1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_S390_CONSTANTS_S390_H_
6 #define V8_S390_CONSTANTS_S390_H_
7 
8 // Get the standard printf format macros for C99 stdint types.
9 #ifndef __STDC_FORMAT_MACROS
10 #define __STDC_FORMAT_MACROS
11 #endif
12 #include <inttypes.h>
13 
14 #include <stdint.h>
15 
16 #include "src/base/logging.h"
17 #include "src/base/macros.h"
18 #include "src/globals.h"
19 
20 // UNIMPLEMENTED_ macro for S390.
21 #ifdef DEBUG
22 #define UNIMPLEMENTED_S390()                                               \
23   v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n", \
24                        __FILE__, __LINE__, __func__)
25 #else
26 #define UNIMPLEMENTED_S390()
27 #endif
28 
29 namespace v8 {
30 namespace internal {
31 
32 // TODO(sigurds): Change this value once we use relative jumps.
33 constexpr size_t kMaxPCRelativeCodeRangeInMB = 0;
34 
35 // Number of registers
36 const int kNumRegisters = 16;
37 
38 // FP support.
39 const int kNumDoubleRegisters = 16;
40 
41 const int kNoRegister = -1;
42 
43 // Actual value of root register is offset from the root array's start
44 // to take advantage of negative displacement values.
45 // TODO(sigurds): Choose best value.
46 constexpr int kRootRegisterBias = 128;
47 
48 // sign-extend the least significant 16-bits of value <imm>
49 #define SIGN_EXT_IMM16(imm) ((static_cast<int>(imm) << 16) >> 16)
50 
51 // sign-extend the least significant 26-bits of value <imm>
52 #define SIGN_EXT_IMM26(imm) ((static_cast<int>(imm) << 6) >> 6)
53 
54 // -----------------------------------------------------------------------------
55 // Conditions.
56 
57 // Defines constants and accessor classes to assemble, disassemble and
58 // simulate z/Architecture instructions.
59 //
60 // Section references in the code refer to the "z/Architecture Principles
61 // Of Operation" http://publibfi.boulder.ibm.com/epubs/pdf/dz9zr009.pdf
62 //
63 
64 // Constants for specific fields are defined in their respective named enums.
65 // General constants are in an anonymous enum in class Instr.
66 enum Condition {
67   kNoCondition = -1,
68   eq = 0x8,  // Equal.
69   ne = 0x7,  // Not equal.
70   ge = 0xa,  // Greater or equal.
71   lt = 0x4,  // Less than.
72   gt = 0x2,  // Greater than.
73   le = 0xc,  // Less then or equal
74   al = 0xf,  // Always.
75 
76   CC_NOP = 0x0,           // S390 NOP
77   CC_EQ = 0x08,           // S390 condition code 0b1000
78   CC_LT = 0x04,           // S390 condition code 0b0100
79   CC_LE = CC_EQ | CC_LT,  // S390 condition code 0b1100
80   CC_GT = 0x02,           // S390 condition code 0b0010
81   CC_GE = CC_EQ | CC_GT,  // S390 condition code 0b1010
82   CC_OF = 0x01,           // S390 condition code 0b0001
83   CC_NOF = 0x0E,          // S390 condition code 0b1110
84   CC_ALWAYS = 0x0F,       // S390 always taken branch
85   unordered = CC_OF,      // Floating-point unordered
86   ordered = CC_NOF,       // floating-point ordered
87   overflow = CC_OF,       // Summary overflow
88   nooverflow = CC_NOF,
89 
90   mask0x0 = 0,  // no jumps
91   mask0x1 = 1,
92   mask0x2 = 2,
93   mask0x3 = 3,
94   mask0x4 = 4,
95   mask0x5 = 5,
96   mask0x6 = 6,
97   mask0x7 = 7,
98   mask0x8 = 8,
99   mask0x9 = 9,
100   mask0xA = 10,
101   mask0xB = 11,
102   mask0xC = 12,
103   mask0xD = 13,
104   mask0xE = 14,
105   mask0xF = 15,
106 
107   // Rounding modes for floating poing facility
108   CURRENT_ROUNDING_MODE = 0,
109   ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0 = 1,
110   ROUND_TO_PREPARE_FOR_SHORTER_PRECISION = 3,
111   ROUND_TO_NEAREST_WITH_TIES_TO_EVEN = 4,
112   ROUND_TOWARD_0 = 5,
113   ROUND_TOWARD_PLUS_INFINITE = 6,
114   ROUND_TOWARD_MINUS_INFINITE = 7
115 };
116 
NegateCondition(Condition cond)117 inline Condition NegateCondition(Condition cond) {
118   DCHECK(cond != al);
119   switch (cond) {
120     case eq:
121       return ne;
122     case ne:
123       return eq;
124     case ge:
125       return lt;
126     case gt:
127       return le;
128     case le:
129       return gt;
130     case lt:
131       return ge;
132     case lt | gt:
133       return eq;
134     case le | ge:
135       return CC_OF;
136     case CC_OF:
137       return CC_NOF;
138     default:
139       DCHECK(false);
140   }
141   return al;
142 }
143 
144 // -----------------------------------------------------------------------------
145 // Instructions encoding.
146 
147 // Instr is merely used by the Assembler to distinguish 32bit integers
148 // representing instructions from usual 32 bit values.
149 // Instruction objects are pointers to 32bit values, and provide methods to
150 // access the various ISA fields.
151 typedef int32_t Instr;
152 typedef uint16_t TwoByteInstr;
153 typedef uint32_t FourByteInstr;
154 typedef uint64_t SixByteInstr;
155 
156 #define S390_RSY_A_OPCODE_LIST(V)                                              \
157   V(lmg, LMG, 0xEB04)     /* type = RSY_A LOAD MULTIPLE (64)  */               \
158   V(srag, SRAG, 0xEB0A)   /* type = RSY_A SHIFT RIGHT SINGLE (64)  */          \
159   V(slag, SLAG, 0xEB0B)   /* type = RSY_A SHIFT LEFT SINGLE (64)  */           \
160   V(srlg, SRLG, 0xEB0C)   /* type = RSY_A SHIFT RIGHT SINGLE LOGICAL (64)  */  \
161   V(sllg, SLLG, 0xEB0D)   /* type = RSY_A SHIFT LEFT SINGLE LOGICAL (64)  */   \
162   V(tracg, TRACG, 0xEB0F) /* type = RSY_A TRACE (64)  */                       \
163   V(csy, CSY, 0xEB14)     /* type = RSY_A COMPARE AND SWAP (32)  */            \
164   V(rllg, RLLG, 0xEB1C)   /* type = RSY_A ROTATE LEFT SINGLE LOGICAL (64)  */  \
165   V(rll, RLL, 0xEB1D)     /* type = RSY_A ROTATE LEFT SINGLE LOGICAL (32)  */  \
166   V(stmg, STMG, 0xEB24)   /* type = RSY_A STORE MULTIPLE (64)  */              \
167   V(stctg, STCTG, 0xEB25) /* type = RSY_A STORE CONTROL (64)  */               \
168   V(stmh, STMH, 0xEB26)   /* type = RSY_A STORE MULTIPLE HIGH (32)  */         \
169   V(lctlg, LCTLG, 0xEB2F) /* type = RSY_A LOAD CONTROL (64)  */                \
170   V(csg, CSG, 0xEB30)     /* type = RSY_A COMPARE AND SWAP (64)  */            \
171   V(cdsy, CDSY, 0xEB31)   /* type = RSY_A COMPARE DOUBLE AND SWAP (32)  */     \
172   V(cdsg, CDSG, 0xEB3E)   /* type = RSY_A COMPARE DOUBLE AND SWAP (64)  */     \
173   V(bxhg, BXHG, 0xEB44)   /* type = RSY_A BRANCH ON INDEX HIGH (64)  */        \
174   V(bxleg, BXLEG, 0xEB45) /* type = RSY_A BRANCH ON INDEX LOW OR EQUAL (64) */ \
175   V(ecag, ECAG, 0xEB4C)   /* type = RSY_A EXTRACT CPU ATTRIBUTE  */            \
176   V(mvclu, MVCLU, 0xEB8E) /* type = RSY_A MOVE LONG UNICODE  */                \
177   V(clclu, CLCLU, 0xEB8F) /* type = RSY_A COMPARE LOGICAL LONG UNICODE  */     \
178   V(stmy, STMY, 0xEB90)   /* type = RSY_A STORE MULTIPLE (32)  */              \
179   V(lmh, LMH, 0xEB96)     /* type = RSY_A LOAD MULTIPLE HIGH (32)  */          \
180   V(lmy, LMY, 0xEB98)     /* type = RSY_A LOAD MULTIPLE (32)  */               \
181   V(lamy, LAMY, 0xEB9A)   /* type = RSY_A LOAD ACCESS MULTIPLE  */             \
182   V(stamy, STAMY, 0xEB9B) /* type = RSY_A STORE ACCESS MULTIPLE  */            \
183   V(srak, SRAK, 0xEBDC)   /* type = RSY_A SHIFT RIGHT SINGLE (32)  */          \
184   V(slak, SLAK, 0xEBDD)   /* type = RSY_A SHIFT LEFT SINGLE (32)  */           \
185   V(srlk, SRLK, 0xEBDE)   /* type = RSY_A SHIFT RIGHT SINGLE LOGICAL (32)  */  \
186   V(sllk, SLLK, 0xEBDF)   /* type = RSY_A SHIFT LEFT SINGLE LOGICAL (32)  */   \
187   V(lang, LANG, 0xEBE4)   /* type = RSY_A LOAD AND AND (64)  */                \
188   V(laog, LAOG, 0xEBE6)   /* type = RSY_A LOAD AND OR (64)  */                 \
189   V(laxg, LAXG, 0xEBE7)   /* type = RSY_A LOAD AND EXCLUSIVE OR (64)  */       \
190   V(laag, LAAG, 0xEBE8)   /* type = RSY_A LOAD AND ADD (64)  */                \
191   V(laalg, LAALG, 0xEBEA) /* type = RSY_A LOAD AND ADD LOGICAL (64)  */        \
192   V(lan, LAN, 0xEBF4)     /* type = RSY_A LOAD AND AND (32)  */                \
193   V(lao, LAO, 0xEBF6)     /* type = RSY_A LOAD AND OR (32)  */                 \
194   V(lax, LAX, 0xEBF7)     /* type = RSY_A LOAD AND EXCLUSIVE OR (32)  */       \
195   V(laa, LAA, 0xEBF8)     /* type = RSY_A LOAD AND ADD (32)  */                \
196   V(laal, LAAL, 0xEBFA)   /* type = RSY_A LOAD AND ADD LOGICAL (32)  */
197 
198 #define S390_RSY_B_OPCODE_LIST(V)                                              \
199   V(clmh, CLMH,                                                                \
200     0xEB20) /* type = RSY_B COMPARE LOGICAL CHAR. UNDER MASK (high)  */        \
201   V(clmy, CLMY,                                                                \
202     0xEB21) /* type = RSY_B COMPARE LOGICAL CHAR. UNDER MASK (low)  */         \
203   V(clt, CLT, 0xEB23)   /* type = RSY_B COMPARE LOGICAL AND TRAP (32)  */      \
204   V(clgt, CLGT, 0xEB2B) /* type = RSY_B COMPARE LOGICAL AND TRAP (64)  */      \
205   V(stcmh, STCMH,                                                              \
206     0xEB2C) /* type = RSY_B STORE CHARACTERS UNDER MASK (high)  */             \
207   V(stcmy, STCMY, 0xEB2D) /* type = RSY_B STORE CHARACTERS UNDER MASK (low) */ \
208   V(icmh, ICMH, 0xEB80) /* type = RSY_B INSERT CHARACTERS UNDER MASK (high) */ \
209   V(icmy, ICMY, 0xEB81) /* type = RSY_B INSERT CHARACTERS UNDER MASK (low)  */ \
210   V(locfh, LOCFH, 0xEBE0)   /* type = RSY_B LOAD HIGH ON CONDITION (32)  */    \
211   V(stocfh, STOCFH, 0xEBE1) /* type = RSY_B STORE HIGH ON CONDITION  */        \
212   V(locg, LOCG, 0xEBE2)     /* type = RSY_B LOAD ON CONDITION (64)  */         \
213   V(stocg, STOCG, 0xEBE3)   /* type = RSY_B STORE ON CONDITION (64)  */        \
214   V(loc, LOC, 0xEBF2)       /* type = RSY_B LOAD ON CONDITION (32)  */         \
215   V(stoc, STOC, 0xEBF3)     /* type = RSY_B STORE ON CONDITION (32)  */
216 
217 #define S390_RXE_OPCODE_LIST(V)                                                \
218   V(lcbb, LCBB, 0xE727) /* type = RXE   LOAD COUNT TO BLOCK BOUNDARY  */       \
219   V(ldeb, LDEB, 0xED04) /* type = RXE   LOAD LENGTHENED (short to long BFP) */ \
220   V(lxdb, LXDB,                                                                \
221     0xED05) /* type = RXE   LOAD LENGTHENED (long to extended BFP)  */         \
222   V(lxeb, LXEB,                                                                \
223     0xED06) /* type = RXE   LOAD LENGTHENED (short to extended BFP)  */        \
224   V(mxdb, MXDB, 0xED07) /* type = RXE   MULTIPLY (long to extended BFP)  */    \
225   V(keb, KEB, 0xED08)   /* type = RXE   COMPARE AND SIGNAL (short BFP)  */     \
226   V(ceb, CEB, 0xED09)   /* type = RXE   COMPARE (short BFP)  */                \
227   V(aeb, AEB, 0xED0A)   /* type = RXE   ADD (short BFP)  */                    \
228   V(seb, SEB, 0xED0B)   /* type = RXE   SUBTRACT (short BFP)  */               \
229   V(mdeb, MDEB, 0xED0C) /* type = RXE   MULTIPLY (short to long BFP)  */       \
230   V(deb, DEB, 0xED0D)   /* type = RXE   DIVIDE (short BFP)  */                 \
231   V(tceb, TCEB, 0xED10) /* type = RXE   TEST DATA CLASS (short BFP)  */        \
232   V(tcdb, TCDB, 0xED11) /* type = RXE   TEST DATA CLASS (long BFP)  */         \
233   V(tcxb, TCXB, 0xED12) /* type = RXE   TEST DATA CLASS (extended BFP)  */     \
234   V(sqeb, SQEB, 0xED14) /* type = RXE   SQUARE ROOT (short BFP)  */            \
235   V(sqdb, SQDB, 0xED15) /* type = RXE   SQUARE ROOT (long BFP)  */             \
236   V(meeb, MEEB, 0xED17) /* type = RXE   MULTIPLY (short BFP)  */               \
237   V(kdb, KDB, 0xED18)   /* type = RXE   COMPARE AND SIGNAL (long BFP)  */      \
238   V(cdb, CDB, 0xED19)   /* type = RXE   COMPARE (long BFP)  */                 \
239   V(adb, ADB, 0xED1A)   /* type = RXE   ADD (long BFP)  */                     \
240   V(sdb, SDB, 0xED1B)   /* type = RXE   SUBTRACT (long BFP)  */                \
241   V(mdb, MDB, 0xED1C)   /* type = RXE   MULTIPLY (long BFP)  */                \
242   V(ddb, DDB, 0xED1D)   /* type = RXE   DIVIDE (long BFP)  */                  \
243   V(lde, LDE, 0xED24) /* type = RXE   LOAD LENGTHENED (short to long HFP)  */  \
244   V(lxd, LXD,                                                                  \
245     0xED25) /* type = RXE   LOAD LENGTHENED (long to extended HFP)  */         \
246   V(lxe, LXE,                                                                  \
247     0xED26) /* type = RXE   LOAD LENGTHENED (short to extended HFP)  */        \
248   V(sqe, SQE, 0xED34)     /* type = RXE   SQUARE ROOT (short HFP)  */          \
249   V(sqd, SQD, 0xED35)     /* type = RXE   SQUARE ROOT (long HFP)  */           \
250   V(mee, MEE, 0xED37)     /* type = RXE   MULTIPLY (short HFP)  */             \
251   V(tdcet, TDCET, 0xED50) /* type = RXE   TEST DATA CLASS (short DFP)  */      \
252   V(tdget, TDGET, 0xED51) /* type = RXE   TEST DATA GROUP (short DFP)  */      \
253   V(tdcdt, TDCDT, 0xED54) /* type = RXE   TEST DATA CLASS (long DFP)  */       \
254   V(tdgdt, TDGDT, 0xED55) /* type = RXE   TEST DATA GROUP (long DFP)  */       \
255   V(tdcxt, TDCXT, 0xED58) /* type = RXE   TEST DATA CLASS (extended DFP)  */   \
256   V(tdgxt, TDGXT, 0xED59) /* type = RXE   TEST DATA GROUP (extended DFP)  */
257 
258 #define S390_RRF_A_OPCODE_LIST(V)                                           \
259   V(ipte, IPTE, 0xB221)     /* type = RRF_A INVALIDATE PAGE TABLE ENTRY  */ \
260   V(mdtra, MDTRA, 0xB3D0)   /* type = RRF_A MULTIPLY (long DFP)  */         \
261   V(ddtra, DDTRA, 0xB3D1)   /* type = RRF_A DIVIDE (long DFP)  */           \
262   V(adtra, ADTRA, 0xB3D2)   /* type = RRF_A ADD (long DFP)  */              \
263   V(sdtra, SDTRA, 0xB3D3)   /* type = RRF_A SUBTRACT (long DFP)  */         \
264   V(mxtra, MXTRA, 0xB3D8)   /* type = RRF_A MULTIPLY (extended DFP)  */     \
265   V(msrkc, MSRKC, 0xB9FD)   /* type = RRF_A MULTIPLY (32)*/                 \
266   V(msgrkc, MSGRKC, 0xB9ED) /* type = RRF_A MULTIPLY (64)*/                 \
267   V(dxtra, DXTRA, 0xB3D9)   /* type = RRF_A DIVIDE (extended DFP)  */       \
268   V(axtra, AXTRA, 0xB3DA)   /* type = RRF_A ADD (extended DFP)  */          \
269   V(sxtra, SXTRA, 0xB3DB)   /* type = RRF_A SUBTRACT (extended DFP)  */     \
270   V(ahhhr, AHHHR, 0xB9C8)   /* type = RRF_A ADD HIGH (32)  */               \
271   V(shhhr, SHHHR, 0xB9C9)   /* type = RRF_A SUBTRACT HIGH (32)  */          \
272   V(alhhhr, ALHHHR, 0xB9CA) /* type = RRF_A ADD LOGICAL HIGH (32)  */       \
273   V(slhhhr, SLHHHR, 0xB9CB) /* type = RRF_A SUBTRACT LOGICAL HIGH (32)  */  \
274   V(ahhlr, AHHLR, 0xB9D8)   /* type = RRF_A ADD HIGH (32)  */               \
275   V(shhlr, SHHLR, 0xB9D9)   /* type = RRF_A SUBTRACT HIGH (32)  */          \
276   V(alhhlr, ALHHLR, 0xB9DA) /* type = RRF_A ADD LOGICAL HIGH (32)  */       \
277   V(slhhlr, SLHHLR, 0xB9DB) /* type = RRF_A SUBTRACT LOGICAL HIGH (32)  */  \
278   V(ngrk, NGRK, 0xB9E4)     /* type = RRF_A AND (64)  */                    \
279   V(ogrk, OGRK, 0xB9E6)     /* type = RRF_A OR (64)  */                     \
280   V(xgrk, XGRK, 0xB9E7)     /* type = RRF_A EXCLUSIVE OR (64)  */           \
281   V(agrk, AGRK, 0xB9E8)     /* type = RRF_A ADD (64)  */                    \
282   V(sgrk, SGRK, 0xB9E9)     /* type = RRF_A SUBTRACT (64)  */               \
283   V(algrk, ALGRK, 0xB9EA)   /* type = RRF_A ADD LOGICAL (64)  */            \
284   V(slgrk, SLGRK, 0xB9EB)   /* type = RRF_A SUBTRACT LOGICAL (64)  */       \
285   V(nrk, NRK, 0xB9F4)       /* type = RRF_A AND (32)  */                    \
286   V(ork, ORK, 0xB9F6)       /* type = RRF_A OR (32)  */                     \
287   V(xrk, XRK, 0xB9F7)       /* type = RRF_A EXCLUSIVE OR (32)  */           \
288   V(ark, ARK, 0xB9F8)       /* type = RRF_A ADD (32)  */                    \
289   V(srk, SRK, 0xB9F9)       /* type = RRF_A SUBTRACT (32)  */               \
290   V(alrk, ALRK, 0xB9FA)     /* type = RRF_A ADD LOGICAL (32)  */            \
291   V(slrk, SLRK, 0xB9FB)     /* type = RRF_A SUBTRACT LOGICAL (32)  */
292 
293 #define S390_RXF_OPCODE_LIST(V)                                                \
294   V(maeb, MAEB, 0xED0E) /* type = RXF   MULTIPLY AND ADD (short BFP)  */       \
295   V(mseb, MSEB, 0xED0F) /* type = RXF   MULTIPLY AND SUBTRACT (short BFP)  */  \
296   V(madb, MADB, 0xED1E) /* type = RXF   MULTIPLY AND ADD (long BFP)  */        \
297   V(msdb, MSDB, 0xED1F) /* type = RXF   MULTIPLY AND SUBTRACT (long BFP)  */   \
298   V(mae, MAE, 0xED2E)   /* type = RXF   MULTIPLY AND ADD (short HFP)  */       \
299   V(mse, MSE, 0xED2F)   /* type = RXF   MULTIPLY AND SUBTRACT (short HFP)  */  \
300   V(mayl, MAYL,                                                                \
301     0xED38) /* type = RXF   MULTIPLY AND ADD UNNRM. (long to ext. low HFP)  */ \
302   V(myl, MYL,                                                                  \
303     0xED39) /* type = RXF   MULTIPLY UNNORM. (long to ext. low HFP)  */        \
304   V(may, MAY,                                                                  \
305     0xED3A) /* type = RXF   MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)  */ \
306   V(my, MY,                                                                    \
307     0xED3B) /* type = RXF   MULTIPLY UNNORMALIZED (long to ext. HFP)  */       \
308   V(mayh, MAYH,                                                                \
309     0xED3C) /* type = RXF   MULTIPLY AND ADD UNNRM. (long to ext. high HFP) */ \
310   V(myh, MYH,                                                                  \
311     0xED3D) /* type = RXF   MULTIPLY UNNORM. (long to ext. high HFP)  */       \
312   V(mad, MAD, 0xED3E)   /* type = RXF   MULTIPLY AND ADD (long HFP)  */        \
313   V(msd, MSD, 0xED3F)   /* type = RXF   MULTIPLY AND SUBTRACT (long HFP)  */   \
314   V(sldt, SLDT, 0xED40) /* type = RXF   SHIFT SIGNIFICAND LEFT (long DFP)  */  \
315   V(srdt, SRDT, 0xED41) /* type = RXF   SHIFT SIGNIFICAND RIGHT (long DFP)  */ \
316   V(slxt, SLXT,                                                                \
317     0xED48) /* type = RXF   SHIFT SIGNIFICAND LEFT (extended DFP)  */          \
318   V(srxt, SRXT,                                                                \
319     0xED49) /* type = RXF   SHIFT SIGNIFICAND RIGHT (extended DFP)  */
320 
321 #define S390_IE_OPCODE_LIST(V) \
322   V(niai, NIAI, 0xB2FA) /* type = IE    NEXT INSTRUCTION ACCESS INTENT  */
323 
324 #define S390_RRF_B_OPCODE_LIST(V)                                           \
325   V(diebr, DIEBR, 0xB353) /* type = RRF_B DIVIDE TO INTEGER (short BFP)  */ \
326   V(didbr, DIDBR, 0xB35B) /* type = RRF_B DIVIDE TO INTEGER (long BFP)  */  \
327   V(cpsdr, CPSDR, 0xB372) /* type = RRF_B COPY SIGN (long)  */              \
328   V(qadtr, QADTR, 0xB3F5) /* type = RRF_B QUANTIZE (long DFP)  */           \
329   V(iedtr, IEDTR,                                                           \
330     0xB3F6) /* type = RRF_B INSERT BIASED EXPONENT (64 to long DFP)  */     \
331   V(rrdtr, RRDTR, 0xB3F7) /* type = RRF_B REROUND (long DFP)  */            \
332   V(qaxtr, QAXTR, 0xB3FD) /* type = RRF_B QUANTIZE (extended DFP)  */       \
333   V(iextr, IEXTR,                                                           \
334     0xB3FE) /* type = RRF_B INSERT BIASED EXPONENT (64 to extended DFP)  */ \
335   V(rrxtr, RRXTR, 0xB3FF) /* type = RRF_B REROUND (extended DFP)  */        \
336   V(kmctr, KMCTR, 0xB92D) /* type = RRF_B CIPHER MESSAGE WITH COUNTER  */   \
337   V(idte, IDTE, 0xB98E)   /* type = RRF_B INVALIDATE DAT TABLE ENTRY  */    \
338   V(crdte, CRDTE,                                                           \
339     0xB98F) /* type = RRF_B COMPARE AND REPLACE DAT TABLE ENTRY  */         \
340   V(lptea, LPTEA, 0xB9AA) /* type = RRF_B LOAD PAGE TABLE ENTRY ADDRESS  */
341 
342 #define S390_RRF_C_OPCODE_LIST(V)                                           \
343   V(sske, SSKE, 0xB22B)   /* type = RRF_C SET STORAGE KEY EXTENDED  */      \
344   V(cu21, CU21, 0xB2A6)   /* type = RRF_C CONVERT UTF-16 TO UTF-8  */       \
345   V(cu12, CU12, 0xB2A7)   /* type = RRF_C CONVERT UTF-8 TO UTF-16  */       \
346   V(ppa, PPA, 0xB2E8)     /* type = RRF_C PERFORM PROCESSOR ASSIST  */      \
347   V(cgrt, CGRT, 0xB960)   /* type = RRF_C COMPARE AND TRAP (64)  */         \
348   V(clgrt, CLGRT, 0xB961) /* type = RRF_C COMPARE LOGICAL AND TRAP (64)  */ \
349   V(crt, CRT, 0xB972)     /* type = RRF_C COMPARE AND TRAP (32)  */         \
350   V(clrt, CLRT, 0xB973)   /* type = RRF_C COMPARE LOGICAL AND TRAP (32)  */ \
351   V(trtt, TRTT, 0xB990)   /* type = RRF_C TRANSLATE TWO TO TWO  */          \
352   V(trto, TRTO, 0xB991)   /* type = RRF_C TRANSLATE TWO TO ONE  */          \
353   V(trot, TROT, 0xB992)   /* type = RRF_C TRANSLATE ONE TO TWO  */          \
354   V(troo, TROO, 0xB993)   /* type = RRF_C TRANSLATE ONE TO ONE  */          \
355   V(cu14, CU14, 0xB9B0)   /* type = RRF_C CONVERT UTF-8 TO UTF-32  */       \
356   V(cu24, CU24, 0xB9B1)   /* type = RRF_C CONVERT UTF-16 TO UTF-32  */      \
357   V(trtre, TRTRE,                                                           \
358     0xB9BD) /* type = RRF_C TRANSLATE AND TEST REVERSE EXTENDED  */         \
359   V(trte, TRTE, 0xB9BF)     /* type = RRF_C TRANSLATE AND TEST EXTENDED  */ \
360   V(locfhr, LOCFHR, 0xB9E0) /* type = RRF_C LOAD HIGH ON CONDITION (32)  */ \
361   V(locgr, LOCGR, 0xB9E2)   /* type = RRF_C LOAD ON CONDITION (64)  */      \
362   V(locr, LOCR, 0xB9F2)     /* type = RRF_C LOAD ON CONDITION (32)  */
363 
364 #define S390_MII_OPCODE_LIST(V) \
365   V(bprp, BPRP, 0xC5) /* type = MII   BRANCH PREDICTION RELATIVE PRELOAD  */
366 
367 #define S390_RRF_D_OPCODE_LIST(V)                                         \
368   V(ldetr, LDETR,                                                         \
369     0xB3D4) /* type = RRF_D LOAD LENGTHENED (short to long DFP)  */       \
370   V(lxdtr, LXDTR,                                                         \
371     0xB3DC) /* type = RRF_D LOAD LENGTHENED (long to extended DFP)  */    \
372   V(csdtr, CSDTR,                                                         \
373     0xB3E3) /* type = RRF_D CONVERT TO SIGNED PACKED (long DFP to 64)  */ \
374   V(csxtr, CSXTR,                                                         \
375     0xB3EB) /* type = RRF_D CONVERT TO SIGNED PACKED (extended DFP to 128)  */
376 
377 #define S390_RRF_E_OPCODE_LIST(V)                                              \
378   V(ledbra, LEDBRA,                                                            \
379     0xB344) /* type = RRF_E LOAD ROUNDED (long to short BFP)  */               \
380   V(ldxbra, LDXBRA,                                                            \
381     0xB345) /* type = RRF_E LOAD ROUNDED (extended to long BFP)  */            \
382   V(lexbra, LEXBRA,                                                            \
383     0xB346) /* type = RRF_E LOAD ROUNDED (extended to short BFP)  */           \
384   V(fixbra, FIXBRA, 0xB347) /* type = RRF_E LOAD FP INTEGER (extended BFP)  */ \
385   V(tbedr, TBEDR,                                                              \
386     0xB350)             /* type = RRF_E CONVERT HFP TO BFP (long to short)  */ \
387   V(tbdr, TBDR, 0xB351) /* type = RRF_E CONVERT HFP TO BFP (long)  */          \
388   V(fiebra, FIEBRA, 0xB357) /* type = RRF_E LOAD FP INTEGER (short BFP)  */    \
389   V(fidbra, FIDBRA, 0xB35F) /* type = RRF_E LOAD FP INTEGER (long BFP)  */     \
390   V(celfbr, CELFBR,                                                            \
391     0xB390) /* type = RRF_E CONVERT FROM LOGICAL (32 to short BFP)  */         \
392   V(cdlfbr, CDLFBR,                                                            \
393     0xB391) /* type = RRF_E CONVERT FROM LOGICAL (32 to long BFP)  */          \
394   V(cxlfbr, CXLFBR,                                                            \
395     0xB392) /* type = RRF_E CONVERT FROM LOGICAL (32 to extended BFP)  */      \
396   V(cefbra, CEFBRA,                                                            \
397     0xB394) /* type = RRF_E CONVERT FROM FIXED (32 to short BFP)  */           \
398   V(cdfbra, CDFBRA,                                                            \
399     0xB395) /* type = RRF_E CONVERT FROM FIXED (32 to long BFP)  */            \
400   V(cxfbra, CXFBRA,                                                            \
401     0xB396) /* type = RRF_E CONVERT FROM FIXED (32 to extended BFP)  */        \
402   V(cfebra, CFEBRA,                                                            \
403     0xB398) /* type = RRF_E CONVERT TO FIXED (short BFP to 32)  */             \
404   V(cfdbra, CFDBRA,                                                            \
405     0xB399) /* type = RRF_E CONVERT TO FIXED (long BFP to 32)  */              \
406   V(cfxbra, CFXBRA,                                                            \
407     0xB39A) /* type = RRF_E CONVERT TO FIXED (extended BFP to 32)  */          \
408   V(clfebr, CLFEBR,                                                            \
409     0xB39C) /* type = RRF_E CONVERT TO LOGICAL (short BFP to 32)  */           \
410   V(clfdbr, CLFDBR,                                                            \
411     0xB39D) /* type = RRF_E CONVERT TO LOGICAL (long BFP to 32)  */            \
412   V(clfxbr, CLFXBR,                                                            \
413     0xB39E) /* type = RRF_E CONVERT TO LOGICAL (extended BFP to 32)  */        \
414   V(celgbr, CELGBR,                                                            \
415     0xB3A0) /* type = RRF_E CONVERT FROM LOGICAL (64 to short BFP)  */         \
416   V(cdlgbr, CDLGBR,                                                            \
417     0xB3A1) /* type = RRF_E CONVERT FROM LOGICAL (64 to long BFP)  */          \
418   V(cxlgbr, CXLGBR,                                                            \
419     0xB3A2) /* type = RRF_E CONVERT FROM LOGICAL (64 to extended BFP)  */      \
420   V(cegbra, CEGBRA,                                                            \
421     0xB3A4) /* type = RRF_E CONVERT FROM FIXED (64 to short BFP)  */           \
422   V(cdgbra, CDGBRA,                                                            \
423     0xB3A5) /* type = RRF_E CONVERT FROM FIXED (64 to long BFP)  */            \
424   V(cxgbra, CXGBRA,                                                            \
425     0xB3A6) /* type = RRF_E CONVERT FROM FIXED (64 to extended BFP)  */        \
426   V(cgebra, CGEBRA,                                                            \
427     0xB3A8) /* type = RRF_E CONVERT TO FIXED (short BFP to 64)  */             \
428   V(cgdbra, CGDBRA,                                                            \
429     0xB3A9) /* type = RRF_E CONVERT TO FIXED (long BFP to 64)  */              \
430   V(cgxbra, CGXBRA,                                                            \
431     0xB3AA) /* type = RRF_E CONVERT TO FIXED (extended BFP to 64)  */          \
432   V(clgebr, CLGEBR,                                                            \
433     0xB3AC) /* type = RRF_E CONVERT TO LOGICAL (short BFP to 64)  */           \
434   V(clgdbr, CLGDBR,                                                            \
435     0xB3AD) /* type = RRF_E CONVERT TO LOGICAL (long BFP to 64)  */            \
436   V(clgxbr, CLGXBR,                                                            \
437     0xB3AE) /* type = RRF_E CONVERT TO LOGICAL (extended BFP to 64)  */        \
438   V(cfer, CFER, 0xB3B8) /* type = RRF_E CONVERT TO FIXED (short HFP to 32)  */ \
439   V(cfdr, CFDR, 0xB3B9) /* type = RRF_E CONVERT TO FIXED (long HFP to 32)  */  \
440   V(cfxr, CFXR,                                                                \
441     0xB3BA) /* type = RRF_E CONVERT TO FIXED (extended HFP to 32)  */          \
442   V(cger, CGER, 0xB3C8) /* type = RRF_E CONVERT TO FIXED (short HFP to 64)  */ \
443   V(cgdr, CGDR, 0xB3C9) /* type = RRF_E CONVERT TO FIXED (long HFP to 64)  */  \
444   V(cgxr, CGXR,                                                                \
445     0xB3CA) /* type = RRF_E CONVERT TO FIXED (extended HFP to 64)  */          \
446   V(ledtr, LEDTR, 0xB3D5) /* type = RRF_E LOAD ROUNDED (long to short DFP)  */ \
447   V(fidtr, FIDTR, 0xB3D7) /* type = RRF_E LOAD FP INTEGER (long DFP)  */       \
448   V(ldxtr, LDXTR,                                                              \
449     0xB3DD) /* type = RRF_E LOAD ROUNDED (extended to long DFP)  */            \
450   V(fixtr, FIXTR, 0xB3DF) /* type = RRF_E LOAD FP INTEGER (extended DFP)  */   \
451   V(cgdtra, CGDTRA,                                                            \
452     0xB3E1) /* type = RRF_E CONVERT TO FIXED (long DFP to 64)  */              \
453   V(cgxtra, CGXTRA,                                                            \
454     0xB3E9) /* type = RRF_E CONVERT TO FIXED (extended DFP to 64)  */          \
455   V(cdgtra, CDGTRA,                                                            \
456     0xB3F1) /* type = RRF_E CONVERT FROM FIXED (64 to long DFP)  */            \
457   V(cxgtra, CXGTRA,                                                            \
458     0xB3F9) /* type = RRF_E CONVERT FROM FIXED (64 to extended DFP)  */        \
459   V(cfdtr, CFDTR, 0xB941) /* type = RRF_E CONVERT TO FIXED (long DFP to 32) */ \
460   V(clgdtr, CLGDTR,                                                            \
461     0xB942) /* type = RRF_E CONVERT TO LOGICAL (long DFP to 64)  */            \
462   V(clfdtr, CLFDTR,                                                            \
463     0xB943) /* type = RRF_E CONVERT TO LOGICAL (long DFP to 32)  */            \
464   V(cfxtr, CFXTR,                                                              \
465     0xB949) /* type = RRF_E CONVERT TO FIXED (extended DFP to 32)  */          \
466   V(clgxtr, CLGXTR,                                                            \
467     0xB94A) /* type = RRF_E CONVERT TO LOGICAL (extended DFP to 64)  */        \
468   V(clfxtr, CLFXTR,                                                            \
469     0xB94B) /* type = RRF_E CONVERT TO LOGICAL (extended DFP to 32)  */        \
470   V(cdlgtr, CDLGTR,                                                            \
471     0xB952) /* type = RRF_E CONVERT FROM LOGICAL (64 to long DFP)  */          \
472   V(cdlftr, CDLFTR,                                                            \
473     0xB953) /* type = RRF_E CONVERT FROM LOGICAL (32 to long DFP)  */          \
474   V(cxlgtr, CXLGTR,                                                            \
475     0xB95A) /* type = RRF_E CONVERT FROM LOGICAL (64 to extended DFP)  */      \
476   V(cxlftr, CXLFTR,                                                            \
477     0xB95B) /* type = RRF_E CONVERT FROM LOGICAL (32 to extended DFP)  */
478 
479 #define S390_VRR_A_OPCODE_LIST(V)                                              \
480   V(vpopct, VPOPCT, 0xE750) /* type = VRR_A VECTOR POPULATION COUNT  */        \
481   V(vctz, VCTZ, 0xE752)     /* type = VRR_A VECTOR COUNT TRAILING ZEROS  */    \
482   V(vclz, VCLZ, 0xE753)     /* type = VRR_A VECTOR COUNT LEADING ZEROS  */     \
483   V(vlr, VLR, 0xE756)       /* type = VRR_A VECTOR LOAD  */                    \
484   V(vistr, VISTR, 0xE75C)   /* type = VRR_A VECTOR ISOLATE STRING  */          \
485   V(vseg, VSEG, 0xE75F) /* type = VRR_A VECTOR SIGN EXTEND TO DOUBLEWORD  */   \
486   V(vclgd, VCLGD,                                                              \
487     0xE7C0) /* type = VRR_A VECTOR FP CONVERT TO LOGICAL 64-BIT  */            \
488   V(vcdlg, VCDLG,                                                              \
489     0xE7C1) /* type = VRR_A VECTOR FP CONVERT FROM LOGICAL 64-BIT  */          \
490   V(vcgd, VCGD, 0xE7C2) /* type = VRR_A VECTOR FP CONVERT TO FIXED 64-BIT  */  \
491   V(vcdg, VCDG, 0xE7C3) /* type = VRR_A VECTOR FP CONVERT FROM FIXED 64-BIT */ \
492   V(vlde, VLDE, 0xE7C4) /* type = VRR_A VECTOR FP LOAD LENGTHENED  */          \
493   V(vled, VLED, 0xE7C5) /* type = VRR_A VECTOR FP LOAD ROUNDED  */             \
494   V(vfi, VFI, 0xE7C7)   /* type = VRR_A VECTOR LOAD FP INTEGER  */             \
495   V(wfk, WFK, 0xE7CA) /* type = VRR_A VECTOR FP COMPARE AND SIGNAL SCALAR  */  \
496   V(wfc, WFC, 0xE7CB) /* type = VRR_A VECTOR FP COMPARE SCALAR  */             \
497   V(vfpso, VFPSO, 0xE7CC) /* type = VRR_A VECTOR FP PERFORM SIGN OPERATION  */ \
498   V(vfsq, VFSQ, 0xE7CE)   /* type = VRR_A VECTOR FP SQUARE ROOT  */            \
499   V(vupll, VUPLL, 0xE7D4) /* type = VRR_A VECTOR UNPACK LOGICAL LOW  */        \
500   V(vuplh, VUPLH, 0xE7D5) /* type = VRR_A VECTOR UNPACK LOGICAL HIGH  */       \
501   V(vupl, VUPL, 0xE7D6)   /* type = VRR_A VECTOR UNPACK LOW  */                \
502   V(vuph, VUPH, 0xE7D7)   /* type = VRR_A VECTOR UNPACK HIGH  */               \
503   V(vtm, VTM, 0xE7D8)     /* type = VRR_A VECTOR TEST UNDER MASK  */           \
504   V(vecl, VECL, 0xE7D9)   /* type = VRR_A VECTOR ELEMENT COMPARE LOGICAL  */   \
505   V(vec, VEC, 0xE7DB)     /* type = VRR_A VECTOR ELEMENT COMPARE  */           \
506   V(vlc, VLC, 0xE7DE)     /* type = VRR_A VECTOR LOAD COMPLEMENT  */           \
507   V(vlp, VLP, 0xE7DF)     /* type = VRR_A VECTOR LOAD POSITIVE  */
508 
509 #define S390_VRR_B_OPCODE_LIST(V)                                           \
510   V(vfee, VFEE, 0xE780)   /* type = VRR_B VECTOR FIND ELEMENT EQUAL  */     \
511   V(vfene, VFENE, 0xE781) /* type = VRR_B VECTOR FIND ELEMENT NOT EQUAL  */ \
512   V(vfae, VFAE, 0xE782)   /* type = VRR_B VECTOR FIND ANY ELEMENT EQUAL  */ \
513   V(vpkls, VPKLS, 0xE795) /* type = VRR_B VECTOR PACK LOGICAL SATURATE  */  \
514   V(vpks, VPKS, 0xE797)   /* type = VRR_B VECTOR PACK SATURATE  */          \
515   V(vceq, VCEQ, 0xE7F8)   /* type = VRR_B VECTOR COMPARE EQUAL  */          \
516   V(vchl, VCHL, 0xE7F9)   /* type = VRR_B VECTOR COMPARE HIGH LOGICAL  */   \
517   V(vch, VCH, 0xE7FB)     /* type = VRR_B VECTOR COMPARE HIGH  */
518 
519 #define S390_VRR_C_OPCODE_LIST(V)                                              \
520   V(vmrl, VMRL, 0xE760)   /* type = VRR_C VECTOR MERGE LOW  */                 \
521   V(vmrh, VMRH, 0xE761)   /* type = VRR_C VECTOR MERGE HIGH  */                \
522   V(vsum, VSUM, 0xE764)   /* type = VRR_C VECTOR SUM ACROSS WORD  */           \
523   V(vsumg, VSUMG, 0xE765) /* type = VRR_C VECTOR SUM ACROSS DOUBLEWORD  */     \
524   V(vcksm, VCKSM, 0xE766) /* type = VRR_C VECTOR CHECKSUM  */                  \
525   V(vsumq, VSUMQ, 0xE767) /* type = VRR_C VECTOR SUM ACROSS QUADWORD  */       \
526   V(vn, VN, 0xE768)       /* type = VRR_C VECTOR AND  */                       \
527   V(vnc, VNC, 0xE769)     /* type = VRR_C VECTOR AND WITH COMPLEMENT  */       \
528   V(vo, VO, 0xE76A)       /* type = VRR_C VECTOR OR  */                        \
529   V(vno, VNO, 0xE76B)     /* type = VRR_C VECTOR NOR  */                       \
530   V(vx, VX, 0xE76D)       /* type = VRR_C VECTOR EXCLUSIVE OR  */              \
531   V(veslv, VESLV, 0xE770) /* type = VRR_C VECTOR ELEMENT SHIFT LEFT  */        \
532   V(verllv, VERLLV,                                                            \
533     0xE773)             /* type = VRR_C VECTOR ELEMENT ROTATE LEFT LOGICAL  */ \
534   V(vsl, VSL, 0xE774)   /* type = VRR_C VECTOR SHIFT LEFT  */                  \
535   V(vslb, VSLB, 0xE775) /* type = VRR_C VECTOR SHIFT LEFT BY BYTE  */          \
536   V(vesrlv, VESRLV,                                                            \
537     0xE778) /* type = VRR_C VECTOR ELEMENT SHIFT RIGHT LOGICAL  */             \
538   V(vesrav, VESRAV,                                                            \
539     0xE77A) /* type = VRR_C VECTOR ELEMENT SHIFT RIGHT ARITHMETIC  */          \
540   V(vsrl, VSRL, 0xE77C) /* type = VRR_C VECTOR SHIFT RIGHT LOGICAL  */         \
541   V(vsrlb, VSRLB,                                                              \
542     0xE77D)             /* type = VRR_C VECTOR SHIFT RIGHT LOGICAL BY BYTE  */ \
543   V(vsra, VSRA, 0xE77E) /* type = VRR_C VECTOR SHIFT RIGHT ARITHMETIC  */      \
544   V(vsrab, VSRAB,                                                              \
545     0xE77F) /* type = VRR_C VECTOR SHIFT RIGHT ARITHMETIC BY BYTE  */          \
546   V(vpdi, VPDI, 0xE784) /* type = VRR_C VECTOR PERMUTE DOUBLEWORD IMMEDIATE */ \
547   V(vpk, VPK, 0xE794)   /* type = VRR_C VECTOR PACK  */                        \
548   V(vmlh, VMLH, 0xE7A1) /* type = VRR_C VECTOR MULTIPLY LOGICAL HIGH  */       \
549   V(vml, VML, 0xE7A2)   /* type = VRR_C VECTOR MULTIPLY LOW  */                \
550   V(vmh, VMH, 0xE7A3)   /* type = VRR_C VECTOR MULTIPLY HIGH  */               \
551   V(vmle, VMLE, 0xE7A4) /* type = VRR_C VECTOR MULTIPLY LOGICAL EVEN  */       \
552   V(vmlo, VMLO, 0xE7A5) /* type = VRR_C VECTOR MULTIPLY LOGICAL ODD  */        \
553   V(vme, VME, 0xE7A6)   /* type = VRR_C VECTOR MULTIPLY EVEN  */               \
554   V(vmo, VMO, 0xE7A7)   /* type = VRR_C VECTOR MULTIPLY ODD  */                \
555   V(vgfm, VGFM, 0xE7B4) /* type = VRR_C VECTOR GALOIS FIELD MULTIPLY SUM  */   \
556   V(vfs, VFS, 0xE7E2)   /* type = VRR_C VECTOR FP SUBTRACT  */                 \
557   V(vfa, VFA, 0xE7E3)   /* type = VRR_C VECTOR FP ADD  */                      \
558   V(vfd, VFD, 0xE7E5)   /* type = VRR_C VECTOR FP DIVIDE  */                   \
559   V(vfm, VFM, 0xE7E7)   /* type = VRR_C VECTOR FP MULTIPLY  */                 \
560   V(vfce, VFCE, 0xE7E8) /* type = VRR_C VECTOR FP COMPARE EQUAL  */            \
561   V(vfche, VFCHE, 0xE7EA) /* type = VRR_C VECTOR FP COMPARE HIGH OR EQUAL  */  \
562   V(vfch, VFCH, 0xE7EB)   /* type = VRR_C VECTOR FP COMPARE HIGH  */           \
563   V(vavgl, VAVGL, 0xE7F0) /* type = VRR_C VECTOR AVERAGE LOGICAL  */           \
564   V(vacc, VACC, 0xE7F1)   /* type = VRR_C VECTOR ADD COMPUTE CARRY  */         \
565   V(vavg, VAVG, 0xE7F2)   /* type = VRR_C VECTOR AVERAGE  */                   \
566   V(va, VA, 0xE7F3)       /* type = VRR_C VECTOR ADD  */                       \
567   V(vscbi, VSCBI,                                                              \
568     0xE7F5) /* type = VRR_C VECTOR SUBTRACT COMPUTE BORROW INDICATION  */      \
569   V(vs, VS, 0xE7F7)     /* type = VRR_C VECTOR SUBTRACT  */                    \
570   V(vmnl, VMNL, 0xE7FC) /* type = VRR_C VECTOR MINIMUM LOGICAL  */             \
571   V(vmxl, VMXL, 0xE7FD) /* type = VRR_C VECTOR MAXIMUM LOGICAL  */             \
572   V(vmn, VMN, 0xE7FE)   /* type = VRR_C VECTOR MINIMUM  */                     \
573   V(vmx, VMX, 0xE7FF)   /* type = VRR_C VECTOR MAXIMUM  */
574 
575 #define S390_VRI_A_OPCODE_LIST(V)                                              \
576   V(vleib, VLEIB, 0xE740) /* type = VRI_A VECTOR LOAD ELEMENT IMMEDIATE (8) */ \
577   V(vleih, VLEIH,                                                              \
578     0xE741) /* type = VRI_A VECTOR LOAD ELEMENT IMMEDIATE (16)  */             \
579   V(vleig, VLEIG,                                                              \
580     0xE742) /* type = VRI_A VECTOR LOAD ELEMENT IMMEDIATE (64)  */             \
581   V(vleif, VLEIF,                                                              \
582     0xE743)             /* type = VRI_A VECTOR LOAD ELEMENT IMMEDIATE (32)  */ \
583   V(vgbm, VGBM, 0xE744) /* type = VRI_A VECTOR GENERATE BYTE MASK  */          \
584   V(vrepi, VREPI, 0xE745) /* type = VRI_A VECTOR REPLICATE IMMEDIATE  */
585 
586 #define S390_VRR_D_OPCODE_LIST(V)                                              \
587   V(vstrc, VSTRC, 0xE78A) /* type = VRR_D VECTOR STRING RANGE COMPARE  */      \
588   V(vmalh, VMALH,                                                              \
589     0xE7A9) /* type = VRR_D VECTOR MULTIPLY AND ADD LOGICAL HIGH  */           \
590   V(vmal, VMAL, 0xE7AA) /* type = VRR_D VECTOR MULTIPLY AND ADD LOW  */        \
591   V(vmah, VMAH, 0xE7AB) /* type = VRR_D VECTOR MULTIPLY AND ADD HIGH  */       \
592   V(vmale, VMALE,                                                              \
593     0xE7AC) /* type = VRR_D VECTOR MULTIPLY AND ADD LOGICAL EVEN  */           \
594   V(vmalo, VMALO,                                                              \
595     0xE7AD) /* type = VRR_D VECTOR MULTIPLY AND ADD LOGICAL ODD  */            \
596   V(vmae, VMAE, 0xE7AE) /* type = VRR_D VECTOR MULTIPLY AND ADD EVEN  */       \
597   V(vmao, VMAO, 0xE7AF) /* type = VRR_D VECTOR MULTIPLY AND ADD ODD  */        \
598   V(vaccc, VACCC,                                                              \
599     0xE7B9)           /* type = VRR_D VECTOR ADD WITH CARRY COMPUTE CARRY  */  \
600   V(vac, VAC, 0xE7BB) /* type = VRR_D VECTOR ADD WITH CARRY  */                \
601   V(vgfma, VGFMA,                                                              \
602     0xE7BC) /* type = VRR_D VECTOR GALOIS FIELD MULTIPLY SUM AND ACCUMULATE */ \
603   V(vsbcbi, VSBCBI, 0xE7BD) /* type = VRR_D VECTOR SUBTRACT WITH BORROW     */ \
604                             /* COMPUTE BORROW INDICATION  */                   \
605   V(vsbi, VSBI,                                                                \
606     0xE7BF) /* type = VRR_D VECTOR SUBTRACT WITH BORROW INDICATION  */
607 
608 #define S390_VRI_B_OPCODE_LIST(V) \
609   V(vgm, VGM, 0xE746) /* type = VRI_B VECTOR GENERATE MASK  */
610 
611 #define S390_VRR_E_OPCODE_LIST(V)                                             \
612   V(vperm, VPERM, 0xE78C) /* type = VRR_E VECTOR PERMUTE  */                  \
613   V(vsel, VSEL, 0xE78D)   /* type = VRR_E VECTOR SELECT  */                   \
614   V(vfms, VFMS, 0xE78E)   /* type = VRR_E VECTOR FP MULTIPLY AND SUBTRACT  */ \
615   V(vfma, VFMA, 0xE78F)   /* type = VRR_E VECTOR FP MULTIPLY AND ADD  */
616 
617 #define S390_VRI_C_OPCODE_LIST(V) \
618   V(vrep, VREP, 0xE74D) /* type = VRI_C VECTOR REPLICATE  */
619 
620 #define S390_VRI_D_OPCODE_LIST(V)                                           \
621   V(verim, VERIM,                                                           \
622     0xE772) /* type = VRI_D VECTOR ELEMENT ROTATE AND INSERT UNDER MASK  */ \
623   V(vsldb, VSLDB, 0xE777) /* type = VRI_D VECTOR SHIFT LEFT DOUBLE BY BYTE  */
624 
625 #define S390_VRR_F_OPCODE_LIST(V) \
626   V(vlvgp, VLVGP, 0xE762) /* type = VRR_F VECTOR LOAD VR FROM GRS DISJOINT  */
627 
628 #define S390_RIS_OPCODE_LIST(V)                                                \
629   V(cgib, CGIB,                                                                \
630     0xECFC) /* type = RIS   COMPARE IMMEDIATE AND BRANCH (64<-8)  */           \
631   V(clgib, CLGIB,                                                              \
632     0xECFD) /* type = RIS   COMPARE LOGICAL IMMEDIATE AND BRANCH (64<-8)  */   \
633   V(cib, CIB, 0xECFE) /* type = RIS   COMPARE IMMEDIATE AND BRANCH (32<-8)  */ \
634   V(clib, CLIB,                                                                \
635     0xECFF) /* type = RIS   COMPARE LOGICAL IMMEDIATE AND BRANCH (32<-8)  */
636 
637 #define S390_VRI_E_OPCODE_LIST(V) \
638   V(vftci, VFTCI,                 \
639     0xE74A) /* type = VRI_E VECTOR FP TEST DATA CLASS IMMEDIATE  */
640 
641 #define S390_RSL_A_OPCODE_LIST(V) \
642   V(tp, TP, 0xEBC0) /* type = RSL_A TEST DECIMAL  */
643 
644 #define S390_RSL_B_OPCODE_LIST(V)                                             \
645   V(cpdt, CPDT, 0xEDAC) /* type = RSL_B CONVERT TO PACKED (from long DFP)  */ \
646   V(cpxt, CPXT,                                                               \
647     0xEDAD) /* type = RSL_B CONVERT TO PACKED (from extended DFP)  */         \
648   V(cdpt, CDPT, 0xEDAE) /* type = RSL_B CONVERT FROM PACKED (to long DFP)  */ \
649   V(cxpt, CXPT,                                                               \
650     0xEDAF) /* type = RSL_B CONVERT FROM PACKED (to extended DFP)  */         \
651   V(czdt, CZDT, 0xEDA8) /* type = RSL CONVERT TO ZONED (from long DFP)  */    \
652   V(czxt, CZXT, 0xEDA9) /* type = RSL CONVERT TO ZONED (from extended DFP) */ \
653   V(cdzt, CDZT, 0xEDAA) /* type = RSL CONVERT FROM ZONED (to long DFP)  */    \
654   V(cxzt, CXZT, 0xEDAB) /* type = RSL CONVERT FROM ZONED (to extended DFP) */
655 
656 #define S390_SI_OPCODE_LIST(V)                                          \
657   V(tm, TM, 0x91)       /* type = SI    TEST UNDER MASK  */             \
658   V(mvi, MVI, 0x92)     /* type = SI    MOVE (immediate)  */            \
659   V(ni, NI, 0x94)       /* type = SI    AND (immediate)  */             \
660   V(cli, CLI, 0x95)     /* type = SI    COMPARE LOGICAL (immediate)  */ \
661   V(oi, OI, 0x96)       /* type = SI    OR (immediate)  */              \
662   V(xi, XI, 0x97)       /* type = SI    EXCLUSIVE OR (immediate)  */    \
663   V(stnsm, STNSM, 0xAC) /* type = SI    STORE THEN AND SYSTEM MASK  */  \
664   V(stosm, STOSM, 0xAD) /* type = SI    STORE THEN OR SYSTEM MASK  */   \
665   V(mc, MC, 0xAF)       /* type = SI    MONITOR CALL  */
666 
667 #define S390_SIL_OPCODE_LIST(V)                                                \
668   V(mvhhi, MVHHI, 0xE544) /* type = SIL   MOVE (16<-16)  */                    \
669   V(mvghi, MVGHI, 0xE548) /* type = SIL   MOVE (64<-16)  */                    \
670   V(mvhi, MVHI, 0xE54C)   /* type = SIL   MOVE (32<-16)  */                    \
671   V(chhsi, CHHSI,                                                              \
672     0xE554) /* type = SIL   COMPARE HALFWORD IMMEDIATE (16<-16)  */            \
673   V(clhhsi, CLHHSI,                                                            \
674     0xE555) /* type = SIL   COMPARE LOGICAL IMMEDIATE (16<-16)  */             \
675   V(cghsi, CGHSI,                                                              \
676     0xE558) /* type = SIL   COMPARE HALFWORD IMMEDIATE (64<-16)  */            \
677   V(clghsi, CLGHSI,                                                            \
678     0xE559)             /* type = SIL   COMPARE LOGICAL IMMEDIATE (64<-16)  */ \
679   V(chsi, CHSI, 0xE55C) /* type = SIL   COMPARE HALFWORD IMMEDIATE (32<-16) */ \
680   V(clfhsi, CLFHSI,                                                            \
681     0xE55D) /* type = SIL   COMPARE LOGICAL IMMEDIATE (32<-16)  */             \
682   V(tbegin, TBEGIN,                                                            \
683     0xE560) /* type = SIL   TRANSACTION BEGIN (nonconstrained)  */             \
684   V(tbeginc, TBEGINC,                                                          \
685     0xE561) /* type = SIL   TRANSACTION BEGIN (constrained)  */
686 
687 #define S390_VRS_A_OPCODE_LIST(V)                                            \
688   V(vesl, VESL, 0xE730) /* type = VRS_A VECTOR ELEMENT SHIFT LEFT  */        \
689   V(verll, VERLL,                                                            \
690     0xE733)           /* type = VRS_A VECTOR ELEMENT ROTATE LEFT LOGICAL  */ \
691   V(vlm, VLM, 0xE736) /* type = VRS_A VECTOR LOAD MULTIPLE  */               \
692   V(vesrl, VESRL,                                                            \
693     0xE738) /* type = VRS_A VECTOR ELEMENT SHIFT RIGHT LOGICAL  */           \
694   V(vesra, VESRA,                                                            \
695     0xE73A) /* type = VRS_A VECTOR ELEMENT SHIFT RIGHT ARITHMETIC  */        \
696   V(vstm, VSTM, 0xE73E) /* type = VRS_A VECTOR STORE MULTIPLE  */
697 
698 #define S390_RIL_A_OPCODE_LIST(V)                                              \
699   V(lgfi, LGFI, 0xC01)   /* type = RIL_A LOAD IMMEDIATE (64<-32)  */           \
700   V(xihf, XIHF, 0xC06)   /* type = RIL_A EXCLUSIVE OR IMMEDIATE (high)  */     \
701   V(xilf, XILF, 0xC07)   /* type = RIL_A EXCLUSIVE OR IMMEDIATE (low)  */      \
702   V(iihf, IIHF, 0xC08)   /* type = RIL_A INSERT IMMEDIATE (high)  */           \
703   V(iilf, IILF, 0xC09)   /* type = RIL_A INSERT IMMEDIATE (low)  */            \
704   V(nihf, NIHF, 0xC0A)   /* type = RIL_A AND IMMEDIATE (high)  */              \
705   V(nilf, NILF, 0xC0B)   /* type = RIL_A AND IMMEDIATE (low)  */               \
706   V(oihf, OIHF, 0xC0C)   /* type = RIL_A OR IMMEDIATE (high)  */               \
707   V(oilf, OILF, 0xC0D)   /* type = RIL_A OR IMMEDIATE (low)  */                \
708   V(llihf, LLIHF, 0xC0E) /* type = RIL_A LOAD LOGICAL IMMEDIATE (high)  */     \
709   V(llilf, LLILF, 0xC0F) /* type = RIL_A LOAD LOGICAL IMMEDIATE (low)  */      \
710   V(msgfi, MSGFI, 0xC20) /* type = RIL_A MULTIPLY SINGLE IMMEDIATE (64<-32) */ \
711   V(msfi, MSFI, 0xC21)   /* type = RIL_A MULTIPLY SINGLE IMMEDIATE (32)  */    \
712   V(slgfi, SLGFI,                                                              \
713     0xC24)             /* type = RIL_A SUBTRACT LOGICAL IMMEDIATE (64<-32)  */ \
714   V(slfi, SLFI, 0xC25) /* type = RIL_A SUBTRACT LOGICAL IMMEDIATE (32)  */     \
715   V(agfi, AGFI, 0xC28) /* type = RIL_A ADD IMMEDIATE (64<-32)  */              \
716   V(afi, AFI, 0xC29)   /* type = RIL_A ADD IMMEDIATE (32)  */                  \
717   V(algfi, ALGFI, 0xC2A) /* type = RIL_A ADD LOGICAL IMMEDIATE (64<-32)  */    \
718   V(alfi, ALFI, 0xC2B)   /* type = RIL_A ADD LOGICAL IMMEDIATE (32)  */        \
719   V(cgfi, CGFI, 0xC2C)   /* type = RIL_A COMPARE IMMEDIATE (64<-32)  */        \
720   V(cfi, CFI, 0xC2D)     /* type = RIL_A COMPARE IMMEDIATE (32)  */            \
721   V(clgfi, CLGFI, 0xC2E) /* type = RIL_A COMPARE LOGICAL IMMEDIATE (64<-32) */ \
722   V(clfi, CLFI, 0xC2F)   /* type = RIL_A COMPARE LOGICAL IMMEDIATE (32)  */    \
723   V(aih, AIH, 0xCC8)     /* type = RIL_A ADD IMMEDIATE HIGH (32)  */           \
724   V(alsih, ALSIH,                                                              \
725     0xCCA) /* type = RIL_A ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)  */     \
726   V(alsihn, ALSIHN,                                                            \
727     0xCCB) /* type = RIL_A ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)  */     \
728   V(cih, CIH, 0xCCD)   /* type = RIL_A COMPARE IMMEDIATE HIGH (32)  */         \
729   V(clih, CLIH, 0xCCF) /* type = RIL_A COMPARE LOGICAL IMMEDIATE HIGH (32)  */
730 
731 #define S390_RIL_B_OPCODE_LIST(V)                                              \
732   V(larl, LARL, 0xC00)   /* type = RIL_B LOAD ADDRESS RELATIVE LONG  */        \
733   V(brasl, BRASL, 0xC05) /* type = RIL_B BRANCH RELATIVE AND SAVE LONG  */     \
734   V(llhrl, LLHRL,                                                              \
735     0xC42) /* type = RIL_B LOAD LOGICAL HALFWORD RELATIVE LONG (32<-16)  */    \
736   V(lghrl, LGHRL,                                                              \
737     0xC44) /* type = RIL_B LOAD HALFWORD RELATIVE LONG (64<-16)  */            \
738   V(lhrl, LHRL, 0xC45) /* type = RIL_B LOAD HALFWORD RELATIVE LONG (32<-16) */ \
739   V(llghrl, LLGHRL,                                                            \
740     0xC46) /* type = RIL_B LOAD LOGICAL HALFWORD RELATIVE LONG (64<-16)  */    \
741   V(sthrl, STHRL, 0xC47) /* type = RIL_B STORE HALFWORD RELATIVE LONG (16)  */ \
742   V(lgrl, LGRL, 0xC48)   /* type = RIL_B LOAD RELATIVE LONG (64)  */           \
743   V(stgrl, STGRL, 0xC4B) /* type = RIL_B STORE RELATIVE LONG (64)  */          \
744   V(lgfrl, LGFRL, 0xC4C) /* type = RIL_B LOAD RELATIVE LONG (64<-32)  */       \
745   V(lrl, LRL, 0xC4D)     /* type = RIL_B LOAD RELATIVE LONG (32)  */           \
746   V(llgfrl, LLGFRL,                                                            \
747     0xC4E)             /* type = RIL_B LOAD LOGICAL RELATIVE LONG (64<-32)  */ \
748   V(strl, STRL, 0xC4F) /* type = RIL_B STORE RELATIVE LONG (32)  */            \
749   V(exrl, EXRL, 0xC60) /* type = RIL_B EXECUTE RELATIVE LONG  */               \
750   V(cghrl, CGHRL,                                                              \
751     0xC64) /* type = RIL_B COMPARE HALFWORD RELATIVE LONG (64<-16)  */         \
752   V(chrl, CHRL,                                                                \
753     0xC65) /* type = RIL_B COMPARE HALFWORD RELATIVE LONG (32<-16)  */         \
754   V(clghrl, CLGHRL,                                                            \
755     0xC66) /* type = RIL_B COMPARE LOGICAL RELATIVE LONG (64<-16)  */          \
756   V(clhrl, CLHRL,                                                              \
757     0xC67) /* type = RIL_B COMPARE LOGICAL RELATIVE LONG (32<-16)  */          \
758   V(cgrl, CGRL, 0xC68)   /* type = RIL_B COMPARE RELATIVE LONG (64)  */        \
759   V(clgrl, CLGRL, 0xC6A) /* type = RIL_B COMPARE LOGICAL RELATIVE LONG (64) */ \
760   V(cgfrl, CGFRL, 0xC6C) /* type = RIL_B COMPARE RELATIVE LONG (64<-32)  */    \
761   V(crl, CRL, 0xC6D)     /* type = RIL_B COMPARE RELATIVE LONG (32)  */        \
762   V(clgfrl, CLGFRL,                                                            \
763     0xC6E) /* type = RIL_B COMPARE LOGICAL RELATIVE LONG (64<-32)  */          \
764   V(clrl, CLRL, 0xC6F) /* type = RIL_B COMPARE LOGICAL RELATIVE LONG (32)  */  \
765   V(brcth, BRCTH, 0xCC6) /* type = RIL_B BRANCH RELATIVE ON COUNT HIGH (32) */
766 
767 #define S390_VRS_B_OPCODE_LIST(V)                                          \
768   V(vlvg, VLVG, 0xE722) /* type = VRS_B VECTOR LOAD VR ELEMENT FROM GR  */ \
769   V(vll, VLL, 0xE737)   /* type = VRS_B VECTOR LOAD WITH LENGTH  */        \
770   V(vstl, VSTL, 0xE73F) /* type = VRS_B VECTOR STORE WITH LENGTH  */
771 
772 #define S390_RIL_C_OPCODE_LIST(V)                                              \
773   V(brcl, BRCL, 0xC04)   /* type = RIL_C BRANCH RELATIVE ON CONDITION LONG  */ \
774   V(pfdrl, PFDRL, 0xC62) /* type = RIL_C PREFETCH DATA RELATIVE LONG  */
775 
776 #define S390_VRS_C_OPCODE_LIST(V) \
777   V(vlgv, VLGV, 0xE721) /* type = VRS_C VECTOR LOAD GR FROM VR ELEMENT  */
778 
779 #define S390_RI_A_OPCODE_LIST(V)                                               \
780   V(iihh, IIHH, 0xA50)   /* type = RI_A  INSERT IMMEDIATE (high high)  */      \
781   V(iihl, IIHL, 0xA51)   /* type = RI_A  INSERT IMMEDIATE (high low)  */       \
782   V(iilh, IILH, 0xA52)   /* type = RI_A  INSERT IMMEDIATE (low high)  */       \
783   V(iill, IILL, 0xA53)   /* type = RI_A  INSERT IMMEDIATE (low low)  */        \
784   V(nihh, NIHH, 0xA54)   /* type = RI_A  AND IMMEDIATE (high high)  */         \
785   V(nihl, NIHL, 0xA55)   /* type = RI_A  AND IMMEDIATE (high low)  */          \
786   V(nilh, NILH, 0xA56)   /* type = RI_A  AND IMMEDIATE (low high)  */          \
787   V(nill, NILL, 0xA57)   /* type = RI_A  AND IMMEDIATE (low low)  */           \
788   V(oihh, OIHH, 0xA58)   /* type = RI_A  OR IMMEDIATE (high high)  */          \
789   V(oihl, OIHL, 0xA59)   /* type = RI_A  OR IMMEDIATE (high low)  */           \
790   V(oilh, OILH, 0xA5A)   /* type = RI_A  OR IMMEDIATE (low high)  */           \
791   V(oill, OILL, 0xA5B)   /* type = RI_A  OR IMMEDIATE (low low)  */            \
792   V(llihh, LLIHH, 0xA5C) /* type = RI_A  LOAD LOGICAL IMMEDIATE (high high) */ \
793   V(llihl, LLIHL, 0xA5D) /* type = RI_A  LOAD LOGICAL IMMEDIATE (high low)  */ \
794   V(llilh, LLILH, 0xA5E) /* type = RI_A  LOAD LOGICAL IMMEDIATE (low high)  */ \
795   V(llill, LLILL, 0xA5F) /* type = RI_A  LOAD LOGICAL IMMEDIATE (low low)  */  \
796   V(tmlh, TMLH, 0xA70)   /* type = RI_A  TEST UNDER MASK (low high)  */        \
797   V(tmll, TMLL, 0xA71)   /* type = RI_A  TEST UNDER MASK (low low)  */         \
798   V(tmhh, TMHH, 0xA72)   /* type = RI_A  TEST UNDER MASK (high high)  */       \
799   V(tmhl, TMHL, 0xA73)   /* type = RI_A  TEST UNDER MASK (high low)  */        \
800   V(lhi, LHI, 0xA78)     /* type = RI_A  LOAD HALFWORD IMMEDIATE (32)<-16  */  \
801   V(lghi, LGHI, 0xA79)   /* type = RI_A  LOAD HALFWORD IMMEDIATE (64<-16)  */  \
802   V(ahi, AHI, 0xA7A)     /* type = RI_A  ADD HALFWORD IMMEDIATE (32<-16)  */   \
803   V(aghi, AGHI, 0xA7B)   /* type = RI_A  ADD HALFWORD IMMEDIATE (64<-16)  */   \
804   V(mhi, MHI, 0xA7C) /* type = RI_A  MULTIPLY HALFWORD IMMEDIATE (32<-16)  */  \
805   V(mghi, MGHI, 0xA7D) /* type = RI_A  MULTIPLY HALFWORD IMMEDIATE (64<-16) */ \
806   V(chi, CHI, 0xA7E)   /* type = RI_A  COMPARE HALFWORD IMMEDIATE (32<-16)  */ \
807   V(cghi, CGHI, 0xA7F) /* type = RI_A  COMPARE HALFWORD IMMEDIATE (64<-16)  */
808 
809 #define S390_RSI_OPCODE_LIST(V)                                              \
810   V(brxh, BRXH, 0x84) /* type = RSI   BRANCH RELATIVE ON INDEX HIGH (32)  */ \
811   V(brxle, BRXLE,                                                            \
812     0x85) /* type = RSI   BRANCH RELATIVE ON INDEX LOW OR EQ. (32)  */
813 
814 #define S390_RI_B_OPCODE_LIST(V)                                           \
815   V(bras, BRAS, 0xA75)   /* type = RI_B  BRANCH RELATIVE AND SAVE  */      \
816   V(brct, BRCT, 0xA76)   /* type = RI_B  BRANCH RELATIVE ON COUNT (32)  */ \
817   V(brctg, BRCTG, 0xA77) /* type = RI_B  BRANCH RELATIVE ON COUNT (64)  */
818 
819 #define S390_RI_C_OPCODE_LIST(V) \
820   V(brc, BRC, 0xA74) /* type = RI_C BRANCH RELATIVE ON CONDITION  */
821 
822 #define S390_SMI_OPCODE_LIST(V) \
823   V(bpp, BPP, 0xC7) /* type = SMI   BRANCH PREDICTION PRELOAD  */
824 
825 #define S390_RXY_A_OPCODE_LIST(V)                                              \
826   V(ltg, LTG, 0xE302)   /* type = RXY_A LOAD AND TEST (64)  */                 \
827   V(lrag, LRAG, 0xE303) /* type = RXY_A LOAD REAL ADDRESS (64)  */             \
828   V(lg, LG, 0xE304)     /* type = RXY_A LOAD (64)  */                          \
829   V(cvby, CVBY, 0xE306) /* type = RXY_A CONVERT TO BINARY (32)  */             \
830   V(ag, AG, 0xE308)     /* type = RXY_A ADD (64)  */                           \
831   V(sg, SG, 0xE309)     /* type = RXY_A SUBTRACT (64)  */                      \
832   V(alg, ALG, 0xE30A)   /* type = RXY_A ADD LOGICAL (64)  */                   \
833   V(slg, SLG, 0xE30B)   /* type = RXY_A SUBTRACT LOGICAL (64)  */              \
834   V(msg, MSG, 0xE30C)   /* type = RXY_A MULTIPLY SINGLE (64)  */               \
835   V(dsg, DSG, 0xE30D)   /* type = RXY_A DIVIDE SINGLE (64)  */                 \
836   V(cvbg, CVBG, 0xE30E) /* type = RXY_A CONVERT TO BINARY (64)  */             \
837   V(lrvg, LRVG, 0xE30F) /* type = RXY_A LOAD REVERSED (64)  */                 \
838   V(lt_z, LT, 0xE312)   /* type = RXY_A LOAD AND TEST (32)  */                 \
839   V(lray, LRAY, 0xE313) /* type = RXY_A LOAD REAL ADDRESS (32)  */             \
840   V(lgf, LGF, 0xE314)   /* type = RXY_A LOAD (64<-32)  */                      \
841   V(lgh, LGH, 0xE315)   /* type = RXY_A LOAD HALFWORD (64<-16)  */             \
842   V(llgf, LLGF, 0xE316) /* type = RXY_A LOAD LOGICAL (64<-32)  */              \
843   V(llgt, LLGT,                                                                \
844     0xE317) /* type = RXY_A LOAD LOGICAL THIRTY ONE BITS (64<-31)  */          \
845   V(agf, AGF, 0xE318)     /* type = RXY_A ADD (64<-32)  */                     \
846   V(sgf, SGF, 0xE319)     /* type = RXY_A SUBTRACT (64<-32)  */                \
847   V(algf, ALGF, 0xE31A)   /* type = RXY_A ADD LOGICAL (64<-32)  */             \
848   V(slgf, SLGF, 0xE31B)   /* type = RXY_A SUBTRACT LOGICAL (64<-32)  */        \
849   V(msgf, MSGF, 0xE31C)   /* type = RXY_A MULTIPLY SINGLE (64<-32)  */         \
850   V(dsgf, DSGF, 0xE31D)   /* type = RXY_A DIVIDE SINGLE (64<-32)  */           \
851   V(lrv, LRV, 0xE31E)     /* type = RXY_A LOAD REVERSED (32)  */               \
852   V(lrvh, LRVH, 0xE31F)   /* type = RXY_A LOAD REVERSED (16)  */               \
853   V(cg, CG, 0xE320)       /* type = RXY_A COMPARE (64)  */                     \
854   V(clg, CLG, 0xE321)     /* type = RXY_A COMPARE LOGICAL (64)  */             \
855   V(stg, STG, 0xE324)     /* type = RXY_A STORE (64)  */                       \
856   V(ntstg, NTSTG, 0xE325) /* type = RXY_A NONTRANSACTIONAL STORE (64)  */      \
857   V(cvdy, CVDY, 0xE326)   /* type = RXY_A CONVERT TO DECIMAL (32)  */          \
858   V(lzrg, LZRG, 0xE32A) /* type = RXY_A LOAD AND ZERO RIGHTMOST BYTE (64)  */  \
859   V(cvdg, CVDG, 0xE32E) /* type = RXY_A CONVERT TO DECIMAL (64)  */            \
860   V(strvg, STRVG, 0xE32F) /* type = RXY_A STORE REVERSED (64)  */              \
861   V(cgf, CGF, 0xE330)     /* type = RXY_A COMPARE (64<-32)  */                 \
862   V(clgf, CLGF, 0xE331)   /* type = RXY_A COMPARE LOGICAL (64<-32)  */         \
863   V(ltgf, LTGF, 0xE332)   /* type = RXY_A LOAD AND TEST (64<-32)  */           \
864   V(cgh, CGH, 0xE334)     /* type = RXY_A COMPARE HALFWORD (64<-16)  */        \
865   V(llzrgf, LLZRGF,                                                            \
866     0xE33A) /* type = RXY_A LOAD LOGICAL AND ZERO RIGHTMOST BYTE (64<-32)  */  \
867   V(lzrf, LZRF, 0xE33B) /* type = RXY_A LOAD AND ZERO RIGHTMOST BYTE (32)  */  \
868   V(strv, STRV, 0xE33E) /* type = RXY_A STORE REVERSED (32)  */                \
869   V(strvh, STRVH, 0xE33F) /* type = RXY_A STORE REVERSED (16)  */              \
870   V(bctg, BCTG, 0xE346)   /* type = RXY_A BRANCH ON COUNT (64)  */             \
871   V(sty, STY, 0xE350)     /* type = RXY_A STORE (32)  */                       \
872   V(msy, MSY, 0xE351)     /* type = RXY_A MULTIPLY SINGLE (32)  */             \
873   V(ny, NY, 0xE354)       /* type = RXY_A AND (32)  */                         \
874   V(cly, CLY, 0xE355)     /* type = RXY_A COMPARE LOGICAL (32)  */             \
875   V(oy, OY, 0xE356)       /* type = RXY_A OR (32)  */                          \
876   V(xy, XY, 0xE357)       /* type = RXY_A EXCLUSIVE OR (32)  */                \
877   V(ly, LY, 0xE358)       /* type = RXY_A LOAD (32)  */                        \
878   V(cy, CY, 0xE359)       /* type = RXY_A COMPARE (32)  */                     \
879   V(ay, AY, 0xE35A)       /* type = RXY_A ADD (32)  */                         \
880   V(sy, SY, 0xE35B)       /* type = RXY_A SUBTRACT (32)  */                    \
881   V(mfy, MFY, 0xE35C)     /* type = RXY_A MULTIPLY (64<-32)  */                \
882   V(aly, ALY, 0xE35E)     /* type = RXY_A ADD LOGICAL (32)  */                 \
883   V(sly, SLY, 0xE35F)     /* type = RXY_A SUBTRACT LOGICAL (32)  */            \
884   V(sthy, STHY, 0xE370)   /* type = RXY_A STORE HALFWORD (16)  */              \
885   V(lay, LAY, 0xE371)     /* type = RXY_A LOAD ADDRESS  */                     \
886   V(stcy, STCY, 0xE372)   /* type = RXY_A STORE CHARACTER  */                  \
887   V(icy, ICY, 0xE373)     /* type = RXY_A INSERT CHARACTER  */                 \
888   V(laey, LAEY, 0xE375)   /* type = RXY_A LOAD ADDRESS EXTENDED  */            \
889   V(lb, LB, 0xE376)       /* type = RXY_A LOAD BYTE (32<-8)  */                \
890   V(lgb, LGB, 0xE377)     /* type = RXY_A LOAD BYTE (64<-8)  */                \
891   V(lhy, LHY, 0xE378)     /* type = RXY_A LOAD HALFWORD (32)<-16  */           \
892   V(chy, CHY, 0xE379)     /* type = RXY_A COMPARE HALFWORD (32<-16)  */        \
893   V(ahy, AHY, 0xE37A)     /* type = RXY_A ADD HALFWORD (32<-16)  */            \
894   V(shy, SHY, 0xE37B)     /* type = RXY_A SUBTRACT HALFWORD (32<-16)  */       \
895   V(mhy, MHY, 0xE37C)     /* type = RXY_A MULTIPLY HALFWORD (32<-16)  */       \
896   V(ng, NG, 0xE380)       /* type = RXY_A AND (64)  */                         \
897   V(og, OG, 0xE381)       /* type = RXY_A OR (64)  */                          \
898   V(xg, XG, 0xE382)       /* type = RXY_A EXCLUSIVE OR (64)  */                \
899   V(lgat, LGAT, 0xE385)   /* type = RXY_A LOAD AND TRAP (64)  */               \
900   V(mlg, MLG, 0xE386)     /* type = RXY_A MULTIPLY LOGICAL (128<-64)  */       \
901   V(dlg, DLG, 0xE387)     /* type = RXY_A DIVIDE LOGICAL (64<-128)  */         \
902   V(alcg, ALCG, 0xE388)   /* type = RXY_A ADD LOGICAL WITH CARRY (64)  */      \
903   V(slbg, SLBG, 0xE389) /* type = RXY_A SUBTRACT LOGICAL WITH BORROW (64)  */  \
904   V(stpq, STPQ, 0xE38E) /* type = RXY_A STORE PAIR TO QUADWORD  */             \
905   V(lpq, LPQ, 0xE38F) /* type = RXY_A LOAD PAIR FROM QUADWORD (64&64<-128)  */ \
906   V(llgc, LLGC, 0xE390) /* type = RXY_A LOAD LOGICAL CHARACTER (64<-8)  */     \
907   V(llgh, LLGH, 0xE391) /* type = RXY_A LOAD LOGICAL HALFWORD (64<-16)  */     \
908   V(llc, LLC, 0xE394)   /* type = RXY_A LOAD LOGICAL CHARACTER (32<-8)  */     \
909   V(llh, LLH, 0xE395)   /* type = RXY_A LOAD LOGICAL HALFWORD (32<-16)  */     \
910   V(ml, ML, 0xE396)     /* type = RXY_A MULTIPLY LOGICAL (64<-32)  */          \
911   V(dl, DL, 0xE397)     /* type = RXY_A DIVIDE LOGICAL (32<-64)  */            \
912   V(alc, ALC, 0xE398)   /* type = RXY_A ADD LOGICAL WITH CARRY (32)  */        \
913   V(slb, SLB, 0xE399)   /* type = RXY_A SUBTRACT LOGICAL WITH BORROW (32)  */  \
914   V(llgtat, LLGTAT,                                                            \
915     0xE39C) /* type = RXY_A LOAD LOGICAL THIRTY ONE BITS AND TRAP (64<-31)  */ \
916   V(llgfat, LLGFAT, 0xE39D) /* type = RXY_A LOAD LOGICAL AND TRAP (64<-32)  */ \
917   V(lat, LAT, 0xE39F)       /* type = RXY_A LOAD AND TRAP (32L<-32)  */        \
918   V(lbh, LBH, 0xE3C0)       /* type = RXY_A LOAD BYTE HIGH (32<-8)  */         \
919   V(llch, LLCH, 0xE3C2) /* type = RXY_A LOAD LOGICAL CHARACTER HIGH (32<-8) */ \
920   V(stch, STCH, 0xE3C3) /* type = RXY_A STORE CHARACTER HIGH (8)  */           \
921   V(lhh, LHH, 0xE3C4)   /* type = RXY_A LOAD HALFWORD HIGH (32<-16)  */        \
922   V(llhh, LLHH, 0xE3C6) /* type = RXY_A LOAD LOGICAL HALFWORD HIGH (32<-16) */ \
923   V(sthh, STHH, 0xE3C7) /* type = RXY_A STORE HALFWORD HIGH (16)  */           \
924   V(lfhat, LFHAT, 0xE3C8) /* type = RXY_A LOAD HIGH AND TRAP (32H<-32)  */     \
925   V(lfh, LFH, 0xE3CA)     /* type = RXY_A LOAD HIGH (32)  */                   \
926   V(stfh, STFH, 0xE3CB)   /* type = RXY_A STORE HIGH (32)  */                  \
927   V(chf, CHF, 0xE3CD)     /* type = RXY_A COMPARE HIGH (32)  */                \
928   V(clhf, CLHF, 0xE3CF)   /* type = RXY_A COMPARE LOGICAL HIGH (32)  */        \
929   V(ley, LEY, 0xED64)     /* type = RXY_A LOAD (short)  */                     \
930   V(ldy, LDY, 0xED65)     /* type = RXY_A LOAD (long)  */                      \
931   V(stey, STEY, 0xED66)   /* type = RXY_A STORE (short)  */                    \
932   V(stdy, STDY, 0xED67)   /* type = RXY_A STORE (long)  */                     \
933   V(msc, MSC, 0xE353)     /* type = RSY_A MULTIPLY SINGLE (32)  */             \
934   V(msgc, MSGC, 0xE383)   /* type = RSY_A MULTIPLY SINGLE (64)  */
935 
936 #define S390_RXY_B_OPCODE_LIST(V) \
937   V(pfd, PFD, 0xE336) /* type = RXY_B PREFETCH DATA  */
938 
939 #define S390_SIY_OPCODE_LIST(V)                                           \
940   V(tmy, TMY, 0xEB51)   /* type = SIY   TEST UNDER MASK  */               \
941   V(mviy, MVIY, 0xEB52) /* type = SIY   MOVE (immediate)  */              \
942   V(niy, NIY, 0xEB54)   /* type = SIY   AND (immediate)  */               \
943   V(cliy, CLIY, 0xEB55) /* type = SIY   COMPARE LOGICAL (immediate)  */   \
944   V(oiy, OIY, 0xEB56)   /* type = SIY   OR (immediate)  */                \
945   V(xiy, XIY, 0xEB57)   /* type = SIY   EXCLUSIVE OR (immediate)  */      \
946   V(asi, ASI, 0xEB6A)   /* type = SIY   ADD IMMEDIATE (32<-8)  */         \
947   V(alsi, ALSI,                                                           \
948     0xEB6E) /* type = SIY   ADD LOGICAL WITH SIGNED IMMEDIATE (32<-8)  */ \
949   V(agsi, AGSI, 0xEB7A) /* type = SIY   ADD IMMEDIATE (64<-8)  */         \
950   V(algsi, ALGSI,                                                         \
951     0xEB7E) /* type = SIY   ADD LOGICAL WITH SIGNED IMMEDIATE (64<-8)  */
952 
953 #define S390_SS_A_OPCODE_LIST(V)                                        \
954   V(trtr, TRTR, 0xD0)   /* type = SS_A  TRANSLATE AND TEST REVERSE  */  \
955   V(mvn, MVN, 0xD1)     /* type = SS_A  MOVE NUMERICS  */               \
956   V(mvc, MVC, 0xD2)     /* type = SS_A  MOVE (character)  */            \
957   V(mvz, MVZ, 0xD3)     /* type = SS_A  MOVE ZONES  */                  \
958   V(nc, NC, 0xD4)       /* type = SS_A  AND (character)  */             \
959   V(clc, CLC, 0xD5)     /* type = SS_A  COMPARE LOGICAL (character)  */ \
960   V(oc, OC, 0xD6)       /* type = SS_A  OR (character)  */              \
961   V(xc, XC, 0xD7)       /* type = SS_A  EXCLUSIVE OR (character)  */    \
962   V(tr, TR, 0xDC)       /* type = SS_A  TRANSLATE  */                   \
963   V(trt, TRT, 0xDD)     /* type = SS_A  TRANSLATE AND TEST  */          \
964   V(ed, ED, 0xDE)       /* type = SS_A  EDIT  */                        \
965   V(edmk, EDMK, 0xDF)   /* type = SS_A  EDIT AND MARK  */               \
966   V(unpku, UNPKU, 0xE2) /* type = SS_A  UNPACK UNICODE  */              \
967   V(mvcin, MVCIN, 0xE8) /* type = SS_A  MOVE INVERSE  */                \
968   V(unpka, UNPKA, 0xEA) /* type = SS_A  UNPACK ASCII  */
969 
970 #define S390_E_OPCODE_LIST(V)                                                  \
971   V(pr, PR, 0x0101)       /* type = E     PROGRAM RETURN  */                   \
972   V(upt, UPT, 0x0102)     /* type = E     UPDATE TREE  */                      \
973   V(ptff, PTFF, 0x0104)   /* type = E     PERFORM TIMING FACILITY FUNCTION  */ \
974   V(sckpf, SCKPF, 0x0107) /* type = E     SET CLOCK PROGRAMMABLE FIELD  */     \
975   V(pfpo, PFPO, 0x010A)   /* type = E     PERFORM FLOATING-POINT OPERATION  */ \
976   V(tam, TAM, 0x010B)     /* type = E     TEST ADDRESSING MODE  */             \
977   V(sam24, SAM24, 0x010C) /* type = E     SET ADDRESSING MODE (24)  */         \
978   V(sam31, SAM31, 0x010D) /* type = E     SET ADDRESSING MODE (31)  */         \
979   V(sam64, SAM64, 0x010E) /* type = E     SET ADDRESSING MODE (64)  */         \
980   V(trap2, TRAP2, 0x01FF) /* type = E     TRAP  */
981 
982 #define S390_SS_B_OPCODE_LIST(V)                           \
983   V(mvo, MVO, 0xF1)   /* type = SS_B  MOVE WITH OFFSET  */ \
984   V(pack, PACK, 0xF2) /* type = SS_B  PACK  */             \
985   V(unpk, UNPK, 0xF3) /* type = SS_B  UNPACK  */           \
986   V(zap, ZAP, 0xF8)   /* type = SS_B  ZERO AND ADD  */     \
987   V(cp, CP, 0xF9)     /* type = SS_B  COMPARE DECIMAL  */  \
988   V(ap, AP, 0xFA)     /* type = SS_B  ADD DECIMAL  */      \
989   V(sp, SP, 0xFB)     /* type = SS_B  SUBTRACT DECIMAL  */ \
990   V(mp, MP, 0xFC)     /* type = SS_B  MULTIPLY DECIMAL  */ \
991   V(dp, DP, 0xFD)     /* type = SS_B  DIVIDE DECIMAL  */
992 
993 #define S390_SS_C_OPCODE_LIST(V) \
994   V(srp, SRP, 0xF0) /* type = SS_C  SHIFT AND ROUND DECIMAL  */
995 
996 #define S390_SS_D_OPCODE_LIST(V)                          \
997   V(mvck, MVCK, 0xD9) /* type = SS_D  MOVE WITH KEY  */   \
998   V(mvcp, MVCP, 0xDA) /* type = SS_D  MOVE TO PRIMARY  */ \
999   V(mvcs, MVCS, 0xDB) /* type = SS_D  MOVE TO SECONDARY  */
1000 
1001 #define S390_SS_E_OPCODE_LIST(V)                                 \
1002   V(plo, PLO, 0xEE) /* type = SS_E  PERFORM LOCKED OPERATION  */ \
1003   V(lmd, LMD, 0xEF) /* type = SS_E  LOAD MULTIPLE DISJOINT (64<-32&32)  */
1004 
1005 #define S390_I_OPCODE_LIST(V) \
1006   V(svc, SVC, 0x0A) /* type = I     SUPERVISOR CALL  */
1007 
1008 #define S390_SS_F_OPCODE_LIST(V)                     \
1009   V(pku, PKU, 0xE1) /* type = SS_F  PACK UNICODE  */ \
1010   V(pka, PKA, 0xE9) /* type = SS_F  PACK ASCII  */
1011 
1012 #define S390_SSE_OPCODE_LIST(V)                                             \
1013   V(lasp, LASP, 0xE500)   /* type = SSE   LOAD ADDRESS SPACE PARAMETERS  */ \
1014   V(tprot, TPROT, 0xE501) /* type = SSE   TEST PROTECTION  */               \
1015   V(strag, STRAG, 0xE502) /* type = SSE   STORE REAL ADDRESS  */            \
1016   V(mvcsk, MVCSK, 0xE50E) /* type = SSE   MOVE WITH SOURCE KEY  */          \
1017   V(mvcdk, MVCDK, 0xE50F) /* type = SSE   MOVE WITH DESTINATION KEY  */
1018 
1019 #define S390_SSF_OPCODE_LIST(V)                                                \
1020   V(mvcos, MVCOS, 0xC80) /* type = SSF   MOVE WITH OPTIONAL SPECIFICATIONS  */ \
1021   V(ectg, ECTG, 0xC81)   /* type = SSF   EXTRACT CPU TIME  */                  \
1022   V(csst, CSST, 0xC82)   /* type = SSF   COMPARE AND SWAP AND STORE  */        \
1023   V(lpd, LPD, 0xC84)     /* type = SSF   LOAD PAIR DISJOINT (32)  */           \
1024   V(lpdg, LPDG, 0xC85)   /* type = SSF   LOAD PAIR DISJOINT (64)  */
1025 
1026 #define S390_RS_A_OPCODE_LIST(V)                                              \
1027   V(bxh, BXH, 0x86)     /* type = RS_A  BRANCH ON INDEX HIGH (32)  */         \
1028   V(bxle, BXLE, 0x87)   /* type = RS_A  BRANCH ON INDEX LOW OR EQUAL (32)  */ \
1029   V(srl, SRL, 0x88)     /* type = RS_A  SHIFT RIGHT SINGLE LOGICAL (32)  */   \
1030   V(sll, SLL, 0x89)     /* type = RS_A  SHIFT LEFT SINGLE LOGICAL (32)  */    \
1031   V(sra, SRA, 0x8A)     /* type = RS_A  SHIFT RIGHT SINGLE (32)  */           \
1032   V(sla, SLA, 0x8B)     /* type = RS_A  SHIFT LEFT SINGLE (32)  */            \
1033   V(srdl, SRDL, 0x8C)   /* type = RS_A  SHIFT RIGHT DOUBLE LOGICAL (64)  */   \
1034   V(sldl, SLDL, 0x8D)   /* type = RS_A  SHIFT LEFT DOUBLE LOGICAL (64)  */    \
1035   V(srda, SRDA, 0x8E)   /* type = RS_A  SHIFT RIGHT DOUBLE (64)  */           \
1036   V(slda, SLDA, 0x8F)   /* type = RS_A  SHIFT LEFT DOUBLE (64)  */            \
1037   V(stm, STM, 0x90)     /* type = RS_A  STORE MULTIPLE (32)  */               \
1038   V(lm, LM, 0x98)       /* type = RS_A  LOAD MULTIPLE (32)  */                \
1039   V(trace, TRACE, 0x99) /* type = RS_A  TRACE (32)  */                        \
1040   V(lam, LAM, 0x9A)     /* type = RS_A  LOAD ACCESS MULTIPLE  */              \
1041   V(stam, STAM, 0x9B)   /* type = RS_A  STORE ACCESS MULTIPLE  */             \
1042   V(mvcle, MVCLE, 0xA8) /* type = RS_A  MOVE LONG EXTENDED  */                \
1043   V(clcle, CLCLE, 0xA9) /* type = RS_A  COMPARE LOGICAL LONG EXTENDED  */     \
1044   V(sigp, SIGP, 0xAE)   /* type = RS_A  SIGNAL PROCESSOR  */                  \
1045   V(stctl, STCTL, 0xB6) /* type = RS_A  STORE CONTROL (32)  */                \
1046   V(lctl, LCTL, 0xB7)   /* type = RS_A  LOAD CONTROL (32)  */                 \
1047   V(cs, CS, 0xBA)       /* type = RS_A  COMPARE AND SWAP (32)  */             \
1048   V(cds, CDS, 0xBB)     /* type = RS_A  COMPARE DOUBLE AND SWAP (32)  */
1049 
1050 #define S390_RS_B_OPCODE_LIST(V)                                               \
1051   V(clm, CLM, 0xBD) /* type = RS_B  COMPARE LOGICAL CHAR. UNDER MASK (low)  */ \
1052   V(stcm, STCM, 0xBE) /* type = RS_B  STORE CHARACTERS UNDER MASK (low)  */    \
1053   V(icm, ICM, 0xBF)   /* type = RS_B  INSERT CHARACTERS UNDER MASK (low)  */
1054 
1055 #define S390_S_OPCODE_LIST(V)                                                  \
1056   V(lpsw, LPSW, 0x82)         /* type = S     LOAD PSW  */                     \
1057   V(diagnose, DIAGNOSE, 0x83) /* type = S     DIAGNOSE  */                     \
1058   V(ts, TS, 0x93)             /* type = S     TEST AND SET  */                 \
1059   V(stidp, STIDP, 0xB202)     /* type = S     STORE CPU ID  */                 \
1060   V(sck, SCK, 0xB204)         /* type = S     SET CLOCK  */                    \
1061   V(stck, STCK, 0xB205)       /* type = S     STORE CLOCK  */                  \
1062   V(sckc, SCKC, 0xB206)       /* type = S     SET CLOCK COMPARATOR  */         \
1063   V(stckc, STCKC, 0xB207)     /* type = S     STORE CLOCK COMPARATOR  */       \
1064   V(spt, SPT, 0xB208)         /* type = S     SET CPU TIMER  */                \
1065   V(stpt, STPT, 0xB209)       /* type = S     STORE CPU TIMER  */              \
1066   V(spka, SPKA, 0xB20A)       /* type = S     SET PSW KEY FROM ADDRESS  */     \
1067   V(ipk, IPK, 0xB20B)         /* type = S     INSERT PSW KEY  */               \
1068   V(ptlb, PTLB, 0xB20D)       /* type = S     PURGE TLB  */                    \
1069   V(spx, SPX, 0xB210)         /* type = S     SET PREFIX  */                   \
1070   V(stpx, STPX, 0xB211)       /* type = S     STORE PREFIX  */                 \
1071   V(stap, STAP, 0xB212)       /* type = S     STORE CPU ADDRESS  */            \
1072   V(pc, PC, 0xB218)           /* type = S     PROGRAM CALL  */                 \
1073   V(sac, SAC, 0xB219)         /* type = S     SET ADDRESS SPACE CONTROL  */    \
1074   V(cfc, CFC, 0xB21A)         /* type = S     COMPARE AND FORM CODEWORD  */    \
1075   V(csch, CSCH, 0xB230)       /* type = S     CLEAR SUBCHANNEL  */             \
1076   V(hsch, HSCH, 0xB231)       /* type = S     HALT SUBCHANNEL  */              \
1077   V(msch, MSCH, 0xB232)       /* type = S     MODIFY SUBCHANNEL  */            \
1078   V(ssch, SSCH, 0xB233)       /* type = S     START SUBCHANNEL  */             \
1079   V(stsch, STSCH, 0xB234)     /* type = S     STORE SUBCHANNEL  */             \
1080   V(tsch, TSCH, 0xB235)       /* type = S     TEST SUBCHANNEL  */              \
1081   V(tpi, TPI, 0xB236)         /* type = S     TEST PENDING INTERRUPTION  */    \
1082   V(sal, SAL, 0xB237)         /* type = S     SET ADDRESS LIMIT  */            \
1083   V(rsch, RSCH, 0xB238)       /* type = S     RESUME SUBCHANNEL  */            \
1084   V(stcrw, STCRW, 0xB239)     /* type = S     STORE CHANNEL REPORT WORD  */    \
1085   V(stcps, STCPS, 0xB23A)     /* type = S     STORE CHANNEL PATH STATUS  */    \
1086   V(rchp, RCHP, 0xB23B)       /* type = S     RESET CHANNEL PATH  */           \
1087   V(schm, SCHM, 0xB23C)       /* type = S     SET CHANNEL MONITOR  */          \
1088   V(xsch, XSCH, 0xB276)       /* type = S     CANCEL SUBCHANNEL  */            \
1089   V(rp, RP_Z, 0xB277)         /* type = S     RESUME PROGRAM  */               \
1090   V(stcke, STCKE, 0xB278)     /* type = S     STORE CLOCK EXTENDED  */         \
1091   V(sacf, SACF, 0xB279)     /* type = S     SET ADDRESS SPACE CONTROL FAST  */ \
1092   V(stckf, STCKF, 0xB27C)   /* type = S     STORE CLOCK FAST  */               \
1093   V(stsi, STSI, 0xB27D)     /* type = S     STORE SYSTEM INFORMATION  */       \
1094   V(srnm, SRNM, 0xB299)     /* type = S     SET BFP ROUNDING MODE (2 bit)  */  \
1095   V(stfpc, STFPC, 0xB29C)   /* type = S     STORE FPC  */                      \
1096   V(lfpc, LFPC, 0xB29D)     /* type = S     LOAD FPC  */                       \
1097   V(stfle, STFLE, 0xB2B0)   /* type = S     STORE FACILITY LIST EXTENDED  */   \
1098   V(stfl, STFL, 0xB2B1)     /* type = S     STORE FACILITY LIST  */            \
1099   V(lpswe, LPSWE, 0xB2B2)   /* type = S     LOAD PSW EXTENDED  */              \
1100   V(srnmb, SRNMB, 0xB2B8)   /* type = S     SET BFP ROUNDING MODE (3 bit)  */  \
1101   V(srnmt, SRNMT, 0xB2B9)   /* type = S     SET DFP ROUNDING MODE  */          \
1102   V(lfas, LFAS, 0xB2BD)     /* type = S     LOAD FPC AND SIGNAL  */            \
1103   V(tend, TEND, 0xB2F8)     /* type = S     TRANSACTION END  */                \
1104   V(tabort, TABORT, 0xB2FC) /* type = S     TRANSACTION ABORT  */              \
1105   V(trap4, TRAP4, 0xB2FF)   /* type = S     TRAP  */
1106 
1107 #define S390_RX_A_OPCODE_LIST(V)                                            \
1108   V(la, LA, 0x41)     /* type = RX_A  LOAD ADDRESS  */                      \
1109   V(stc, STC, 0x42)   /* type = RX_A  STORE CHARACTER  */                   \
1110   V(ic_z, IC_z, 0x43) /* type = RX_A  INSERT CHARACTER  */                  \
1111   V(ex, EX, 0x44)     /* type = RX_A  EXECUTE  */                           \
1112   V(bal, BAL, 0x45)   /* type = RX_A  BRANCH AND LINK  */                   \
1113   V(bct, BCT, 0x46)   /* type = RX_A  BRANCH ON COUNT (32)  */              \
1114   V(lh, LH, 0x48)     /* type = RX_A  LOAD HALFWORD (32<-16)  */            \
1115   V(ch, CH, 0x49)     /* type = RX_A  COMPARE HALFWORD (32<-16)  */         \
1116   V(ah, AH, 0x4A)     /* type = RX_A  ADD HALFWORD (32<-16)  */             \
1117   V(sh, SH, 0x4B)     /* type = RX_A  SUBTRACT HALFWORD (32<-16)  */        \
1118   V(mh, MH, 0x4C)     /* type = RX_A  MULTIPLY HALFWORD (32<-16)  */        \
1119   V(bas, BAS, 0x4D)   /* type = RX_A  BRANCH AND SAVE  */                   \
1120   V(cvd, CVD, 0x4E)   /* type = RX_A  CONVERT TO DECIMAL (32)  */           \
1121   V(cvb, CVB, 0x4F)   /* type = RX_A  CONVERT TO BINARY (32)  */            \
1122   V(st, ST, 0x50)     /* type = RX_A  STORE (32)  */                        \
1123   V(lae, LAE, 0x51)   /* type = RX_A  LOAD ADDRESS EXTENDED  */             \
1124   V(n, N, 0x54)       /* type = RX_A  AND (32)  */                          \
1125   V(cl, CL, 0x55)     /* type = RX_A  COMPARE LOGICAL (32)  */              \
1126   V(o, O, 0x56)       /* type = RX_A  OR (32)  */                           \
1127   V(x, X, 0x57)       /* type = RX_A  EXCLUSIVE OR (32)  */                 \
1128   V(l, L, 0x58)       /* type = RX_A  LOAD (32)  */                         \
1129   V(c, C, 0x59)       /* type = RX_A  COMPARE (32)  */                      \
1130   V(a, A, 0x5A)       /* type = RX_A  ADD (32)  */                          \
1131   V(s, S, 0x5B)       /* type = RX_A  SUBTRACT (32)  */                     \
1132   V(m, M, 0x5C)       /* type = RX_A  MULTIPLY (64<-32)  */                 \
1133   V(d, D, 0x5D)       /* type = RX_A  DIVIDE (32<-64)  */                   \
1134   V(al_z, AL, 0x5E)   /* type = RX_A  ADD LOGICAL (32)  */                  \
1135   V(sl, SL, 0x5F)     /* type = RX_A  SUBTRACT LOGICAL (32)  */             \
1136   V(std, STD, 0x60)   /* type = RX_A  STORE (long)  */                      \
1137   V(mxd, MXD, 0x67)   /* type = RX_A  MULTIPLY (long to extended HFP)  */   \
1138   V(ld, LD, 0x68)     /* type = RX_A  LOAD (long)  */                       \
1139   V(cd, CD, 0x69)     /* type = RX_A  COMPARE (long HFP)  */                \
1140   V(ad, AD, 0x6A)     /* type = RX_A  ADD NORMALIZED (long HFP)  */         \
1141   V(sd, SD, 0x6B)     /* type = RX_A  SUBTRACT NORMALIZED (long HFP)  */    \
1142   V(md, MD, 0x6C)     /* type = RX_A  MULTIPLY (long HFP)  */               \
1143   V(dd, DD, 0x6D)     /* type = RX_A  DIVIDE (long HFP)  */                 \
1144   V(aw, AW, 0x6E)     /* type = RX_A  ADD UNNORMALIZED (long HFP)  */       \
1145   V(sw, SW, 0x6F)     /* type = RX_A  SUBTRACT UNNORMALIZED (long HFP)  */  \
1146   V(ste, STE, 0x70)   /* type = RX_A  STORE (short)  */                     \
1147   V(ms, MS, 0x71)     /* type = RX_A  MULTIPLY SINGLE (32)  */              \
1148   V(le_z, LE, 0x78)   /* type = RX_A  LOAD (short)  */                      \
1149   V(ce, CE, 0x79)     /* type = RX_A  COMPARE (short HFP)  */               \
1150   V(ae, AE, 0x7A)     /* type = RX_A  ADD NORMALIZED (short HFP)  */        \
1151   V(se, SE, 0x7B)     /* type = RX_A  SUBTRACT NORMALIZED (short HFP)  */   \
1152   V(mde, MDE, 0x7C)   /* type = RX_A  MULTIPLY (short to long HFP)  */      \
1153   V(de, DE, 0x7D)     /* type = RX_A  DIVIDE (short HFP)  */                \
1154   V(au, AU, 0x7E)     /* type = RX_A  ADD UNNORMALIZED (short HFP)  */      \
1155   V(su, SU, 0x7F)     /* type = RX_A  SUBTRACT UNNORMALIZED (short HFP)  */ \
1156   V(ssm, SSM, 0x80)   /* type = RX_A  SET SYSTEM MASK  */                   \
1157   V(lra, LRA, 0xB1)   /* type = RX_A  LOAD REAL ADDRESS (32)  */            \
1158   V(sth, STH, 0x40)   /* type = RX_A  STORE HALFWORD (16)  */
1159 
1160 #define S390_RX_B_OPCODE_LIST(V) \
1161   V(bc, BC, 0x47)     /* type = RX_B  BRANCH ON CONDITION  */
1162 
1163 #define S390_RIE_A_OPCODE_LIST(V)                                              \
1164   V(cgit, CGIT, 0xEC70) /* type = RIE_A COMPARE IMMEDIATE AND TRAP (64<-16) */ \
1165   V(clgit, CLGIT,                                                              \
1166     0xEC71) /* type = RIE_A COMPARE LOGICAL IMMEDIATE AND TRAP (64<-16)  */    \
1167   V(cit, CIT, 0xEC72) /* type = RIE_A COMPARE IMMEDIATE AND TRAP (32<-16)  */  \
1168   V(clfit, CLFIT,                                                              \
1169     0xEC73) /* type = RIE_A COMPARE LOGICAL IMMEDIATE AND TRAP (32<-16)  */
1170 
1171 #define S390_RRD_OPCODE_LIST(V)                                                \
1172   V(maebr, MAEBR, 0xB30E) /* type = RRD   MULTIPLY AND ADD (short BFP)  */     \
1173   V(msebr, MSEBR, 0xB30F) /* type = RRD   MULTIPLY AND SUBTRACT (short BFP) */ \
1174   V(madbr, MADBR, 0xB31E) /* type = RRD   MULTIPLY AND ADD (long BFP)  */      \
1175   V(msdbr, MSDBR, 0xB31F) /* type = RRD   MULTIPLY AND SUBTRACT (long BFP)  */ \
1176   V(maer, MAER, 0xB32E)   /* type = RRD   MULTIPLY AND ADD (short HFP)  */     \
1177   V(mser, MSER, 0xB32F) /* type = RRD   MULTIPLY AND SUBTRACT (short HFP)  */  \
1178   V(maylr, MAYLR,                                                              \
1179     0xB338) /* type = RRD   MULTIPLY AND ADD UNNRM. (long to ext. low HFP)  */ \
1180   V(mylr, MYLR,                                                                \
1181     0xB339) /* type = RRD   MULTIPLY UNNORM. (long to ext. low HFP)  */        \
1182   V(mayr, MAYR,                                                                \
1183     0xB33A) /* type = RRD   MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)  */ \
1184   V(myr, MYR,                                                                  \
1185     0xB33B) /* type = RRD   MULTIPLY UNNORMALIZED (long to ext. HFP)  */       \
1186   V(mayhr, MAYHR,                                                              \
1187     0xB33C) /* type = RRD   MULTIPLY AND ADD UNNRM. (long to ext. high HFP) */ \
1188   V(myhr, MYHR,                                                                \
1189     0xB33D) /* type = RRD   MULTIPLY UNNORM. (long to ext. high HFP)  */       \
1190   V(madr, MADR, 0xB33E) /* type = RRD   MULTIPLY AND ADD (long HFP)  */        \
1191   V(msdr, MSDR, 0xB33F) /* type = RRD   MULTIPLY AND SUBTRACT (long HFP)  */
1192 
1193 #define S390_RIE_B_OPCODE_LIST(V)                                            \
1194   V(cgrj, CGRJ, 0xEC64) /* type = RIE_B COMPARE AND BRANCH RELATIVE (64)  */ \
1195   V(clgrj, CLGRJ,                                                            \
1196     0xEC65) /* type = RIE_B COMPARE LOGICAL AND BRANCH RELATIVE (64)  */     \
1197   V(crj, CRJ, 0xEC76) /* type = RIE_B COMPARE AND BRANCH RELATIVE (32)  */   \
1198   V(clrj, CLRJ,                                                              \
1199     0xEC77) /* type = RIE_B COMPARE LOGICAL AND BRANCH RELATIVE (32)  */
1200 
1201 #define S390_RRE_OPCODE_LIST(V)                                                \
1202   V(ipm, IPM, 0xB222)     /* type = RRE   INSERT PROGRAM MASK  */              \
1203   V(ivsk, IVSK, 0xB223)   /* type = RRE   INSERT VIRTUAL STORAGE KEY  */       \
1204   V(iac, IAC, 0xB224)     /* type = RRE   INSERT ADDRESS SPACE CONTROL  */     \
1205   V(ssar, SSAR, 0xB225)   /* type = RRE   SET SECONDARY ASN  */                \
1206   V(epar, EPAR, 0xB226)   /* type = RRE   EXTRACT PRIMARY ASN  */              \
1207   V(esar, ESAR, 0xB227)   /* type = RRE   EXTRACT SECONDARY ASN  */            \
1208   V(pt, PT, 0xB228)       /* type = RRE   PROGRAM TRANSFER  */                 \
1209   V(iske, ISKE, 0xB229)   /* type = RRE   INSERT STORAGE KEY EXTENDED  */      \
1210   V(rrbe, RRBE, 0xB22A)   /* type = RRE   RESET REFERENCE BIT EXTENDED  */     \
1211   V(tb, TB, 0xB22C)       /* type = RRE   TEST BLOCK  */                       \
1212   V(dxr, DXR, 0xB22D)     /* type = RRE   DIVIDE (extended HFP)  */            \
1213   V(pgin, PGIN, 0xB22E)   /* type = RRE   PAGE IN  */                          \
1214   V(pgout, PGOUT, 0xB22F) /* type = RRE   PAGE OUT  */                         \
1215   V(bakr, BAKR, 0xB240)   /* type = RRE   BRANCH AND STACK  */                 \
1216   V(cksm, CKSM, 0xB241)   /* type = RRE   CHECKSUM  */                         \
1217   V(sqdr, SQDR, 0xB244)   /* type = RRE   SQUARE ROOT (long HFP)  */           \
1218   V(sqer, SQER, 0xB245)   /* type = RRE   SQUARE ROOT (short HFP)  */          \
1219   V(stura, STURA, 0xB246) /* type = RRE   STORE USING REAL ADDRESS (32)  */    \
1220   V(msta, MSTA, 0xB247)   /* type = RRE   MODIFY STACKED STATE  */             \
1221   V(palb, PALB, 0xB248)   /* type = RRE   PURGE ALB  */                        \
1222   V(ereg, EREG, 0xB249)   /* type = RRE   EXTRACT STACKED REGISTERS (32)  */   \
1223   V(esta, ESTA, 0xB24A)   /* type = RRE   EXTRACT STACKED STATE  */            \
1224   V(lura, LURA, 0xB24B)   /* type = RRE   LOAD USING REAL ADDRESS (32)  */     \
1225   V(tar, TAR, 0xB24C)     /* type = RRE   TEST ACCESS  */                      \
1226   V(cpya, CPYA, 0xB24D)   /* type = RRE   COPY ACCESS  */                      \
1227   V(sar, SAR, 0xB24E)     /* type = RRE   SET ACCESS  */                       \
1228   V(ear, EAR, 0xB24F)     /* type = RRE   EXTRACT ACCESS  */                   \
1229   V(csp, CSP, 0xB250)     /* type = RRE   COMPARE AND SWAP AND PURGE (32)  */  \
1230   V(msr, MSR, 0xB252)     /* type = RRE   MULTIPLY SINGLE (32)  */             \
1231   V(mvpg, MVPG, 0xB254)   /* type = RRE   MOVE PAGE  */                        \
1232   V(mvst, MVST, 0xB255)   /* type = RRE   MOVE STRING  */                      \
1233   V(cuse, CUSE, 0xB257)   /* type = RRE   COMPARE UNTIL SUBSTRING EQUAL  */    \
1234   V(bsg, BSG, 0xB258)     /* type = RRE   BRANCH IN SUBSPACE GROUP  */         \
1235   V(bsa, BSA, 0xB25A)     /* type = RRE   BRANCH AND SET AUTHORITY  */         \
1236   V(clst, CLST, 0xB25D)   /* type = RRE   COMPARE LOGICAL STRING  */           \
1237   V(srst, SRST, 0xB25E)   /* type = RRE   SEARCH STRING  */                    \
1238   V(cmpsc, CMPSC, 0xB263) /* type = RRE   COMPRESSION CALL  */                 \
1239   V(tre, TRE, 0xB2A5)     /* type = RRE   TRANSLATE EXTENDED  */               \
1240   V(etnd, ETND, 0xB2EC) /* type = RRE   EXTRACT TRANSACTION NESTING DEPTH  */  \
1241   V(lpebr, LPEBR, 0xB300) /* type = RRE   LOAD POSITIVE (short BFP)  */        \
1242   V(lnebr, LNEBR, 0xB301) /* type = RRE   LOAD NEGATIVE (short BFP)  */        \
1243   V(ltebr, LTEBR, 0xB302) /* type = RRE   LOAD AND TEST (short BFP)  */        \
1244   V(lcebr, LCEBR, 0xB303) /* type = RRE   LOAD COMPLEMENT (short BFP)  */      \
1245   V(ldebr, LDEBR,                                                              \
1246     0xB304) /* type = RRE   LOAD LENGTHENED (short to long BFP)  */            \
1247   V(lxdbr, LXDBR,                                                              \
1248     0xB305) /* type = RRE   LOAD LENGTHENED (long to extended BFP)  */         \
1249   V(lxebr, LXEBR,                                                              \
1250     0xB306) /* type = RRE   LOAD LENGTHENED (short to extended BFP)  */        \
1251   V(mxdbr, MXDBR, 0xB307) /* type = RRE   MULTIPLY (long to extended BFP)  */  \
1252   V(kebr, KEBR, 0xB308)   /* type = RRE   COMPARE AND SIGNAL (short BFP)  */   \
1253   V(cebr, CEBR, 0xB309)   /* type = RRE   COMPARE (short BFP)  */              \
1254   V(aebr, AEBR, 0xB30A)   /* type = RRE   ADD (short BFP)  */                  \
1255   V(sebr, SEBR, 0xB30B)   /* type = RRE   SUBTRACT (short BFP)  */             \
1256   V(mdebr, MDEBR, 0xB30C) /* type = RRE   MULTIPLY (short to long BFP)  */     \
1257   V(debr, DEBR, 0xB30D)   /* type = RRE   DIVIDE (short BFP)  */               \
1258   V(lpdbr, LPDBR, 0xB310) /* type = RRE   LOAD POSITIVE (long BFP)  */         \
1259   V(lndbr, LNDBR, 0xB311) /* type = RRE   LOAD NEGATIVE (long BFP)  */         \
1260   V(ltdbr, LTDBR, 0xB312) /* type = RRE   LOAD AND TEST (long BFP)  */         \
1261   V(lcdbr, LCDBR, 0xB313) /* type = RRE   LOAD COMPLEMENT (long BFP)  */       \
1262   V(sqebr, SQEBR, 0xB314) /* type = RRE   SQUARE ROOT (short BFP)  */          \
1263   V(sqdbr, SQDBR, 0xB315) /* type = RRE   SQUARE ROOT (long BFP)  */           \
1264   V(sqxbr, SQXBR, 0xB316) /* type = RRE   SQUARE ROOT (extended BFP)  */       \
1265   V(meebr, MEEBR, 0xB317) /* type = RRE   MULTIPLY (short BFP)  */             \
1266   V(kdbr, KDBR, 0xB318)   /* type = RRE   COMPARE AND SIGNAL (long BFP)  */    \
1267   V(cdbr, CDBR, 0xB319)   /* type = RRE   COMPARE (long BFP)  */               \
1268   V(adbr, ADBR, 0xB31A)   /* type = RRE   ADD (long BFP)  */                   \
1269   V(sdbr, SDBR, 0xB31B)   /* type = RRE   SUBTRACT (long BFP)  */              \
1270   V(mdbr, MDBR, 0xB31C)   /* type = RRE   MULTIPLY (long BFP)  */              \
1271   V(ddbr, DDBR, 0xB31D)   /* type = RRE   DIVIDE (long BFP)  */                \
1272   V(lder, LDER, 0xB324) /* type = RRE   LOAD LENGTHENED (short to long HFP) */ \
1273   V(lxdr, LXDR,                                                                \
1274     0xB325) /* type = RRE   LOAD LENGTHENED (long to extended HFP)  */         \
1275   V(lxer, LXER,                                                                \
1276     0xB326) /* type = RRE   LOAD LENGTHENED (short to extended HFP)  */        \
1277   V(sqxr, SQXR, 0xB336)   /* type = RRE   SQUARE ROOT (extended HFP)  */       \
1278   V(meer, MEER, 0xB337)   /* type = RRE   MULTIPLY (short HFP)  */             \
1279   V(lpxbr, LPXBR, 0xB340) /* type = RRE   LOAD POSITIVE (extended BFP)  */     \
1280   V(lnxbr, LNXBR, 0xB341) /* type = RRE   LOAD NEGATIVE (extended BFP)  */     \
1281   V(ltxbr, LTXBR, 0xB342) /* type = RRE   LOAD AND TEST (extended BFP)  */     \
1282   V(lcxbr, LCXBR, 0xB343) /* type = RRE   LOAD COMPLEMENT (extended BFP)  */   \
1283   V(kxbr, KXBR, 0xB348) /* type = RRE   COMPARE AND SIGNAL (extended BFP)  */  \
1284   V(cxbr, CXBR, 0xB349) /* type = RRE   COMPARE (extended BFP)  */             \
1285   V(axbr, AXBR, 0xB34A) /* type = RRE   ADD (extended BFP)  */                 \
1286   V(sxbr, SXBR, 0xB34B) /* type = RRE   SUBTRACT (extended BFP)  */            \
1287   V(mxbr, MXBR, 0xB34C) /* type = RRE   MULTIPLY (extended BFP)  */            \
1288   V(dxbr, DXBR, 0xB34D) /* type = RRE   DIVIDE (extended BFP)  */              \
1289   V(thder, THDER,                                                              \
1290     0xB358)             /* type = RRE   CONVERT BFP TO HFP (short to long)  */ \
1291   V(thdr, THDR, 0xB359) /* type = RRE   CONVERT BFP TO HFP (long)  */          \
1292   V(lpxr, LPXR, 0xB360) /* type = RRE   LOAD POSITIVE (extended HFP)  */       \
1293   V(lnxr, LNXR, 0xB361) /* type = RRE   LOAD NEGATIVE (extended HFP)  */       \
1294   V(ltxr, LTXR, 0xB362) /* type = RRE   LOAD AND TEST (extended HFP)  */       \
1295   V(lcxr, LCXR, 0xB363) /* type = RRE   LOAD COMPLEMENT (extended HFP)  */     \
1296   V(lxr, LXR, 0xB365)   /* type = RRE   LOAD (extended)  */                    \
1297   V(lexr, LEXR,                                                                \
1298     0xB366) /* type = RRE   LOAD ROUNDED (extended to short HFP)  */           \
1299   V(fixr, FIXR, 0xB367)   /* type = RRE   LOAD FP INTEGER (extended HFP)  */   \
1300   V(cxr, CXR, 0xB369)     /* type = RRE   COMPARE (extended HFP)  */           \
1301   V(lpdfr, LPDFR, 0xB370) /* type = RRE   LOAD POSITIVE (long)  */             \
1302   V(lndfr, LNDFR, 0xB371) /* type = RRE   LOAD NEGATIVE (long)  */             \
1303   V(lcdfr, LCDFR, 0xB373) /* type = RRE   LOAD COMPLEMENT (long)  */           \
1304   V(lzer, LZER, 0xB374)   /* type = RRE   LOAD ZERO (short)  */                \
1305   V(lzdr, LZDR, 0xB375)   /* type = RRE   LOAD ZERO (long)  */                 \
1306   V(lzxr, LZXR, 0xB376)   /* type = RRE   LOAD ZERO (extended)  */             \
1307   V(fier, FIER, 0xB377)   /* type = RRE   LOAD FP INTEGER (short HFP)  */      \
1308   V(fidr, FIDR, 0xB37F)   /* type = RRE   LOAD FP INTEGER (long HFP)  */       \
1309   V(sfpc, SFPC, 0xB384)   /* type = RRE   SET FPC  */                          \
1310   V(sfasr, SFASR, 0xB385) /* type = RRE   SET FPC AND SIGNAL  */               \
1311   V(efpc, EFPC, 0xB38C)   /* type = RRE   EXTRACT FPC  */                      \
1312   V(cefr, CEFR,                                                                \
1313     0xB3B4) /* type = RRE   CONVERT FROM FIXED (32 to short HFP)  */           \
1314   V(cdfr, CDFR, 0xB3B5) /* type = RRE   CONVERT FROM FIXED (32 to long HFP) */ \
1315   V(cxfr, CXFR,                                                                \
1316     0xB3B6) /* type = RRE   CONVERT FROM FIXED (32 to extended HFP)  */        \
1317   V(ldgr, LDGR, 0xB3C1) /* type = RRE   LOAD FPR FROM GR (64 to long)  */      \
1318   V(cegr, CEGR,                                                                \
1319     0xB3C4) /* type = RRE   CONVERT FROM FIXED (64 to short HFP)  */           \
1320   V(cdgr, CDGR, 0xB3C5) /* type = RRE   CONVERT FROM FIXED (64 to long HFP) */ \
1321   V(cxgr, CXGR,                                                                \
1322     0xB3C6) /* type = RRE   CONVERT FROM FIXED (64 to extended HFP)  */        \
1323   V(lgdr, LGDR, 0xB3CD)   /* type = RRE   LOAD GR FROM FPR (long to 64)  */    \
1324   V(ltdtr, LTDTR, 0xB3D6) /* type = RRE   LOAD AND TEST (long DFP)  */         \
1325   V(ltxtr, LTXTR, 0xB3DE) /* type = RRE   LOAD AND TEST (extended DFP)  */     \
1326   V(kdtr, KDTR, 0xB3E0)   /* type = RRE   COMPARE AND SIGNAL (long DFP)  */    \
1327   V(cudtr, CUDTR, 0xB3E2) /* type = RRE   CONVERT TO UNSIGNED PACKED (long */  \
1328                           /* DFP to 64) CUDTR  */                              \
1329   V(cdtr, CDTR, 0xB3E4)   /* type = RRE   COMPARE (long DFP)  */               \
1330   V(eedtr, EEDTR,                                                              \
1331     0xB3E5) /* type = RRE   EXTRACT BIASED EXPONENT (long DFP to 64)  */       \
1332   V(esdtr, ESDTR,                                                              \
1333     0xB3E7) /* type = RRE   EXTRACT SIGNIFICANCE (long DFP to 64)  */          \
1334   V(kxtr, KXTR, 0xB3E8) /* type = RRE   COMPARE AND SIGNAL (extended DFP)  */  \
1335   V(cuxtr, CUXTR,                                                              \
1336     0xB3EA) /* type = RRE   CONVERT TO UNSIGNED PACKED (extended DFP       */  \
1337             /* CUXTR to 128)  */                                               \
1338   V(cxtr, CXTR, 0xB3EC) /* type = RRE   COMPARE (extended DFP)  */             \
1339   V(eextr, EEXTR,                                                              \
1340     0xB3ED) /* type = RRE   EXTRACT BIASED EXPONENT (extended DFP to 64)  */   \
1341   V(esxtr, ESXTR,                                                              \
1342     0xB3EF) /* type = RRE   EXTRACT SIGNIFICANCE (extended DFP to 64)  */      \
1343   V(cdutr, CDUTR,                                                              \
1344     0xB3F2) /* type = RRE   CONVERT FROM UNSIGNED PACKED (64 to long DFP)  */  \
1345   V(cdstr, CDSTR,                                                              \
1346     0xB3F3) /* type = RRE   CONVERT FROM SIGNED PACKED (64 to long DFP)  */    \
1347   V(cedtr, CEDTR,                                                              \
1348     0xB3F4) /* type = RRE   COMPARE BIASED EXPONENT (long DFP)  */             \
1349   V(cxutr, CXUTR,                                                              \
1350     0xB3FA) /* type = RRE   CONVERT FROM UNSIGNED PACKED (128 to ext. DFP)  */ \
1351   V(cxstr, CXSTR, 0xB3FB) /* type = RRE   CONVERT FROM SIGNED PACKED (128 to*/ \
1352                           /* extended DFP)  */                                 \
1353   V(cextr, CEXTR,                                                              \
1354     0xB3FC) /* type = RRE   COMPARE BIASED EXPONENT (extended DFP)  */         \
1355   V(lpgr, LPGR, 0xB900)   /* type = RRE   LOAD POSITIVE (64)  */               \
1356   V(lngr, LNGR, 0xB901)   /* type = RRE   LOAD NEGATIVE (64)  */               \
1357   V(ltgr, LTGR, 0xB902)   /* type = RRE   LOAD AND TEST (64)  */               \
1358   V(lcgr, LCGR, 0xB903)   /* type = RRE   LOAD COMPLEMENT (64)  */             \
1359   V(lgr, LGR, 0xB904)     /* type = RRE   LOAD (64)  */                        \
1360   V(lurag, LURAG, 0xB905) /* type = RRE   LOAD USING REAL ADDRESS (64)  */     \
1361   V(lgbr, LGBR, 0xB906)   /* type = RRE   LOAD BYTE (64<-8)  */                \
1362   V(lghr, LGHR, 0xB907)   /* type = RRE   LOAD HALFWORD (64<-16)  */           \
1363   V(agr, AGR, 0xB908)     /* type = RRE   ADD (64)  */                         \
1364   V(sgr, SGR, 0xB909)     /* type = RRE   SUBTRACT (64)  */                    \
1365   V(algr, ALGR, 0xB90A)   /* type = RRE   ADD LOGICAL (64)  */                 \
1366   V(slgr, SLGR, 0xB90B)   /* type = RRE   SUBTRACT LOGICAL (64)  */            \
1367   V(msgr, MSGR, 0xB90C)   /* type = RRE   MULTIPLY SINGLE (64)  */             \
1368   V(dsgr, DSGR, 0xB90D)   /* type = RRE   DIVIDE SINGLE (64)  */               \
1369   V(eregg, EREGG, 0xB90E) /* type = RRE   EXTRACT STACKED REGISTERS (64)  */   \
1370   V(lrvgr, LRVGR, 0xB90F) /* type = RRE   LOAD REVERSED (64)  */               \
1371   V(lpgfr, LPGFR, 0xB910) /* type = RRE   LOAD POSITIVE (64<-32)  */           \
1372   V(lngfr, LNGFR, 0xB911) /* type = RRE   LOAD NEGATIVE (64<-32)  */           \
1373   V(ltgfr, LTGFR, 0xB912) /* type = RRE   LOAD AND TEST (64<-32)  */           \
1374   V(lcgfr, LCGFR, 0xB913) /* type = RRE   LOAD COMPLEMENT (64<-32)  */         \
1375   V(lgfr, LGFR, 0xB914)   /* type = RRE   LOAD (64<-32)  */                    \
1376   V(llgfr, LLGFR, 0xB916) /* type = RRE   LOAD LOGICAL (64<-32)  */            \
1377   V(llgtr, LLGTR,                                                              \
1378     0xB917) /* type = RRE   LOAD LOGICAL THIRTY ONE BITS (64<-31)  */          \
1379   V(agfr, AGFR, 0xB918)   /* type = RRE   ADD (64<-32)  */                     \
1380   V(sgfr, SGFR, 0xB919)   /* type = RRE   SUBTRACT (64<-32)  */                \
1381   V(algfr, ALGFR, 0xB91A) /* type = RRE   ADD LOGICAL (64<-32)  */             \
1382   V(slgfr, SLGFR, 0xB91B) /* type = RRE   SUBTRACT LOGICAL (64<-32)  */        \
1383   V(msgfr, MSGFR, 0xB91C) /* type = RRE   MULTIPLY SINGLE (64<-32)  */         \
1384   V(dsgfr, DSGFR, 0xB91D) /* type = RRE   DIVIDE SINGLE (64<-32)  */           \
1385   V(kmac, KMAC, 0xB91E) /* type = RRE   COMPUTE MESSAGE AUTHENTICATION CODE */ \
1386   V(lrvr, LRVR, 0xB91F) /* type = RRE   LOAD REVERSED (32)  */                 \
1387   V(cgr, CGR, 0xB920)   /* type = RRE   COMPARE (64)  */                       \
1388   V(clgr, CLGR, 0xB921) /* type = RRE   COMPARE LOGICAL (64)  */               \
1389   V(sturg, STURG, 0xB925) /* type = RRE   STORE USING REAL ADDRESS (64)  */    \
1390   V(lbr, LBR, 0xB926)     /* type = RRE   LOAD BYTE (32<-8)  */                \
1391   V(lhr, LHR, 0xB927)     /* type = RRE   LOAD HALFWORD (32<-16)  */           \
1392   V(pckmo, PCKMO,                                                              \
1393     0xB928) /* type = RRE   PERFORM CRYPTOGRAPHIC KEY MGMT. OPERATIONS  */     \
1394   V(kmf, KMF, 0xB92A) /* type = RRE   CIPHER MESSAGE WITH CIPHER FEEDBACK  */  \
1395   V(kmo, KMO, 0xB92B) /* type = RRE   CIPHER MESSAGE WITH OUTPUT FEEDBACK  */  \
1396   V(pcc, PCC, 0xB92C) /* type = RRE   PERFORM CRYPTOGRAPHIC COMPUTATION  */    \
1397   V(km, KM, 0xB92E)   /* type = RRE   CIPHER MESSAGE  */                       \
1398   V(kmc, KMC, 0xB92F) /* type = RRE   CIPHER MESSAGE WITH CHAINING  */         \
1399   V(cgfr, CGFR, 0xB930)   /* type = RRE   COMPARE (64<-32)  */                 \
1400   V(clgfr, CLGFR, 0xB931) /* type = RRE   COMPARE LOGICAL (64<-32)  */         \
1401   V(ppno, PPNO,                                                                \
1402     0xB93C) /* type = RRE   PERFORM PSEUDORANDOM NUMBER OPERATION  */          \
1403   V(kimd, KIMD, 0xB93E) /* type = RRE   COMPUTE INTERMEDIATE MESSAGE DIGEST */ \
1404   V(klmd, KLMD, 0xB93F) /* type = RRE   COMPUTE LAST MESSAGE DIGEST  */        \
1405   V(bctgr, BCTGR, 0xB946) /* type = RRE   BRANCH ON COUNT (64)  */             \
1406   V(cdftr, CDFTR,                                                              \
1407     0xB951) /* type = RRE   CONVERT FROM FIXED (32 to long DFP)  */            \
1408   V(cxftr, CXFTR,                                                              \
1409     0xB959) /* type = RRE   CONVERT FROM FIXED (32 to extended DFP)  */        \
1410   V(ngr, NGR, 0xB980)     /* type = RRE   AND (64)  */                         \
1411   V(ogr, OGR, 0xB981)     /* type = RRE   OR (64)  */                          \
1412   V(xgr, XGR, 0xB982)     /* type = RRE   EXCLUSIVE OR (64)  */                \
1413   V(flogr, FLOGR, 0xB983) /* type = RRE   FIND LEFTMOST ONE  */                \
1414   V(llgcr, LLGCR, 0xB984) /* type = RRE   LOAD LOGICAL CHARACTER (64<-8)  */   \
1415   V(llghr, LLGHR, 0xB985) /* type = RRE   LOAD LOGICAL HALFWORD (64<-16)  */   \
1416   V(mlgr, MLGR, 0xB986)   /* type = RRE   MULTIPLY LOGICAL (128<-64)  */       \
1417   V(dlgr, DLGR, 0xB987)   /* type = RRE   DIVIDE LOGICAL (64<-128)  */         \
1418   V(alcgr, ALCGR, 0xB988) /* type = RRE   ADD LOGICAL WITH CARRY (64)  */      \
1419   V(slbgr, SLBGR, 0xB989) /* type = RRE   SUBTRACT LOGICAL WITH BORROW (64) */ \
1420   V(cspg, CSPG, 0xB98A)   /* type = RRE   COMPARE AND SWAP AND PURGE (64)  */  \
1421   V(epsw, EPSW, 0xB98D)   /* type = RRE   EXTRACT PSW  */                      \
1422   V(llcr, LLCR, 0xB994)   /* type = RRE   LOAD LOGICAL CHARACTER (32<-8)  */   \
1423   V(llhr, LLHR, 0xB995)   /* type = RRE   LOAD LOGICAL HALFWORD (32<-16)  */   \
1424   V(mlr, MLR, 0xB996)     /* type = RRE   MULTIPLY LOGICAL (64<-32)  */        \
1425   V(dlr, DLR, 0xB997)     /* type = RRE   DIVIDE LOGICAL (32<-64)  */          \
1426   V(alcr, ALCR, 0xB998)   /* type = RRE   ADD LOGICAL WITH CARRY (32)  */      \
1427   V(slbr, SLBR, 0xB999) /* type = RRE   SUBTRACT LOGICAL WITH BORROW (32)  */  \
1428   V(epair, EPAIR, 0xB99A) /* type = RRE   EXTRACT PRIMARY ASN AND INSTANCE  */ \
1429   V(esair, ESAIR,                                                              \
1430     0xB99B)             /* type = RRE   EXTRACT SECONDARY ASN AND INSTANCE  */ \
1431   V(esea, ESEA, 0xB99D) /* type = RRE   EXTRACT AND SET EXTENDED AUTHORITY  */ \
1432   V(pti, PTI, 0xB99E)   /* type = RRE   PROGRAM TRANSFER WITH INSTANCE  */     \
1433   V(ssair, SSAIR, 0xB99F) /* type = RRE   SET SECONDARY ASN WITH INSTANCE  */  \
1434   V(ptf, PTF, 0xB9A2)     /* type = RRE   PERFORM TOPOLOGY FUNCTION  */        \
1435   V(rrbm, RRBM, 0xB9AE)   /* type = RRE   RESET REFERENCE BITS MULTIPLE  */    \
1436   V(pfmf, PFMF, 0xB9AF) /* type = RRE   PERFORM FRAME MANAGEMENT FUNCTION  */  \
1437   V(cu41, CU41, 0xB9B2) /* type = RRE   CONVERT UTF-32 TO UTF-8  */            \
1438   V(cu42, CU42, 0xB9B3) /* type = RRE   CONVERT UTF-32 TO UTF-16  */           \
1439   V(srstu, SRSTU, 0xB9BE)     /* type = RRE   SEARCH STRING UNICODE  */        \
1440   V(chhr, CHHR, 0xB9CD)       /* type = RRE   COMPARE HIGH (32)  */            \
1441   V(clhhr, CLHHR, 0xB9CF)     /* type = RRE   COMPARE LOGICAL HIGH (32)  */    \
1442   V(chlr, CHLR, 0xB9DD)       /* type = RRE   COMPARE HIGH (32)  */            \
1443   V(clhlr, CLHLR, 0xB9DF)     /* type = RRE   COMPARE LOGICAL HIGH (32)  */    \
1444   V(popcnt, POPCNT_Z, 0xB9E1) /* type = RRE   POPULATION COUNT  */
1445 
1446 #define S390_RIE_C_OPCODE_LIST(V)                                             \
1447   V(cgij, CGIJ,                                                               \
1448     0xEC7C) /* type = RIE_C COMPARE IMMEDIATE AND BRANCH RELATIVE (64<-8)  */ \
1449   V(clgij, CLGIJ,                                                             \
1450     0xEC7D) /* type = RIE_C COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE  */ \
1451             /* (64<-8)  */                                                    \
1452   V(cij, CIJ,                                                                 \
1453     0xEC7E) /* type = RIE_C COMPARE IMMEDIATE AND BRANCH RELATIVE (32<-8)  */ \
1454   V(clij, CLIJ, 0xEC7F) /* type = RIE_C COMPARE LOGICAL IMMEDIATE AND      */ \
1455                         /* BRANCH RELATIVE (32<-8)  */
1456 
1457 #define S390_RIE_D_OPCODE_LIST(V)                                          \
1458   V(ahik, AHIK, 0xECD8)   /* type = RIE_D ADD IMMEDIATE (32<-16)  */       \
1459   V(aghik, AGHIK, 0xECD9) /* type = RIE_D ADD IMMEDIATE (64<-16)  */       \
1460   V(alhsik, ALHSIK,                                                        \
1461     0xECDA) /* type = RIE_D ADD LOGICAL WITH SIGNED IMMEDIATE (32<-16)  */ \
1462   V(alghsik, ALGHSIK,                                                      \
1463     0xECDB) /* type = RIE_D ADD LOGICAL WITH SIGNED IMMEDIATE (64<-16)  */
1464 
1465 #define S390_VRV_OPCODE_LIST(V)                                           \
1466   V(vgeg, VGEG, 0xE712)   /* type = VRV   VECTOR GATHER ELEMENT (64)  */  \
1467   V(vgef, VGEF, 0xE713)   /* type = VRV   VECTOR GATHER ELEMENT (32)  */  \
1468   V(vsceg, VSCEG, 0xE71A) /* type = VRV   VECTOR SCATTER ELEMENT (64)  */ \
1469   V(vscef, VSCEF, 0xE71B) /* type = VRV   VECTOR SCATTER ELEMENT (32)  */
1470 
1471 #define S390_RIE_E_OPCODE_LIST(V)                                  \
1472   V(brxhg, BRXHG,                                                  \
1473     0xEC44) /* type = RIE_E BRANCH RELATIVE ON INDEX HIGH (64)  */ \
1474   V(brxlg, BRXLG,                                                  \
1475     0xEC45) /* type = RIE_E BRANCH RELATIVE ON INDEX LOW OR EQ. (64)  */
1476 
1477 #define S390_RR_OPCODE_LIST(V)                                                 \
1478   V(awr, AWR, 0x2E)     /* type = RR    ADD UNNORMALIZED (long HFP)  */        \
1479   V(spm, SPM, 0x04)     /* type = RR    SET PROGRAM MASK  */                   \
1480   V(balr, BALR, 0x05)   /* type = RR    BRANCH AND LINK  */                    \
1481   V(bctr, BCTR, 0x06)   /* type = RR    BRANCH ON COUNT (32)  */               \
1482   V(bcr, BCR, 0x07)     /* type = RR    BRANCH ON CONDITION  */                \
1483   V(bsm, BSM, 0x0B)     /* type = RR    BRANCH AND SET MODE  */                \
1484   V(bassm, BASSM, 0x0C) /* type = RR    BRANCH AND SAVE AND SET MODE  */       \
1485   V(basr, BASR, 0x0D)   /* type = RR    BRANCH AND SAVE  */                    \
1486   V(mvcl, MVCL, 0x0E)   /* type = RR    MOVE LONG  */                          \
1487   V(clcl, CLCL, 0x0F)   /* type = RR    COMPARE LOGICAL LONG  */               \
1488   V(lpr, LPR, 0x10)     /* type = RR    LOAD POSITIVE (32)  */                 \
1489   V(lnr, LNR, 0x11)     /* type = RR    LOAD NEGATIVE (32)  */                 \
1490   V(ltr, LTR, 0x12)     /* type = RR    LOAD AND TEST (32)  */                 \
1491   V(lcr, LCR, 0x13)     /* type = RR    LOAD COMPLEMENT (32)  */               \
1492   V(nr, NR, 0x14)       /* type = RR    AND (32)  */                           \
1493   V(clr, CLR, 0x15)     /* type = RR    COMPARE LOGICAL (32)  */               \
1494   V(or_z, OR, 0x16)     /* type = RR    OR (32)  */                            \
1495   V(xr, XR, 0x17)       /* type = RR    EXCLUSIVE OR (32)  */                  \
1496   V(lr, LR, 0x18)       /* type = RR    LOAD (32)  */                          \
1497   V(cr_z, CR, 0x19)     /* type = RR    COMPARE (32)  */                       \
1498   V(ar, AR, 0x1A)       /* type = RR    ADD (32)  */                           \
1499   V(sr, SR, 0x1B)       /* type = RR    SUBTRACT (32)  */                      \
1500   V(mr_z, MR, 0x1C)     /* type = RR    MULTIPLY (64<-32)  */                  \
1501   V(dr, DR, 0x1D)       /* type = RR    DIVIDE (32<-64)  */                    \
1502   V(alr, ALR, 0x1E)     /* type = RR    ADD LOGICAL (32)  */                   \
1503   V(slr, SLR, 0x1F)     /* type = RR    SUBTRACT LOGICAL (32)  */              \
1504   V(lpdr, LPDR, 0x20)   /* type = RR    LOAD POSITIVE (long HFP)  */           \
1505   V(lndr, LNDR, 0x21)   /* type = RR    LOAD NEGATIVE (long HFP)  */           \
1506   V(ltdr, LTDR, 0x22)   /* type = RR    LOAD AND TEST (long HFP)  */           \
1507   V(lcdr, LCDR, 0x23)   /* type = RR    LOAD COMPLEMENT (long HFP)  */         \
1508   V(hdr, HDR, 0x24)     /* type = RR    HALVE (long HFP)  */                   \
1509   V(ldxr, LDXR, 0x25) /* type = RR    LOAD ROUNDED (extended to long HFP)  */  \
1510   V(mxr, MXR, 0x26)   /* type = RR    MULTIPLY (extended HFP)  */              \
1511   V(mxdr, MXDR, 0x27) /* type = RR    MULTIPLY (long to extended HFP)  */      \
1512   V(ldr, LDR, 0x28)   /* type = RR    LOAD (long)  */                          \
1513   V(cdr, CDR, 0x29)   /* type = RR    COMPARE (long HFP)  */                   \
1514   V(adr, ADR, 0x2A)   /* type = RR    ADD NORMALIZED (long HFP)  */            \
1515   V(sdr, SDR, 0x2B)   /* type = RR    SUBTRACT NORMALIZED (long HFP)  */       \
1516   V(mdr, MDR, 0x2C)   /* type = RR    MULTIPLY (long HFP)  */                  \
1517   V(ddr, DDR, 0x2D)   /* type = RR    DIVIDE (long HFP)  */                    \
1518   V(swr, SWR, 0x2F)   /* type = RR    SUBTRACT UNNORMALIZED (long HFP)  */     \
1519   V(lper, LPER, 0x30) /* type = RR    LOAD POSITIVE (short HFP)  */            \
1520   V(lner, LNER, 0x31) /* type = RR    LOAD NEGATIVE (short HFP)  */            \
1521   V(lter, LTER, 0x32) /* type = RR    LOAD AND TEST (short HFP)  */            \
1522   V(lcer, LCER, 0x33) /* type = RR    LOAD COMPLEMENT (short HFP)  */          \
1523   V(her_z, HER_Z, 0x34) /* type = RR    HALVE (short HFP)  */                  \
1524   V(ledr, LEDR, 0x35)   /* type = RR    LOAD ROUNDED (long to short HFP)  */   \
1525   V(axr, AXR, 0x36)     /* type = RR    ADD NORMALIZED (extended HFP)  */      \
1526   V(sxr, SXR, 0x37)     /* type = RR    SUBTRACT NORMALIZED (extended HFP)  */ \
1527   V(ler, LER, 0x38)     /* type = RR    LOAD (short)  */                       \
1528   V(cer, CER, 0x39)     /* type = RR    COMPARE (short HFP)  */                \
1529   V(aer, AER, 0x3A)     /* type = RR    ADD NORMALIZED (short HFP)  */         \
1530   V(ser, SER, 0x3B)     /* type = RR    SUBTRACT NORMALIZED (short HFP)  */    \
1531   V(mder, MDER, 0x3C)   /* type = RR    MULTIPLY (short to long HFP)  */       \
1532   V(der, DER, 0x3D)     /* type = RR    DIVIDE (short HFP)  */                 \
1533   V(aur, AUR, 0x3E)     /* type = RR    ADD UNNORMALIZED (short HFP)  */       \
1534   V(sur, SUR, 0x3F)     /* type = RR    SUBTRACT UNNORMALIZED (short HFP)  */
1535 
1536 #define S390_RIE_F_OPCODE_LIST(V)                                              \
1537   V(risblg, RISBLG,                                                            \
1538     0xEC51) /* type = RIE_F ROTATE THEN INSERT SELECTED BITS LOW (64)  */      \
1539   V(rnsbg, RNSBG,                                                              \
1540     0xEC54) /* type = RIE_F ROTATE THEN AND SELECTED BITS (64)  */             \
1541   V(risbg, RISBG,                                                              \
1542     0xEC55) /* type = RIE_F ROTATE THEN INSERT SELECTED BITS (64)  */          \
1543   V(rosbg, ROSBG, 0xEC56) /* type = RIE_F ROTATE THEN OR SELECTED BITS (64) */ \
1544   V(rxsbg, RXSBG,                                                              \
1545     0xEC57) /* type = RIE_F ROTATE THEN EXCLUSIVE OR SELECT. BITS (64)  */     \
1546   V(risbgn, RISBGN,                                                            \
1547     0xEC59) /* type = RIE_F ROTATE THEN INSERT SELECTED BITS (64)  */          \
1548   V(risbhg, RISBHG,                                                            \
1549     0xEC5D) /* type = RIE_F ROTATE THEN INSERT SELECTED BITS HIGH (64)  */
1550 
1551 #define S390_VRX_OPCODE_LIST(V)                                             \
1552   V(vleb, VLEB, 0xE700) /* type = VRX   VECTOR LOAD ELEMENT (8)  */         \
1553   V(vleh, VLEH, 0xE701) /* type = VRX   VECTOR LOAD ELEMENT (16)  */        \
1554   V(vleg, VLEG, 0xE702) /* type = VRX   VECTOR LOAD ELEMENT (64)  */        \
1555   V(vlef, VLEF, 0xE703) /* type = VRX   VECTOR LOAD ELEMENT (32)  */        \
1556   V(vllez, VLLEZ,                                                           \
1557     0xE704) /* type = VRX   VECTOR LOAD LOGICAL ELEMENT AND ZERO  */        \
1558   V(vlrep, VLREP, 0xE705) /* type = VRX   VECTOR LOAD AND REPLICATE  */     \
1559   V(vl, VL, 0xE706)       /* type = VRX   VECTOR LOAD  */                   \
1560   V(vlbb, VLBB, 0xE707)   /* type = VRX   VECTOR LOAD TO BLOCK BOUNDARY  */ \
1561   V(vsteb, VSTEB, 0xE708) /* type = VRX   VECTOR STORE ELEMENT (8)  */      \
1562   V(vsteh, VSTEH, 0xE709) /* type = VRX   VECTOR STORE ELEMENT (16)  */     \
1563   V(vsteg, VSTEG, 0xE70A) /* type = VRX   VECTOR STORE ELEMENT (64)  */     \
1564   V(vstef, VSTEF, 0xE70B) /* type = VRX   VECTOR STORE ELEMENT (32)  */     \
1565   V(vst, VST, 0xE70E)     /* type = VRX   VECTOR STORE  */
1566 
1567 #define S390_RIE_G_OPCODE_LIST(V)                                             \
1568   V(lochi, LOCHI,                                                             \
1569     0xEC42) /* type = RIE_G LOAD HALFWORD IMMEDIATE ON CONDITION (32<-16)  */ \
1570   V(locghi, LOCGHI,                                                           \
1571     0xEC46) /* type = RIE_G LOAD HALFWORD IMMEDIATE ON CONDITION (64<-16)  */ \
1572   V(lochhi, LOCHHI, 0xEC4E) /* type = RIE_G LOAD HALFWORD HIGH IMMEDIATE   */ \
1573                             /* ON CONDITION (32<-16)  */
1574 
1575 #define S390_RRS_OPCODE_LIST(V)                                               \
1576   V(cgrb, CGRB, 0xECE4)   /* type = RRS   COMPARE AND BRANCH (64)  */         \
1577   V(clgrb, CLGRB, 0xECE5) /* type = RRS   COMPARE LOGICAL AND BRANCH (64)  */ \
1578   V(crb, CRB, 0xECF6)     /* type = RRS   COMPARE AND BRANCH (32)  */         \
1579   V(clrb, CLRB, 0xECF7)   /* type = RRS   COMPARE LOGICAL AND BRANCH (32)  */
1580 
1581 #define S390_OPCODE_LIST(V) \
1582   S390_RSY_A_OPCODE_LIST(V) \
1583   S390_RSY_B_OPCODE_LIST(V) \
1584   S390_RXE_OPCODE_LIST(V)   \
1585   S390_RRF_A_OPCODE_LIST(V) \
1586   S390_RXF_OPCODE_LIST(V)   \
1587   S390_IE_OPCODE_LIST(V)    \
1588   S390_RRF_B_OPCODE_LIST(V) \
1589   S390_RRF_C_OPCODE_LIST(V) \
1590   S390_MII_OPCODE_LIST(V)   \
1591   S390_RRF_D_OPCODE_LIST(V) \
1592   S390_RRF_E_OPCODE_LIST(V) \
1593   S390_VRR_A_OPCODE_LIST(V) \
1594   S390_VRR_B_OPCODE_LIST(V) \
1595   S390_VRR_C_OPCODE_LIST(V) \
1596   S390_VRI_A_OPCODE_LIST(V) \
1597   S390_VRR_D_OPCODE_LIST(V) \
1598   S390_VRI_B_OPCODE_LIST(V) \
1599   S390_VRR_E_OPCODE_LIST(V) \
1600   S390_VRI_C_OPCODE_LIST(V) \
1601   S390_VRI_D_OPCODE_LIST(V) \
1602   S390_VRR_F_OPCODE_LIST(V) \
1603   S390_RIS_OPCODE_LIST(V)   \
1604   S390_VRI_E_OPCODE_LIST(V) \
1605   S390_RSL_A_OPCODE_LIST(V) \
1606   S390_RSL_B_OPCODE_LIST(V) \
1607   S390_SI_OPCODE_LIST(V)    \
1608   S390_SIL_OPCODE_LIST(V)   \
1609   S390_VRS_A_OPCODE_LIST(V) \
1610   S390_RIL_A_OPCODE_LIST(V) \
1611   S390_RIL_B_OPCODE_LIST(V) \
1612   S390_VRS_B_OPCODE_LIST(V) \
1613   S390_RIL_C_OPCODE_LIST(V) \
1614   S390_VRS_C_OPCODE_LIST(V) \
1615   S390_RI_A_OPCODE_LIST(V)  \
1616   S390_RSI_OPCODE_LIST(V)   \
1617   S390_RI_B_OPCODE_LIST(V)  \
1618   S390_RI_C_OPCODE_LIST(V)  \
1619   S390_SMI_OPCODE_LIST(V)   \
1620   S390_RXY_A_OPCODE_LIST(V) \
1621   S390_RXY_B_OPCODE_LIST(V) \
1622   S390_SIY_OPCODE_LIST(V)   \
1623   S390_SS_A_OPCODE_LIST(V)  \
1624   S390_E_OPCODE_LIST(V)     \
1625   S390_SS_B_OPCODE_LIST(V)  \
1626   S390_SS_C_OPCODE_LIST(V)  \
1627   S390_SS_D_OPCODE_LIST(V)  \
1628   S390_SS_E_OPCODE_LIST(V)  \
1629   S390_I_OPCODE_LIST(V)     \
1630   S390_SS_F_OPCODE_LIST(V)  \
1631   S390_SSE_OPCODE_LIST(V)   \
1632   S390_SSF_OPCODE_LIST(V)   \
1633   S390_RS_A_OPCODE_LIST(V)  \
1634   S390_RS_B_OPCODE_LIST(V)  \
1635   S390_S_OPCODE_LIST(V)     \
1636   S390_RX_A_OPCODE_LIST(V)  \
1637   S390_RX_B_OPCODE_LIST(V)  \
1638   S390_RIE_A_OPCODE_LIST(V) \
1639   S390_RRD_OPCODE_LIST(V)   \
1640   S390_RIE_B_OPCODE_LIST(V) \
1641   S390_RRE_OPCODE_LIST(V)   \
1642   S390_RIE_C_OPCODE_LIST(V) \
1643   S390_RIE_D_OPCODE_LIST(V) \
1644   S390_VRV_OPCODE_LIST(V)   \
1645   S390_RIE_E_OPCODE_LIST(V) \
1646   S390_RR_OPCODE_LIST(V)    \
1647   S390_RIE_F_OPCODE_LIST(V) \
1648   S390_VRX_OPCODE_LIST(V)   \
1649   S390_RIE_G_OPCODE_LIST(V) \
1650   S390_RRS_OPCODE_LIST(V)
1651 
1652 // Opcodes as defined in Appendix B-2 table
1653 enum Opcode {
1654 #define DECLARE_OPCODES(name, opcode_name, opcode_value) \
1655   opcode_name = opcode_value,
1656   S390_OPCODE_LIST(DECLARE_OPCODES)
1657 #undef DECLARE_OPCODES
1658 
1659       BKPT = 0x0001,  // GDB Software Breakpoint
1660   DUMY = 0xE352       // Special dummy opcode
1661 };
1662 
1663 // Instruction encoding bits and masks.
1664 enum {
1665   // Instruction encoding bit
1666   B1 = 1 << 1,
1667   B4 = 1 << 4,
1668   B5 = 1 << 5,
1669   B7 = 1 << 7,
1670   B8 = 1 << 8,
1671   B9 = 1 << 9,
1672   B12 = 1 << 12,
1673   B18 = 1 << 18,
1674   B19 = 1 << 19,
1675   B20 = 1 << 20,
1676   B22 = 1 << 22,
1677   B23 = 1 << 23,
1678   B24 = 1 << 24,
1679   B25 = 1 << 25,
1680   B26 = 1 << 26,
1681   B27 = 1 << 27,
1682   B28 = 1 << 28,
1683 
1684   B6 = 1 << 6,
1685   B10 = 1 << 10,
1686   B11 = 1 << 11,
1687   B16 = 1 << 16,
1688   B17 = 1 << 17,
1689   B21 = 1 << 21,
1690 
1691   // Instruction bit masks
1692   kCondMask = 0x1F << 21,
1693   kOff12Mask = (1 << 12) - 1,
1694   kImm24Mask = (1 << 24) - 1,
1695   kOff16Mask = (1 << 16) - 1,
1696   kImm16Mask = (1 << 16) - 1,
1697   kImm26Mask = (1 << 26) - 1,
1698   kBOfieldMask = 0x1f << 21,
1699   kOpcodeMask = 0x3f << 26,
1700   kExt2OpcodeMask = 0x1f << 1,
1701   kExt5OpcodeMask = 0x3 << 2,
1702   kBIMask = 0x1F << 16,
1703   kBDMask = 0x14 << 2,
1704   kAAMask = 0x01 << 1,
1705   kLKMask = 0x01,
1706   kRCMask = 0x01,
1707   kTOMask = 0x1f << 21
1708 };
1709 
1710 // S390 instructions requires bigger shifts,
1711 // make them macros instead of enum because of the typing issue
1712 #define B32 ((uint64_t)1 << 32)
1713 #define B36 ((uint64_t)1 << 36)
1714 #define B40 ((uint64_t)1 << 40)
1715 const FourByteInstr kFourByteBrCondMask = 0xF << 20;
1716 const SixByteInstr kSixByteBrCondMask = static_cast<SixByteInstr>(0xF) << 36;
1717 
1718 // -----------------------------------------------------------------------------
1719 // Addressing modes and instruction variants.
1720 
1721 // Overflow Exception
1722 enum OEBit {
1723   SetOE = 1 << 10,   // Set overflow exception
1724   LeaveOE = 0 << 10  // No overflow exception
1725 };
1726 
1727 // Record bit
1728 enum RCBit {   // Bit 0
1729   SetRC = 1,   // LT,GT,EQ,SO
1730   LeaveRC = 0  // None
1731 };
1732 
1733 // Link bit
1734 enum LKBit {   // Bit 0
1735   SetLK = 1,   // Load effective address of next instruction
1736   LeaveLK = 0  // No action
1737 };
1738 
1739 enum BOfield {        // Bits 25-21
1740   DCBNZF = 0 << 21,   // Decrement CTR; branch if CTR != 0 and condition false
1741   DCBEZF = 2 << 21,   // Decrement CTR; branch if CTR == 0 and condition false
1742   BF = 4 << 21,       // Branch if condition false
1743   DCBNZT = 8 << 21,   // Decrement CTR; branch if CTR != 0 and condition true
1744   DCBEZT = 10 << 21,  // Decrement CTR; branch if CTR == 0 and condition true
1745   BT = 12 << 21,      // Branch if condition true
1746   DCBNZ = 16 << 21,   // Decrement CTR; branch if CTR != 0
1747   DCBEZ = 18 << 21,   // Decrement CTR; branch if CTR == 0
1748   BA = 20 << 21       // Branch always
1749 };
1750 
1751 #ifdef _AIX
1752 #undef CR_LT
1753 #undef CR_GT
1754 #undef CR_EQ
1755 #undef CR_SO
1756 #endif
1757 
1758 enum CRBit { CR_LT = 0, CR_GT = 1, CR_EQ = 2, CR_SO = 3, CR_FU = 3 };
1759 
1760 #define CRWIDTH 4
1761 
1762 // -----------------------------------------------------------------------------
1763 // Supervisor Call (svc) specific support.
1764 
1765 // Special Software Interrupt codes when used in the presence of the S390
1766 // simulator.
1767 // SVC provides a 24bit immediate value. Use bits 22:0 for standard
1768 // SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
1769 enum SoftwareInterruptCodes {
1770   // Transition to C code
1771   kCallRtRedirected = 0x0010,
1772   // Breakpoint
1773   kBreakpoint = 0x0000,
1774   // Stop
1775   kStopCode = 1 << 23
1776 };
1777 const uint32_t kStopCodeMask = kStopCode - 1;
1778 const uint32_t kMaxStopCode = kStopCode - 1;
1779 const int32_t kDefaultStopCode = -1;
1780 
1781 // FP rounding modes.
1782 enum FPRoundingMode {
1783   RN = 0,  // Round to Nearest.
1784   RZ = 1,  // Round towards zero.
1785   RP = 2,  // Round towards Plus Infinity.
1786   RM = 3,  // Round towards Minus Infinity.
1787 
1788   // Aliases.
1789   kRoundToNearest = RN,
1790   kRoundToZero = RZ,
1791   kRoundToPlusInf = RP,
1792   kRoundToMinusInf = RM
1793 };
1794 
1795 const uint32_t kFPRoundingModeMask = 3;
1796 
1797 enum CheckForInexactConversion {
1798   kCheckForInexactConversion,
1799   kDontCheckForInexactConversion
1800 };
1801 
1802 // -----------------------------------------------------------------------------
1803 // Specific instructions, constants, and masks.
1804 
1805 // use TRAP4 to indicate redirection call for simulation mode
1806 const Instr rtCallRedirInstr = TRAP4;
1807 
1808 // -----------------------------------------------------------------------------
1809 // Instruction abstraction.
1810 
1811 // The class Instruction enables access to individual fields defined in the
1812 // z/Architecture instruction set encoding.
1813 class Instruction {
1814  public:
1815   // S390 Opcode Format Types
1816   //   Based on the first byte of the opcode, we can determine how to extract
1817   //   the entire opcode of the instruction.  The various favours include:
1818   enum OpcodeFormatType {
1819     ONE_BYTE_OPCODE,           // One Byte - Bits 0 to 7
1820     TWO_BYTE_OPCODE,           // Two Bytes - Bits 0 to 15
1821     TWO_BYTE_DISJOINT_OPCODE,  // Two Bytes - Bits 0 to 7, 40 to 47
1822     THREE_NIBBLE_OPCODE        // Three Nibbles - Bits 0 to 7, 12 to 15
1823   };
1824 
1825   static OpcodeFormatType OpcodeFormatTable[256];
1826 // Helper macro to define static accessors.
1827 // We use the cast to char* trick to bypass the strict anti-aliasing rules.
1828 #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name) \
1829   static inline return_type Name(Instr instr) {          \
1830     char* temp = reinterpret_cast<char*>(&instr);        \
1831     return reinterpret_cast<Instruction*>(temp)->Name(); \
1832   }
1833 
1834 #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)
1835 
1836   // Get the raw instruction bits.
1837   template <typename T>
InstructionBits()1838   inline T InstructionBits() const {
1839     return Instruction::InstructionBits<T>(reinterpret_cast<const byte*>(this));
1840   }
InstructionBits()1841   inline Instr InstructionBits() const {
1842     return *reinterpret_cast<const Instr*>(this);
1843   }
1844 
1845   // Set the raw instruction bits to value.
1846   template <typename T>
SetInstructionBits(T value)1847   inline void SetInstructionBits(T value) const {
1848     Instruction::SetInstructionBits<T>(reinterpret_cast<const byte*>(this),
1849                                        value);
1850   }
SetInstructionBits(Instr value)1851   inline void SetInstructionBits(Instr value) {
1852     *reinterpret_cast<Instr*>(this) = value;
1853   }
1854 
1855   // Read one particular bit out of the instruction bits.
Bit(int nr)1856   inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; }
1857 
1858   // Read a bit field's value out of the instruction bits.
Bits(int hi,int lo)1859   inline int Bits(int hi, int lo) const {
1860     return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
1861   }
1862 
1863   // Read bits according to instruction type
1864   template <typename T, typename U>
Bits(int hi,int lo)1865   inline U Bits(int hi, int lo) const {
1866     return (InstructionBits<T>() >> lo) & ((2 << (hi - lo)) - 1);
1867   }
1868 
1869   // Read a bit field out of the instruction bits.
BitField(int hi,int lo)1870   inline int BitField(int hi, int lo) const {
1871     return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
1872   }
1873 
1874   // Determine the instruction length
InstructionLength()1875   inline int InstructionLength() {
1876     return Instruction::InstructionLength(reinterpret_cast<const byte*>(this));
1877   }
1878   // Extract the Instruction Opcode
S390OpcodeValue()1879   inline Opcode S390OpcodeValue() {
1880     return Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(this));
1881   }
1882 
1883   // Static support.
1884 
1885   // Read one particular bit out of the instruction bits.
Bit(Instr instr,int nr)1886   static inline int Bit(Instr instr, int nr) { return (instr >> nr) & 1; }
1887 
1888   // Read the value of a bit field out of the instruction bits.
Bits(Instr instr,int hi,int lo)1889   static inline int Bits(Instr instr, int hi, int lo) {
1890     return (instr >> lo) & ((2 << (hi - lo)) - 1);
1891   }
1892 
1893   // Read a bit field out of the instruction bits.
BitField(Instr instr,int hi,int lo)1894   static inline int BitField(Instr instr, int hi, int lo) {
1895     return instr & (((2 << (hi - lo)) - 1) << lo);
1896   }
1897 
1898   // Determine the instruction length of the given instruction
InstructionLength(const byte * instr)1899   static inline int InstructionLength(const byte* instr) {
1900     // Length can be determined by the first nibble.
1901     // 0x0 to 0x3 => 2-bytes
1902     // 0x4 to 0xB => 4-bytes
1903     // 0xC to 0xF => 6-bytes
1904     byte topNibble = (*instr >> 4) & 0xF;
1905     if (topNibble <= 3)
1906       return 2;
1907     else if (topNibble <= 0xB)
1908       return 4;
1909     return 6;
1910   }
1911 
1912   // Returns the instruction bits of the given instruction
InstructionBits(const byte * instr)1913   static inline uint64_t InstructionBits(const byte* instr) {
1914     int length = InstructionLength(instr);
1915     if (2 == length)
1916       return static_cast<uint64_t>(InstructionBits<TwoByteInstr>(instr));
1917     else if (4 == length)
1918       return static_cast<uint64_t>(InstructionBits<FourByteInstr>(instr));
1919     else
1920       return InstructionBits<SixByteInstr>(instr);
1921   }
1922 
1923   // Extract the raw instruction bits
1924   template <typename T>
InstructionBits(const byte * instr)1925   static inline T InstructionBits(const byte* instr) {
1926 #if !V8_TARGET_LITTLE_ENDIAN
1927     if (sizeof(T) <= 4) {
1928       return *reinterpret_cast<const T*>(instr);
1929     } else {
1930       // We cannot read 8-byte instructon address directly, because for a
1931       // six-byte instruction, the extra 2-byte address might not be
1932       // allocated.
1933       uint64_t fourBytes = *reinterpret_cast<const uint32_t*>(instr);
1934       uint16_t twoBytes = *reinterpret_cast<const uint16_t*>(instr + 4);
1935       return (fourBytes << 16 | twoBytes);
1936     }
1937 #else
1938     // Even on little endian hosts (simulation), the instructions
1939     // are stored as big-endian in order to decode the opcode and
1940     // instruction length.
1941     T instr_bits = 0;
1942 
1943     // 6-byte instrs are represented by uint64_t
1944     uint32_t size = (sizeof(T) == 8) ? 6 : sizeof(T);
1945 
1946     for (T i = 0; i < size; i++) {
1947       instr_bits <<= 8;
1948       instr_bits |= *(instr + i);
1949     }
1950     return instr_bits;
1951 #endif
1952   }
1953 
1954   // Set the Instruction Bits to value
1955   template <typename T>
SetInstructionBits(byte * instr,T value)1956   static inline void SetInstructionBits(byte* instr, T value) {
1957 #if V8_TARGET_LITTLE_ENDIAN
1958     // The instruction bits are stored in big endian format even on little
1959     // endian hosts, in order to decode instruction length and opcode.
1960     // The following code will reverse the bytes so that the stores later
1961     // (which are in native endianess) will effectively save the instruction
1962     // in big endian.
1963     if (sizeof(T) == 2) {
1964       // Two Byte Instruction
1965       value = ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
1966     } else if (sizeof(T) == 4) {
1967       // Four Byte Instruction
1968       value = ((value & 0x000000FF) << 24) | ((value & 0x0000FF00) << 8) |
1969               ((value & 0x00FF0000) >> 8) | ((value & 0xFF000000) >> 24);
1970     } else if (sizeof(T) == 8) {
1971       // Six Byte Instruction
1972       uint64_t orig_value = static_cast<uint64_t>(value);
1973       value = (static_cast<uint64_t>(orig_value & 0xFF) << 40) |
1974               (static_cast<uint64_t>((orig_value >> 8) & 0xFF) << 32) |
1975               (static_cast<uint64_t>((orig_value >> 16) & 0xFF) << 24) |
1976               (static_cast<uint64_t>((orig_value >> 24) & 0xFF) << 16) |
1977               (static_cast<uint64_t>((orig_value >> 32) & 0xFF) << 8) |
1978               (static_cast<uint64_t>((orig_value >> 40) & 0xFF));
1979     }
1980 #endif
1981     if (sizeof(T) <= 4) {
1982       *reinterpret_cast<T*>(instr) = value;
1983     } else {
1984 #if V8_TARGET_LITTLE_ENDIAN
1985       uint64_t orig_value = static_cast<uint64_t>(value);
1986       *reinterpret_cast<uint32_t*>(instr) = static_cast<uint32_t>(value);
1987       *reinterpret_cast<uint16_t*>(instr + 4) =
1988           static_cast<uint16_t>((orig_value >> 32) & 0xFFFF);
1989 #else
1990       *reinterpret_cast<uint32_t*>(instr) = static_cast<uint32_t>(value >> 16);
1991       *reinterpret_cast<uint16_t*>(instr + 4) =
1992           static_cast<uint16_t>(value & 0xFFFF);
1993 #endif
1994     }
1995   }
1996 
1997   // Get Instruction Format Type
getOpcodeFormatType(const byte * instr)1998   static OpcodeFormatType getOpcodeFormatType(const byte* instr) {
1999     const byte firstByte = *instr;
2000     return OpcodeFormatTable[firstByte];
2001   }
2002 
2003   // Extract the full opcode from the instruction.
S390OpcodeValue(const byte * instr)2004   static inline Opcode S390OpcodeValue(const byte* instr) {
2005     OpcodeFormatType opcodeType = getOpcodeFormatType(instr);
2006 
2007     // The native instructions are encoded in big-endian format
2008     // even if running on little-endian host.  Hence, we need
2009     // to ensure we use byte* based bit-wise logic.
2010     switch (opcodeType) {
2011       case ONE_BYTE_OPCODE:
2012         // One Byte - Bits 0 to 7
2013         return static_cast<Opcode>(*instr);
2014       case TWO_BYTE_OPCODE:
2015         // Two Bytes - Bits 0 to 15
2016         return static_cast<Opcode>((*instr << 8) | (*(instr + 1)));
2017       case TWO_BYTE_DISJOINT_OPCODE:
2018         // Two Bytes - Bits 0 to 7, 40 to 47
2019         return static_cast<Opcode>((*instr << 8) | (*(instr + 5) & 0xFF));
2020       default:
2021         // case THREE_NIBBLE_OPCODE:
2022         // Three Nibbles - Bits 0 to 7, 12 to 15
2023         return static_cast<Opcode>((*instr << 4) | (*(instr + 1) & 0xF));
2024     }
2025 
2026     UNREACHABLE();
2027   }
2028 
2029   // Fields used in Software interrupt instructions
SvcValue()2030   inline SoftwareInterruptCodes SvcValue() const {
2031     return static_cast<SoftwareInterruptCodes>(Bits<FourByteInstr, int>(15, 0));
2032   }
2033 
2034   // Instructions are read of out a code stream. The only way to get a
2035   // reference to an instruction is to convert a pointer. There is no way
2036   // to allocate or create instances of class Instruction.
2037   // Use the At(pc) function to create references to Instruction.
At(byte * pc)2038   static Instruction* At(byte* pc) {
2039     return reinterpret_cast<Instruction*>(pc);
2040   }
2041 
2042  private:
2043   // We need to prevent the creation of instances of class Instruction.
2044   DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
2045 };
2046 
2047 #define DECLARE_FIELD_FOR_TWO_BYTE_INSTR(name, T, lo, hi)   \
2048   inline int name() const {                                 \
2049     return Bits<TwoByteInstr, T>(15 - (lo), 15 - (hi) + 1); \
2050   }
2051 
2052 #define DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(name, T, lo, hi)   \
2053   inline int name() const {                                  \
2054     return Bits<FourByteInstr, T>(31 - (lo), 31 - (hi) + 1); \
2055   }
2056 
2057 #define DECLARE_FIELD_FOR_SIX_BYTE_INSTR(name, T, lo, hi)   \
2058   inline int name() const {                                 \
2059     return Bits<SixByteInstr, T>(47 - (lo), 47 - (hi) + 1); \
2060   }
2061 
2062 class TwoByteInstruction : public Instruction {
2063  public:
size()2064   inline int size() const { return 2; }
2065 };
2066 
2067 class FourByteInstruction : public Instruction {
2068  public:
size()2069   inline int size() const { return 4; }
2070 };
2071 
2072 class SixByteInstruction : public Instruction {
2073  public:
size()2074   inline int size() const { return 6; }
2075 };
2076 
2077 // I Instruction
2078 class IInstruction : public TwoByteInstruction {
2079  public:
2080   DECLARE_FIELD_FOR_TWO_BYTE_INSTR(IValue, int, 8, 16);
2081 };
2082 
2083 // E Instruction
2084 class EInstruction : public TwoByteInstruction {};
2085 
2086 // IE Instruction
2087 class IEInstruction : public FourByteInstruction {
2088  public:
2089   DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(I1Value, int, 24, 28);
2090   DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(I2Value, int, 28, 32);
2091 };
2092 
2093 // MII Instruction
2094 class MIIInstruction : public SixByteInstruction {
2095  public:
2096   DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M1Value, uint32_t, 8, 12);
2097   DECLARE_FIELD_FOR_SIX_BYTE_INSTR(RI2Value, int, 12, 24);
2098   DECLARE_FIELD_FOR_SIX_BYTE_INSTR(RI3Value, int, 24, 47);
2099 };
2100 
2101 // RI Instruction
2102 class RIInstruction : public FourByteInstruction {
2103  public:
2104   DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(R1Value, int, 8, 12);
2105   DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(I2Value, int, 16, 32);
2106   DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(I2UnsignedValue, uint32_t, 16, 32);
2107   DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(M1Value, uint32_t, 8, 12);
2108 };
2109 
2110 // RR Instruction
2111 class RRInstruction : Instruction {
2112  public:
R1Value()2113   inline int R1Value() const {
2114     // the high and low parameters of Bits is the number of bits from
2115     // rightmost place
2116     return Bits<TwoByteInstr, int>(7, 4);
2117   }
R2Value()2118   inline int R2Value() const { return Bits<TwoByteInstr, int>(3, 0); }
M1Value()2119   inline Condition M1Value() const {
2120     return static_cast<Condition>(Bits<TwoByteInstr, int>(7, 4));
2121   }
2122 
size()2123   inline int size() const { return 2; }
2124 };
2125 
2126 // RRE Instruction
2127 class RREInstruction : Instruction {
2128  public:
R1Value()2129   inline int R1Value() const { return Bits<FourByteInstr, int>(7, 4); }
R2Value()2130   inline int R2Value() const { return Bits<FourByteInstr, int>(3, 0); }
M3Value()2131   inline int M3Value() const { return Bits<FourByteInstr, int>(15, 12); }
M4Value()2132   inline int M4Value() const { return Bits<FourByteInstr, int>(19, 16); }
size()2133   inline int size() const { return 4; }
2134 };
2135 
2136 // RRF Instruction
2137 class RRFInstruction : Instruction {
2138  public:
R1Value()2139   inline int R1Value() const { return Bits<FourByteInstr, int>(7, 4); }
R2Value()2140   inline int R2Value() const { return Bits<FourByteInstr, int>(3, 0); }
R3Value()2141   inline int R3Value() const { return Bits<FourByteInstr, int>(15, 12); }
M3Value()2142   inline int M3Value() const { return Bits<FourByteInstr, int>(15, 12); }
M4Value()2143   inline int M4Value() const { return Bits<FourByteInstr, int>(11, 8); }
size()2144   inline int size() const { return 4; }
2145 };
2146 
2147 // RRD Isntruction
2148 class RRDInstruction : Instruction {
2149  public:
R1Value()2150   inline int R1Value() const { return Bits<FourByteInstr, int>(15, 12); }
R2Value()2151   inline int R2Value() const { return Bits<FourByteInstr, int>(3, 0); }
R3Value()2152   inline int R3Value() const { return Bits<FourByteInstr, int>(7, 4); }
size()2153   inline int size() const { return 4; }
2154 };
2155 
2156 // RS Instruction
2157 class RSInstruction : Instruction {
2158  public:
R1Value()2159   inline int R1Value() const { return Bits<FourByteInstr, int>(23, 20); }
R3Value()2160   inline int R3Value() const { return Bits<FourByteInstr, int>(19, 16); }
B2Value()2161   inline int B2Value() const { return Bits<FourByteInstr, int>(15, 12); }
D2Value()2162   inline unsigned int D2Value() const {
2163     return Bits<FourByteInstr, unsigned int>(11, 0);
2164   }
size()2165   inline int size() const { return 4; }
2166 };
2167 
2168 // RSI Instruction
2169 class RSIInstruction : Instruction {
2170  public:
R1Value()2171   inline int R1Value() const { return Bits<FourByteInstr, int>(23, 20); }
R3Value()2172   inline int R3Value() const { return Bits<FourByteInstr, int>(19, 16); }
I2Value()2173   inline int I2Value() const {
2174     return static_cast<int32_t>(Bits<FourByteInstr, int16_t>(15, 0));
2175   }
size()2176   inline int size() const { return 4; }
2177 };
2178 
2179 // RSY Instruction
2180 class RSYInstruction : Instruction {
2181  public:
R1Value()2182   inline int R1Value() const { return Bits<SixByteInstr, int>(39, 36); }
R3Value()2183   inline int R3Value() const { return Bits<SixByteInstr, int>(35, 32); }
B2Value()2184   inline int B2Value() const { return Bits<SixByteInstr, int>(31, 28); }
D2Value()2185   inline int32_t D2Value() const {
2186     int32_t value = Bits<SixByteInstr, int32_t>(27, 16);
2187     value += Bits<SixByteInstr, int8_t>(15, 8) << 12;
2188     return value;
2189   }
size()2190   inline int size() const { return 6; }
2191 };
2192 
2193 // RX Instruction
2194 class RXInstruction : Instruction {
2195  public:
R1Value()2196   inline int R1Value() const { return Bits<FourByteInstr, int>(23, 20); }
X2Value()2197   inline int X2Value() const { return Bits<FourByteInstr, int>(19, 16); }
B2Value()2198   inline int B2Value() const { return Bits<FourByteInstr, int>(15, 12); }
D2Value()2199   inline uint32_t D2Value() const {
2200     return Bits<FourByteInstr, uint32_t>(11, 0);
2201   }
size()2202   inline int size() const { return 4; }
2203 };
2204 
2205 // RXY Instruction
2206 class RXYInstruction : Instruction {
2207  public:
R1Value()2208   inline int R1Value() const { return Bits<SixByteInstr, int>(39, 36); }
X2Value()2209   inline int X2Value() const { return Bits<SixByteInstr, int>(35, 32); }
B2Value()2210   inline int B2Value() const { return Bits<SixByteInstr, int>(31, 28); }
D2Value()2211   inline int32_t D2Value() const {
2212     int32_t value = Bits<SixByteInstr, uint32_t>(27, 16);
2213     value += Bits<SixByteInstr, int8_t>(15, 8) << 12;
2214     return value;
2215   }
size()2216   inline int size() const { return 6; }
2217 };
2218 
2219 // RIL Instruction
2220 class RILInstruction : Instruction {
2221  public:
R1Value()2222   inline int R1Value() const { return Bits<SixByteInstr, int>(39, 36); }
I2Value()2223   inline int32_t I2Value() const { return Bits<SixByteInstr, int32_t>(31, 0); }
I2UnsignedValue()2224   inline uint32_t I2UnsignedValue() const {
2225     return Bits<SixByteInstr, uint32_t>(31, 0);
2226   }
size()2227   inline int size() const { return 6; }
2228 };
2229 
2230 // SI Instruction
2231 class SIInstruction : Instruction {
2232  public:
B1Value()2233   inline int B1Value() const { return Bits<FourByteInstr, int>(15, 12); }
D1Value()2234   inline uint32_t D1Value() const {
2235     return Bits<FourByteInstr, uint32_t>(11, 0);
2236   }
I2Value()2237   inline uint8_t I2Value() const {
2238     return Bits<FourByteInstr, uint8_t>(23, 16);
2239   }
size()2240   inline int size() const { return 4; }
2241 };
2242 
2243 // SIY Instruction
2244 class SIYInstruction : Instruction {
2245  public:
B1Value()2246   inline int B1Value() const { return Bits<SixByteInstr, int>(31, 28); }
D1Value()2247   inline int32_t D1Value() const {
2248     int32_t value = Bits<SixByteInstr, uint32_t>(27, 16);
2249     value += Bits<SixByteInstr, int8_t>(15, 8) << 12;
2250     return value;
2251   }
I2Value()2252   inline uint8_t I2Value() const { return Bits<SixByteInstr, uint8_t>(39, 32); }
size()2253   inline int size() const { return 6; }
2254 };
2255 
2256 // SIL Instruction
2257 class SILInstruction : Instruction {
2258  public:
B1Value()2259   inline int B1Value() const { return Bits<SixByteInstr, int>(31, 28); }
D1Value()2260   inline int D1Value() const { return Bits<SixByteInstr, int>(27, 16); }
I2Value()2261   inline int I2Value() const { return Bits<SixByteInstr, int>(15, 0); }
size()2262   inline int size() const { return 6; }
2263 };
2264 
2265 // SS Instruction
2266 class SSInstruction : Instruction {
2267  public:
B1Value()2268   inline int B1Value() const { return Bits<SixByteInstr, int>(31, 28); }
B2Value()2269   inline int B2Value() const { return Bits<SixByteInstr, int>(15, 12); }
D1Value()2270   inline int D1Value() const { return Bits<SixByteInstr, int>(27, 16); }
D2Value()2271   inline int D2Value() const { return Bits<SixByteInstr, int>(11, 0); }
Length()2272   inline int Length() const { return Bits<SixByteInstr, int>(39, 32); }
size()2273   inline int size() const { return 6; }
2274 };
2275 
2276 // RXE Instruction
2277 class RXEInstruction : Instruction {
2278  public:
R1Value()2279   inline int R1Value() const { return Bits<SixByteInstr, int>(39, 36); }
X2Value()2280   inline int X2Value() const { return Bits<SixByteInstr, int>(35, 32); }
B2Value()2281   inline int B2Value() const { return Bits<SixByteInstr, int>(31, 28); }
D2Value()2282   inline int D2Value() const { return Bits<SixByteInstr, int>(27, 16); }
size()2283   inline int size() const { return 6; }
2284 };
2285 
2286 // RIE Instruction
2287 class RIEInstruction : Instruction {
2288  public:
R1Value()2289   inline int R1Value() const { return Bits<SixByteInstr, int>(39, 36); }
R2Value()2290   inline int R2Value() const { return Bits<SixByteInstr, int>(35, 32); }
I3Value()2291   inline int I3Value() const { return Bits<SixByteInstr, uint32_t>(31, 24); }
I4Value()2292   inline int I4Value() const { return Bits<SixByteInstr, uint32_t>(23, 16); }
I5Value()2293   inline int I5Value() const { return Bits<SixByteInstr, uint32_t>(15, 8); }
I6Value()2294   inline int I6Value() const {
2295     return static_cast<int32_t>(Bits<SixByteInstr, int16_t>(31, 16));
2296   }
size()2297   inline int size() const { return 6; }
2298 };
2299 
2300 // VRR Instruction
2301 class VRR_C_Instruction : SixByteInstruction {
2302  public:
2303   DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R1Value, int, 8, 12);
2304   DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R2Value, int, 12, 16);
2305   DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R3Value, int, 16, 20);
2306   DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M6Value, uint32_t, 24, 28);
2307   DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M5Value, uint32_t, 28, 32);
2308   DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M4Value, uint32_t, 32, 36);
2309 };
2310 
2311 // Helper functions for converting between register numbers and names.
2312 class Registers {
2313  public:
2314   // Lookup the register number for the name provided.
2315   static int Number(const char* name);
2316 
2317  private:
2318   static const char* names_[kNumRegisters];
2319 };
2320 
2321 // Helper functions for converting between FP register numbers and names.
2322 class DoubleRegisters {
2323  public:
2324   // Lookup the register number for the name provided.
2325   static int Number(const char* name);
2326 
2327  private:
2328   static const char* names_[kNumDoubleRegisters];
2329 };
2330 
2331 }  // namespace internal
2332 }  // namespace v8
2333 
2334 #endif  // V8_S390_CONSTANTS_S390_H_
2335