1 /*
2  ** Copyright 2003-2010, VisualOn, Inc.
3  **
4  ** Licensed under the Apache License, Version 2.0 (the "License");
5  ** you may not use this file except in compliance with the License.
6  ** You may obtain a copy of the License at
7  **
8  **     http://www.apache.org/licenses/LICENSE-2.0
9  **
10  ** Unless required by applicable law or agreed to in writing, software
11  ** distributed under the License is distributed on an "AS IS" BASIS,
12  ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  ** See the License for the specific language governing permissions and
14  ** limitations under the License.
15  */
16 
17 /**************************************************************************
18 *  File: q_gain2.c                                                         *
19 *                                                                          *
20 *  Description:                                                            *
21 * Quantization of pitch and codebook gains.                                *
22 * MA prediction is performed on the innovation energy (in dB with mean     *
23 * removed).                                                                *
24 * An initial predicted gain, g_0, is first determined and the correction   *
25 * factor     alpha = gain / g_0    is quantized.                           *
26 * The pitch gain and the correction factor are vector quantized and the    *
27 * mean-squared weighted error criterion is used in the quantizer search.   *
28 ****************************************************************************/
29 
30 #include "typedef.h"
31 #include "basic_op.h"
32 #include "oper_32b.h"
33 #include "math_op.h"
34 #include "log2.h"
35 #include "acelp.h"
36 #include "q_gain2.tab"
37 
38 #define MEAN_ENER    30
39 #define RANGE        64
40 #define PRED_ORDER   4
41 
42 
43 /* MA prediction coeff ={0.5, 0.4, 0.3, 0.2} in Q13 */
44 static Word16 pred[PRED_ORDER] = {4096, 3277, 2458, 1638};
45 
46 
Init_Q_gain2(Word16 * mem)47 void Init_Q_gain2(
48         Word16 * mem                          /* output  :static memory (2 words)      */
49         )
50 {
51     Word32 i;
52 
53     /* 4nd order quantizer energy predictor (init to -14.0 in Q10) */
54     for (i = 0; i < PRED_ORDER; i++)
55     {
56         mem[i] = -14336;                     /* past_qua_en[i] */
57     }
58 
59     return;
60 }
61 
Q_gain2(Word16 xn[],Word16 y1[],Word16 Q_xn,Word16 y2[],Word16 code[],Word16 g_coeff[],Word16 L_subfr,Word16 nbits,Word16 * gain_pit,Word32 * gain_cod,Word16 gp_clip,Word16 * mem)62 Word16 Q_gain2(                            /* Return index of quantization.          */
63         Word16 xn[],                          /* (i) Q_xn: Target vector.               */
64         Word16 y1[],                          /* (i) Q_xn: Adaptive codebook.           */
65         Word16 Q_xn,                          /* (i)     : xn and y1 format             */
66         Word16 y2[],                          /* (i) Q9  : Filtered innovative vector.  */
67         Word16 code[],                        /* (i) Q9  : Innovative vector.           */
68         Word16 g_coeff[],                     /* (i)     : Correlations <xn y1> <y1 y1> */
69         /*           Compute in G_pitch().        */
70         Word16 L_subfr,                       /* (i)     : Subframe lenght.             */
71         Word16 nbits,                         /* (i)     : number of bits (6 or 7)      */
72         Word16 * gain_pit,                    /* (i/o)Q14: Pitch gain.                  */
73         Word32 * gain_cod,                    /* (o) Q16 : Code gain.                   */
74         Word16 gp_clip,                       /* (i)     : Gp Clipping flag             */
75         Word16 * mem                          /* (i/o)   : static memory (2 words)      */
76           )
77 {
78     Word16 index, *p, min_ind, size;
79     Word16 exp, frac, gcode0, exp_gcode0, e_max, exp_code, qua_ener;
80     Word16 g_pitch, g2_pitch, g_code, g_pit_cod, g2_code, g2_code_lo;
81     Word16 coeff[5], coeff_lo[5], exp_coeff[5];
82     Word16 exp_max[5];
83     Word32 i, j, L_tmp, dist_min;
84     Word16 *past_qua_en, *t_qua_gain;
85 
86     past_qua_en = mem;
87 
88     /*-----------------------------------------------------------------*
89      * - Find the initial quantization pitch index                     *
90      * - Set gains search range                                        *
91      *-----------------------------------------------------------------*/
92     if (nbits == 6)
93     {
94         t_qua_gain = t_qua_gain6b;
95         min_ind = 0;
96         size = RANGE;
97 
98         if(gp_clip == 1)
99         {
100             size = size - 16;          /* limit gain pitch to 1.0 */
101         }
102     } else
103     {
104         t_qua_gain = t_qua_gain7b;
105 
106         p = t_qua_gain7b + RANGE;            /* pt at 1/4th of table */
107 
108         j = nb_qua_gain7b - RANGE;
109 
110         if (gp_clip == 1)
111         {
112             j = j - 27;                /* limit gain pitch to 1.0 */
113         }
114         min_ind = 0;
115         g_pitch = *gain_pit;
116 
117         for (i = 0; i < j; i++, p += 2)
118         {
119             if (g_pitch > *p)
120             {
121                 min_ind = min_ind + 1;
122             }
123         }
124         size = RANGE;
125     }
126 
127     /*------------------------------------------------------------------*
128      *  Compute coefficient need for the quantization.                  *
129      *                                                                  *
130      *  coeff[0] =    y1 y1                                             *
131      *  coeff[1] = -2 xn y1                                             *
132      *  coeff[2] =    y2 y2                                             *
133      *  coeff[3] = -2 xn y2                                             *
134      *  coeff[4] =  2 y1 y2                                             *
135      *                                                                  *
136      * Product <y1 y1> and <xn y1> have been compute in G_pitch() and   *
137      * are in vector g_coeff[].                                         *
138      *------------------------------------------------------------------*/
139 
140     coeff[0] = g_coeff[0];
141     exp_coeff[0] = g_coeff[1];
142     coeff[1] = negate(g_coeff[2]);                    /* coeff[1] = -2 xn y1 */
143     exp_coeff[1] = g_coeff[3] + 1;
144 
145     /* Compute scalar product <y2[],y2[]> */
146 #ifdef ASM_OPT                   /* asm optimization branch */
147     coeff[2] = extract_h(Dot_product12_asm(y2, y2, L_subfr, &exp));
148 #else
149     coeff[2] = extract_h(Dot_product12(y2, y2, L_subfr, &exp));
150 #endif
151     exp_coeff[2] = (exp - 18) + (Q_xn << 1);     /* -18 (y2 Q9) */
152 
153     /* Compute scalar product -2*<xn[],y2[]> */
154 #ifdef ASM_OPT                  /* asm optimization branch */
155     coeff[3] = extract_h(L_negate(Dot_product12_asm(xn, y2, L_subfr, &exp)));
156 #else
157     coeff[3] = extract_h(L_negate(Dot_product12(xn, y2, L_subfr, &exp)));
158 #endif
159 
160     exp_coeff[3] = (exp - 8) + Q_xn;  /* -9 (y2 Q9), +1 (2 xn y2) */
161 
162     /* Compute scalar product 2*<y1[],y2[]> */
163 #ifdef ASM_OPT                 /* asm optimization branch */
164     coeff[4] = extract_h(Dot_product12_asm(y1, y2, L_subfr, &exp));
165 #else
166     coeff[4] = extract_h(Dot_product12(y1, y2, L_subfr, &exp));
167 #endif
168     exp_coeff[4] = (exp - 8) + Q_xn;  /* -9 (y2 Q9), +1 (2 y1 y2) */
169 
170     /*-----------------------------------------------------------------*
171      *  Find energy of code and compute:                               *
172      *                                                                 *
173      *    L_tmp = MEAN_ENER - 10log10(energy of code/ L_subfr)         *
174      *          = MEAN_ENER - 3.0103*log2(energy of code/ L_subfr)     *
175      *-----------------------------------------------------------------*/
176 #ifdef ASM_OPT                 /* asm optimization branch */
177     L_tmp = Dot_product12_asm(code, code, L_subfr, &exp_code);
178 #else
179     L_tmp = Dot_product12(code, code, L_subfr, &exp_code);
180 #endif
181     /* exp_code: -18 (code in Q9), -6 (/L_subfr), -31 (L_tmp Q31->Q0) */
182     exp_code = (exp_code - (18 + 6 + 31));
183 
184     Log2(L_tmp, &exp, &frac);
185     exp += exp_code;
186     L_tmp = Mpy_32_16(exp, frac, -24660);  /* x -3.0103(Q13) -> Q14 */
187 
188     L_tmp += (MEAN_ENER * 8192)<<1; /* + MEAN_ENER in Q14 */
189 
190     /*-----------------------------------------------------------------*
191      * Compute gcode0.                                                 *
192      *  = Sum(i=0,1) pred[i]*past_qua_en[i] + mean_ener - ener_code    *
193      *-----------------------------------------------------------------*/
194     L_tmp = (L_tmp << 10);              /* From Q14 to Q24 */
195     L_tmp += (pred[0] * past_qua_en[0])<<1;      /* Q13*Q10 -> Q24 */
196     L_tmp += (pred[1] * past_qua_en[1])<<1;      /* Q13*Q10 -> Q24 */
197     L_tmp += (pred[2] * past_qua_en[2])<<1;      /* Q13*Q10 -> Q24 */
198     L_tmp += (pred[3] * past_qua_en[3])<<1;      /* Q13*Q10 -> Q24 */
199 
200     gcode0 = extract_h(L_tmp);             /* From Q24 to Q8  */
201 
202     /*-----------------------------------------------------------------*
203      * gcode0 = pow(10.0, gcode0/20)                                   *
204      *        = pow(2, 3.321928*gcode0/20)                             *
205      *        = pow(2, 0.166096*gcode0)                                *
206      *-----------------------------------------------------------------*/
207 
208     L_tmp = vo_L_mult(gcode0, 5443);          /* *0.166096 in Q15 -> Q24     */
209     L_tmp = L_tmp >> 8;               /* From Q24 to Q16             */
210     VO_L_Extract(L_tmp, &exp_gcode0, &frac);  /* Extract exponent of gcode0  */
211 
212     gcode0 = (Word16)(Pow2(14, frac));    /* Put 14 as exponent so that  */
213     /* output of Pow2() will be:   */
214     /* 16384 < Pow2() <= 32767     */
215     exp_gcode0 -= 14;
216 
217     /*-------------------------------------------------------------------------*
218      * Find the best quantizer                                                 *
219      * ~~~~~~~~~~~~~~~~~~~~~~~                                                 *
220      * Before doing the computation we need to aling exponents of coeff[]      *
221      * to be sure to have the maximum precision.                               *
222      *                                                                         *
223      * In the table the pitch gains are in Q14, the code gains are in Q11 and  *
224      * are multiply by gcode0 which have been multiply by 2^exp_gcode0.        *
225      * Also when we compute g_pitch*g_pitch, g_code*g_code and g_pitch*g_code  *
226      * we divide by 2^15.                                                      *
227      * Considering all the scaling above we have:                              *
228      *                                                                         *
229      *   exp_code = exp_gcode0-11+15 = exp_gcode0+4                            *
230      *                                                                         *
231      *   g_pitch*g_pitch  = -14-14+15                                          *
232      *   g_pitch          = -14                                                *
233      *   g_code*g_code    = (2*exp_code)+15                                    *
234      *   g_code           = exp_code                                           *
235      *   g_pitch*g_code   = -14 + exp_code +15                                 *
236      *                                                                         *
237      *   g_pitch*g_pitch * coeff[0]  ;exp_max0 = exp_coeff[0] - 13             *
238      *   g_pitch         * coeff[1]  ;exp_max1 = exp_coeff[1] - 14             *
239      *   g_code*g_code   * coeff[2]  ;exp_max2 = exp_coeff[2] +15+(2*exp_code) *
240      *   g_code          * coeff[3]  ;exp_max3 = exp_coeff[3] + exp_code       *
241      *   g_pitch*g_code  * coeff[4]  ;exp_max4 = exp_coeff[4] + 1 + exp_code   *
242      *-------------------------------------------------------------------------*/
243 
244     exp_code = (exp_gcode0 + 4);
245     exp_max[0] = (exp_coeff[0] - 13);
246     exp_max[1] = (exp_coeff[1] - 14);
247     exp_max[2] = (exp_coeff[2] + (15 + (exp_code << 1)));
248     exp_max[3] = (exp_coeff[3] + exp_code);
249     exp_max[4] = (exp_coeff[4] + (1 + exp_code));
250 
251     /* Find maximum exponant */
252 
253     e_max = exp_max[0];
254     for (i = 1; i < 5; i++)
255     {
256         if(exp_max[i] > e_max)
257         {
258             e_max = exp_max[i];
259         }
260     }
261 
262     /* align coeff[] and save in special 32 bit double precision */
263 
264     for (i = 0; i < 5; i++)
265     {
266         j = add1(vo_sub(e_max, exp_max[i]), 2);/* /4 to avoid overflow */
267         L_tmp = L_deposit_h(coeff[i]);
268         L_tmp = L_shr(L_tmp, j);
269         VO_L_Extract(L_tmp, &coeff[i], &coeff_lo[i]);
270         coeff_lo[i] = (coeff_lo[i] >> 3);   /* lo >> 3 */
271     }
272 
273     /* Codebook search */
274     dist_min = MAX_32;
275     p = &t_qua_gain[min_ind << 1];
276 
277     index = 0;
278     for (i = 0; i < size; i++)
279     {
280         g_pitch = *p++;
281         g_code = *p++;
282 
283         g_code = ((g_code * gcode0) + 0x4000)>>15;
284         g2_pitch = ((g_pitch * g_pitch) + 0x4000)>>15;
285         g_pit_cod = ((g_code * g_pitch) + 0x4000)>>15;
286         L_tmp = (g_code * g_code)<<1;
287         VO_L_Extract(L_tmp, &g2_code, &g2_code_lo);
288 
289         L_tmp = (coeff[2] * g2_code_lo)<<1;
290         L_tmp =  (L_tmp >> 3);
291         L_tmp += (coeff_lo[0] * g2_pitch)<<1;
292         L_tmp += (coeff_lo[1] * g_pitch)<<1;
293         L_tmp += (coeff_lo[2] * g2_code)<<1;
294         L_tmp += (coeff_lo[3] * g_code)<<1;
295         L_tmp += (coeff_lo[4] * g_pit_cod)<<1;
296         L_tmp =  (L_tmp >> 12);
297         L_tmp += (coeff[0] * g2_pitch)<<1;
298         L_tmp += (coeff[1] * g_pitch)<<1;
299         L_tmp += (coeff[2] * g2_code)<<1;
300         L_tmp += (coeff[3] * g_code)<<1;
301         L_tmp += (coeff[4] * g_pit_cod)<<1;
302 
303         if(L_tmp < dist_min)
304         {
305             dist_min = L_tmp;
306             index = i;
307         }
308     }
309 
310     /* Read the quantized gains */
311     index = index + min_ind;
312     p = &t_qua_gain[(index + index)];
313     *gain_pit = *p++;                       /* selected pitch gain in Q14 */
314     g_code = *p++;                          /* selected code gain in Q11  */
315 
316     L_tmp = vo_L_mult(g_code, gcode0);             /* Q11*Q0 -> Q12 */
317     L_tmp = L_shl(L_tmp, (exp_gcode0 + 4));   /* Q12 -> Q16 */
318 
319     *gain_cod = L_tmp;                       /* gain of code in Q16 */
320 
321     /*---------------------------------------------------*
322      * qua_ener = 20*log10(g_code)                       *
323      *          = 6.0206*log2(g_code)                    *
324      *          = 6.0206*(log2(g_codeQ11) - 11)          *
325      *---------------------------------------------------*/
326 
327     L_tmp = L_deposit_l(g_code);
328     Log2(L_tmp, &exp, &frac);
329     exp -= 11;
330     L_tmp = Mpy_32_16(exp, frac, 24660);   /* x 6.0206 in Q12 */
331 
332     qua_ener = (Word16)(L_tmp >> 3); /* result in Q10 */
333 
334     /* update table of past quantized energies */
335 
336     past_qua_en[3] = past_qua_en[2];
337     past_qua_en[2] = past_qua_en[1];
338     past_qua_en[1] = past_qua_en[0];
339     past_qua_en[0] = qua_ener;
340 
341     return (index);
342 }
343 
344 
345 
346 
347