1 /* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 #include "tensorflow/lite/tools/optimize/quantization_utils.h"
16 #include "absl/memory/memory.h"
17 #include "tensorflow/lite/c/c_api_internal.h"
18 #include "tensorflow/lite/kernels/internal/round.h"
19 #include "tensorflow/lite/kernels/internal/tensor_utils.h"
20 #include "tensorflow/lite/kernels/internal/types.h"
21 
22 #include <cmath>
23 #include <cstdint>
24 
25 namespace tflite {
26 namespace optimize {
27 namespace utils {
28 
29 namespace {
30 const int8_t kMinQuantizedValue = -127;
31 const int8_t kMaxQuantizedValue = 127;
32 }  // namespace
33 
NumElements(const TensorT & tensor,uint64_t * num_elements)34 TfLiteStatus NumElements(const TensorT& tensor, uint64_t* num_elements) {
35   if (tensor.shape.empty()) {
36     return kTfLiteError;
37   }
38   *num_elements = 1;
39   for (const uint64_t dim : tensor.shape) {
40     *num_elements *= dim;
41   }
42   return kTfLiteOk;
43 }
44 
45 // Nudge min and max so that floating point 0 falls exactly on a quantized
46 // value, returning the nudges scale and zero_point.
47 //
48 // Although this code originates from FakeQuantization in quantized training,
49 // we may deviate from that implementation as we please since we do not fine
50 // tune the weights with quantized training.
GetAsymmetricQuantizationParams(float min,float max,const int quant_min,const int quant_max,QuantizationParametersT * quantization_params)51 void GetAsymmetricQuantizationParams(
52     float min, float max, const int quant_min, const int quant_max,
53     QuantizationParametersT* quantization_params) {
54   const float quant_min_float = static_cast<float>(quant_min);
55   const float quant_max_float = static_cast<float>(quant_max);
56   // Adjust the boundaries to guarantee 0 is included.
57   min = std::min(static_cast<float>(min), 0.0f);
58   max = std::max(static_cast<float>(max), 0.0f);
59   const float scale = (max - min) / (quant_max_float - quant_min_float);
60   // Scale can be zero if min and max are exactly 0.0f.
61   float zero_point_from_min = quant_min_float;
62   if (scale != 0) {
63     zero_point_from_min = quant_min_float - min / scale;
64   }
65   int64_t zero_point;
66   if (zero_point_from_min < quant_min_float) {
67     zero_point = static_cast<int64_t>(quant_min);
68   } else if (zero_point_from_min > quant_max_float) {
69     zero_point = static_cast<int64_t>(quant_max);
70   } else {
71     zero_point = static_cast<int64_t>(std::round(zero_point_from_min));
72   }
73   quantization_params->min = std::vector<float>(1, min);
74   quantization_params->max = std::vector<float>(1, max);
75   quantization_params->scale = std::vector<float>(1, scale);
76   quantization_params->zero_point = std::vector<int64_t>(1, zero_point);
77 }
78 
79 // Per-channel quantize a tensor at the given index and returns both scales and
80 // quantized values.
SymmetricPerChannelQuantization(const float * const input,const std::vector<int> & dimension,int32_t channel_dim_index,std::vector<float> * output_scales,std::vector<int8_t> * output_value)81 void SymmetricPerChannelQuantization(const float* const input,
82                                      const std::vector<int>& dimension,
83                                      int32_t channel_dim_index,
84                                      std::vector<float>* output_scales,
85                                      std::vector<int8_t>* output_value) {
86   const int32_t channel_dim_size = dimension[channel_dim_index];
87   std::vector<float> min_vals(channel_dim_size);
88   std::vector<float> max_vals(channel_dim_size);
89   std::vector<bool> has_min_max_value(channel_dim_size, false);
90   int indices[4];
91   RuntimeShape tensor_dims{dimension[0], dimension[1], dimension[2],
92                            dimension[3]};
93 
94   // Compute min max ranges per channel
95   for (indices[0] = 0; indices[0] < dimension[0]; indices[0]++) {
96     for (indices[1] = 0; indices[1] < dimension[1]; indices[1]++) {
97       for (indices[2] = 0; indices[2] < dimension[2]; indices[2]++) {
98         for (indices[3] = 0; indices[3] < dimension[3]; indices[3]++) {
99           int channel_idx = indices[channel_dim_index];
100           const float val = input[Offset(tensor_dims, indices)];
101           if (has_min_max_value[channel_idx]) {
102             if (min_vals[channel_idx] > val) {
103               min_vals[channel_idx] = val;
104             } else if (max_vals[channel_idx] < val) {
105               max_vals[channel_idx] = val;
106             }
107           } else {
108             min_vals[channel_idx] = val;
109             max_vals[channel_idx] = val;
110             has_min_max_value[channel_idx] = true;
111           }
112         }
113       }
114     }
115   }
116 
117   // Calculate scales per channel
118   std::vector<float> scale_invs(channel_dim_size);
119   const float half_scale = kMaxQuantizedValue;
120   for (size_t channel_idx = 0; channel_idx < channel_dim_size; channel_idx++) {
121     const float half_range = std::max(std::abs(min_vals[channel_idx]),
122                                       std::abs(max_vals[channel_idx]));
123     output_scales->at(channel_idx) = half_range / half_scale;
124     if (half_range == 0) {
125       scale_invs[channel_idx] = 0;
126     } else {
127       scale_invs[channel_idx] = half_scale / half_range;
128     }
129   }
130 
131   // Quantize the values.
132   SymmetricPerChannelQuantizeValues(input, scale_invs, dimension,
133                                     channel_dim_index, output_value);
134 }
135 
SymmetricPerChannelQuantizeValues(const float * const input,const std::vector<float> & scales_inv,const std::vector<int> & dimension,int32_t channel_dim_index,std::vector<int8_t> * output_value)136 void SymmetricPerChannelQuantizeValues(const float* const input,
137                                        const std::vector<float>& scales_inv,
138                                        const std::vector<int>& dimension,
139                                        int32_t channel_dim_index,
140                                        std::vector<int8_t>* output_value) {
141   // Quantize the values.
142   int indices[4];
143   RuntimeShape tensor_dims{dimension[0], dimension[1], dimension[2],
144                            dimension[3]};
145   for (indices[0] = 0; indices[0] < dimension[0]; indices[0]++) {
146     for (indices[1] = 0; indices[1] < dimension[1]; indices[1]++) {
147       for (indices[2] = 0; indices[2] < dimension[2]; indices[2]++) {
148         for (indices[3] = 0; indices[3] < dimension[3]; indices[3]++) {
149           int channel_idx = indices[channel_dim_index];
150           int index = Offset(tensor_dims, indices);
151           const float val = input[index];
152           const int32_t quantized_value =
153               static_cast<int32_t>(TfLiteRound(val * scales_inv[channel_idx]));
154           output_value->at(index) = std::min<int8_t>(
155               kMaxQuantizedValue,
156               std::max<int8_t>(kMinQuantizedValue, quantized_value));
157         }
158       }
159     }
160   }
161 }
162 
SymmetricQuantizeTensor(ModelT * model,TensorT * tensor)163 TfLiteStatus SymmetricQuantizeTensor(ModelT* model, TensorT* tensor) {
164   if (model == nullptr || tensor == nullptr) {
165     return kTfLiteError;
166   }
167 
168   BufferT* buffer = model->buffers[tensor->buffer].get();
169   if (buffer == nullptr) {
170     return kTfLiteError;
171   }
172   float* float_data = reinterpret_cast<float*>(buffer->data.data());
173   uint64_t num_elements;
174   TF_LITE_ENSURE_STATUS(utils::NumElements(*tensor, &num_elements));
175 
176   std::vector<int8_t> quantized_buffer;
177   quantized_buffer.resize(num_elements);
178 
179   float min_value, max_value, scaling_factor;
180   tensor_utils::SymmetricQuantizeFloats(float_data, num_elements,
181                                         quantized_buffer.data(), &min_value,
182                                         &max_value, &scaling_factor);
183 
184   if (tensor->quantization == nullptr) {
185     tensor->quantization = absl::make_unique<QuantizationParametersT>();
186   }
187   tensor->quantization->scale = std::vector<float>(1, scaling_factor);
188   tensor->quantization->zero_point = std::vector<int64_t>(1, 0);
189 
190   uint8_t* uint8_buffer = reinterpret_cast<uint8_t*>(quantized_buffer.data());
191   model->buffers[tensor->buffer]->data.assign(uint8_buffer,
192                                               uint8_buffer + num_elements);
193 
194   // Update the tensor type.
195   tensor->type = TensorType_INT8;
196 
197   return kTfLiteOk;
198 }
199 
200 }  // namespace utils
201 }  // namespace optimize
202 }  // namespace tflite
203