1 /* -----------------------------------------------------------------------------
2 Software License for The Fraunhofer FDK AAC Codec Library for Android
3 
4 © Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5 Forschung e.V. All rights reserved.
6 
7  1.    INTRODUCTION
8 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9 that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10 scheme for digital audio. This FDK AAC Codec software is intended to be used on
11 a wide variety of Android devices.
12 
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14 general perceptual audio codecs. AAC-ELD is considered the best-performing
15 full-bandwidth communications codec by independent studies and is widely
16 deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17 specifications.
18 
19 Patent licenses for necessary patent claims for the FDK AAC Codec (including
20 those of Fraunhofer) may be obtained through Via Licensing
21 (www.vialicensing.com) or through the respective patent owners individually for
22 the purpose of encoding or decoding bit streams in products that are compliant
23 with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24 Android devices already license these patent claims through Via Licensing or
25 directly from the patent owners, and therefore FDK AAC Codec software may
26 already be covered under those patent licenses when it is used for those
27 licensed purposes only.
28 
29 Commercially-licensed AAC software libraries, including floating-point versions
30 with enhanced sound quality, are also available from Fraunhofer. Users are
31 encouraged to check the Fraunhofer website for additional applications
32 information and documentation.
33 
34 2.    COPYRIGHT LICENSE
35 
36 Redistribution and use in source and binary forms, with or without modification,
37 are permitted without payment of copyright license fees provided that you
38 satisfy the following conditions:
39 
40 You must retain the complete text of this software license in redistributions of
41 the FDK AAC Codec or your modifications thereto in source code form.
42 
43 You must retain the complete text of this software license in the documentation
44 and/or other materials provided with redistributions of the FDK AAC Codec or
45 your modifications thereto in binary form. You must make available free of
46 charge copies of the complete source code of the FDK AAC Codec and your
47 modifications thereto to recipients of copies in binary form.
48 
49 The name of Fraunhofer may not be used to endorse or promote products derived
50 from this library without prior written permission.
51 
52 You may not charge copyright license fees for anyone to use, copy or distribute
53 the FDK AAC Codec software or your modifications thereto.
54 
55 Your modified versions of the FDK AAC Codec must carry prominent notices stating
56 that you changed the software and the date of any change. For modified versions
57 of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58 must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59 AAC Codec Library for Android."
60 
61 3.    NO PATENT LICENSE
62 
63 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64 limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65 Fraunhofer provides no warranty of patent non-infringement with respect to this
66 software.
67 
68 You may use this FDK AAC Codec software or modifications thereto only for
69 purposes that are authorized by appropriate patent licenses.
70 
71 4.    DISCLAIMER
72 
73 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74 holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75 including but not limited to the implied warranties of merchantability and
76 fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78 or consequential damages, including but not limited to procurement of substitute
79 goods or services; loss of use, data, or profits, or business interruption,
80 however caused and on any theory of liability, whether in contract, strict
81 liability, or tort (including negligence), arising in any way out of the use of
82 this software, even if advised of the possibility of such damage.
83 
84 5.    CONTACT INFORMATION
85 
86 Fraunhofer Institute for Integrated Circuits IIS
87 Attention: Audio and Multimedia Departments - FDK AAC LL
88 Am Wolfsmantel 33
89 91058 Erlangen, Germany
90 
91 www.iis.fraunhofer.de/amm
92 amm-info@iis.fraunhofer.de
93 ----------------------------------------------------------------------------- */
94 
95 /**************************** AAC decoder library ******************************
96 
97    Author(s):   Robert Weidner (DSP Solutions)
98 
99    Description: HCR Decoder: Prepare decoding of non-PCWs, segmentation- and
100                 bitfield-handling, HCR-Statemachine
101 
102 *******************************************************************************/
103 
104 #include "aacdec_hcrs.h"
105 
106 #include "aacdec_hcr.h"
107 
108 #include "aacdec_hcr_bit.h"
109 #include "aac_rom.h"
110 #include "aac_ram.h"
111 
112 static UINT InitSegmentBitfield(UINT *pNumSegment,
113                                 SCHAR *pRemainingBitsInSegment,
114                                 UINT *pSegmentBitfield,
115                                 UCHAR *pNumWordForBitfield,
116                                 USHORT *pNumBitValidInLastWord);
117 
118 static void InitNonPCWSideInformationForCurrentSet(H_HCR_INFO pHcr);
119 
120 static INT ModuloValue(INT input, INT bufferlength);
121 
122 static void ClearBitFromBitfield(STATEFUNC *ptrState, UINT offset,
123                                  UINT *pBitfield);
124 
125 /*---------------------------------------------------------------------------------------------
126      description: This function decodes all non-priority codewords (non-PCWs) by
127 using a state-machine.
128 --------------------------------------------------------------------------------------------
129 */
DecodeNonPCWs(HANDLE_FDK_BITSTREAM bs,H_HCR_INFO pHcr)130 void DecodeNonPCWs(HANDLE_FDK_BITSTREAM bs, H_HCR_INFO pHcr) {
131   UINT numValidSegment;
132   INT segmentOffset;
133   INT codewordOffsetBase;
134   INT codewordOffset;
135   UINT trial;
136 
137   UINT *pNumSegment;
138   SCHAR *pRemainingBitsInSegment;
139   UINT *pSegmentBitfield;
140   UCHAR *pNumWordForBitfield;
141   USHORT *pNumBitValidInLastWord;
142   UINT *pCodewordBitfield;
143   INT bitfieldWord;
144   INT bitInWord;
145   UINT tempWord;
146   UINT interMediateWord;
147   INT tempBit;
148   INT carry;
149 
150   UINT numCodeword;
151   UCHAR numSet;
152   UCHAR currentSet;
153   UINT codewordInSet;
154   UINT remainingCodewordsInSet;
155   SCHAR *pSta;
156   UINT ret;
157 
158   pNumSegment = &(pHcr->segmentInfo.numSegment);
159   pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
160   pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield;
161   pNumWordForBitfield = &(pHcr->segmentInfo.numWordForBitfield);
162   pNumBitValidInLastWord = &(pHcr->segmentInfo.pNumBitValidInLastWord);
163   pSta = pHcr->nonPcwSideinfo.pSta;
164 
165   numValidSegment = InitSegmentBitfield(pNumSegment, pRemainingBitsInSegment,
166                                         pSegmentBitfield, pNumWordForBitfield,
167                                         pNumBitValidInLastWord);
168 
169   if (numValidSegment != 0) {
170     numCodeword = pHcr->sectionInfo.numCodeword;
171     numSet = ((numCodeword - 1) / *pNumSegment) + 1;
172 
173     pHcr->segmentInfo.readDirection = FROM_RIGHT_TO_LEFT;
174 
175     /* Process sets subsequently */
176     for (currentSet = 1; currentSet < numSet; currentSet++) {
177       /* step 1 */
178       numCodeword -=
179           *pNumSegment; /* number of remaining non PCWs [for all sets] */
180       if (numCodeword < *pNumSegment) {
181         codewordInSet = numCodeword; /* for last set */
182       } else {
183         codewordInSet = *pNumSegment; /* for all sets except last set */
184       }
185 
186       /* step 2 */
187       /* prepare array 'CodewordBitfield'; as much ones are written from left in
188        * all words, as much decodedCodewordInSetCounter nonPCWs exist in this
189        * set */
190       tempWord = 0xFFFFFFFF;
191       pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield;
192 
193       for (bitfieldWord = *pNumWordForBitfield; bitfieldWord != 0;
194            bitfieldWord--) { /* loop over all used words */
195         if (codewordInSet > NUMBER_OF_BIT_IN_WORD) { /* more codewords than
196                                                         number of bits => fill
197                                                         ones */
198           /* fill a whole word with ones */
199           *pCodewordBitfield++ = tempWord;
200           codewordInSet -= NUMBER_OF_BIT_IN_WORD; /* subtract number of bits */
201         } else {
202           /* prepare last tempWord */
203           for (remainingCodewordsInSet = codewordInSet;
204                remainingCodewordsInSet < NUMBER_OF_BIT_IN_WORD;
205                remainingCodewordsInSet++) {
206             tempWord =
207                 tempWord &
208                 ~(1
209                   << (NUMBER_OF_BIT_IN_WORD - 1 -
210                       remainingCodewordsInSet)); /* set a zero at bit number
211                                                     (NUMBER_OF_BIT_IN_WORD-1-i)
212                                                     in tempWord */
213           }
214           *pCodewordBitfield++ = tempWord;
215           tempWord = 0x00000000;
216         }
217       }
218       pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield;
219 
220       /* step 3 */
221       /* build non-PCW sideinfo for each non-PCW of the current set */
222       InitNonPCWSideInformationForCurrentSet(pHcr);
223 
224       /* step 4 */
225       /* decode all non-PCWs belonging to this set */
226 
227       /* loop over trials */
228       codewordOffsetBase = 0;
229       for (trial = *pNumSegment; trial > 0; trial--) {
230         /* loop over number of words in bitfields */
231         segmentOffset = 0; /* start at zero in every segment */
232         pHcr->segmentInfo.segmentOffset =
233             segmentOffset; /* store in structure for states */
234         codewordOffset = codewordOffsetBase;
235         pHcr->nonPcwSideinfo.codewordOffset =
236             codewordOffset; /* store in structure for states */
237 
238         for (bitfieldWord = 0; bitfieldWord < *pNumWordForBitfield;
239              bitfieldWord++) {
240           /* derive tempWord with bitwise and */
241           tempWord =
242               pSegmentBitfield[bitfieldWord] & pCodewordBitfield[bitfieldWord];
243 
244           /* if tempWord is not zero, decode something */
245           if (tempWord != 0) {
246             /* loop over all bits in tempWord; start state machine if & is true
247              */
248             for (bitInWord = NUMBER_OF_BIT_IN_WORD; bitInWord > 0;
249                  bitInWord--) {
250               interMediateWord = ((UINT)1 << (bitInWord - 1));
251               if ((tempWord & interMediateWord) == interMediateWord) {
252                 /* get state and start state machine */
253                 pHcr->nonPcwSideinfo.pState =
254                     aStateConstant2State[pSta[codewordOffset]];
255 
256                 while (pHcr->nonPcwSideinfo.pState) {
257                   ret = ((STATEFUNC)pHcr->nonPcwSideinfo.pState)(bs, pHcr);
258                   if (ret != 0) {
259                     return;
260                   }
261                 }
262               }
263 
264               /* update both offsets */
265               segmentOffset += 1; /* add NUMBER_OF_BIT_IN_WORD times one */
266               pHcr->segmentInfo.segmentOffset = segmentOffset;
267               codewordOffset += 1; /* add NUMBER_OF_BIT_IN_WORD times one */
268               codewordOffset =
269                   ModuloValue(codewordOffset,
270                               *pNumSegment); /* index of the current codeword
271                                                 lies within modulo range */
272               pHcr->nonPcwSideinfo.codewordOffset = codewordOffset;
273             }
274           } else {
275             segmentOffset +=
276                 NUMBER_OF_BIT_IN_WORD; /* add NUMBER_OF_BIT_IN_WORD at once */
277             pHcr->segmentInfo.segmentOffset = segmentOffset;
278             codewordOffset +=
279                 NUMBER_OF_BIT_IN_WORD; /* add NUMBER_OF_BIT_IN_WORD at once */
280             codewordOffset = ModuloValue(
281                 codewordOffset,
282                 *pNumSegment); /* index of the current codeword lies within
283                                   modulo range */
284             pHcr->nonPcwSideinfo.codewordOffset = codewordOffset;
285           }
286         } /* end of bitfield word loop */
287 
288         /* decrement codeword - pointer */
289         codewordOffsetBase -= 1;
290         codewordOffsetBase =
291             ModuloValue(codewordOffsetBase, *pNumSegment); /* index of the
292                                                               current codeword
293                                                               base lies within
294                                                               modulo range */
295 
296         /* rotate numSegment bits in codewordBitfield */
297         /* rotation of *numSegment bits in bitfield of codewords
298          * (circle-rotation) */
299         /* get last valid bit */
300         tempBit = pCodewordBitfield[*pNumWordForBitfield - 1] &
301                   (1 << (NUMBER_OF_BIT_IN_WORD - *pNumBitValidInLastWord));
302         tempBit = tempBit >> (NUMBER_OF_BIT_IN_WORD - *pNumBitValidInLastWord);
303 
304         /* write zero into place where tempBit was fetched from */
305         pCodewordBitfield[*pNumWordForBitfield - 1] =
306             pCodewordBitfield[*pNumWordForBitfield - 1] &
307             ~(1 << (NUMBER_OF_BIT_IN_WORD - *pNumBitValidInLastWord));
308 
309         /* rotate last valid word */
310         pCodewordBitfield[*pNumWordForBitfield - 1] =
311             pCodewordBitfield[*pNumWordForBitfield - 1] >> 1;
312 
313         /* transfare carry bit 0 from current word into bitposition 31 from next
314          * word and rotate current word */
315         for (bitfieldWord = *pNumWordForBitfield - 2; bitfieldWord > -1;
316              bitfieldWord--) {
317           /* get carry (=bit at position 0) from current word */
318           carry = pCodewordBitfield[bitfieldWord] & 1;
319 
320           /* put the carry bit at position 31 into word right from current word
321            */
322           pCodewordBitfield[bitfieldWord + 1] =
323               pCodewordBitfield[bitfieldWord + 1] |
324               (carry << (NUMBER_OF_BIT_IN_WORD - 1));
325 
326           /* shift current word */
327           pCodewordBitfield[bitfieldWord] =
328               pCodewordBitfield[bitfieldWord] >> 1;
329         }
330 
331         /* put tempBit into free bit-position 31 from first word */
332         pCodewordBitfield[0] =
333             pCodewordBitfield[0] | (tempBit << (NUMBER_OF_BIT_IN_WORD - 1));
334 
335       } /* end of trial loop */
336 
337       /* toggle read direction */
338       pHcr->segmentInfo.readDirection =
339           ToggleReadDirection(pHcr->segmentInfo.readDirection);
340     }
341     /* end of set loop */
342 
343     /* all non-PCWs of this spectrum are decoded */
344   }
345 
346   /* all PCWs and all non PCWs are decoded. They are unbacksorted in output
347    * buffer. Here is the Interface with comparing QSCs to asm decoding */
348 }
349 
350 /*---------------------------------------------------------------------------------------------
351      description:   This function prepares the bitfield used for the
352                     segments. The list is set up once to be used in all
353 following sets. If a segment is decoded empty, the according bit from the
354 Bitfield is removed.
355 -----------------------------------------------------------------------------------------------
356         return:     numValidSegment = the number of valid segments
357 --------------------------------------------------------------------------------------------
358 */
InitSegmentBitfield(UINT * pNumSegment,SCHAR * pRemainingBitsInSegment,UINT * pSegmentBitfield,UCHAR * pNumWordForBitfield,USHORT * pNumBitValidInLastWord)359 static UINT InitSegmentBitfield(UINT *pNumSegment,
360                                 SCHAR *pRemainingBitsInSegment,
361                                 UINT *pSegmentBitfield,
362                                 UCHAR *pNumWordForBitfield,
363                                 USHORT *pNumBitValidInLastWord) {
364   SHORT i;
365   USHORT r;
366   UCHAR bitfieldWord;
367   UINT tempWord;
368   USHORT numValidSegment;
369 
370   *pNumWordForBitfield =
371       (*pNumSegment == 0)
372           ? 0
373           : ((*pNumSegment - 1) >> THIRTYTWO_LOG_DIV_TWO_LOG) + 1;
374 
375   /* loop over all words, which are completely used or only partial */
376   /* bit in pSegmentBitfield is zero if segment is empty; bit in
377    * pSegmentBitfield is one if segment is not empty */
378   numValidSegment = 0;
379   *pNumBitValidInLastWord = *pNumSegment;
380 
381   /* loop over words */
382   for (bitfieldWord = 0; bitfieldWord < *pNumWordForBitfield - 1;
383        bitfieldWord++) {
384     tempWord = 0xFFFFFFFF; /* set ones */
385     r = bitfieldWord << THIRTYTWO_LOG_DIV_TWO_LOG;
386     for (i = 0; i < NUMBER_OF_BIT_IN_WORD; i++) {
387       if (pRemainingBitsInSegment[r + i] == 0) {
388         tempWord = tempWord & ~(1 << (NUMBER_OF_BIT_IN_WORD - 1 -
389                                       i)); /* set a zero at bit number
390                                               (NUMBER_OF_BIT_IN_WORD-1-i) in
391                                               tempWord */
392       } else {
393         numValidSegment += 1; /* count segments which are not empty */
394       }
395     }
396     pSegmentBitfield[bitfieldWord] = tempWord;        /* store result */
397     *pNumBitValidInLastWord -= NUMBER_OF_BIT_IN_WORD; /* calculate number of
398                                                          zeros on LSB side in
399                                                          the last word */
400   }
401 
402   /* calculate last word: prepare special tempWord */
403   tempWord = 0xFFFFFFFF;
404   for (i = 0; i < (NUMBER_OF_BIT_IN_WORD - *pNumBitValidInLastWord); i++) {
405     tempWord = tempWord & ~(1 << i); /* clear bit i in tempWord */
406   }
407 
408   /* calculate last word */
409   r = bitfieldWord << THIRTYTWO_LOG_DIV_TWO_LOG;
410   for (i = 0; i < *pNumBitValidInLastWord; i++) {
411     if (pRemainingBitsInSegment[r + i] == 0) {
412       tempWord = tempWord & ~(1 << (NUMBER_OF_BIT_IN_WORD - 1 -
413                                     i)); /* set a zero at bit number
414                                             (NUMBER_OF_BIT_IN_WORD-1-i) in
415                                             tempWord */
416     } else {
417       numValidSegment += 1; /* count segments which are not empty */
418     }
419   }
420   pSegmentBitfield[bitfieldWord] = tempWord; /* store result */
421 
422   return numValidSegment;
423 }
424 
425 /*---------------------------------------------------------------------------------------------
426   description:  This function sets up sideinfo for the non-PCW decoder (for the
427 current set).
428 ---------------------------------------------------------------------------------------------*/
InitNonPCWSideInformationForCurrentSet(H_HCR_INFO pHcr)429 static void InitNonPCWSideInformationForCurrentSet(H_HCR_INFO pHcr) {
430   USHORT i, k;
431   UCHAR codebookDim;
432   UINT startNode;
433 
434   UCHAR *pCodebook = pHcr->nonPcwSideinfo.pCodebook;
435   UINT *iNode = pHcr->nonPcwSideinfo.iNode;
436   UCHAR *pCntSign = pHcr->nonPcwSideinfo.pCntSign;
437   USHORT *iResultPointer = pHcr->nonPcwSideinfo.iResultPointer;
438   UINT *pEscapeSequenceInfo = pHcr->nonPcwSideinfo.pEscapeSequenceInfo;
439   SCHAR *pSta = pHcr->nonPcwSideinfo.pSta;
440   USHORT *pNumExtendedSortedCodewordInSection =
441       pHcr->sectionInfo.pNumExtendedSortedCodewordInSection;
442   int numExtendedSortedCodewordInSectionIdx =
443       pHcr->sectionInfo.numExtendedSortedCodewordInSectionIdx;
444   UCHAR *pExtendedSortedCodebook = pHcr->sectionInfo.pExtendedSortedCodebook;
445   int extendedSortedCodebookIdx = pHcr->sectionInfo.extendedSortedCodebookIdx;
446   USHORT *pNumExtendedSortedSectionsInSets =
447       pHcr->sectionInfo.pNumExtendedSortedSectionsInSets;
448   int numExtendedSortedSectionsInSetsIdx =
449       pHcr->sectionInfo.numExtendedSortedSectionsInSetsIdx;
450   int quantizedSpectralCoefficientsIdx =
451       pHcr->decInOut.quantizedSpectralCoefficientsIdx;
452   const UCHAR *pCbDimension = aDimCb;
453   int iterationCounter = 0;
454 
455   /* loop over number of extended sorted sections in the current set so all
456    * codewords sideinfo variables within this set can be prepared for decoding
457    */
458   for (i = pNumExtendedSortedSectionsInSets[numExtendedSortedSectionsInSetsIdx];
459        i != 0; i--) {
460     codebookDim =
461         pCbDimension[pExtendedSortedCodebook[extendedSortedCodebookIdx]];
462     startNode = *aHuffTable[pExtendedSortedCodebook[extendedSortedCodebookIdx]];
463 
464     for (k = pNumExtendedSortedCodewordInSection
465              [numExtendedSortedCodewordInSectionIdx];
466          k != 0; k--) {
467       iterationCounter++;
468       if (iterationCounter > (1024 >> 2)) {
469         return;
470       }
471       *pSta++ = aCodebook2StartInt
472           [pExtendedSortedCodebook[extendedSortedCodebookIdx]];
473       *pCodebook++ = pExtendedSortedCodebook[extendedSortedCodebookIdx];
474       *iNode++ = startNode;
475       *pCntSign++ = 0;
476       *iResultPointer++ = quantizedSpectralCoefficientsIdx;
477       *pEscapeSequenceInfo++ = 0;
478       quantizedSpectralCoefficientsIdx +=
479           codebookDim; /* update pointer by codebookDim --> point to next
480                           starting value for writing out */
481       if (quantizedSpectralCoefficientsIdx >= 1024) {
482         return;
483       }
484     }
485     numExtendedSortedCodewordInSectionIdx++; /* inc ptr for next ext sort sec in
486                                                 current set */
487     extendedSortedCodebookIdx++; /* inc ptr for next ext sort sec in current set
488                                   */
489     if (numExtendedSortedCodewordInSectionIdx >= (MAX_SFB_HCR + MAX_HCR_SETS) ||
490         extendedSortedCodebookIdx >= (MAX_SFB_HCR + MAX_HCR_SETS)) {
491       return;
492     }
493   }
494   numExtendedSortedSectionsInSetsIdx++; /* inc ptr for next set of non-PCWs */
495   if (numExtendedSortedCodewordInSectionIdx >= (MAX_SFB_HCR + MAX_HCR_SETS)) {
496     return;
497   }
498 
499   /* Write back indexes */
500   pHcr->sectionInfo.numExtendedSortedCodewordInSectionIdx =
501       numExtendedSortedCodewordInSectionIdx;
502   pHcr->sectionInfo.extendedSortedCodebookIdx = extendedSortedCodebookIdx;
503   pHcr->sectionInfo.numExtendedSortedSectionsInSetsIdx =
504       numExtendedSortedSectionsInSetsIdx;
505   pHcr->sectionInfo.numExtendedSortedCodewordInSectionIdx =
506       numExtendedSortedCodewordInSectionIdx;
507   pHcr->decInOut.quantizedSpectralCoefficientsIdx =
508       quantizedSpectralCoefficientsIdx;
509 }
510 
511 /*---------------------------------------------------------------------------------------------
512      description: This function returns the input value if the value is in the
513                   range of bufferlength. If <input> is smaller, one bufferlength
514 is added, if <input> is bigger one bufferlength is subtracted.
515 -----------------------------------------------------------------------------------------------
516         return:   modulo result
517 --------------------------------------------------------------------------------------------
518 */
ModuloValue(INT input,INT bufferlength)519 static INT ModuloValue(INT input, INT bufferlength) {
520   if (input > (bufferlength - 1)) {
521     return (input - bufferlength);
522   }
523   if (input < 0) {
524     return (input + bufferlength);
525   }
526   return input;
527 }
528 
529 /*---------------------------------------------------------------------------------------------
530      description: This function clears a bit from current bitfield and
531                   switches off the statemachine.
532 
533                   A bit is cleared in two cases:
534                   a) a codeword is decoded, then a bit is cleared in codeword
535 bitfield b) a segment is decoded empty, then a bit is cleared in segment
536 bitfield
537 --------------------------------------------------------------------------------------------
538 */
ClearBitFromBitfield(STATEFUNC * ptrState,UINT offset,UINT * pBitfield)539 static void ClearBitFromBitfield(STATEFUNC *ptrState, UINT offset,
540                                  UINT *pBitfield) {
541   UINT numBitfieldWord;
542   UINT numBitfieldBit;
543 
544   /* get both values needed for clearing the bit */
545   numBitfieldWord = offset >> THIRTYTWO_LOG_DIV_TWO_LOG; /* int   = wordNr */
546   numBitfieldBit = offset - (numBitfieldWord
547                              << THIRTYTWO_LOG_DIV_TWO_LOG); /* fract = bitNr  */
548 
549   /* clear a bit in bitfield */
550   pBitfield[numBitfieldWord] =
551       pBitfield[numBitfieldWord] &
552       ~(1 << (NUMBER_OF_BIT_IN_WORD - 1 - numBitfieldBit));
553 
554   /* switch off state machine because codeword is decoded and/or because segment
555    * is empty */
556   *ptrState = NULL;
557 }
558 
559 /* =========================================================================================
560                               the states of the statemachine
561    =========================================================================================
562  */
563 
564 /*---------------------------------------------------------------------------------------------
565      description:  Decodes the body of a codeword. This State is used for
566 codebooks 1,2,5 and 6. No sign bits are decoded, because the table of the
567 quantized spectral values has got a valid sign at the quantized spectral lines.
568 -----------------------------------------------------------------------------------------------
569         output:   Two or four quantizes spectral values written at position
570 where pResultPointr points to
571 -----------------------------------------------------------------------------------------------
572         return:   0
573 --------------------------------------------------------------------------------------------
574 */
Hcr_State_BODY_ONLY(HANDLE_FDK_BITSTREAM bs,void * ptr)575 UINT Hcr_State_BODY_ONLY(HANDLE_FDK_BITSTREAM bs, void *ptr) {
576   H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
577   UINT *pSegmentBitfield;
578   UINT *pCodewordBitfield;
579   UINT segmentOffset;
580   FIXP_DBL *pResultBase;
581   UINT *iNode;
582   USHORT *iResultPointer;
583   UINT codewordOffset;
584   UINT branchNode;
585   UINT branchValue;
586   UINT iQSC;
587   UINT treeNode;
588   UCHAR carryBit;
589   INT *pLeftStartOfSegment;
590   INT *pRightStartOfSegment;
591   SCHAR *pRemainingBitsInSegment;
592   UCHAR readDirection;
593   UCHAR *pCodebook;
594   UCHAR dimCntr;
595   const UINT *pCurrentTree;
596   const UCHAR *pCbDimension;
597   const SCHAR *pQuantVal;
598   const SCHAR *pQuantValBase;
599 
600   pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
601   pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment;
602   pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment;
603   readDirection = pHcr->segmentInfo.readDirection;
604   pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield;
605   pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield;
606   segmentOffset = pHcr->segmentInfo.segmentOffset;
607 
608   pCodebook = pHcr->nonPcwSideinfo.pCodebook;
609   iNode = pHcr->nonPcwSideinfo.iNode;
610   pResultBase = pHcr->nonPcwSideinfo.pResultBase;
611   iResultPointer = pHcr->nonPcwSideinfo.iResultPointer;
612   codewordOffset = pHcr->nonPcwSideinfo.codewordOffset;
613 
614   pCbDimension = aDimCb;
615 
616   treeNode = iNode[codewordOffset];
617   pCurrentTree = aHuffTable[pCodebook[codewordOffset]];
618 
619   for (; pRemainingBitsInSegment[segmentOffset] > 0;
620        pRemainingBitsInSegment[segmentOffset] -= 1) {
621     carryBit = HcrGetABitFromBitstream(
622         bs, pHcr->decInOut.bitstreamAnchor, &pLeftStartOfSegment[segmentOffset],
623         &pRightStartOfSegment[segmentOffset], readDirection);
624 
625     CarryBitToBranchValue(carryBit, /* make a step in decoding tree */
626                           treeNode, &branchValue, &branchNode);
627 
628     /* if end of branch reached write out lines and count bits needed for sign,
629      * otherwise store node in codeword sideinfo */
630     if ((branchNode & TEST_BIT_10) ==
631         TEST_BIT_10) { /* test bit 10 ; ==> body is complete */
632       pQuantValBase = aQuantTable[pCodebook[codewordOffset]]; /* get base
633                                                                  address of
634                                                                  quantized
635                                                                  values
636                                                                  belonging to
637                                                                  current
638                                                                  codebook */
639       pQuantVal = pQuantValBase + branchValue; /* set pointer to first valid
640                                                   line [of 2 or 4 quantized
641                                                   values] */
642 
643       iQSC = iResultPointer[codewordOffset]; /* get position of first line for
644                                                 writing out result */
645 
646       for (dimCntr = pCbDimension[pCodebook[codewordOffset]]; dimCntr != 0;
647            dimCntr--) {
648         pResultBase[iQSC++] =
649             (FIXP_DBL)*pQuantVal++; /* write out 2 or 4 lines into
650                                        spectrum; no Sign bits
651                                        available in this state */
652       }
653 
654       ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset,
655                            pCodewordBitfield); /* clear a bit in bitfield and
656                                                   switch off statemachine */
657       pRemainingBitsInSegment[segmentOffset] -= 1; /* last reinitialzation of
658                                                       for loop counter (see
659                                                       above) is done here */
660       break; /* end of branch in tree reached  i.e. a whole nonPCW-Body is
661                 decoded */
662     } else { /* body is not decoded completely: */
663       treeNode = *(
664           pCurrentTree +
665           branchValue); /* update treeNode for further step in decoding tree */
666     }
667   }
668   iNode[codewordOffset] = treeNode; /* store updated treeNode because maybe
669                                        decoding of codeword body not finished
670                                        yet */
671 
672   if (pRemainingBitsInSegment[segmentOffset] <= 0) {
673     ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset,
674                          pSegmentBitfield); /* clear a bit in bitfield and
675                                                switch off statemachine */
676 
677     if (pRemainingBitsInSegment[segmentOffset] < 0) {
678       pHcr->decInOut.errorLog |= STATE_ERROR_BODY_ONLY;
679       return BODY_ONLY;
680     }
681   }
682 
683   return STOP_THIS_STATE;
684 }
685 
686 /*---------------------------------------------------------------------------------------------
687      description: Decodes the codeword body, writes out result and counts the
688 number of quantized spectral values, which are different form zero. For those
689 values sign bits are needed.
690 
691                   If sign bit counter cntSign is different from zero, switch to
692 next state to decode sign Bits there. If sign bit counter cntSign is zero, no
693 sign bits are needed and codeword is decoded.
694 -----------------------------------------------------------------------------------------------
695         output:   Two or four written quantizes spectral values written at
696 position where pResultPointr points to. The signs of those lines may be wrong.
697 If the signs [on just one signle sign] is wrong, the next state will correct it.
698 -----------------------------------------------------------------------------------------------
699         return:   0
700 --------------------------------------------------------------------------------------------
701 */
Hcr_State_BODY_SIGN__BODY(HANDLE_FDK_BITSTREAM bs,void * ptr)702 UINT Hcr_State_BODY_SIGN__BODY(HANDLE_FDK_BITSTREAM bs, void *ptr) {
703   H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
704   SCHAR *pRemainingBitsInSegment;
705   INT *pLeftStartOfSegment;
706   INT *pRightStartOfSegment;
707   UCHAR readDirection;
708   UINT *pSegmentBitfield;
709   UINT *pCodewordBitfield;
710   UINT segmentOffset;
711 
712   UCHAR *pCodebook;
713   UINT *iNode;
714   UCHAR *pCntSign;
715   FIXP_DBL *pResultBase;
716   USHORT *iResultPointer;
717   UINT codewordOffset;
718 
719   UINT iQSC;
720   UINT cntSign;
721   UCHAR dimCntr;
722   UCHAR carryBit;
723   SCHAR *pSta;
724   UINT treeNode;
725   UINT branchValue;
726   UINT branchNode;
727   const UCHAR *pCbDimension;
728   const UINT *pCurrentTree;
729   const SCHAR *pQuantValBase;
730   const SCHAR *pQuantVal;
731 
732   pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
733   pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment;
734   pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment;
735   readDirection = pHcr->segmentInfo.readDirection;
736   pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield;
737   pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield;
738   segmentOffset = pHcr->segmentInfo.segmentOffset;
739 
740   pCodebook = pHcr->nonPcwSideinfo.pCodebook;
741   iNode = pHcr->nonPcwSideinfo.iNode;
742   pCntSign = pHcr->nonPcwSideinfo.pCntSign;
743   pResultBase = pHcr->nonPcwSideinfo.pResultBase;
744   iResultPointer = pHcr->nonPcwSideinfo.iResultPointer;
745   codewordOffset = pHcr->nonPcwSideinfo.codewordOffset;
746   pSta = pHcr->nonPcwSideinfo.pSta;
747 
748   pCbDimension = aDimCb;
749 
750   treeNode = iNode[codewordOffset];
751   pCurrentTree = aHuffTable[pCodebook[codewordOffset]];
752 
753   for (; pRemainingBitsInSegment[segmentOffset] > 0;
754        pRemainingBitsInSegment[segmentOffset] -= 1) {
755     carryBit = HcrGetABitFromBitstream(
756         bs, pHcr->decInOut.bitstreamAnchor, &pLeftStartOfSegment[segmentOffset],
757         &pRightStartOfSegment[segmentOffset], readDirection);
758 
759     CarryBitToBranchValue(carryBit, /* make a step in decoding tree */
760                           treeNode, &branchValue, &branchNode);
761 
762     /* if end of branch reached write out lines and count bits needed for sign,
763      * otherwise store node in codeword sideinfo */
764     if ((branchNode & TEST_BIT_10) ==
765         TEST_BIT_10) { /* test bit 10 ; if set body complete */
766       /* body completely decoded; branchValue is valid, set pQuantVal to first
767        * (of two or four) quantized spectral coefficients */
768       pQuantValBase = aQuantTable[pCodebook[codewordOffset]]; /* get base
769                                                                  address of
770                                                                  quantized
771                                                                  values
772                                                                  belonging to
773                                                                  current
774                                                                  codebook */
775       pQuantVal = pQuantValBase + branchValue; /* set pointer to first valid
776                                                   line [of 2 or 4 quantized
777                                                   values] */
778 
779       iQSC = iResultPointer[codewordOffset]; /* get position of first line for
780                                                 writing result */
781 
782       /* codeword decoding result is written out here: Write out 2 or 4
783        * quantized spectral values with probably */
784       /* wrong sign and count number of values which are different from zero for
785        * sign bit decoding [which happens in next state] */
786       cntSign = 0;
787       for (dimCntr = pCbDimension[pCodebook[codewordOffset]]; dimCntr != 0;
788            dimCntr--) {
789         pResultBase[iQSC++] =
790             (FIXP_DBL)*pQuantVal; /* write quant. spec. coef. into spectrum */
791         if (*pQuantVal++ != 0) {
792           cntSign += 1;
793         }
794       }
795 
796       if (cntSign == 0) {
797         ClearBitFromBitfield(
798             &(pHcr->nonPcwSideinfo.pState), segmentOffset,
799             pCodewordBitfield); /* clear a bit in bitfield and switch off
800                                    statemachine */
801       } else {
802         pCntSign[codewordOffset] = cntSign;     /* write sign count result into
803                                                    codewordsideinfo of current
804                                                    codeword */
805         pSta[codewordOffset] = BODY_SIGN__SIGN; /* change state */
806         pHcr->nonPcwSideinfo.pState =
807             aStateConstant2State[pSta[codewordOffset]]; /* get state from
808                                                            separate array of
809                                                            cw-sideinfo */
810       }
811       pRemainingBitsInSegment[segmentOffset] -= 1; /* last reinitialzation of
812                                                       for loop counter (see
813                                                       above) is done here */
814       break; /* end of branch in tree reached  i.e. a whole nonPCW-Body is
815                 decoded */
816     } else { /* body is not decoded completely: */
817       treeNode = *(
818           pCurrentTree +
819           branchValue); /* update treeNode for further step in decoding tree */
820     }
821   }
822   iNode[codewordOffset] = treeNode; /* store updated treeNode because maybe
823                                        decoding of codeword body not finished
824                                        yet */
825 
826   if (pRemainingBitsInSegment[segmentOffset] <= 0) {
827     ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset,
828                          pSegmentBitfield); /* clear a bit in bitfield and
829                                                switch off statemachine */
830 
831     if (pRemainingBitsInSegment[segmentOffset] < 0) {
832       pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN__BODY;
833       return BODY_SIGN__BODY;
834     }
835   }
836 
837   return STOP_THIS_STATE;
838 }
839 
840 /*---------------------------------------------------------------------------------------------
841      description: This state decodes the sign bits belonging to a codeword. The
842 state is called as often in different "trials" until pCntSgn[codewordOffset] is
843 zero.
844 -----------------------------------------------------------------------------------------------
845         output:   The two or four quantizes spectral values (written in previous
846 state) have now the correct sign.
847 -----------------------------------------------------------------------------------------------
848         return:   0
849 --------------------------------------------------------------------------------------------
850 */
Hcr_State_BODY_SIGN__SIGN(HANDLE_FDK_BITSTREAM bs,void * ptr)851 UINT Hcr_State_BODY_SIGN__SIGN(HANDLE_FDK_BITSTREAM bs, void *ptr) {
852   H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
853   SCHAR *pRemainingBitsInSegment;
854   INT *pLeftStartOfSegment;
855   INT *pRightStartOfSegment;
856   UCHAR readDirection;
857   UINT *pSegmentBitfield;
858   UINT *pCodewordBitfield;
859   UINT segmentOffset;
860 
861   UCHAR *pCntSign;
862   FIXP_DBL *pResultBase;
863   USHORT *iResultPointer;
864   UINT codewordOffset;
865 
866   UCHAR carryBit;
867   UINT iQSC;
868   UCHAR cntSign;
869 
870   pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
871   pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment;
872   pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment;
873   readDirection = pHcr->segmentInfo.readDirection;
874   pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield;
875   pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield;
876   segmentOffset = pHcr->segmentInfo.segmentOffset;
877 
878   /*pCodebook               = */
879   pCntSign = pHcr->nonPcwSideinfo.pCntSign;
880   pResultBase = pHcr->nonPcwSideinfo.pResultBase;
881   iResultPointer = pHcr->nonPcwSideinfo.iResultPointer;
882   codewordOffset = pHcr->nonPcwSideinfo.codewordOffset;
883 
884   iQSC = iResultPointer[codewordOffset];
885   cntSign = pCntSign[codewordOffset];
886 
887   /* loop for sign bit decoding */
888   for (; pRemainingBitsInSegment[segmentOffset] > 0;
889        pRemainingBitsInSegment[segmentOffset] -= 1) {
890     carryBit = HcrGetABitFromBitstream(
891         bs, pHcr->decInOut.bitstreamAnchor, &pLeftStartOfSegment[segmentOffset],
892         &pRightStartOfSegment[segmentOffset], readDirection);
893     cntSign -=
894         1; /* decrement sign counter because one sign bit has been read */
895 
896     /* search for a line (which was decoded in previous state) which is not
897      * zero. [This value will get a sign] */
898     while (pResultBase[iQSC] == (FIXP_DBL)0) {
899       if (++iQSC >= 1024) { /* points to current value different from zero */
900         return BODY_SIGN__SIGN;
901       }
902     }
903 
904     /* put sign together with line; if carryBit is zero, the sign is ok already;
905      * no write operation necessary in this case */
906     if (carryBit != 0) {
907       pResultBase[iQSC] = -pResultBase[iQSC]; /* carryBit = 1 --> minus */
908     }
909 
910     iQSC++; /* update pointer to next (maybe valid) value */
911 
912     if (cntSign == 0) { /* if (cntSign==0)  ==>  set state CODEWORD_DECODED */
913       ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset,
914                            pCodewordBitfield); /* clear a bit in bitfield and
915                                                   switch off statemachine */
916       pRemainingBitsInSegment[segmentOffset] -= 1; /* last reinitialzation of
917                                                       for loop counter (see
918                                                       above) is done here */
919       break; /* whole nonPCW-Body and according sign bits are decoded */
920     }
921   }
922   pCntSign[codewordOffset] = cntSign;
923   iResultPointer[codewordOffset] = iQSC; /* store updated pResultPointer */
924 
925   if (pRemainingBitsInSegment[segmentOffset] <= 0) {
926     ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset,
927                          pSegmentBitfield); /* clear a bit in bitfield and
928                                                switch off statemachine */
929 
930     if (pRemainingBitsInSegment[segmentOffset] < 0) {
931       pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN__SIGN;
932       return BODY_SIGN__SIGN;
933     }
934   }
935 
936   return STOP_THIS_STATE;
937 }
938 
939 /*---------------------------------------------------------------------------------------------
940      description: Decodes the codeword body in case of codebook is 11. Writes
941 out resulting two or four lines [with probably wrong sign] and counts the number
942 of lines, which are different form zero. This information is needed in next
943                   state where sign bits will be decoded, if necessary.
944                   If sign bit counter cntSign is zero, no sign bits are needed
945 and codeword is decoded completely.
946 -----------------------------------------------------------------------------------------------
947         output:   Two lines (quantizes spectral coefficients) which are probably
948 wrong. The sign may be wrong and if one or two values is/are 16, the following
949 states will decode the escape sequence to correct the values which are wirtten
950 here.
951 -----------------------------------------------------------------------------------------------
952         return:   0
953 --------------------------------------------------------------------------------------------
954 */
Hcr_State_BODY_SIGN_ESC__BODY(HANDLE_FDK_BITSTREAM bs,void * ptr)955 UINT Hcr_State_BODY_SIGN_ESC__BODY(HANDLE_FDK_BITSTREAM bs, void *ptr) {
956   H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
957   SCHAR *pRemainingBitsInSegment;
958   INT *pLeftStartOfSegment;
959   INT *pRightStartOfSegment;
960   UCHAR readDirection;
961   UINT *pSegmentBitfield;
962   UINT *pCodewordBitfield;
963   UINT segmentOffset;
964 
965   UINT *iNode;
966   UCHAR *pCntSign;
967   FIXP_DBL *pResultBase;
968   USHORT *iResultPointer;
969   UINT codewordOffset;
970 
971   UCHAR carryBit;
972   UINT iQSC;
973   UINT cntSign;
974   UINT dimCntr;
975   UINT treeNode;
976   SCHAR *pSta;
977   UINT branchNode;
978   UINT branchValue;
979   const UINT *pCurrentTree;
980   const SCHAR *pQuantValBase;
981   const SCHAR *pQuantVal;
982 
983   pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
984   pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment;
985   pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment;
986   readDirection = pHcr->segmentInfo.readDirection;
987   pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield;
988   pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield;
989   segmentOffset = pHcr->segmentInfo.segmentOffset;
990 
991   iNode = pHcr->nonPcwSideinfo.iNode;
992   pCntSign = pHcr->nonPcwSideinfo.pCntSign;
993   pResultBase = pHcr->nonPcwSideinfo.pResultBase;
994   iResultPointer = pHcr->nonPcwSideinfo.iResultPointer;
995   codewordOffset = pHcr->nonPcwSideinfo.codewordOffset;
996   pSta = pHcr->nonPcwSideinfo.pSta;
997 
998   treeNode = iNode[codewordOffset];
999   pCurrentTree = aHuffTable[ESCAPE_CODEBOOK];
1000 
1001   for (; pRemainingBitsInSegment[segmentOffset] > 0;
1002        pRemainingBitsInSegment[segmentOffset] -= 1) {
1003     carryBit = HcrGetABitFromBitstream(
1004         bs, pHcr->decInOut.bitstreamAnchor, &pLeftStartOfSegment[segmentOffset],
1005         &pRightStartOfSegment[segmentOffset], readDirection);
1006 
1007     /* make a step in tree */
1008     CarryBitToBranchValue(carryBit, treeNode, &branchValue, &branchNode);
1009 
1010     /* if end of branch reached write out lines and count bits needed for sign,
1011      * otherwise store node in codeword sideinfo */
1012     if ((branchNode & TEST_BIT_10) ==
1013         TEST_BIT_10) { /* test bit 10 ; if set body complete */
1014 
1015       /* body completely decoded; branchValue is valid */
1016       /* set pQuantVol to first (of two or four) quantized spectral coefficients
1017        */
1018       pQuantValBase = aQuantTable[ESCAPE_CODEBOOK]; /* get base address of
1019                                                        quantized values
1020                                                        belonging to current
1021                                                        codebook */
1022       pQuantVal = pQuantValBase + branchValue; /* set pointer to first valid
1023                                                   line [of 2 or 4 quantized
1024                                                   values] */
1025 
1026       /* make backup from original resultPointer in node storage for state
1027        * BODY_SIGN_ESC__SIGN */
1028       iNode[codewordOffset] = iResultPointer[codewordOffset];
1029 
1030       /* get position of first line for writing result */
1031       iQSC = iResultPointer[codewordOffset];
1032 
1033       /* codeword decoding result is written out here: Write out 2 or 4
1034        * quantized spectral values with probably */
1035       /* wrong sign and count number of values which are different from zero for
1036        * sign bit decoding [which happens in next state] */
1037       cntSign = 0;
1038 
1039       for (dimCntr = DIMENSION_OF_ESCAPE_CODEBOOK; dimCntr != 0; dimCntr--) {
1040         pResultBase[iQSC++] =
1041             (FIXP_DBL)*pQuantVal; /* write quant. spec. coef. into spectrum */
1042         if (*pQuantVal++ != 0) {
1043           cntSign += 1;
1044         }
1045       }
1046 
1047       if (cntSign == 0) {
1048         ClearBitFromBitfield(
1049             &(pHcr->nonPcwSideinfo.pState), segmentOffset,
1050             pCodewordBitfield); /* clear a bit in bitfield and switch off
1051                                    statemachine */
1052         /* codeword decoded */
1053       } else {
1054         /* write sign count result into codewordsideinfo of current codeword */
1055         pCntSign[codewordOffset] = cntSign;
1056         pSta[codewordOffset] = BODY_SIGN_ESC__SIGN; /* change state */
1057         pHcr->nonPcwSideinfo.pState =
1058             aStateConstant2State[pSta[codewordOffset]]; /* get state from
1059                                                            separate array of
1060                                                            cw-sideinfo */
1061       }
1062       pRemainingBitsInSegment[segmentOffset] -= 1; /* the last reinitialzation
1063                                                       of for loop counter (see
1064                                                       above) is done here */
1065       break; /* end of branch in tree reached  i.e. a whole nonPCW-Body is
1066                 decoded */
1067     } else { /* body is not decoded completely: */
1068       /* update treeNode for further step in decoding tree and store updated
1069        * treeNode because maybe no more bits left in segment */
1070       treeNode = *(pCurrentTree + branchValue);
1071       iNode[codewordOffset] = treeNode;
1072     }
1073   }
1074 
1075   if (pRemainingBitsInSegment[segmentOffset] <= 0) {
1076     ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset,
1077                          pSegmentBitfield); /* clear a bit in bitfield and
1078                                                switch off statemachine */
1079 
1080     if (pRemainingBitsInSegment[segmentOffset] < 0) {
1081       pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN_ESC__BODY;
1082       return BODY_SIGN_ESC__BODY;
1083     }
1084   }
1085 
1086   return STOP_THIS_STATE;
1087 }
1088 
1089 /*---------------------------------------------------------------------------------------------
1090      description: This state decodes the sign bits, if a codeword of codebook 11
1091 needs some. A flag named 'flagB' in codeword sideinfo is set, if the second line
1092 of quantized spectral values is 16. The 'flagB' is used in case of decoding of a
1093 escape sequence is necessary as far as the second line is concerned.
1094 
1095                   If only the first line needs an escape sequence, the flagB is
1096 cleared. If only the second line needs an escape sequence, the flagB is not
1097 used.
1098 
1099                   For storing sideinfo in case of escape sequence decoding one
1100 single word can be used for both escape sequences because they are decoded not
1101 at the same time:
1102 
1103 
1104                   bit 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9  8  7  6  5
1105 4  3  2  1  0
1106                       ===== == == =========== ===========
1107 =================================== ^      ^  ^         ^            ^
1108 ^ |      |  |         |            |                    | res. flagA  flagB
1109 escapePrefixUp  escapePrefixDown  escapeWord
1110 
1111 -----------------------------------------------------------------------------------------------
1112         output:   Two lines with correct sign. If one or two values is/are 16,
1113 the lines are not valid, otherwise they are.
1114 -----------------------------------------------------------------------------------------------
1115         return:   0
1116 --------------------------------------------------------------------------------------------
1117 */
Hcr_State_BODY_SIGN_ESC__SIGN(HANDLE_FDK_BITSTREAM bs,void * ptr)1118 UINT Hcr_State_BODY_SIGN_ESC__SIGN(HANDLE_FDK_BITSTREAM bs, void *ptr) {
1119   H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
1120   SCHAR *pRemainingBitsInSegment;
1121   INT *pLeftStartOfSegment;
1122   INT *pRightStartOfSegment;
1123   UCHAR readDirection;
1124   UINT *pSegmentBitfield;
1125   UINT *pCodewordBitfield;
1126   UINT segmentOffset;
1127 
1128   UINT *iNode;
1129   UCHAR *pCntSign;
1130   FIXP_DBL *pResultBase;
1131   USHORT *iResultPointer;
1132   UINT *pEscapeSequenceInfo;
1133   UINT codewordOffset;
1134 
1135   UINT iQSC;
1136   UCHAR cntSign;
1137   UINT flagA;
1138   UINT flagB;
1139   UINT flags;
1140   UCHAR carryBit;
1141   SCHAR *pSta;
1142 
1143   pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
1144   pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment;
1145   pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment;
1146   readDirection = pHcr->segmentInfo.readDirection;
1147   pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield;
1148   pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield;
1149   segmentOffset = pHcr->segmentInfo.segmentOffset;
1150 
1151   iNode = pHcr->nonPcwSideinfo.iNode;
1152   pCntSign = pHcr->nonPcwSideinfo.pCntSign;
1153   pResultBase = pHcr->nonPcwSideinfo.pResultBase;
1154   iResultPointer = pHcr->nonPcwSideinfo.iResultPointer;
1155   pEscapeSequenceInfo = pHcr->nonPcwSideinfo.pEscapeSequenceInfo;
1156   codewordOffset = pHcr->nonPcwSideinfo.codewordOffset;
1157   pSta = pHcr->nonPcwSideinfo.pSta;
1158 
1159   iQSC = iResultPointer[codewordOffset];
1160   cntSign = pCntSign[codewordOffset];
1161 
1162   /* loop for sign bit decoding */
1163   for (; pRemainingBitsInSegment[segmentOffset] > 0;
1164        pRemainingBitsInSegment[segmentOffset] -= 1) {
1165     carryBit = HcrGetABitFromBitstream(
1166         bs, pHcr->decInOut.bitstreamAnchor, &pLeftStartOfSegment[segmentOffset],
1167         &pRightStartOfSegment[segmentOffset], readDirection);
1168 
1169     /* decrement sign counter because one sign bit has been read */
1170     cntSign -= 1;
1171     pCntSign[codewordOffset] = cntSign;
1172 
1173     /* get a quantized spectral value (which was decoded in previous state)
1174      * which is not zero. [This value will get a sign] */
1175     while (pResultBase[iQSC] == (FIXP_DBL)0) {
1176       if (++iQSC >= 1024) {
1177         return BODY_SIGN_ESC__SIGN;
1178       }
1179     }
1180     iResultPointer[codewordOffset] = iQSC;
1181 
1182     /* put negative sign together with quantized spectral value; if carryBit is
1183      * zero, the sign is ok already; no write operation necessary in this case
1184      */
1185     if (carryBit != 0) {
1186       pResultBase[iQSC] = -pResultBase[iQSC]; /* carryBit = 1 --> minus */
1187     }
1188     iQSC++; /* update index to next (maybe valid) value */
1189     iResultPointer[codewordOffset] = iQSC;
1190 
1191     if (cntSign == 0) {
1192       /* all sign bits are decoded now */
1193       pRemainingBitsInSegment[segmentOffset] -= 1; /* last reinitialzation of
1194                                                       for loop counter (see
1195                                                       above) is done here */
1196 
1197       /* check decoded values if codeword is decoded: Check if one or two escape
1198        * sequences 16 follow */
1199 
1200       /* step 0 */
1201       /* restore pointer to first decoded quantized value [ = original
1202        * pResultPointr] from index iNode prepared in State_BODY_SIGN_ESC__BODY
1203        */
1204       iQSC = iNode[codewordOffset];
1205 
1206       /* step 1 */
1207       /* test first value if escape sequence follows */
1208       flagA = 0; /* for first possible escape sequence */
1209       if (fixp_abs(pResultBase[iQSC++]) == (FIXP_DBL)ESCAPE_VALUE) {
1210         flagA = 1;
1211       }
1212 
1213       /* step 2 */
1214       /* test second value if escape sequence follows */
1215       flagB = 0; /* for second possible escape sequence */
1216       if (fixp_abs(pResultBase[iQSC]) == (FIXP_DBL)ESCAPE_VALUE) {
1217         flagB = 1;
1218       }
1219 
1220       /* step 3 */
1221       /* evaluate flag result and go on if necessary */
1222       if (!flagA && !flagB) {
1223         ClearBitFromBitfield(
1224             &(pHcr->nonPcwSideinfo.pState), segmentOffset,
1225             pCodewordBitfield); /* clear a bit in bitfield and switch off
1226                                    statemachine */
1227       } else {
1228         /* at least one of two lines is 16 */
1229         /* store both flags at correct positions in non PCW codeword sideinfo
1230          * pEscapeSequenceInfo[codewordOffset] */
1231         flags = flagA << POSITION_OF_FLAG_A;
1232         flags |= (flagB << POSITION_OF_FLAG_B);
1233         pEscapeSequenceInfo[codewordOffset] = flags;
1234 
1235         /* set next state */
1236         pSta[codewordOffset] = BODY_SIGN_ESC__ESC_PREFIX;
1237         pHcr->nonPcwSideinfo.pState =
1238             aStateConstant2State[pSta[codewordOffset]]; /* get state from
1239                                                            separate array of
1240                                                            cw-sideinfo */
1241 
1242         /* set result pointer to the first line of the two decoded lines */
1243         iResultPointer[codewordOffset] = iNode[codewordOffset];
1244 
1245         if (!flagA && flagB) {
1246           /* update pResultPointr ==> state Stat_BODY_SIGN_ESC__ESC_WORD writes
1247            * to correct position. Second value is the one and only escape value
1248            */
1249           iQSC = iResultPointer[codewordOffset];
1250           iQSC++;
1251           iResultPointer[codewordOffset] = iQSC;
1252         }
1253 
1254       }      /* at least one of two lines is 16 */
1255       break; /* nonPCW-Body at cb 11 and according sign bits are decoded */
1256 
1257     } /* if ( cntSign == 0 ) */
1258   }   /* loop over remaining Bits in segment */
1259 
1260   if (pRemainingBitsInSegment[segmentOffset] <= 0) {
1261     ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset,
1262                          pSegmentBitfield); /* clear a bit in bitfield and
1263                                                switch off statemachine */
1264 
1265     if (pRemainingBitsInSegment[segmentOffset] < 0) {
1266       pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN_ESC__SIGN;
1267       return BODY_SIGN_ESC__SIGN;
1268     }
1269   }
1270   return STOP_THIS_STATE;
1271 }
1272 
1273 /*---------------------------------------------------------------------------------------------
1274      description: Decode escape prefix of first or second escape sequence. The
1275 escape prefix consists of ones. The following zero is also decoded here.
1276 -----------------------------------------------------------------------------------------------
1277         output:   If the single separator-zero which follows the
1278 escape-prefix-ones is not yet decoded: The value 'escapePrefixUp' in word
1279 pEscapeSequenceInfo[codewordOffset] is updated.
1280 
1281                   If the single separator-zero which follows the
1282 escape-prefix-ones is decoded: Two updated values 'escapePrefixUp' and
1283 'escapePrefixDown' in word pEscapeSequenceInfo[codewordOffset]. This State is
1284 finished. Switch to next state.
1285 -----------------------------------------------------------------------------------------------
1286         return:   0
1287 --------------------------------------------------------------------------------------------
1288 */
Hcr_State_BODY_SIGN_ESC__ESC_PREFIX(HANDLE_FDK_BITSTREAM bs,void * ptr)1289 UINT Hcr_State_BODY_SIGN_ESC__ESC_PREFIX(HANDLE_FDK_BITSTREAM bs, void *ptr) {
1290   H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
1291   SCHAR *pRemainingBitsInSegment;
1292   INT *pLeftStartOfSegment;
1293   INT *pRightStartOfSegment;
1294   UCHAR readDirection;
1295   UINT *pSegmentBitfield;
1296   UINT segmentOffset;
1297   UINT *pEscapeSequenceInfo;
1298   UINT codewordOffset;
1299   UCHAR carryBit;
1300   UINT escapePrefixUp;
1301   SCHAR *pSta;
1302 
1303   pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
1304   pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment;
1305   pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment;
1306   readDirection = pHcr->segmentInfo.readDirection;
1307   pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield;
1308   segmentOffset = pHcr->segmentInfo.segmentOffset;
1309   pEscapeSequenceInfo = pHcr->nonPcwSideinfo.pEscapeSequenceInfo;
1310   codewordOffset = pHcr->nonPcwSideinfo.codewordOffset;
1311   pSta = pHcr->nonPcwSideinfo.pSta;
1312 
1313   escapePrefixUp =
1314       (pEscapeSequenceInfo[codewordOffset] & MASK_ESCAPE_PREFIX_UP) >>
1315       LSB_ESCAPE_PREFIX_UP;
1316 
1317   /* decode escape prefix */
1318   for (; pRemainingBitsInSegment[segmentOffset] > 0;
1319        pRemainingBitsInSegment[segmentOffset] -= 1) {
1320     carryBit = HcrGetABitFromBitstream(
1321         bs, pHcr->decInOut.bitstreamAnchor, &pLeftStartOfSegment[segmentOffset],
1322         &pRightStartOfSegment[segmentOffset], readDirection);
1323 
1324     /* count ones and store sum in escapePrefixUp */
1325     if (carryBit == 1) {
1326       escapePrefixUp += 1; /* update conter for ones */
1327 
1328       /* store updated counter in sideinfo of current codeword */
1329       pEscapeSequenceInfo[codewordOffset] &=
1330           ~MASK_ESCAPE_PREFIX_UP;              /* delete old escapePrefixUp */
1331       escapePrefixUp <<= LSB_ESCAPE_PREFIX_UP; /* shift to correct position */
1332       pEscapeSequenceInfo[codewordOffset] |=
1333           escapePrefixUp;                      /* insert new escapePrefixUp */
1334       escapePrefixUp >>= LSB_ESCAPE_PREFIX_UP; /* shift back down */
1335     } else {                                   /* separator [zero] reached */
1336       pRemainingBitsInSegment[segmentOffset] -= 1; /* last reinitialzation of
1337                                                       for loop counter (see
1338                                                       above) is done here */
1339       escapePrefixUp +=
1340           4; /* if escape_separator '0' appears, add 4 and ==> break */
1341 
1342       /* store escapePrefixUp in pEscapeSequenceInfo[codewordOffset] at bit
1343        * position escapePrefixUp */
1344       pEscapeSequenceInfo[codewordOffset] &=
1345           ~MASK_ESCAPE_PREFIX_UP;              /* delete old escapePrefixUp */
1346       escapePrefixUp <<= LSB_ESCAPE_PREFIX_UP; /* shift to correct position */
1347       pEscapeSequenceInfo[codewordOffset] |=
1348           escapePrefixUp;                      /* insert new escapePrefixUp */
1349       escapePrefixUp >>= LSB_ESCAPE_PREFIX_UP; /* shift back down */
1350 
1351       /* store escapePrefixUp in pEscapeSequenceInfo[codewordOffset] at bit
1352        * position escapePrefixDown */
1353       pEscapeSequenceInfo[codewordOffset] &=
1354           ~MASK_ESCAPE_PREFIX_DOWN; /* delete old escapePrefixDown */
1355       escapePrefixUp <<= LSB_ESCAPE_PREFIX_DOWN; /* shift to correct position */
1356       pEscapeSequenceInfo[codewordOffset] |=
1357           escapePrefixUp; /* insert new escapePrefixDown */
1358 
1359       pSta[codewordOffset] = BODY_SIGN_ESC__ESC_WORD; /* set next state */
1360       pHcr->nonPcwSideinfo.pState =
1361           aStateConstant2State[pSta[codewordOffset]]; /* get state from separate
1362                                                          array of cw-sideinfo */
1363       break;
1364     }
1365   }
1366 
1367   if (pRemainingBitsInSegment[segmentOffset] <= 0) {
1368     ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset,
1369                          pSegmentBitfield); /* clear a bit in bitfield and
1370                                                switch off statemachine */
1371 
1372     if (pRemainingBitsInSegment[segmentOffset] < 0) {
1373       pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN_ESC__ESC_PREFIX;
1374       return BODY_SIGN_ESC__ESC_PREFIX;
1375     }
1376   }
1377 
1378   return STOP_THIS_STATE;
1379 }
1380 
1381 /*---------------------------------------------------------------------------------------------
1382      description: Decode escapeWord of escape sequence. If the escape sequence
1383 is decoded completely, assemble quantized-spectral-escape-coefficient and
1384 replace the previous decoded 16 by the new value. Test flagB. If flagB is set,
1385 the second escape sequence must be decoded. If flagB is not set, the codeword is
1386 decoded and the state machine is switched off.
1387 -----------------------------------------------------------------------------------------------
1388         output:   Two lines with valid sign. At least one of both lines has got
1389 the correct value.
1390 -----------------------------------------------------------------------------------------------
1391         return:   0
1392 --------------------------------------------------------------------------------------------
1393 */
Hcr_State_BODY_SIGN_ESC__ESC_WORD(HANDLE_FDK_BITSTREAM bs,void * ptr)1394 UINT Hcr_State_BODY_SIGN_ESC__ESC_WORD(HANDLE_FDK_BITSTREAM bs, void *ptr) {
1395   H_HCR_INFO pHcr = (H_HCR_INFO)ptr;
1396   SCHAR *pRemainingBitsInSegment;
1397   INT *pLeftStartOfSegment;
1398   INT *pRightStartOfSegment;
1399   UCHAR readDirection;
1400   UINT *pSegmentBitfield;
1401   UINT *pCodewordBitfield;
1402   UINT segmentOffset;
1403 
1404   FIXP_DBL *pResultBase;
1405   USHORT *iResultPointer;
1406   UINT *pEscapeSequenceInfo;
1407   UINT codewordOffset;
1408 
1409   UINT escapeWord;
1410   UINT escapePrefixDown;
1411   UINT escapePrefixUp;
1412   UCHAR carryBit;
1413   UINT iQSC;
1414   INT sign;
1415   UINT flagA;
1416   UINT flagB;
1417   SCHAR *pSta;
1418 
1419   pRemainingBitsInSegment = pHcr->segmentInfo.pRemainingBitsInSegment;
1420   pLeftStartOfSegment = pHcr->segmentInfo.pLeftStartOfSegment;
1421   pRightStartOfSegment = pHcr->segmentInfo.pRightStartOfSegment;
1422   readDirection = pHcr->segmentInfo.readDirection;
1423   pSegmentBitfield = pHcr->segmentInfo.pSegmentBitfield;
1424   pCodewordBitfield = pHcr->segmentInfo.pCodewordBitfield;
1425   segmentOffset = pHcr->segmentInfo.segmentOffset;
1426 
1427   pResultBase = pHcr->nonPcwSideinfo.pResultBase;
1428   iResultPointer = pHcr->nonPcwSideinfo.iResultPointer;
1429   pEscapeSequenceInfo = pHcr->nonPcwSideinfo.pEscapeSequenceInfo;
1430   codewordOffset = pHcr->nonPcwSideinfo.codewordOffset;
1431   pSta = pHcr->nonPcwSideinfo.pSta;
1432 
1433   escapeWord = pEscapeSequenceInfo[codewordOffset] & MASK_ESCAPE_WORD;
1434   escapePrefixDown =
1435       (pEscapeSequenceInfo[codewordOffset] & MASK_ESCAPE_PREFIX_DOWN) >>
1436       LSB_ESCAPE_PREFIX_DOWN;
1437 
1438   /* decode escape word */
1439   for (; pRemainingBitsInSegment[segmentOffset] > 0;
1440        pRemainingBitsInSegment[segmentOffset] -= 1) {
1441     carryBit = HcrGetABitFromBitstream(
1442         bs, pHcr->decInOut.bitstreamAnchor, &pLeftStartOfSegment[segmentOffset],
1443         &pRightStartOfSegment[segmentOffset], readDirection);
1444 
1445     /* build escape word */
1446     escapeWord <<=
1447         1; /* left shift previous decoded part of escapeWord by on bit */
1448     escapeWord = escapeWord | carryBit; /* assemble escape word by bitwise or */
1449 
1450     /* decrement counter for length of escape word because one more bit was
1451      * decoded */
1452     escapePrefixDown -= 1;
1453 
1454     /* store updated escapePrefixDown */
1455     pEscapeSequenceInfo[codewordOffset] &=
1456         ~MASK_ESCAPE_PREFIX_DOWN; /* delete old escapePrefixDown */
1457     escapePrefixDown <<= LSB_ESCAPE_PREFIX_DOWN; /* shift to correct position */
1458     pEscapeSequenceInfo[codewordOffset] |=
1459         escapePrefixDown; /* insert new escapePrefixDown */
1460     escapePrefixDown >>= LSB_ESCAPE_PREFIX_DOWN; /* shift back */
1461 
1462     /* store updated escapeWord */
1463     pEscapeSequenceInfo[codewordOffset] &=
1464         ~MASK_ESCAPE_WORD; /* delete old escapeWord */
1465     pEscapeSequenceInfo[codewordOffset] |=
1466         escapeWord; /* insert new escapeWord */
1467 
1468     if (escapePrefixDown == 0) {
1469       pRemainingBitsInSegment[segmentOffset] -= 1; /* last reinitialzation of
1470                                                       for loop counter (see
1471                                                       above) is done here */
1472 
1473       /* escape sequence decoded. Assemble escape-line and replace original line
1474        */
1475 
1476       /* step 0 */
1477       /* derive sign */
1478       iQSC = iResultPointer[codewordOffset];
1479       sign = (pResultBase[iQSC] >= (FIXP_DBL)0)
1480                  ? 1
1481                  : -1; /* get sign of escape value 16 */
1482 
1483       /* step 1 */
1484       /* get escapePrefixUp */
1485       escapePrefixUp =
1486           (pEscapeSequenceInfo[codewordOffset] & MASK_ESCAPE_PREFIX_UP) >>
1487           LSB_ESCAPE_PREFIX_UP;
1488 
1489       /* step 2 */
1490       /* calculate escape value */
1491       pResultBase[iQSC] =
1492           (FIXP_DBL)(sign * (((INT)1 << escapePrefixUp) + (INT)escapeWord));
1493 
1494       /* get both flags from sideinfo (flags are not shifted to the
1495        * lsb-position) */
1496       flagA = pEscapeSequenceInfo[codewordOffset] & MASK_FLAG_A;
1497       flagB = pEscapeSequenceInfo[codewordOffset] & MASK_FLAG_B;
1498 
1499       /* step 3 */
1500       /* clear the whole escape sideinfo word */
1501       pEscapeSequenceInfo[codewordOffset] = 0;
1502 
1503       /* change state in dependence of flag flagB */
1504       if (flagA != 0) {
1505         /* first escape sequence decoded; previous decoded 16 has been replaced
1506          * by valid line */
1507 
1508         /* clear flagA in sideinfo word because this escape sequence has already
1509          * beed decoded */
1510         pEscapeSequenceInfo[codewordOffset] &= ~MASK_FLAG_A;
1511 
1512         if (flagB == 0) {
1513           ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset,
1514                                pCodewordBitfield); /* clear a bit in bitfield
1515                                                       and switch off
1516                                                       statemachine */
1517         } else {
1518           /* updated pointer to next and last 16 */
1519           iQSC++;
1520           iResultPointer[codewordOffset] = iQSC;
1521 
1522           /* change state */
1523           pSta[codewordOffset] = BODY_SIGN_ESC__ESC_PREFIX;
1524           pHcr->nonPcwSideinfo.pState =
1525               aStateConstant2State[pSta[codewordOffset]]; /* get state from
1526                                                              separate array of
1527                                                              cw-sideinfo */
1528         }
1529       } else {
1530         ClearBitFromBitfield(
1531             &(pHcr->nonPcwSideinfo.pState), segmentOffset,
1532             pCodewordBitfield); /* clear a bit in bitfield and switch off
1533                                    statemachine */
1534       }
1535       break;
1536     }
1537   }
1538 
1539   if (pRemainingBitsInSegment[segmentOffset] <= 0) {
1540     ClearBitFromBitfield(&(pHcr->nonPcwSideinfo.pState), segmentOffset,
1541                          pSegmentBitfield); /* clear a bit in bitfield and
1542                                                switch off statemachine */
1543 
1544     if (pRemainingBitsInSegment[segmentOffset] < 0) {
1545       pHcr->decInOut.errorLog |= STATE_ERROR_BODY_SIGN_ESC__ESC_WORD;
1546       return BODY_SIGN_ESC__ESC_WORD;
1547     }
1548   }
1549 
1550   return STOP_THIS_STATE;
1551 }
1552