1 /* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 #include "tensorflow/core/kernels/fractional_pool_common.h"
16 
17 #include "tensorflow/core/lib/random/simple_philox.h"
18 
19 namespace tensorflow {
GeneratePoolingSequencePseudoRandom(int input_length,int output_length,GuardedPhiloxRandom * generator)20 static std::vector<int64> GeneratePoolingSequencePseudoRandom(
21     int input_length, int output_length, GuardedPhiloxRandom* generator) {
22   std::vector<int64> cum_seq(output_length + 1, 0);
23   std::vector<int64> diff(output_length, 0);
24 
25   double alpha = static_cast<double>(input_length) / output_length;
26   int k = input_length / output_length;
27 
28   // In the paper [1], author proposes the following procedure to generate a
29   // pseudo random pooling region:
30   //   1) Set a_0 = 1, a_Nout = Nin;
31   //   2) a_i = ceil(alpha*(u+i))
32   //      in which, i = 1, 2, ... , Nout-1
33   //                u is a random number in (0,1) for all i
34   //                alpha = Nin/Nout in (1,2)
35   // The sequence {a_i} should satisfy a_i-a_{i-1} = 1 or 2
36   // Note: for step 1), it makes more sense to make a_Nout = Nin+1, that way,
37   //    a_i-a_{i-1} = 1 or 2 is also true for i = Nout.
38   //
39   // However, there are choices of alpha and u that will make
40   // a_i - a_{i-1} > 2. This happens at the left boundary. For example, with
41   // alpha = 1.732, u = 0.8, then a_1 = 4, a_1-a_0 = 3.
42   // This is why u_max1 is needed, i.e. u is a random number in (0,u_max1)
43   // instead of (0,1).
44   // Define k = ceil(alpha)-1, then we require:
45   //   a_1 = alpha*(u+1) <= a_0+(k+1)
46   // ===> This gives u_max1 = (k+2)/alpha - 1.
47   //
48   // In addition, when extending the pooling sequence generation process for
49   // alpha beyond (1,2), e.g. (k,k+1); a check on the right boundary is also
50   // needed to make sure the last gap a_Nout-a_{Nout-1} >= k. Solving it gives
51   // u_max2 = (Nin+1-k)/alpha - (Nout-1)
52   // Here is an example where u > u_max2, alpha = 2.3, u = 0.7, u_max2 = 0.565,
53   // Nin = 23, Nout = 10; the sequence
54   // from a_0 to a_10 is:
55   // [1, 4, 7, 9, 11, 14, 16, 18, 21, 23, 24]
56   // The last gap is only 1.
57   //
58   // [1]: https://arxiv.org/abs/1412.6071
59   double u_max1 = (k + 2) / alpha - 1;
60   double u_max2 = (input_length + 1 - k) / alpha - (output_length - 1);
61   double max_u = std::min(u_max1, u_max2);
62 
63   // Generate random number in parallel.
64   auto local_gen = generator->ReserveSamples32(2);
65   random::SimplePhilox random(&local_gen);
66   const double u = random.RandDouble() * max_u;
67 
68   cum_seq[0] = 1;
69   cum_seq[output_length] = input_length + 1;
70   for (int i = 1; i < output_length; ++i) {
71     cum_seq[i] = static_cast<int>(ceil(alpha * (i + u)));
72   }
73 
74   for (int i = 0; i < output_length; ++i) {
75     diff[i] = cum_seq[i + 1] - cum_seq[i];
76   }
77 
78   return diff;
79 }
80 
GeneratePoolingSequenceRandom(int input_length,int output_length,GuardedPhiloxRandom * generator)81 static std::vector<int64> GeneratePoolingSequenceRandom(
82     int input_length, int output_length, GuardedPhiloxRandom* generator) {
83   int k = input_length / output_length;
84   int num_random_spot = input_length % output_length;
85   std::vector<int64> diff(output_length, k);
86 
87   for (int i = 0; i < num_random_spot; ++i) {
88     diff[i] += 1;
89   }
90 
91   // Randomly shuffle this vector.
92   auto local_gen = generator->ReserveSamples32(diff.size());
93   random::SingleSampleAdapter<random::PhiloxRandom> single(&local_gen);
94   const auto uniform = [&single](uint32 n) { return single() % n; };
95   RandomShuffle(diff.begin(), diff.end(), uniform);
96 
97   return diff;
98 }
99 
GeneratePoolingSequence(int input_length,int output_length,GuardedPhiloxRandom * generator,bool pseudo_random)100 std::vector<int64> GeneratePoolingSequence(int input_length, int output_length,
101                                            GuardedPhiloxRandom* generator,
102                                            bool pseudo_random) {
103   std::vector<int64> diff;
104   // This is a case that regular pooling can handle, just return diff with
105   // each element input_length/output_length.
106   if (input_length % output_length == 0) {
107     diff = std::vector<int64>(output_length, input_length / output_length);
108   }
109 
110   if (pseudo_random) {
111     diff = GeneratePoolingSequencePseudoRandom(input_length, output_length,
112                                                generator);
113   } else {
114     diff =
115         GeneratePoolingSequenceRandom(input_length, output_length, generator);
116   }
117 
118   // Sanity check.
119   int k = input_length / output_length;
120   for (int i = 0; i < output_length; ++i) {
121     // k<= diff[i] <= k+1.
122     DCHECK_GE(diff[i], k);
123     DCHECK_LE(diff[i], k + 1);
124   }
125 
126   // Return cumulative sequence.
127   std::vector<int64> cum_seq(output_length + 1, 0);
128   for (int i = 1; i < cum_seq.size(); ++i) {
129     cum_seq[i] = cum_seq[i - 1] + diff[i - 1];
130   }
131   return cum_seq;
132 }
133 
134 }  // namespace tensorflow
135