1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc. All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // Author: kenton@google.com (Kenton Varda)
32 // Based on original Protocol Buffers design by
33 // Sanjay Ghemawat, Jeff Dean, and others.
34
35 #include <google/protobuf/stubs/hash.h>
36 #include <map>
37 #include <memory>
38 #ifndef _SHARED_PTR_H
39 #include <google/protobuf/stubs/shared_ptr.h>
40 #endif
41 #include <set>
42 #include <string>
43 #include <vector>
44 #include <algorithm>
45 #include <limits>
46
47 #include <google/protobuf/descriptor.h>
48 #include <google/protobuf/descriptor_database.h>
49 #include <google/protobuf/descriptor.pb.h>
50 #include <google/protobuf/dynamic_message.h>
51 #include <google/protobuf/generated_message_util.h>
52 #include <google/protobuf/text_format.h>
53 #include <google/protobuf/unknown_field_set.h>
54 #include <google/protobuf/wire_format.h>
55 #include <google/protobuf/io/strtod.h>
56 #include <google/protobuf/io/coded_stream.h>
57 #include <google/protobuf/io/tokenizer.h>
58 #include <google/protobuf/io/zero_copy_stream_impl.h>
59 #include <google/protobuf/stubs/common.h>
60 #include <google/protobuf/stubs/logging.h>
61 #include <google/protobuf/stubs/mutex.h>
62 #include <google/protobuf/stubs/once.h>
63 #include <google/protobuf/stubs/stringprintf.h>
64 #include <google/protobuf/stubs/strutil.h>
65 #include <google/protobuf/stubs/substitute.h>
66 #include <google/protobuf/stubs/map_util.h>
67 #include <google/protobuf/stubs/stl_util.h>
68
69 #undef PACKAGE // autoheader #defines this. :(
70
71 namespace google {
72 namespace protobuf {
73
74 const FieldDescriptor::CppType
75 FieldDescriptor::kTypeToCppTypeMap[MAX_TYPE + 1] = {
76 static_cast<CppType>(0), // 0 is reserved for errors
77
78 CPPTYPE_DOUBLE, // TYPE_DOUBLE
79 CPPTYPE_FLOAT, // TYPE_FLOAT
80 CPPTYPE_INT64, // TYPE_INT64
81 CPPTYPE_UINT64, // TYPE_UINT64
82 CPPTYPE_INT32, // TYPE_INT32
83 CPPTYPE_UINT64, // TYPE_FIXED64
84 CPPTYPE_UINT32, // TYPE_FIXED32
85 CPPTYPE_BOOL, // TYPE_BOOL
86 CPPTYPE_STRING, // TYPE_STRING
87 CPPTYPE_MESSAGE, // TYPE_GROUP
88 CPPTYPE_MESSAGE, // TYPE_MESSAGE
89 CPPTYPE_STRING, // TYPE_BYTES
90 CPPTYPE_UINT32, // TYPE_UINT32
91 CPPTYPE_ENUM, // TYPE_ENUM
92 CPPTYPE_INT32, // TYPE_SFIXED32
93 CPPTYPE_INT64, // TYPE_SFIXED64
94 CPPTYPE_INT32, // TYPE_SINT32
95 CPPTYPE_INT64, // TYPE_SINT64
96 };
97
98 const char * const FieldDescriptor::kTypeToName[MAX_TYPE + 1] = {
99 "ERROR", // 0 is reserved for errors
100
101 "double", // TYPE_DOUBLE
102 "float", // TYPE_FLOAT
103 "int64", // TYPE_INT64
104 "uint64", // TYPE_UINT64
105 "int32", // TYPE_INT32
106 "fixed64", // TYPE_FIXED64
107 "fixed32", // TYPE_FIXED32
108 "bool", // TYPE_BOOL
109 "string", // TYPE_STRING
110 "group", // TYPE_GROUP
111 "message", // TYPE_MESSAGE
112 "bytes", // TYPE_BYTES
113 "uint32", // TYPE_UINT32
114 "enum", // TYPE_ENUM
115 "sfixed32", // TYPE_SFIXED32
116 "sfixed64", // TYPE_SFIXED64
117 "sint32", // TYPE_SINT32
118 "sint64", // TYPE_SINT64
119 };
120
121 const char * const FieldDescriptor::kCppTypeToName[MAX_CPPTYPE + 1] = {
122 "ERROR", // 0 is reserved for errors
123
124 "int32", // CPPTYPE_INT32
125 "int64", // CPPTYPE_INT64
126 "uint32", // CPPTYPE_UINT32
127 "uint64", // CPPTYPE_UINT64
128 "double", // CPPTYPE_DOUBLE
129 "float", // CPPTYPE_FLOAT
130 "bool", // CPPTYPE_BOOL
131 "enum", // CPPTYPE_ENUM
132 "string", // CPPTYPE_STRING
133 "message", // CPPTYPE_MESSAGE
134 };
135
136 const char * const FieldDescriptor::kLabelToName[MAX_LABEL + 1] = {
137 "ERROR", // 0 is reserved for errors
138
139 "optional", // LABEL_OPTIONAL
140 "required", // LABEL_REQUIRED
141 "repeated", // LABEL_REPEATED
142 };
143
SyntaxName(FileDescriptor::Syntax syntax)144 const char* FileDescriptor::SyntaxName(FileDescriptor::Syntax syntax) {
145 switch (syntax) {
146 case SYNTAX_PROTO2:
147 return "proto2";
148 case SYNTAX_PROTO3:
149 return "proto3";
150 case SYNTAX_UNKNOWN:
151 return "unknown";
152 }
153 GOOGLE_LOG(FATAL) << "can't reach here.";
154 return NULL;
155 }
156
157 static const char * const kNonLinkedWeakMessageReplacementName = "google.protobuf.Empty";
158
159 #if !defined(_MSC_VER) || _MSC_VER >= 1900
160 const int FieldDescriptor::kMaxNumber;
161 const int FieldDescriptor::kFirstReservedNumber;
162 const int FieldDescriptor::kLastReservedNumber;
163 #endif
164
165 namespace {
166
ToCamelCase(const string & input,bool lower_first)167 string ToCamelCase(const string& input, bool lower_first) {
168 bool capitalize_next = !lower_first;
169 string result;
170 result.reserve(input.size());
171
172 for (int i = 0; i < input.size(); i++) {
173 if (input[i] == '_') {
174 capitalize_next = true;
175 } else if (capitalize_next) {
176 // Note: I distrust ctype.h due to locales.
177 if ('a' <= input[i] && input[i] <= 'z') {
178 result.push_back(input[i] - 'a' + 'A');
179 } else {
180 result.push_back(input[i]);
181 }
182 capitalize_next = false;
183 } else {
184 result.push_back(input[i]);
185 }
186 }
187
188 // Lower-case the first letter.
189 if (lower_first && !result.empty() && 'A' <= result[0] && result[0] <= 'Z') {
190 result[0] = result[0] - 'A' + 'a';
191 }
192
193 return result;
194 }
195
196 // A DescriptorPool contains a bunch of hash_maps to implement the
197 // various Find*By*() methods. Since hashtable lookups are O(1), it's
198 // most efficient to construct a fixed set of large hash_maps used by
199 // all objects in the pool rather than construct one or more small
200 // hash_maps for each object.
201 //
202 // The keys to these hash_maps are (parent, name) or (parent, number)
203 // pairs. Unfortunately STL doesn't provide hash functions for pair<>,
204 // so we must invent our own.
205 //
206 // TODO(kenton): Use StringPiece rather than const char* in keys? It would
207 // be a lot cleaner but we'd just have to convert it back to const char*
208 // for the open source release.
209
210 typedef pair<const void*, const char*> PointerStringPair;
211
212 struct PointerStringPairEqual {
operator ()google::protobuf::__anond0d5fb670111::PointerStringPairEqual213 inline bool operator()(const PointerStringPair& a,
214 const PointerStringPair& b) const {
215 return a.first == b.first && strcmp(a.second, b.second) == 0;
216 }
217 };
218
219 template<typename PairType>
220 struct PointerIntegerPairHash {
operator ()google::protobuf::__anond0d5fb670111::PointerIntegerPairHash221 size_t operator()(const PairType& p) const {
222 // FIXME(kenton): What is the best way to compute this hash? I have
223 // no idea! This seems a bit better than an XOR.
224 return reinterpret_cast<intptr_t>(p.first) * ((1 << 16) - 1) + p.second;
225 }
226
227 #ifdef _MSC_VER
228 // Used only by MSVC and platforms where hash_map is not available.
229 static const size_t bucket_size = 4;
230 static const size_t min_buckets = 8;
231 #endif
operator ()google::protobuf::__anond0d5fb670111::PointerIntegerPairHash232 inline bool operator()(const PairType& a, const PairType& b) const {
233 return a.first < b.first ||
234 (a.first == b.first && a.second < b.second);
235 }
236 };
237
238 typedef pair<const Descriptor*, int> DescriptorIntPair;
239 typedef pair<const EnumDescriptor*, int> EnumIntPair;
240
241 struct PointerStringPairHash {
operator ()google::protobuf::__anond0d5fb670111::PointerStringPairHash242 size_t operator()(const PointerStringPair& p) const {
243 // FIXME(kenton): What is the best way to compute this hash? I have
244 // no idea! This seems a bit better than an XOR.
245 hash<const char*> cstring_hash;
246 return reinterpret_cast<intptr_t>(p.first) * ((1 << 16) - 1) +
247 cstring_hash(p.second);
248 }
249
250 #ifdef _MSC_VER
251 // Used only by MSVC and platforms where hash_map is not available.
252 static const size_t bucket_size = 4;
253 static const size_t min_buckets = 8;
254 #endif
operator ()google::protobuf::__anond0d5fb670111::PointerStringPairHash255 inline bool operator()(const PointerStringPair& a,
256 const PointerStringPair& b) const {
257 if (a.first < b.first) return true;
258 if (a.first > b.first) return false;
259 return strcmp(a.second, b.second) < 0;
260 }
261 };
262
263
264 struct Symbol {
265 enum Type {
266 NULL_SYMBOL, MESSAGE, FIELD, ONEOF, ENUM, ENUM_VALUE, SERVICE, METHOD,
267 PACKAGE
268 };
269 Type type;
270 union {
271 const Descriptor* descriptor;
272 const FieldDescriptor* field_descriptor;
273 const OneofDescriptor* oneof_descriptor;
274 const EnumDescriptor* enum_descriptor;
275 const EnumValueDescriptor* enum_value_descriptor;
276 const ServiceDescriptor* service_descriptor;
277 const MethodDescriptor* method_descriptor;
278 const FileDescriptor* package_file_descriptor;
279 };
280
Symbolgoogle::protobuf::__anond0d5fb670111::Symbol281 inline Symbol() : type(NULL_SYMBOL) { descriptor = NULL; }
IsNullgoogle::protobuf::__anond0d5fb670111::Symbol282 inline bool IsNull() const { return type == NULL_SYMBOL; }
IsTypegoogle::protobuf::__anond0d5fb670111::Symbol283 inline bool IsType() const {
284 return type == MESSAGE || type == ENUM;
285 }
IsAggregategoogle::protobuf::__anond0d5fb670111::Symbol286 inline bool IsAggregate() const {
287 return type == MESSAGE || type == PACKAGE
288 || type == ENUM || type == SERVICE;
289 }
290
291 #define CONSTRUCTOR(TYPE, TYPE_CONSTANT, FIELD) \
292 inline explicit Symbol(const TYPE* value) { \
293 type = TYPE_CONSTANT; \
294 this->FIELD = value; \
295 }
296
CONSTRUCTORgoogle::protobuf::__anond0d5fb670111::Symbol297 CONSTRUCTOR(Descriptor , MESSAGE , descriptor )
298 CONSTRUCTOR(FieldDescriptor , FIELD , field_descriptor )
299 CONSTRUCTOR(OneofDescriptor , ONEOF , oneof_descriptor )
300 CONSTRUCTOR(EnumDescriptor , ENUM , enum_descriptor )
301 CONSTRUCTOR(EnumValueDescriptor, ENUM_VALUE, enum_value_descriptor )
302 CONSTRUCTOR(ServiceDescriptor , SERVICE , service_descriptor )
303 CONSTRUCTOR(MethodDescriptor , METHOD , method_descriptor )
304 CONSTRUCTOR(FileDescriptor , PACKAGE , package_file_descriptor)
305 #undef CONSTRUCTOR
306
307 const FileDescriptor* GetFile() const {
308 switch (type) {
309 case NULL_SYMBOL: return NULL;
310 case MESSAGE : return descriptor ->file();
311 case FIELD : return field_descriptor ->file();
312 case ONEOF : return oneof_descriptor ->containing_type()->file();
313 case ENUM : return enum_descriptor ->file();
314 case ENUM_VALUE : return enum_value_descriptor->type()->file();
315 case SERVICE : return service_descriptor ->file();
316 case METHOD : return method_descriptor ->service()->file();
317 case PACKAGE : return package_file_descriptor;
318 }
319 return NULL;
320 }
321 };
322
323 const Symbol kNullSymbol;
324
325 typedef hash_map<const char*, Symbol,
326 hash<const char*>, streq>
327 SymbolsByNameMap;
328 typedef hash_map<PointerStringPair, Symbol,
329 PointerStringPairHash, PointerStringPairEqual>
330 SymbolsByParentMap;
331 typedef hash_map<const char*, const FileDescriptor*,
332 hash<const char*>, streq>
333 FilesByNameMap;
334 typedef hash_map<PointerStringPair, const FieldDescriptor*,
335 PointerStringPairHash, PointerStringPairEqual>
336 FieldsByNameMap;
337 typedef hash_map<DescriptorIntPair, const FieldDescriptor*,
338 PointerIntegerPairHash<DescriptorIntPair> >
339 FieldsByNumberMap;
340 typedef hash_map<EnumIntPair, const EnumValueDescriptor*,
341 PointerIntegerPairHash<EnumIntPair> >
342 EnumValuesByNumberMap;
343 // This is a map rather than a hash_map, since we use it to iterate
344 // through all the extensions that extend a given Descriptor, and an
345 // ordered data structure that implements lower_bound is convenient
346 // for that.
347 typedef map<DescriptorIntPair, const FieldDescriptor*>
348 ExtensionsGroupedByDescriptorMap;
349 typedef hash_map<string, const SourceCodeInfo_Location*> LocationsByPathMap;
350
351 set<string>* allowed_proto3_extendees_ = NULL;
352 GOOGLE_PROTOBUF_DECLARE_ONCE(allowed_proto3_extendees_init_);
353
DeleteAllowedProto3Extendee()354 void DeleteAllowedProto3Extendee() {
355 delete allowed_proto3_extendees_;
356 }
357
InitAllowedProto3Extendee()358 void InitAllowedProto3Extendee() {
359 allowed_proto3_extendees_ = new set<string>;
360 const char* kOptionNames[] = {
361 "FileOptions", "MessageOptions", "FieldOptions", "EnumOptions",
362 "EnumValueOptions", "ServiceOptions", "MethodOptions"};
363 for (int i = 0; i < GOOGLE_ARRAYSIZE(kOptionNames); ++i) {
364 // descriptor.proto has a different package name in opensource. We allow
365 // both so the opensource protocol compiler can also compile internal
366 // proto3 files with custom options. See: b/27567912
367 allowed_proto3_extendees_->insert(string("google.protobuf.") +
368 kOptionNames[i]);
369 // Split the word to trick the opensource processing scripts so they
370 // will keep the origial package name.
371 allowed_proto3_extendees_->insert(string("proto") + "2." + kOptionNames[i]);
372 }
373
374 google::protobuf::internal::OnShutdown(&DeleteAllowedProto3Extendee);
375 }
376
377 // Checks whether the extendee type is allowed in proto3.
378 // Only extensions to descriptor options are allowed. We use name comparison
379 // instead of comparing the descriptor directly because the extensions may be
380 // defined in a different pool.
AllowedExtendeeInProto3(const string & name)381 bool AllowedExtendeeInProto3(const string& name) {
382 ::google::protobuf::GoogleOnceInit(&allowed_proto3_extendees_init_, &InitAllowedProto3Extendee);
383 return allowed_proto3_extendees_->find(name) !=
384 allowed_proto3_extendees_->end();
385 }
386
387 } // anonymous namespace
388
389 // ===================================================================
390 // DescriptorPool::Tables
391
392 class DescriptorPool::Tables {
393 public:
394 Tables();
395 ~Tables();
396
397 // Record the current state of the tables to the stack of checkpoints.
398 // Each call to AddCheckpoint() must be paired with exactly one call to either
399 // ClearLastCheckpoint() or RollbackToLastCheckpoint().
400 //
401 // This is used when building files, since some kinds of validation errors
402 // cannot be detected until the file's descriptors have already been added to
403 // the tables.
404 //
405 // This supports recursive checkpoints, since building a file may trigger
406 // recursive building of other files. Note that recursive checkpoints are not
407 // normally necessary; explicit dependencies are built prior to checkpointing.
408 // So although we recursively build transitive imports, there is at most one
409 // checkpoint in the stack during dependency building.
410 //
411 // Recursive checkpoints only arise during cross-linking of the descriptors.
412 // Symbol references must be resolved, via DescriptorBuilder::FindSymbol and
413 // friends. If the pending file references an unknown symbol
414 // (e.g., it is not defined in the pending file's explicit dependencies), and
415 // the pool is using a fallback database, and that database contains a file
416 // defining that symbol, and that file has not yet been built by the pool,
417 // the pool builds the file during cross-linking, leading to another
418 // checkpoint.
419 void AddCheckpoint();
420
421 // Mark the last checkpoint as having cleared successfully, removing it from
422 // the stack. If the stack is empty, all pending symbols will be committed.
423 //
424 // Note that this does not guarantee that the symbols added since the last
425 // checkpoint won't be rolled back: if a checkpoint gets rolled back,
426 // everything past that point gets rolled back, including symbols added after
427 // checkpoints that were pushed onto the stack after it and marked as cleared.
428 void ClearLastCheckpoint();
429
430 // Roll back the Tables to the state of the checkpoint at the top of the
431 // stack, removing everything that was added after that point.
432 void RollbackToLastCheckpoint();
433
434 // The stack of files which are currently being built. Used to detect
435 // cyclic dependencies when loading files from a DescriptorDatabase. Not
436 // used when fallback_database_ == NULL.
437 vector<string> pending_files_;
438
439 // A set of files which we have tried to load from the fallback database
440 // and encountered errors. We will not attempt to load them again during
441 // execution of the current public API call, but for compatibility with
442 // legacy clients, this is cleared at the beginning of each public API call.
443 // Not used when fallback_database_ == NULL.
444 hash_set<string> known_bad_files_;
445
446 // A set of symbols which we have tried to load from the fallback database
447 // and encountered errors. We will not attempt to load them again during
448 // execution of the current public API call, but for compatibility with
449 // legacy clients, this is cleared at the beginning of each public API call.
450 hash_set<string> known_bad_symbols_;
451
452 // The set of descriptors for which we've already loaded the full
453 // set of extensions numbers from fallback_database_.
454 hash_set<const Descriptor*> extensions_loaded_from_db_;
455
456 // -----------------------------------------------------------------
457 // Finding items.
458
459 // Find symbols. This returns a null Symbol (symbol.IsNull() is true)
460 // if not found.
461 inline Symbol FindSymbol(const string& key) const;
462
463 // This implements the body of DescriptorPool::Find*ByName(). It should
464 // really be a private method of DescriptorPool, but that would require
465 // declaring Symbol in descriptor.h, which would drag all kinds of other
466 // stuff into the header. Yay C++.
467 Symbol FindByNameHelper(
468 const DescriptorPool* pool, const string& name);
469
470 // These return NULL if not found.
471 inline const FileDescriptor* FindFile(const string& key) const;
472 inline const FieldDescriptor* FindExtension(const Descriptor* extendee,
473 int number);
474 inline void FindAllExtensions(const Descriptor* extendee,
475 vector<const FieldDescriptor*>* out) const;
476
477 // -----------------------------------------------------------------
478 // Adding items.
479
480 // These add items to the corresponding tables. They return false if
481 // the key already exists in the table. For AddSymbol(), the string passed
482 // in must be one that was constructed using AllocateString(), as it will
483 // be used as a key in the symbols_by_name_ map without copying.
484 bool AddSymbol(const string& full_name, Symbol symbol);
485 bool AddFile(const FileDescriptor* file);
486 bool AddExtension(const FieldDescriptor* field);
487
488 // -----------------------------------------------------------------
489 // Allocating memory.
490
491 // Allocate an object which will be reclaimed when the pool is
492 // destroyed. Note that the object's destructor will never be called,
493 // so its fields must be plain old data (primitive data types and
494 // pointers). All of the descriptor types are such objects.
495 template<typename Type> Type* Allocate();
496
497 // Allocate an array of objects which will be reclaimed when the
498 // pool in destroyed. Again, destructors are never called.
499 template<typename Type> Type* AllocateArray(int count);
500
501 // Allocate a string which will be destroyed when the pool is destroyed.
502 // The string is initialized to the given value for convenience.
503 string* AllocateString(const string& value);
504
505 // Allocate a protocol message object. Some older versions of GCC have
506 // trouble understanding explicit template instantiations in some cases, so
507 // in those cases we have to pass a dummy pointer of the right type as the
508 // parameter instead of specifying the type explicitly.
509 template<typename Type> Type* AllocateMessage(Type* dummy = NULL);
510
511 // Allocate a FileDescriptorTables object.
512 FileDescriptorTables* AllocateFileTables();
513
514 private:
515 vector<string*> strings_; // All strings in the pool.
516 vector<Message*> messages_; // All messages in the pool.
517 vector<FileDescriptorTables*> file_tables_; // All file tables in the pool.
518 vector<void*> allocations_; // All other memory allocated in the pool.
519
520 SymbolsByNameMap symbols_by_name_;
521 FilesByNameMap files_by_name_;
522 ExtensionsGroupedByDescriptorMap extensions_;
523
524 struct CheckPoint {
CheckPointgoogle::protobuf::DescriptorPool::Tables::CheckPoint525 explicit CheckPoint(const Tables* tables)
526 : strings_before_checkpoint(tables->strings_.size()),
527 messages_before_checkpoint(tables->messages_.size()),
528 file_tables_before_checkpoint(tables->file_tables_.size()),
529 allocations_before_checkpoint(tables->allocations_.size()),
530 pending_symbols_before_checkpoint(
531 tables->symbols_after_checkpoint_.size()),
532 pending_files_before_checkpoint(
533 tables->files_after_checkpoint_.size()),
534 pending_extensions_before_checkpoint(
535 tables->extensions_after_checkpoint_.size()) {
536 }
537 int strings_before_checkpoint;
538 int messages_before_checkpoint;
539 int file_tables_before_checkpoint;
540 int allocations_before_checkpoint;
541 int pending_symbols_before_checkpoint;
542 int pending_files_before_checkpoint;
543 int pending_extensions_before_checkpoint;
544 };
545 vector<CheckPoint> checkpoints_;
546 vector<const char* > symbols_after_checkpoint_;
547 vector<const char* > files_after_checkpoint_;
548 vector<DescriptorIntPair> extensions_after_checkpoint_;
549
550 // Allocate some bytes which will be reclaimed when the pool is
551 // destroyed.
552 void* AllocateBytes(int size);
553 };
554
555 // Contains tables specific to a particular file. These tables are not
556 // modified once the file has been constructed, so they need not be
557 // protected by a mutex. This makes operations that depend only on the
558 // contents of a single file -- e.g. Descriptor::FindFieldByName() --
559 // lock-free.
560 //
561 // For historical reasons, the definitions of the methods of
562 // FileDescriptorTables and DescriptorPool::Tables are interleaved below.
563 // These used to be a single class.
564 class FileDescriptorTables {
565 public:
566 FileDescriptorTables();
567 ~FileDescriptorTables();
568
569 // Empty table, used with placeholder files.
570 inline static const FileDescriptorTables& GetEmptyInstance();
571
572 // -----------------------------------------------------------------
573 // Finding items.
574
575 // Find symbols. These return a null Symbol (symbol.IsNull() is true)
576 // if not found.
577 inline Symbol FindNestedSymbol(const void* parent,
578 const string& name) const;
579 inline Symbol FindNestedSymbolOfType(const void* parent,
580 const string& name,
581 const Symbol::Type type) const;
582
583 // These return NULL if not found.
584 inline const FieldDescriptor* FindFieldByNumber(
585 const Descriptor* parent, int number) const;
586 inline const FieldDescriptor* FindFieldByLowercaseName(
587 const void* parent, const string& lowercase_name) const;
588 inline const FieldDescriptor* FindFieldByCamelcaseName(
589 const void* parent, const string& camelcase_name) const;
590 inline const EnumValueDescriptor* FindEnumValueByNumber(
591 const EnumDescriptor* parent, int number) const;
592 // This creates a new EnumValueDescriptor if not found, in a thread-safe way.
593 inline const EnumValueDescriptor* FindEnumValueByNumberCreatingIfUnknown(
594 const EnumDescriptor* parent, int number) const;
595
596 // -----------------------------------------------------------------
597 // Adding items.
598
599 // These add items to the corresponding tables. They return false if
600 // the key already exists in the table. For AddAliasUnderParent(), the
601 // string passed in must be one that was constructed using AllocateString(),
602 // as it will be used as a key in the symbols_by_parent_ map without copying.
603 bool AddAliasUnderParent(const void* parent, const string& name,
604 Symbol symbol);
605 bool AddFieldByNumber(const FieldDescriptor* field);
606 bool AddEnumValueByNumber(const EnumValueDescriptor* value);
607
608 // Adds the field to the lowercase_name and camelcase_name maps. Never
609 // fails because we allow duplicates; the first field by the name wins.
610 void AddFieldByStylizedNames(const FieldDescriptor* field);
611
612 // Populates p->first->locations_by_path_ from p->second.
613 // Unusual signature dictated by GoogleOnceDynamic.
614 static void BuildLocationsByPath(
615 pair<const FileDescriptorTables*, const SourceCodeInfo*>* p);
616
617 // Returns the location denoted by the specified path through info,
618 // or NULL if not found.
619 // The value of info must be that of the corresponding FileDescriptor.
620 // (Conceptually a pure function, but stateful as an optimisation.)
621 const SourceCodeInfo_Location* GetSourceLocation(
622 const vector<int>& path, const SourceCodeInfo* info) const;
623
624 private:
625 SymbolsByParentMap symbols_by_parent_;
626 FieldsByNameMap fields_by_lowercase_name_;
627 FieldsByNameMap fields_by_camelcase_name_;
628 FieldsByNumberMap fields_by_number_; // Not including extensions.
629 EnumValuesByNumberMap enum_values_by_number_;
630 mutable EnumValuesByNumberMap unknown_enum_values_by_number_
631 GOOGLE_GUARDED_BY(unknown_enum_values_mu_);
632
633 // Populated on first request to save space, hence constness games.
634 mutable GoogleOnceDynamic locations_by_path_once_;
635 mutable LocationsByPathMap locations_by_path_;
636
637 // Mutex to protect the unknown-enum-value map due to dynamic
638 // EnumValueDescriptor creation on unknown values.
639 mutable Mutex unknown_enum_values_mu_;
640 };
641
Tables()642 DescriptorPool::Tables::Tables()
643 // Start some hash_map and hash_set objects with a small # of buckets
644 : known_bad_files_(3),
645 known_bad_symbols_(3),
646 extensions_loaded_from_db_(3),
647 symbols_by_name_(3),
648 files_by_name_(3) {}
649
650
~Tables()651 DescriptorPool::Tables::~Tables() {
652 GOOGLE_DCHECK(checkpoints_.empty());
653 // Note that the deletion order is important, since the destructors of some
654 // messages may refer to objects in allocations_.
655 STLDeleteElements(&messages_);
656 for (int i = 0; i < allocations_.size(); i++) {
657 operator delete(allocations_[i]);
658 }
659 STLDeleteElements(&strings_);
660 STLDeleteElements(&file_tables_);
661 }
662
FileDescriptorTables()663 FileDescriptorTables::FileDescriptorTables()
664 // Initialize all the hash tables to start out with a small # of buckets
665 : symbols_by_parent_(3),
666 fields_by_lowercase_name_(3),
667 fields_by_camelcase_name_(3),
668 fields_by_number_(3),
669 enum_values_by_number_(3),
670 unknown_enum_values_by_number_(3) {
671 }
672
~FileDescriptorTables()673 FileDescriptorTables::~FileDescriptorTables() {}
674
675 namespace {
676
677 FileDescriptorTables* file_descriptor_tables_ = NULL;
678 GOOGLE_PROTOBUF_DECLARE_ONCE(file_descriptor_tables_once_init_);
679
DeleteFileDescriptorTables()680 void DeleteFileDescriptorTables() {
681 delete file_descriptor_tables_;
682 file_descriptor_tables_ = NULL;
683 }
684
InitFileDescriptorTables()685 void InitFileDescriptorTables() {
686 file_descriptor_tables_ = new FileDescriptorTables();
687 internal::OnShutdown(&DeleteFileDescriptorTables);
688 }
689
InitFileDescriptorTablesOnce()690 inline void InitFileDescriptorTablesOnce() {
691 ::google::protobuf::GoogleOnceInit(
692 &file_descriptor_tables_once_init_, &InitFileDescriptorTables);
693 }
694
695 } // anonymous namespace
696
GetEmptyInstance()697 inline const FileDescriptorTables& FileDescriptorTables::GetEmptyInstance() {
698 InitFileDescriptorTablesOnce();
699 return *file_descriptor_tables_;
700 }
701
AddCheckpoint()702 void DescriptorPool::Tables::AddCheckpoint() {
703 checkpoints_.push_back(CheckPoint(this));
704 }
705
ClearLastCheckpoint()706 void DescriptorPool::Tables::ClearLastCheckpoint() {
707 GOOGLE_DCHECK(!checkpoints_.empty());
708 checkpoints_.pop_back();
709 if (checkpoints_.empty()) {
710 // All checkpoints have been cleared: we can now commit all of the pending
711 // data.
712 symbols_after_checkpoint_.clear();
713 files_after_checkpoint_.clear();
714 extensions_after_checkpoint_.clear();
715 }
716 }
717
RollbackToLastCheckpoint()718 void DescriptorPool::Tables::RollbackToLastCheckpoint() {
719 GOOGLE_DCHECK(!checkpoints_.empty());
720 const CheckPoint& checkpoint = checkpoints_.back();
721
722 for (int i = checkpoint.pending_symbols_before_checkpoint;
723 i < symbols_after_checkpoint_.size();
724 i++) {
725 symbols_by_name_.erase(symbols_after_checkpoint_[i]);
726 }
727 for (int i = checkpoint.pending_files_before_checkpoint;
728 i < files_after_checkpoint_.size();
729 i++) {
730 files_by_name_.erase(files_after_checkpoint_[i]);
731 }
732 for (int i = checkpoint.pending_extensions_before_checkpoint;
733 i < extensions_after_checkpoint_.size();
734 i++) {
735 extensions_.erase(extensions_after_checkpoint_[i]);
736 }
737
738 symbols_after_checkpoint_.resize(
739 checkpoint.pending_symbols_before_checkpoint);
740 files_after_checkpoint_.resize(checkpoint.pending_files_before_checkpoint);
741 extensions_after_checkpoint_.resize(
742 checkpoint.pending_extensions_before_checkpoint);
743
744 STLDeleteContainerPointers(
745 strings_.begin() + checkpoint.strings_before_checkpoint, strings_.end());
746 STLDeleteContainerPointers(
747 messages_.begin() + checkpoint.messages_before_checkpoint,
748 messages_.end());
749 STLDeleteContainerPointers(
750 file_tables_.begin() + checkpoint.file_tables_before_checkpoint,
751 file_tables_.end());
752 for (int i = checkpoint.allocations_before_checkpoint;
753 i < allocations_.size();
754 i++) {
755 operator delete(allocations_[i]);
756 }
757
758 strings_.resize(checkpoint.strings_before_checkpoint);
759 messages_.resize(checkpoint.messages_before_checkpoint);
760 file_tables_.resize(checkpoint.file_tables_before_checkpoint);
761 allocations_.resize(checkpoint.allocations_before_checkpoint);
762 checkpoints_.pop_back();
763 }
764
765 // -------------------------------------------------------------------
766
FindSymbol(const string & key) const767 inline Symbol DescriptorPool::Tables::FindSymbol(const string& key) const {
768 const Symbol* result = FindOrNull(symbols_by_name_, key.c_str());
769 if (result == NULL) {
770 return kNullSymbol;
771 } else {
772 return *result;
773 }
774 }
775
FindNestedSymbol(const void * parent,const string & name) const776 inline Symbol FileDescriptorTables::FindNestedSymbol(
777 const void* parent, const string& name) const {
778 const Symbol* result =
779 FindOrNull(symbols_by_parent_, PointerStringPair(parent, name.c_str()));
780 if (result == NULL) {
781 return kNullSymbol;
782 } else {
783 return *result;
784 }
785 }
786
FindNestedSymbolOfType(const void * parent,const string & name,const Symbol::Type type) const787 inline Symbol FileDescriptorTables::FindNestedSymbolOfType(
788 const void* parent, const string& name, const Symbol::Type type) const {
789 Symbol result = FindNestedSymbol(parent, name);
790 if (result.type != type) return kNullSymbol;
791 return result;
792 }
793
FindByNameHelper(const DescriptorPool * pool,const string & name)794 Symbol DescriptorPool::Tables::FindByNameHelper(
795 const DescriptorPool* pool, const string& name) {
796 MutexLockMaybe lock(pool->mutex_);
797 known_bad_symbols_.clear();
798 known_bad_files_.clear();
799 Symbol result = FindSymbol(name);
800
801 if (result.IsNull() && pool->underlay_ != NULL) {
802 // Symbol not found; check the underlay.
803 result =
804 pool->underlay_->tables_->FindByNameHelper(pool->underlay_, name);
805 }
806
807 if (result.IsNull()) {
808 // Symbol still not found, so check fallback database.
809 if (pool->TryFindSymbolInFallbackDatabase(name)) {
810 result = FindSymbol(name);
811 }
812 }
813
814 return result;
815 }
816
FindFile(const string & key) const817 inline const FileDescriptor* DescriptorPool::Tables::FindFile(
818 const string& key) const {
819 return FindPtrOrNull(files_by_name_, key.c_str());
820 }
821
FindFieldByNumber(const Descriptor * parent,int number) const822 inline const FieldDescriptor* FileDescriptorTables::FindFieldByNumber(
823 const Descriptor* parent, int number) const {
824 return FindPtrOrNull(fields_by_number_, std::make_pair(parent, number));
825 }
826
FindFieldByLowercaseName(const void * parent,const string & lowercase_name) const827 inline const FieldDescriptor* FileDescriptorTables::FindFieldByLowercaseName(
828 const void* parent, const string& lowercase_name) const {
829 return FindPtrOrNull(fields_by_lowercase_name_,
830 PointerStringPair(parent, lowercase_name.c_str()));
831 }
832
FindFieldByCamelcaseName(const void * parent,const string & camelcase_name) const833 inline const FieldDescriptor* FileDescriptorTables::FindFieldByCamelcaseName(
834 const void* parent, const string& camelcase_name) const {
835 return FindPtrOrNull(fields_by_camelcase_name_,
836 PointerStringPair(parent, camelcase_name.c_str()));
837 }
838
FindEnumValueByNumber(const EnumDescriptor * parent,int number) const839 inline const EnumValueDescriptor* FileDescriptorTables::FindEnumValueByNumber(
840 const EnumDescriptor* parent, int number) const {
841 return FindPtrOrNull(enum_values_by_number_, std::make_pair(parent, number));
842 }
843
844 inline const EnumValueDescriptor*
FindEnumValueByNumberCreatingIfUnknown(const EnumDescriptor * parent,int number) const845 FileDescriptorTables::FindEnumValueByNumberCreatingIfUnknown(
846 const EnumDescriptor* parent, int number) const {
847 // First try, with map of compiled-in values.
848 {
849 const EnumValueDescriptor* desc =
850 FindPtrOrNull(enum_values_by_number_, std::make_pair(parent, number));
851 if (desc != NULL) {
852 return desc;
853 }
854 }
855 // Second try, with reader lock held on unknown enum values: common case.
856 {
857 ReaderMutexLock l(&unknown_enum_values_mu_);
858 const EnumValueDescriptor* desc = FindPtrOrNull(
859 unknown_enum_values_by_number_, std::make_pair(parent, number));
860 if (desc != NULL) {
861 return desc;
862 }
863 }
864 // If not found, try again with writer lock held, and create new descriptor if
865 // necessary.
866 {
867 WriterMutexLock l(&unknown_enum_values_mu_);
868 const EnumValueDescriptor* desc = FindPtrOrNull(
869 unknown_enum_values_by_number_, std::make_pair(parent, number));
870 if (desc != NULL) {
871 return desc;
872 }
873
874 // Create an EnumValueDescriptor dynamically. We don't insert it into the
875 // EnumDescriptor (it's not a part of the enum as originally defined), but
876 // we do insert it into the table so that we can return the same pointer
877 // later.
878 string enum_value_name = StringPrintf(
879 "UNKNOWN_ENUM_VALUE_%s_%d", parent->name().c_str(), number);
880 DescriptorPool::Tables* tables =
881 const_cast<DescriptorPool::Tables*>(DescriptorPool::generated_pool()->
882 tables_.get());
883 EnumValueDescriptor* result = tables->Allocate<EnumValueDescriptor>();
884 result->name_ = tables->AllocateString(enum_value_name);
885 result->full_name_ = tables->AllocateString(parent->full_name() +
886 "." + enum_value_name);
887 result->number_ = number;
888 result->type_ = parent;
889 result->options_ = &EnumValueOptions::default_instance();
890 InsertIfNotPresent(&unknown_enum_values_by_number_,
891 std::make_pair(parent, number), result);
892 return result;
893 }
894 }
895
896
FindExtension(const Descriptor * extendee,int number)897 inline const FieldDescriptor* DescriptorPool::Tables::FindExtension(
898 const Descriptor* extendee, int number) {
899 return FindPtrOrNull(extensions_, std::make_pair(extendee, number));
900 }
901
FindAllExtensions(const Descriptor * extendee,vector<const FieldDescriptor * > * out) const902 inline void DescriptorPool::Tables::FindAllExtensions(
903 const Descriptor* extendee, vector<const FieldDescriptor*>* out) const {
904 ExtensionsGroupedByDescriptorMap::const_iterator it =
905 extensions_.lower_bound(std::make_pair(extendee, 0));
906 for (; it != extensions_.end() && it->first.first == extendee; ++it) {
907 out->push_back(it->second);
908 }
909 }
910
911 // -------------------------------------------------------------------
912
AddSymbol(const string & full_name,Symbol symbol)913 bool DescriptorPool::Tables::AddSymbol(
914 const string& full_name, Symbol symbol) {
915 if (InsertIfNotPresent(&symbols_by_name_, full_name.c_str(), symbol)) {
916 symbols_after_checkpoint_.push_back(full_name.c_str());
917 return true;
918 } else {
919 return false;
920 }
921 }
922
AddAliasUnderParent(const void * parent,const string & name,Symbol symbol)923 bool FileDescriptorTables::AddAliasUnderParent(
924 const void* parent, const string& name, Symbol symbol) {
925 PointerStringPair by_parent_key(parent, name.c_str());
926 return InsertIfNotPresent(&symbols_by_parent_, by_parent_key, symbol);
927 }
928
AddFile(const FileDescriptor * file)929 bool DescriptorPool::Tables::AddFile(const FileDescriptor* file) {
930 if (InsertIfNotPresent(&files_by_name_, file->name().c_str(), file)) {
931 files_after_checkpoint_.push_back(file->name().c_str());
932 return true;
933 } else {
934 return false;
935 }
936 }
937
AddFieldByStylizedNames(const FieldDescriptor * field)938 void FileDescriptorTables::AddFieldByStylizedNames(
939 const FieldDescriptor* field) {
940 const void* parent;
941 if (field->is_extension()) {
942 if (field->extension_scope() == NULL) {
943 parent = field->file();
944 } else {
945 parent = field->extension_scope();
946 }
947 } else {
948 parent = field->containing_type();
949 }
950
951 PointerStringPair lowercase_key(parent, field->lowercase_name().c_str());
952 InsertIfNotPresent(&fields_by_lowercase_name_, lowercase_key, field);
953
954 PointerStringPair camelcase_key(parent, field->camelcase_name().c_str());
955 InsertIfNotPresent(&fields_by_camelcase_name_, camelcase_key, field);
956 }
957
AddFieldByNumber(const FieldDescriptor * field)958 bool FileDescriptorTables::AddFieldByNumber(const FieldDescriptor* field) {
959 DescriptorIntPair key(field->containing_type(), field->number());
960 return InsertIfNotPresent(&fields_by_number_, key, field);
961 }
962
AddEnumValueByNumber(const EnumValueDescriptor * value)963 bool FileDescriptorTables::AddEnumValueByNumber(
964 const EnumValueDescriptor* value) {
965 EnumIntPair key(value->type(), value->number());
966 return InsertIfNotPresent(&enum_values_by_number_, key, value);
967 }
968
AddExtension(const FieldDescriptor * field)969 bool DescriptorPool::Tables::AddExtension(const FieldDescriptor* field) {
970 DescriptorIntPair key(field->containing_type(), field->number());
971 if (InsertIfNotPresent(&extensions_, key, field)) {
972 extensions_after_checkpoint_.push_back(key);
973 return true;
974 } else {
975 return false;
976 }
977 }
978
979 // -------------------------------------------------------------------
980
981 template<typename Type>
Allocate()982 Type* DescriptorPool::Tables::Allocate() {
983 return reinterpret_cast<Type*>(AllocateBytes(sizeof(Type)));
984 }
985
986 template<typename Type>
AllocateArray(int count)987 Type* DescriptorPool::Tables::AllocateArray(int count) {
988 return reinterpret_cast<Type*>(AllocateBytes(sizeof(Type) * count));
989 }
990
AllocateString(const string & value)991 string* DescriptorPool::Tables::AllocateString(const string& value) {
992 string* result = new string(value);
993 strings_.push_back(result);
994 return result;
995 }
996
997 template<typename Type>
AllocateMessage(Type *)998 Type* DescriptorPool::Tables::AllocateMessage(Type* /* dummy */) {
999 Type* result = new Type;
1000 messages_.push_back(result);
1001 return result;
1002 }
1003
AllocateFileTables()1004 FileDescriptorTables* DescriptorPool::Tables::AllocateFileTables() {
1005 FileDescriptorTables* result = new FileDescriptorTables;
1006 file_tables_.push_back(result);
1007 return result;
1008 }
1009
AllocateBytes(int size)1010 void* DescriptorPool::Tables::AllocateBytes(int size) {
1011 // TODO(kenton): Would it be worthwhile to implement this in some more
1012 // sophisticated way? Probably not for the open source release, but for
1013 // internal use we could easily plug in one of our existing memory pool
1014 // allocators...
1015 if (size == 0) return NULL;
1016
1017 void* result = operator new(size);
1018 allocations_.push_back(result);
1019 return result;
1020 }
1021
BuildLocationsByPath(pair<const FileDescriptorTables *,const SourceCodeInfo * > * p)1022 void FileDescriptorTables::BuildLocationsByPath(
1023 pair<const FileDescriptorTables*, const SourceCodeInfo*>* p) {
1024 for (int i = 0, len = p->second->location_size(); i < len; ++i) {
1025 const SourceCodeInfo_Location* loc = &p->second->location().Get(i);
1026 p->first->locations_by_path_[Join(loc->path(), ",")] = loc;
1027 }
1028 }
1029
GetSourceLocation(const vector<int> & path,const SourceCodeInfo * info) const1030 const SourceCodeInfo_Location* FileDescriptorTables::GetSourceLocation(
1031 const vector<int>& path, const SourceCodeInfo* info) const {
1032 pair<const FileDescriptorTables*, const SourceCodeInfo*> p(
1033 std::make_pair(this, info));
1034 locations_by_path_once_.Init(&FileDescriptorTables::BuildLocationsByPath, &p);
1035 return FindPtrOrNull(locations_by_path_, Join(path, ","));
1036 }
1037
1038 // ===================================================================
1039 // DescriptorPool
1040
~ErrorCollector()1041 DescriptorPool::ErrorCollector::~ErrorCollector() {}
1042
DescriptorPool()1043 DescriptorPool::DescriptorPool()
1044 : mutex_(NULL),
1045 fallback_database_(NULL),
1046 default_error_collector_(NULL),
1047 underlay_(NULL),
1048 tables_(new Tables),
1049 enforce_dependencies_(true),
1050 allow_unknown_(false),
1051 enforce_weak_(false) {}
1052
DescriptorPool(DescriptorDatabase * fallback_database,ErrorCollector * error_collector)1053 DescriptorPool::DescriptorPool(DescriptorDatabase* fallback_database,
1054 ErrorCollector* error_collector)
1055 : mutex_(new Mutex),
1056 fallback_database_(fallback_database),
1057 default_error_collector_(error_collector),
1058 underlay_(NULL),
1059 tables_(new Tables),
1060 enforce_dependencies_(true),
1061 allow_unknown_(false),
1062 enforce_weak_(false) {
1063 }
1064
DescriptorPool(const DescriptorPool * underlay)1065 DescriptorPool::DescriptorPool(const DescriptorPool* underlay)
1066 : mutex_(NULL),
1067 fallback_database_(NULL),
1068 default_error_collector_(NULL),
1069 underlay_(underlay),
1070 tables_(new Tables),
1071 enforce_dependencies_(true),
1072 allow_unknown_(false),
1073 enforce_weak_(false) {}
1074
~DescriptorPool()1075 DescriptorPool::~DescriptorPool() {
1076 if (mutex_ != NULL) delete mutex_;
1077 }
1078
1079 // DescriptorPool::BuildFile() defined later.
1080 // DescriptorPool::BuildFileCollectingErrors() defined later.
1081
InternalDontEnforceDependencies()1082 void DescriptorPool::InternalDontEnforceDependencies() {
1083 enforce_dependencies_ = false;
1084 }
1085
AddUnusedImportTrackFile(const string & file_name)1086 void DescriptorPool::AddUnusedImportTrackFile(const string& file_name) {
1087 unused_import_track_files_.insert(file_name);
1088 }
1089
ClearUnusedImportTrackFiles()1090 void DescriptorPool::ClearUnusedImportTrackFiles() {
1091 unused_import_track_files_.clear();
1092 }
1093
InternalIsFileLoaded(const string & filename) const1094 bool DescriptorPool::InternalIsFileLoaded(const string& filename) const {
1095 MutexLockMaybe lock(mutex_);
1096 return tables_->FindFile(filename) != NULL;
1097 }
1098
1099 // generated_pool ====================================================
1100
1101 namespace {
1102
1103
1104 EncodedDescriptorDatabase* generated_database_ = NULL;
1105 DescriptorPool* generated_pool_ = NULL;
1106 GOOGLE_PROTOBUF_DECLARE_ONCE(generated_pool_init_);
1107
DeleteGeneratedPool()1108 void DeleteGeneratedPool() {
1109 delete generated_database_;
1110 generated_database_ = NULL;
1111 delete generated_pool_;
1112 generated_pool_ = NULL;
1113 }
1114
InitGeneratedPool()1115 static void InitGeneratedPool() {
1116 generated_database_ = new EncodedDescriptorDatabase;
1117 generated_pool_ = new DescriptorPool(generated_database_);
1118
1119 internal::OnShutdown(&DeleteGeneratedPool);
1120 }
1121
InitGeneratedPoolOnce()1122 inline void InitGeneratedPoolOnce() {
1123 ::google::protobuf::GoogleOnceInit(&generated_pool_init_, &InitGeneratedPool);
1124 }
1125
1126 } // anonymous namespace
1127
generated_pool()1128 const DescriptorPool* DescriptorPool::generated_pool() {
1129 InitGeneratedPoolOnce();
1130 return generated_pool_;
1131 }
1132
1133
internal_generated_pool()1134 DescriptorPool* DescriptorPool::internal_generated_pool() {
1135 InitGeneratedPoolOnce();
1136 return generated_pool_;
1137 }
1138
InternalAddGeneratedFile(const void * encoded_file_descriptor,int size)1139 void DescriptorPool::InternalAddGeneratedFile(
1140 const void* encoded_file_descriptor, int size) {
1141 // So, this function is called in the process of initializing the
1142 // descriptors for generated proto classes. Each generated .pb.cc file
1143 // has an internal procedure called AddDescriptors() which is called at
1144 // process startup, and that function calls this one in order to register
1145 // the raw bytes of the FileDescriptorProto representing the file.
1146 //
1147 // We do not actually construct the descriptor objects right away. We just
1148 // hang on to the bytes until they are actually needed. We actually construct
1149 // the descriptor the first time one of the following things happens:
1150 // * Someone calls a method like descriptor(), GetDescriptor(), or
1151 // GetReflection() on the generated types, which requires returning the
1152 // descriptor or an object based on it.
1153 // * Someone looks up the descriptor in DescriptorPool::generated_pool().
1154 //
1155 // Once one of these happens, the DescriptorPool actually parses the
1156 // FileDescriptorProto and generates a FileDescriptor (and all its children)
1157 // based on it.
1158 //
1159 // Note that FileDescriptorProto is itself a generated protocol message.
1160 // Therefore, when we parse one, we have to be very careful to avoid using
1161 // any descriptor-based operations, since this might cause infinite recursion
1162 // or deadlock.
1163 InitGeneratedPoolOnce();
1164 GOOGLE_CHECK(generated_database_->Add(encoded_file_descriptor, size));
1165 }
1166
1167
1168 // Find*By* methods ==================================================
1169
1170 // TODO(kenton): There's a lot of repeated code here, but I'm not sure if
1171 // there's any good way to factor it out. Think about this some time when
1172 // there's nothing more important to do (read: never).
1173
FindFileByName(const string & name) const1174 const FileDescriptor* DescriptorPool::FindFileByName(const string& name) const {
1175 MutexLockMaybe lock(mutex_);
1176 tables_->known_bad_symbols_.clear();
1177 tables_->known_bad_files_.clear();
1178 const FileDescriptor* result = tables_->FindFile(name);
1179 if (result != NULL) return result;
1180 if (underlay_ != NULL) {
1181 result = underlay_->FindFileByName(name);
1182 if (result != NULL) return result;
1183 }
1184 if (TryFindFileInFallbackDatabase(name)) {
1185 result = tables_->FindFile(name);
1186 if (result != NULL) return result;
1187 }
1188 return NULL;
1189 }
1190
FindFileContainingSymbol(const string & symbol_name) const1191 const FileDescriptor* DescriptorPool::FindFileContainingSymbol(
1192 const string& symbol_name) const {
1193 MutexLockMaybe lock(mutex_);
1194 tables_->known_bad_symbols_.clear();
1195 tables_->known_bad_files_.clear();
1196 Symbol result = tables_->FindSymbol(symbol_name);
1197 if (!result.IsNull()) return result.GetFile();
1198 if (underlay_ != NULL) {
1199 const FileDescriptor* file_result =
1200 underlay_->FindFileContainingSymbol(symbol_name);
1201 if (file_result != NULL) return file_result;
1202 }
1203 if (TryFindSymbolInFallbackDatabase(symbol_name)) {
1204 result = tables_->FindSymbol(symbol_name);
1205 if (!result.IsNull()) return result.GetFile();
1206 }
1207 return NULL;
1208 }
1209
FindMessageTypeByName(const string & name) const1210 const Descriptor* DescriptorPool::FindMessageTypeByName(
1211 const string& name) const {
1212 Symbol result = tables_->FindByNameHelper(this, name);
1213 return (result.type == Symbol::MESSAGE) ? result.descriptor : NULL;
1214 }
1215
FindFieldByName(const string & name) const1216 const FieldDescriptor* DescriptorPool::FindFieldByName(
1217 const string& name) const {
1218 Symbol result = tables_->FindByNameHelper(this, name);
1219 if (result.type == Symbol::FIELD &&
1220 !result.field_descriptor->is_extension()) {
1221 return result.field_descriptor;
1222 } else {
1223 return NULL;
1224 }
1225 }
1226
FindExtensionByName(const string & name) const1227 const FieldDescriptor* DescriptorPool::FindExtensionByName(
1228 const string& name) const {
1229 Symbol result = tables_->FindByNameHelper(this, name);
1230 if (result.type == Symbol::FIELD &&
1231 result.field_descriptor->is_extension()) {
1232 return result.field_descriptor;
1233 } else {
1234 return NULL;
1235 }
1236 }
1237
FindOneofByName(const string & name) const1238 const OneofDescriptor* DescriptorPool::FindOneofByName(
1239 const string& name) const {
1240 Symbol result = tables_->FindByNameHelper(this, name);
1241 return (result.type == Symbol::ONEOF) ? result.oneof_descriptor : NULL;
1242 }
1243
FindEnumTypeByName(const string & name) const1244 const EnumDescriptor* DescriptorPool::FindEnumTypeByName(
1245 const string& name) const {
1246 Symbol result = tables_->FindByNameHelper(this, name);
1247 return (result.type == Symbol::ENUM) ? result.enum_descriptor : NULL;
1248 }
1249
FindEnumValueByName(const string & name) const1250 const EnumValueDescriptor* DescriptorPool::FindEnumValueByName(
1251 const string& name) const {
1252 Symbol result = tables_->FindByNameHelper(this, name);
1253 return (result.type == Symbol::ENUM_VALUE) ?
1254 result.enum_value_descriptor : NULL;
1255 }
1256
FindServiceByName(const string & name) const1257 const ServiceDescriptor* DescriptorPool::FindServiceByName(
1258 const string& name) const {
1259 Symbol result = tables_->FindByNameHelper(this, name);
1260 return (result.type == Symbol::SERVICE) ? result.service_descriptor : NULL;
1261 }
1262
FindMethodByName(const string & name) const1263 const MethodDescriptor* DescriptorPool::FindMethodByName(
1264 const string& name) const {
1265 Symbol result = tables_->FindByNameHelper(this, name);
1266 return (result.type == Symbol::METHOD) ? result.method_descriptor : NULL;
1267 }
1268
FindExtensionByNumber(const Descriptor * extendee,int number) const1269 const FieldDescriptor* DescriptorPool::FindExtensionByNumber(
1270 const Descriptor* extendee, int number) const {
1271 MutexLockMaybe lock(mutex_);
1272 tables_->known_bad_symbols_.clear();
1273 tables_->known_bad_files_.clear();
1274 const FieldDescriptor* result = tables_->FindExtension(extendee, number);
1275 if (result != NULL) {
1276 return result;
1277 }
1278 if (underlay_ != NULL) {
1279 result = underlay_->FindExtensionByNumber(extendee, number);
1280 if (result != NULL) return result;
1281 }
1282 if (TryFindExtensionInFallbackDatabase(extendee, number)) {
1283 result = tables_->FindExtension(extendee, number);
1284 if (result != NULL) {
1285 return result;
1286 }
1287 }
1288 return NULL;
1289 }
1290
FindAllExtensions(const Descriptor * extendee,vector<const FieldDescriptor * > * out) const1291 void DescriptorPool::FindAllExtensions(
1292 const Descriptor* extendee, vector<const FieldDescriptor*>* out) const {
1293 MutexLockMaybe lock(mutex_);
1294 tables_->known_bad_symbols_.clear();
1295 tables_->known_bad_files_.clear();
1296
1297 // Initialize tables_->extensions_ from the fallback database first
1298 // (but do this only once per descriptor).
1299 if (fallback_database_ != NULL &&
1300 tables_->extensions_loaded_from_db_.count(extendee) == 0) {
1301 vector<int> numbers;
1302 if (fallback_database_->FindAllExtensionNumbers(extendee->full_name(),
1303 &numbers)) {
1304 for (int i = 0; i < numbers.size(); ++i) {
1305 int number = numbers[i];
1306 if (tables_->FindExtension(extendee, number) == NULL) {
1307 TryFindExtensionInFallbackDatabase(extendee, number);
1308 }
1309 }
1310 tables_->extensions_loaded_from_db_.insert(extendee);
1311 }
1312 }
1313
1314 tables_->FindAllExtensions(extendee, out);
1315 if (underlay_ != NULL) {
1316 underlay_->FindAllExtensions(extendee, out);
1317 }
1318 }
1319
1320
1321 // -------------------------------------------------------------------
1322
1323 const FieldDescriptor*
FindFieldByNumber(int key) const1324 Descriptor::FindFieldByNumber(int key) const {
1325 const FieldDescriptor* result =
1326 file()->tables_->FindFieldByNumber(this, key);
1327 if (result == NULL || result->is_extension()) {
1328 return NULL;
1329 } else {
1330 return result;
1331 }
1332 }
1333
1334 const FieldDescriptor*
FindFieldByLowercaseName(const string & key) const1335 Descriptor::FindFieldByLowercaseName(const string& key) const {
1336 const FieldDescriptor* result =
1337 file()->tables_->FindFieldByLowercaseName(this, key);
1338 if (result == NULL || result->is_extension()) {
1339 return NULL;
1340 } else {
1341 return result;
1342 }
1343 }
1344
1345 const FieldDescriptor*
FindFieldByCamelcaseName(const string & key) const1346 Descriptor::FindFieldByCamelcaseName(const string& key) const {
1347 const FieldDescriptor* result =
1348 file()->tables_->FindFieldByCamelcaseName(this, key);
1349 if (result == NULL || result->is_extension()) {
1350 return NULL;
1351 } else {
1352 return result;
1353 }
1354 }
1355
1356 const FieldDescriptor*
FindFieldByName(const string & key) const1357 Descriptor::FindFieldByName(const string& key) const {
1358 Symbol result =
1359 file()->tables_->FindNestedSymbolOfType(this, key, Symbol::FIELD);
1360 if (!result.IsNull() && !result.field_descriptor->is_extension()) {
1361 return result.field_descriptor;
1362 } else {
1363 return NULL;
1364 }
1365 }
1366
1367 const OneofDescriptor*
FindOneofByName(const string & key) const1368 Descriptor::FindOneofByName(const string& key) const {
1369 Symbol result =
1370 file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ONEOF);
1371 if (!result.IsNull()) {
1372 return result.oneof_descriptor;
1373 } else {
1374 return NULL;
1375 }
1376 }
1377
1378 const FieldDescriptor*
FindExtensionByName(const string & key) const1379 Descriptor::FindExtensionByName(const string& key) const {
1380 Symbol result =
1381 file()->tables_->FindNestedSymbolOfType(this, key, Symbol::FIELD);
1382 if (!result.IsNull() && result.field_descriptor->is_extension()) {
1383 return result.field_descriptor;
1384 } else {
1385 return NULL;
1386 }
1387 }
1388
1389 const FieldDescriptor*
FindExtensionByLowercaseName(const string & key) const1390 Descriptor::FindExtensionByLowercaseName(const string& key) const {
1391 const FieldDescriptor* result =
1392 file()->tables_->FindFieldByLowercaseName(this, key);
1393 if (result == NULL || !result->is_extension()) {
1394 return NULL;
1395 } else {
1396 return result;
1397 }
1398 }
1399
1400 const FieldDescriptor*
FindExtensionByCamelcaseName(const string & key) const1401 Descriptor::FindExtensionByCamelcaseName(const string& key) const {
1402 const FieldDescriptor* result =
1403 file()->tables_->FindFieldByCamelcaseName(this, key);
1404 if (result == NULL || !result->is_extension()) {
1405 return NULL;
1406 } else {
1407 return result;
1408 }
1409 }
1410
1411 const Descriptor*
FindNestedTypeByName(const string & key) const1412 Descriptor::FindNestedTypeByName(const string& key) const {
1413 Symbol result =
1414 file()->tables_->FindNestedSymbolOfType(this, key, Symbol::MESSAGE);
1415 if (!result.IsNull()) {
1416 return result.descriptor;
1417 } else {
1418 return NULL;
1419 }
1420 }
1421
1422 const EnumDescriptor*
FindEnumTypeByName(const string & key) const1423 Descriptor::FindEnumTypeByName(const string& key) const {
1424 Symbol result =
1425 file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM);
1426 if (!result.IsNull()) {
1427 return result.enum_descriptor;
1428 } else {
1429 return NULL;
1430 }
1431 }
1432
1433 const EnumValueDescriptor*
FindEnumValueByName(const string & key) const1434 Descriptor::FindEnumValueByName(const string& key) const {
1435 Symbol result =
1436 file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM_VALUE);
1437 if (!result.IsNull()) {
1438 return result.enum_value_descriptor;
1439 } else {
1440 return NULL;
1441 }
1442 }
1443
1444 const EnumValueDescriptor*
FindValueByName(const string & key) const1445 EnumDescriptor::FindValueByName(const string& key) const {
1446 Symbol result =
1447 file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM_VALUE);
1448 if (!result.IsNull()) {
1449 return result.enum_value_descriptor;
1450 } else {
1451 return NULL;
1452 }
1453 }
1454
1455 const EnumValueDescriptor*
FindValueByNumber(int key) const1456 EnumDescriptor::FindValueByNumber(int key) const {
1457 return file()->tables_->FindEnumValueByNumber(this, key);
1458 }
1459
1460 const EnumValueDescriptor*
FindValueByNumberCreatingIfUnknown(int key) const1461 EnumDescriptor::FindValueByNumberCreatingIfUnknown(int key) const {
1462 return file()->tables_->FindEnumValueByNumberCreatingIfUnknown(this, key);
1463 }
1464
1465 const MethodDescriptor*
FindMethodByName(const string & key) const1466 ServiceDescriptor::FindMethodByName(const string& key) const {
1467 Symbol result =
1468 file()->tables_->FindNestedSymbolOfType(this, key, Symbol::METHOD);
1469 if (!result.IsNull()) {
1470 return result.method_descriptor;
1471 } else {
1472 return NULL;
1473 }
1474 }
1475
1476 const Descriptor*
FindMessageTypeByName(const string & key) const1477 FileDescriptor::FindMessageTypeByName(const string& key) const {
1478 Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::MESSAGE);
1479 if (!result.IsNull()) {
1480 return result.descriptor;
1481 } else {
1482 return NULL;
1483 }
1484 }
1485
1486 const EnumDescriptor*
FindEnumTypeByName(const string & key) const1487 FileDescriptor::FindEnumTypeByName(const string& key) const {
1488 Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM);
1489 if (!result.IsNull()) {
1490 return result.enum_descriptor;
1491 } else {
1492 return NULL;
1493 }
1494 }
1495
1496 const EnumValueDescriptor*
FindEnumValueByName(const string & key) const1497 FileDescriptor::FindEnumValueByName(const string& key) const {
1498 Symbol result =
1499 tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM_VALUE);
1500 if (!result.IsNull()) {
1501 return result.enum_value_descriptor;
1502 } else {
1503 return NULL;
1504 }
1505 }
1506
1507 const ServiceDescriptor*
FindServiceByName(const string & key) const1508 FileDescriptor::FindServiceByName(const string& key) const {
1509 Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::SERVICE);
1510 if (!result.IsNull()) {
1511 return result.service_descriptor;
1512 } else {
1513 return NULL;
1514 }
1515 }
1516
1517 const FieldDescriptor*
FindExtensionByName(const string & key) const1518 FileDescriptor::FindExtensionByName(const string& key) const {
1519 Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::FIELD);
1520 if (!result.IsNull() && result.field_descriptor->is_extension()) {
1521 return result.field_descriptor;
1522 } else {
1523 return NULL;
1524 }
1525 }
1526
1527 const FieldDescriptor*
FindExtensionByLowercaseName(const string & key) const1528 FileDescriptor::FindExtensionByLowercaseName(const string& key) const {
1529 const FieldDescriptor* result = tables_->FindFieldByLowercaseName(this, key);
1530 if (result == NULL || !result->is_extension()) {
1531 return NULL;
1532 } else {
1533 return result;
1534 }
1535 }
1536
1537 const FieldDescriptor*
FindExtensionByCamelcaseName(const string & key) const1538 FileDescriptor::FindExtensionByCamelcaseName(const string& key) const {
1539 const FieldDescriptor* result = tables_->FindFieldByCamelcaseName(this, key);
1540 if (result == NULL || !result->is_extension()) {
1541 return NULL;
1542 } else {
1543 return result;
1544 }
1545 }
1546
1547 const Descriptor::ExtensionRange*
FindExtensionRangeContainingNumber(int number) const1548 Descriptor::FindExtensionRangeContainingNumber(int number) const {
1549 // Linear search should be fine because we don't expect a message to have
1550 // more than a couple extension ranges.
1551 for (int i = 0; i < extension_range_count(); i++) {
1552 if (number >= extension_range(i)->start &&
1553 number < extension_range(i)->end) {
1554 return extension_range(i);
1555 }
1556 }
1557 return NULL;
1558 }
1559
1560 const Descriptor::ReservedRange*
FindReservedRangeContainingNumber(int number) const1561 Descriptor::FindReservedRangeContainingNumber(int number) const {
1562 // TODO(chrisn): Consider a non-linear search.
1563 for (int i = 0; i < reserved_range_count(); i++) {
1564 if (number >= reserved_range(i)->start &&
1565 number < reserved_range(i)->end) {
1566 return reserved_range(i);
1567 }
1568 }
1569 return NULL;
1570 }
1571
1572 // -------------------------------------------------------------------
1573
TryFindFileInFallbackDatabase(const string & name) const1574 bool DescriptorPool::TryFindFileInFallbackDatabase(const string& name) const {
1575 if (fallback_database_ == NULL) return false;
1576
1577 if (tables_->known_bad_files_.count(name) > 0) return false;
1578
1579 FileDescriptorProto file_proto;
1580 if (!fallback_database_->FindFileByName(name, &file_proto) ||
1581 BuildFileFromDatabase(file_proto) == NULL) {
1582 tables_->known_bad_files_.insert(name);
1583 return false;
1584 }
1585 return true;
1586 }
1587
IsSubSymbolOfBuiltType(const string & name) const1588 bool DescriptorPool::IsSubSymbolOfBuiltType(const string& name) const {
1589 string prefix = name;
1590 for (;;) {
1591 string::size_type dot_pos = prefix.find_last_of('.');
1592 if (dot_pos == string::npos) {
1593 break;
1594 }
1595 prefix = prefix.substr(0, dot_pos);
1596 Symbol symbol = tables_->FindSymbol(prefix);
1597 // If the symbol type is anything other than PACKAGE, then its complete
1598 // definition is already known.
1599 if (!symbol.IsNull() && symbol.type != Symbol::PACKAGE) {
1600 return true;
1601 }
1602 }
1603 if (underlay_ != NULL) {
1604 // Check to see if any prefix of this symbol exists in the underlay.
1605 return underlay_->IsSubSymbolOfBuiltType(name);
1606 }
1607 return false;
1608 }
1609
TryFindSymbolInFallbackDatabase(const string & name) const1610 bool DescriptorPool::TryFindSymbolInFallbackDatabase(const string& name) const {
1611 if (fallback_database_ == NULL) return false;
1612
1613 if (tables_->known_bad_symbols_.count(name) > 0) return false;
1614
1615 FileDescriptorProto file_proto;
1616 if (// We skip looking in the fallback database if the name is a sub-symbol
1617 // of any descriptor that already exists in the descriptor pool (except
1618 // for package descriptors). This is valid because all symbols except
1619 // for packages are defined in a single file, so if the symbol exists
1620 // then we should already have its definition.
1621 //
1622 // The other reason to do this is to support "overriding" type
1623 // definitions by merging two databases that define the same type. (Yes,
1624 // people do this.) The main difficulty with making this work is that
1625 // FindFileContainingSymbol() is allowed to return both false positives
1626 // (e.g., SimpleDescriptorDatabase, UpgradedDescriptorDatabase) and false
1627 // negatives (e.g. ProtoFileParser, SourceTreeDescriptorDatabase).
1628 // When two such databases are merged, looking up a non-existent
1629 // sub-symbol of a type that already exists in the descriptor pool can
1630 // result in an attempt to load multiple definitions of the same type.
1631 // The check below avoids this.
1632 IsSubSymbolOfBuiltType(name)
1633
1634 // Look up file containing this symbol in fallback database.
1635 || !fallback_database_->FindFileContainingSymbol(name, &file_proto)
1636
1637 // Check if we've already built this file. If so, it apparently doesn't
1638 // contain the symbol we're looking for. Some DescriptorDatabases
1639 // return false positives.
1640 || tables_->FindFile(file_proto.name()) != NULL
1641
1642 // Build the file.
1643 || BuildFileFromDatabase(file_proto) == NULL) {
1644 tables_->known_bad_symbols_.insert(name);
1645 return false;
1646 }
1647
1648 return true;
1649 }
1650
TryFindExtensionInFallbackDatabase(const Descriptor * containing_type,int field_number) const1651 bool DescriptorPool::TryFindExtensionInFallbackDatabase(
1652 const Descriptor* containing_type, int field_number) const {
1653 if (fallback_database_ == NULL) return false;
1654
1655 FileDescriptorProto file_proto;
1656 if (!fallback_database_->FindFileContainingExtension(
1657 containing_type->full_name(), field_number, &file_proto)) {
1658 return false;
1659 }
1660
1661 if (tables_->FindFile(file_proto.name()) != NULL) {
1662 // We've already loaded this file, and it apparently doesn't contain the
1663 // extension we're looking for. Some DescriptorDatabases return false
1664 // positives.
1665 return false;
1666 }
1667
1668 if (BuildFileFromDatabase(file_proto) == NULL) {
1669 return false;
1670 }
1671
1672 return true;
1673 }
1674
1675 // ===================================================================
1676
is_map() const1677 bool FieldDescriptor::is_map() const {
1678 return type() == TYPE_MESSAGE && message_type()->options().map_entry();
1679 }
1680
DefaultValueAsString(bool quote_string_type) const1681 string FieldDescriptor::DefaultValueAsString(bool quote_string_type) const {
1682 GOOGLE_CHECK(has_default_value()) << "No default value";
1683 switch (cpp_type()) {
1684 case CPPTYPE_INT32:
1685 return SimpleItoa(default_value_int32());
1686 break;
1687 case CPPTYPE_INT64:
1688 return SimpleItoa(default_value_int64());
1689 break;
1690 case CPPTYPE_UINT32:
1691 return SimpleItoa(default_value_uint32());
1692 break;
1693 case CPPTYPE_UINT64:
1694 return SimpleItoa(default_value_uint64());
1695 break;
1696 case CPPTYPE_FLOAT:
1697 return SimpleFtoa(default_value_float());
1698 break;
1699 case CPPTYPE_DOUBLE:
1700 return SimpleDtoa(default_value_double());
1701 break;
1702 case CPPTYPE_BOOL:
1703 return default_value_bool() ? "true" : "false";
1704 break;
1705 case CPPTYPE_STRING:
1706 if (quote_string_type) {
1707 return "\"" + CEscape(default_value_string()) + "\"";
1708 } else {
1709 if (type() == TYPE_BYTES) {
1710 return CEscape(default_value_string());
1711 } else {
1712 return default_value_string();
1713 }
1714 }
1715 break;
1716 case CPPTYPE_ENUM:
1717 return default_value_enum()->name();
1718 break;
1719 case CPPTYPE_MESSAGE:
1720 GOOGLE_LOG(DFATAL) << "Messages can't have default values!";
1721 break;
1722 }
1723 GOOGLE_LOG(FATAL) << "Can't get here: failed to get default value as string";
1724 return "";
1725 }
1726
1727 // CopyTo methods ====================================================
1728
CopyTo(FileDescriptorProto * proto) const1729 void FileDescriptor::CopyTo(FileDescriptorProto* proto) const {
1730 proto->set_name(name());
1731 if (!package().empty()) proto->set_package(package());
1732 // TODO(liujisi): Also populate when syntax="proto2".
1733 if (syntax() == SYNTAX_PROTO3) proto->set_syntax(SyntaxName(syntax()));
1734
1735 for (int i = 0; i < dependency_count(); i++) {
1736 proto->add_dependency(dependency(i)->name());
1737 }
1738
1739 for (int i = 0; i < public_dependency_count(); i++) {
1740 proto->add_public_dependency(public_dependencies_[i]);
1741 }
1742
1743 for (int i = 0; i < weak_dependency_count(); i++) {
1744 proto->add_weak_dependency(weak_dependencies_[i]);
1745 }
1746
1747 for (int i = 0; i < message_type_count(); i++) {
1748 message_type(i)->CopyTo(proto->add_message_type());
1749 }
1750 for (int i = 0; i < enum_type_count(); i++) {
1751 enum_type(i)->CopyTo(proto->add_enum_type());
1752 }
1753 for (int i = 0; i < service_count(); i++) {
1754 service(i)->CopyTo(proto->add_service());
1755 }
1756 for (int i = 0; i < extension_count(); i++) {
1757 extension(i)->CopyTo(proto->add_extension());
1758 }
1759
1760 if (&options() != &FileOptions::default_instance()) {
1761 proto->mutable_options()->CopyFrom(options());
1762 }
1763 }
1764
CopyJsonNameTo(FileDescriptorProto * proto) const1765 void FileDescriptor::CopyJsonNameTo(FileDescriptorProto* proto) const {
1766 if (message_type_count() != proto->message_type_size() ||
1767 extension_count() != proto->extension_size()) {
1768 GOOGLE_LOG(ERROR) << "Cannot copy json_name to a proto of a different size.";
1769 return;
1770 }
1771 for (int i = 0; i < message_type_count(); i++) {
1772 message_type(i)->CopyJsonNameTo(proto->mutable_message_type(i));
1773 }
1774 for (int i = 0; i < extension_count(); i++) {
1775 extension(i)->CopyJsonNameTo(proto->mutable_extension(i));
1776 }
1777 }
1778
CopySourceCodeInfoTo(FileDescriptorProto * proto) const1779 void FileDescriptor::CopySourceCodeInfoTo(FileDescriptorProto* proto) const {
1780 if (source_code_info_ &&
1781 source_code_info_ != &SourceCodeInfo::default_instance()) {
1782 proto->mutable_source_code_info()->CopyFrom(*source_code_info_);
1783 }
1784 }
1785
CopyTo(DescriptorProto * proto) const1786 void Descriptor::CopyTo(DescriptorProto* proto) const {
1787 proto->set_name(name());
1788
1789 for (int i = 0; i < field_count(); i++) {
1790 field(i)->CopyTo(proto->add_field());
1791 }
1792 for (int i = 0; i < oneof_decl_count(); i++) {
1793 oneof_decl(i)->CopyTo(proto->add_oneof_decl());
1794 }
1795 for (int i = 0; i < nested_type_count(); i++) {
1796 nested_type(i)->CopyTo(proto->add_nested_type());
1797 }
1798 for (int i = 0; i < enum_type_count(); i++) {
1799 enum_type(i)->CopyTo(proto->add_enum_type());
1800 }
1801 for (int i = 0; i < extension_range_count(); i++) {
1802 DescriptorProto::ExtensionRange* range = proto->add_extension_range();
1803 range->set_start(extension_range(i)->start);
1804 range->set_end(extension_range(i)->end);
1805 }
1806 for (int i = 0; i < extension_count(); i++) {
1807 extension(i)->CopyTo(proto->add_extension());
1808 }
1809 for (int i = 0; i < reserved_range_count(); i++) {
1810 DescriptorProto::ReservedRange* range = proto->add_reserved_range();
1811 range->set_start(reserved_range(i)->start);
1812 range->set_end(reserved_range(i)->end);
1813 }
1814 for (int i = 0; i < reserved_name_count(); i++) {
1815 proto->add_reserved_name(reserved_name(i));
1816 }
1817
1818 if (&options() != &MessageOptions::default_instance()) {
1819 proto->mutable_options()->CopyFrom(options());
1820 }
1821 }
1822
CopyJsonNameTo(DescriptorProto * proto) const1823 void Descriptor::CopyJsonNameTo(DescriptorProto* proto) const {
1824 if (field_count() != proto->field_size() ||
1825 nested_type_count() != proto->nested_type_size() ||
1826 extension_count() != proto->extension_size()) {
1827 GOOGLE_LOG(ERROR) << "Cannot copy json_name to a proto of a different size.";
1828 return;
1829 }
1830 for (int i = 0; i < field_count(); i++) {
1831 field(i)->CopyJsonNameTo(proto->mutable_field(i));
1832 }
1833 for (int i = 0; i < nested_type_count(); i++) {
1834 nested_type(i)->CopyJsonNameTo(proto->mutable_nested_type(i));
1835 }
1836 for (int i = 0; i < extension_count(); i++) {
1837 extension(i)->CopyJsonNameTo(proto->mutable_extension(i));
1838 }
1839 }
1840
CopyTo(FieldDescriptorProto * proto) const1841 void FieldDescriptor::CopyTo(FieldDescriptorProto* proto) const {
1842 proto->set_name(name());
1843 proto->set_number(number());
1844 if (has_json_name_) {
1845 proto->set_json_name(json_name());
1846 }
1847
1848 // Some compilers do not allow static_cast directly between two enum types,
1849 // so we must cast to int first.
1850 proto->set_label(static_cast<FieldDescriptorProto::Label>(
1851 implicit_cast<int>(label())));
1852 proto->set_type(static_cast<FieldDescriptorProto::Type>(
1853 implicit_cast<int>(type())));
1854
1855 if (is_extension()) {
1856 if (!containing_type()->is_unqualified_placeholder_) {
1857 proto->set_extendee(".");
1858 }
1859 proto->mutable_extendee()->append(containing_type()->full_name());
1860 }
1861
1862 if (cpp_type() == CPPTYPE_MESSAGE) {
1863 if (message_type()->is_placeholder_) {
1864 // We don't actually know if the type is a message type. It could be
1865 // an enum.
1866 proto->clear_type();
1867 }
1868
1869 if (!message_type()->is_unqualified_placeholder_) {
1870 proto->set_type_name(".");
1871 }
1872 proto->mutable_type_name()->append(message_type()->full_name());
1873 } else if (cpp_type() == CPPTYPE_ENUM) {
1874 if (!enum_type()->is_unqualified_placeholder_) {
1875 proto->set_type_name(".");
1876 }
1877 proto->mutable_type_name()->append(enum_type()->full_name());
1878 }
1879
1880 if (has_default_value()) {
1881 proto->set_default_value(DefaultValueAsString(false));
1882 }
1883
1884 if (containing_oneof() != NULL && !is_extension()) {
1885 proto->set_oneof_index(containing_oneof()->index());
1886 }
1887
1888 if (&options() != &FieldOptions::default_instance()) {
1889 proto->mutable_options()->CopyFrom(options());
1890 }
1891 }
1892
CopyJsonNameTo(FieldDescriptorProto * proto) const1893 void FieldDescriptor::CopyJsonNameTo(FieldDescriptorProto* proto) const {
1894 proto->set_json_name(json_name());
1895 }
1896
CopyTo(OneofDescriptorProto * proto) const1897 void OneofDescriptor::CopyTo(OneofDescriptorProto* proto) const {
1898 proto->set_name(name());
1899 }
1900
CopyTo(EnumDescriptorProto * proto) const1901 void EnumDescriptor::CopyTo(EnumDescriptorProto* proto) const {
1902 proto->set_name(name());
1903
1904 for (int i = 0; i < value_count(); i++) {
1905 value(i)->CopyTo(proto->add_value());
1906 }
1907
1908 if (&options() != &EnumOptions::default_instance()) {
1909 proto->mutable_options()->CopyFrom(options());
1910 }
1911 }
1912
CopyTo(EnumValueDescriptorProto * proto) const1913 void EnumValueDescriptor::CopyTo(EnumValueDescriptorProto* proto) const {
1914 proto->set_name(name());
1915 proto->set_number(number());
1916
1917 if (&options() != &EnumValueOptions::default_instance()) {
1918 proto->mutable_options()->CopyFrom(options());
1919 }
1920 }
1921
CopyTo(ServiceDescriptorProto * proto) const1922 void ServiceDescriptor::CopyTo(ServiceDescriptorProto* proto) const {
1923 proto->set_name(name());
1924
1925 for (int i = 0; i < method_count(); i++) {
1926 method(i)->CopyTo(proto->add_method());
1927 }
1928
1929 if (&options() != &ServiceOptions::default_instance()) {
1930 proto->mutable_options()->CopyFrom(options());
1931 }
1932 }
1933
CopyTo(MethodDescriptorProto * proto) const1934 void MethodDescriptor::CopyTo(MethodDescriptorProto* proto) const {
1935 proto->set_name(name());
1936
1937 if (!input_type()->is_unqualified_placeholder_) {
1938 proto->set_input_type(".");
1939 }
1940 proto->mutable_input_type()->append(input_type()->full_name());
1941
1942 if (!output_type()->is_unqualified_placeholder_) {
1943 proto->set_output_type(".");
1944 }
1945 proto->mutable_output_type()->append(output_type()->full_name());
1946
1947 if (&options() != &MethodOptions::default_instance()) {
1948 proto->mutable_options()->CopyFrom(options());
1949 }
1950
1951 if (client_streaming_) {
1952 proto->set_client_streaming(true);
1953 }
1954 if (server_streaming_) {
1955 proto->set_server_streaming(true);
1956 }
1957 }
1958
1959 // DebugString methods ===============================================
1960
1961 namespace {
1962
1963 // Used by each of the option formatters.
RetrieveOptions(int depth,const Message & options,vector<string> * option_entries)1964 bool RetrieveOptions(int depth,
1965 const Message &options,
1966 vector<string> *option_entries) {
1967 option_entries->clear();
1968 const Reflection* reflection = options.GetReflection();
1969 vector<const FieldDescriptor*> fields;
1970 reflection->ListFields(options, &fields);
1971 for (int i = 0; i < fields.size(); i++) {
1972 int count = 1;
1973 bool repeated = false;
1974 if (fields[i]->is_repeated()) {
1975 count = reflection->FieldSize(options, fields[i]);
1976 repeated = true;
1977 }
1978 for (int j = 0; j < count; j++) {
1979 string fieldval;
1980 if (fields[i]->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
1981 string tmp;
1982 TextFormat::Printer printer;
1983 printer.SetInitialIndentLevel(depth + 1);
1984 printer.PrintFieldValueToString(options, fields[i],
1985 repeated ? j : -1, &tmp);
1986 fieldval.append("{\n");
1987 fieldval.append(tmp);
1988 fieldval.append(depth * 2, ' ');
1989 fieldval.append("}");
1990 } else {
1991 TextFormat::PrintFieldValueToString(options, fields[i],
1992 repeated ? j : -1, &fieldval);
1993 }
1994 string name;
1995 if (fields[i]->is_extension()) {
1996 name = "(." + fields[i]->full_name() + ")";
1997 } else {
1998 name = fields[i]->name();
1999 }
2000 option_entries->push_back(name + " = " + fieldval);
2001 }
2002 }
2003 return !option_entries->empty();
2004 }
2005
2006 // Formats options that all appear together in brackets. Does not include
2007 // brackets.
FormatBracketedOptions(int depth,const Message & options,string * output)2008 bool FormatBracketedOptions(int depth, const Message &options, string *output) {
2009 vector<string> all_options;
2010 if (RetrieveOptions(depth, options, &all_options)) {
2011 output->append(Join(all_options, ", "));
2012 }
2013 return !all_options.empty();
2014 }
2015
2016 // Formats options one per line
FormatLineOptions(int depth,const Message & options,string * output)2017 bool FormatLineOptions(int depth, const Message &options, string *output) {
2018 string prefix(depth * 2, ' ');
2019 vector<string> all_options;
2020 if (RetrieveOptions(depth, options, &all_options)) {
2021 for (int i = 0; i < all_options.size(); i++) {
2022 strings::SubstituteAndAppend(output, "$0option $1;\n",
2023 prefix, all_options[i]);
2024 }
2025 }
2026 return !all_options.empty();
2027 }
2028
2029 class SourceLocationCommentPrinter {
2030 public:
2031 template<typename DescType>
SourceLocationCommentPrinter(const DescType * desc,const string & prefix,const DebugStringOptions & options)2032 SourceLocationCommentPrinter(const DescType* desc,
2033 const string& prefix,
2034 const DebugStringOptions& options)
2035 : options_(options), prefix_(prefix) {
2036 // Perform the SourceLocation lookup only if we're including user comments,
2037 // because the lookup is fairly expensive.
2038 have_source_loc_ = options.include_comments &&
2039 desc->GetSourceLocation(&source_loc_);
2040 }
SourceLocationCommentPrinter(const FileDescriptor * file,const vector<int> & path,const string & prefix,const DebugStringOptions & options)2041 SourceLocationCommentPrinter(const FileDescriptor* file,
2042 const vector<int>& path,
2043 const string& prefix,
2044 const DebugStringOptions& options)
2045 : options_(options), prefix_(prefix) {
2046 // Perform the SourceLocation lookup only if we're including user comments,
2047 // because the lookup is fairly expensive.
2048 have_source_loc_ = options.include_comments &&
2049 file->GetSourceLocation(path, &source_loc_);
2050 }
AddPreComment(string * output)2051 void AddPreComment(string* output) {
2052 if (have_source_loc_) {
2053 // Detached leading comments.
2054 for (int i = 0 ; i < source_loc_.leading_detached_comments.size(); ++i) {
2055 *output += FormatComment(source_loc_.leading_detached_comments[i]);
2056 *output += "\n";
2057 }
2058 // Attached leading comments.
2059 if (!source_loc_.leading_comments.empty()) {
2060 *output += FormatComment(source_loc_.leading_comments);
2061 }
2062 }
2063 }
AddPostComment(string * output)2064 void AddPostComment(string* output) {
2065 if (have_source_loc_ && source_loc_.trailing_comments.size() > 0) {
2066 *output += FormatComment(source_loc_.trailing_comments);
2067 }
2068 }
2069
2070 // Format comment such that each line becomes a full-line C++-style comment in
2071 // the DebugString() output.
FormatComment(const string & comment_text)2072 string FormatComment(const string& comment_text) {
2073 string stripped_comment = comment_text;
2074 StripWhitespace(&stripped_comment);
2075 vector<string> lines = Split(stripped_comment, "\n");
2076 string output;
2077 for (int i = 0; i < lines.size(); ++i) {
2078 const string& line = lines[i];
2079 strings::SubstituteAndAppend(&output, "$0// $1\n", prefix_, line);
2080 }
2081 return output;
2082 }
2083
2084 private:
2085
2086 bool have_source_loc_;
2087 SourceLocation source_loc_;
2088 DebugStringOptions options_;
2089 string prefix_;
2090 };
2091
2092 } // anonymous namespace
2093
DebugString() const2094 string FileDescriptor::DebugString() const {
2095 DebugStringOptions options; // default options
2096 return DebugStringWithOptions(options);
2097 }
2098
DebugStringWithOptions(const DebugStringOptions & debug_string_options) const2099 string FileDescriptor::DebugStringWithOptions(
2100 const DebugStringOptions& debug_string_options) const {
2101 string contents;
2102 {
2103 vector<int> path;
2104 path.push_back(FileDescriptorProto::kSyntaxFieldNumber);
2105 SourceLocationCommentPrinter syntax_comment(
2106 this, path, "", debug_string_options);
2107 syntax_comment.AddPreComment(&contents);
2108 strings::SubstituteAndAppend(&contents, "syntax = \"$0\";\n\n",
2109 SyntaxName(syntax()));
2110 syntax_comment.AddPostComment(&contents);
2111 }
2112
2113 SourceLocationCommentPrinter
2114 comment_printer(this, "", debug_string_options);
2115 comment_printer.AddPreComment(&contents);
2116
2117 set<int> public_dependencies;
2118 set<int> weak_dependencies;
2119 public_dependencies.insert(public_dependencies_,
2120 public_dependencies_ + public_dependency_count_);
2121 weak_dependencies.insert(weak_dependencies_,
2122 weak_dependencies_ + weak_dependency_count_);
2123
2124 for (int i = 0; i < dependency_count(); i++) {
2125 if (public_dependencies.count(i) > 0) {
2126 strings::SubstituteAndAppend(&contents, "import public \"$0\";\n",
2127 dependency(i)->name());
2128 } else if (weak_dependencies.count(i) > 0) {
2129 strings::SubstituteAndAppend(&contents, "import weak \"$0\";\n",
2130 dependency(i)->name());
2131 } else {
2132 strings::SubstituteAndAppend(&contents, "import \"$0\";\n",
2133 dependency(i)->name());
2134 }
2135 }
2136
2137 if (!package().empty()) {
2138 vector<int> path;
2139 path.push_back(FileDescriptorProto::kPackageFieldNumber);
2140 SourceLocationCommentPrinter package_comment(
2141 this, path, "", debug_string_options);
2142 package_comment.AddPreComment(&contents);
2143 strings::SubstituteAndAppend(&contents, "package $0;\n\n", package());
2144 package_comment.AddPostComment(&contents);
2145 }
2146
2147 if (FormatLineOptions(0, options(), &contents)) {
2148 contents.append("\n"); // add some space if we had options
2149 }
2150
2151 for (int i = 0; i < enum_type_count(); i++) {
2152 enum_type(i)->DebugString(0, &contents, debug_string_options);
2153 contents.append("\n");
2154 }
2155
2156 // Find all the 'group' type extensions; we will not output their nested
2157 // definitions (those will be done with their group field descriptor).
2158 set<const Descriptor*> groups;
2159 for (int i = 0; i < extension_count(); i++) {
2160 if (extension(i)->type() == FieldDescriptor::TYPE_GROUP) {
2161 groups.insert(extension(i)->message_type());
2162 }
2163 }
2164
2165 for (int i = 0; i < message_type_count(); i++) {
2166 if (groups.count(message_type(i)) == 0) {
2167 message_type(i)->DebugString(0, &contents, debug_string_options,
2168 /* include_opening_clause */ true);
2169 contents.append("\n");
2170 }
2171 }
2172
2173 for (int i = 0; i < service_count(); i++) {
2174 service(i)->DebugString(&contents, debug_string_options);
2175 contents.append("\n");
2176 }
2177
2178 const Descriptor* containing_type = NULL;
2179 for (int i = 0; i < extension_count(); i++) {
2180 if (extension(i)->containing_type() != containing_type) {
2181 if (i > 0) contents.append("}\n\n");
2182 containing_type = extension(i)->containing_type();
2183 strings::SubstituteAndAppend(&contents, "extend .$0 {\n",
2184 containing_type->full_name());
2185 }
2186 extension(i)->DebugString(1, FieldDescriptor::PRINT_LABEL, &contents,
2187 debug_string_options);
2188 }
2189 if (extension_count() > 0) contents.append("}\n\n");
2190
2191 comment_printer.AddPostComment(&contents);
2192
2193 return contents;
2194 }
2195
DebugString() const2196 string Descriptor::DebugString() const {
2197 DebugStringOptions options; // default options
2198 return DebugStringWithOptions(options);
2199 }
2200
DebugStringWithOptions(const DebugStringOptions & options) const2201 string Descriptor::DebugStringWithOptions(
2202 const DebugStringOptions& options) const {
2203 string contents;
2204 DebugString(0, &contents, options, /* include_opening_clause */ true);
2205 return contents;
2206 }
2207
DebugString(int depth,string * contents,const DebugStringOptions & debug_string_options,bool include_opening_clause) const2208 void Descriptor::DebugString(int depth, string *contents,
2209 const DebugStringOptions&
2210 debug_string_options,
2211 bool include_opening_clause) const {
2212 if (options().map_entry()) {
2213 // Do not generate debug string for auto-generated map-entry type.
2214 return;
2215 }
2216 string prefix(depth * 2, ' ');
2217 ++depth;
2218
2219 SourceLocationCommentPrinter
2220 comment_printer(this, prefix, debug_string_options);
2221 comment_printer.AddPreComment(contents);
2222
2223 if (include_opening_clause) {
2224 strings::SubstituteAndAppend(contents, "$0message $1", prefix, name());
2225 }
2226 contents->append(" {\n");
2227
2228 FormatLineOptions(depth, options(), contents);
2229
2230 // Find all the 'group' types for fields and extensions; we will not output
2231 // their nested definitions (those will be done with their group field
2232 // descriptor).
2233 set<const Descriptor*> groups;
2234 for (int i = 0; i < field_count(); i++) {
2235 if (field(i)->type() == FieldDescriptor::TYPE_GROUP) {
2236 groups.insert(field(i)->message_type());
2237 }
2238 }
2239 for (int i = 0; i < extension_count(); i++) {
2240 if (extension(i)->type() == FieldDescriptor::TYPE_GROUP) {
2241 groups.insert(extension(i)->message_type());
2242 }
2243 }
2244
2245 for (int i = 0; i < nested_type_count(); i++) {
2246 if (groups.count(nested_type(i)) == 0) {
2247 nested_type(i)->DebugString(depth, contents, debug_string_options,
2248 /* include_opening_clause */ true);
2249 }
2250 }
2251 for (int i = 0; i < enum_type_count(); i++) {
2252 enum_type(i)->DebugString(depth, contents, debug_string_options);
2253 }
2254 for (int i = 0; i < field_count(); i++) {
2255 if (field(i)->containing_oneof() == NULL) {
2256 field(i)->DebugString(depth, FieldDescriptor::PRINT_LABEL, contents,
2257 debug_string_options);
2258 } else if (field(i)->containing_oneof()->field(0) == field(i)) {
2259 // This is the first field in this oneof, so print the whole oneof.
2260 field(i)->containing_oneof()->DebugString(depth, contents,
2261 debug_string_options);
2262 }
2263 }
2264
2265 for (int i = 0; i < extension_range_count(); i++) {
2266 strings::SubstituteAndAppend(contents, "$0 extensions $1 to $2;\n",
2267 prefix,
2268 extension_range(i)->start,
2269 extension_range(i)->end - 1);
2270 }
2271
2272 // Group extensions by what they extend, so they can be printed out together.
2273 const Descriptor* containing_type = NULL;
2274 for (int i = 0; i < extension_count(); i++) {
2275 if (extension(i)->containing_type() != containing_type) {
2276 if (i > 0) strings::SubstituteAndAppend(contents, "$0 }\n", prefix);
2277 containing_type = extension(i)->containing_type();
2278 strings::SubstituteAndAppend(contents, "$0 extend .$1 {\n",
2279 prefix, containing_type->full_name());
2280 }
2281 extension(i)->DebugString(
2282 depth + 1, FieldDescriptor::PRINT_LABEL, contents,
2283 debug_string_options);
2284 }
2285 if (extension_count() > 0)
2286 strings::SubstituteAndAppend(contents, "$0 }\n", prefix);
2287
2288 if (reserved_range_count() > 0) {
2289 strings::SubstituteAndAppend(contents, "$0 reserved ", prefix);
2290 for (int i = 0; i < reserved_range_count(); i++) {
2291 const Descriptor::ReservedRange* range = reserved_range(i);
2292 if (range->end == range->start + 1) {
2293 strings::SubstituteAndAppend(contents, "$0, ", range->start);
2294 } else {
2295 strings::SubstituteAndAppend(contents, "$0 to $1, ",
2296 range->start, range->end - 1);
2297 }
2298 }
2299 contents->replace(contents->size() - 2, 2, ";\n");
2300 }
2301
2302 if (reserved_name_count() > 0) {
2303 strings::SubstituteAndAppend(contents, "$0 reserved ", prefix);
2304 for (int i = 0; i < reserved_name_count(); i++) {
2305 strings::SubstituteAndAppend(contents, "\"$0\", ",
2306 CEscape(reserved_name(i)));
2307 }
2308 contents->replace(contents->size() - 2, 2, ";\n");
2309 }
2310
2311 strings::SubstituteAndAppend(contents, "$0}\n", prefix);
2312 comment_printer.AddPostComment(contents);
2313 }
2314
DebugString() const2315 string FieldDescriptor::DebugString() const {
2316 DebugStringOptions options; // default options
2317 return DebugStringWithOptions(options);
2318 }
2319
DebugStringWithOptions(const DebugStringOptions & debug_string_options) const2320 string FieldDescriptor::DebugStringWithOptions(
2321 const DebugStringOptions& debug_string_options) const {
2322 string contents;
2323 int depth = 0;
2324 if (is_extension()) {
2325 strings::SubstituteAndAppend(&contents, "extend .$0 {\n",
2326 containing_type()->full_name());
2327 depth = 1;
2328 }
2329 DebugString(depth, PRINT_LABEL, &contents, debug_string_options);
2330 if (is_extension()) {
2331 contents.append("}\n");
2332 }
2333 return contents;
2334 }
2335
2336 // The field type string used in FieldDescriptor::DebugString()
FieldTypeNameDebugString() const2337 string FieldDescriptor::FieldTypeNameDebugString() const {
2338 switch(type()) {
2339 case TYPE_MESSAGE:
2340 return "." + message_type()->full_name();
2341 case TYPE_ENUM:
2342 return "." + enum_type()->full_name();
2343 default:
2344 return kTypeToName[type()];
2345 }
2346 }
2347
DebugString(int depth,PrintLabelFlag print_label_flag,string * contents,const DebugStringOptions & debug_string_options) const2348 void FieldDescriptor::DebugString(int depth,
2349 PrintLabelFlag print_label_flag,
2350 string *contents,
2351 const DebugStringOptions&
2352 debug_string_options) const {
2353 string prefix(depth * 2, ' ');
2354 string field_type;
2355
2356 // Special case map fields.
2357 if (is_map()) {
2358 strings::SubstituteAndAppend(
2359 &field_type, "map<$0, $1>",
2360 message_type()->field(0)->FieldTypeNameDebugString(),
2361 message_type()->field(1)->FieldTypeNameDebugString());
2362 } else {
2363 field_type = FieldTypeNameDebugString();
2364 }
2365
2366 string label;
2367 if (print_label_flag == PRINT_LABEL && !is_map()) {
2368 label = kLabelToName[this->label()];
2369 label.push_back(' ');
2370 }
2371
2372 SourceLocationCommentPrinter
2373 comment_printer(this, prefix, debug_string_options);
2374 comment_printer.AddPreComment(contents);
2375
2376 strings::SubstituteAndAppend(contents, "$0$1$2 $3 = $4",
2377 prefix,
2378 label,
2379 field_type,
2380 type() == TYPE_GROUP ? message_type()->name() :
2381 name(),
2382 number());
2383
2384 bool bracketed = false;
2385 if (has_default_value()) {
2386 bracketed = true;
2387 strings::SubstituteAndAppend(contents, " [default = $0",
2388 DefaultValueAsString(true));
2389 }
2390
2391 string formatted_options;
2392 if (FormatBracketedOptions(depth, options(), &formatted_options)) {
2393 contents->append(bracketed ? ", " : " [");
2394 bracketed = true;
2395 contents->append(formatted_options);
2396 }
2397
2398 if (bracketed) {
2399 contents->append("]");
2400 }
2401
2402 if (type() == TYPE_GROUP) {
2403 if (debug_string_options.elide_group_body) {
2404 contents->append(" { ... };\n");
2405 } else {
2406 message_type()->DebugString(depth, contents, debug_string_options,
2407 /* include_opening_clause */ false);
2408 }
2409 } else {
2410 contents->append(";\n");
2411 }
2412
2413 comment_printer.AddPostComment(contents);
2414 }
2415
DebugString() const2416 string OneofDescriptor::DebugString() const {
2417 DebugStringOptions options; // default values
2418 return DebugStringWithOptions(options);
2419 }
2420
DebugStringWithOptions(const DebugStringOptions & options) const2421 string OneofDescriptor::DebugStringWithOptions(
2422 const DebugStringOptions& options) const {
2423 string contents;
2424 DebugString(0, &contents, options);
2425 return contents;
2426 }
2427
DebugString(int depth,string * contents,const DebugStringOptions & debug_string_options) const2428 void OneofDescriptor::DebugString(int depth, string* contents,
2429 const DebugStringOptions&
2430 debug_string_options) const {
2431 string prefix(depth * 2, ' ');
2432 ++depth;
2433 SourceLocationCommentPrinter
2434 comment_printer(this, prefix, debug_string_options);
2435 comment_printer.AddPreComment(contents);
2436 strings::SubstituteAndAppend(
2437 contents, "$0 oneof $1 {", prefix, name());
2438 if (debug_string_options.elide_oneof_body) {
2439 contents->append(" ... }\n");
2440 } else {
2441 for (int i = 0; i < field_count(); i++) {
2442 field(i)->DebugString(depth, FieldDescriptor::OMIT_LABEL, contents,
2443 debug_string_options);
2444 }
2445 strings::SubstituteAndAppend(contents, "$0}\n", prefix);
2446 }
2447 comment_printer.AddPostComment(contents);
2448 }
2449
DebugString() const2450 string EnumDescriptor::DebugString() const {
2451 DebugStringOptions options; // default values
2452 return DebugStringWithOptions(options);
2453 }
2454
DebugStringWithOptions(const DebugStringOptions & options) const2455 string EnumDescriptor::DebugStringWithOptions(
2456 const DebugStringOptions& options) const {
2457 string contents;
2458 DebugString(0, &contents, options);
2459 return contents;
2460 }
2461
DebugString(int depth,string * contents,const DebugStringOptions & debug_string_options) const2462 void EnumDescriptor::DebugString(int depth, string *contents,
2463 const DebugStringOptions&
2464 debug_string_options) const {
2465 string prefix(depth * 2, ' ');
2466 ++depth;
2467
2468 SourceLocationCommentPrinter
2469 comment_printer(this, prefix, debug_string_options);
2470 comment_printer.AddPreComment(contents);
2471
2472 strings::SubstituteAndAppend(contents, "$0enum $1 {\n",
2473 prefix, name());
2474
2475 FormatLineOptions(depth, options(), contents);
2476
2477 for (int i = 0; i < value_count(); i++) {
2478 value(i)->DebugString(depth, contents, debug_string_options);
2479 }
2480 strings::SubstituteAndAppend(contents, "$0}\n", prefix);
2481
2482 comment_printer.AddPostComment(contents);
2483 }
2484
DebugString() const2485 string EnumValueDescriptor::DebugString() const {
2486 DebugStringOptions options; // default values
2487 return DebugStringWithOptions(options);
2488 }
2489
DebugStringWithOptions(const DebugStringOptions & options) const2490 string EnumValueDescriptor::DebugStringWithOptions(
2491 const DebugStringOptions& options) const {
2492 string contents;
2493 DebugString(0, &contents, options);
2494 return contents;
2495 }
2496
DebugString(int depth,string * contents,const DebugStringOptions & debug_string_options) const2497 void EnumValueDescriptor::DebugString(int depth, string *contents,
2498 const DebugStringOptions&
2499 debug_string_options) const {
2500 string prefix(depth * 2, ' ');
2501
2502 SourceLocationCommentPrinter
2503 comment_printer(this, prefix, debug_string_options);
2504 comment_printer.AddPreComment(contents);
2505
2506 strings::SubstituteAndAppend(contents, "$0$1 = $2",
2507 prefix, name(), number());
2508
2509 string formatted_options;
2510 if (FormatBracketedOptions(depth, options(), &formatted_options)) {
2511 strings::SubstituteAndAppend(contents, " [$0]", formatted_options);
2512 }
2513 contents->append(";\n");
2514
2515 comment_printer.AddPostComment(contents);
2516 }
2517
DebugString() const2518 string ServiceDescriptor::DebugString() const {
2519 DebugStringOptions options; // default values
2520 return DebugStringWithOptions(options);
2521 }
2522
DebugStringWithOptions(const DebugStringOptions & options) const2523 string ServiceDescriptor::DebugStringWithOptions(
2524 const DebugStringOptions& options) const {
2525 string contents;
2526 DebugString(&contents, options);
2527 return contents;
2528 }
2529
DebugString(string * contents,const DebugStringOptions & debug_string_options) const2530 void ServiceDescriptor::DebugString(string *contents,
2531 const DebugStringOptions&
2532 debug_string_options) const {
2533 SourceLocationCommentPrinter
2534 comment_printer(this, /* prefix */ "", debug_string_options);
2535 comment_printer.AddPreComment(contents);
2536
2537 strings::SubstituteAndAppend(contents, "service $0 {\n", name());
2538
2539 FormatLineOptions(1, options(), contents);
2540
2541 for (int i = 0; i < method_count(); i++) {
2542 method(i)->DebugString(1, contents, debug_string_options);
2543 }
2544
2545 contents->append("}\n");
2546
2547 comment_printer.AddPostComment(contents);
2548 }
2549
DebugString() const2550 string MethodDescriptor::DebugString() const {
2551 DebugStringOptions options; // default values
2552 return DebugStringWithOptions(options);
2553 }
2554
DebugStringWithOptions(const DebugStringOptions & options) const2555 string MethodDescriptor::DebugStringWithOptions(
2556 const DebugStringOptions& options) const {
2557 string contents;
2558 DebugString(0, &contents, options);
2559 return contents;
2560 }
2561
DebugString(int depth,string * contents,const DebugStringOptions & debug_string_options) const2562 void MethodDescriptor::DebugString(int depth, string *contents,
2563 const DebugStringOptions&
2564 debug_string_options) const {
2565 string prefix(depth * 2, ' ');
2566 ++depth;
2567
2568 SourceLocationCommentPrinter
2569 comment_printer(this, prefix, debug_string_options);
2570 comment_printer.AddPreComment(contents);
2571
2572 strings::SubstituteAndAppend(contents, "$0rpc $1($4.$2) returns ($5.$3)",
2573 prefix, name(),
2574 input_type()->full_name(),
2575 output_type()->full_name(),
2576 client_streaming() ? "stream " : "",
2577 server_streaming() ? "stream " : "");
2578
2579 string formatted_options;
2580 if (FormatLineOptions(depth, options(), &formatted_options)) {
2581 strings::SubstituteAndAppend(contents, " {\n$0$1}\n",
2582 formatted_options, prefix);
2583 } else {
2584 contents->append(";\n");
2585 }
2586
2587 comment_printer.AddPostComment(contents);
2588 }
2589
2590
2591 // Location methods ===============================================
2592
GetSourceLocation(const vector<int> & path,SourceLocation * out_location) const2593 bool FileDescriptor::GetSourceLocation(const vector<int>& path,
2594 SourceLocation* out_location) const {
2595 GOOGLE_CHECK_NOTNULL(out_location);
2596 if (source_code_info_) {
2597 if (const SourceCodeInfo_Location* loc =
2598 tables_->GetSourceLocation(path, source_code_info_)) {
2599 const RepeatedField<int32>& span = loc->span();
2600 if (span.size() == 3 || span.size() == 4) {
2601 out_location->start_line = span.Get(0);
2602 out_location->start_column = span.Get(1);
2603 out_location->end_line = span.Get(span.size() == 3 ? 0 : 2);
2604 out_location->end_column = span.Get(span.size() - 1);
2605
2606 out_location->leading_comments = loc->leading_comments();
2607 out_location->trailing_comments = loc->trailing_comments();
2608 out_location->leading_detached_comments.assign(
2609 loc->leading_detached_comments().begin(),
2610 loc->leading_detached_comments().end());
2611 return true;
2612 }
2613 }
2614 }
2615 return false;
2616 }
2617
GetSourceLocation(SourceLocation * out_location) const2618 bool FileDescriptor::GetSourceLocation(SourceLocation* out_location) const {
2619 vector<int> path; // empty path for root FileDescriptor
2620 return GetSourceLocation(path, out_location);
2621 }
2622
is_packed() const2623 bool FieldDescriptor::is_packed() const {
2624 if (!is_packable()) return false;
2625 if (file_->syntax() == FileDescriptor::SYNTAX_PROTO2) {
2626 return (options_ != NULL) && options_->packed();
2627 } else {
2628 return options_ == NULL || !options_->has_packed() || options_->packed();
2629 }
2630 }
2631
GetSourceLocation(SourceLocation * out_location) const2632 bool Descriptor::GetSourceLocation(SourceLocation* out_location) const {
2633 vector<int> path;
2634 GetLocationPath(&path);
2635 return file()->GetSourceLocation(path, out_location);
2636 }
2637
GetSourceLocation(SourceLocation * out_location) const2638 bool FieldDescriptor::GetSourceLocation(SourceLocation* out_location) const {
2639 vector<int> path;
2640 GetLocationPath(&path);
2641 return file()->GetSourceLocation(path, out_location);
2642 }
2643
GetSourceLocation(SourceLocation * out_location) const2644 bool OneofDescriptor::GetSourceLocation(SourceLocation* out_location) const {
2645 vector<int> path;
2646 GetLocationPath(&path);
2647 return containing_type()->file()->GetSourceLocation(path, out_location);
2648 }
2649
GetSourceLocation(SourceLocation * out_location) const2650 bool EnumDescriptor::GetSourceLocation(SourceLocation* out_location) const {
2651 vector<int> path;
2652 GetLocationPath(&path);
2653 return file()->GetSourceLocation(path, out_location);
2654 }
2655
GetSourceLocation(SourceLocation * out_location) const2656 bool MethodDescriptor::GetSourceLocation(SourceLocation* out_location) const {
2657 vector<int> path;
2658 GetLocationPath(&path);
2659 return service()->file()->GetSourceLocation(path, out_location);
2660 }
2661
GetSourceLocation(SourceLocation * out_location) const2662 bool ServiceDescriptor::GetSourceLocation(SourceLocation* out_location) const {
2663 vector<int> path;
2664 GetLocationPath(&path);
2665 return file()->GetSourceLocation(path, out_location);
2666 }
2667
GetSourceLocation(SourceLocation * out_location) const2668 bool EnumValueDescriptor::GetSourceLocation(
2669 SourceLocation* out_location) const {
2670 vector<int> path;
2671 GetLocationPath(&path);
2672 return type()->file()->GetSourceLocation(path, out_location);
2673 }
2674
GetLocationPath(vector<int> * output) const2675 void Descriptor::GetLocationPath(vector<int>* output) const {
2676 if (containing_type()) {
2677 containing_type()->GetLocationPath(output);
2678 output->push_back(DescriptorProto::kNestedTypeFieldNumber);
2679 output->push_back(index());
2680 } else {
2681 output->push_back(FileDescriptorProto::kMessageTypeFieldNumber);
2682 output->push_back(index());
2683 }
2684 }
2685
GetLocationPath(vector<int> * output) const2686 void FieldDescriptor::GetLocationPath(vector<int>* output) const {
2687 if (is_extension()) {
2688 if (extension_scope() == NULL) {
2689 output->push_back(FileDescriptorProto::kExtensionFieldNumber);
2690 output->push_back(index());
2691 } else {
2692 extension_scope()->GetLocationPath(output);
2693 output->push_back(DescriptorProto::kExtensionFieldNumber);
2694 output->push_back(index());
2695 }
2696 } else {
2697 containing_type()->GetLocationPath(output);
2698 output->push_back(DescriptorProto::kFieldFieldNumber);
2699 output->push_back(index());
2700 }
2701 }
2702
GetLocationPath(vector<int> * output) const2703 void OneofDescriptor::GetLocationPath(vector<int>* output) const {
2704 containing_type()->GetLocationPath(output);
2705 output->push_back(DescriptorProto::kOneofDeclFieldNumber);
2706 output->push_back(index());
2707 }
2708
GetLocationPath(vector<int> * output) const2709 void EnumDescriptor::GetLocationPath(vector<int>* output) const {
2710 if (containing_type()) {
2711 containing_type()->GetLocationPath(output);
2712 output->push_back(DescriptorProto::kEnumTypeFieldNumber);
2713 output->push_back(index());
2714 } else {
2715 output->push_back(FileDescriptorProto::kEnumTypeFieldNumber);
2716 output->push_back(index());
2717 }
2718 }
2719
GetLocationPath(vector<int> * output) const2720 void EnumValueDescriptor::GetLocationPath(vector<int>* output) const {
2721 type()->GetLocationPath(output);
2722 output->push_back(EnumDescriptorProto::kValueFieldNumber);
2723 output->push_back(index());
2724 }
2725
GetLocationPath(vector<int> * output) const2726 void ServiceDescriptor::GetLocationPath(vector<int>* output) const {
2727 output->push_back(FileDescriptorProto::kServiceFieldNumber);
2728 output->push_back(index());
2729 }
2730
GetLocationPath(vector<int> * output) const2731 void MethodDescriptor::GetLocationPath(vector<int>* output) const {
2732 service()->GetLocationPath(output);
2733 output->push_back(ServiceDescriptorProto::kMethodFieldNumber);
2734 output->push_back(index());
2735 }
2736
2737 // ===================================================================
2738
2739 namespace {
2740
2741 // Represents an options message to interpret. Extension names in the option
2742 // name are resolved relative to name_scope. element_name and orig_opt are
2743 // used only for error reporting (since the parser records locations against
2744 // pointers in the original options, not the mutable copy). The Message must be
2745 // one of the Options messages in descriptor.proto.
2746 struct OptionsToInterpret {
OptionsToInterpretgoogle::protobuf::__anond0d5fb670611::OptionsToInterpret2747 OptionsToInterpret(const string& ns,
2748 const string& el,
2749 const Message* orig_opt,
2750 Message* opt)
2751 : name_scope(ns),
2752 element_name(el),
2753 original_options(orig_opt),
2754 options(opt) {
2755 }
2756 string name_scope;
2757 string element_name;
2758 const Message* original_options;
2759 Message* options;
2760 };
2761
2762 } // namespace
2763
2764 class DescriptorBuilder {
2765 public:
2766 DescriptorBuilder(const DescriptorPool* pool,
2767 DescriptorPool::Tables* tables,
2768 DescriptorPool::ErrorCollector* error_collector);
2769 ~DescriptorBuilder();
2770
2771 const FileDescriptor* BuildFile(const FileDescriptorProto& proto);
2772
2773 private:
2774 friend class OptionInterpreter;
2775
2776 // Non-recursive part of BuildFile functionality.
2777 const FileDescriptor* BuildFileImpl(const FileDescriptorProto& proto);
2778
2779 const DescriptorPool* pool_;
2780 DescriptorPool::Tables* tables_; // for convenience
2781 DescriptorPool::ErrorCollector* error_collector_;
2782
2783 // As we build descriptors we store copies of the options messages in
2784 // them. We put pointers to those copies in this vector, as we build, so we
2785 // can later (after cross-linking) interpret those options.
2786 vector<OptionsToInterpret> options_to_interpret_;
2787
2788 bool had_errors_;
2789 string filename_;
2790 FileDescriptor* file_;
2791 FileDescriptorTables* file_tables_;
2792 set<const FileDescriptor*> dependencies_;
2793
2794 // unused_dependency_ is used to record the unused imported files.
2795 // Note: public import is not considered.
2796 set<const FileDescriptor*> unused_dependency_;
2797
2798 // If LookupSymbol() finds a symbol that is in a file which is not a declared
2799 // dependency of this file, it will fail, but will set
2800 // possible_undeclared_dependency_ to point at that file. This is only used
2801 // by AddNotDefinedError() to report a more useful error message.
2802 // possible_undeclared_dependency_name_ is the name of the symbol that was
2803 // actually found in possible_undeclared_dependency_, which may be a parent
2804 // of the symbol actually looked for.
2805 const FileDescriptor* possible_undeclared_dependency_;
2806 string possible_undeclared_dependency_name_;
2807
2808 // If LookupSymbol() could resolve a symbol which is not defined,
2809 // record the resolved name. This is only used by AddNotDefinedError()
2810 // to report a more useful error message.
2811 string undefine_resolved_name_;
2812
2813 void AddError(const string& element_name,
2814 const Message& descriptor,
2815 DescriptorPool::ErrorCollector::ErrorLocation location,
2816 const string& error);
2817 void AddError(const string& element_name,
2818 const Message& descriptor,
2819 DescriptorPool::ErrorCollector::ErrorLocation location,
2820 const char* error);
2821 void AddRecursiveImportError(const FileDescriptorProto& proto, int from_here);
2822 void AddTwiceListedError(const FileDescriptorProto& proto, int index);
2823 void AddImportError(const FileDescriptorProto& proto, int index);
2824
2825 // Adds an error indicating that undefined_symbol was not defined. Must
2826 // only be called after LookupSymbol() fails.
2827 void AddNotDefinedError(
2828 const string& element_name,
2829 const Message& descriptor,
2830 DescriptorPool::ErrorCollector::ErrorLocation location,
2831 const string& undefined_symbol);
2832
2833 void AddWarning(const string& element_name, const Message& descriptor,
2834 DescriptorPool::ErrorCollector::ErrorLocation location,
2835 const string& error);
2836
2837 // Silly helper which determines if the given file is in the given package.
2838 // I.e., either file->package() == package_name or file->package() is a
2839 // nested package within package_name.
2840 bool IsInPackage(const FileDescriptor* file, const string& package_name);
2841
2842 // Helper function which finds all public dependencies of the given file, and
2843 // stores the them in the dependencies_ set in the builder.
2844 void RecordPublicDependencies(const FileDescriptor* file);
2845
2846 // Like tables_->FindSymbol(), but additionally:
2847 // - Search the pool's underlay if not found in tables_.
2848 // - Insure that the resulting Symbol is from one of the file's declared
2849 // dependencies.
2850 Symbol FindSymbol(const string& name);
2851
2852 // Like FindSymbol() but does not require that the symbol is in one of the
2853 // file's declared dependencies.
2854 Symbol FindSymbolNotEnforcingDeps(const string& name);
2855
2856 // This implements the body of FindSymbolNotEnforcingDeps().
2857 Symbol FindSymbolNotEnforcingDepsHelper(const DescriptorPool* pool,
2858 const string& name);
2859
2860 // Like FindSymbol(), but looks up the name relative to some other symbol
2861 // name. This first searches siblings of relative_to, then siblings of its
2862 // parents, etc. For example, LookupSymbol("foo.bar", "baz.qux.corge") makes
2863 // the following calls, returning the first non-null result:
2864 // FindSymbol("baz.qux.foo.bar"), FindSymbol("baz.foo.bar"),
2865 // FindSymbol("foo.bar"). If AllowUnknownDependencies() has been called
2866 // on the DescriptorPool, this will generate a placeholder type if
2867 // the name is not found (unless the name itself is malformed). The
2868 // placeholder_type parameter indicates what kind of placeholder should be
2869 // constructed in this case. The resolve_mode parameter determines whether
2870 // any symbol is returned, or only symbols that are types. Note, however,
2871 // that LookupSymbol may still return a non-type symbol in LOOKUP_TYPES mode,
2872 // if it believes that's all it could refer to. The caller should always
2873 // check that it receives the type of symbol it was expecting.
2874 enum PlaceholderType {
2875 PLACEHOLDER_MESSAGE,
2876 PLACEHOLDER_ENUM,
2877 PLACEHOLDER_EXTENDABLE_MESSAGE
2878 };
2879 enum ResolveMode {
2880 LOOKUP_ALL, LOOKUP_TYPES
2881 };
2882 Symbol LookupSymbol(const string& name, const string& relative_to,
2883 PlaceholderType placeholder_type = PLACEHOLDER_MESSAGE,
2884 ResolveMode resolve_mode = LOOKUP_ALL);
2885
2886 // Like LookupSymbol() but will not return a placeholder even if
2887 // AllowUnknownDependencies() has been used.
2888 Symbol LookupSymbolNoPlaceholder(const string& name,
2889 const string& relative_to,
2890 ResolveMode resolve_mode = LOOKUP_ALL);
2891
2892 // Creates a placeholder type suitable for return from LookupSymbol(). May
2893 // return kNullSymbol if the name is not a valid type name.
2894 Symbol NewPlaceholder(const string& name, PlaceholderType placeholder_type);
2895
2896 // Creates a placeholder file. Never returns NULL. This is used when an
2897 // import is not found and AllowUnknownDependencies() is enabled.
2898 FileDescriptor* NewPlaceholderFile(const string& name);
2899
2900 // Calls tables_->AddSymbol() and records an error if it fails. Returns
2901 // true if successful or false if failed, though most callers can ignore
2902 // the return value since an error has already been recorded.
2903 bool AddSymbol(const string& full_name,
2904 const void* parent, const string& name,
2905 const Message& proto, Symbol symbol);
2906
2907 // Like AddSymbol(), but succeeds if the symbol is already defined as long
2908 // as the existing definition is also a package (because it's OK to define
2909 // the same package in two different files). Also adds all parents of the
2910 // packgae to the symbol table (e.g. AddPackage("foo.bar", ...) will add
2911 // "foo.bar" and "foo" to the table).
2912 void AddPackage(const string& name, const Message& proto,
2913 const FileDescriptor* file);
2914
2915 // Checks that the symbol name contains only alphanumeric characters and
2916 // underscores. Records an error otherwise.
2917 void ValidateSymbolName(const string& name, const string& full_name,
2918 const Message& proto);
2919
2920 // Like ValidateSymbolName(), but the name is allowed to contain periods and
2921 // an error is indicated by returning false (not recording the error).
2922 bool ValidateQualifiedName(const string& name);
2923
2924 // Used by BUILD_ARRAY macro (below) to avoid having to have the type
2925 // specified as a macro parameter.
2926 template <typename Type>
AllocateArray(int size,Type ** output)2927 inline void AllocateArray(int size, Type** output) {
2928 *output = tables_->AllocateArray<Type>(size);
2929 }
2930
2931 // Allocates a copy of orig_options in tables_ and stores it in the
2932 // descriptor. Remembers its uninterpreted options, to be interpreted
2933 // later. DescriptorT must be one of the Descriptor messages from
2934 // descriptor.proto.
2935 template<class DescriptorT> void AllocateOptions(
2936 const typename DescriptorT::OptionsType& orig_options,
2937 DescriptorT* descriptor);
2938 // Specialization for FileOptions.
2939 void AllocateOptions(const FileOptions& orig_options,
2940 FileDescriptor* descriptor);
2941
2942 // Implementation for AllocateOptions(). Don't call this directly.
2943 template<class DescriptorT> void AllocateOptionsImpl(
2944 const string& name_scope,
2945 const string& element_name,
2946 const typename DescriptorT::OptionsType& orig_options,
2947 DescriptorT* descriptor);
2948
2949 // These methods all have the same signature for the sake of the BUILD_ARRAY
2950 // macro, below.
2951 void BuildMessage(const DescriptorProto& proto,
2952 const Descriptor* parent,
2953 Descriptor* result);
2954 void BuildFieldOrExtension(const FieldDescriptorProto& proto,
2955 const Descriptor* parent,
2956 FieldDescriptor* result,
2957 bool is_extension);
BuildField(const FieldDescriptorProto & proto,const Descriptor * parent,FieldDescriptor * result)2958 void BuildField(const FieldDescriptorProto& proto,
2959 const Descriptor* parent,
2960 FieldDescriptor* result) {
2961 BuildFieldOrExtension(proto, parent, result, false);
2962 }
BuildExtension(const FieldDescriptorProto & proto,const Descriptor * parent,FieldDescriptor * result)2963 void BuildExtension(const FieldDescriptorProto& proto,
2964 const Descriptor* parent,
2965 FieldDescriptor* result) {
2966 BuildFieldOrExtension(proto, parent, result, true);
2967 }
2968 void BuildExtensionRange(const DescriptorProto::ExtensionRange& proto,
2969 const Descriptor* parent,
2970 Descriptor::ExtensionRange* result);
2971 void BuildReservedRange(const DescriptorProto::ReservedRange& proto,
2972 const Descriptor* parent,
2973 Descriptor::ReservedRange* result);
2974 void BuildOneof(const OneofDescriptorProto& proto,
2975 Descriptor* parent,
2976 OneofDescriptor* result);
2977 void BuildEnum(const EnumDescriptorProto& proto,
2978 const Descriptor* parent,
2979 EnumDescriptor* result);
2980 void BuildEnumValue(const EnumValueDescriptorProto& proto,
2981 const EnumDescriptor* parent,
2982 EnumValueDescriptor* result);
2983 void BuildService(const ServiceDescriptorProto& proto,
2984 const void* dummy,
2985 ServiceDescriptor* result);
2986 void BuildMethod(const MethodDescriptorProto& proto,
2987 const ServiceDescriptor* parent,
2988 MethodDescriptor* result);
2989
2990 void LogUnusedDependency(const FileDescriptorProto& proto,
2991 const FileDescriptor* result);
2992
2993 // Must be run only after building.
2994 //
2995 // NOTE: Options will not be available during cross-linking, as they
2996 // have not yet been interpreted. Defer any handling of options to the
2997 // Validate*Options methods.
2998 void CrossLinkFile(FileDescriptor* file, const FileDescriptorProto& proto);
2999 void CrossLinkMessage(Descriptor* message, const DescriptorProto& proto);
3000 void CrossLinkField(FieldDescriptor* field,
3001 const FieldDescriptorProto& proto);
3002 void CrossLinkEnum(EnumDescriptor* enum_type,
3003 const EnumDescriptorProto& proto);
3004 void CrossLinkEnumValue(EnumValueDescriptor* enum_value,
3005 const EnumValueDescriptorProto& proto);
3006 void CrossLinkService(ServiceDescriptor* service,
3007 const ServiceDescriptorProto& proto);
3008 void CrossLinkMethod(MethodDescriptor* method,
3009 const MethodDescriptorProto& proto);
3010
3011 // Must be run only after cross-linking.
3012 void InterpretOptions();
3013
3014 // A helper class for interpreting options.
3015 class OptionInterpreter {
3016 public:
3017 // Creates an interpreter that operates in the context of the pool of the
3018 // specified builder, which must not be NULL. We don't take ownership of the
3019 // builder.
3020 explicit OptionInterpreter(DescriptorBuilder* builder);
3021
3022 ~OptionInterpreter();
3023
3024 // Interprets the uninterpreted options in the specified Options message.
3025 // On error, calls AddError() on the underlying builder and returns false.
3026 // Otherwise returns true.
3027 bool InterpretOptions(OptionsToInterpret* options_to_interpret);
3028
3029 class AggregateOptionFinder;
3030
3031 private:
3032 // Interprets uninterpreted_option_ on the specified message, which
3033 // must be the mutable copy of the original options message to which
3034 // uninterpreted_option_ belongs.
3035 bool InterpretSingleOption(Message* options);
3036
3037 // Adds the uninterpreted_option to the given options message verbatim.
3038 // Used when AllowUnknownDependencies() is in effect and we can't find
3039 // the option's definition.
3040 void AddWithoutInterpreting(const UninterpretedOption& uninterpreted_option,
3041 Message* options);
3042
3043 // A recursive helper function that drills into the intermediate fields
3044 // in unknown_fields to check if field innermost_field is set on the
3045 // innermost message. Returns false and sets an error if so.
3046 bool ExamineIfOptionIsSet(
3047 vector<const FieldDescriptor*>::const_iterator intermediate_fields_iter,
3048 vector<const FieldDescriptor*>::const_iterator intermediate_fields_end,
3049 const FieldDescriptor* innermost_field, const string& debug_msg_name,
3050 const UnknownFieldSet& unknown_fields);
3051
3052 // Validates the value for the option field of the currently interpreted
3053 // option and then sets it on the unknown_field.
3054 bool SetOptionValue(const FieldDescriptor* option_field,
3055 UnknownFieldSet* unknown_fields);
3056
3057 // Parses an aggregate value for a CPPTYPE_MESSAGE option and
3058 // saves it into *unknown_fields.
3059 bool SetAggregateOption(const FieldDescriptor* option_field,
3060 UnknownFieldSet* unknown_fields);
3061
3062 // Convenience functions to set an int field the right way, depending on
3063 // its wire type (a single int CppType can represent multiple wire types).
3064 void SetInt32(int number, int32 value, FieldDescriptor::Type type,
3065 UnknownFieldSet* unknown_fields);
3066 void SetInt64(int number, int64 value, FieldDescriptor::Type type,
3067 UnknownFieldSet* unknown_fields);
3068 void SetUInt32(int number, uint32 value, FieldDescriptor::Type type,
3069 UnknownFieldSet* unknown_fields);
3070 void SetUInt64(int number, uint64 value, FieldDescriptor::Type type,
3071 UnknownFieldSet* unknown_fields);
3072
3073 // A helper function that adds an error at the specified location of the
3074 // option we're currently interpreting, and returns false.
AddOptionError(DescriptorPool::ErrorCollector::ErrorLocation location,const string & msg)3075 bool AddOptionError(DescriptorPool::ErrorCollector::ErrorLocation location,
3076 const string& msg) {
3077 builder_->AddError(options_to_interpret_->element_name,
3078 *uninterpreted_option_, location, msg);
3079 return false;
3080 }
3081
3082 // A helper function that adds an error at the location of the option name
3083 // and returns false.
AddNameError(const string & msg)3084 bool AddNameError(const string& msg) {
3085 return AddOptionError(DescriptorPool::ErrorCollector::OPTION_NAME, msg);
3086 }
3087
3088 // A helper function that adds an error at the location of the option name
3089 // and returns false.
AddValueError(const string & msg)3090 bool AddValueError(const string& msg) {
3091 return AddOptionError(DescriptorPool::ErrorCollector::OPTION_VALUE, msg);
3092 }
3093
3094 // We interpret against this builder's pool. Is never NULL. We don't own
3095 // this pointer.
3096 DescriptorBuilder* builder_;
3097
3098 // The options we're currently interpreting, or NULL if we're not in a call
3099 // to InterpretOptions.
3100 const OptionsToInterpret* options_to_interpret_;
3101
3102 // The option we're currently interpreting within options_to_interpret_, or
3103 // NULL if we're not in a call to InterpretOptions(). This points to a
3104 // submessage of the original option, not the mutable copy. Therefore we
3105 // can use it to find locations recorded by the parser.
3106 const UninterpretedOption* uninterpreted_option_;
3107
3108 // Factory used to create the dynamic messages we need to parse
3109 // any aggregate option values we encounter.
3110 DynamicMessageFactory dynamic_factory_;
3111
3112 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(OptionInterpreter);
3113 };
3114
3115 // Work-around for broken compilers: According to the C++ standard,
3116 // OptionInterpreter should have access to the private members of any class
3117 // which has declared DescriptorBuilder as a friend. Unfortunately some old
3118 // versions of GCC and other compilers do not implement this correctly. So,
3119 // we have to have these intermediate methods to provide access. We also
3120 // redundantly declare OptionInterpreter a friend just to make things extra
3121 // clear for these bad compilers.
3122 friend class OptionInterpreter;
3123 friend class OptionInterpreter::AggregateOptionFinder;
3124
get_allow_unknown(const DescriptorPool * pool)3125 static inline bool get_allow_unknown(const DescriptorPool* pool) {
3126 return pool->allow_unknown_;
3127 }
get_enforce_weak(const DescriptorPool * pool)3128 static inline bool get_enforce_weak(const DescriptorPool* pool) {
3129 return pool->enforce_weak_;
3130 }
get_is_placeholder(const Descriptor * descriptor)3131 static inline bool get_is_placeholder(const Descriptor* descriptor) {
3132 return descriptor->is_placeholder_;
3133 }
assert_mutex_held(const DescriptorPool * pool)3134 static inline void assert_mutex_held(const DescriptorPool* pool) {
3135 if (pool->mutex_ != NULL) {
3136 pool->mutex_->AssertHeld();
3137 }
3138 }
3139
3140 // Must be run only after options have been interpreted.
3141 //
3142 // NOTE: Validation code must only reference the options in the mutable
3143 // descriptors, which are the ones that have been interpreted. The const
3144 // proto references are passed in only so they can be provided to calls to
3145 // AddError(). Do not look at their options, which have not been interpreted.
3146 void ValidateFileOptions(FileDescriptor* file,
3147 const FileDescriptorProto& proto);
3148 void ValidateMessageOptions(Descriptor* message,
3149 const DescriptorProto& proto);
3150 void ValidateFieldOptions(FieldDescriptor* field,
3151 const FieldDescriptorProto& proto);
3152 void ValidateEnumOptions(EnumDescriptor* enm,
3153 const EnumDescriptorProto& proto);
3154 void ValidateEnumValueOptions(EnumValueDescriptor* enum_value,
3155 const EnumValueDescriptorProto& proto);
3156 void ValidateServiceOptions(ServiceDescriptor* service,
3157 const ServiceDescriptorProto& proto);
3158 void ValidateMethodOptions(MethodDescriptor* method,
3159 const MethodDescriptorProto& proto);
3160 void ValidateProto3(FileDescriptor* file,
3161 const FileDescriptorProto& proto);
3162 void ValidateProto3Message(Descriptor* message,
3163 const DescriptorProto& proto);
3164 void ValidateProto3Field(FieldDescriptor* field,
3165 const FieldDescriptorProto& proto);
3166 void ValidateProto3Enum(EnumDescriptor* enm,
3167 const EnumDescriptorProto& proto);
3168
3169 // Returns true if the map entry message is compatible with the
3170 // auto-generated entry message from map fields syntax.
3171 bool ValidateMapEntry(FieldDescriptor* field,
3172 const FieldDescriptorProto& proto);
3173
3174 // Recursively detects naming conflicts with map entry types for a
3175 // better error message.
3176 void DetectMapConflicts(const Descriptor* message,
3177 const DescriptorProto& proto);
3178
3179 };
3180
BuildFile(const FileDescriptorProto & proto)3181 const FileDescriptor* DescriptorPool::BuildFile(
3182 const FileDescriptorProto& proto) {
3183 GOOGLE_CHECK(fallback_database_ == NULL)
3184 << "Cannot call BuildFile on a DescriptorPool that uses a "
3185 "DescriptorDatabase. You must instead find a way to get your file "
3186 "into the underlying database.";
3187 GOOGLE_CHECK(mutex_ == NULL); // Implied by the above GOOGLE_CHECK.
3188 tables_->known_bad_symbols_.clear();
3189 tables_->known_bad_files_.clear();
3190 return DescriptorBuilder(this, tables_.get(), NULL).BuildFile(proto);
3191 }
3192
BuildFileCollectingErrors(const FileDescriptorProto & proto,ErrorCollector * error_collector)3193 const FileDescriptor* DescriptorPool::BuildFileCollectingErrors(
3194 const FileDescriptorProto& proto,
3195 ErrorCollector* error_collector) {
3196 GOOGLE_CHECK(fallback_database_ == NULL)
3197 << "Cannot call BuildFile on a DescriptorPool that uses a "
3198 "DescriptorDatabase. You must instead find a way to get your file "
3199 "into the underlying database.";
3200 GOOGLE_CHECK(mutex_ == NULL); // Implied by the above GOOGLE_CHECK.
3201 tables_->known_bad_symbols_.clear();
3202 tables_->known_bad_files_.clear();
3203 return DescriptorBuilder(this, tables_.get(),
3204 error_collector).BuildFile(proto);
3205 }
3206
BuildFileFromDatabase(const FileDescriptorProto & proto) const3207 const FileDescriptor* DescriptorPool::BuildFileFromDatabase(
3208 const FileDescriptorProto& proto) const {
3209 mutex_->AssertHeld();
3210 if (tables_->known_bad_files_.count(proto.name()) > 0) {
3211 return NULL;
3212 }
3213 const FileDescriptor* result =
3214 DescriptorBuilder(this, tables_.get(),
3215 default_error_collector_).BuildFile(proto);
3216 if (result == NULL) {
3217 tables_->known_bad_files_.insert(proto.name());
3218 }
3219 return result;
3220 }
3221
DescriptorBuilder(const DescriptorPool * pool,DescriptorPool::Tables * tables,DescriptorPool::ErrorCollector * error_collector)3222 DescriptorBuilder::DescriptorBuilder(
3223 const DescriptorPool* pool,
3224 DescriptorPool::Tables* tables,
3225 DescriptorPool::ErrorCollector* error_collector)
3226 : pool_(pool),
3227 tables_(tables),
3228 error_collector_(error_collector),
3229 had_errors_(false),
3230 possible_undeclared_dependency_(NULL),
3231 undefine_resolved_name_("") {}
3232
~DescriptorBuilder()3233 DescriptorBuilder::~DescriptorBuilder() {}
3234
AddError(const string & element_name,const Message & descriptor,DescriptorPool::ErrorCollector::ErrorLocation location,const string & error)3235 void DescriptorBuilder::AddError(
3236 const string& element_name,
3237 const Message& descriptor,
3238 DescriptorPool::ErrorCollector::ErrorLocation location,
3239 const string& error) {
3240 if (error_collector_ == NULL) {
3241 if (!had_errors_) {
3242 GOOGLE_LOG(ERROR) << "Invalid proto descriptor for file \"" << filename_
3243 << "\":";
3244 }
3245 GOOGLE_LOG(ERROR) << " " << element_name << ": " << error;
3246 } else {
3247 error_collector_->AddError(filename_, element_name,
3248 &descriptor, location, error);
3249 }
3250 had_errors_ = true;
3251 }
3252
AddError(const string & element_name,const Message & descriptor,DescriptorPool::ErrorCollector::ErrorLocation location,const char * error)3253 void DescriptorBuilder::AddError(
3254 const string& element_name,
3255 const Message& descriptor,
3256 DescriptorPool::ErrorCollector::ErrorLocation location,
3257 const char* error) {
3258 AddError(element_name, descriptor, location, string(error));
3259 }
3260
AddNotDefinedError(const string & element_name,const Message & descriptor,DescriptorPool::ErrorCollector::ErrorLocation location,const string & undefined_symbol)3261 void DescriptorBuilder::AddNotDefinedError(
3262 const string& element_name,
3263 const Message& descriptor,
3264 DescriptorPool::ErrorCollector::ErrorLocation location,
3265 const string& undefined_symbol) {
3266 if (possible_undeclared_dependency_ == NULL &&
3267 undefine_resolved_name_.empty()) {
3268 AddError(element_name, descriptor, location,
3269 "\"" + undefined_symbol + "\" is not defined.");
3270 } else {
3271 if (possible_undeclared_dependency_ != NULL) {
3272 AddError(element_name, descriptor, location,
3273 "\"" + possible_undeclared_dependency_name_ +
3274 "\" seems to be defined in \"" +
3275 possible_undeclared_dependency_->name() + "\", which is not "
3276 "imported by \"" + filename_ + "\". To use it here, please "
3277 "add the necessary import.");
3278 }
3279 if (!undefine_resolved_name_.empty()) {
3280 AddError(element_name, descriptor, location,
3281 "\"" + undefined_symbol + "\" is resolved to \"" +
3282 undefine_resolved_name_ + "\", which is not defined. "
3283 "The innermost scope is searched first in name resolution. "
3284 "Consider using a leading '.'(i.e., \"."
3285 + undefined_symbol +
3286 "\") to start from the outermost scope.");
3287 }
3288 }
3289 }
3290
AddWarning(const string & element_name,const Message & descriptor,DescriptorPool::ErrorCollector::ErrorLocation location,const string & error)3291 void DescriptorBuilder::AddWarning(
3292 const string& element_name, const Message& descriptor,
3293 DescriptorPool::ErrorCollector::ErrorLocation location,
3294 const string& error) {
3295 if (error_collector_ == NULL) {
3296 GOOGLE_LOG(WARNING) << filename_ << " " << element_name << ": " << error;
3297 } else {
3298 error_collector_->AddWarning(filename_, element_name, &descriptor, location,
3299 error);
3300 }
3301 }
3302
IsInPackage(const FileDescriptor * file,const string & package_name)3303 bool DescriptorBuilder::IsInPackage(const FileDescriptor* file,
3304 const string& package_name) {
3305 return HasPrefixString(file->package(), package_name) &&
3306 (file->package().size() == package_name.size() ||
3307 file->package()[package_name.size()] == '.');
3308 }
3309
RecordPublicDependencies(const FileDescriptor * file)3310 void DescriptorBuilder::RecordPublicDependencies(const FileDescriptor* file) {
3311 if (file == NULL || !dependencies_.insert(file).second) return;
3312 for (int i = 0; file != NULL && i < file->public_dependency_count(); i++) {
3313 RecordPublicDependencies(file->public_dependency(i));
3314 }
3315 }
3316
FindSymbolNotEnforcingDepsHelper(const DescriptorPool * pool,const string & name)3317 Symbol DescriptorBuilder::FindSymbolNotEnforcingDepsHelper(
3318 const DescriptorPool* pool, const string& name) {
3319 // If we are looking at an underlay, we must lock its mutex_, since we are
3320 // accessing the underlay's tables_ directly.
3321 MutexLockMaybe lock((pool == pool_) ? NULL : pool->mutex_);
3322
3323 Symbol result = pool->tables_->FindSymbol(name);
3324 if (result.IsNull() && pool->underlay_ != NULL) {
3325 // Symbol not found; check the underlay.
3326 result = FindSymbolNotEnforcingDepsHelper(pool->underlay_, name);
3327 }
3328
3329 if (result.IsNull()) {
3330 // In theory, we shouldn't need to check fallback_database_ because the
3331 // symbol should be in one of its file's direct dependencies, and we have
3332 // already loaded those by the time we get here. But we check anyway so
3333 // that we can generate better error message when dependencies are missing
3334 // (i.e., "missing dependency" rather than "type is not defined").
3335 if (pool->TryFindSymbolInFallbackDatabase(name)) {
3336 result = pool->tables_->FindSymbol(name);
3337 }
3338 }
3339
3340 return result;
3341 }
3342
FindSymbolNotEnforcingDeps(const string & name)3343 Symbol DescriptorBuilder::FindSymbolNotEnforcingDeps(const string& name) {
3344 return FindSymbolNotEnforcingDepsHelper(pool_, name);
3345 }
3346
FindSymbol(const string & name)3347 Symbol DescriptorBuilder::FindSymbol(const string& name) {
3348 Symbol result = FindSymbolNotEnforcingDeps(name);
3349
3350 if (result.IsNull()) return result;
3351
3352 if (!pool_->enforce_dependencies_) {
3353 // Hack for CompilerUpgrader.
3354 return result;
3355 }
3356
3357 // Only find symbols which were defined in this file or one of its
3358 // dependencies.
3359 const FileDescriptor* file = result.GetFile();
3360 if (file == file_ || dependencies_.count(file) > 0) {
3361 unused_dependency_.erase(file);
3362 return result;
3363 }
3364
3365 if (result.type == Symbol::PACKAGE) {
3366 // Arg, this is overcomplicated. The symbol is a package name. It could
3367 // be that the package was defined in multiple files. result.GetFile()
3368 // returns the first file we saw that used this package. We've determined
3369 // that that file is not a direct dependency of the file we are currently
3370 // building, but it could be that some other file which *is* a direct
3371 // dependency also defines the same package. We can't really rule out this
3372 // symbol unless none of the dependencies define it.
3373 if (IsInPackage(file_, name)) return result;
3374 for (set<const FileDescriptor*>::const_iterator it = dependencies_.begin();
3375 it != dependencies_.end(); ++it) {
3376 // Note: A dependency may be NULL if it was not found or had errors.
3377 if (*it != NULL && IsInPackage(*it, name)) return result;
3378 }
3379 }
3380
3381 possible_undeclared_dependency_ = file;
3382 possible_undeclared_dependency_name_ = name;
3383 return kNullSymbol;
3384 }
3385
LookupSymbolNoPlaceholder(const string & name,const string & relative_to,ResolveMode resolve_mode)3386 Symbol DescriptorBuilder::LookupSymbolNoPlaceholder(
3387 const string& name, const string& relative_to, ResolveMode resolve_mode) {
3388 possible_undeclared_dependency_ = NULL;
3389 undefine_resolved_name_.clear();
3390
3391 if (name.size() > 0 && name[0] == '.') {
3392 // Fully-qualified name.
3393 return FindSymbol(name.substr(1));
3394 }
3395
3396 // If name is something like "Foo.Bar.baz", and symbols named "Foo" are
3397 // defined in multiple parent scopes, we only want to find "Bar.baz" in the
3398 // innermost one. E.g., the following should produce an error:
3399 // message Bar { message Baz {} }
3400 // message Foo {
3401 // message Bar {
3402 // }
3403 // optional Bar.Baz baz = 1;
3404 // }
3405 // So, we look for just "Foo" first, then look for "Bar.baz" within it if
3406 // found.
3407 string::size_type name_dot_pos = name.find_first_of('.');
3408 string first_part_of_name;
3409 if (name_dot_pos == string::npos) {
3410 first_part_of_name = name;
3411 } else {
3412 first_part_of_name = name.substr(0, name_dot_pos);
3413 }
3414
3415 string scope_to_try(relative_to);
3416
3417 while (true) {
3418 // Chop off the last component of the scope.
3419 string::size_type dot_pos = scope_to_try.find_last_of('.');
3420 if (dot_pos == string::npos) {
3421 return FindSymbol(name);
3422 } else {
3423 scope_to_try.erase(dot_pos);
3424 }
3425
3426 // Append ".first_part_of_name" and try to find.
3427 string::size_type old_size = scope_to_try.size();
3428 scope_to_try.append(1, '.');
3429 scope_to_try.append(first_part_of_name);
3430 Symbol result = FindSymbol(scope_to_try);
3431 if (!result.IsNull()) {
3432 if (first_part_of_name.size() < name.size()) {
3433 // name is a compound symbol, of which we only found the first part.
3434 // Now try to look up the rest of it.
3435 if (result.IsAggregate()) {
3436 scope_to_try.append(name, first_part_of_name.size(),
3437 name.size() - first_part_of_name.size());
3438 result = FindSymbol(scope_to_try);
3439 if (result.IsNull()) {
3440 undefine_resolved_name_ = scope_to_try;
3441 }
3442 return result;
3443 } else {
3444 // We found a symbol but it's not an aggregate. Continue the loop.
3445 }
3446 } else {
3447 if (resolve_mode == LOOKUP_TYPES && !result.IsType()) {
3448 // We found a symbol but it's not a type. Continue the loop.
3449 } else {
3450 return result;
3451 }
3452 }
3453 }
3454
3455 // Not found. Remove the name so we can try again.
3456 scope_to_try.erase(old_size);
3457 }
3458 }
3459
LookupSymbol(const string & name,const string & relative_to,PlaceholderType placeholder_type,ResolveMode resolve_mode)3460 Symbol DescriptorBuilder::LookupSymbol(
3461 const string& name, const string& relative_to,
3462 PlaceholderType placeholder_type, ResolveMode resolve_mode) {
3463 Symbol result = LookupSymbolNoPlaceholder(
3464 name, relative_to, resolve_mode);
3465 if (result.IsNull() && pool_->allow_unknown_) {
3466 // Not found, but AllowUnknownDependencies() is enabled. Return a
3467 // placeholder instead.
3468 result = NewPlaceholder(name, placeholder_type);
3469 }
3470 return result;
3471 }
3472
NewPlaceholder(const string & name,PlaceholderType placeholder_type)3473 Symbol DescriptorBuilder::NewPlaceholder(const string& name,
3474 PlaceholderType placeholder_type) {
3475 // Compute names.
3476 const string* placeholder_full_name;
3477 const string* placeholder_name;
3478 const string* placeholder_package;
3479
3480 if (!ValidateQualifiedName(name)) return kNullSymbol;
3481 if (name[0] == '.') {
3482 // Fully-qualified.
3483 placeholder_full_name = tables_->AllocateString(name.substr(1));
3484 } else {
3485 placeholder_full_name = tables_->AllocateString(name);
3486 }
3487
3488 string::size_type dotpos = placeholder_full_name->find_last_of('.');
3489 if (dotpos != string::npos) {
3490 placeholder_package = tables_->AllocateString(
3491 placeholder_full_name->substr(0, dotpos));
3492 placeholder_name = tables_->AllocateString(
3493 placeholder_full_name->substr(dotpos + 1));
3494 } else {
3495 placeholder_package = &internal::GetEmptyString();
3496 placeholder_name = placeholder_full_name;
3497 }
3498
3499 // Create the placeholders.
3500 FileDescriptor* placeholder_file = NewPlaceholderFile(
3501 *placeholder_full_name + ".placeholder.proto");
3502 placeholder_file->package_ = placeholder_package;
3503
3504 if (placeholder_type == PLACEHOLDER_ENUM) {
3505 placeholder_file->enum_type_count_ = 1;
3506 placeholder_file->enum_types_ =
3507 tables_->AllocateArray<EnumDescriptor>(1);
3508
3509 EnumDescriptor* placeholder_enum = &placeholder_file->enum_types_[0];
3510 memset(placeholder_enum, 0, sizeof(*placeholder_enum));
3511
3512 placeholder_enum->full_name_ = placeholder_full_name;
3513 placeholder_enum->name_ = placeholder_name;
3514 placeholder_enum->file_ = placeholder_file;
3515 placeholder_enum->options_ = &EnumOptions::default_instance();
3516 placeholder_enum->is_placeholder_ = true;
3517 placeholder_enum->is_unqualified_placeholder_ = (name[0] != '.');
3518
3519 // Enums must have at least one value.
3520 placeholder_enum->value_count_ = 1;
3521 placeholder_enum->values_ = tables_->AllocateArray<EnumValueDescriptor>(1);
3522
3523 EnumValueDescriptor* placeholder_value = &placeholder_enum->values_[0];
3524 memset(placeholder_value, 0, sizeof(*placeholder_value));
3525
3526 placeholder_value->name_ = tables_->AllocateString("PLACEHOLDER_VALUE");
3527 // Note that enum value names are siblings of their type, not children.
3528 placeholder_value->full_name_ =
3529 placeholder_package->empty() ? placeholder_value->name_ :
3530 tables_->AllocateString(*placeholder_package + ".PLACEHOLDER_VALUE");
3531
3532 placeholder_value->number_ = 0;
3533 placeholder_value->type_ = placeholder_enum;
3534 placeholder_value->options_ = &EnumValueOptions::default_instance();
3535
3536 return Symbol(placeholder_enum);
3537 } else {
3538 placeholder_file->message_type_count_ = 1;
3539 placeholder_file->message_types_ =
3540 tables_->AllocateArray<Descriptor>(1);
3541
3542 Descriptor* placeholder_message = &placeholder_file->message_types_[0];
3543 memset(placeholder_message, 0, sizeof(*placeholder_message));
3544
3545 placeholder_message->full_name_ = placeholder_full_name;
3546 placeholder_message->name_ = placeholder_name;
3547 placeholder_message->file_ = placeholder_file;
3548 placeholder_message->options_ = &MessageOptions::default_instance();
3549 placeholder_message->is_placeholder_ = true;
3550 placeholder_message->is_unqualified_placeholder_ = (name[0] != '.');
3551
3552 if (placeholder_type == PLACEHOLDER_EXTENDABLE_MESSAGE) {
3553 placeholder_message->extension_range_count_ = 1;
3554 placeholder_message->extension_ranges_ =
3555 tables_->AllocateArray<Descriptor::ExtensionRange>(1);
3556 placeholder_message->extension_ranges_->start = 1;
3557 // kMaxNumber + 1 because ExtensionRange::end is exclusive.
3558 placeholder_message->extension_ranges_->end =
3559 FieldDescriptor::kMaxNumber + 1;
3560 }
3561
3562 return Symbol(placeholder_message);
3563 }
3564 }
3565
NewPlaceholderFile(const string & name)3566 FileDescriptor* DescriptorBuilder::NewPlaceholderFile(
3567 const string& name) {
3568 FileDescriptor* placeholder = tables_->Allocate<FileDescriptor>();
3569 memset(placeholder, 0, sizeof(*placeholder));
3570
3571 placeholder->name_ = tables_->AllocateString(name);
3572 placeholder->package_ = &internal::GetEmptyString();
3573 placeholder->pool_ = pool_;
3574 placeholder->options_ = &FileOptions::default_instance();
3575 placeholder->tables_ = &FileDescriptorTables::GetEmptyInstance();
3576 placeholder->source_code_info_ = &SourceCodeInfo::default_instance();
3577 placeholder->is_placeholder_ = true;
3578 placeholder->syntax_ = FileDescriptor::SYNTAX_PROTO2;
3579 // All other fields are zero or NULL.
3580
3581 return placeholder;
3582 }
3583
AddSymbol(const string & full_name,const void * parent,const string & name,const Message & proto,Symbol symbol)3584 bool DescriptorBuilder::AddSymbol(
3585 const string& full_name, const void* parent, const string& name,
3586 const Message& proto, Symbol symbol) {
3587 // If the caller passed NULL for the parent, the symbol is at file scope.
3588 // Use its file as the parent instead.
3589 if (parent == NULL) parent = file_;
3590
3591 if (tables_->AddSymbol(full_name, symbol)) {
3592 if (!file_tables_->AddAliasUnderParent(parent, name, symbol)) {
3593 GOOGLE_LOG(DFATAL) << "\"" << full_name << "\" not previously defined in "
3594 "symbols_by_name_, but was defined in symbols_by_parent_; "
3595 "this shouldn't be possible.";
3596 return false;
3597 }
3598 return true;
3599 } else {
3600 const FileDescriptor* other_file = tables_->FindSymbol(full_name).GetFile();
3601 if (other_file == file_) {
3602 string::size_type dot_pos = full_name.find_last_of('.');
3603 if (dot_pos == string::npos) {
3604 AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
3605 "\"" + full_name + "\" is already defined.");
3606 } else {
3607 AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
3608 "\"" + full_name.substr(dot_pos + 1) +
3609 "\" is already defined in \"" +
3610 full_name.substr(0, dot_pos) + "\".");
3611 }
3612 } else {
3613 // Symbol seems to have been defined in a different file.
3614 AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
3615 "\"" + full_name + "\" is already defined in file \"" +
3616 other_file->name() + "\".");
3617 }
3618 return false;
3619 }
3620 }
3621
AddPackage(const string & name,const Message & proto,const FileDescriptor * file)3622 void DescriptorBuilder::AddPackage(
3623 const string& name, const Message& proto, const FileDescriptor* file) {
3624 if (tables_->AddSymbol(name, Symbol(file))) {
3625 // Success. Also add parent package, if any.
3626 string::size_type dot_pos = name.find_last_of('.');
3627 if (dot_pos == string::npos) {
3628 // No parents.
3629 ValidateSymbolName(name, name, proto);
3630 } else {
3631 // Has parent.
3632 string* parent_name = tables_->AllocateString(name.substr(0, dot_pos));
3633 AddPackage(*parent_name, proto, file);
3634 ValidateSymbolName(name.substr(dot_pos + 1), name, proto);
3635 }
3636 } else {
3637 Symbol existing_symbol = tables_->FindSymbol(name);
3638 // It's OK to redefine a package.
3639 if (existing_symbol.type != Symbol::PACKAGE) {
3640 // Symbol seems to have been defined in a different file.
3641 AddError(name, proto, DescriptorPool::ErrorCollector::NAME,
3642 "\"" + name + "\" is already defined (as something other than "
3643 "a package) in file \"" + existing_symbol.GetFile()->name() +
3644 "\".");
3645 }
3646 }
3647 }
3648
ValidateSymbolName(const string & name,const string & full_name,const Message & proto)3649 void DescriptorBuilder::ValidateSymbolName(
3650 const string& name, const string& full_name, const Message& proto) {
3651 if (name.empty()) {
3652 AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
3653 "Missing name.");
3654 } else {
3655 for (int i = 0; i < name.size(); i++) {
3656 // I don't trust isalnum() due to locales. :(
3657 if ((name[i] < 'a' || 'z' < name[i]) &&
3658 (name[i] < 'A' || 'Z' < name[i]) &&
3659 (name[i] < '0' || '9' < name[i]) &&
3660 (name[i] != '_')) {
3661 AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME,
3662 "\"" + name + "\" is not a valid identifier.");
3663 }
3664 }
3665 }
3666 }
3667
ValidateQualifiedName(const string & name)3668 bool DescriptorBuilder::ValidateQualifiedName(const string& name) {
3669 bool last_was_period = false;
3670
3671 for (int i = 0; i < name.size(); i++) {
3672 // I don't trust isalnum() due to locales. :(
3673 if (('a' <= name[i] && name[i] <= 'z') ||
3674 ('A' <= name[i] && name[i] <= 'Z') ||
3675 ('0' <= name[i] && name[i] <= '9') ||
3676 (name[i] == '_')) {
3677 last_was_period = false;
3678 } else if (name[i] == '.') {
3679 if (last_was_period) return false;
3680 last_was_period = true;
3681 } else {
3682 return false;
3683 }
3684 }
3685
3686 return !name.empty() && !last_was_period;
3687 }
3688
3689 // -------------------------------------------------------------------
3690
3691 // This generic implementation is good for all descriptors except
3692 // FileDescriptor.
AllocateOptions(const typename DescriptorT::OptionsType & orig_options,DescriptorT * descriptor)3693 template<class DescriptorT> void DescriptorBuilder::AllocateOptions(
3694 const typename DescriptorT::OptionsType& orig_options,
3695 DescriptorT* descriptor) {
3696 AllocateOptionsImpl(descriptor->full_name(), descriptor->full_name(),
3697 orig_options, descriptor);
3698 }
3699
3700 // We specialize for FileDescriptor.
AllocateOptions(const FileOptions & orig_options,FileDescriptor * descriptor)3701 void DescriptorBuilder::AllocateOptions(const FileOptions& orig_options,
3702 FileDescriptor* descriptor) {
3703 // We add the dummy token so that LookupSymbol does the right thing.
3704 AllocateOptionsImpl(descriptor->package() + ".dummy", descriptor->name(),
3705 orig_options, descriptor);
3706 }
3707
AllocateOptionsImpl(const string & name_scope,const string & element_name,const typename DescriptorT::OptionsType & orig_options,DescriptorT * descriptor)3708 template<class DescriptorT> void DescriptorBuilder::AllocateOptionsImpl(
3709 const string& name_scope,
3710 const string& element_name,
3711 const typename DescriptorT::OptionsType& orig_options,
3712 DescriptorT* descriptor) {
3713 // We need to use a dummy pointer to work around a bug in older versions of
3714 // GCC. Otherwise, the following two lines could be replaced with:
3715 // typename DescriptorT::OptionsType* options =
3716 // tables_->AllocateMessage<typename DescriptorT::OptionsType>();
3717 typename DescriptorT::OptionsType* const dummy = NULL;
3718 typename DescriptorT::OptionsType* options = tables_->AllocateMessage(dummy);
3719 // Avoid using MergeFrom()/CopyFrom() in this class to make it -fno-rtti
3720 // friendly. Without RTTI, MergeFrom() and CopyFrom() will fallback to the
3721 // reflection based method, which requires the Descriptor. However, we are in
3722 // the middle of building the descriptors, thus the deadlock.
3723 options->ParseFromString(orig_options.SerializeAsString());
3724 descriptor->options_ = options;
3725
3726 // Don't add to options_to_interpret_ unless there were uninterpreted
3727 // options. This not only avoids unnecessary work, but prevents a
3728 // bootstrapping problem when building descriptors for descriptor.proto.
3729 // descriptor.proto does not contain any uninterpreted options, but
3730 // attempting to interpret options anyway will cause
3731 // OptionsType::GetDescriptor() to be called which may then deadlock since
3732 // we're still trying to build it.
3733 if (options->uninterpreted_option_size() > 0) {
3734 options_to_interpret_.push_back(
3735 OptionsToInterpret(name_scope, element_name, &orig_options, options));
3736 }
3737 }
3738
3739
3740 // A common pattern: We want to convert a repeated field in the descriptor
3741 // to an array of values, calling some method to build each value.
3742 #define BUILD_ARRAY(INPUT, OUTPUT, NAME, METHOD, PARENT) \
3743 OUTPUT->NAME##_count_ = INPUT.NAME##_size(); \
3744 AllocateArray(INPUT.NAME##_size(), &OUTPUT->NAME##s_); \
3745 for (int i = 0; i < INPUT.NAME##_size(); i++) { \
3746 METHOD(INPUT.NAME(i), PARENT, OUTPUT->NAME##s_ + i); \
3747 }
3748
AddRecursiveImportError(const FileDescriptorProto & proto,int from_here)3749 void DescriptorBuilder::AddRecursiveImportError(
3750 const FileDescriptorProto& proto, int from_here) {
3751 string error_message("File recursively imports itself: ");
3752 for (int i = from_here; i < tables_->pending_files_.size(); i++) {
3753 error_message.append(tables_->pending_files_[i]);
3754 error_message.append(" -> ");
3755 }
3756 error_message.append(proto.name());
3757
3758 AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER,
3759 error_message);
3760 }
3761
AddTwiceListedError(const FileDescriptorProto & proto,int index)3762 void DescriptorBuilder::AddTwiceListedError(const FileDescriptorProto& proto,
3763 int index) {
3764 AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER,
3765 "Import \"" + proto.dependency(index) + "\" was listed twice.");
3766 }
3767
AddImportError(const FileDescriptorProto & proto,int index)3768 void DescriptorBuilder::AddImportError(const FileDescriptorProto& proto,
3769 int index) {
3770 string message;
3771 if (pool_->fallback_database_ == NULL) {
3772 message = "Import \"" + proto.dependency(index) +
3773 "\" has not been loaded.";
3774 } else {
3775 message = "Import \"" + proto.dependency(index) +
3776 "\" was not found or had errors.";
3777 }
3778 AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER, message);
3779 }
3780
ExistingFileMatchesProto(const FileDescriptor * existing_file,const FileDescriptorProto & proto)3781 static bool ExistingFileMatchesProto(const FileDescriptor* existing_file,
3782 const FileDescriptorProto& proto) {
3783 FileDescriptorProto existing_proto;
3784 existing_file->CopyTo(&existing_proto);
3785 // TODO(liujisi): Remove it when CopyTo supports copying syntax params when
3786 // syntax="proto2".
3787 if (existing_file->syntax() == FileDescriptor::SYNTAX_PROTO2 &&
3788 proto.has_syntax()) {
3789 existing_proto.set_syntax(
3790 existing_file->SyntaxName(existing_file->syntax()));
3791 }
3792
3793 return existing_proto.SerializeAsString() == proto.SerializeAsString();
3794 }
3795
BuildFile(const FileDescriptorProto & proto)3796 const FileDescriptor* DescriptorBuilder::BuildFile(
3797 const FileDescriptorProto& proto) {
3798 filename_ = proto.name();
3799
3800 // Check if the file already exists and is identical to the one being built.
3801 // Note: This only works if the input is canonical -- that is, it
3802 // fully-qualifies all type names, has no UninterpretedOptions, etc.
3803 // This is fine, because this idempotency "feature" really only exists to
3804 // accommodate one hack in the proto1->proto2 migration layer.
3805 const FileDescriptor* existing_file = tables_->FindFile(filename_);
3806 if (existing_file != NULL) {
3807 // File already in pool. Compare the existing one to the input.
3808 if (ExistingFileMatchesProto(existing_file, proto)) {
3809 // They're identical. Return the existing descriptor.
3810 return existing_file;
3811 }
3812
3813 // Not a match. The error will be detected and handled later.
3814 }
3815
3816 // Check to see if this file is already on the pending files list.
3817 // TODO(kenton): Allow recursive imports? It may not work with some
3818 // (most?) programming languages. E.g., in C++, a forward declaration
3819 // of a type is not sufficient to allow it to be used even in a
3820 // generated header file due to inlining. This could perhaps be
3821 // worked around using tricks involving inserting #include statements
3822 // mid-file, but that's pretty ugly, and I'm pretty sure there are
3823 // some languages out there that do not allow recursive dependencies
3824 // at all.
3825 for (int i = 0; i < tables_->pending_files_.size(); i++) {
3826 if (tables_->pending_files_[i] == proto.name()) {
3827 AddRecursiveImportError(proto, i);
3828 return NULL;
3829 }
3830 }
3831
3832 // If we have a fallback_database_, attempt to load all dependencies now,
3833 // before checkpointing tables_. This avoids confusion with recursive
3834 // checkpoints.
3835 if (pool_->fallback_database_ != NULL) {
3836 tables_->pending_files_.push_back(proto.name());
3837 for (int i = 0; i < proto.dependency_size(); i++) {
3838 if (tables_->FindFile(proto.dependency(i)) == NULL &&
3839 (pool_->underlay_ == NULL ||
3840 pool_->underlay_->FindFileByName(proto.dependency(i)) == NULL)) {
3841 // We don't care what this returns since we'll find out below anyway.
3842 pool_->TryFindFileInFallbackDatabase(proto.dependency(i));
3843 }
3844 }
3845 tables_->pending_files_.pop_back();
3846 }
3847 return BuildFileImpl(proto);
3848 }
3849
BuildFileImpl(const FileDescriptorProto & proto)3850 const FileDescriptor* DescriptorBuilder::BuildFileImpl(
3851 const FileDescriptorProto& proto) {
3852 // Checkpoint the tables so that we can roll back if something goes wrong.
3853 tables_->AddCheckpoint();
3854
3855 FileDescriptor* result = tables_->Allocate<FileDescriptor>();
3856 file_ = result;
3857
3858 result->is_placeholder_ = false;
3859 if (proto.has_source_code_info()) {
3860 SourceCodeInfo *info = tables_->AllocateMessage<SourceCodeInfo>();
3861 info->CopyFrom(proto.source_code_info());
3862 result->source_code_info_ = info;
3863 } else {
3864 result->source_code_info_ = &SourceCodeInfo::default_instance();
3865 }
3866
3867 file_tables_ = tables_->AllocateFileTables();
3868 file_->tables_ = file_tables_;
3869
3870 if (!proto.has_name()) {
3871 AddError("", proto, DescriptorPool::ErrorCollector::OTHER,
3872 "Missing field: FileDescriptorProto.name.");
3873 }
3874
3875 // TODO(liujisi): Report error when the syntax is empty after all the protos
3876 // have added the syntax statement.
3877 if (proto.syntax().empty() || proto.syntax() == "proto2") {
3878 file_->syntax_ = FileDescriptor::SYNTAX_PROTO2;
3879 } else if (proto.syntax() == "proto3") {
3880 file_->syntax_ = FileDescriptor::SYNTAX_PROTO3;
3881 } else {
3882 file_->syntax_ = FileDescriptor::SYNTAX_UNKNOWN;
3883 AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER,
3884 "Unrecognized syntax: " + proto.syntax());
3885 }
3886
3887 result->name_ = tables_->AllocateString(proto.name());
3888 if (proto.has_package()) {
3889 result->package_ = tables_->AllocateString(proto.package());
3890 } else {
3891 // We cannot rely on proto.package() returning a valid string if
3892 // proto.has_package() is false, because we might be running at static
3893 // initialization time, in which case default values have not yet been
3894 // initialized.
3895 result->package_ = tables_->AllocateString("");
3896 }
3897 result->pool_ = pool_;
3898
3899 // Add to tables.
3900 if (!tables_->AddFile(result)) {
3901 AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER,
3902 "A file with this name is already in the pool.");
3903 // Bail out early so that if this is actually the exact same file, we
3904 // don't end up reporting that every single symbol is already defined.
3905 tables_->RollbackToLastCheckpoint();
3906 return NULL;
3907 }
3908 if (!result->package().empty()) {
3909 AddPackage(result->package(), proto, result);
3910 }
3911
3912 // Make sure all dependencies are loaded.
3913 set<string> seen_dependencies;
3914 result->dependency_count_ = proto.dependency_size();
3915 result->dependencies_ =
3916 tables_->AllocateArray<const FileDescriptor*>(proto.dependency_size());
3917 unused_dependency_.clear();
3918 set<int> weak_deps;
3919 for (int i = 0; i < proto.weak_dependency_size(); ++i) {
3920 weak_deps.insert(proto.weak_dependency(i));
3921 }
3922 for (int i = 0; i < proto.dependency_size(); i++) {
3923 if (!seen_dependencies.insert(proto.dependency(i)).second) {
3924 AddTwiceListedError(proto, i);
3925 }
3926
3927 const FileDescriptor* dependency = tables_->FindFile(proto.dependency(i));
3928 if (dependency == NULL && pool_->underlay_ != NULL) {
3929 dependency = pool_->underlay_->FindFileByName(proto.dependency(i));
3930 }
3931
3932 if (dependency == NULL) {
3933 if (pool_->allow_unknown_ ||
3934 (!pool_->enforce_weak_ && weak_deps.find(i) != weak_deps.end())) {
3935 dependency = NewPlaceholderFile(proto.dependency(i));
3936 } else {
3937 AddImportError(proto, i);
3938 }
3939 } else {
3940 // Add to unused_dependency_ to track unused imported files.
3941 // Note: do not track unused imported files for public import.
3942 if (pool_->enforce_dependencies_ &&
3943 (pool_->unused_import_track_files_.find(proto.name()) !=
3944 pool_->unused_import_track_files_.end()) &&
3945 (dependency->public_dependency_count() == 0)) {
3946 unused_dependency_.insert(dependency);
3947 }
3948 }
3949
3950 result->dependencies_[i] = dependency;
3951 }
3952
3953 // Check public dependencies.
3954 int public_dependency_count = 0;
3955 result->public_dependencies_ = tables_->AllocateArray<int>(
3956 proto.public_dependency_size());
3957 for (int i = 0; i < proto.public_dependency_size(); i++) {
3958 // Only put valid public dependency indexes.
3959 int index = proto.public_dependency(i);
3960 if (index >= 0 && index < proto.dependency_size()) {
3961 result->public_dependencies_[public_dependency_count++] = index;
3962 // Do not track unused imported files for public import.
3963 unused_dependency_.erase(result->dependency(index));
3964 } else {
3965 AddError(proto.name(), proto,
3966 DescriptorPool::ErrorCollector::OTHER,
3967 "Invalid public dependency index.");
3968 }
3969 }
3970 result->public_dependency_count_ = public_dependency_count;
3971
3972 // Build dependency set
3973 dependencies_.clear();
3974 for (int i = 0; i < result->dependency_count(); i++) {
3975 RecordPublicDependencies(result->dependency(i));
3976 }
3977
3978 // Check weak dependencies.
3979 int weak_dependency_count = 0;
3980 result->weak_dependencies_ = tables_->AllocateArray<int>(
3981 proto.weak_dependency_size());
3982 for (int i = 0; i < proto.weak_dependency_size(); i++) {
3983 int index = proto.weak_dependency(i);
3984 if (index >= 0 && index < proto.dependency_size()) {
3985 result->weak_dependencies_[weak_dependency_count++] = index;
3986 } else {
3987 AddError(proto.name(), proto,
3988 DescriptorPool::ErrorCollector::OTHER,
3989 "Invalid weak dependency index.");
3990 }
3991 }
3992 result->weak_dependency_count_ = weak_dependency_count;
3993
3994 // Convert children.
3995 BUILD_ARRAY(proto, result, message_type, BuildMessage , NULL);
3996 BUILD_ARRAY(proto, result, enum_type , BuildEnum , NULL);
3997 BUILD_ARRAY(proto, result, service , BuildService , NULL);
3998 BUILD_ARRAY(proto, result, extension , BuildExtension, NULL);
3999
4000 // Copy options.
4001 if (!proto.has_options()) {
4002 result->options_ = NULL; // Will set to default_instance later.
4003 } else {
4004 AllocateOptions(proto.options(), result);
4005 }
4006
4007 // Note that the following steps must occur in exactly the specified order.
4008
4009 // Cross-link.
4010 CrossLinkFile(result, proto);
4011
4012 // Interpret any remaining uninterpreted options gathered into
4013 // options_to_interpret_ during descriptor building. Cross-linking has made
4014 // extension options known, so all interpretations should now succeed.
4015 if (!had_errors_) {
4016 OptionInterpreter option_interpreter(this);
4017 for (vector<OptionsToInterpret>::iterator iter =
4018 options_to_interpret_.begin();
4019 iter != options_to_interpret_.end(); ++iter) {
4020 option_interpreter.InterpretOptions(&(*iter));
4021 }
4022 options_to_interpret_.clear();
4023 }
4024
4025 // Validate options.
4026 if (!had_errors_) {
4027 ValidateFileOptions(result, proto);
4028 }
4029
4030 // Additional naming conflict check for map entry types. Only need to check
4031 // this if there are already errors.
4032 if (had_errors_) {
4033 for (int i = 0; i < proto.message_type_size(); ++i) {
4034 DetectMapConflicts(result->message_type(i), proto.message_type(i));
4035 }
4036 }
4037
4038
4039 if (!unused_dependency_.empty()) {
4040 LogUnusedDependency(proto, result);
4041 }
4042
4043 if (had_errors_) {
4044 tables_->RollbackToLastCheckpoint();
4045 return NULL;
4046 } else {
4047 tables_->ClearLastCheckpoint();
4048 return result;
4049 }
4050 }
4051
BuildMessage(const DescriptorProto & proto,const Descriptor * parent,Descriptor * result)4052 void DescriptorBuilder::BuildMessage(const DescriptorProto& proto,
4053 const Descriptor* parent,
4054 Descriptor* result) {
4055 const string& scope = (parent == NULL) ?
4056 file_->package() : parent->full_name();
4057 string* full_name = tables_->AllocateString(scope);
4058 if (!full_name->empty()) full_name->append(1, '.');
4059 full_name->append(proto.name());
4060
4061 ValidateSymbolName(proto.name(), *full_name, proto);
4062
4063 result->name_ = tables_->AllocateString(proto.name());
4064 result->full_name_ = full_name;
4065 result->file_ = file_;
4066 result->containing_type_ = parent;
4067 result->is_placeholder_ = false;
4068 result->is_unqualified_placeholder_ = false;
4069
4070 // Build oneofs first so that fields and extension ranges can refer to them.
4071 BUILD_ARRAY(proto, result, oneof_decl , BuildOneof , result);
4072 BUILD_ARRAY(proto, result, field , BuildField , result);
4073 BUILD_ARRAY(proto, result, nested_type , BuildMessage , result);
4074 BUILD_ARRAY(proto, result, enum_type , BuildEnum , result);
4075 BUILD_ARRAY(proto, result, extension_range, BuildExtensionRange, result);
4076 BUILD_ARRAY(proto, result, extension , BuildExtension , result);
4077 BUILD_ARRAY(proto, result, reserved_range , BuildReservedRange , result);
4078
4079 // Copy reserved names.
4080 int reserved_name_count = proto.reserved_name_size();
4081 result->reserved_name_count_ = reserved_name_count;
4082 result->reserved_names_ =
4083 tables_->AllocateArray<const string*>(reserved_name_count);
4084 for (int i = 0; i < reserved_name_count; ++i) {
4085 result->reserved_names_[i] =
4086 tables_->AllocateString(proto.reserved_name(i));
4087 }
4088
4089 // Copy options.
4090 if (!proto.has_options()) {
4091 result->options_ = NULL; // Will set to default_instance later.
4092 } else {
4093 AllocateOptions(proto.options(), result);
4094 }
4095
4096 AddSymbol(result->full_name(), parent, result->name(),
4097 proto, Symbol(result));
4098
4099 for (int i = 0; i < proto.reserved_range_size(); i++) {
4100 const DescriptorProto_ReservedRange& range1 = proto.reserved_range(i);
4101 for (int j = i + 1; j < proto.reserved_range_size(); j++) {
4102 const DescriptorProto_ReservedRange& range2 = proto.reserved_range(j);
4103 if (range1.end() > range2.start() && range2.end() > range1.start()) {
4104 AddError(result->full_name(), proto.reserved_range(i),
4105 DescriptorPool::ErrorCollector::NUMBER,
4106 strings::Substitute("Reserved range $0 to $1 overlaps with "
4107 "already-defined range $2 to $3.",
4108 range2.start(), range2.end() - 1,
4109 range1.start(), range1.end() - 1));
4110 }
4111 }
4112 }
4113
4114 hash_set<string> reserved_name_set;
4115 for (int i = 0; i < proto.reserved_name_size(); i++) {
4116 const string& name = proto.reserved_name(i);
4117 if (reserved_name_set.find(name) == reserved_name_set.end()) {
4118 reserved_name_set.insert(name);
4119 } else {
4120 AddError(name, proto, DescriptorPool::ErrorCollector::NAME,
4121 strings::Substitute(
4122 "Field name \"$0\" is reserved multiple times.",
4123 name));
4124 }
4125 }
4126
4127 for (int i = 0; i < result->field_count(); i++) {
4128 const FieldDescriptor* field = result->field(i);
4129 for (int j = 0; j < result->extension_range_count(); j++) {
4130 const Descriptor::ExtensionRange* range = result->extension_range(j);
4131 if (range->start <= field->number() && field->number() < range->end) {
4132 AddError(field->full_name(), proto.extension_range(j),
4133 DescriptorPool::ErrorCollector::NUMBER,
4134 strings::Substitute(
4135 "Extension range $0 to $1 includes field \"$2\" ($3).",
4136 range->start, range->end - 1,
4137 field->name(), field->number()));
4138 }
4139 }
4140 for (int j = 0; j < result->reserved_range_count(); j++) {
4141 const Descriptor::ReservedRange* range = result->reserved_range(j);
4142 if (range->start <= field->number() && field->number() < range->end) {
4143 AddError(field->full_name(), proto.reserved_range(j),
4144 DescriptorPool::ErrorCollector::NUMBER,
4145 strings::Substitute(
4146 "Field \"$0\" uses reserved number $1.",
4147 field->name(), field->number()));
4148 }
4149 }
4150 if (reserved_name_set.find(field->name()) != reserved_name_set.end()) {
4151 AddError(field->full_name(), proto.field(i),
4152 DescriptorPool::ErrorCollector::NAME,
4153 strings::Substitute(
4154 "Field name \"$0\" is reserved.", field->name()));
4155 }
4156 }
4157
4158 // Check that extension ranges don't overlap and don't include
4159 // reserved field numbers.
4160 for (int i = 0; i < result->extension_range_count(); i++) {
4161 const Descriptor::ExtensionRange* range1 = result->extension_range(i);
4162 for (int j = 0; j < result->reserved_range_count(); j++) {
4163 const Descriptor::ReservedRange* range2 = result->reserved_range(j);
4164 if (range1->end > range2->start && range2->end > range1->start) {
4165 AddError(result->full_name(), proto.extension_range(j),
4166 DescriptorPool::ErrorCollector::NUMBER,
4167 strings::Substitute("Extension range $0 to $1 overlaps with "
4168 "reserved range $2 to $3.",
4169 range1->start, range1->end - 1,
4170 range2->start, range2->end - 1));
4171 }
4172 }
4173 for (int j = i + 1; j < result->extension_range_count(); j++) {
4174 const Descriptor::ExtensionRange* range2 = result->extension_range(j);
4175 if (range1->end > range2->start && range2->end > range1->start) {
4176 AddError(result->full_name(), proto.extension_range(j),
4177 DescriptorPool::ErrorCollector::NUMBER,
4178 strings::Substitute("Extension range $0 to $1 overlaps with "
4179 "already-defined range $2 to $3.",
4180 range2->start, range2->end - 1,
4181 range1->start, range1->end - 1));
4182 }
4183 }
4184 }
4185 }
4186
4187
BuildFieldOrExtension(const FieldDescriptorProto & proto,const Descriptor * parent,FieldDescriptor * result,bool is_extension)4188 void DescriptorBuilder::BuildFieldOrExtension(const FieldDescriptorProto& proto,
4189 const Descriptor* parent,
4190 FieldDescriptor* result,
4191 bool is_extension) {
4192 const string& scope = (parent == NULL) ?
4193 file_->package() : parent->full_name();
4194 string* full_name = tables_->AllocateString(scope);
4195 if (!full_name->empty()) full_name->append(1, '.');
4196 full_name->append(proto.name());
4197
4198 ValidateSymbolName(proto.name(), *full_name, proto);
4199
4200 result->name_ = tables_->AllocateString(proto.name());
4201 result->full_name_ = full_name;
4202 result->file_ = file_;
4203 result->number_ = proto.number();
4204 result->is_extension_ = is_extension;
4205
4206 // If .proto files follow the style guide then the name should already be
4207 // lower-cased. If that's the case we can just reuse the string we already
4208 // allocated rather than allocate a new one.
4209 string lowercase_name(proto.name());
4210 LowerString(&lowercase_name);
4211 if (lowercase_name == proto.name()) {
4212 result->lowercase_name_ = result->name_;
4213 } else {
4214 result->lowercase_name_ = tables_->AllocateString(lowercase_name);
4215 }
4216
4217 // Don't bother with the above optimization for camel-case names since
4218 // .proto files that follow the guide shouldn't be using names in this
4219 // format, so the optimization wouldn't help much.
4220 result->camelcase_name_ =
4221 tables_->AllocateString(ToCamelCase(proto.name(),
4222 /* lower_first = */ true));
4223
4224 if (proto.has_json_name()) {
4225 result->has_json_name_ = true;
4226 result->json_name_ = tables_->AllocateString(proto.json_name());
4227 } else {
4228 result->has_json_name_ = false;
4229 result->json_name_ = result->camelcase_name_;
4230 }
4231
4232 // Some compilers do not allow static_cast directly between two enum types,
4233 // so we must cast to int first.
4234 result->type_ = static_cast<FieldDescriptor::Type>(
4235 implicit_cast<int>(proto.type()));
4236 result->label_ = static_cast<FieldDescriptor::Label>(
4237 implicit_cast<int>(proto.label()));
4238
4239 // An extension cannot have a required field (b/13365836).
4240 if (result->is_extension_ &&
4241 result->label_ == FieldDescriptor::LABEL_REQUIRED) {
4242 AddError(result->full_name(), proto,
4243 // Error location `TYPE`: we would really like to indicate
4244 // `LABEL`, but the `ErrorLocation` enum has no entry for this, and
4245 // we don't necessarily know about all implementations of the
4246 // `ErrorCollector` interface to extend them to handle the new
4247 // error location type properly.
4248 DescriptorPool::ErrorCollector::TYPE,
4249 "Message extensions cannot have required fields.");
4250 }
4251
4252 // Some of these may be filled in when cross-linking.
4253 result->containing_type_ = NULL;
4254 result->extension_scope_ = NULL;
4255 result->message_type_ = NULL;
4256 result->enum_type_ = NULL;
4257
4258 result->has_default_value_ = proto.has_default_value();
4259 if (proto.has_default_value() && result->is_repeated()) {
4260 AddError(result->full_name(), proto,
4261 DescriptorPool::ErrorCollector::DEFAULT_VALUE,
4262 "Repeated fields can't have default values.");
4263 }
4264
4265 if (proto.has_type()) {
4266 if (proto.has_default_value()) {
4267 char* end_pos = NULL;
4268 switch (result->cpp_type()) {
4269 case FieldDescriptor::CPPTYPE_INT32:
4270 result->default_value_int32_ =
4271 strtol(proto.default_value().c_str(), &end_pos, 0);
4272 break;
4273 case FieldDescriptor::CPPTYPE_INT64:
4274 result->default_value_int64_ =
4275 strto64(proto.default_value().c_str(), &end_pos, 0);
4276 break;
4277 case FieldDescriptor::CPPTYPE_UINT32:
4278 result->default_value_uint32_ =
4279 strtoul(proto.default_value().c_str(), &end_pos, 0);
4280 break;
4281 case FieldDescriptor::CPPTYPE_UINT64:
4282 result->default_value_uint64_ =
4283 strtou64(proto.default_value().c_str(), &end_pos, 0);
4284 break;
4285 case FieldDescriptor::CPPTYPE_FLOAT:
4286 if (proto.default_value() == "inf") {
4287 result->default_value_float_ = numeric_limits<float>::infinity();
4288 } else if (proto.default_value() == "-inf") {
4289 result->default_value_float_ = -numeric_limits<float>::infinity();
4290 } else if (proto.default_value() == "nan") {
4291 result->default_value_float_ = numeric_limits<float>::quiet_NaN();
4292 } else {
4293 result->default_value_float_ = io::SafeDoubleToFloat(
4294 io::NoLocaleStrtod(proto.default_value().c_str(), &end_pos));
4295 }
4296 break;
4297 case FieldDescriptor::CPPTYPE_DOUBLE:
4298 if (proto.default_value() == "inf") {
4299 result->default_value_double_ = numeric_limits<double>::infinity();
4300 } else if (proto.default_value() == "-inf") {
4301 result->default_value_double_ = -numeric_limits<double>::infinity();
4302 } else if (proto.default_value() == "nan") {
4303 result->default_value_double_ = numeric_limits<double>::quiet_NaN();
4304 } else {
4305 result->default_value_double_ =
4306 io::NoLocaleStrtod(proto.default_value().c_str(), &end_pos);
4307 }
4308 break;
4309 case FieldDescriptor::CPPTYPE_BOOL:
4310 if (proto.default_value() == "true") {
4311 result->default_value_bool_ = true;
4312 } else if (proto.default_value() == "false") {
4313 result->default_value_bool_ = false;
4314 } else {
4315 AddError(result->full_name(), proto,
4316 DescriptorPool::ErrorCollector::DEFAULT_VALUE,
4317 "Boolean default must be true or false.");
4318 }
4319 break;
4320 case FieldDescriptor::CPPTYPE_ENUM:
4321 // This will be filled in when cross-linking.
4322 result->default_value_enum_ = NULL;
4323 break;
4324 case FieldDescriptor::CPPTYPE_STRING:
4325 if (result->type() == FieldDescriptor::TYPE_BYTES) {
4326 result->default_value_string_ = tables_->AllocateString(
4327 UnescapeCEscapeString(proto.default_value()));
4328 } else {
4329 result->default_value_string_ =
4330 tables_->AllocateString(proto.default_value());
4331 }
4332 break;
4333 case FieldDescriptor::CPPTYPE_MESSAGE:
4334 AddError(result->full_name(), proto,
4335 DescriptorPool::ErrorCollector::DEFAULT_VALUE,
4336 "Messages can't have default values.");
4337 result->has_default_value_ = false;
4338 break;
4339 }
4340
4341 if (end_pos != NULL) {
4342 // end_pos is only set non-NULL by the parsers for numeric types, above.
4343 // This checks that the default was non-empty and had no extra junk
4344 // after the end of the number.
4345 if (proto.default_value().empty() || *end_pos != '\0') {
4346 AddError(result->full_name(), proto,
4347 DescriptorPool::ErrorCollector::DEFAULT_VALUE,
4348 "Couldn't parse default value \"" + proto.default_value() +
4349 "\".");
4350 }
4351 }
4352 } else {
4353 // No explicit default value
4354 switch (result->cpp_type()) {
4355 case FieldDescriptor::CPPTYPE_INT32:
4356 result->default_value_int32_ = 0;
4357 break;
4358 case FieldDescriptor::CPPTYPE_INT64:
4359 result->default_value_int64_ = 0;
4360 break;
4361 case FieldDescriptor::CPPTYPE_UINT32:
4362 result->default_value_uint32_ = 0;
4363 break;
4364 case FieldDescriptor::CPPTYPE_UINT64:
4365 result->default_value_uint64_ = 0;
4366 break;
4367 case FieldDescriptor::CPPTYPE_FLOAT:
4368 result->default_value_float_ = 0.0f;
4369 break;
4370 case FieldDescriptor::CPPTYPE_DOUBLE:
4371 result->default_value_double_ = 0.0;
4372 break;
4373 case FieldDescriptor::CPPTYPE_BOOL:
4374 result->default_value_bool_ = false;
4375 break;
4376 case FieldDescriptor::CPPTYPE_ENUM:
4377 // This will be filled in when cross-linking.
4378 result->default_value_enum_ = NULL;
4379 break;
4380 case FieldDescriptor::CPPTYPE_STRING:
4381 result->default_value_string_ = &internal::GetEmptyString();
4382 break;
4383 case FieldDescriptor::CPPTYPE_MESSAGE:
4384 break;
4385 }
4386 }
4387 }
4388
4389 if (result->number() <= 0) {
4390 AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
4391 "Field numbers must be positive integers.");
4392 } else if (!is_extension && result->number() > FieldDescriptor::kMaxNumber) {
4393 // Only validate that the number is within the valid field range if it is
4394 // not an extension. Since extension numbers are validated with the
4395 // extendee's valid set of extension numbers, and those are in turn
4396 // validated against the max allowed number, the check is unnecessary for
4397 // extension fields.
4398 // This avoids cross-linking issues that arise when attempting to check if
4399 // the extendee is a message_set_wire_format message, which has a higher max
4400 // on extension numbers.
4401 AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
4402 strings::Substitute("Field numbers cannot be greater than $0.",
4403 FieldDescriptor::kMaxNumber));
4404 } else if (result->number() >= FieldDescriptor::kFirstReservedNumber &&
4405 result->number() <= FieldDescriptor::kLastReservedNumber) {
4406 AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER,
4407 strings::Substitute(
4408 "Field numbers $0 through $1 are reserved for the protocol "
4409 "buffer library implementation.",
4410 FieldDescriptor::kFirstReservedNumber,
4411 FieldDescriptor::kLastReservedNumber));
4412 }
4413
4414 if (is_extension) {
4415 if (!proto.has_extendee()) {
4416 AddError(result->full_name(), proto,
4417 DescriptorPool::ErrorCollector::EXTENDEE,
4418 "FieldDescriptorProto.extendee not set for extension field.");
4419 }
4420
4421 result->extension_scope_ = parent;
4422
4423 if (proto.has_oneof_index()) {
4424 AddError(result->full_name(), proto,
4425 DescriptorPool::ErrorCollector::OTHER,
4426 "FieldDescriptorProto.oneof_index should not be set for "
4427 "extensions.");
4428 }
4429
4430 // Fill in later (maybe).
4431 result->containing_oneof_ = NULL;
4432 } else {
4433 if (proto.has_extendee()) {
4434 AddError(result->full_name(), proto,
4435 DescriptorPool::ErrorCollector::EXTENDEE,
4436 "FieldDescriptorProto.extendee set for non-extension field.");
4437 }
4438
4439 result->containing_type_ = parent;
4440
4441 if (proto.has_oneof_index()) {
4442 if (proto.oneof_index() < 0 ||
4443 proto.oneof_index() >= parent->oneof_decl_count()) {
4444 AddError(result->full_name(), proto,
4445 DescriptorPool::ErrorCollector::OTHER,
4446 strings::Substitute("FieldDescriptorProto.oneof_index $0 is "
4447 "out of range for type \"$1\".",
4448 proto.oneof_index(),
4449 parent->name()));
4450 result->containing_oneof_ = NULL;
4451 } else {
4452 result->containing_oneof_ = parent->oneof_decl(proto.oneof_index());
4453 }
4454 } else {
4455 result->containing_oneof_ = NULL;
4456 }
4457 }
4458
4459 // Copy options.
4460 if (!proto.has_options()) {
4461 result->options_ = NULL; // Will set to default_instance later.
4462 } else {
4463 AllocateOptions(proto.options(), result);
4464 }
4465
4466
4467 AddSymbol(result->full_name(), parent, result->name(),
4468 proto, Symbol(result));
4469 }
4470
BuildExtensionRange(const DescriptorProto::ExtensionRange & proto,const Descriptor * parent,Descriptor::ExtensionRange * result)4471 void DescriptorBuilder::BuildExtensionRange(
4472 const DescriptorProto::ExtensionRange& proto,
4473 const Descriptor* parent,
4474 Descriptor::ExtensionRange* result) {
4475 result->start = proto.start();
4476 result->end = proto.end();
4477 if (result->start <= 0) {
4478 AddError(parent->full_name(), proto,
4479 DescriptorPool::ErrorCollector::NUMBER,
4480 "Extension numbers must be positive integers.");
4481 }
4482
4483 // Checking of the upper bound of the extension range is deferred until after
4484 // options interpreting. This allows messages with message_set_wire_format to
4485 // have extensions beyond FieldDescriptor::kMaxNumber, since the extension
4486 // numbers are actually used as int32s in the message_set_wire_format.
4487
4488 if (result->start >= result->end) {
4489 AddError(parent->full_name(), proto,
4490 DescriptorPool::ErrorCollector::NUMBER,
4491 "Extension range end number must be greater than start number.");
4492 }
4493 }
4494
BuildReservedRange(const DescriptorProto::ReservedRange & proto,const Descriptor * parent,Descriptor::ReservedRange * result)4495 void DescriptorBuilder::BuildReservedRange(
4496 const DescriptorProto::ReservedRange& proto,
4497 const Descriptor* parent,
4498 Descriptor::ReservedRange* result) {
4499 result->start = proto.start();
4500 result->end = proto.end();
4501 if (result->start <= 0) {
4502 AddError(parent->full_name(), proto,
4503 DescriptorPool::ErrorCollector::NUMBER,
4504 "Reserved numbers must be positive integers.");
4505 }
4506 }
4507
BuildOneof(const OneofDescriptorProto & proto,Descriptor * parent,OneofDescriptor * result)4508 void DescriptorBuilder::BuildOneof(const OneofDescriptorProto& proto,
4509 Descriptor* parent,
4510 OneofDescriptor* result) {
4511 string* full_name = tables_->AllocateString(parent->full_name());
4512 full_name->append(1, '.');
4513 full_name->append(proto.name());
4514
4515 ValidateSymbolName(proto.name(), *full_name, proto);
4516
4517 result->name_ = tables_->AllocateString(proto.name());
4518 result->full_name_ = full_name;
4519
4520 result->containing_type_ = parent;
4521
4522 // We need to fill these in later.
4523 result->field_count_ = 0;
4524 result->fields_ = NULL;
4525
4526 AddSymbol(result->full_name(), parent, result->name(),
4527 proto, Symbol(result));
4528 }
4529
BuildEnum(const EnumDescriptorProto & proto,const Descriptor * parent,EnumDescriptor * result)4530 void DescriptorBuilder::BuildEnum(const EnumDescriptorProto& proto,
4531 const Descriptor* parent,
4532 EnumDescriptor* result) {
4533 const string& scope = (parent == NULL) ?
4534 file_->package() : parent->full_name();
4535 string* full_name = tables_->AllocateString(scope);
4536 if (!full_name->empty()) full_name->append(1, '.');
4537 full_name->append(proto.name());
4538
4539 ValidateSymbolName(proto.name(), *full_name, proto);
4540
4541 result->name_ = tables_->AllocateString(proto.name());
4542 result->full_name_ = full_name;
4543 result->file_ = file_;
4544 result->containing_type_ = parent;
4545 result->is_placeholder_ = false;
4546 result->is_unqualified_placeholder_ = false;
4547
4548 if (proto.value_size() == 0) {
4549 // We cannot allow enums with no values because this would mean there
4550 // would be no valid default value for fields of this type.
4551 AddError(result->full_name(), proto,
4552 DescriptorPool::ErrorCollector::NAME,
4553 "Enums must contain at least one value.");
4554 }
4555
4556 BUILD_ARRAY(proto, result, value, BuildEnumValue, result);
4557
4558 // Copy options.
4559 if (!proto.has_options()) {
4560 result->options_ = NULL; // Will set to default_instance later.
4561 } else {
4562 AllocateOptions(proto.options(), result);
4563 }
4564
4565 AddSymbol(result->full_name(), parent, result->name(),
4566 proto, Symbol(result));
4567 }
4568
BuildEnumValue(const EnumValueDescriptorProto & proto,const EnumDescriptor * parent,EnumValueDescriptor * result)4569 void DescriptorBuilder::BuildEnumValue(const EnumValueDescriptorProto& proto,
4570 const EnumDescriptor* parent,
4571 EnumValueDescriptor* result) {
4572 result->name_ = tables_->AllocateString(proto.name());
4573 result->number_ = proto.number();
4574 result->type_ = parent;
4575
4576 // Note: full_name for enum values is a sibling to the parent's name, not a
4577 // child of it.
4578 string* full_name = tables_->AllocateString(*parent->full_name_);
4579 full_name->resize(full_name->size() - parent->name_->size());
4580 full_name->append(*result->name_);
4581 result->full_name_ = full_name;
4582
4583 ValidateSymbolName(proto.name(), *full_name, proto);
4584
4585 // Copy options.
4586 if (!proto.has_options()) {
4587 result->options_ = NULL; // Will set to default_instance later.
4588 } else {
4589 AllocateOptions(proto.options(), result);
4590 }
4591
4592 // Again, enum values are weird because we makes them appear as siblings
4593 // of the enum type instead of children of it. So, we use
4594 // parent->containing_type() as the value's parent.
4595 bool added_to_outer_scope =
4596 AddSymbol(result->full_name(), parent->containing_type(), result->name(),
4597 proto, Symbol(result));
4598
4599 // However, we also want to be able to search for values within a single
4600 // enum type, so we add it as a child of the enum type itself, too.
4601 // Note: This could fail, but if it does, the error has already been
4602 // reported by the above AddSymbol() call, so we ignore the return code.
4603 bool added_to_inner_scope =
4604 file_tables_->AddAliasUnderParent(parent, result->name(), Symbol(result));
4605
4606 if (added_to_inner_scope && !added_to_outer_scope) {
4607 // This value did not conflict with any values defined in the same enum,
4608 // but it did conflict with some other symbol defined in the enum type's
4609 // scope. Let's print an additional error to explain this.
4610 string outer_scope;
4611 if (parent->containing_type() == NULL) {
4612 outer_scope = file_->package();
4613 } else {
4614 outer_scope = parent->containing_type()->full_name();
4615 }
4616
4617 if (outer_scope.empty()) {
4618 outer_scope = "the global scope";
4619 } else {
4620 outer_scope = "\"" + outer_scope + "\"";
4621 }
4622
4623 AddError(result->full_name(), proto,
4624 DescriptorPool::ErrorCollector::NAME,
4625 "Note that enum values use C++ scoping rules, meaning that "
4626 "enum values are siblings of their type, not children of it. "
4627 "Therefore, \"" + result->name() + "\" must be unique within "
4628 + outer_scope + ", not just within \"" + parent->name() + "\".");
4629 }
4630
4631 // An enum is allowed to define two numbers that refer to the same value.
4632 // FindValueByNumber() should return the first such value, so we simply
4633 // ignore AddEnumValueByNumber()'s return code.
4634 file_tables_->AddEnumValueByNumber(result);
4635 }
4636
BuildService(const ServiceDescriptorProto & proto,const void *,ServiceDescriptor * result)4637 void DescriptorBuilder::BuildService(const ServiceDescriptorProto& proto,
4638 const void* /* dummy */,
4639 ServiceDescriptor* result) {
4640 string* full_name = tables_->AllocateString(file_->package());
4641 if (!full_name->empty()) full_name->append(1, '.');
4642 full_name->append(proto.name());
4643
4644 ValidateSymbolName(proto.name(), *full_name, proto);
4645
4646 result->name_ = tables_->AllocateString(proto.name());
4647 result->full_name_ = full_name;
4648 result->file_ = file_;
4649
4650 BUILD_ARRAY(proto, result, method, BuildMethod, result);
4651
4652 // Copy options.
4653 if (!proto.has_options()) {
4654 result->options_ = NULL; // Will set to default_instance later.
4655 } else {
4656 AllocateOptions(proto.options(), result);
4657 }
4658
4659 AddSymbol(result->full_name(), NULL, result->name(),
4660 proto, Symbol(result));
4661 }
4662
BuildMethod(const MethodDescriptorProto & proto,const ServiceDescriptor * parent,MethodDescriptor * result)4663 void DescriptorBuilder::BuildMethod(const MethodDescriptorProto& proto,
4664 const ServiceDescriptor* parent,
4665 MethodDescriptor* result) {
4666 result->name_ = tables_->AllocateString(proto.name());
4667 result->service_ = parent;
4668
4669 string* full_name = tables_->AllocateString(parent->full_name());
4670 full_name->append(1, '.');
4671 full_name->append(*result->name_);
4672 result->full_name_ = full_name;
4673
4674 ValidateSymbolName(proto.name(), *full_name, proto);
4675
4676 // These will be filled in when cross-linking.
4677 result->input_type_ = NULL;
4678 result->output_type_ = NULL;
4679
4680 // Copy options.
4681 if (!proto.has_options()) {
4682 result->options_ = NULL; // Will set to default_instance later.
4683 } else {
4684 AllocateOptions(proto.options(), result);
4685 }
4686
4687 result->client_streaming_ = proto.client_streaming();
4688 result->server_streaming_ = proto.server_streaming();
4689
4690 AddSymbol(result->full_name(), parent, result->name(),
4691 proto, Symbol(result));
4692 }
4693
4694 #undef BUILD_ARRAY
4695
4696 // -------------------------------------------------------------------
4697
CrossLinkFile(FileDescriptor * file,const FileDescriptorProto & proto)4698 void DescriptorBuilder::CrossLinkFile(
4699 FileDescriptor* file, const FileDescriptorProto& proto) {
4700 if (file->options_ == NULL) {
4701 file->options_ = &FileOptions::default_instance();
4702 }
4703
4704 for (int i = 0; i < file->message_type_count(); i++) {
4705 CrossLinkMessage(&file->message_types_[i], proto.message_type(i));
4706 }
4707
4708 for (int i = 0; i < file->extension_count(); i++) {
4709 CrossLinkField(&file->extensions_[i], proto.extension(i));
4710 }
4711
4712 for (int i = 0; i < file->enum_type_count(); i++) {
4713 CrossLinkEnum(&file->enum_types_[i], proto.enum_type(i));
4714 }
4715
4716 for (int i = 0; i < file->service_count(); i++) {
4717 CrossLinkService(&file->services_[i], proto.service(i));
4718 }
4719 }
4720
CrossLinkMessage(Descriptor * message,const DescriptorProto & proto)4721 void DescriptorBuilder::CrossLinkMessage(
4722 Descriptor* message, const DescriptorProto& proto) {
4723 if (message->options_ == NULL) {
4724 message->options_ = &MessageOptions::default_instance();
4725 }
4726
4727 for (int i = 0; i < message->nested_type_count(); i++) {
4728 CrossLinkMessage(&message->nested_types_[i], proto.nested_type(i));
4729 }
4730
4731 for (int i = 0; i < message->enum_type_count(); i++) {
4732 CrossLinkEnum(&message->enum_types_[i], proto.enum_type(i));
4733 }
4734
4735 for (int i = 0; i < message->field_count(); i++) {
4736 CrossLinkField(&message->fields_[i], proto.field(i));
4737 }
4738
4739 for (int i = 0; i < message->extension_count(); i++) {
4740 CrossLinkField(&message->extensions_[i], proto.extension(i));
4741 }
4742
4743 // Set up field array for each oneof.
4744
4745 // First count the number of fields per oneof.
4746 for (int i = 0; i < message->field_count(); i++) {
4747 const OneofDescriptor* oneof_decl = message->field(i)->containing_oneof();
4748 if (oneof_decl != NULL) {
4749 // Make sure fields belonging to the same oneof are defined consecutively.
4750 // This enables optimizations in codegens and reflection libraries to
4751 // skip fields in the oneof group, as only one of the field can be set.
4752 // Note that field_count() returns how many fields in this oneof we have
4753 // seen so far. field_count() > 0 guarantees that i > 0, so field(i-1) is
4754 // safe.
4755 if (oneof_decl->field_count() > 0 &&
4756 message->field(i - 1)->containing_oneof() != oneof_decl) {
4757 AddError(
4758 message->full_name() + "." + message->field(i - 1)->name(),
4759 proto.field(i - 1), DescriptorPool::ErrorCollector::OTHER,
4760 strings::Substitute(
4761 "Fields in the same oneof must be defined consecutively. "
4762 "\"$0\" cannot be defined before the completion of the "
4763 "\"$1\" oneof definition.",
4764 message->field(i - 1)->name(), oneof_decl->name()));
4765 }
4766 // Must go through oneof_decls_ array to get a non-const version of the
4767 // OneofDescriptor.
4768 ++message->oneof_decls_[oneof_decl->index()].field_count_;
4769 }
4770 }
4771
4772 // Then allocate the arrays.
4773 for (int i = 0; i < message->oneof_decl_count(); i++) {
4774 OneofDescriptor* oneof_decl = &message->oneof_decls_[i];
4775
4776 if (oneof_decl->field_count() == 0) {
4777 AddError(message->full_name() + "." + oneof_decl->name(),
4778 proto.oneof_decl(i),
4779 DescriptorPool::ErrorCollector::NAME,
4780 "Oneof must have at least one field.");
4781 }
4782
4783 oneof_decl->fields_ =
4784 tables_->AllocateArray<const FieldDescriptor*>(oneof_decl->field_count_);
4785 oneof_decl->field_count_ = 0;
4786 }
4787
4788 // Then fill them in.
4789 for (int i = 0; i < message->field_count(); i++) {
4790 const OneofDescriptor* oneof_decl = message->field(i)->containing_oneof();
4791 if (oneof_decl != NULL) {
4792 OneofDescriptor* mutable_oneof_decl =
4793 &message->oneof_decls_[oneof_decl->index()];
4794 message->fields_[i].index_in_oneof_ = mutable_oneof_decl->field_count_;
4795 mutable_oneof_decl->fields_[mutable_oneof_decl->field_count_++] =
4796 message->field(i);
4797 }
4798 }
4799 }
4800
CrossLinkField(FieldDescriptor * field,const FieldDescriptorProto & proto)4801 void DescriptorBuilder::CrossLinkField(
4802 FieldDescriptor* field, const FieldDescriptorProto& proto) {
4803 if (field->options_ == NULL) {
4804 field->options_ = &FieldOptions::default_instance();
4805 }
4806
4807 if (proto.has_extendee()) {
4808 Symbol extendee = LookupSymbol(proto.extendee(), field->full_name(),
4809 PLACEHOLDER_EXTENDABLE_MESSAGE);
4810 if (extendee.IsNull()) {
4811 AddNotDefinedError(field->full_name(), proto,
4812 DescriptorPool::ErrorCollector::EXTENDEE,
4813 proto.extendee());
4814 return;
4815 } else if (extendee.type != Symbol::MESSAGE) {
4816 AddError(field->full_name(), proto,
4817 DescriptorPool::ErrorCollector::EXTENDEE,
4818 "\"" + proto.extendee() + "\" is not a message type.");
4819 return;
4820 }
4821 field->containing_type_ = extendee.descriptor;
4822
4823 const Descriptor::ExtensionRange* extension_range = field->containing_type()
4824 ->FindExtensionRangeContainingNumber(field->number());
4825
4826 if (extension_range == NULL) {
4827 AddError(field->full_name(), proto,
4828 DescriptorPool::ErrorCollector::NUMBER,
4829 strings::Substitute("\"$0\" does not declare $1 as an "
4830 "extension number.",
4831 field->containing_type()->full_name(),
4832 field->number()));
4833 }
4834 }
4835
4836 if (field->containing_oneof() != NULL) {
4837 if (field->label() != FieldDescriptor::LABEL_OPTIONAL) {
4838 // Note that this error will never happen when parsing .proto files.
4839 // It can only happen if you manually construct a FileDescriptorProto
4840 // that is incorrect.
4841 AddError(field->full_name(), proto,
4842 DescriptorPool::ErrorCollector::NAME,
4843 "Fields of oneofs must themselves have label LABEL_OPTIONAL.");
4844 }
4845 }
4846
4847 if (proto.has_type_name()) {
4848 // Assume we are expecting a message type unless the proto contains some
4849 // evidence that it expects an enum type. This only makes a difference if
4850 // we end up creating a placeholder.
4851 bool expecting_enum = (proto.type() == FieldDescriptorProto::TYPE_ENUM) ||
4852 proto.has_default_value();
4853
4854 Symbol type =
4855 LookupSymbol(proto.type_name(), field->full_name(),
4856 expecting_enum ? PLACEHOLDER_ENUM : PLACEHOLDER_MESSAGE,
4857 LOOKUP_TYPES);
4858
4859 // If the type is a weak type, we change the type to a google.protobuf.Empty field.
4860 if (type.IsNull() && !pool_->enforce_weak_ && proto.options().weak()) {
4861 type = FindSymbol(kNonLinkedWeakMessageReplacementName);
4862 }
4863
4864 if (type.IsNull()) {
4865 AddNotDefinedError(field->full_name(), proto,
4866 DescriptorPool::ErrorCollector::TYPE,
4867 proto.type_name());
4868 return;
4869 }
4870
4871 if (!proto.has_type()) {
4872 // Choose field type based on symbol.
4873 if (type.type == Symbol::MESSAGE) {
4874 field->type_ = FieldDescriptor::TYPE_MESSAGE;
4875 } else if (type.type == Symbol::ENUM) {
4876 field->type_ = FieldDescriptor::TYPE_ENUM;
4877 } else {
4878 AddError(field->full_name(), proto,
4879 DescriptorPool::ErrorCollector::TYPE,
4880 "\"" + proto.type_name() + "\" is not a type.");
4881 return;
4882 }
4883 }
4884
4885 if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
4886 if (type.type != Symbol::MESSAGE) {
4887 AddError(field->full_name(), proto,
4888 DescriptorPool::ErrorCollector::TYPE,
4889 "\"" + proto.type_name() + "\" is not a message type.");
4890 return;
4891 }
4892 field->message_type_ = type.descriptor;
4893
4894 if (field->has_default_value()) {
4895 AddError(field->full_name(), proto,
4896 DescriptorPool::ErrorCollector::DEFAULT_VALUE,
4897 "Messages can't have default values.");
4898 }
4899 } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_ENUM) {
4900 if (type.type != Symbol::ENUM) {
4901 AddError(field->full_name(), proto,
4902 DescriptorPool::ErrorCollector::TYPE,
4903 "\"" + proto.type_name() + "\" is not an enum type.");
4904 return;
4905 }
4906 field->enum_type_ = type.enum_descriptor;
4907
4908 if (field->enum_type()->is_placeholder_) {
4909 // We can't look up default values for placeholder types. We'll have
4910 // to just drop them.
4911 field->has_default_value_ = false;
4912 }
4913
4914 if (field->has_default_value()) {
4915 // Ensure that the default value is an identifier. Parser cannot always
4916 // verify this because it does not have complete type information.
4917 // N.B. that this check yields better error messages but is not
4918 // necessary for correctness (an enum symbol must be a valid identifier
4919 // anyway), only for better errors.
4920 if (!io::Tokenizer::IsIdentifier(proto.default_value())) {
4921 AddError(field->full_name(), proto,
4922 DescriptorPool::ErrorCollector::DEFAULT_VALUE,
4923 "Default value for an enum field must be an identifier.");
4924 } else {
4925 // We can't just use field->enum_type()->FindValueByName() here
4926 // because that locks the pool's mutex, which we have already locked
4927 // at this point.
4928 Symbol default_value =
4929 LookupSymbolNoPlaceholder(proto.default_value(),
4930 field->enum_type()->full_name());
4931
4932 if (default_value.type == Symbol::ENUM_VALUE &&
4933 default_value.enum_value_descriptor->type() ==
4934 field->enum_type()) {
4935 field->default_value_enum_ = default_value.enum_value_descriptor;
4936 } else {
4937 AddError(field->full_name(), proto,
4938 DescriptorPool::ErrorCollector::DEFAULT_VALUE,
4939 "Enum type \"" + field->enum_type()->full_name() +
4940 "\" has no value named \"" + proto.default_value() +
4941 "\".");
4942 }
4943 }
4944 } else if (field->enum_type()->value_count() > 0) {
4945 // All enums must have at least one value, or we would have reported
4946 // an error elsewhere. We use the first defined value as the default
4947 // if a default is not explicitly defined.
4948 field->default_value_enum_ = field->enum_type()->value(0);
4949 }
4950 } else {
4951 AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
4952 "Field with primitive type has type_name.");
4953 }
4954 } else {
4955 if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE ||
4956 field->cpp_type() == FieldDescriptor::CPPTYPE_ENUM) {
4957 AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
4958 "Field with message or enum type missing type_name.");
4959 }
4960 }
4961
4962 // Add the field to the fields-by-number table.
4963 // Note: We have to do this *after* cross-linking because extensions do not
4964 // know their containing type until now.
4965 if (!file_tables_->AddFieldByNumber(field)) {
4966 const FieldDescriptor* conflicting_field =
4967 file_tables_->FindFieldByNumber(field->containing_type(),
4968 field->number());
4969 if (field->is_extension()) {
4970 AddError(field->full_name(), proto,
4971 DescriptorPool::ErrorCollector::NUMBER,
4972 strings::Substitute("Extension number $0 has already been used "
4973 "in \"$1\" by extension \"$2\".",
4974 field->number(),
4975 field->containing_type()->full_name(),
4976 conflicting_field->full_name()));
4977 } else {
4978 AddError(field->full_name(), proto,
4979 DescriptorPool::ErrorCollector::NUMBER,
4980 strings::Substitute("Field number $0 has already been used in "
4981 "\"$1\" by field \"$2\".",
4982 field->number(),
4983 field->containing_type()->full_name(),
4984 conflicting_field->name()));
4985 }
4986 } else {
4987 if (field->is_extension()) {
4988 if (!tables_->AddExtension(field)) {
4989 const FieldDescriptor* conflicting_field =
4990 tables_->FindExtension(field->containing_type(), field->number());
4991 string error_msg = strings::Substitute(
4992 "Extension number $0 has already been used in \"$1\" by extension "
4993 "\"$2\" defined in $3.",
4994 field->number(),
4995 field->containing_type()->full_name(),
4996 conflicting_field->full_name(),
4997 conflicting_field->file()->name());
4998 // Conflicting extension numbers should be an error. However, before
4999 // turning this into an error we need to fix all existing broken
5000 // protos first.
5001 // TODO(xiaofeng): Change this to an error.
5002 AddWarning(field->full_name(), proto,
5003 DescriptorPool::ErrorCollector::NUMBER, error_msg);
5004 }
5005 }
5006 }
5007
5008 // Add the field to the lowercase-name and camelcase-name tables.
5009 file_tables_->AddFieldByStylizedNames(field);
5010 }
5011
CrossLinkEnum(EnumDescriptor * enum_type,const EnumDescriptorProto & proto)5012 void DescriptorBuilder::CrossLinkEnum(
5013 EnumDescriptor* enum_type, const EnumDescriptorProto& proto) {
5014 if (enum_type->options_ == NULL) {
5015 enum_type->options_ = &EnumOptions::default_instance();
5016 }
5017
5018 for (int i = 0; i < enum_type->value_count(); i++) {
5019 CrossLinkEnumValue(&enum_type->values_[i], proto.value(i));
5020 }
5021 }
5022
CrossLinkEnumValue(EnumValueDescriptor * enum_value,const EnumValueDescriptorProto &)5023 void DescriptorBuilder::CrossLinkEnumValue(
5024 EnumValueDescriptor* enum_value,
5025 const EnumValueDescriptorProto& /* proto */) {
5026 if (enum_value->options_ == NULL) {
5027 enum_value->options_ = &EnumValueOptions::default_instance();
5028 }
5029 }
5030
CrossLinkService(ServiceDescriptor * service,const ServiceDescriptorProto & proto)5031 void DescriptorBuilder::CrossLinkService(
5032 ServiceDescriptor* service, const ServiceDescriptorProto& proto) {
5033 if (service->options_ == NULL) {
5034 service->options_ = &ServiceOptions::default_instance();
5035 }
5036
5037 for (int i = 0; i < service->method_count(); i++) {
5038 CrossLinkMethod(&service->methods_[i], proto.method(i));
5039 }
5040 }
5041
CrossLinkMethod(MethodDescriptor * method,const MethodDescriptorProto & proto)5042 void DescriptorBuilder::CrossLinkMethod(
5043 MethodDescriptor* method, const MethodDescriptorProto& proto) {
5044 if (method->options_ == NULL) {
5045 method->options_ = &MethodOptions::default_instance();
5046 }
5047
5048 Symbol input_type = LookupSymbol(proto.input_type(), method->full_name());
5049 if (input_type.IsNull()) {
5050 AddNotDefinedError(method->full_name(), proto,
5051 DescriptorPool::ErrorCollector::INPUT_TYPE,
5052 proto.input_type());
5053 } else if (input_type.type != Symbol::MESSAGE) {
5054 AddError(method->full_name(), proto,
5055 DescriptorPool::ErrorCollector::INPUT_TYPE,
5056 "\"" + proto.input_type() + "\" is not a message type.");
5057 } else {
5058 method->input_type_ = input_type.descriptor;
5059 }
5060
5061 Symbol output_type = LookupSymbol(proto.output_type(), method->full_name());
5062 if (output_type.IsNull()) {
5063 AddNotDefinedError(method->full_name(), proto,
5064 DescriptorPool::ErrorCollector::OUTPUT_TYPE,
5065 proto.output_type());
5066 } else if (output_type.type != Symbol::MESSAGE) {
5067 AddError(method->full_name(), proto,
5068 DescriptorPool::ErrorCollector::OUTPUT_TYPE,
5069 "\"" + proto.output_type() + "\" is not a message type.");
5070 } else {
5071 method->output_type_ = output_type.descriptor;
5072 }
5073 }
5074
5075 // -------------------------------------------------------------------
5076
5077 #define VALIDATE_OPTIONS_FROM_ARRAY(descriptor, array_name, type) \
5078 for (int i = 0; i < descriptor->array_name##_count(); ++i) { \
5079 Validate##type##Options(descriptor->array_name##s_ + i, \
5080 proto.array_name(i)); \
5081 }
5082
5083 // Determine if the file uses optimize_for = LITE_RUNTIME, being careful to
5084 // avoid problems that exist at init time.
IsLite(const FileDescriptor * file)5085 static bool IsLite(const FileDescriptor* file) {
5086 // TODO(kenton): I don't even remember how many of these conditions are
5087 // actually possible. I'm just being super-safe.
5088 return file != NULL &&
5089 &file->options() != &FileOptions::default_instance() &&
5090 file->options().optimize_for() == FileOptions::LITE_RUNTIME;
5091 }
5092
ValidateFileOptions(FileDescriptor * file,const FileDescriptorProto & proto)5093 void DescriptorBuilder::ValidateFileOptions(FileDescriptor* file,
5094 const FileDescriptorProto& proto) {
5095 VALIDATE_OPTIONS_FROM_ARRAY(file, message_type, Message);
5096 VALIDATE_OPTIONS_FROM_ARRAY(file, enum_type, Enum);
5097 VALIDATE_OPTIONS_FROM_ARRAY(file, service, Service);
5098 VALIDATE_OPTIONS_FROM_ARRAY(file, extension, Field);
5099
5100 // Lite files can only be imported by other Lite files.
5101 if (!IsLite(file)) {
5102 for (int i = 0; i < file->dependency_count(); i++) {
5103 if (IsLite(file->dependency(i))) {
5104 AddError(
5105 file->name(), proto,
5106 DescriptorPool::ErrorCollector::OTHER,
5107 "Files that do not use optimize_for = LITE_RUNTIME cannot import "
5108 "files which do use this option. This file is not lite, but it "
5109 "imports \"" + file->dependency(i)->name() + "\" which is.");
5110 break;
5111 }
5112 }
5113 }
5114 if (file->syntax() == FileDescriptor::SYNTAX_PROTO3) {
5115 ValidateProto3(file, proto);
5116 }
5117 }
5118
ValidateProto3(FileDescriptor * file,const FileDescriptorProto & proto)5119 void DescriptorBuilder::ValidateProto3(
5120 FileDescriptor* file, const FileDescriptorProto& proto) {
5121 for (int i = 0; i < file->extension_count(); ++i) {
5122 ValidateProto3Field(file->extensions_ + i, proto.extension(i));
5123 }
5124 for (int i = 0; i < file->message_type_count(); ++i) {
5125 ValidateProto3Message(file->message_types_ + i, proto.message_type(i));
5126 }
5127 for (int i = 0; i < file->enum_type_count(); ++i) {
5128 ValidateProto3Enum(file->enum_types_ + i, proto.enum_type(i));
5129 }
5130 }
5131
ToLowercaseWithoutUnderscores(const string & name)5132 static string ToLowercaseWithoutUnderscores(const string& name) {
5133 string result;
5134 for (int i = 0; i < name.size(); ++i) {
5135 if (name[i] != '_') {
5136 if (name[i] >= 'A' && name[i] <= 'Z') {
5137 result.push_back(name[i] - 'A' + 'a');
5138 } else {
5139 result.push_back(name[i]);
5140 }
5141 }
5142 }
5143 return result;
5144 }
5145
ValidateProto3Message(Descriptor * message,const DescriptorProto & proto)5146 void DescriptorBuilder::ValidateProto3Message(
5147 Descriptor* message, const DescriptorProto& proto) {
5148 for (int i = 0; i < message->nested_type_count(); ++i) {
5149 ValidateProto3Message(message->nested_types_ + i,
5150 proto.nested_type(i));
5151 }
5152 for (int i = 0; i < message->enum_type_count(); ++i) {
5153 ValidateProto3Enum(message->enum_types_ + i,
5154 proto.enum_type(i));
5155 }
5156 for (int i = 0; i < message->field_count(); ++i) {
5157 ValidateProto3Field(message->fields_ + i, proto.field(i));
5158 }
5159 for (int i = 0; i < message->extension_count(); ++i) {
5160 ValidateProto3Field(message->extensions_ +i, proto.extension(i));
5161 }
5162 if (message->extension_range_count() > 0) {
5163 AddError(message->full_name(), proto,
5164 DescriptorPool::ErrorCollector::OTHER,
5165 "Extension ranges are not allowed in proto3.");
5166 }
5167 if (message->options().message_set_wire_format()) {
5168 // Using MessageSet doesn't make sense since we disallow extensions.
5169 AddError(message->full_name(), proto,
5170 DescriptorPool::ErrorCollector::OTHER,
5171 "MessageSet is not supported in proto3.");
5172 }
5173
5174 // In proto3, we reject field names if they conflict in camelCase.
5175 // Note that we currently enforce a stricter rule: Field names must be
5176 // unique after being converted to lowercase with underscores removed.
5177 map<string, const FieldDescriptor*> name_to_field;
5178 for (int i = 0; i < message->field_count(); ++i) {
5179 string lowercase_name = ToLowercaseWithoutUnderscores(
5180 message->field(i)->name());
5181 if (name_to_field.find(lowercase_name) != name_to_field.end()) {
5182 AddError(message->full_name(), proto,
5183 DescriptorPool::ErrorCollector::OTHER,
5184 "The JSON camcel-case name of field \"" +
5185 message->field(i)->name() + "\" conflicts with field \"" +
5186 name_to_field[lowercase_name]->name() + "\". This is not " +
5187 "allowed in proto3.");
5188 } else {
5189 name_to_field[lowercase_name] = message->field(i);
5190 }
5191 }
5192 }
5193
ValidateProto3Field(FieldDescriptor * field,const FieldDescriptorProto & proto)5194 void DescriptorBuilder::ValidateProto3Field(
5195 FieldDescriptor* field, const FieldDescriptorProto& proto) {
5196 if (field->is_extension() &&
5197 !AllowedExtendeeInProto3(field->containing_type()->full_name())) {
5198 AddError(field->full_name(), proto,
5199 DescriptorPool::ErrorCollector::OTHER,
5200 "Extensions in proto3 are only allowed for defining options.");
5201 }
5202 if (field->is_required()) {
5203 AddError(field->full_name(), proto,
5204 DescriptorPool::ErrorCollector::OTHER,
5205 "Required fields are not allowed in proto3.");
5206 }
5207 if (field->has_default_value()) {
5208 AddError(
5209 field->full_name(), proto, DescriptorPool::ErrorCollector::OTHER,
5210 "Explicit default values are not allowed in proto3.");
5211 }
5212 if (field->cpp_type() == FieldDescriptor::CPPTYPE_ENUM &&
5213 field->enum_type() &&
5214 field->enum_type()->file()->syntax() != FileDescriptor::SYNTAX_PROTO3) {
5215 // Proto3 messages can only use Proto3 enum types; otherwise we can't
5216 // guarantee that the default value is zero.
5217 AddError(field->full_name(), proto,
5218 DescriptorPool::ErrorCollector::TYPE,
5219 "Enum type \"" + field->enum_type()->full_name() +
5220 "\" is not a proto3 enum, but is used in \"" +
5221 field->containing_type()->full_name() +
5222 "\" which is a proto3 message type.");
5223 }
5224 if (field->type() == FieldDescriptor::TYPE_GROUP) {
5225 AddError(field->full_name(), proto,
5226 DescriptorPool::ErrorCollector::TYPE,
5227 "Groups are not supported in proto3 syntax.");
5228 }
5229 }
5230
ValidateProto3Enum(EnumDescriptor * enm,const EnumDescriptorProto & proto)5231 void DescriptorBuilder::ValidateProto3Enum(
5232 EnumDescriptor* enm, const EnumDescriptorProto& proto) {
5233 if (enm->value_count() > 0 && enm->value(0)->number() != 0) {
5234 AddError(
5235 enm->full_name(), proto, DescriptorPool::ErrorCollector::OTHER,
5236 "The first enum value must be zero in proto3.");
5237 }
5238 }
5239
ValidateMessageOptions(Descriptor * message,const DescriptorProto & proto)5240 void DescriptorBuilder::ValidateMessageOptions(Descriptor* message,
5241 const DescriptorProto& proto) {
5242 VALIDATE_OPTIONS_FROM_ARRAY(message, field, Field);
5243 VALIDATE_OPTIONS_FROM_ARRAY(message, nested_type, Message);
5244 VALIDATE_OPTIONS_FROM_ARRAY(message, enum_type, Enum);
5245 VALIDATE_OPTIONS_FROM_ARRAY(message, extension, Field);
5246
5247 const int64 max_extension_range =
5248 static_cast<int64>(message->options().message_set_wire_format() ?
5249 kint32max :
5250 FieldDescriptor::kMaxNumber);
5251 for (int i = 0; i < message->extension_range_count(); ++i) {
5252 if (message->extension_range(i)->end > max_extension_range + 1) {
5253 AddError(
5254 message->full_name(), proto.extension_range(i),
5255 DescriptorPool::ErrorCollector::NUMBER,
5256 strings::Substitute("Extension numbers cannot be greater than $0.",
5257 max_extension_range));
5258 }
5259 }
5260 }
5261
ValidateFieldOptions(FieldDescriptor * field,const FieldDescriptorProto & proto)5262 void DescriptorBuilder::ValidateFieldOptions(FieldDescriptor* field,
5263 const FieldDescriptorProto& proto) {
5264 // Only message type fields may be lazy.
5265 if (field->options().lazy()) {
5266 if (field->type() != FieldDescriptor::TYPE_MESSAGE) {
5267 AddError(field->full_name(), proto,
5268 DescriptorPool::ErrorCollector::TYPE,
5269 "[lazy = true] can only be specified for submessage fields.");
5270 }
5271 }
5272
5273 // Only repeated primitive fields may be packed.
5274 if (field->options().packed() && !field->is_packable()) {
5275 AddError(
5276 field->full_name(), proto,
5277 DescriptorPool::ErrorCollector::TYPE,
5278 "[packed = true] can only be specified for repeated primitive fields.");
5279 }
5280
5281 // Note: Default instance may not yet be initialized here, so we have to
5282 // avoid reading from it.
5283 if (field->containing_type_ != NULL &&
5284 &field->containing_type()->options() !=
5285 &MessageOptions::default_instance() &&
5286 field->containing_type()->options().message_set_wire_format()) {
5287 if (field->is_extension()) {
5288 if (!field->is_optional() ||
5289 field->type() != FieldDescriptor::TYPE_MESSAGE) {
5290 AddError(field->full_name(), proto,
5291 DescriptorPool::ErrorCollector::TYPE,
5292 "Extensions of MessageSets must be optional messages.");
5293 }
5294 } else {
5295 AddError(field->full_name(), proto,
5296 DescriptorPool::ErrorCollector::NAME,
5297 "MessageSets cannot have fields, only extensions.");
5298 }
5299 }
5300
5301 // Lite extensions can only be of Lite types.
5302 if (IsLite(field->file()) &&
5303 field->containing_type_ != NULL &&
5304 !IsLite(field->containing_type()->file())) {
5305 AddError(field->full_name(), proto,
5306 DescriptorPool::ErrorCollector::EXTENDEE,
5307 "Extensions to non-lite types can only be declared in non-lite "
5308 "files. Note that you cannot extend a non-lite type to contain "
5309 "a lite type, but the reverse is allowed.");
5310 }
5311
5312 // Validate map types.
5313 if (field->is_map()) {
5314 if (!ValidateMapEntry(field, proto)) {
5315 AddError(field->full_name(), proto,
5316 DescriptorPool::ErrorCollector::OTHER,
5317 "map_entry should not be set explicitly. Use map<KeyType, "
5318 "ValueType> instead.");
5319 }
5320 }
5321
5322 }
5323
ValidateEnumOptions(EnumDescriptor * enm,const EnumDescriptorProto & proto)5324 void DescriptorBuilder::ValidateEnumOptions(EnumDescriptor* enm,
5325 const EnumDescriptorProto& proto) {
5326 VALIDATE_OPTIONS_FROM_ARRAY(enm, value, EnumValue);
5327 if (!enm->options().has_allow_alias() || !enm->options().allow_alias()) {
5328 map<int, string> used_values;
5329 for (int i = 0; i < enm->value_count(); ++i) {
5330 const EnumValueDescriptor* enum_value = enm->value(i);
5331 if (used_values.find(enum_value->number()) != used_values.end()) {
5332 string error =
5333 "\"" + enum_value->full_name() +
5334 "\" uses the same enum value as \"" +
5335 used_values[enum_value->number()] + "\". If this is intended, set "
5336 "'option allow_alias = true;' to the enum definition.";
5337 if (!enm->options().allow_alias()) {
5338 // Generate error if duplicated enum values are explicitly disallowed.
5339 AddError(enm->full_name(), proto,
5340 DescriptorPool::ErrorCollector::NUMBER,
5341 error);
5342 } else {
5343 // Generate warning if duplicated values are found but the option
5344 // isn't set.
5345 GOOGLE_LOG(ERROR) << error;
5346 }
5347 } else {
5348 used_values[enum_value->number()] = enum_value->full_name();
5349 }
5350 }
5351 }
5352 }
5353
ValidateEnumValueOptions(EnumValueDescriptor *,const EnumValueDescriptorProto &)5354 void DescriptorBuilder::ValidateEnumValueOptions(
5355 EnumValueDescriptor* /* enum_value */,
5356 const EnumValueDescriptorProto& /* proto */) {
5357 // Nothing to do so far.
5358 }
ValidateServiceOptions(ServiceDescriptor * service,const ServiceDescriptorProto & proto)5359 void DescriptorBuilder::ValidateServiceOptions(ServiceDescriptor* service,
5360 const ServiceDescriptorProto& proto) {
5361 if (IsLite(service->file()) &&
5362 (service->file()->options().cc_generic_services() ||
5363 service->file()->options().java_generic_services())) {
5364 AddError(service->full_name(), proto,
5365 DescriptorPool::ErrorCollector::NAME,
5366 "Files with optimize_for = LITE_RUNTIME cannot define services "
5367 "unless you set both options cc_generic_services and "
5368 "java_generic_sevices to false.");
5369 }
5370
5371 VALIDATE_OPTIONS_FROM_ARRAY(service, method, Method);
5372 }
5373
ValidateMethodOptions(MethodDescriptor *,const MethodDescriptorProto &)5374 void DescriptorBuilder::ValidateMethodOptions(MethodDescriptor* /* method */,
5375 const MethodDescriptorProto& /* proto */) {
5376 // Nothing to do so far.
5377 }
5378
ValidateMapEntry(FieldDescriptor * field,const FieldDescriptorProto & proto)5379 bool DescriptorBuilder::ValidateMapEntry(FieldDescriptor* field,
5380 const FieldDescriptorProto& proto) {
5381 const Descriptor* message = field->message_type();
5382 if (// Must not contain extensions, extension range or nested message or
5383 // enums
5384 message->extension_count() != 0 ||
5385 field->label() != FieldDescriptor::LABEL_REPEATED ||
5386 message->extension_range_count() != 0 ||
5387 message->nested_type_count() != 0 || message->enum_type_count() != 0 ||
5388 // Must contain exactly two fields
5389 message->field_count() != 2 ||
5390 // Field name and message name must match
5391 message->name() != ToCamelCase(field->name(), false) + "Entry" ||
5392 // Entry message must be in the same containing type of the field.
5393 field->containing_type() != message->containing_type()) {
5394 return false;
5395 }
5396
5397 const FieldDescriptor* key = message->field(0);
5398 const FieldDescriptor* value = message->field(1);
5399 if (key->label() != FieldDescriptor::LABEL_OPTIONAL || key->number() != 1 ||
5400 key->name() != "key") {
5401 return false;
5402 }
5403 if (value->label() != FieldDescriptor::LABEL_OPTIONAL ||
5404 value->number() != 2 || value->name() != "value") {
5405 return false;
5406 }
5407
5408 // Check key types are legal.
5409 switch (key->type()) {
5410 case FieldDescriptor::TYPE_ENUM:
5411 AddError(
5412 field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
5413 "Key in map fields cannot be enum types.");
5414 break;
5415 case FieldDescriptor::TYPE_FLOAT:
5416 case FieldDescriptor::TYPE_DOUBLE:
5417 case FieldDescriptor::TYPE_MESSAGE:
5418 case FieldDescriptor::TYPE_GROUP:
5419 case FieldDescriptor::TYPE_BYTES:
5420 AddError(
5421 field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
5422 "Key in map fields cannot be float/double, bytes or message types.");
5423 break;
5424 case FieldDescriptor::TYPE_BOOL:
5425 case FieldDescriptor::TYPE_INT32:
5426 case FieldDescriptor::TYPE_INT64:
5427 case FieldDescriptor::TYPE_SINT32:
5428 case FieldDescriptor::TYPE_SINT64:
5429 case FieldDescriptor::TYPE_STRING:
5430 case FieldDescriptor::TYPE_UINT32:
5431 case FieldDescriptor::TYPE_UINT64:
5432 case FieldDescriptor::TYPE_FIXED32:
5433 case FieldDescriptor::TYPE_FIXED64:
5434 case FieldDescriptor::TYPE_SFIXED32:
5435 case FieldDescriptor::TYPE_SFIXED64:
5436 // Legal cases
5437 break;
5438 // Do not add a default, so that the compiler will complain when new types
5439 // are added.
5440 }
5441
5442 if (value->type() == FieldDescriptor::TYPE_ENUM) {
5443 if (value->enum_type()->value(0)->number() != 0) {
5444 AddError(
5445 field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE,
5446 "Enum value in map must define 0 as the first value.");
5447 }
5448 }
5449
5450 return true;
5451 }
5452
DetectMapConflicts(const Descriptor * message,const DescriptorProto & proto)5453 void DescriptorBuilder::DetectMapConflicts(const Descriptor* message,
5454 const DescriptorProto& proto) {
5455 map<string, const Descriptor*> seen_types;
5456 for (int i = 0; i < message->nested_type_count(); ++i) {
5457 const Descriptor* nested = message->nested_type(i);
5458 pair<map<string, const Descriptor*>::iterator, bool> result =
5459 seen_types.insert(std::make_pair(nested->name(), nested));
5460 if (!result.second) {
5461 if (result.first->second->options().map_entry() ||
5462 nested->options().map_entry()) {
5463 AddError(message->full_name(), proto,
5464 DescriptorPool::ErrorCollector::NAME,
5465 "Expanded map entry type " + nested->name() +
5466 " conflicts with an existing nested message type.");
5467 }
5468 }
5469 // Recursively test on the nested types.
5470 DetectMapConflicts(message->nested_type(i), proto.nested_type(i));
5471 }
5472 // Check for conflicted field names.
5473 for (int i = 0; i < message->field_count(); ++i) {
5474 const FieldDescriptor* field = message->field(i);
5475 map<string, const Descriptor*>::iterator iter =
5476 seen_types.find(field->name());
5477 if (iter != seen_types.end() && iter->second->options().map_entry()) {
5478 AddError(message->full_name(), proto,
5479 DescriptorPool::ErrorCollector::NAME,
5480 "Expanded map entry type " + iter->second->name() +
5481 " conflicts with an existing field.");
5482 }
5483 }
5484 // Check for conflicted enum names.
5485 for (int i = 0; i < message->enum_type_count(); ++i) {
5486 const EnumDescriptor* enum_desc = message->enum_type(i);
5487 map<string, const Descriptor*>::iterator iter =
5488 seen_types.find(enum_desc->name());
5489 if (iter != seen_types.end() && iter->second->options().map_entry()) {
5490 AddError(message->full_name(), proto,
5491 DescriptorPool::ErrorCollector::NAME,
5492 "Expanded map entry type " + iter->second->name() +
5493 " conflicts with an existing enum type.");
5494 }
5495 }
5496 // Check for conflicted oneof names.
5497 for (int i = 0; i < message->oneof_decl_count(); ++i) {
5498 const OneofDescriptor* oneof_desc = message->oneof_decl(i);
5499 map<string, const Descriptor*>::iterator iter =
5500 seen_types.find(oneof_desc->name());
5501 if (iter != seen_types.end() && iter->second->options().map_entry()) {
5502 AddError(message->full_name(), proto,
5503 DescriptorPool::ErrorCollector::NAME,
5504 "Expanded map entry type " + iter->second->name() +
5505 " conflicts with an existing oneof type.");
5506 }
5507 }
5508 }
5509
5510
5511 #undef VALIDATE_OPTIONS_FROM_ARRAY
5512
5513 // -------------------------------------------------------------------
5514
OptionInterpreter(DescriptorBuilder * builder)5515 DescriptorBuilder::OptionInterpreter::OptionInterpreter(
5516 DescriptorBuilder* builder) : builder_(builder) {
5517 GOOGLE_CHECK(builder_);
5518 }
5519
~OptionInterpreter()5520 DescriptorBuilder::OptionInterpreter::~OptionInterpreter() {
5521 }
5522
InterpretOptions(OptionsToInterpret * options_to_interpret)5523 bool DescriptorBuilder::OptionInterpreter::InterpretOptions(
5524 OptionsToInterpret* options_to_interpret) {
5525 // Note that these may be in different pools, so we can't use the same
5526 // descriptor and reflection objects on both.
5527 Message* options = options_to_interpret->options;
5528 const Message* original_options = options_to_interpret->original_options;
5529
5530 bool failed = false;
5531 options_to_interpret_ = options_to_interpret;
5532
5533 // Find the uninterpreted_option field in the mutable copy of the options
5534 // and clear them, since we're about to interpret them.
5535 const FieldDescriptor* uninterpreted_options_field =
5536 options->GetDescriptor()->FindFieldByName("uninterpreted_option");
5537 GOOGLE_CHECK(uninterpreted_options_field != NULL)
5538 << "No field named \"uninterpreted_option\" in the Options proto.";
5539 options->GetReflection()->ClearField(options, uninterpreted_options_field);
5540
5541 // Find the uninterpreted_option field in the original options.
5542 const FieldDescriptor* original_uninterpreted_options_field =
5543 original_options->GetDescriptor()->
5544 FindFieldByName("uninterpreted_option");
5545 GOOGLE_CHECK(original_uninterpreted_options_field != NULL)
5546 << "No field named \"uninterpreted_option\" in the Options proto.";
5547
5548 const int num_uninterpreted_options = original_options->GetReflection()->
5549 FieldSize(*original_options, original_uninterpreted_options_field);
5550 for (int i = 0; i < num_uninterpreted_options; ++i) {
5551 uninterpreted_option_ = down_cast<const UninterpretedOption*>(
5552 &original_options->GetReflection()->GetRepeatedMessage(
5553 *original_options, original_uninterpreted_options_field, i));
5554 if (!InterpretSingleOption(options)) {
5555 // Error already added by InterpretSingleOption().
5556 failed = true;
5557 break;
5558 }
5559 }
5560 // Reset these, so we don't have any dangling pointers.
5561 uninterpreted_option_ = NULL;
5562 options_to_interpret_ = NULL;
5563
5564 if (!failed) {
5565 // InterpretSingleOption() added the interpreted options in the
5566 // UnknownFieldSet, in case the option isn't yet known to us. Now we
5567 // serialize the options message and deserialize it back. That way, any
5568 // option fields that we do happen to know about will get moved from the
5569 // UnknownFieldSet into the real fields, and thus be available right away.
5570 // If they are not known, that's OK too. They will get reparsed into the
5571 // UnknownFieldSet and wait there until the message is parsed by something
5572 // that does know about the options.
5573 string buf;
5574 GOOGLE_CHECK(options->AppendPartialToString(&buf))
5575 << "Protocol message could not be serialized.";
5576 GOOGLE_CHECK(options->ParsePartialFromString(buf))
5577 << "Protocol message serialized itself in invalid fashion.";
5578 if (!options->IsInitialized()) {
5579 builder_->AddWarning(
5580 options_to_interpret->element_name, *original_options,
5581 DescriptorPool::ErrorCollector::OTHER,
5582 "Options could not be fully parsed using the proto descriptors "
5583 "compiled into this binary. Missing required fields: " +
5584 options->InitializationErrorString());
5585 }
5586 }
5587 return !failed;
5588 }
5589
InterpretSingleOption(Message * options)5590 bool DescriptorBuilder::OptionInterpreter::InterpretSingleOption(
5591 Message* options) {
5592 // First do some basic validation.
5593 if (uninterpreted_option_->name_size() == 0) {
5594 // This should never happen unless the parser has gone seriously awry or
5595 // someone has manually created the uninterpreted option badly.
5596 return AddNameError("Option must have a name.");
5597 }
5598 if (uninterpreted_option_->name(0).name_part() == "uninterpreted_option") {
5599 return AddNameError("Option must not use reserved name "
5600 "\"uninterpreted_option\".");
5601 }
5602
5603 const Descriptor* options_descriptor = NULL;
5604 // Get the options message's descriptor from the builder's pool, so that we
5605 // get the version that knows about any extension options declared in the
5606 // file we're currently building. The descriptor should be there as long as
5607 // the file we're building imported "google/protobuf/descriptors.proto".
5608
5609 // Note that we use DescriptorBuilder::FindSymbolNotEnforcingDeps(), not
5610 // DescriptorPool::FindMessageTypeByName() because we're already holding the
5611 // pool's mutex, and the latter method locks it again. We don't use
5612 // FindSymbol() because files that use custom options only need to depend on
5613 // the file that defines the option, not descriptor.proto itself.
5614 Symbol symbol = builder_->FindSymbolNotEnforcingDeps(
5615 options->GetDescriptor()->full_name());
5616 if (!symbol.IsNull() && symbol.type == Symbol::MESSAGE) {
5617 options_descriptor = symbol.descriptor;
5618 } else {
5619 // The options message's descriptor was not in the builder's pool, so use
5620 // the standard version from the generated pool. We're not holding the
5621 // generated pool's mutex, so we can search it the straightforward way.
5622 options_descriptor = options->GetDescriptor();
5623 }
5624 GOOGLE_CHECK(options_descriptor);
5625
5626 // We iterate over the name parts to drill into the submessages until we find
5627 // the leaf field for the option. As we drill down we remember the current
5628 // submessage's descriptor in |descriptor| and the next field in that
5629 // submessage in |field|. We also track the fields we're drilling down
5630 // through in |intermediate_fields|. As we go, we reconstruct the full option
5631 // name in |debug_msg_name|, for use in error messages.
5632 const Descriptor* descriptor = options_descriptor;
5633 const FieldDescriptor* field = NULL;
5634 vector<const FieldDescriptor*> intermediate_fields;
5635 string debug_msg_name = "";
5636
5637 for (int i = 0; i < uninterpreted_option_->name_size(); ++i) {
5638 const string& name_part = uninterpreted_option_->name(i).name_part();
5639 if (debug_msg_name.size() > 0) {
5640 debug_msg_name += ".";
5641 }
5642 if (uninterpreted_option_->name(i).is_extension()) {
5643 debug_msg_name += "(" + name_part + ")";
5644 // Search for the extension's descriptor as an extension in the builder's
5645 // pool. Note that we use DescriptorBuilder::LookupSymbol(), not
5646 // DescriptorPool::FindExtensionByName(), for two reasons: 1) It allows
5647 // relative lookups, and 2) because we're already holding the pool's
5648 // mutex, and the latter method locks it again.
5649 symbol = builder_->LookupSymbol(name_part,
5650 options_to_interpret_->name_scope);
5651 if (!symbol.IsNull() && symbol.type == Symbol::FIELD) {
5652 field = symbol.field_descriptor;
5653 }
5654 // If we don't find the field then the field's descriptor was not in the
5655 // builder's pool, but there's no point in looking in the generated
5656 // pool. We require that you import the file that defines any extensions
5657 // you use, so they must be present in the builder's pool.
5658 } else {
5659 debug_msg_name += name_part;
5660 // Search for the field's descriptor as a regular field.
5661 field = descriptor->FindFieldByName(name_part);
5662 }
5663
5664 if (field == NULL) {
5665 if (get_allow_unknown(builder_->pool_)) {
5666 // We can't find the option, but AllowUnknownDependencies() is enabled,
5667 // so we will just leave it as uninterpreted.
5668 AddWithoutInterpreting(*uninterpreted_option_, options);
5669 return true;
5670 } else if (!(builder_->undefine_resolved_name_).empty()) {
5671 // Option is resolved to a name which is not defined.
5672 return AddNameError(
5673 "Option \"" + debug_msg_name + "\" is resolved to \"(" +
5674 builder_->undefine_resolved_name_ +
5675 ")\", which is not defined. The innermost scope is searched first "
5676 "in name resolution. Consider using a leading '.'(i.e., \"(." +
5677 debug_msg_name.substr(1) +
5678 "\") to start from the outermost scope.");
5679 } else {
5680 return AddNameError("Option \"" + debug_msg_name + "\" unknown.");
5681 }
5682 } else if (field->containing_type() != descriptor) {
5683 if (get_is_placeholder(field->containing_type())) {
5684 // The field is an extension of a placeholder type, so we can't
5685 // reliably verify whether it is a valid extension to use here (e.g.
5686 // we don't know if it is an extension of the correct *Options message,
5687 // or if it has a valid field number, etc.). Just leave it as
5688 // uninterpreted instead.
5689 AddWithoutInterpreting(*uninterpreted_option_, options);
5690 return true;
5691 } else {
5692 // This can only happen if, due to some insane misconfiguration of the
5693 // pools, we find the options message in one pool but the field in
5694 // another. This would probably imply a hefty bug somewhere.
5695 return AddNameError("Option field \"" + debug_msg_name +
5696 "\" is not a field or extension of message \"" +
5697 descriptor->name() + "\".");
5698 }
5699 } else if (i < uninterpreted_option_->name_size() - 1) {
5700 if (field->cpp_type() != FieldDescriptor::CPPTYPE_MESSAGE) {
5701 return AddNameError("Option \"" + debug_msg_name +
5702 "\" is an atomic type, not a message.");
5703 } else if (field->is_repeated()) {
5704 return AddNameError("Option field \"" + debug_msg_name +
5705 "\" is a repeated message. Repeated message "
5706 "options must be initialized using an "
5707 "aggregate value.");
5708 } else {
5709 // Drill down into the submessage.
5710 intermediate_fields.push_back(field);
5711 descriptor = field->message_type();
5712 }
5713 }
5714 }
5715
5716 // We've found the leaf field. Now we use UnknownFieldSets to set its value
5717 // on the options message. We do so because the message may not yet know
5718 // about its extension fields, so we may not be able to set the fields
5719 // directly. But the UnknownFieldSets will serialize to the same wire-format
5720 // message, so reading that message back in once the extension fields are
5721 // known will populate them correctly.
5722
5723 // First see if the option is already set.
5724 if (!field->is_repeated() && !ExamineIfOptionIsSet(
5725 intermediate_fields.begin(),
5726 intermediate_fields.end(),
5727 field, debug_msg_name,
5728 options->GetReflection()->GetUnknownFields(*options))) {
5729 return false; // ExamineIfOptionIsSet() already added the error.
5730 }
5731
5732
5733 // First set the value on the UnknownFieldSet corresponding to the
5734 // innermost message.
5735 google::protobuf::scoped_ptr<UnknownFieldSet> unknown_fields(new UnknownFieldSet());
5736 if (!SetOptionValue(field, unknown_fields.get())) {
5737 return false; // SetOptionValue() already added the error.
5738 }
5739
5740 // Now wrap the UnknownFieldSet with UnknownFieldSets corresponding to all
5741 // the intermediate messages.
5742 for (vector<const FieldDescriptor*>::reverse_iterator iter =
5743 intermediate_fields.rbegin();
5744 iter != intermediate_fields.rend(); ++iter) {
5745 google::protobuf::scoped_ptr<UnknownFieldSet> parent_unknown_fields(
5746 new UnknownFieldSet());
5747 switch ((*iter)->type()) {
5748 case FieldDescriptor::TYPE_MESSAGE: {
5749 io::StringOutputStream outstr(
5750 parent_unknown_fields->AddLengthDelimited((*iter)->number()));
5751 io::CodedOutputStream out(&outstr);
5752 internal::WireFormat::SerializeUnknownFields(*unknown_fields, &out);
5753 GOOGLE_CHECK(!out.HadError())
5754 << "Unexpected failure while serializing option submessage "
5755 << debug_msg_name << "\".";
5756 break;
5757 }
5758
5759 case FieldDescriptor::TYPE_GROUP: {
5760 parent_unknown_fields->AddGroup((*iter)->number())
5761 ->MergeFrom(*unknown_fields);
5762 break;
5763 }
5764
5765 default:
5766 GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_MESSAGE: "
5767 << (*iter)->type();
5768 return false;
5769 }
5770 unknown_fields.reset(parent_unknown_fields.release());
5771 }
5772
5773 // Now merge the UnknownFieldSet corresponding to the top-level message into
5774 // the options message.
5775 options->GetReflection()->MutableUnknownFields(options)->MergeFrom(
5776 *unknown_fields);
5777
5778 return true;
5779 }
5780
AddWithoutInterpreting(const UninterpretedOption & uninterpreted_option,Message * options)5781 void DescriptorBuilder::OptionInterpreter::AddWithoutInterpreting(
5782 const UninterpretedOption& uninterpreted_option, Message* options) {
5783 const FieldDescriptor* field =
5784 options->GetDescriptor()->FindFieldByName("uninterpreted_option");
5785 GOOGLE_CHECK(field != NULL);
5786
5787 options->GetReflection()->AddMessage(options, field)
5788 ->CopyFrom(uninterpreted_option);
5789 }
5790
ExamineIfOptionIsSet(vector<const FieldDescriptor * >::const_iterator intermediate_fields_iter,vector<const FieldDescriptor * >::const_iterator intermediate_fields_end,const FieldDescriptor * innermost_field,const string & debug_msg_name,const UnknownFieldSet & unknown_fields)5791 bool DescriptorBuilder::OptionInterpreter::ExamineIfOptionIsSet(
5792 vector<const FieldDescriptor*>::const_iterator intermediate_fields_iter,
5793 vector<const FieldDescriptor*>::const_iterator intermediate_fields_end,
5794 const FieldDescriptor* innermost_field, const string& debug_msg_name,
5795 const UnknownFieldSet& unknown_fields) {
5796 // We do linear searches of the UnknownFieldSet and its sub-groups. This
5797 // should be fine since it's unlikely that any one options structure will
5798 // contain more than a handful of options.
5799
5800 if (intermediate_fields_iter == intermediate_fields_end) {
5801 // We're at the innermost submessage.
5802 for (int i = 0; i < unknown_fields.field_count(); i++) {
5803 if (unknown_fields.field(i).number() == innermost_field->number()) {
5804 return AddNameError("Option \"" + debug_msg_name +
5805 "\" was already set.");
5806 }
5807 }
5808 return true;
5809 }
5810
5811 for (int i = 0; i < unknown_fields.field_count(); i++) {
5812 if (unknown_fields.field(i).number() ==
5813 (*intermediate_fields_iter)->number()) {
5814 const UnknownField* unknown_field = &unknown_fields.field(i);
5815 FieldDescriptor::Type type = (*intermediate_fields_iter)->type();
5816 // Recurse into the next submessage.
5817 switch (type) {
5818 case FieldDescriptor::TYPE_MESSAGE:
5819 if (unknown_field->type() == UnknownField::TYPE_LENGTH_DELIMITED) {
5820 UnknownFieldSet intermediate_unknown_fields;
5821 if (intermediate_unknown_fields.ParseFromString(
5822 unknown_field->length_delimited()) &&
5823 !ExamineIfOptionIsSet(intermediate_fields_iter + 1,
5824 intermediate_fields_end,
5825 innermost_field, debug_msg_name,
5826 intermediate_unknown_fields)) {
5827 return false; // Error already added.
5828 }
5829 }
5830 break;
5831
5832 case FieldDescriptor::TYPE_GROUP:
5833 if (unknown_field->type() == UnknownField::TYPE_GROUP) {
5834 if (!ExamineIfOptionIsSet(intermediate_fields_iter + 1,
5835 intermediate_fields_end,
5836 innermost_field, debug_msg_name,
5837 unknown_field->group())) {
5838 return false; // Error already added.
5839 }
5840 }
5841 break;
5842
5843 default:
5844 GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_MESSAGE: " << type;
5845 return false;
5846 }
5847 }
5848 }
5849 return true;
5850 }
5851
SetOptionValue(const FieldDescriptor * option_field,UnknownFieldSet * unknown_fields)5852 bool DescriptorBuilder::OptionInterpreter::SetOptionValue(
5853 const FieldDescriptor* option_field,
5854 UnknownFieldSet* unknown_fields) {
5855 // We switch on the CppType to validate.
5856 switch (option_field->cpp_type()) {
5857
5858 case FieldDescriptor::CPPTYPE_INT32:
5859 if (uninterpreted_option_->has_positive_int_value()) {
5860 if (uninterpreted_option_->positive_int_value() >
5861 static_cast<uint64>(kint32max)) {
5862 return AddValueError("Value out of range for int32 option \"" +
5863 option_field->full_name() + "\".");
5864 } else {
5865 SetInt32(option_field->number(),
5866 uninterpreted_option_->positive_int_value(),
5867 option_field->type(), unknown_fields);
5868 }
5869 } else if (uninterpreted_option_->has_negative_int_value()) {
5870 if (uninterpreted_option_->negative_int_value() <
5871 static_cast<int64>(kint32min)) {
5872 return AddValueError("Value out of range for int32 option \"" +
5873 option_field->full_name() + "\".");
5874 } else {
5875 SetInt32(option_field->number(),
5876 uninterpreted_option_->negative_int_value(),
5877 option_field->type(), unknown_fields);
5878 }
5879 } else {
5880 return AddValueError("Value must be integer for int32 option \"" +
5881 option_field->full_name() + "\".");
5882 }
5883 break;
5884
5885 case FieldDescriptor::CPPTYPE_INT64:
5886 if (uninterpreted_option_->has_positive_int_value()) {
5887 if (uninterpreted_option_->positive_int_value() >
5888 static_cast<uint64>(kint64max)) {
5889 return AddValueError("Value out of range for int64 option \"" +
5890 option_field->full_name() + "\".");
5891 } else {
5892 SetInt64(option_field->number(),
5893 uninterpreted_option_->positive_int_value(),
5894 option_field->type(), unknown_fields);
5895 }
5896 } else if (uninterpreted_option_->has_negative_int_value()) {
5897 SetInt64(option_field->number(),
5898 uninterpreted_option_->negative_int_value(),
5899 option_field->type(), unknown_fields);
5900 } else {
5901 return AddValueError("Value must be integer for int64 option \"" +
5902 option_field->full_name() + "\".");
5903 }
5904 break;
5905
5906 case FieldDescriptor::CPPTYPE_UINT32:
5907 if (uninterpreted_option_->has_positive_int_value()) {
5908 if (uninterpreted_option_->positive_int_value() > kuint32max) {
5909 return AddValueError("Value out of range for uint32 option \"" +
5910 option_field->name() + "\".");
5911 } else {
5912 SetUInt32(option_field->number(),
5913 uninterpreted_option_->positive_int_value(),
5914 option_field->type(), unknown_fields);
5915 }
5916 } else {
5917 return AddValueError("Value must be non-negative integer for uint32 "
5918 "option \"" + option_field->full_name() + "\".");
5919 }
5920 break;
5921
5922 case FieldDescriptor::CPPTYPE_UINT64:
5923 if (uninterpreted_option_->has_positive_int_value()) {
5924 SetUInt64(option_field->number(),
5925 uninterpreted_option_->positive_int_value(),
5926 option_field->type(), unknown_fields);
5927 } else {
5928 return AddValueError("Value must be non-negative integer for uint64 "
5929 "option \"" + option_field->full_name() + "\".");
5930 }
5931 break;
5932
5933 case FieldDescriptor::CPPTYPE_FLOAT: {
5934 float value;
5935 if (uninterpreted_option_->has_double_value()) {
5936 value = uninterpreted_option_->double_value();
5937 } else if (uninterpreted_option_->has_positive_int_value()) {
5938 value = uninterpreted_option_->positive_int_value();
5939 } else if (uninterpreted_option_->has_negative_int_value()) {
5940 value = uninterpreted_option_->negative_int_value();
5941 } else {
5942 return AddValueError("Value must be number for float option \"" +
5943 option_field->full_name() + "\".");
5944 }
5945 unknown_fields->AddFixed32(option_field->number(),
5946 google::protobuf::internal::WireFormatLite::EncodeFloat(value));
5947 break;
5948 }
5949
5950 case FieldDescriptor::CPPTYPE_DOUBLE: {
5951 double value;
5952 if (uninterpreted_option_->has_double_value()) {
5953 value = uninterpreted_option_->double_value();
5954 } else if (uninterpreted_option_->has_positive_int_value()) {
5955 value = uninterpreted_option_->positive_int_value();
5956 } else if (uninterpreted_option_->has_negative_int_value()) {
5957 value = uninterpreted_option_->negative_int_value();
5958 } else {
5959 return AddValueError("Value must be number for double option \"" +
5960 option_field->full_name() + "\".");
5961 }
5962 unknown_fields->AddFixed64(option_field->number(),
5963 google::protobuf::internal::WireFormatLite::EncodeDouble(value));
5964 break;
5965 }
5966
5967 case FieldDescriptor::CPPTYPE_BOOL:
5968 uint64 value;
5969 if (!uninterpreted_option_->has_identifier_value()) {
5970 return AddValueError("Value must be identifier for boolean option "
5971 "\"" + option_field->full_name() + "\".");
5972 }
5973 if (uninterpreted_option_->identifier_value() == "true") {
5974 value = 1;
5975 } else if (uninterpreted_option_->identifier_value() == "false") {
5976 value = 0;
5977 } else {
5978 return AddValueError("Value must be \"true\" or \"false\" for boolean "
5979 "option \"" + option_field->full_name() + "\".");
5980 }
5981 unknown_fields->AddVarint(option_field->number(), value);
5982 break;
5983
5984 case FieldDescriptor::CPPTYPE_ENUM: {
5985 if (!uninterpreted_option_->has_identifier_value()) {
5986 return AddValueError("Value must be identifier for enum-valued option "
5987 "\"" + option_field->full_name() + "\".");
5988 }
5989 const EnumDescriptor* enum_type = option_field->enum_type();
5990 const string& value_name = uninterpreted_option_->identifier_value();
5991 const EnumValueDescriptor* enum_value = NULL;
5992
5993 if (enum_type->file()->pool() != DescriptorPool::generated_pool()) {
5994 // Note that the enum value's fully-qualified name is a sibling of the
5995 // enum's name, not a child of it.
5996 string fully_qualified_name = enum_type->full_name();
5997 fully_qualified_name.resize(fully_qualified_name.size() -
5998 enum_type->name().size());
5999 fully_qualified_name += value_name;
6000
6001 // Search for the enum value's descriptor in the builder's pool. Note
6002 // that we use DescriptorBuilder::FindSymbolNotEnforcingDeps(), not
6003 // DescriptorPool::FindEnumValueByName() because we're already holding
6004 // the pool's mutex, and the latter method locks it again.
6005 Symbol symbol =
6006 builder_->FindSymbolNotEnforcingDeps(fully_qualified_name);
6007 if (!symbol.IsNull() && symbol.type == Symbol::ENUM_VALUE) {
6008 if (symbol.enum_value_descriptor->type() != enum_type) {
6009 return AddValueError("Enum type \"" + enum_type->full_name() +
6010 "\" has no value named \"" + value_name + "\" for option \"" +
6011 option_field->full_name() +
6012 "\". This appears to be a value from a sibling type.");
6013 } else {
6014 enum_value = symbol.enum_value_descriptor;
6015 }
6016 }
6017 } else {
6018 // The enum type is in the generated pool, so we can search for the
6019 // value there.
6020 enum_value = enum_type->FindValueByName(value_name);
6021 }
6022
6023 if (enum_value == NULL) {
6024 return AddValueError("Enum type \"" +
6025 option_field->enum_type()->full_name() +
6026 "\" has no value named \"" + value_name + "\" for "
6027 "option \"" + option_field->full_name() + "\".");
6028 } else {
6029 // Sign-extension is not a problem, since we cast directly from int32 to
6030 // uint64, without first going through uint32.
6031 unknown_fields->AddVarint(option_field->number(),
6032 static_cast<uint64>(static_cast<int64>(enum_value->number())));
6033 }
6034 break;
6035 }
6036
6037 case FieldDescriptor::CPPTYPE_STRING:
6038 if (!uninterpreted_option_->has_string_value()) {
6039 return AddValueError("Value must be quoted string for string option "
6040 "\"" + option_field->full_name() + "\".");
6041 }
6042 // The string has already been unquoted and unescaped by the parser.
6043 unknown_fields->AddLengthDelimited(option_field->number(),
6044 uninterpreted_option_->string_value());
6045 break;
6046
6047 case FieldDescriptor::CPPTYPE_MESSAGE:
6048 if (!SetAggregateOption(option_field, unknown_fields)) {
6049 return false;
6050 }
6051 break;
6052 }
6053
6054 return true;
6055 }
6056
6057 class DescriptorBuilder::OptionInterpreter::AggregateOptionFinder
6058 : public TextFormat::Finder {
6059 public:
6060 DescriptorBuilder* builder_;
6061
FindExtension(Message * message,const string & name) const6062 virtual const FieldDescriptor* FindExtension(
6063 Message* message, const string& name) const {
6064 assert_mutex_held(builder_->pool_);
6065 const Descriptor* descriptor = message->GetDescriptor();
6066 Symbol result = builder_->LookupSymbolNoPlaceholder(
6067 name, descriptor->full_name());
6068 if (result.type == Symbol::FIELD &&
6069 result.field_descriptor->is_extension()) {
6070 return result.field_descriptor;
6071 } else if (result.type == Symbol::MESSAGE &&
6072 descriptor->options().message_set_wire_format()) {
6073 const Descriptor* foreign_type = result.descriptor;
6074 // The text format allows MessageSet items to be specified using
6075 // the type name, rather than the extension identifier. If the symbol
6076 // lookup returned a Message, and the enclosing Message has
6077 // message_set_wire_format = true, then return the message set
6078 // extension, if one exists.
6079 for (int i = 0; i < foreign_type->extension_count(); i++) {
6080 const FieldDescriptor* extension = foreign_type->extension(i);
6081 if (extension->containing_type() == descriptor &&
6082 extension->type() == FieldDescriptor::TYPE_MESSAGE &&
6083 extension->is_optional() &&
6084 extension->message_type() == foreign_type) {
6085 // Found it.
6086 return extension;
6087 }
6088 }
6089 }
6090 return NULL;
6091 }
6092 };
6093
6094 // A custom error collector to record any text-format parsing errors
6095 namespace {
6096 class AggregateErrorCollector : public io::ErrorCollector {
6097 public:
6098 string error_;
6099
AddError(int,int,const string & message)6100 virtual void AddError(int /* line */, int /* column */,
6101 const string& message) {
6102 if (!error_.empty()) {
6103 error_ += "; ";
6104 }
6105 error_ += message;
6106 }
6107
AddWarning(int,int,const string &)6108 virtual void AddWarning(int /* line */, int /* column */,
6109 const string& /* message */) {
6110 // Ignore warnings
6111 }
6112 };
6113 }
6114
6115 // We construct a dynamic message of the type corresponding to
6116 // option_field, parse the supplied text-format string into this
6117 // message, and serialize the resulting message to produce the value.
SetAggregateOption(const FieldDescriptor * option_field,UnknownFieldSet * unknown_fields)6118 bool DescriptorBuilder::OptionInterpreter::SetAggregateOption(
6119 const FieldDescriptor* option_field,
6120 UnknownFieldSet* unknown_fields) {
6121 if (!uninterpreted_option_->has_aggregate_value()) {
6122 return AddValueError("Option \"" + option_field->full_name() +
6123 "\" is a message. To set the entire message, use "
6124 "syntax like \"" + option_field->name() +
6125 " = { <proto text format> }\". "
6126 "To set fields within it, use "
6127 "syntax like \"" + option_field->name() +
6128 ".foo = value\".");
6129 }
6130
6131 const Descriptor* type = option_field->message_type();
6132 google::protobuf::scoped_ptr<Message> dynamic(dynamic_factory_.GetPrototype(type)->New());
6133 GOOGLE_CHECK(dynamic.get() != NULL)
6134 << "Could not create an instance of " << option_field->DebugString();
6135
6136 AggregateErrorCollector collector;
6137 AggregateOptionFinder finder;
6138 finder.builder_ = builder_;
6139 TextFormat::Parser parser;
6140 parser.RecordErrorsTo(&collector);
6141 parser.SetFinder(&finder);
6142 if (!parser.ParseFromString(uninterpreted_option_->aggregate_value(),
6143 dynamic.get())) {
6144 AddValueError("Error while parsing option value for \"" +
6145 option_field->name() + "\": " + collector.error_);
6146 return false;
6147 } else {
6148 string serial;
6149 dynamic->SerializeToString(&serial); // Never fails
6150 if (option_field->type() == FieldDescriptor::TYPE_MESSAGE) {
6151 unknown_fields->AddLengthDelimited(option_field->number(), serial);
6152 } else {
6153 GOOGLE_CHECK_EQ(option_field->type(), FieldDescriptor::TYPE_GROUP);
6154 UnknownFieldSet* group = unknown_fields->AddGroup(option_field->number());
6155 group->ParseFromString(serial);
6156 }
6157 return true;
6158 }
6159 }
6160
SetInt32(int number,int32 value,FieldDescriptor::Type type,UnknownFieldSet * unknown_fields)6161 void DescriptorBuilder::OptionInterpreter::SetInt32(int number, int32 value,
6162 FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) {
6163 switch (type) {
6164 case FieldDescriptor::TYPE_INT32:
6165 unknown_fields->AddVarint(number,
6166 static_cast<uint64>(static_cast<int64>(value)));
6167 break;
6168
6169 case FieldDescriptor::TYPE_SFIXED32:
6170 unknown_fields->AddFixed32(number, static_cast<uint32>(value));
6171 break;
6172
6173 case FieldDescriptor::TYPE_SINT32:
6174 unknown_fields->AddVarint(number,
6175 google::protobuf::internal::WireFormatLite::ZigZagEncode32(value));
6176 break;
6177
6178 default:
6179 GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_INT32: " << type;
6180 break;
6181 }
6182 }
6183
SetInt64(int number,int64 value,FieldDescriptor::Type type,UnknownFieldSet * unknown_fields)6184 void DescriptorBuilder::OptionInterpreter::SetInt64(int number, int64 value,
6185 FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) {
6186 switch (type) {
6187 case FieldDescriptor::TYPE_INT64:
6188 unknown_fields->AddVarint(number, static_cast<uint64>(value));
6189 break;
6190
6191 case FieldDescriptor::TYPE_SFIXED64:
6192 unknown_fields->AddFixed64(number, static_cast<uint64>(value));
6193 break;
6194
6195 case FieldDescriptor::TYPE_SINT64:
6196 unknown_fields->AddVarint(number,
6197 google::protobuf::internal::WireFormatLite::ZigZagEncode64(value));
6198 break;
6199
6200 default:
6201 GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_INT64: " << type;
6202 break;
6203 }
6204 }
6205
SetUInt32(int number,uint32 value,FieldDescriptor::Type type,UnknownFieldSet * unknown_fields)6206 void DescriptorBuilder::OptionInterpreter::SetUInt32(int number, uint32 value,
6207 FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) {
6208 switch (type) {
6209 case FieldDescriptor::TYPE_UINT32:
6210 unknown_fields->AddVarint(number, static_cast<uint64>(value));
6211 break;
6212
6213 case FieldDescriptor::TYPE_FIXED32:
6214 unknown_fields->AddFixed32(number, static_cast<uint32>(value));
6215 break;
6216
6217 default:
6218 GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_UINT32: " << type;
6219 break;
6220 }
6221 }
6222
SetUInt64(int number,uint64 value,FieldDescriptor::Type type,UnknownFieldSet * unknown_fields)6223 void DescriptorBuilder::OptionInterpreter::SetUInt64(int number, uint64 value,
6224 FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) {
6225 switch (type) {
6226 case FieldDescriptor::TYPE_UINT64:
6227 unknown_fields->AddVarint(number, value);
6228 break;
6229
6230 case FieldDescriptor::TYPE_FIXED64:
6231 unknown_fields->AddFixed64(number, value);
6232 break;
6233
6234 default:
6235 GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_UINT64: " << type;
6236 break;
6237 }
6238 }
6239
LogUnusedDependency(const FileDescriptorProto & proto,const FileDescriptor * result)6240 void DescriptorBuilder::LogUnusedDependency(const FileDescriptorProto& proto,
6241 const FileDescriptor* result) {
6242
6243 if (!unused_dependency_.empty()) {
6244 std::set<string> annotation_extensions;
6245 annotation_extensions.insert("google.protobuf.MessageOptions");
6246 annotation_extensions.insert("google.protobuf.FileOptions");
6247 annotation_extensions.insert("google.protobuf.FieldOptions");
6248 annotation_extensions.insert("google.protobuf.EnumOptions");
6249 annotation_extensions.insert("google.protobuf.EnumValueOptions");
6250 annotation_extensions.insert("google.protobuf.ServiceOptions");
6251 annotation_extensions.insert("google.protobuf.MethodOptions");
6252 annotation_extensions.insert("google.protobuf.StreamOptions");
6253 for (set<const FileDescriptor*>::const_iterator
6254 it = unused_dependency_.begin();
6255 it != unused_dependency_.end(); ++it) {
6256 // Do not log warnings for proto files which extend annotations.
6257 int i;
6258 for (i = 0 ; i < (*it)->extension_count(); ++i) {
6259 if (annotation_extensions.find(
6260 (*it)->extension(i)->containing_type()->full_name())
6261 != annotation_extensions.end()) {
6262 break;
6263 }
6264 }
6265 // Log warnings for unused imported files.
6266 if (i == (*it)->extension_count()) {
6267 string error_message = "Import " + (*it)->name() + " but not used.";
6268 AddWarning((*it)->name(), proto, DescriptorPool::ErrorCollector::OTHER,
6269 error_message);
6270 }
6271 }
6272 }
6273 }
6274
6275 } // namespace protobuf
6276 } // namespace google
6277