1 //===-- Clustering.cpp ------------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "Clustering.h"
11 #include <string>
12 #include <unordered_set>
13 
14 namespace exegesis {
15 
16 // The clustering problem has the following characteristics:
17 //  (A) - Low dimension (dimensions are typically proc resource units,
18 //    typically < 10).
19 //  (B) - Number of points : ~thousands (points are measurements of an MCInst)
20 //  (C) - Number of clusters: ~tens.
21 //  (D) - The number of clusters is not known /a priory/.
22 //  (E) - The amount of noise is relatively small.
23 // The problem is rather small. In terms of algorithms, (D) disqualifies
24 // k-means and makes algorithms such as DBSCAN[1] or OPTICS[2] more applicable.
25 //
26 // We've used DBSCAN here because it's simple to implement. This is a pretty
27 // straightforward and inefficient implementation of the pseudocode in [2].
28 //
29 // [1] https://en.wikipedia.org/wiki/DBSCAN
30 // [2] https://en.wikipedia.org/wiki/OPTICS_algorithm
31 
32 // Finds the points at distance less than sqrt(EpsilonSquared) of Q (not
33 // including Q).
34 std::vector<size_t>
rangeQuery(const size_t Q) const35 InstructionBenchmarkClustering::rangeQuery(const size_t Q) const {
36   std::vector<size_t> Neighbors;
37   const auto &QMeasurements = Points_[Q].Measurements;
38   for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
39     if (P == Q)
40       continue;
41     const auto &PMeasurements = Points_[P].Measurements;
42     if (PMeasurements.empty()) // Error point.
43       continue;
44     if (isNeighbour(PMeasurements, QMeasurements)) {
45       Neighbors.push_back(P);
46     }
47   }
48   return Neighbors;
49 }
50 
isNeighbour(const std::vector<BenchmarkMeasure> & P,const std::vector<BenchmarkMeasure> & Q) const51 bool InstructionBenchmarkClustering::isNeighbour(
52     const std::vector<BenchmarkMeasure> &P,
53     const std::vector<BenchmarkMeasure> &Q) const {
54   double DistanceSquared = 0.0;
55   for (size_t I = 0, E = P.size(); I < E; ++I) {
56     const auto Diff = P[I].Value - Q[I].Value;
57     DistanceSquared += Diff * Diff;
58   }
59   return DistanceSquared <= EpsilonSquared_;
60 }
61 
InstructionBenchmarkClustering(const std::vector<InstructionBenchmark> & Points,const double EpsilonSquared)62 InstructionBenchmarkClustering::InstructionBenchmarkClustering(
63     const std::vector<InstructionBenchmark> &Points,
64     const double EpsilonSquared)
65     : Points_(Points), EpsilonSquared_(EpsilonSquared),
66       NoiseCluster_(ClusterId::noise()), ErrorCluster_(ClusterId::error()) {}
67 
validateAndSetup()68 llvm::Error InstructionBenchmarkClustering::validateAndSetup() {
69   ClusterIdForPoint_.resize(Points_.size());
70   // Mark erroneous measurements out.
71   // All points must have the same number of dimensions, in the same order.
72   const std::vector<BenchmarkMeasure> *LastMeasurement = nullptr;
73   for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
74     const auto &Point = Points_[P];
75     if (!Point.Error.empty()) {
76       ClusterIdForPoint_[P] = ClusterId::error();
77       ErrorCluster_.PointIndices.push_back(P);
78       continue;
79     }
80     const auto *CurMeasurement = &Point.Measurements;
81     if (LastMeasurement) {
82       if (LastMeasurement->size() != CurMeasurement->size()) {
83         return llvm::make_error<llvm::StringError>(
84             "inconsistent measurement dimensions",
85             llvm::inconvertibleErrorCode());
86       }
87       for (size_t I = 0, E = LastMeasurement->size(); I < E; ++I) {
88         if (LastMeasurement->at(I).Key != CurMeasurement->at(I).Key) {
89           return llvm::make_error<llvm::StringError>(
90               "inconsistent measurement dimensions keys",
91               llvm::inconvertibleErrorCode());
92         }
93       }
94     }
95     LastMeasurement = CurMeasurement;
96   }
97   if (LastMeasurement) {
98     NumDimensions_ = LastMeasurement->size();
99   }
100   return llvm::Error::success();
101 }
102 
dbScan(const size_t MinPts)103 void InstructionBenchmarkClustering::dbScan(const size_t MinPts) {
104   for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
105     if (!ClusterIdForPoint_[P].isUndef())
106       continue; // Previously processed in inner loop.
107     const auto Neighbors = rangeQuery(P);
108     if (Neighbors.size() + 1 < MinPts) { // Density check.
109       // The region around P is not dense enough to create a new cluster, mark
110       // as noise for now.
111       ClusterIdForPoint_[P] = ClusterId::noise();
112       continue;
113     }
114 
115     // Create a new cluster, add P.
116     Clusters_.emplace_back(ClusterId::makeValid(Clusters_.size()));
117     Cluster &CurrentCluster = Clusters_.back();
118     ClusterIdForPoint_[P] = CurrentCluster.Id; /* Label initial point */
119     CurrentCluster.PointIndices.push_back(P);
120 
121     // Process P's neighbors.
122     std::unordered_set<size_t> ToProcess(Neighbors.begin(), Neighbors.end());
123     while (!ToProcess.empty()) {
124       // Retrieve a point from the set.
125       const size_t Q = *ToProcess.begin();
126       ToProcess.erase(Q);
127 
128       if (ClusterIdForPoint_[Q].isNoise()) {
129         // Change noise point to border point.
130         ClusterIdForPoint_[Q] = CurrentCluster.Id;
131         CurrentCluster.PointIndices.push_back(Q);
132         continue;
133       }
134       if (!ClusterIdForPoint_[Q].isUndef()) {
135         continue; // Previously processed.
136       }
137       // Add Q to the current custer.
138       ClusterIdForPoint_[Q] = CurrentCluster.Id;
139       CurrentCluster.PointIndices.push_back(Q);
140       // And extend to the neighbors of Q if the region is dense enough.
141       const auto Neighbors = rangeQuery(Q);
142       if (Neighbors.size() + 1 >= MinPts) {
143         ToProcess.insert(Neighbors.begin(), Neighbors.end());
144       }
145     }
146   }
147 
148   // Add noisy points to noise cluster.
149   for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
150     if (ClusterIdForPoint_[P].isNoise()) {
151       NoiseCluster_.PointIndices.push_back(P);
152     }
153   }
154 }
155 
156 llvm::Expected<InstructionBenchmarkClustering>
create(const std::vector<InstructionBenchmark> & Points,const size_t MinPts,const double Epsilon)157 InstructionBenchmarkClustering::create(
158     const std::vector<InstructionBenchmark> &Points, const size_t MinPts,
159     const double Epsilon) {
160   InstructionBenchmarkClustering Clustering(Points, Epsilon * Epsilon);
161   if (auto Error = Clustering.validateAndSetup()) {
162     return std::move(Error);
163   }
164   if (Clustering.ErrorCluster_.PointIndices.size() == Points.size()) {
165     return Clustering; // Nothing to cluster.
166   }
167 
168   Clustering.dbScan(MinPts);
169   return Clustering;
170 }
171 
172 } // namespace exegesis
173