1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_RUNTIME_THREAD_INL_H_
18 #define ART_RUNTIME_THREAD_INL_H_
19 
20 #include "thread.h"
21 
22 #include "arch/instruction_set.h"
23 #include "base/aborting.h"
24 #include "base/casts.h"
25 #include "base/mutex-inl.h"
26 #include "base/time_utils.h"
27 #include "jni/jni_env_ext.h"
28 #include "managed_stack-inl.h"
29 #include "obj_ptr.h"
30 #include "thread-current-inl.h"
31 #include "thread_pool.h"
32 
33 namespace art {
34 
35 // Quickly access the current thread from a JNIEnv.
ThreadForEnv(JNIEnv * env)36 static inline Thread* ThreadForEnv(JNIEnv* env) {
37   JNIEnvExt* full_env(down_cast<JNIEnvExt*>(env));
38   return full_env->GetSelf();
39 }
40 
AllowThreadSuspension()41 inline void Thread::AllowThreadSuspension() {
42   DCHECK_EQ(Thread::Current(), this);
43   if (UNLIKELY(TestAllFlags())) {
44     CheckSuspend();
45   }
46   // Invalidate the current thread's object pointers (ObjPtr) to catch possible moving GC bugs due
47   // to missing handles.
48   PoisonObjectPointers();
49 }
50 
CheckSuspend()51 inline void Thread::CheckSuspend() {
52   DCHECK_EQ(Thread::Current(), this);
53   for (;;) {
54     if (ReadFlag(kCheckpointRequest)) {
55       RunCheckpointFunction();
56     } else if (ReadFlag(kSuspendRequest)) {
57       FullSuspendCheck();
58     } else if (ReadFlag(kEmptyCheckpointRequest)) {
59       RunEmptyCheckpoint();
60     } else {
61       break;
62     }
63   }
64 }
65 
CheckEmptyCheckpointFromWeakRefAccess(BaseMutex * cond_var_mutex)66 inline void Thread::CheckEmptyCheckpointFromWeakRefAccess(BaseMutex* cond_var_mutex) {
67   Thread* self = Thread::Current();
68   DCHECK_EQ(self, this);
69   for (;;) {
70     if (ReadFlag(kEmptyCheckpointRequest)) {
71       RunEmptyCheckpoint();
72       // Check we hold only an expected mutex when accessing weak ref.
73       if (kIsDebugBuild) {
74         for (int i = kLockLevelCount - 1; i >= 0; --i) {
75           BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i));
76           if (held_mutex != nullptr &&
77               held_mutex != Locks::mutator_lock_ &&
78               held_mutex != cond_var_mutex) {
79             CHECK(Locks::IsExpectedOnWeakRefAccess(held_mutex))
80                 << "Holding unexpected mutex " << held_mutex->GetName()
81                 << " when accessing weak ref";
82           }
83         }
84       }
85     } else {
86       break;
87     }
88   }
89 }
90 
CheckEmptyCheckpointFromMutex()91 inline void Thread::CheckEmptyCheckpointFromMutex() {
92   DCHECK_EQ(Thread::Current(), this);
93   for (;;) {
94     if (ReadFlag(kEmptyCheckpointRequest)) {
95       RunEmptyCheckpoint();
96     } else {
97       break;
98     }
99   }
100 }
101 
SetState(ThreadState new_state)102 inline ThreadState Thread::SetState(ThreadState new_state) {
103   // Should only be used to change between suspended states.
104   // Cannot use this code to change into or from Runnable as changing to Runnable should
105   // fail if old_state_and_flags.suspend_request is true and changing from Runnable might
106   // miss passing an active suspend barrier.
107   DCHECK_NE(new_state, kRunnable);
108   if (kIsDebugBuild && this != Thread::Current()) {
109     std::string name;
110     GetThreadName(name);
111     LOG(FATAL) << "Thread \"" << name << "\"(" << this << " != Thread::Current()="
112                << Thread::Current() << ") changing state to " << new_state;
113   }
114   union StateAndFlags old_state_and_flags;
115   old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
116   CHECK_NE(old_state_and_flags.as_struct.state, kRunnable);
117   tls32_.state_and_flags.as_struct.state = new_state;
118   return static_cast<ThreadState>(old_state_and_flags.as_struct.state);
119 }
120 
IsThreadSuspensionAllowable()121 inline bool Thread::IsThreadSuspensionAllowable() const {
122   if (tls32_.no_thread_suspension != 0) {
123     return false;
124   }
125   for (int i = kLockLevelCount - 1; i >= 0; --i) {
126     if (i != kMutatorLock &&
127         i != kUserCodeSuspensionLock &&
128         GetHeldMutex(static_cast<LockLevel>(i)) != nullptr) {
129       return false;
130     }
131   }
132   // Thread autoanalysis isn't able to understand that the GetHeldMutex(...) or AssertHeld means we
133   // have the mutex meaning we need to do this hack.
134   auto is_suspending_for_user_code = [this]() NO_THREAD_SAFETY_ANALYSIS {
135     return tls32_.user_code_suspend_count != 0;
136   };
137   if (GetHeldMutex(kUserCodeSuspensionLock) != nullptr && is_suspending_for_user_code()) {
138     return false;
139   }
140   return true;
141 }
142 
AssertThreadSuspensionIsAllowable(bool check_locks)143 inline void Thread::AssertThreadSuspensionIsAllowable(bool check_locks) const {
144   if (kIsDebugBuild) {
145     if (gAborting == 0) {
146       CHECK_EQ(0u, tls32_.no_thread_suspension) << tlsPtr_.last_no_thread_suspension_cause;
147     }
148     if (check_locks) {
149       bool bad_mutexes_held = false;
150       for (int i = kLockLevelCount - 1; i >= 0; --i) {
151         // We expect no locks except the mutator_lock_. User code suspension lock is OK as long as
152         // we aren't going to be held suspended due to SuspendReason::kForUserCode.
153         if (i != kMutatorLock && i != kUserCodeSuspensionLock) {
154           BaseMutex* held_mutex = GetHeldMutex(static_cast<LockLevel>(i));
155           if (held_mutex != nullptr) {
156             LOG(ERROR) << "holding \"" << held_mutex->GetName()
157                       << "\" at point where thread suspension is expected";
158             bad_mutexes_held = true;
159           }
160         }
161       }
162       // Make sure that if we hold the user_code_suspension_lock_ we aren't suspending due to
163       // user_code_suspend_count which would prevent the thread from ever waking up.  Thread
164       // autoanalysis isn't able to understand that the GetHeldMutex(...) or AssertHeld means we
165       // have the mutex meaning we need to do this hack.
166       auto is_suspending_for_user_code = [this]() NO_THREAD_SAFETY_ANALYSIS {
167         return tls32_.user_code_suspend_count != 0;
168       };
169       if (GetHeldMutex(kUserCodeSuspensionLock) != nullptr && is_suspending_for_user_code()) {
170         LOG(ERROR) << "suspending due to user-code while holding \""
171                    << Locks::user_code_suspension_lock_->GetName() << "\"! Thread would never "
172                    << "wake up.";
173         bad_mutexes_held = true;
174       }
175       if (gAborting == 0) {
176         CHECK(!bad_mutexes_held);
177       }
178     }
179   }
180 }
181 
TransitionToSuspendedAndRunCheckpoints(ThreadState new_state)182 inline void Thread::TransitionToSuspendedAndRunCheckpoints(ThreadState new_state) {
183   DCHECK_NE(new_state, kRunnable);
184   DCHECK_EQ(GetState(), kRunnable);
185   union StateAndFlags old_state_and_flags;
186   union StateAndFlags new_state_and_flags;
187   while (true) {
188     old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
189     if (UNLIKELY((old_state_and_flags.as_struct.flags & kCheckpointRequest) != 0)) {
190       RunCheckpointFunction();
191       continue;
192     }
193     if (UNLIKELY((old_state_and_flags.as_struct.flags & kEmptyCheckpointRequest) != 0)) {
194       RunEmptyCheckpoint();
195       continue;
196     }
197     // Change the state but keep the current flags (kCheckpointRequest is clear).
198     DCHECK_EQ((old_state_and_flags.as_struct.flags & kCheckpointRequest), 0);
199     DCHECK_EQ((old_state_and_flags.as_struct.flags & kEmptyCheckpointRequest), 0);
200     new_state_and_flags.as_struct.flags = old_state_and_flags.as_struct.flags;
201     new_state_and_flags.as_struct.state = new_state;
202 
203     // CAS the value with a memory ordering.
204     bool done =
205         tls32_.state_and_flags.as_atomic_int.CompareAndSetWeakRelease(old_state_and_flags.as_int,
206                                                                         new_state_and_flags.as_int);
207     if (LIKELY(done)) {
208       break;
209     }
210   }
211 }
212 
PassActiveSuspendBarriers()213 inline void Thread::PassActiveSuspendBarriers() {
214   while (true) {
215     uint16_t current_flags = tls32_.state_and_flags.as_struct.flags;
216     if (LIKELY((current_flags &
217                 (kCheckpointRequest | kEmptyCheckpointRequest | kActiveSuspendBarrier)) == 0)) {
218       break;
219     } else if ((current_flags & kActiveSuspendBarrier) != 0) {
220       PassActiveSuspendBarriers(this);
221     } else {
222       // Impossible
223       LOG(FATAL) << "Fatal, thread transitioned into suspended without running the checkpoint";
224     }
225   }
226 }
227 
TransitionFromRunnableToSuspended(ThreadState new_state)228 inline void Thread::TransitionFromRunnableToSuspended(ThreadState new_state) {
229   AssertThreadSuspensionIsAllowable();
230   PoisonObjectPointersIfDebug();
231   DCHECK_EQ(this, Thread::Current());
232   // Change to non-runnable state, thereby appearing suspended to the system.
233   TransitionToSuspendedAndRunCheckpoints(new_state);
234   // Mark the release of the share of the mutator_lock_.
235   Locks::mutator_lock_->TransitionFromRunnableToSuspended(this);
236   // Once suspended - check the active suspend barrier flag
237   PassActiveSuspendBarriers();
238 }
239 
TransitionFromSuspendedToRunnable()240 inline ThreadState Thread::TransitionFromSuspendedToRunnable() {
241   union StateAndFlags old_state_and_flags;
242   old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
243   int16_t old_state = old_state_and_flags.as_struct.state;
244   DCHECK_NE(static_cast<ThreadState>(old_state), kRunnable);
245   do {
246     Locks::mutator_lock_->AssertNotHeld(this);  // Otherwise we starve GC..
247     old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
248     DCHECK_EQ(old_state_and_flags.as_struct.state, old_state);
249     if (LIKELY(old_state_and_flags.as_struct.flags == 0)) {
250       // Optimize for the return from native code case - this is the fast path.
251       // Atomically change from suspended to runnable if no suspend request pending.
252       union StateAndFlags new_state_and_flags;
253       new_state_and_flags.as_int = old_state_and_flags.as_int;
254       new_state_and_flags.as_struct.state = kRunnable;
255 
256       // CAS the value with a memory barrier.
257       if (LIKELY(tls32_.state_and_flags.as_atomic_int.CompareAndSetWeakAcquire(
258                                                  old_state_and_flags.as_int,
259                                                  new_state_and_flags.as_int))) {
260         // Mark the acquisition of a share of the mutator_lock_.
261         Locks::mutator_lock_->TransitionFromSuspendedToRunnable(this);
262         break;
263       }
264     } else if ((old_state_and_flags.as_struct.flags & kActiveSuspendBarrier) != 0) {
265       PassActiveSuspendBarriers(this);
266     } else if ((old_state_and_flags.as_struct.flags &
267                 (kCheckpointRequest | kEmptyCheckpointRequest)) != 0) {
268       // Impossible
269       LOG(FATAL) << "Transitioning to runnable with checkpoint flag, "
270                  << " flags=" << old_state_and_flags.as_struct.flags
271                  << " state=" << old_state_and_flags.as_struct.state;
272     } else if ((old_state_and_flags.as_struct.flags & kSuspendRequest) != 0) {
273       // Wait while our suspend count is non-zero.
274 
275       // We pass null to the MutexLock as we may be in a situation where the
276       // runtime is shutting down. Guarding ourselves from that situation
277       // requires to take the shutdown lock, which is undesirable here.
278       Thread* thread_to_pass = nullptr;
279       if (kIsDebugBuild && !IsDaemon()) {
280         // We know we can make our debug locking checks on non-daemon threads,
281         // so re-enable them on debug builds.
282         thread_to_pass = this;
283       }
284       MutexLock mu(thread_to_pass, *Locks::thread_suspend_count_lock_);
285       ScopedTransitioningToRunnable scoped_transitioning_to_runnable(this);
286       old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
287       DCHECK_EQ(old_state_and_flags.as_struct.state, old_state);
288       while ((old_state_and_flags.as_struct.flags & kSuspendRequest) != 0) {
289         // Re-check when Thread::resume_cond_ is notified.
290         Thread::resume_cond_->Wait(thread_to_pass);
291         old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
292         DCHECK_EQ(old_state_and_flags.as_struct.state, old_state);
293       }
294       DCHECK_EQ(GetSuspendCount(), 0);
295     }
296   } while (true);
297   // Run the flip function, if set.
298   Closure* flip_func = GetFlipFunction();
299   if (flip_func != nullptr) {
300     flip_func->Run(this);
301   }
302   return static_cast<ThreadState>(old_state);
303 }
304 
AllocTlab(size_t bytes)305 inline mirror::Object* Thread::AllocTlab(size_t bytes) {
306   DCHECK_GE(TlabSize(), bytes);
307   ++tlsPtr_.thread_local_objects;
308   mirror::Object* ret = reinterpret_cast<mirror::Object*>(tlsPtr_.thread_local_pos);
309   tlsPtr_.thread_local_pos += bytes;
310   return ret;
311 }
312 
PushOnThreadLocalAllocationStack(mirror::Object * obj)313 inline bool Thread::PushOnThreadLocalAllocationStack(mirror::Object* obj) {
314   DCHECK_LE(tlsPtr_.thread_local_alloc_stack_top, tlsPtr_.thread_local_alloc_stack_end);
315   if (tlsPtr_.thread_local_alloc_stack_top < tlsPtr_.thread_local_alloc_stack_end) {
316     // There's room.
317     DCHECK_LE(reinterpret_cast<uint8_t*>(tlsPtr_.thread_local_alloc_stack_top) +
318               sizeof(StackReference<mirror::Object>),
319               reinterpret_cast<uint8_t*>(tlsPtr_.thread_local_alloc_stack_end));
320     DCHECK(tlsPtr_.thread_local_alloc_stack_top->AsMirrorPtr() == nullptr);
321     tlsPtr_.thread_local_alloc_stack_top->Assign(obj);
322     ++tlsPtr_.thread_local_alloc_stack_top;
323     return true;
324   }
325   return false;
326 }
327 
SetThreadLocalAllocationStack(StackReference<mirror::Object> * start,StackReference<mirror::Object> * end)328 inline void Thread::SetThreadLocalAllocationStack(StackReference<mirror::Object>* start,
329                                                   StackReference<mirror::Object>* end) {
330   DCHECK(Thread::Current() == this) << "Should be called by self";
331   DCHECK(start != nullptr);
332   DCHECK(end != nullptr);
333   DCHECK_ALIGNED(start, sizeof(StackReference<mirror::Object>));
334   DCHECK_ALIGNED(end, sizeof(StackReference<mirror::Object>));
335   DCHECK_LT(start, end);
336   tlsPtr_.thread_local_alloc_stack_end = end;
337   tlsPtr_.thread_local_alloc_stack_top = start;
338 }
339 
RevokeThreadLocalAllocationStack()340 inline void Thread::RevokeThreadLocalAllocationStack() {
341   if (kIsDebugBuild) {
342     // Note: self is not necessarily equal to this thread since thread may be suspended.
343     Thread* self = Thread::Current();
344     DCHECK(this == self || IsSuspended() || GetState() == kWaitingPerformingGc)
345         << GetState() << " thread " << this << " self " << self;
346   }
347   tlsPtr_.thread_local_alloc_stack_end = nullptr;
348   tlsPtr_.thread_local_alloc_stack_top = nullptr;
349 }
350 
PoisonObjectPointersIfDebug()351 inline void Thread::PoisonObjectPointersIfDebug() {
352   if (kObjPtrPoisoning) {
353     Thread::Current()->PoisonObjectPointers();
354   }
355 }
356 
ModifySuspendCount(Thread * self,int delta,AtomicInteger * suspend_barrier,SuspendReason reason)357 inline bool Thread::ModifySuspendCount(Thread* self,
358                                        int delta,
359                                        AtomicInteger* suspend_barrier,
360                                        SuspendReason reason) {
361   if (delta > 0 && ((kUseReadBarrier && this != self) || suspend_barrier != nullptr)) {
362     // When delta > 0 (requesting a suspend), ModifySuspendCountInternal() may fail either if
363     // active_suspend_barriers is full or we are in the middle of a thread flip. Retry in a loop.
364     while (true) {
365       if (LIKELY(ModifySuspendCountInternal(self, delta, suspend_barrier, reason))) {
366         return true;
367       } else {
368         // Failure means the list of active_suspend_barriers is full or we are in the middle of a
369         // thread flip, we should release the thread_suspend_count_lock_ (to avoid deadlock) and
370         // wait till the target thread has executed or Thread::PassActiveSuspendBarriers() or the
371         // flip function. Note that we could not simply wait for the thread to change to a suspended
372         // state, because it might need to run checkpoint function before the state change or
373         // resumes from the resume_cond_, which also needs thread_suspend_count_lock_.
374         //
375         // The list of active_suspend_barriers is very unlikely to be full since more than
376         // kMaxSuspendBarriers threads need to execute SuspendAllInternal() simultaneously, and
377         // target thread stays in kRunnable in the mean time.
378         Locks::thread_suspend_count_lock_->ExclusiveUnlock(self);
379         NanoSleep(100000);
380         Locks::thread_suspend_count_lock_->ExclusiveLock(self);
381       }
382     }
383   } else {
384     return ModifySuspendCountInternal(self, delta, suspend_barrier, reason);
385   }
386 }
387 
PushShadowFrame(ShadowFrame * new_top_frame)388 inline ShadowFrame* Thread::PushShadowFrame(ShadowFrame* new_top_frame) {
389   new_top_frame->CheckConsistentVRegs();
390   return tlsPtr_.managed_stack.PushShadowFrame(new_top_frame);
391 }
392 
PopShadowFrame()393 inline ShadowFrame* Thread::PopShadowFrame() {
394   return tlsPtr_.managed_stack.PopShadowFrame();
395 }
396 
GetStackEndForInterpreter(bool implicit_overflow_check)397 inline uint8_t* Thread::GetStackEndForInterpreter(bool implicit_overflow_check) const {
398   uint8_t* end = tlsPtr_.stack_end + (implicit_overflow_check
399       ? GetStackOverflowReservedBytes(kRuntimeISA)
400           : 0);
401   if (kIsDebugBuild) {
402     // In a debuggable build, but especially under ASAN, the access-checks interpreter has a
403     // potentially humongous stack size. We don't want to take too much of the stack regularly,
404     // so do not increase the regular reserved size (for compiled code etc) and only report the
405     // virtually smaller stack to the interpreter here.
406     end += GetStackOverflowReservedBytes(kRuntimeISA);
407   }
408   return end;
409 }
410 
ResetDefaultStackEnd()411 inline void Thread::ResetDefaultStackEnd() {
412   // Our stacks grow down, so we want stack_end_ to be near there, but reserving enough room
413   // to throw a StackOverflowError.
414   tlsPtr_.stack_end = tlsPtr_.stack_begin + GetStackOverflowReservedBytes(kRuntimeISA);
415 }
416 
417 }  // namespace art
418 
419 #endif  // ART_RUNTIME_THREAD_INL_H_
420