each case is delegated to an inferior FilterChooser to
352 /// decide what further remaining bits to look at.
353 class ARMFilterChooser {
354 static TARGET_NAME_t TargetName;
355
356 protected:
357 friend class ARMFilter;
358
359 // Vector of codegen instructions to choose our filter.
360 const std::vector<const CodeGenInstruction*> &AllInstructions;
361
362 // Vector of uid's for this filter chooser to work on.
363 const std::vector<unsigned> Opcodes;
364
365 // Vector of candidate filters.
366 std::vector<ARMFilter> Filters;
367
368 // Array of bit values passed down from our parent.
369 // Set to all BIT_UNFILTERED's for Parent == NULL.
370 bit_value_t FilterBitValues[BIT_WIDTH];
371
372 // Links to the FilterChooser above us in the decoding tree.
373 ARMFilterChooser *Parent;
374
375 // Index of the best filter from Filters.
376 int BestIndex;
377
378 public:
setTargetName(TARGET_NAME_t tn)379 static void setTargetName(TARGET_NAME_t tn) { TargetName = tn; }
380
ARMFilterChooser(const ARMFilterChooser & FC)381 ARMFilterChooser(const ARMFilterChooser &FC) :
382 AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes),
383 Filters(FC.Filters), Parent(FC.Parent), BestIndex(FC.BestIndex) {
384 memcpy(FilterBitValues, FC.FilterBitValues, sizeof(FilterBitValues));
385 }
386
ARMFilterChooser(const std::vector<const CodeGenInstruction * > & Insts,const std::vector<unsigned> & IDs)387 ARMFilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
388 const std::vector<unsigned> &IDs) :
389 AllInstructions(Insts), Opcodes(IDs), Filters(), Parent(NULL),
390 BestIndex(-1) {
391 for (unsigned i = 0; i < BIT_WIDTH; ++i)
392 FilterBitValues[i] = BIT_UNFILTERED;
393
394 doFilter();
395 }
396
ARMFilterChooser(const std::vector<const CodeGenInstruction * > & Insts,const std::vector<unsigned> & IDs,bit_value_t (& ParentFilterBitValues)[BIT_WIDTH],ARMFilterChooser & parent)397 ARMFilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
398 const std::vector<unsigned> &IDs,
399 bit_value_t (&ParentFilterBitValues)[BIT_WIDTH],
400 ARMFilterChooser &parent) :
401 AllInstructions(Insts), Opcodes(IDs), Filters(), Parent(&parent),
402 BestIndex(-1) {
403 for (unsigned i = 0; i < BIT_WIDTH; ++i)
404 FilterBitValues[i] = ParentFilterBitValues[i];
405
406 doFilter();
407 }
408
409 // The top level filter chooser has NULL as its parent.
isTopLevel()410 bool isTopLevel() { return Parent == NULL; }
411
412 // This provides an opportunity for target specific code emission.
413 void emitTopHook(raw_ostream &o);
414
415 // Emit the top level typedef and decodeInstruction() function.
416 void emitTop(raw_ostream &o, unsigned &Indentation);
417
418 // This provides an opportunity for target specific code emission after
419 // emitTop().
420 void emitBot(raw_ostream &o, unsigned &Indentation);
421
422 protected:
423 // Populates the insn given the uid.
insnWithID(insn_t & Insn,unsigned Opcode) const424 void insnWithID(insn_t &Insn, unsigned Opcode) const {
425 if (AllInstructions[Opcode]->isPseudo)
426 return;
427
428 BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
429
430 for (unsigned i = 0; i < BIT_WIDTH; ++i)
431 Insn[i] = bitFromBits(Bits, i);
432
433 // Set Inst{21} to 1 (wback) when IndexModeBits == IndexModeUpd.
434 Record *R = AllInstructions[Opcode]->TheDef;
435 if (R->getValue("IndexModeBits") &&
436 getByteField(*R, "IndexModeBits") == IndexModeUpd)
437 Insn[21] = BIT_TRUE;
438 }
439
440 // Returns the record name.
nameWithID(unsigned Opcode) const441 const std::string &nameWithID(unsigned Opcode) const {
442 return AllInstructions[Opcode]->TheDef->getName();
443 }
444
445 // Populates the field of the insn given the start position and the number of
446 // consecutive bits to scan for.
447 //
448 // Returns false if there exists any uninitialized bit value in the range.
449 // Returns true, otherwise.
450 bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
451 unsigned NumBits) const;
452
453 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
454 /// filter array as a series of chars.
455 void dumpFilterArray(raw_ostream &o, bit_value_t (&filter)[BIT_WIDTH]);
456
457 /// dumpStack - dumpStack traverses the filter chooser chain and calls
458 /// dumpFilterArray on each filter chooser up to the top level one.
459 void dumpStack(raw_ostream &o, const char *prefix);
460
bestFilter()461 ARMFilter &bestFilter() {
462 assert(BestIndex != -1 && "BestIndex not set");
463 return Filters[BestIndex];
464 }
465
466 // Called from Filter::recurse() when singleton exists. For debug purpose.
467 void SingletonExists(unsigned Opc);
468
PositionFiltered(unsigned i)469 bool PositionFiltered(unsigned i) {
470 return ValueSet(FilterBitValues[i]);
471 }
472
473 // Calculates the island(s) needed to decode the instruction.
474 // This returns a lit of undecoded bits of an instructions, for example,
475 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
476 // decoded bits in order to verify that the instruction matches the Opcode.
477 unsigned getIslands(std::vector<unsigned> &StartBits,
478 std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
479 insn_t &Insn);
480
481 // The purpose of this function is for the API client to detect possible
482 // Load/Store Coprocessor instructions. If the coprocessor number is of
483 // the instruction is either 10 or 11, the decoder should not report the
484 // instruction as LDC/LDC2/STC/STC2, but should match against Advanced SIMD or
485 // VFP instructions.
LdStCopEncoding1(unsigned Opc)486 bool LdStCopEncoding1(unsigned Opc) {
487 const std::string &Name = nameWithID(Opc);
488 if (Name == "LDC_OFFSET" || Name == "LDC_OPTION" ||
489 Name == "LDC_POST" || Name == "LDC_PRE" ||
490 Name == "LDCL_OFFSET" || Name == "LDCL_OPTION" ||
491 Name == "LDCL_POST" || Name == "LDCL_PRE" ||
492 Name == "STC_OFFSET" || Name == "STC_OPTION" ||
493 Name == "STC_POST" || Name == "STC_PRE" ||
494 Name == "STCL_OFFSET" || Name == "STCL_OPTION" ||
495 Name == "STCL_POST" || Name == "STCL_PRE")
496 return true;
497 else
498 return false;
499 }
500
501 // Emits code to decode the singleton. Return true if we have matched all the
502 // well-known bits.
503 bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,unsigned Opc);
504
505 // Emits code to decode the singleton, and then to decode the rest.
506 void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
507 ARMFilter &Best);
508
509 // Assign a single filter and run with it.
510 void runSingleFilter(ARMFilterChooser &owner, unsigned startBit,
511 unsigned numBit, bool mixed);
512
513 // reportRegion is a helper function for filterProcessor to mark a region as
514 // eligible for use as a filter region.
515 void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
516 bool AllowMixed);
517
518 // FilterProcessor scans the well-known encoding bits of the instructions and
519 // builds up a list of candidate filters. It chooses the best filter and
520 // recursively descends down the decoding tree.
521 bool filterProcessor(bool AllowMixed, bool Greedy = true);
522
523 // Decides on the best configuration of filter(s) to use in order to decode
524 // the instructions. A conflict of instructions may occur, in which case we
525 // dump the conflict set to the standard error.
526 void doFilter();
527
528 // Emits code to decode our share of instructions. Returns true if the
529 // emitted code causes a return, which occurs if we know how to decode
530 // the instruction at this level or the instruction is not decodeable.
531 bool emit(raw_ostream &o, unsigned &Indentation);
532 };
533
534 ///////////////////////////
535 // //
536 // Filter Implmenetation //
537 // //
538 ///////////////////////////
539
ARMFilter(const ARMFilter & f)540 ARMFilter::ARMFilter(const ARMFilter &f) :
541 Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
542 FilteredInstructions(f.FilteredInstructions),
543 VariableInstructions(f.VariableInstructions),
544 FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered),
545 LastOpcFiltered(f.LastOpcFiltered), NumVariable(f.NumVariable) {
546 }
547
ARMFilter(ARMFilterChooser & owner,unsigned startBit,unsigned numBits,bool mixed)548 ARMFilter::ARMFilter(ARMFilterChooser &owner, unsigned startBit, unsigned numBits,
549 bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits),
550 Mixed(mixed) {
551 assert(StartBit + NumBits - 1 < BIT_WIDTH);
552
553 NumFiltered = 0;
554 LastOpcFiltered = 0;
555 NumVariable = 0;
556
557 for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
558 insn_t Insn;
559
560 // Populates the insn given the uid.
561 Owner->insnWithID(Insn, Owner->Opcodes[i]);
562
563 uint64_t Field;
564 // Scans the segment for possibly well-specified encoding bits.
565 bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
566
567 if (ok) {
568 // The encoding bits are well-known. Lets add the uid of the
569 // instruction into the bucket keyed off the constant field value.
570 LastOpcFiltered = Owner->Opcodes[i];
571 FilteredInstructions[Field].push_back(LastOpcFiltered);
572 ++NumFiltered;
573 } else {
574 // Some of the encoding bit(s) are unspecfied. This contributes to
575 // one additional member of "Variable" instructions.
576 VariableInstructions.push_back(Owner->Opcodes[i]);
577 ++NumVariable;
578 }
579 }
580
581 assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
582 && "Filter returns no instruction categories");
583 }
584
~ARMFilter()585 ARMFilter::~ARMFilter() {
586 std::map<unsigned, ARMFilterChooser*>::iterator filterIterator;
587 for (filterIterator = FilterChooserMap.begin();
588 filterIterator != FilterChooserMap.end();
589 filterIterator++) {
590 delete filterIterator->second;
591 }
592 }
593
594 // Divides the decoding task into sub tasks and delegates them to the
595 // inferior FilterChooser's.
596 //
597 // A special case arises when there's only one entry in the filtered
598 // instructions. In order to unambiguously decode the singleton, we need to
599 // match the remaining undecoded encoding bits against the singleton.
recurse()600 void ARMFilter::recurse() {
601 std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
602
603 bit_value_t BitValueArray[BIT_WIDTH];
604 // Starts by inheriting our parent filter chooser's filter bit values.
605 memcpy(BitValueArray, Owner->FilterBitValues, sizeof(BitValueArray));
606
607 unsigned bitIndex;
608
609 if (VariableInstructions.size()) {
610 // Conservatively marks each segment position as BIT_UNSET.
611 for (bitIndex = 0; bitIndex < NumBits; bitIndex++)
612 BitValueArray[StartBit + bitIndex] = BIT_UNSET;
613
614 // Delegates to an inferior filter chooser for further processing on this
615 // group of instructions whose segment values are variable.
616 FilterChooserMap.insert(std::pair<unsigned, ARMFilterChooser*>(
617 (unsigned)-1,
618 new ARMFilterChooser(Owner->AllInstructions,
619 VariableInstructions,
620 BitValueArray,
621 *Owner)
622 ));
623 }
624
625 // No need to recurse for a singleton filtered instruction.
626 // See also Filter::emit().
627 if (getNumFiltered() == 1) {
628 //Owner->SingletonExists(LastOpcFiltered);
629 assert(FilterChooserMap.size() == 1);
630 return;
631 }
632
633 // Otherwise, create sub choosers.
634 for (mapIterator = FilteredInstructions.begin();
635 mapIterator != FilteredInstructions.end();
636 mapIterator++) {
637
638 // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
639 for (bitIndex = 0; bitIndex < NumBits; bitIndex++) {
640 if (mapIterator->first & (1ULL << bitIndex))
641 BitValueArray[StartBit + bitIndex] = BIT_TRUE;
642 else
643 BitValueArray[StartBit + bitIndex] = BIT_FALSE;
644 }
645
646 // Delegates to an inferior filter chooser for further processing on this
647 // category of instructions.
648 FilterChooserMap.insert(std::pair<unsigned, ARMFilterChooser*>(
649 mapIterator->first,
650 new ARMFilterChooser(Owner->AllInstructions,
651 mapIterator->second,
652 BitValueArray,
653 *Owner)
654 ));
655 }
656 }
657
658 // Emit code to decode instructions given a segment or segments of bits.
emit(raw_ostream & o,unsigned & Indentation)659 void ARMFilter::emit(raw_ostream &o, unsigned &Indentation) {
660 o.indent(Indentation) << "// Check Inst{";
661
662 if (NumBits > 1)
663 o << (StartBit + NumBits - 1) << '-';
664
665 o << StartBit << "} ...\n";
666
667 o.indent(Indentation) << "switch (fieldFromInstruction(insn, "
668 << StartBit << ", " << NumBits << ")) {\n";
669
670 std::map<unsigned, ARMFilterChooser*>::iterator filterIterator;
671
672 bool DefaultCase = false;
673 for (filterIterator = FilterChooserMap.begin();
674 filterIterator != FilterChooserMap.end();
675 filterIterator++) {
676
677 // Field value -1 implies a non-empty set of variable instructions.
678 // See also recurse().
679 if (filterIterator->first == (unsigned)-1) {
680 DefaultCase = true;
681
682 o.indent(Indentation) << "default:\n";
683 o.indent(Indentation) << " break; // fallthrough\n";
684
685 // Closing curly brace for the switch statement.
686 // This is unconventional because we want the default processing to be
687 // performed for the fallthrough cases as well, i.e., when the "cases"
688 // did not prove a decoded instruction.
689 o.indent(Indentation) << "}\n";
690
691 } else
692 o.indent(Indentation) << "case " << filterIterator->first << ":\n";
693
694 // We arrive at a category of instructions with the same segment value.
695 // Now delegate to the sub filter chooser for further decodings.
696 // The case may fallthrough, which happens if the remaining well-known
697 // encoding bits do not match exactly.
698 if (!DefaultCase) { ++Indentation; ++Indentation; }
699
700 bool finished = filterIterator->second->emit(o, Indentation);
701 // For top level default case, there's no need for a break statement.
702 if (Owner->isTopLevel() && DefaultCase)
703 break;
704 if (!finished)
705 o.indent(Indentation) << "break;\n";
706
707 if (!DefaultCase) { --Indentation; --Indentation; }
708 }
709
710 // If there is no default case, we still need to supply a closing brace.
711 if (!DefaultCase) {
712 // Closing curly brace for the switch statement.
713 o.indent(Indentation) << "}\n";
714 }
715 }
716
717 // Returns the number of fanout produced by the filter. More fanout implies
718 // the filter distinguishes more categories of instructions.
usefulness() const719 unsigned ARMFilter::usefulness() const {
720 if (VariableInstructions.size())
721 return FilteredInstructions.size();
722 else
723 return FilteredInstructions.size() + 1;
724 }
725
726 //////////////////////////////////
727 // //
728 // Filterchooser Implementation //
729 // //
730 //////////////////////////////////
731
732 // Define the symbol here.
733 TARGET_NAME_t ARMFilterChooser::TargetName;
734
735 // This provides an opportunity for target specific code emission.
emitTopHook(raw_ostream & o)736 void ARMFilterChooser::emitTopHook(raw_ostream &o) {
737 if (TargetName == TARGET_ARM) {
738 // Emit code that references the ARMFormat data type.
739 o << "static const ARMFormat ARMFormats[] = {\n";
740 for (unsigned i = 0, e = AllInstructions.size(); i != e; ++i) {
741 const Record &Def = *(AllInstructions[i]->TheDef);
742 const std::string &Name = Def.getName();
743 if (Def.isSubClassOf("InstARM") || Def.isSubClassOf("InstThumb"))
744 o.indent(2) <<
745 stringForARMFormat((ARMFormat)getByteField(Def, "Form"));
746 else
747 o << " ARM_FORMAT_NA";
748
749 o << ",\t// Inst #" << i << " = " << Name << '\n';
750 }
751 o << " ARM_FORMAT_NA\t// Unreachable.\n";
752 o << "};\n\n";
753 }
754 }
755
756 // Emit the top level typedef and decodeInstruction() function.
emitTop(raw_ostream & o,unsigned & Indentation)757 void ARMFilterChooser::emitTop(raw_ostream &o, unsigned &Indentation) {
758 // Run the target specific emit hook.
759 emitTopHook(o);
760
761 switch (BIT_WIDTH) {
762 case 8:
763 o.indent(Indentation) << "typedef uint8_t field_t;\n";
764 break;
765 case 16:
766 o.indent(Indentation) << "typedef uint16_t field_t;\n";
767 break;
768 case 32:
769 o.indent(Indentation) << "typedef uint32_t field_t;\n";
770 break;
771 case 64:
772 o.indent(Indentation) << "typedef uint64_t field_t;\n";
773 break;
774 default:
775 assert(0 && "Unexpected instruction size!");
776 }
777
778 o << '\n';
779
780 o.indent(Indentation) << "static field_t " <<
781 "fieldFromInstruction(field_t insn, unsigned startBit, unsigned numBits)\n";
782
783 o.indent(Indentation) << "{\n";
784
785 ++Indentation; ++Indentation;
786 o.indent(Indentation) << "assert(startBit + numBits <= " << BIT_WIDTH
787 << " && \"Instruction field out of bounds!\");\n";
788 o << '\n';
789 o.indent(Indentation) << "field_t fieldMask;\n";
790 o << '\n';
791 o.indent(Indentation) << "if (numBits == " << BIT_WIDTH << ")\n";
792
793 ++Indentation; ++Indentation;
794 o.indent(Indentation) << "fieldMask = (field_t)-1;\n";
795 --Indentation; --Indentation;
796
797 o.indent(Indentation) << "else\n";
798
799 ++Indentation; ++Indentation;
800 o.indent(Indentation) << "fieldMask = ((1 << numBits) - 1) << startBit;\n";
801 --Indentation; --Indentation;
802
803 o << '\n';
804 o.indent(Indentation) << "return (insn & fieldMask) >> startBit;\n";
805 --Indentation; --Indentation;
806
807 o.indent(Indentation) << "}\n";
808
809 o << '\n';
810
811 o.indent(Indentation) <<"static uint16_t decodeInstruction(field_t insn) {\n";
812
813 ++Indentation; ++Indentation;
814 // Emits code to decode the instructions.
815 emit(o, Indentation);
816
817 o << '\n';
818 o.indent(Indentation) << "return 0;\n";
819 --Indentation; --Indentation;
820
821 o.indent(Indentation) << "}\n";
822
823 o << '\n';
824 }
825
826 // This provides an opportunity for target specific code emission after
827 // emitTop().
emitBot(raw_ostream & o,unsigned & Indentation)828 void ARMFilterChooser::emitBot(raw_ostream &o, unsigned &Indentation) {
829 if (TargetName != TARGET_THUMB) return;
830
831 // Emit code that decodes the Thumb ISA.
832 o.indent(Indentation)
833 << "static uint16_t decodeThumbInstruction(field_t insn) {\n";
834
835 ++Indentation; ++Indentation;
836
837 // Emits code to decode the instructions.
838 emit(o, Indentation);
839
840 o << '\n';
841 o.indent(Indentation) << "return 0;\n";
842
843 --Indentation; --Indentation;
844
845 o.indent(Indentation) << "}\n";
846 }
847
848 // Populates the field of the insn given the start position and the number of
849 // consecutive bits to scan for.
850 //
851 // Returns false if and on the first uninitialized bit value encountered.
852 // Returns true, otherwise.
fieldFromInsn(uint64_t & Field,insn_t & Insn,unsigned StartBit,unsigned NumBits) const853 bool ARMFilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
854 unsigned StartBit, unsigned NumBits) const {
855 Field = 0;
856
857 for (unsigned i = 0; i < NumBits; ++i) {
858 if (Insn[StartBit + i] == BIT_UNSET)
859 return false;
860
861 if (Insn[StartBit + i] == BIT_TRUE)
862 Field = Field | (1ULL << i);
863 }
864
865 return true;
866 }
867
868 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
869 /// filter array as a series of chars.
dumpFilterArray(raw_ostream & o,bit_value_t (& filter)[BIT_WIDTH])870 void ARMFilterChooser::dumpFilterArray(raw_ostream &o,
871 bit_value_t (&filter)[BIT_WIDTH]) {
872 unsigned bitIndex;
873
874 for (bitIndex = BIT_WIDTH; bitIndex > 0; bitIndex--) {
875 switch (filter[bitIndex - 1]) {
876 case BIT_UNFILTERED:
877 o << ".";
878 break;
879 case BIT_UNSET:
880 o << "_";
881 break;
882 case BIT_TRUE:
883 o << "1";
884 break;
885 case BIT_FALSE:
886 o << "0";
887 break;
888 }
889 }
890 }
891
892 /// dumpStack - dumpStack traverses the filter chooser chain and calls
893 /// dumpFilterArray on each filter chooser up to the top level one.
dumpStack(raw_ostream & o,const char * prefix)894 void ARMFilterChooser::dumpStack(raw_ostream &o, const char *prefix) {
895 ARMFilterChooser *current = this;
896
897 while (current) {
898 o << prefix;
899 dumpFilterArray(o, current->FilterBitValues);
900 o << '\n';
901 current = current->Parent;
902 }
903 }
904
905 // Called from Filter::recurse() when singleton exists. For debug purpose.
SingletonExists(unsigned Opc)906 void ARMFilterChooser::SingletonExists(unsigned Opc) {
907 insn_t Insn0;
908 insnWithID(Insn0, Opc);
909
910 errs() << "Singleton exists: " << nameWithID(Opc)
911 << " with its decoding dominating ";
912 for (unsigned i = 0; i < Opcodes.size(); ++i) {
913 if (Opcodes[i] == Opc) continue;
914 errs() << nameWithID(Opcodes[i]) << ' ';
915 }
916 errs() << '\n';
917
918 dumpStack(errs(), "\t\t");
919 for (unsigned i = 0; i < Opcodes.size(); i++) {
920 const std::string &Name = nameWithID(Opcodes[i]);
921
922 errs() << '\t' << Name << " ";
923 dumpBits(errs(),
924 getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
925 errs() << '\n';
926 }
927 }
928
929 // Calculates the island(s) needed to decode the instruction.
930 // This returns a list of undecoded bits of an instructions, for example,
931 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
932 // decoded bits in order to verify that the instruction matches the Opcode.
getIslands(std::vector<unsigned> & StartBits,std::vector<unsigned> & EndBits,std::vector<uint64_t> & FieldVals,insn_t & Insn)933 unsigned ARMFilterChooser::getIslands(std::vector<unsigned> &StartBits,
934 std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
935 insn_t &Insn) {
936 unsigned Num, BitNo;
937 Num = BitNo = 0;
938
939 uint64_t FieldVal = 0;
940
941 // 0: Init
942 // 1: Water (the bit value does not affect decoding)
943 // 2: Island (well-known bit value needed for decoding)
944 int State = 0;
945 int Val = -1;
946
947 for (unsigned i = 0; i < BIT_WIDTH; ++i) {
948 Val = Value(Insn[i]);
949 bool Filtered = PositionFiltered(i);
950 switch (State) {
951 default:
952 assert(0 && "Unreachable code!");
953 break;
954 case 0:
955 case 1:
956 if (Filtered || Val == -1)
957 State = 1; // Still in Water
958 else {
959 State = 2; // Into the Island
960 BitNo = 0;
961 StartBits.push_back(i);
962 FieldVal = Val;
963 }
964 break;
965 case 2:
966 if (Filtered || Val == -1) {
967 State = 1; // Into the Water
968 EndBits.push_back(i - 1);
969 FieldVals.push_back(FieldVal);
970 ++Num;
971 } else {
972 State = 2; // Still in Island
973 ++BitNo;
974 FieldVal = FieldVal | Val << BitNo;
975 }
976 break;
977 }
978 }
979 // If we are still in Island after the loop, do some housekeeping.
980 if (State == 2) {
981 EndBits.push_back(BIT_WIDTH - 1);
982 FieldVals.push_back(FieldVal);
983 ++Num;
984 }
985
986 assert(StartBits.size() == Num && EndBits.size() == Num &&
987 FieldVals.size() == Num);
988 return Num;
989 }
990
991 // Emits code to decode the singleton. Return true if we have matched all the
992 // well-known bits.
emitSingletonDecoder(raw_ostream & o,unsigned & Indentation,unsigned Opc)993 bool ARMFilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
994 unsigned Opc) {
995 std::vector<unsigned> StartBits;
996 std::vector<unsigned> EndBits;
997 std::vector<uint64_t> FieldVals;
998 insn_t Insn;
999 insnWithID(Insn, Opc);
1000
1001 // This provides a good opportunity to check for possible Ld/St Coprocessor
1002 // Opcode and escapes if the coproc # is either 10 or 11. It is a NEON/VFP
1003 // instruction is disguise.
1004 if (TargetName == TARGET_ARM && LdStCopEncoding1(Opc)) {
1005 o.indent(Indentation);
1006 // A8.6.51 & A8.6.188
1007 // If coproc = 0b101?, i.e, slice(insn, 11, 8) = 10 or 11, escape.
1008 o << "if (fieldFromInstruction(insn, 9, 3) == 5) break; // fallthrough\n";
1009 }
1010
1011 // Look for islands of undecoded bits of the singleton.
1012 getIslands(StartBits, EndBits, FieldVals, Insn);
1013
1014 unsigned Size = StartBits.size();
1015 unsigned I, NumBits;
1016
1017 // If we have matched all the well-known bits, just issue a return.
1018 if (Size == 0) {
1019 o.indent(Indentation) << "return " << Opc << "; // " << nameWithID(Opc)
1020 << '\n';
1021 return true;
1022 }
1023
1024 // Otherwise, there are more decodings to be done!
1025
1026 // Emit code to match the island(s) for the singleton.
1027 o.indent(Indentation) << "// Check ";
1028
1029 for (I = Size; I != 0; --I) {
1030 o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} ";
1031 if (I > 1)
1032 o << "&& ";
1033 else
1034 o << "for singleton decoding...\n";
1035 }
1036
1037 o.indent(Indentation) << "if (";
1038
1039 for (I = Size; I != 0; --I) {
1040 NumBits = EndBits[I-1] - StartBits[I-1] + 1;
1041 o << "fieldFromInstruction(insn, " << StartBits[I-1] << ", " << NumBits
1042 << ") == " << FieldVals[I-1];
1043 if (I > 1)
1044 o << " && ";
1045 else
1046 o << ")\n";
1047 }
1048
1049 o.indent(Indentation) << " return " << Opc << "; // " << nameWithID(Opc)
1050 << '\n';
1051
1052 return false;
1053 }
1054
1055 // Emits code to decode the singleton, and then to decode the rest.
emitSingletonDecoder(raw_ostream & o,unsigned & Indentation,ARMFilter & Best)1056 void ARMFilterChooser::emitSingletonDecoder(raw_ostream &o,
1057 unsigned &Indentation,
1058 ARMFilter &Best) {
1059
1060 unsigned Opc = Best.getSingletonOpc();
1061
1062 emitSingletonDecoder(o, Indentation, Opc);
1063
1064 // Emit code for the rest.
1065 o.indent(Indentation) << "else\n";
1066
1067 Indentation += 2;
1068 Best.getVariableFC().emit(o, Indentation);
1069 Indentation -= 2;
1070 }
1071
1072 // Assign a single filter and run with it. Top level API client can initialize
1073 // with a single filter to start the filtering process.
runSingleFilter(ARMFilterChooser & owner,unsigned startBit,unsigned numBit,bool mixed)1074 void ARMFilterChooser::runSingleFilter(ARMFilterChooser &owner,
1075 unsigned startBit,
1076 unsigned numBit, bool mixed) {
1077 Filters.clear();
1078 ARMFilter F(*this, startBit, numBit, true);
1079 Filters.push_back(F);
1080 BestIndex = 0; // Sole Filter instance to choose from.
1081 bestFilter().recurse();
1082 }
1083
1084 // reportRegion is a helper function for filterProcessor to mark a region as
1085 // eligible for use as a filter region.
reportRegion(bitAttr_t RA,unsigned StartBit,unsigned BitIndex,bool AllowMixed)1086 void ARMFilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
1087 unsigned BitIndex, bool AllowMixed) {
1088 if (RA == ATTR_MIXED && AllowMixed)
1089 Filters.push_back(ARMFilter(*this, StartBit, BitIndex - StartBit, true));
1090 else if (RA == ATTR_ALL_SET && !AllowMixed)
1091 Filters.push_back(ARMFilter(*this, StartBit, BitIndex - StartBit, false));
1092 }
1093
1094 // FilterProcessor scans the well-known encoding bits of the instructions and
1095 // builds up a list of candidate filters. It chooses the best filter and
1096 // recursively descends down the decoding tree.
filterProcessor(bool AllowMixed,bool Greedy)1097 bool ARMFilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
1098 Filters.clear();
1099 BestIndex = -1;
1100 unsigned numInstructions = Opcodes.size();
1101
1102 assert(numInstructions && "Filter created with no instructions");
1103
1104 // No further filtering is necessary.
1105 if (numInstructions == 1)
1106 return true;
1107
1108 // Heuristics. See also doFilter()'s "Heuristics" comment when num of
1109 // instructions is 3.
1110 if (AllowMixed && !Greedy) {
1111 assert(numInstructions == 3);
1112
1113 for (unsigned i = 0; i < Opcodes.size(); ++i) {
1114 std::vector<unsigned> StartBits;
1115 std::vector<unsigned> EndBits;
1116 std::vector<uint64_t> FieldVals;
1117 insn_t Insn;
1118
1119 insnWithID(Insn, Opcodes[i]);
1120
1121 // Look for islands of undecoded bits of any instruction.
1122 if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
1123 // Found an instruction with island(s). Now just assign a filter.
1124 runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1,
1125 true);
1126 return true;
1127 }
1128 }
1129 }
1130
1131 unsigned BitIndex, InsnIndex;
1132
1133 // We maintain BIT_WIDTH copies of the bitAttrs automaton.
1134 // The automaton consumes the corresponding bit from each
1135 // instruction.
1136 //
1137 // Input symbols: 0, 1, and _ (unset).
1138 // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
1139 // Initial state: NONE.
1140 //
1141 // (NONE) ------- [01] -> (ALL_SET)
1142 // (NONE) ------- _ ----> (ALL_UNSET)
1143 // (ALL_SET) ---- [01] -> (ALL_SET)
1144 // (ALL_SET) ---- _ ----> (MIXED)
1145 // (ALL_UNSET) -- [01] -> (MIXED)
1146 // (ALL_UNSET) -- _ ----> (ALL_UNSET)
1147 // (MIXED) ------ . ----> (MIXED)
1148 // (FILTERED)---- . ----> (FILTERED)
1149
1150 bitAttr_t bitAttrs[BIT_WIDTH];
1151
1152 // FILTERED bit positions provide no entropy and are not worthy of pursuing.
1153 // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
1154 for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex)
1155 if (FilterBitValues[BitIndex] == BIT_TRUE ||
1156 FilterBitValues[BitIndex] == BIT_FALSE)
1157 bitAttrs[BitIndex] = ATTR_FILTERED;
1158 else
1159 bitAttrs[BitIndex] = ATTR_NONE;
1160
1161 for (InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
1162 insn_t insn;
1163
1164 insnWithID(insn, Opcodes[InsnIndex]);
1165
1166 for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex) {
1167 switch (bitAttrs[BitIndex]) {
1168 case ATTR_NONE:
1169 if (insn[BitIndex] == BIT_UNSET)
1170 bitAttrs[BitIndex] = ATTR_ALL_UNSET;
1171 else
1172 bitAttrs[BitIndex] = ATTR_ALL_SET;
1173 break;
1174 case ATTR_ALL_SET:
1175 if (insn[BitIndex] == BIT_UNSET)
1176 bitAttrs[BitIndex] = ATTR_MIXED;
1177 break;
1178 case ATTR_ALL_UNSET:
1179 if (insn[BitIndex] != BIT_UNSET)
1180 bitAttrs[BitIndex] = ATTR_MIXED;
1181 break;
1182 case ATTR_MIXED:
1183 case ATTR_FILTERED:
1184 break;
1185 }
1186 }
1187 }
1188
1189 // The regionAttr automaton consumes the bitAttrs automatons' state,
1190 // lowest-to-highest.
1191 //
1192 // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
1193 // States: NONE, ALL_SET, MIXED
1194 // Initial state: NONE
1195 //
1196 // (NONE) ----- F --> (NONE)
1197 // (NONE) ----- S --> (ALL_SET) ; and set region start
1198 // (NONE) ----- U --> (NONE)
1199 // (NONE) ----- M --> (MIXED) ; and set region start
1200 // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region
1201 // (ALL_SET) -- S --> (ALL_SET)
1202 // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region
1203 // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region
1204 // (MIXED) ---- F --> (NONE) ; and report a MIXED region
1205 // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region
1206 // (MIXED) ---- U --> (NONE) ; and report a MIXED region
1207 // (MIXED) ---- M --> (MIXED)
1208
1209 bitAttr_t RA = ATTR_NONE;
1210 unsigned StartBit = 0;
1211
1212 for (BitIndex = 0; BitIndex < BIT_WIDTH; BitIndex++) {
1213 bitAttr_t bitAttr = bitAttrs[BitIndex];
1214
1215 assert(bitAttr != ATTR_NONE && "Bit without attributes");
1216
1217 switch (RA) {
1218 case ATTR_NONE:
1219 switch (bitAttr) {
1220 case ATTR_FILTERED:
1221 break;
1222 case ATTR_ALL_SET:
1223 StartBit = BitIndex;
1224 RA = ATTR_ALL_SET;
1225 break;
1226 case ATTR_ALL_UNSET:
1227 break;
1228 case ATTR_MIXED:
1229 StartBit = BitIndex;
1230 RA = ATTR_MIXED;
1231 break;
1232 default:
1233 assert(0 && "Unexpected bitAttr!");
1234 }
1235 break;
1236 case ATTR_ALL_SET:
1237 switch (bitAttr) {
1238 case ATTR_FILTERED:
1239 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1240 RA = ATTR_NONE;
1241 break;
1242 case ATTR_ALL_SET:
1243 break;
1244 case ATTR_ALL_UNSET:
1245 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1246 RA = ATTR_NONE;
1247 break;
1248 case ATTR_MIXED:
1249 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1250 StartBit = BitIndex;
1251 RA = ATTR_MIXED;
1252 break;
1253 default:
1254 assert(0 && "Unexpected bitAttr!");
1255 }
1256 break;
1257 case ATTR_MIXED:
1258 switch (bitAttr) {
1259 case ATTR_FILTERED:
1260 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1261 StartBit = BitIndex;
1262 RA = ATTR_NONE;
1263 break;
1264 case ATTR_ALL_SET:
1265 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1266 StartBit = BitIndex;
1267 RA = ATTR_ALL_SET;
1268 break;
1269 case ATTR_ALL_UNSET:
1270 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1271 RA = ATTR_NONE;
1272 break;
1273 case ATTR_MIXED:
1274 break;
1275 default:
1276 assert(0 && "Unexpected bitAttr!");
1277 }
1278 break;
1279 case ATTR_ALL_UNSET:
1280 assert(0 && "regionAttr state machine has no ATTR_UNSET state");
1281 case ATTR_FILTERED:
1282 assert(0 && "regionAttr state machine has no ATTR_FILTERED state");
1283 }
1284 }
1285
1286 // At the end, if we're still in ALL_SET or MIXED states, report a region
1287 switch (RA) {
1288 case ATTR_NONE:
1289 break;
1290 case ATTR_FILTERED:
1291 break;
1292 case ATTR_ALL_SET:
1293 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1294 break;
1295 case ATTR_ALL_UNSET:
1296 break;
1297 case ATTR_MIXED:
1298 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1299 break;
1300 }
1301
1302 // We have finished with the filter processings. Now it's time to choose
1303 // the best performing filter.
1304 BestIndex = 0;
1305 bool AllUseless = true;
1306 unsigned BestScore = 0;
1307
1308 for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
1309 unsigned Usefulness = Filters[i].usefulness();
1310
1311 if (Usefulness)
1312 AllUseless = false;
1313
1314 if (Usefulness > BestScore) {
1315 BestIndex = i;
1316 BestScore = Usefulness;
1317 }
1318 }
1319
1320 if (!AllUseless)
1321 bestFilter().recurse();
1322
1323 return !AllUseless;
1324 } // end of FilterChooser::filterProcessor(bool)
1325
1326 // Decides on the best configuration of filter(s) to use in order to decode
1327 // the instructions. A conflict of instructions may occur, in which case we
1328 // dump the conflict set to the standard error.
doFilter()1329 void ARMFilterChooser::doFilter() {
1330 unsigned Num = Opcodes.size();
1331 assert(Num && "FilterChooser created with no instructions");
1332
1333 // Heuristics: Use Inst{31-28} as the top level filter for ARM ISA.
1334 if (TargetName == TARGET_ARM && Parent == NULL) {
1335 runSingleFilter(*this, 28, 4, false);
1336 return;
1337 }
1338
1339 // Try regions of consecutive known bit values first.
1340 if (filterProcessor(false))
1341 return;
1342
1343 // Then regions of mixed bits (both known and unitialized bit values allowed).
1344 if (filterProcessor(true))
1345 return;
1346
1347 // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
1348 // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
1349 // well-known encoding pattern. In such case, we backtrack and scan for the
1350 // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
1351 if (Num == 3 && filterProcessor(true, false))
1352 return;
1353
1354 // If we come to here, the instruction decoding has failed.
1355 // Set the BestIndex to -1 to indicate so.
1356 BestIndex = -1;
1357 }
1358
1359 // Emits code to decode our share of instructions. Returns true if the
1360 // emitted code causes a return, which occurs if we know how to decode
1361 // the instruction at this level or the instruction is not decodeable.
emit(raw_ostream & o,unsigned & Indentation)1362 bool ARMFilterChooser::emit(raw_ostream &o, unsigned &Indentation) {
1363 if (Opcodes.size() == 1)
1364 // There is only one instruction in the set, which is great!
1365 // Call emitSingletonDecoder() to see whether there are any remaining
1366 // encodings bits.
1367 return emitSingletonDecoder(o, Indentation, Opcodes[0]);
1368
1369 // Choose the best filter to do the decodings!
1370 if (BestIndex != -1) {
1371 ARMFilter &Best = bestFilter();
1372 if (Best.getNumFiltered() == 1)
1373 emitSingletonDecoder(o, Indentation, Best);
1374 else
1375 bestFilter().emit(o, Indentation);
1376 return false;
1377 }
1378
1379 // If we reach here, there is a conflict in decoding. Let's resolve the known
1380 // conflicts!
1381 if ((TargetName == TARGET_ARM || TargetName == TARGET_THUMB) &&
1382 Opcodes.size() == 2) {
1383 // Resolve the known conflict sets:
1384 //
1385 // 1. source registers are identical => VMOVDneon; otherwise => VORRd
1386 // 2. source registers are identical => VMOVQ; otherwise => VORRq
1387 // 3. LDR, LDRcp => return LDR for now.
1388 // FIXME: How can we distinguish between LDR and LDRcp? Do we need to?
1389 // 4. tLDMIA, tLDMIA_UPD => Rn = Inst{10-8}, reglist = Inst{7-0},
1390 // wback = registers<Rn> = 0
1391 // NOTE: (tLDM, tLDM_UPD) resolution must come before Advanced SIMD
1392 // addressing mode resolution!!!
1393 // 5. VLD[234]LN*/VST[234]LN* vs. VLD[234]LN*_UPD/VST[234]LN*_UPD conflicts
1394 // are resolved returning the non-UPD versions of the instructions if the
1395 // Rm field, i.e., Inst{3-0} is 0b1111. This is specified in A7.7.1
1396 // Advanced SIMD addressing mode.
1397 const std::string &name1 = nameWithID(Opcodes[0]);
1398 const std::string &name2 = nameWithID(Opcodes[1]);
1399 if ((name1 == "VMOVDneon" && name2 == "VORRd") ||
1400 (name1 == "VMOVQ" && name2 == "VORRq")) {
1401 // Inserting the opening curly brace for this case block.
1402 --Indentation; --Indentation;
1403 o.indent(Indentation) << "{\n";
1404 ++Indentation; ++Indentation;
1405
1406 o.indent(Indentation)
1407 << "field_t N = fieldFromInstruction(insn, 7, 1), "
1408 << "M = fieldFromInstruction(insn, 5, 1);\n";
1409 o.indent(Indentation)
1410 << "field_t Vn = fieldFromInstruction(insn, 16, 4), "
1411 << "Vm = fieldFromInstruction(insn, 0, 4);\n";
1412 o.indent(Indentation)
1413 << "return (N == M && Vn == Vm) ? "
1414 << Opcodes[0] << " /* " << name1 << " */ : "
1415 << Opcodes[1] << " /* " << name2 << " */ ;\n";
1416
1417 // Inserting the closing curly brace for this case block.
1418 --Indentation; --Indentation;
1419 o.indent(Indentation) << "}\n";
1420 ++Indentation; ++Indentation;
1421
1422 return true;
1423 }
1424 if (name1 == "LDR" && name2 == "LDRcp") {
1425 o.indent(Indentation)
1426 << "return " << Opcodes[0]
1427 << "; // Returning LDR for {LDR, LDRcp}\n";
1428 return true;
1429 }
1430 if (name1 == "tLDMIA" && name2 == "tLDMIA_UPD") {
1431 // Inserting the opening curly brace for this case block.
1432 --Indentation; --Indentation;
1433 o.indent(Indentation) << "{\n";
1434 ++Indentation; ++Indentation;
1435
1436 o.indent(Indentation)
1437 << "unsigned Rn = fieldFromInstruction(insn, 8, 3), "
1438 << "list = fieldFromInstruction(insn, 0, 8);\n";
1439 o.indent(Indentation)
1440 << "return ((list >> Rn) & 1) == 0 ? "
1441 << Opcodes[1] << " /* " << name2 << " */ : "
1442 << Opcodes[0] << " /* " << name1 << " */ ;\n";
1443
1444 // Inserting the closing curly brace for this case block.
1445 --Indentation; --Indentation;
1446 o.indent(Indentation) << "}\n";
1447 ++Indentation; ++Indentation;
1448
1449 return true;
1450 }
1451 if (sameStringExceptSuffix(name1, name2, "_UPD")) {
1452 o.indent(Indentation)
1453 << "return fieldFromInstruction(insn, 0, 4) == 15 ? " << Opcodes[0]
1454 << " /* " << name1 << " */ : " << Opcodes[1] << "/* " << name2
1455 << " */ ; // Advanced SIMD addressing mode\n";
1456 return true;
1457 }
1458
1459 // Otherwise, it does not belong to the known conflict sets.
1460 }
1461
1462 // We don't know how to decode these instructions! Return 0 and dump the
1463 // conflict set!
1464 o.indent(Indentation) << "return 0;" << " // Conflict set: ";
1465 for (int i = 0, N = Opcodes.size(); i < N; ++i) {
1466 o << nameWithID(Opcodes[i]);
1467 if (i < (N - 1))
1468 o << ", ";
1469 else
1470 o << '\n';
1471 }
1472
1473 // Print out useful conflict information for postmortem analysis.
1474 errs() << "Decoding Conflict:\n";
1475
1476 dumpStack(errs(), "\t\t");
1477
1478 for (unsigned i = 0; i < Opcodes.size(); i++) {
1479 const std::string &Name = nameWithID(Opcodes[i]);
1480
1481 errs() << '\t' << Name << " ";
1482 dumpBits(errs(),
1483 getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
1484 errs() << '\n';
1485 }
1486
1487 return true;
1488 }
1489
1490
1491 ////////////////////////////////////////////
1492 // //
1493 // ARMDEBackend //
1494 // (Helper class for ARMDecoderEmitter) //
1495 // //
1496 ////////////////////////////////////////////
1497
1498 class ARMDecoderEmitter::ARMDEBackend {
1499 public:
ARMDEBackend(ARMDecoderEmitter & frontend,RecordKeeper & Records)1500 ARMDEBackend(ARMDecoderEmitter &frontend, RecordKeeper &Records) :
1501 NumberedInstructions(),
1502 Opcodes(),
1503 Frontend(frontend),
1504 Target(Records),
1505 FC(NULL)
1506 {
1507 if (Target.getName() == "ARM")
1508 TargetName = TARGET_ARM;
1509 else {
1510 errs() << "Target name " << Target.getName() << " not recognized\n";
1511 assert(0 && "Unknown target");
1512 }
1513
1514 // Populate the instructions for our TargetName.
1515 populateInstructions();
1516 }
1517
~ARMDEBackend()1518 ~ARMDEBackend() {
1519 if (FC) {
1520 delete FC;
1521 FC = NULL;
1522 }
1523 }
1524
getInstructionsByEnumValue(std::vector<const CodeGenInstruction * > & NumberedInstructions)1525 void getInstructionsByEnumValue(std::vector<const CodeGenInstruction*>
1526 &NumberedInstructions) {
1527 // We must emit the PHI opcode first...
1528 std::string Namespace = Target.getInstNamespace();
1529 assert(!Namespace.empty() && "No instructions defined.");
1530
1531 NumberedInstructions = Target.getInstructionsByEnumValue();
1532 }
1533
1534 bool populateInstruction(const CodeGenInstruction &CGI, TARGET_NAME_t TN);
1535
1536 void populateInstructions();
1537
1538 // Emits disassembler code for instruction decoding. This delegates to the
1539 // FilterChooser instance to do the heavy lifting.
1540 void emit(raw_ostream &o);
1541
1542 protected:
1543 std::vector<const CodeGenInstruction*> NumberedInstructions;
1544 std::vector<unsigned> Opcodes;
1545 // Special case for the ARM chip, which supports ARM and Thumb ISAs.
1546 // Opcodes2 will be populated with the Thumb opcodes.
1547 std::vector<unsigned> Opcodes2;
1548 ARMDecoderEmitter &Frontend;
1549 CodeGenTarget Target;
1550 ARMFilterChooser *FC;
1551
1552 TARGET_NAME_t TargetName;
1553 };
1554
1555 bool ARMDecoderEmitter::
populateInstruction(const CodeGenInstruction & CGI,TARGET_NAME_t TN)1556 ARMDEBackend::populateInstruction(const CodeGenInstruction &CGI,
1557 TARGET_NAME_t TN) {
1558 const Record &Def = *CGI.TheDef;
1559 const StringRef Name = Def.getName();
1560 uint8_t Form = getByteField(Def, "Form");
1561
1562 BitsInit &Bits = getBitsField(Def, "Inst");
1563
1564 // If all the bit positions are not specified; do not decode this instruction.
1565 // We are bound to fail! For proper disassembly, the well-known encoding bits
1566 // of the instruction must be fully specified.
1567 //
1568 // This also removes pseudo instructions from considerations of disassembly,
1569 // which is a better design and less fragile than the name matchings.
1570 if (Bits.allInComplete()) return false;
1571
1572 // Ignore "asm parser only" instructions.
1573 if (Def.getValueAsBit("isAsmParserOnly"))
1574 return false;
1575
1576 if (TN == TARGET_ARM) {
1577 if (Form == ARM_FORMAT_PSEUDO)
1578 return false;
1579 if (thumbInstruction(Form))
1580 return false;
1581
1582 // Tail calls are other patterns that generate existing instructions.
1583 if (Name == "TCRETURNdi" || Name == "TCRETURNdiND" ||
1584 Name == "TCRETURNri" || Name == "TCRETURNriND" ||
1585 Name == "TAILJMPd" || Name == "TAILJMPdt" ||
1586 Name == "TAILJMPdND" || Name == "TAILJMPdNDt" ||
1587 Name == "TAILJMPr" || Name == "TAILJMPrND" ||
1588 Name == "MOVr_TC")
1589 return false;
1590
1591 // Delegate ADR disassembly to the more generic ADDri/SUBri instructions.
1592 if (Name == "ADR")
1593 return false;
1594
1595 //
1596 // The following special cases are for conflict resolutions.
1597 //
1598
1599 // A8-598: VEXT
1600 // Vector Extract extracts elements from the bottom end of the second
1601 // operand vector and the top end of the first, concatenates them and
1602 // places the result in the destination vector. The elements of the
1603 // vectors are treated as being 8-bit bitfields. There is no distinction
1604 // between data types. The size of the operation can be specified in
1605 // assembler as vext.size. If the value is 16, 32, or 64, the syntax is
1606 // a pseudo-instruction for a VEXT instruction specifying the equivalent
1607 // number of bytes.
1608 //
1609 // Variants VEXTd16, VEXTd32, VEXTd8, and VEXTdf are reduced to VEXTd8;
1610 // variants VEXTq16, VEXTq32, VEXTq8, and VEXTqf are reduced to VEXTq8.
1611 if (Name == "VEXTd16" || Name == "VEXTd32" || Name == "VEXTdf" ||
1612 Name == "VEXTq16" || Name == "VEXTq32" || Name == "VEXTqf")
1613 return false;
1614 } else if (TN == TARGET_THUMB) {
1615 if (!thumbInstruction(Form))
1616 return false;
1617
1618 // A8.6.25 BX. Use the generic tBX_Rm, ignore tBX_RET and tBX_RET_vararg.
1619 if (Name == "tBX_RET" || Name == "tBX_RET_vararg")
1620 return false;
1621
1622 // Ignore tADR, prefer tADDrPCi.
1623 if (Name == "tADR")
1624 return false;
1625
1626 // Delegate t2ADR disassembly to the more generic t2ADDri12/t2SUBri12
1627 // instructions.
1628 if (Name == "t2ADR")
1629 return false;
1630
1631 // Ignore tADDrSP, tADDspr, and tPICADD, prefer the generic tADDhirr.
1632 // Ignore t2SUBrSPs, prefer the t2SUB[S]r[r|s].
1633 // Ignore t2ADDrSPs, prefer the t2ADD[S]r[r|s].
1634 if (Name == "tADDrSP" || Name == "tADDspr" || Name == "tPICADD" ||
1635 Name == "t2SUBrSPs" || Name == "t2ADDrSPs")
1636 return false;
1637
1638 // FIXME: Use ldr.n to work around a Darwin assembler bug.
1639 // Introduce a workaround with tLDRpciDIS opcode.
1640 if (Name == "tLDRpci")
1641 return false;
1642
1643 // Ignore t2LDRDpci, prefer the generic t2LDRDi8, t2LDRD_PRE, t2LDRD_POST.
1644 if (Name == "t2LDRDpci")
1645 return false;
1646
1647 // Resolve conflicts:
1648 //
1649 // t2LDMIA_RET conflict with t2LDM (ditto)
1650 // tMOVCCi conflicts with tMOVi8
1651 // tMOVCCr conflicts with tMOVgpr2gpr
1652 // tLDRcp conflicts with tLDRspi
1653 // t2MOVCCi16 conflicts with tMOVi16
1654 if (Name == "t2LDMIA_RET" ||
1655 Name == "tMOVCCi" || Name == "tMOVCCr" ||
1656 Name == "tLDRcp" ||
1657 Name == "t2MOVCCi16")
1658 return false;
1659 }
1660
1661 DEBUG({
1662 // Dumps the instruction encoding format.
1663 switch (TargetName) {
1664 case TARGET_ARM:
1665 case TARGET_THUMB:
1666 errs() << Name << " " << stringForARMFormat((ARMFormat)Form);
1667 break;
1668 }
1669
1670 errs() << " ";
1671
1672 // Dumps the instruction encoding bits.
1673 dumpBits(errs(), Bits);
1674
1675 errs() << '\n';
1676
1677 // Dumps the list of operand info.
1678 for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
1679 const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
1680 const std::string &OperandName = Info.Name;
1681 const Record &OperandDef = *Info.Rec;
1682
1683 errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
1684 }
1685 });
1686
1687 return true;
1688 }
1689
populateInstructions()1690 void ARMDecoderEmitter::ARMDEBackend::populateInstructions() {
1691 getInstructionsByEnumValue(NumberedInstructions);
1692
1693 unsigned numUIDs = NumberedInstructions.size();
1694 if (TargetName == TARGET_ARM) {
1695 for (unsigned uid = 0; uid < numUIDs; uid++) {
1696 // filter out intrinsics
1697 if (!NumberedInstructions[uid]->TheDef->isSubClassOf("InstARM"))
1698 continue;
1699
1700 if (populateInstruction(*NumberedInstructions[uid], TargetName))
1701 Opcodes.push_back(uid);
1702 }
1703
1704 // Special handling for the ARM chip, which supports two modes of execution.
1705 // This branch handles the Thumb opcodes.
1706 for (unsigned uid = 0; uid < numUIDs; uid++) {
1707 // filter out intrinsics
1708 if (!NumberedInstructions[uid]->TheDef->isSubClassOf("InstARM")
1709 && !NumberedInstructions[uid]->TheDef->isSubClassOf("InstThumb"))
1710 continue;
1711
1712 if (populateInstruction(*NumberedInstructions[uid], TARGET_THUMB))
1713 Opcodes2.push_back(uid);
1714 }
1715
1716 return;
1717 }
1718
1719 // For other targets.
1720 for (unsigned uid = 0; uid < numUIDs; uid++) {
1721 Record *R = NumberedInstructions[uid]->TheDef;
1722 if (R->getValueAsString("Namespace") == "TargetOpcode")
1723 continue;
1724
1725 if (populateInstruction(*NumberedInstructions[uid], TargetName))
1726 Opcodes.push_back(uid);
1727 }
1728 }
1729
1730 // Emits disassembler code for instruction decoding. This delegates to the
1731 // FilterChooser instance to do the heavy lifting.
emit(raw_ostream & o)1732 void ARMDecoderEmitter::ARMDEBackend::emit(raw_ostream &o) {
1733 switch (TargetName) {
1734 case TARGET_ARM:
1735 Frontend.EmitSourceFileHeader("ARM/Thumb Decoders", o);
1736 break;
1737 default:
1738 assert(0 && "Unreachable code!");
1739 }
1740
1741 o << "#include \"llvm/Support/DataTypes.h\"\n";
1742 o << "#include <assert.h>\n";
1743 o << '\n';
1744 o << "namespace llvm {\n\n";
1745
1746 ARMFilterChooser::setTargetName(TargetName);
1747
1748 switch (TargetName) {
1749 case TARGET_ARM: {
1750 // Emit common utility and ARM ISA decoder.
1751 FC = new ARMFilterChooser(NumberedInstructions, Opcodes);
1752 // Reset indentation level.
1753 unsigned Indentation = 0;
1754 FC->emitTop(o, Indentation);
1755 delete FC;
1756
1757 // Emit Thumb ISA decoder as well.
1758 ARMFilterChooser::setTargetName(TARGET_THUMB);
1759 FC = new ARMFilterChooser(NumberedInstructions, Opcodes2);
1760 // Reset indentation level.
1761 Indentation = 0;
1762 FC->emitBot(o, Indentation);
1763 break;
1764 }
1765 default:
1766 assert(0 && "Unreachable code!");
1767 }
1768
1769 o << "\n} // End llvm namespace \n";
1770 }
1771
1772 /////////////////////////
1773 // Backend interface //
1774 /////////////////////////
1775
initBackend()1776 void ARMDecoderEmitter::initBackend()
1777 {
1778 Backend = new ARMDEBackend(*this, Records);
1779 }
1780
run(raw_ostream & o)1781 void ARMDecoderEmitter::run(raw_ostream &o)
1782 {
1783 Backend->emit(o);
1784 }
1785
shutdownBackend()1786 void ARMDecoderEmitter::shutdownBackend()
1787 {
1788 delete Backend;
1789 Backend = NULL;
1790 }
1791