1 //===- InstCombineCalls.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitCall and visitInvoke functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Transforms/Utils/Local.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/LLVMContext.h"
44 #include "llvm/IR/Metadata.h"
45 #include "llvm/IR/PatternMatch.h"
46 #include "llvm/IR/Statepoint.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/User.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/IR/ValueHandle.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/KnownBits.h"
58 #include "llvm/Support/MathExtras.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
61 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <cstring>
66 #include <utility>
67 #include <vector>
68 
69 using namespace llvm;
70 using namespace PatternMatch;
71 
72 #define DEBUG_TYPE "instcombine"
73 
74 STATISTIC(NumSimplified, "Number of library calls simplified");
75 
76 static cl::opt<unsigned> GuardWideningWindow(
77     "instcombine-guard-widening-window",
78     cl::init(3),
79     cl::desc("How wide an instruction window to bypass looking for "
80              "another guard"));
81 
82 /// Return the specified type promoted as it would be to pass though a va_arg
83 /// area.
getPromotedType(Type * Ty)84 static Type *getPromotedType(Type *Ty) {
85   if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
86     if (ITy->getBitWidth() < 32)
87       return Type::getInt32Ty(Ty->getContext());
88   }
89   return Ty;
90 }
91 
92 /// Return a constant boolean vector that has true elements in all positions
93 /// where the input constant data vector has an element with the sign bit set.
getNegativeIsTrueBoolVec(ConstantDataVector * V)94 static Constant *getNegativeIsTrueBoolVec(ConstantDataVector *V) {
95   SmallVector<Constant *, 32> BoolVec;
96   IntegerType *BoolTy = Type::getInt1Ty(V->getContext());
97   for (unsigned I = 0, E = V->getNumElements(); I != E; ++I) {
98     Constant *Elt = V->getElementAsConstant(I);
99     assert((isa<ConstantInt>(Elt) || isa<ConstantFP>(Elt)) &&
100            "Unexpected constant data vector element type");
101     bool Sign = V->getElementType()->isIntegerTy()
102                     ? cast<ConstantInt>(Elt)->isNegative()
103                     : cast<ConstantFP>(Elt)->isNegative();
104     BoolVec.push_back(ConstantInt::get(BoolTy, Sign));
105   }
106   return ConstantVector::get(BoolVec);
107 }
108 
SimplifyAnyMemTransfer(AnyMemTransferInst * MI)109 Instruction *InstCombiner::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) {
110   unsigned DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT);
111   unsigned CopyDstAlign = MI->getDestAlignment();
112   if (CopyDstAlign < DstAlign){
113     MI->setDestAlignment(DstAlign);
114     return MI;
115   }
116 
117   unsigned SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT);
118   unsigned CopySrcAlign = MI->getSourceAlignment();
119   if (CopySrcAlign < SrcAlign) {
120     MI->setSourceAlignment(SrcAlign);
121     return MI;
122   }
123 
124   // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
125   // load/store.
126   ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength());
127   if (!MemOpLength) return nullptr;
128 
129   // Source and destination pointer types are always "i8*" for intrinsic.  See
130   // if the size is something we can handle with a single primitive load/store.
131   // A single load+store correctly handles overlapping memory in the memmove
132   // case.
133   uint64_t Size = MemOpLength->getLimitedValue();
134   assert(Size && "0-sized memory transferring should be removed already.");
135 
136   if (Size > 8 || (Size&(Size-1)))
137     return nullptr;  // If not 1/2/4/8 bytes, exit.
138 
139   // Use an integer load+store unless we can find something better.
140   unsigned SrcAddrSp =
141     cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
142   unsigned DstAddrSp =
143     cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
144 
145   IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
146   Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
147   Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
148 
149   // If the memcpy has metadata describing the members, see if we can get the
150   // TBAA tag describing our copy.
151   MDNode *CopyMD = nullptr;
152   if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) {
153     CopyMD = M;
154   } else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
155     if (M->getNumOperands() == 3 && M->getOperand(0) &&
156         mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
157         mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() &&
158         M->getOperand(1) &&
159         mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
160         mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
161         Size &&
162         M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
163       CopyMD = cast<MDNode>(M->getOperand(2));
164   }
165 
166   Value *Src = Builder.CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
167   Value *Dest = Builder.CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
168   LoadInst *L = Builder.CreateLoad(Src);
169   // Alignment from the mem intrinsic will be better, so use it.
170   L->setAlignment(CopySrcAlign);
171   if (CopyMD)
172     L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
173   MDNode *LoopMemParallelMD =
174     MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
175   if (LoopMemParallelMD)
176     L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
177 
178   StoreInst *S = Builder.CreateStore(L, Dest);
179   // Alignment from the mem intrinsic will be better, so use it.
180   S->setAlignment(CopyDstAlign);
181   if (CopyMD)
182     S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
183   if (LoopMemParallelMD)
184     S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
185 
186   if (auto *MT = dyn_cast<MemTransferInst>(MI)) {
187     // non-atomics can be volatile
188     L->setVolatile(MT->isVolatile());
189     S->setVolatile(MT->isVolatile());
190   }
191   if (isa<AtomicMemTransferInst>(MI)) {
192     // atomics have to be unordered
193     L->setOrdering(AtomicOrdering::Unordered);
194     S->setOrdering(AtomicOrdering::Unordered);
195   }
196 
197   // Set the size of the copy to 0, it will be deleted on the next iteration.
198   MI->setLength(Constant::getNullValue(MemOpLength->getType()));
199   return MI;
200 }
201 
SimplifyAnyMemSet(AnyMemSetInst * MI)202 Instruction *InstCombiner::SimplifyAnyMemSet(AnyMemSetInst *MI) {
203   unsigned Alignment = getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
204   if (MI->getDestAlignment() < Alignment) {
205     MI->setDestAlignment(Alignment);
206     return MI;
207   }
208 
209   // Extract the length and alignment and fill if they are constant.
210   ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
211   ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
212   if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
213     return nullptr;
214   uint64_t Len = LenC->getLimitedValue();
215   Alignment = MI->getDestAlignment();
216   assert(Len && "0-sized memory setting should be removed already.");
217 
218   // memset(s,c,n) -> store s, c (for n=1,2,4,8)
219   if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
220     Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
221 
222     Value *Dest = MI->getDest();
223     unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
224     Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
225     Dest = Builder.CreateBitCast(Dest, NewDstPtrTy);
226 
227     // Alignment 0 is identity for alignment 1 for memset, but not store.
228     if (Alignment == 0) Alignment = 1;
229 
230     // Extract the fill value and store.
231     uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
232     StoreInst *S = Builder.CreateStore(ConstantInt::get(ITy, Fill), Dest,
233                                        MI->isVolatile());
234     S->setAlignment(Alignment);
235     if (isa<AtomicMemSetInst>(MI))
236       S->setOrdering(AtomicOrdering::Unordered);
237 
238     // Set the size of the copy to 0, it will be deleted on the next iteration.
239     MI->setLength(Constant::getNullValue(LenC->getType()));
240     return MI;
241   }
242 
243   return nullptr;
244 }
245 
simplifyX86immShift(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)246 static Value *simplifyX86immShift(const IntrinsicInst &II,
247                                   InstCombiner::BuilderTy &Builder) {
248   bool LogicalShift = false;
249   bool ShiftLeft = false;
250 
251   switch (II.getIntrinsicID()) {
252   default: llvm_unreachable("Unexpected intrinsic!");
253   case Intrinsic::x86_sse2_psra_d:
254   case Intrinsic::x86_sse2_psra_w:
255   case Intrinsic::x86_sse2_psrai_d:
256   case Intrinsic::x86_sse2_psrai_w:
257   case Intrinsic::x86_avx2_psra_d:
258   case Intrinsic::x86_avx2_psra_w:
259   case Intrinsic::x86_avx2_psrai_d:
260   case Intrinsic::x86_avx2_psrai_w:
261   case Intrinsic::x86_avx512_psra_q_128:
262   case Intrinsic::x86_avx512_psrai_q_128:
263   case Intrinsic::x86_avx512_psra_q_256:
264   case Intrinsic::x86_avx512_psrai_q_256:
265   case Intrinsic::x86_avx512_psra_d_512:
266   case Intrinsic::x86_avx512_psra_q_512:
267   case Intrinsic::x86_avx512_psra_w_512:
268   case Intrinsic::x86_avx512_psrai_d_512:
269   case Intrinsic::x86_avx512_psrai_q_512:
270   case Intrinsic::x86_avx512_psrai_w_512:
271     LogicalShift = false; ShiftLeft = false;
272     break;
273   case Intrinsic::x86_sse2_psrl_d:
274   case Intrinsic::x86_sse2_psrl_q:
275   case Intrinsic::x86_sse2_psrl_w:
276   case Intrinsic::x86_sse2_psrli_d:
277   case Intrinsic::x86_sse2_psrli_q:
278   case Intrinsic::x86_sse2_psrli_w:
279   case Intrinsic::x86_avx2_psrl_d:
280   case Intrinsic::x86_avx2_psrl_q:
281   case Intrinsic::x86_avx2_psrl_w:
282   case Intrinsic::x86_avx2_psrli_d:
283   case Intrinsic::x86_avx2_psrli_q:
284   case Intrinsic::x86_avx2_psrli_w:
285   case Intrinsic::x86_avx512_psrl_d_512:
286   case Intrinsic::x86_avx512_psrl_q_512:
287   case Intrinsic::x86_avx512_psrl_w_512:
288   case Intrinsic::x86_avx512_psrli_d_512:
289   case Intrinsic::x86_avx512_psrli_q_512:
290   case Intrinsic::x86_avx512_psrli_w_512:
291     LogicalShift = true; ShiftLeft = false;
292     break;
293   case Intrinsic::x86_sse2_psll_d:
294   case Intrinsic::x86_sse2_psll_q:
295   case Intrinsic::x86_sse2_psll_w:
296   case Intrinsic::x86_sse2_pslli_d:
297   case Intrinsic::x86_sse2_pslli_q:
298   case Intrinsic::x86_sse2_pslli_w:
299   case Intrinsic::x86_avx2_psll_d:
300   case Intrinsic::x86_avx2_psll_q:
301   case Intrinsic::x86_avx2_psll_w:
302   case Intrinsic::x86_avx2_pslli_d:
303   case Intrinsic::x86_avx2_pslli_q:
304   case Intrinsic::x86_avx2_pslli_w:
305   case Intrinsic::x86_avx512_psll_d_512:
306   case Intrinsic::x86_avx512_psll_q_512:
307   case Intrinsic::x86_avx512_psll_w_512:
308   case Intrinsic::x86_avx512_pslli_d_512:
309   case Intrinsic::x86_avx512_pslli_q_512:
310   case Intrinsic::x86_avx512_pslli_w_512:
311     LogicalShift = true; ShiftLeft = true;
312     break;
313   }
314   assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
315 
316   // Simplify if count is constant.
317   auto Arg1 = II.getArgOperand(1);
318   auto CAZ = dyn_cast<ConstantAggregateZero>(Arg1);
319   auto CDV = dyn_cast<ConstantDataVector>(Arg1);
320   auto CInt = dyn_cast<ConstantInt>(Arg1);
321   if (!CAZ && !CDV && !CInt)
322     return nullptr;
323 
324   APInt Count(64, 0);
325   if (CDV) {
326     // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector
327     // operand to compute the shift amount.
328     auto VT = cast<VectorType>(CDV->getType());
329     unsigned BitWidth = VT->getElementType()->getPrimitiveSizeInBits();
330     assert((64 % BitWidth) == 0 && "Unexpected packed shift size");
331     unsigned NumSubElts = 64 / BitWidth;
332 
333     // Concatenate the sub-elements to create the 64-bit value.
334     for (unsigned i = 0; i != NumSubElts; ++i) {
335       unsigned SubEltIdx = (NumSubElts - 1) - i;
336       auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx));
337       Count <<= BitWidth;
338       Count |= SubElt->getValue().zextOrTrunc(64);
339     }
340   }
341   else if (CInt)
342     Count = CInt->getValue();
343 
344   auto Vec = II.getArgOperand(0);
345   auto VT = cast<VectorType>(Vec->getType());
346   auto SVT = VT->getElementType();
347   unsigned VWidth = VT->getNumElements();
348   unsigned BitWidth = SVT->getPrimitiveSizeInBits();
349 
350   // If shift-by-zero then just return the original value.
351   if (Count.isNullValue())
352     return Vec;
353 
354   // Handle cases when Shift >= BitWidth.
355   if (Count.uge(BitWidth)) {
356     // If LogicalShift - just return zero.
357     if (LogicalShift)
358       return ConstantAggregateZero::get(VT);
359 
360     // If ArithmeticShift - clamp Shift to (BitWidth - 1).
361     Count = APInt(64, BitWidth - 1);
362   }
363 
364   // Get a constant vector of the same type as the first operand.
365   auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth));
366   auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt);
367 
368   if (ShiftLeft)
369     return Builder.CreateShl(Vec, ShiftVec);
370 
371   if (LogicalShift)
372     return Builder.CreateLShr(Vec, ShiftVec);
373 
374   return Builder.CreateAShr(Vec, ShiftVec);
375 }
376 
377 // Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift.
378 // Unlike the generic IR shifts, the intrinsics have defined behaviour for out
379 // of range shift amounts (logical - set to zero, arithmetic - splat sign bit).
simplifyX86varShift(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)380 static Value *simplifyX86varShift(const IntrinsicInst &II,
381                                   InstCombiner::BuilderTy &Builder) {
382   bool LogicalShift = false;
383   bool ShiftLeft = false;
384 
385   switch (II.getIntrinsicID()) {
386   default: llvm_unreachable("Unexpected intrinsic!");
387   case Intrinsic::x86_avx2_psrav_d:
388   case Intrinsic::x86_avx2_psrav_d_256:
389   case Intrinsic::x86_avx512_psrav_q_128:
390   case Intrinsic::x86_avx512_psrav_q_256:
391   case Intrinsic::x86_avx512_psrav_d_512:
392   case Intrinsic::x86_avx512_psrav_q_512:
393   case Intrinsic::x86_avx512_psrav_w_128:
394   case Intrinsic::x86_avx512_psrav_w_256:
395   case Intrinsic::x86_avx512_psrav_w_512:
396     LogicalShift = false;
397     ShiftLeft = false;
398     break;
399   case Intrinsic::x86_avx2_psrlv_d:
400   case Intrinsic::x86_avx2_psrlv_d_256:
401   case Intrinsic::x86_avx2_psrlv_q:
402   case Intrinsic::x86_avx2_psrlv_q_256:
403   case Intrinsic::x86_avx512_psrlv_d_512:
404   case Intrinsic::x86_avx512_psrlv_q_512:
405   case Intrinsic::x86_avx512_psrlv_w_128:
406   case Intrinsic::x86_avx512_psrlv_w_256:
407   case Intrinsic::x86_avx512_psrlv_w_512:
408     LogicalShift = true;
409     ShiftLeft = false;
410     break;
411   case Intrinsic::x86_avx2_psllv_d:
412   case Intrinsic::x86_avx2_psllv_d_256:
413   case Intrinsic::x86_avx2_psllv_q:
414   case Intrinsic::x86_avx2_psllv_q_256:
415   case Intrinsic::x86_avx512_psllv_d_512:
416   case Intrinsic::x86_avx512_psllv_q_512:
417   case Intrinsic::x86_avx512_psllv_w_128:
418   case Intrinsic::x86_avx512_psllv_w_256:
419   case Intrinsic::x86_avx512_psllv_w_512:
420     LogicalShift = true;
421     ShiftLeft = true;
422     break;
423   }
424   assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
425 
426   // Simplify if all shift amounts are constant/undef.
427   auto *CShift = dyn_cast<Constant>(II.getArgOperand(1));
428   if (!CShift)
429     return nullptr;
430 
431   auto Vec = II.getArgOperand(0);
432   auto VT = cast<VectorType>(II.getType());
433   auto SVT = VT->getVectorElementType();
434   int NumElts = VT->getNumElements();
435   int BitWidth = SVT->getIntegerBitWidth();
436 
437   // Collect each element's shift amount.
438   // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth.
439   bool AnyOutOfRange = false;
440   SmallVector<int, 8> ShiftAmts;
441   for (int I = 0; I < NumElts; ++I) {
442     auto *CElt = CShift->getAggregateElement(I);
443     if (CElt && isa<UndefValue>(CElt)) {
444       ShiftAmts.push_back(-1);
445       continue;
446     }
447 
448     auto *COp = dyn_cast_or_null<ConstantInt>(CElt);
449     if (!COp)
450       return nullptr;
451 
452     // Handle out of range shifts.
453     // If LogicalShift - set to BitWidth (special case).
454     // If ArithmeticShift - set to (BitWidth - 1) (sign splat).
455     APInt ShiftVal = COp->getValue();
456     if (ShiftVal.uge(BitWidth)) {
457       AnyOutOfRange = LogicalShift;
458       ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1);
459       continue;
460     }
461 
462     ShiftAmts.push_back((int)ShiftVal.getZExtValue());
463   }
464 
465   // If all elements out of range or UNDEF, return vector of zeros/undefs.
466   // ArithmeticShift should only hit this if they are all UNDEF.
467   auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); };
468   if (llvm::all_of(ShiftAmts, OutOfRange)) {
469     SmallVector<Constant *, 8> ConstantVec;
470     for (int Idx : ShiftAmts) {
471       if (Idx < 0) {
472         ConstantVec.push_back(UndefValue::get(SVT));
473       } else {
474         assert(LogicalShift && "Logical shift expected");
475         ConstantVec.push_back(ConstantInt::getNullValue(SVT));
476       }
477     }
478     return ConstantVector::get(ConstantVec);
479   }
480 
481   // We can't handle only some out of range values with generic logical shifts.
482   if (AnyOutOfRange)
483     return nullptr;
484 
485   // Build the shift amount constant vector.
486   SmallVector<Constant *, 8> ShiftVecAmts;
487   for (int Idx : ShiftAmts) {
488     if (Idx < 0)
489       ShiftVecAmts.push_back(UndefValue::get(SVT));
490     else
491       ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx));
492   }
493   auto ShiftVec = ConstantVector::get(ShiftVecAmts);
494 
495   if (ShiftLeft)
496     return Builder.CreateShl(Vec, ShiftVec);
497 
498   if (LogicalShift)
499     return Builder.CreateLShr(Vec, ShiftVec);
500 
501   return Builder.CreateAShr(Vec, ShiftVec);
502 }
503 
simplifyX86pack(IntrinsicInst & II,bool IsSigned)504 static Value *simplifyX86pack(IntrinsicInst &II, bool IsSigned) {
505   Value *Arg0 = II.getArgOperand(0);
506   Value *Arg1 = II.getArgOperand(1);
507   Type *ResTy = II.getType();
508 
509   // Fast all undef handling.
510   if (isa<UndefValue>(Arg0) && isa<UndefValue>(Arg1))
511     return UndefValue::get(ResTy);
512 
513   Type *ArgTy = Arg0->getType();
514   unsigned NumLanes = ResTy->getPrimitiveSizeInBits() / 128;
515   unsigned NumDstElts = ResTy->getVectorNumElements();
516   unsigned NumSrcElts = ArgTy->getVectorNumElements();
517   assert(NumDstElts == (2 * NumSrcElts) && "Unexpected packing types");
518 
519   unsigned NumDstEltsPerLane = NumDstElts / NumLanes;
520   unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes;
521   unsigned DstScalarSizeInBits = ResTy->getScalarSizeInBits();
522   assert(ArgTy->getScalarSizeInBits() == (2 * DstScalarSizeInBits) &&
523          "Unexpected packing types");
524 
525   // Constant folding.
526   auto *Cst0 = dyn_cast<Constant>(Arg0);
527   auto *Cst1 = dyn_cast<Constant>(Arg1);
528   if (!Cst0 || !Cst1)
529     return nullptr;
530 
531   SmallVector<Constant *, 32> Vals;
532   for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
533     for (unsigned Elt = 0; Elt != NumDstEltsPerLane; ++Elt) {
534       unsigned SrcIdx = Lane * NumSrcEltsPerLane + Elt % NumSrcEltsPerLane;
535       auto *Cst = (Elt >= NumSrcEltsPerLane) ? Cst1 : Cst0;
536       auto *COp = Cst->getAggregateElement(SrcIdx);
537       if (COp && isa<UndefValue>(COp)) {
538         Vals.push_back(UndefValue::get(ResTy->getScalarType()));
539         continue;
540       }
541 
542       auto *CInt = dyn_cast_or_null<ConstantInt>(COp);
543       if (!CInt)
544         return nullptr;
545 
546       APInt Val = CInt->getValue();
547       assert(Val.getBitWidth() == ArgTy->getScalarSizeInBits() &&
548              "Unexpected constant bitwidth");
549 
550       if (IsSigned) {
551         // PACKSS: Truncate signed value with signed saturation.
552         // Source values less than dst minint are saturated to minint.
553         // Source values greater than dst maxint are saturated to maxint.
554         if (Val.isSignedIntN(DstScalarSizeInBits))
555           Val = Val.trunc(DstScalarSizeInBits);
556         else if (Val.isNegative())
557           Val = APInt::getSignedMinValue(DstScalarSizeInBits);
558         else
559           Val = APInt::getSignedMaxValue(DstScalarSizeInBits);
560       } else {
561         // PACKUS: Truncate signed value with unsigned saturation.
562         // Source values less than zero are saturated to zero.
563         // Source values greater than dst maxuint are saturated to maxuint.
564         if (Val.isIntN(DstScalarSizeInBits))
565           Val = Val.trunc(DstScalarSizeInBits);
566         else if (Val.isNegative())
567           Val = APInt::getNullValue(DstScalarSizeInBits);
568         else
569           Val = APInt::getAllOnesValue(DstScalarSizeInBits);
570       }
571 
572       Vals.push_back(ConstantInt::get(ResTy->getScalarType(), Val));
573     }
574   }
575 
576   return ConstantVector::get(Vals);
577 }
578 
579 // Replace X86-specific intrinsics with generic floor-ceil where applicable.
simplifyX86round(IntrinsicInst & II,InstCombiner::BuilderTy & Builder)580 static Value *simplifyX86round(IntrinsicInst &II,
581                                InstCombiner::BuilderTy &Builder) {
582   ConstantInt *Arg = nullptr;
583   Intrinsic::ID IntrinsicID = II.getIntrinsicID();
584 
585   if (IntrinsicID == Intrinsic::x86_sse41_round_ss ||
586       IntrinsicID == Intrinsic::x86_sse41_round_sd)
587     Arg = dyn_cast<ConstantInt>(II.getArgOperand(2));
588   else if (IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ss ||
589            IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_sd)
590     Arg = dyn_cast<ConstantInt>(II.getArgOperand(4));
591   else
592     Arg = dyn_cast<ConstantInt>(II.getArgOperand(1));
593   if (!Arg)
594     return nullptr;
595   unsigned RoundControl = Arg->getZExtValue();
596 
597   Arg = nullptr;
598   unsigned SAE = 0;
599   if (IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ps_512 ||
600       IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_pd_512)
601     Arg = dyn_cast<ConstantInt>(II.getArgOperand(4));
602   else if (IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ss ||
603            IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_sd)
604     Arg = dyn_cast<ConstantInt>(II.getArgOperand(5));
605   else
606     SAE = 4;
607   if (!SAE) {
608     if (!Arg)
609       return nullptr;
610     SAE = Arg->getZExtValue();
611   }
612 
613   if (SAE != 4 || (RoundControl != 2 /*ceil*/ && RoundControl != 1 /*floor*/))
614     return nullptr;
615 
616   Value *Src, *Dst, *Mask;
617   bool IsScalar = false;
618   if (IntrinsicID == Intrinsic::x86_sse41_round_ss ||
619       IntrinsicID == Intrinsic::x86_sse41_round_sd ||
620       IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ss ||
621       IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_sd) {
622     IsScalar = true;
623     if (IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ss ||
624         IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_sd) {
625       Mask = II.getArgOperand(3);
626       Value *Zero = Constant::getNullValue(Mask->getType());
627       Mask = Builder.CreateAnd(Mask, 1);
628       Mask = Builder.CreateICmp(ICmpInst::ICMP_NE, Mask, Zero);
629       Dst = II.getArgOperand(2);
630     } else
631       Dst = II.getArgOperand(0);
632     Src = Builder.CreateExtractElement(II.getArgOperand(1), (uint64_t)0);
633   } else {
634     Src = II.getArgOperand(0);
635     if (IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ps_128 ||
636         IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ps_256 ||
637         IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ps_512 ||
638         IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_pd_128 ||
639         IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_pd_256 ||
640         IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_pd_512) {
641       Dst = II.getArgOperand(2);
642       Mask = II.getArgOperand(3);
643     } else {
644       Dst = Src;
645       Mask = ConstantInt::getAllOnesValue(
646           Builder.getIntNTy(Src->getType()->getVectorNumElements()));
647     }
648   }
649 
650   Intrinsic::ID ID = (RoundControl == 2) ? Intrinsic::ceil : Intrinsic::floor;
651   Value *Res = Builder.CreateIntrinsic(ID, {Src}, &II);
652   if (!IsScalar) {
653     if (auto *C = dyn_cast<Constant>(Mask))
654       if (C->isAllOnesValue())
655         return Res;
656     auto *MaskTy = VectorType::get(
657         Builder.getInt1Ty(), cast<IntegerType>(Mask->getType())->getBitWidth());
658     Mask = Builder.CreateBitCast(Mask, MaskTy);
659     unsigned Width = Src->getType()->getVectorNumElements();
660     if (MaskTy->getVectorNumElements() > Width) {
661       uint32_t Indices[4];
662       for (unsigned i = 0; i != Width; ++i)
663         Indices[i] = i;
664       Mask = Builder.CreateShuffleVector(Mask, Mask,
665                                          makeArrayRef(Indices, Width));
666     }
667     return Builder.CreateSelect(Mask, Res, Dst);
668   }
669   if (IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_ss ||
670       IntrinsicID == Intrinsic::x86_avx512_mask_rndscale_sd) {
671     Dst = Builder.CreateExtractElement(Dst, (uint64_t)0);
672     Res = Builder.CreateSelect(Mask, Res, Dst);
673     Dst = II.getArgOperand(0);
674   }
675   return Builder.CreateInsertElement(Dst, Res, (uint64_t)0);
676 }
677 
simplifyX86movmsk(const IntrinsicInst & II)678 static Value *simplifyX86movmsk(const IntrinsicInst &II) {
679   Value *Arg = II.getArgOperand(0);
680   Type *ResTy = II.getType();
681   Type *ArgTy = Arg->getType();
682 
683   // movmsk(undef) -> zero as we must ensure the upper bits are zero.
684   if (isa<UndefValue>(Arg))
685     return Constant::getNullValue(ResTy);
686 
687   // We can't easily peek through x86_mmx types.
688   if (!ArgTy->isVectorTy())
689     return nullptr;
690 
691   auto *C = dyn_cast<Constant>(Arg);
692   if (!C)
693     return nullptr;
694 
695   // Extract signbits of the vector input and pack into integer result.
696   APInt Result(ResTy->getPrimitiveSizeInBits(), 0);
697   for (unsigned I = 0, E = ArgTy->getVectorNumElements(); I != E; ++I) {
698     auto *COp = C->getAggregateElement(I);
699     if (!COp)
700       return nullptr;
701     if (isa<UndefValue>(COp))
702       continue;
703 
704     auto *CInt = dyn_cast<ConstantInt>(COp);
705     auto *CFp = dyn_cast<ConstantFP>(COp);
706     if (!CInt && !CFp)
707       return nullptr;
708 
709     if ((CInt && CInt->isNegative()) || (CFp && CFp->isNegative()))
710       Result.setBit(I);
711   }
712 
713   return Constant::getIntegerValue(ResTy, Result);
714 }
715 
simplifyX86insertps(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)716 static Value *simplifyX86insertps(const IntrinsicInst &II,
717                                   InstCombiner::BuilderTy &Builder) {
718   auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
719   if (!CInt)
720     return nullptr;
721 
722   VectorType *VecTy = cast<VectorType>(II.getType());
723   assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");
724 
725   // The immediate permute control byte looks like this:
726   //    [3:0] - zero mask for each 32-bit lane
727   //    [5:4] - select one 32-bit destination lane
728   //    [7:6] - select one 32-bit source lane
729 
730   uint8_t Imm = CInt->getZExtValue();
731   uint8_t ZMask = Imm & 0xf;
732   uint8_t DestLane = (Imm >> 4) & 0x3;
733   uint8_t SourceLane = (Imm >> 6) & 0x3;
734 
735   ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
736 
737   // If all zero mask bits are set, this was just a weird way to
738   // generate a zero vector.
739   if (ZMask == 0xf)
740     return ZeroVector;
741 
742   // Initialize by passing all of the first source bits through.
743   uint32_t ShuffleMask[4] = { 0, 1, 2, 3 };
744 
745   // We may replace the second operand with the zero vector.
746   Value *V1 = II.getArgOperand(1);
747 
748   if (ZMask) {
749     // If the zero mask is being used with a single input or the zero mask
750     // overrides the destination lane, this is a shuffle with the zero vector.
751     if ((II.getArgOperand(0) == II.getArgOperand(1)) ||
752         (ZMask & (1 << DestLane))) {
753       V1 = ZeroVector;
754       // We may still move 32-bits of the first source vector from one lane
755       // to another.
756       ShuffleMask[DestLane] = SourceLane;
757       // The zero mask may override the previous insert operation.
758       for (unsigned i = 0; i < 4; ++i)
759         if ((ZMask >> i) & 0x1)
760           ShuffleMask[i] = i + 4;
761     } else {
762       // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
763       return nullptr;
764     }
765   } else {
766     // Replace the selected destination lane with the selected source lane.
767     ShuffleMask[DestLane] = SourceLane + 4;
768   }
769 
770   return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask);
771 }
772 
773 /// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding
774 /// or conversion to a shuffle vector.
simplifyX86extrq(IntrinsicInst & II,Value * Op0,ConstantInt * CILength,ConstantInt * CIIndex,InstCombiner::BuilderTy & Builder)775 static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0,
776                                ConstantInt *CILength, ConstantInt *CIIndex,
777                                InstCombiner::BuilderTy &Builder) {
778   auto LowConstantHighUndef = [&](uint64_t Val) {
779     Type *IntTy64 = Type::getInt64Ty(II.getContext());
780     Constant *Args[] = {ConstantInt::get(IntTy64, Val),
781                         UndefValue::get(IntTy64)};
782     return ConstantVector::get(Args);
783   };
784 
785   // See if we're dealing with constant values.
786   Constant *C0 = dyn_cast<Constant>(Op0);
787   ConstantInt *CI0 =
788       C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
789          : nullptr;
790 
791   // Attempt to constant fold.
792   if (CILength && CIIndex) {
793     // From AMD documentation: "The bit index and field length are each six
794     // bits in length other bits of the field are ignored."
795     APInt APIndex = CIIndex->getValue().zextOrTrunc(6);
796     APInt APLength = CILength->getValue().zextOrTrunc(6);
797 
798     unsigned Index = APIndex.getZExtValue();
799 
800     // From AMD documentation: "a value of zero in the field length is
801     // defined as length of 64".
802     unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
803 
804     // From AMD documentation: "If the sum of the bit index + length field
805     // is greater than 64, the results are undefined".
806     unsigned End = Index + Length;
807 
808     // Note that both field index and field length are 8-bit quantities.
809     // Since variables 'Index' and 'Length' are unsigned values
810     // obtained from zero-extending field index and field length
811     // respectively, their sum should never wrap around.
812     if (End > 64)
813       return UndefValue::get(II.getType());
814 
815     // If we are inserting whole bytes, we can convert this to a shuffle.
816     // Lowering can recognize EXTRQI shuffle masks.
817     if ((Length % 8) == 0 && (Index % 8) == 0) {
818       // Convert bit indices to byte indices.
819       Length /= 8;
820       Index /= 8;
821 
822       Type *IntTy8 = Type::getInt8Ty(II.getContext());
823       Type *IntTy32 = Type::getInt32Ty(II.getContext());
824       VectorType *ShufTy = VectorType::get(IntTy8, 16);
825 
826       SmallVector<Constant *, 16> ShuffleMask;
827       for (int i = 0; i != (int)Length; ++i)
828         ShuffleMask.push_back(
829             Constant::getIntegerValue(IntTy32, APInt(32, i + Index)));
830       for (int i = Length; i != 8; ++i)
831         ShuffleMask.push_back(
832             Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
833       for (int i = 8; i != 16; ++i)
834         ShuffleMask.push_back(UndefValue::get(IntTy32));
835 
836       Value *SV = Builder.CreateShuffleVector(
837           Builder.CreateBitCast(Op0, ShufTy),
838           ConstantAggregateZero::get(ShufTy), ConstantVector::get(ShuffleMask));
839       return Builder.CreateBitCast(SV, II.getType());
840     }
841 
842     // Constant Fold - shift Index'th bit to lowest position and mask off
843     // Length bits.
844     if (CI0) {
845       APInt Elt = CI0->getValue();
846       Elt.lshrInPlace(Index);
847       Elt = Elt.zextOrTrunc(Length);
848       return LowConstantHighUndef(Elt.getZExtValue());
849     }
850 
851     // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI.
852     if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) {
853       Value *Args[] = {Op0, CILength, CIIndex};
854       Module *M = II.getModule();
855       Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi);
856       return Builder.CreateCall(F, Args);
857     }
858   }
859 
860   // Constant Fold - extraction from zero is always {zero, undef}.
861   if (CI0 && CI0->isZero())
862     return LowConstantHighUndef(0);
863 
864   return nullptr;
865 }
866 
867 /// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant
868 /// folding or conversion to a shuffle vector.
simplifyX86insertq(IntrinsicInst & II,Value * Op0,Value * Op1,APInt APLength,APInt APIndex,InstCombiner::BuilderTy & Builder)869 static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1,
870                                  APInt APLength, APInt APIndex,
871                                  InstCombiner::BuilderTy &Builder) {
872   // From AMD documentation: "The bit index and field length are each six bits
873   // in length other bits of the field are ignored."
874   APIndex = APIndex.zextOrTrunc(6);
875   APLength = APLength.zextOrTrunc(6);
876 
877   // Attempt to constant fold.
878   unsigned Index = APIndex.getZExtValue();
879 
880   // From AMD documentation: "a value of zero in the field length is
881   // defined as length of 64".
882   unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
883 
884   // From AMD documentation: "If the sum of the bit index + length field
885   // is greater than 64, the results are undefined".
886   unsigned End = Index + Length;
887 
888   // Note that both field index and field length are 8-bit quantities.
889   // Since variables 'Index' and 'Length' are unsigned values
890   // obtained from zero-extending field index and field length
891   // respectively, their sum should never wrap around.
892   if (End > 64)
893     return UndefValue::get(II.getType());
894 
895   // If we are inserting whole bytes, we can convert this to a shuffle.
896   // Lowering can recognize INSERTQI shuffle masks.
897   if ((Length % 8) == 0 && (Index % 8) == 0) {
898     // Convert bit indices to byte indices.
899     Length /= 8;
900     Index /= 8;
901 
902     Type *IntTy8 = Type::getInt8Ty(II.getContext());
903     Type *IntTy32 = Type::getInt32Ty(II.getContext());
904     VectorType *ShufTy = VectorType::get(IntTy8, 16);
905 
906     SmallVector<Constant *, 16> ShuffleMask;
907     for (int i = 0; i != (int)Index; ++i)
908       ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
909     for (int i = 0; i != (int)Length; ++i)
910       ShuffleMask.push_back(
911           Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
912     for (int i = Index + Length; i != 8; ++i)
913       ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
914     for (int i = 8; i != 16; ++i)
915       ShuffleMask.push_back(UndefValue::get(IntTy32));
916 
917     Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy),
918                                             Builder.CreateBitCast(Op1, ShufTy),
919                                             ConstantVector::get(ShuffleMask));
920     return Builder.CreateBitCast(SV, II.getType());
921   }
922 
923   // See if we're dealing with constant values.
924   Constant *C0 = dyn_cast<Constant>(Op0);
925   Constant *C1 = dyn_cast<Constant>(Op1);
926   ConstantInt *CI00 =
927       C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
928          : nullptr;
929   ConstantInt *CI10 =
930       C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
931          : nullptr;
932 
933   // Constant Fold - insert bottom Length bits starting at the Index'th bit.
934   if (CI00 && CI10) {
935     APInt V00 = CI00->getValue();
936     APInt V10 = CI10->getValue();
937     APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index);
938     V00 = V00 & ~Mask;
939     V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index);
940     APInt Val = V00 | V10;
941     Type *IntTy64 = Type::getInt64Ty(II.getContext());
942     Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()),
943                         UndefValue::get(IntTy64)};
944     return ConstantVector::get(Args);
945   }
946 
947   // If we were an INSERTQ call, we'll save demanded elements if we convert to
948   // INSERTQI.
949   if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) {
950     Type *IntTy8 = Type::getInt8Ty(II.getContext());
951     Constant *CILength = ConstantInt::get(IntTy8, Length, false);
952     Constant *CIIndex = ConstantInt::get(IntTy8, Index, false);
953 
954     Value *Args[] = {Op0, Op1, CILength, CIIndex};
955     Module *M = II.getModule();
956     Value *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
957     return Builder.CreateCall(F, Args);
958   }
959 
960   return nullptr;
961 }
962 
963 /// Attempt to convert pshufb* to shufflevector if the mask is constant.
simplifyX86pshufb(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)964 static Value *simplifyX86pshufb(const IntrinsicInst &II,
965                                 InstCombiner::BuilderTy &Builder) {
966   Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
967   if (!V)
968     return nullptr;
969 
970   auto *VecTy = cast<VectorType>(II.getType());
971   auto *MaskEltTy = Type::getInt32Ty(II.getContext());
972   unsigned NumElts = VecTy->getNumElements();
973   assert((NumElts == 16 || NumElts == 32 || NumElts == 64) &&
974          "Unexpected number of elements in shuffle mask!");
975 
976   // Construct a shuffle mask from constant integers or UNDEFs.
977   Constant *Indexes[64] = {nullptr};
978 
979   // Each byte in the shuffle control mask forms an index to permute the
980   // corresponding byte in the destination operand.
981   for (unsigned I = 0; I < NumElts; ++I) {
982     Constant *COp = V->getAggregateElement(I);
983     if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
984       return nullptr;
985 
986     if (isa<UndefValue>(COp)) {
987       Indexes[I] = UndefValue::get(MaskEltTy);
988       continue;
989     }
990 
991     int8_t Index = cast<ConstantInt>(COp)->getValue().getZExtValue();
992 
993     // If the most significant bit (bit[7]) of each byte of the shuffle
994     // control mask is set, then zero is written in the result byte.
995     // The zero vector is in the right-hand side of the resulting
996     // shufflevector.
997 
998     // The value of each index for the high 128-bit lane is the least
999     // significant 4 bits of the respective shuffle control byte.
1000     Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0);
1001     Indexes[I] = ConstantInt::get(MaskEltTy, Index);
1002   }
1003 
1004   auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
1005   auto V1 = II.getArgOperand(0);
1006   auto V2 = Constant::getNullValue(VecTy);
1007   return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
1008 }
1009 
1010 /// Attempt to convert vpermilvar* to shufflevector if the mask is constant.
simplifyX86vpermilvar(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)1011 static Value *simplifyX86vpermilvar(const IntrinsicInst &II,
1012                                     InstCombiner::BuilderTy &Builder) {
1013   Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
1014   if (!V)
1015     return nullptr;
1016 
1017   auto *VecTy = cast<VectorType>(II.getType());
1018   auto *MaskEltTy = Type::getInt32Ty(II.getContext());
1019   unsigned NumElts = VecTy->getVectorNumElements();
1020   bool IsPD = VecTy->getScalarType()->isDoubleTy();
1021   unsigned NumLaneElts = IsPD ? 2 : 4;
1022   assert(NumElts == 16 || NumElts == 8 || NumElts == 4 || NumElts == 2);
1023 
1024   // Construct a shuffle mask from constant integers or UNDEFs.
1025   Constant *Indexes[16] = {nullptr};
1026 
1027   // The intrinsics only read one or two bits, clear the rest.
1028   for (unsigned I = 0; I < NumElts; ++I) {
1029     Constant *COp = V->getAggregateElement(I);
1030     if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
1031       return nullptr;
1032 
1033     if (isa<UndefValue>(COp)) {
1034       Indexes[I] = UndefValue::get(MaskEltTy);
1035       continue;
1036     }
1037 
1038     APInt Index = cast<ConstantInt>(COp)->getValue();
1039     Index = Index.zextOrTrunc(32).getLoBits(2);
1040 
1041     // The PD variants uses bit 1 to select per-lane element index, so
1042     // shift down to convert to generic shuffle mask index.
1043     if (IsPD)
1044       Index.lshrInPlace(1);
1045 
1046     // The _256 variants are a bit trickier since the mask bits always index
1047     // into the corresponding 128 half. In order to convert to a generic
1048     // shuffle, we have to make that explicit.
1049     Index += APInt(32, (I / NumLaneElts) * NumLaneElts);
1050 
1051     Indexes[I] = ConstantInt::get(MaskEltTy, Index);
1052   }
1053 
1054   auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
1055   auto V1 = II.getArgOperand(0);
1056   auto V2 = UndefValue::get(V1->getType());
1057   return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
1058 }
1059 
1060 /// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant.
simplifyX86vpermv(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)1061 static Value *simplifyX86vpermv(const IntrinsicInst &II,
1062                                 InstCombiner::BuilderTy &Builder) {
1063   auto *V = dyn_cast<Constant>(II.getArgOperand(1));
1064   if (!V)
1065     return nullptr;
1066 
1067   auto *VecTy = cast<VectorType>(II.getType());
1068   auto *MaskEltTy = Type::getInt32Ty(II.getContext());
1069   unsigned Size = VecTy->getNumElements();
1070   assert((Size == 4 || Size == 8 || Size == 16 || Size == 32 || Size == 64) &&
1071          "Unexpected shuffle mask size");
1072 
1073   // Construct a shuffle mask from constant integers or UNDEFs.
1074   Constant *Indexes[64] = {nullptr};
1075 
1076   for (unsigned I = 0; I < Size; ++I) {
1077     Constant *COp = V->getAggregateElement(I);
1078     if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
1079       return nullptr;
1080 
1081     if (isa<UndefValue>(COp)) {
1082       Indexes[I] = UndefValue::get(MaskEltTy);
1083       continue;
1084     }
1085 
1086     uint32_t Index = cast<ConstantInt>(COp)->getZExtValue();
1087     Index &= Size - 1;
1088     Indexes[I] = ConstantInt::get(MaskEltTy, Index);
1089   }
1090 
1091   auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, Size));
1092   auto V1 = II.getArgOperand(0);
1093   auto V2 = UndefValue::get(VecTy);
1094   return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
1095 }
1096 
1097 /// Decode XOP integer vector comparison intrinsics.
simplifyX86vpcom(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder,bool IsSigned)1098 static Value *simplifyX86vpcom(const IntrinsicInst &II,
1099                                InstCombiner::BuilderTy &Builder,
1100                                bool IsSigned) {
1101   if (auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
1102     uint64_t Imm = CInt->getZExtValue() & 0x7;
1103     VectorType *VecTy = cast<VectorType>(II.getType());
1104     CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1105 
1106     switch (Imm) {
1107     case 0x0:
1108       Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1109       break;
1110     case 0x1:
1111       Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1112       break;
1113     case 0x2:
1114       Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1115       break;
1116     case 0x3:
1117       Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1118       break;
1119     case 0x4:
1120       Pred = ICmpInst::ICMP_EQ; break;
1121     case 0x5:
1122       Pred = ICmpInst::ICMP_NE; break;
1123     case 0x6:
1124       return ConstantInt::getSigned(VecTy, 0); // FALSE
1125     case 0x7:
1126       return ConstantInt::getSigned(VecTy, -1); // TRUE
1127     }
1128 
1129     if (Value *Cmp = Builder.CreateICmp(Pred, II.getArgOperand(0),
1130                                         II.getArgOperand(1)))
1131       return Builder.CreateSExtOrTrunc(Cmp, VecTy);
1132   }
1133   return nullptr;
1134 }
1135 
simplifyMinnumMaxnum(const IntrinsicInst & II)1136 static Value *simplifyMinnumMaxnum(const IntrinsicInst &II) {
1137   Value *Arg0 = II.getArgOperand(0);
1138   Value *Arg1 = II.getArgOperand(1);
1139 
1140   // fmin(x, x) -> x
1141   if (Arg0 == Arg1)
1142     return Arg0;
1143 
1144   const auto *C1 = dyn_cast<ConstantFP>(Arg1);
1145 
1146   // fmin(x, nan) -> x
1147   if (C1 && C1->isNaN())
1148     return Arg0;
1149 
1150   // This is the value because if undef were NaN, we would return the other
1151   // value and cannot return a NaN unless both operands are.
1152   //
1153   // fmin(undef, x) -> x
1154   if (isa<UndefValue>(Arg0))
1155     return Arg1;
1156 
1157   // fmin(x, undef) -> x
1158   if (isa<UndefValue>(Arg1))
1159     return Arg0;
1160 
1161   Value *X = nullptr;
1162   Value *Y = nullptr;
1163   if (II.getIntrinsicID() == Intrinsic::minnum) {
1164     // fmin(x, fmin(x, y)) -> fmin(x, y)
1165     // fmin(y, fmin(x, y)) -> fmin(x, y)
1166     if (match(Arg1, m_FMin(m_Value(X), m_Value(Y)))) {
1167       if (Arg0 == X || Arg0 == Y)
1168         return Arg1;
1169     }
1170 
1171     // fmin(fmin(x, y), x) -> fmin(x, y)
1172     // fmin(fmin(x, y), y) -> fmin(x, y)
1173     if (match(Arg0, m_FMin(m_Value(X), m_Value(Y)))) {
1174       if (Arg1 == X || Arg1 == Y)
1175         return Arg0;
1176     }
1177 
1178     // TODO: fmin(nnan x, inf) -> x
1179     // TODO: fmin(nnan ninf x, flt_max) -> x
1180     if (C1 && C1->isInfinity()) {
1181       // fmin(x, -inf) -> -inf
1182       if (C1->isNegative())
1183         return Arg1;
1184     }
1185   } else {
1186     assert(II.getIntrinsicID() == Intrinsic::maxnum);
1187     // fmax(x, fmax(x, y)) -> fmax(x, y)
1188     // fmax(y, fmax(x, y)) -> fmax(x, y)
1189     if (match(Arg1, m_FMax(m_Value(X), m_Value(Y)))) {
1190       if (Arg0 == X || Arg0 == Y)
1191         return Arg1;
1192     }
1193 
1194     // fmax(fmax(x, y), x) -> fmax(x, y)
1195     // fmax(fmax(x, y), y) -> fmax(x, y)
1196     if (match(Arg0, m_FMax(m_Value(X), m_Value(Y)))) {
1197       if (Arg1 == X || Arg1 == Y)
1198         return Arg0;
1199     }
1200 
1201     // TODO: fmax(nnan x, -inf) -> x
1202     // TODO: fmax(nnan ninf x, -flt_max) -> x
1203     if (C1 && C1->isInfinity()) {
1204       // fmax(x, inf) -> inf
1205       if (!C1->isNegative())
1206         return Arg1;
1207     }
1208   }
1209   return nullptr;
1210 }
1211 
maskIsAllOneOrUndef(Value * Mask)1212 static bool maskIsAllOneOrUndef(Value *Mask) {
1213   auto *ConstMask = dyn_cast<Constant>(Mask);
1214   if (!ConstMask)
1215     return false;
1216   if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
1217     return true;
1218   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
1219        ++I) {
1220     if (auto *MaskElt = ConstMask->getAggregateElement(I))
1221       if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
1222         continue;
1223     return false;
1224   }
1225   return true;
1226 }
1227 
simplifyMaskedLoad(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)1228 static Value *simplifyMaskedLoad(const IntrinsicInst &II,
1229                                  InstCombiner::BuilderTy &Builder) {
1230   // If the mask is all ones or undefs, this is a plain vector load of the 1st
1231   // argument.
1232   if (maskIsAllOneOrUndef(II.getArgOperand(2))) {
1233     Value *LoadPtr = II.getArgOperand(0);
1234     unsigned Alignment = cast<ConstantInt>(II.getArgOperand(1))->getZExtValue();
1235     return Builder.CreateAlignedLoad(LoadPtr, Alignment, "unmaskedload");
1236   }
1237 
1238   return nullptr;
1239 }
1240 
simplifyMaskedStore(IntrinsicInst & II,InstCombiner & IC)1241 static Instruction *simplifyMaskedStore(IntrinsicInst &II, InstCombiner &IC) {
1242   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
1243   if (!ConstMask)
1244     return nullptr;
1245 
1246   // If the mask is all zeros, this instruction does nothing.
1247   if (ConstMask->isNullValue())
1248     return IC.eraseInstFromFunction(II);
1249 
1250   // If the mask is all ones, this is a plain vector store of the 1st argument.
1251   if (ConstMask->isAllOnesValue()) {
1252     Value *StorePtr = II.getArgOperand(1);
1253     unsigned Alignment = cast<ConstantInt>(II.getArgOperand(2))->getZExtValue();
1254     return new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
1255   }
1256 
1257   return nullptr;
1258 }
1259 
simplifyMaskedGather(IntrinsicInst & II,InstCombiner & IC)1260 static Instruction *simplifyMaskedGather(IntrinsicInst &II, InstCombiner &IC) {
1261   // If the mask is all zeros, return the "passthru" argument of the gather.
1262   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
1263   if (ConstMask && ConstMask->isNullValue())
1264     return IC.replaceInstUsesWith(II, II.getArgOperand(3));
1265 
1266   return nullptr;
1267 }
1268 
1269 /// This function transforms launder.invariant.group and strip.invariant.group
1270 /// like:
1271 /// launder(launder(%x)) -> launder(%x)       (the result is not the argument)
1272 /// launder(strip(%x)) -> launder(%x)
1273 /// strip(strip(%x)) -> strip(%x)             (the result is not the argument)
1274 /// strip(launder(%x)) -> strip(%x)
1275 /// This is legal because it preserves the most recent information about
1276 /// the presence or absence of invariant.group.
simplifyInvariantGroupIntrinsic(IntrinsicInst & II,InstCombiner & IC)1277 static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II,
1278                                                     InstCombiner &IC) {
1279   auto *Arg = II.getArgOperand(0);
1280   auto *StrippedArg = Arg->stripPointerCasts();
1281   auto *StrippedInvariantGroupsArg = Arg->stripPointerCastsAndInvariantGroups();
1282   if (StrippedArg == StrippedInvariantGroupsArg)
1283     return nullptr; // No launders/strips to remove.
1284 
1285   Value *Result = nullptr;
1286 
1287   if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
1288     Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg);
1289   else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
1290     Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg);
1291   else
1292     llvm_unreachable(
1293         "simplifyInvariantGroupIntrinsic only handles launder and strip");
1294   if (Result->getType()->getPointerAddressSpace() !=
1295       II.getType()->getPointerAddressSpace())
1296     Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType());
1297   if (Result->getType() != II.getType())
1298     Result = IC.Builder.CreateBitCast(Result, II.getType());
1299 
1300   return cast<Instruction>(Result);
1301 }
1302 
simplifyMaskedScatter(IntrinsicInst & II,InstCombiner & IC)1303 static Instruction *simplifyMaskedScatter(IntrinsicInst &II, InstCombiner &IC) {
1304   // If the mask is all zeros, a scatter does nothing.
1305   auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
1306   if (ConstMask && ConstMask->isNullValue())
1307     return IC.eraseInstFromFunction(II);
1308 
1309   return nullptr;
1310 }
1311 
foldCttzCtlz(IntrinsicInst & II,InstCombiner & IC)1312 static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombiner &IC) {
1313   assert((II.getIntrinsicID() == Intrinsic::cttz ||
1314           II.getIntrinsicID() == Intrinsic::ctlz) &&
1315          "Expected cttz or ctlz intrinsic");
1316   Value *Op0 = II.getArgOperand(0);
1317 
1318   KnownBits Known = IC.computeKnownBits(Op0, 0, &II);
1319 
1320   // Create a mask for bits above (ctlz) or below (cttz) the first known one.
1321   bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
1322   unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
1323                                 : Known.countMaxLeadingZeros();
1324   unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
1325                                 : Known.countMinLeadingZeros();
1326 
1327   // If all bits above (ctlz) or below (cttz) the first known one are known
1328   // zero, this value is constant.
1329   // FIXME: This should be in InstSimplify because we're replacing an
1330   // instruction with a constant.
1331   if (PossibleZeros == DefiniteZeros) {
1332     auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
1333     return IC.replaceInstUsesWith(II, C);
1334   }
1335 
1336   // If the input to cttz/ctlz is known to be non-zero,
1337   // then change the 'ZeroIsUndef' parameter to 'true'
1338   // because we know the zero behavior can't affect the result.
1339   if (!Known.One.isNullValue() ||
1340       isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II,
1341                      &IC.getDominatorTree())) {
1342     if (!match(II.getArgOperand(1), m_One())) {
1343       II.setOperand(1, IC.Builder.getTrue());
1344       return &II;
1345     }
1346   }
1347 
1348   // Add range metadata since known bits can't completely reflect what we know.
1349   // TODO: Handle splat vectors.
1350   auto *IT = dyn_cast<IntegerType>(Op0->getType());
1351   if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
1352     Metadata *LowAndHigh[] = {
1353         ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)),
1354         ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))};
1355     II.setMetadata(LLVMContext::MD_range,
1356                    MDNode::get(II.getContext(), LowAndHigh));
1357     return &II;
1358   }
1359 
1360   return nullptr;
1361 }
1362 
foldCtpop(IntrinsicInst & II,InstCombiner & IC)1363 static Instruction *foldCtpop(IntrinsicInst &II, InstCombiner &IC) {
1364   assert(II.getIntrinsicID() == Intrinsic::ctpop &&
1365          "Expected ctpop intrinsic");
1366   Value *Op0 = II.getArgOperand(0);
1367   // FIXME: Try to simplify vectors of integers.
1368   auto *IT = dyn_cast<IntegerType>(Op0->getType());
1369   if (!IT)
1370     return nullptr;
1371 
1372   unsigned BitWidth = IT->getBitWidth();
1373   KnownBits Known(BitWidth);
1374   IC.computeKnownBits(Op0, Known, 0, &II);
1375 
1376   unsigned MinCount = Known.countMinPopulation();
1377   unsigned MaxCount = Known.countMaxPopulation();
1378 
1379   // Add range metadata since known bits can't completely reflect what we know.
1380   if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
1381     Metadata *LowAndHigh[] = {
1382         ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)),
1383         ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))};
1384     II.setMetadata(LLVMContext::MD_range,
1385                    MDNode::get(II.getContext(), LowAndHigh));
1386     return &II;
1387   }
1388 
1389   return nullptr;
1390 }
1391 
1392 // TODO: If the x86 backend knew how to convert a bool vector mask back to an
1393 // XMM register mask efficiently, we could transform all x86 masked intrinsics
1394 // to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
simplifyX86MaskedLoad(IntrinsicInst & II,InstCombiner & IC)1395 static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) {
1396   Value *Ptr = II.getOperand(0);
1397   Value *Mask = II.getOperand(1);
1398   Constant *ZeroVec = Constant::getNullValue(II.getType());
1399 
1400   // Special case a zero mask since that's not a ConstantDataVector.
1401   // This masked load instruction creates a zero vector.
1402   if (isa<ConstantAggregateZero>(Mask))
1403     return IC.replaceInstUsesWith(II, ZeroVec);
1404 
1405   auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
1406   if (!ConstMask)
1407     return nullptr;
1408 
1409   // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
1410   // to allow target-independent optimizations.
1411 
1412   // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
1413   // the LLVM intrinsic definition for the pointer argument.
1414   unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
1415   PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace);
1416   Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");
1417 
1418   // Second, convert the x86 XMM integer vector mask to a vector of bools based
1419   // on each element's most significant bit (the sign bit).
1420   Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
1421 
1422   // The pass-through vector for an x86 masked load is a zero vector.
1423   CallInst *NewMaskedLoad =
1424       IC.Builder.CreateMaskedLoad(PtrCast, 1, BoolMask, ZeroVec);
1425   return IC.replaceInstUsesWith(II, NewMaskedLoad);
1426 }
1427 
1428 // TODO: If the x86 backend knew how to convert a bool vector mask back to an
1429 // XMM register mask efficiently, we could transform all x86 masked intrinsics
1430 // to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
simplifyX86MaskedStore(IntrinsicInst & II,InstCombiner & IC)1431 static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) {
1432   Value *Ptr = II.getOperand(0);
1433   Value *Mask = II.getOperand(1);
1434   Value *Vec = II.getOperand(2);
1435 
1436   // Special case a zero mask since that's not a ConstantDataVector:
1437   // this masked store instruction does nothing.
1438   if (isa<ConstantAggregateZero>(Mask)) {
1439     IC.eraseInstFromFunction(II);
1440     return true;
1441   }
1442 
1443   // The SSE2 version is too weird (eg, unaligned but non-temporal) to do
1444   // anything else at this level.
1445   if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu)
1446     return false;
1447 
1448   auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
1449   if (!ConstMask)
1450     return false;
1451 
1452   // The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
1453   // to allow target-independent optimizations.
1454 
1455   // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
1456   // the LLVM intrinsic definition for the pointer argument.
1457   unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
1458   PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace);
1459   Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");
1460 
1461   // Second, convert the x86 XMM integer vector mask to a vector of bools based
1462   // on each element's most significant bit (the sign bit).
1463   Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
1464 
1465   IC.Builder.CreateMaskedStore(Vec, PtrCast, 1, BoolMask);
1466 
1467   // 'Replace uses' doesn't work for stores. Erase the original masked store.
1468   IC.eraseInstFromFunction(II);
1469   return true;
1470 }
1471 
1472 // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs.
1473 //
1474 // A single NaN input is folded to minnum, so we rely on that folding for
1475 // handling NaNs.
fmed3AMDGCN(const APFloat & Src0,const APFloat & Src1,const APFloat & Src2)1476 static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1,
1477                            const APFloat &Src2) {
1478   APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2);
1479 
1480   APFloat::cmpResult Cmp0 = Max3.compare(Src0);
1481   assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately");
1482   if (Cmp0 == APFloat::cmpEqual)
1483     return maxnum(Src1, Src2);
1484 
1485   APFloat::cmpResult Cmp1 = Max3.compare(Src1);
1486   assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately");
1487   if (Cmp1 == APFloat::cmpEqual)
1488     return maxnum(Src0, Src2);
1489 
1490   return maxnum(Src0, Src1);
1491 }
1492 
1493 /// Convert a table lookup to shufflevector if the mask is constant.
1494 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in
1495 /// which case we could lower the shufflevector with rev64 instructions
1496 /// as it's actually a byte reverse.
simplifyNeonTbl1(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)1497 static Value *simplifyNeonTbl1(const IntrinsicInst &II,
1498                                InstCombiner::BuilderTy &Builder) {
1499   // Bail out if the mask is not a constant.
1500   auto *C = dyn_cast<Constant>(II.getArgOperand(1));
1501   if (!C)
1502     return nullptr;
1503 
1504   auto *VecTy = cast<VectorType>(II.getType());
1505   unsigned NumElts = VecTy->getNumElements();
1506 
1507   // Only perform this transformation for <8 x i8> vector types.
1508   if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8)
1509     return nullptr;
1510 
1511   uint32_t Indexes[8];
1512 
1513   for (unsigned I = 0; I < NumElts; ++I) {
1514     Constant *COp = C->getAggregateElement(I);
1515 
1516     if (!COp || !isa<ConstantInt>(COp))
1517       return nullptr;
1518 
1519     Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue();
1520 
1521     // Make sure the mask indices are in range.
1522     if (Indexes[I] >= NumElts)
1523       return nullptr;
1524   }
1525 
1526   auto *ShuffleMask = ConstantDataVector::get(II.getContext(),
1527                                               makeArrayRef(Indexes));
1528   auto *V1 = II.getArgOperand(0);
1529   auto *V2 = Constant::getNullValue(V1->getType());
1530   return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
1531 }
1532 
1533 /// Convert a vector load intrinsic into a simple llvm load instruction.
1534 /// This is beneficial when the underlying object being addressed comes
1535 /// from a constant, since we get constant-folding for free.
simplifyNeonVld1(const IntrinsicInst & II,unsigned MemAlign,InstCombiner::BuilderTy & Builder)1536 static Value *simplifyNeonVld1(const IntrinsicInst &II,
1537                                unsigned MemAlign,
1538                                InstCombiner::BuilderTy &Builder) {
1539   auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1));
1540 
1541   if (!IntrAlign)
1542     return nullptr;
1543 
1544   unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign ?
1545                        MemAlign : IntrAlign->getLimitedValue();
1546 
1547   if (!isPowerOf2_32(Alignment))
1548     return nullptr;
1549 
1550   auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0),
1551                                           PointerType::get(II.getType(), 0));
1552   return Builder.CreateAlignedLoad(BCastInst, Alignment);
1553 }
1554 
1555 // Returns true iff the 2 intrinsics have the same operands, limiting the
1556 // comparison to the first NumOperands.
haveSameOperands(const IntrinsicInst & I,const IntrinsicInst & E,unsigned NumOperands)1557 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
1558                              unsigned NumOperands) {
1559   assert(I.getNumArgOperands() >= NumOperands && "Not enough operands");
1560   assert(E.getNumArgOperands() >= NumOperands && "Not enough operands");
1561   for (unsigned i = 0; i < NumOperands; i++)
1562     if (I.getArgOperand(i) != E.getArgOperand(i))
1563       return false;
1564   return true;
1565 }
1566 
1567 // Remove trivially empty start/end intrinsic ranges, i.e. a start
1568 // immediately followed by an end (ignoring debuginfo or other
1569 // start/end intrinsics in between). As this handles only the most trivial
1570 // cases, tracking the nesting level is not needed:
1571 //
1572 //   call @llvm.foo.start(i1 0) ; &I
1573 //   call @llvm.foo.start(i1 0)
1574 //   call @llvm.foo.end(i1 0) ; This one will not be skipped: it will be removed
1575 //   call @llvm.foo.end(i1 0)
removeTriviallyEmptyRange(IntrinsicInst & I,unsigned StartID,unsigned EndID,InstCombiner & IC)1576 static bool removeTriviallyEmptyRange(IntrinsicInst &I, unsigned StartID,
1577                                       unsigned EndID, InstCombiner &IC) {
1578   assert(I.getIntrinsicID() == StartID &&
1579          "Start intrinsic does not have expected ID");
1580   BasicBlock::iterator BI(I), BE(I.getParent()->end());
1581   for (++BI; BI != BE; ++BI) {
1582     if (auto *E = dyn_cast<IntrinsicInst>(BI)) {
1583       if (isa<DbgInfoIntrinsic>(E) || E->getIntrinsicID() == StartID)
1584         continue;
1585       if (E->getIntrinsicID() == EndID &&
1586           haveSameOperands(I, *E, E->getNumArgOperands())) {
1587         IC.eraseInstFromFunction(*E);
1588         IC.eraseInstFromFunction(I);
1589         return true;
1590       }
1591     }
1592     break;
1593   }
1594 
1595   return false;
1596 }
1597 
1598 // Convert NVVM intrinsics to target-generic LLVM code where possible.
SimplifyNVVMIntrinsic(IntrinsicInst * II,InstCombiner & IC)1599 static Instruction *SimplifyNVVMIntrinsic(IntrinsicInst *II, InstCombiner &IC) {
1600   // Each NVVM intrinsic we can simplify can be replaced with one of:
1601   //
1602   //  * an LLVM intrinsic,
1603   //  * an LLVM cast operation,
1604   //  * an LLVM binary operation, or
1605   //  * ad-hoc LLVM IR for the particular operation.
1606 
1607   // Some transformations are only valid when the module's
1608   // flush-denormals-to-zero (ftz) setting is true/false, whereas other
1609   // transformations are valid regardless of the module's ftz setting.
1610   enum FtzRequirementTy {
1611     FTZ_Any,       // Any ftz setting is ok.
1612     FTZ_MustBeOn,  // Transformation is valid only if ftz is on.
1613     FTZ_MustBeOff, // Transformation is valid only if ftz is off.
1614   };
1615   // Classes of NVVM intrinsics that can't be replaced one-to-one with a
1616   // target-generic intrinsic, cast op, or binary op but that we can nonetheless
1617   // simplify.
1618   enum SpecialCase {
1619     SPC_Reciprocal,
1620   };
1621 
1622   // SimplifyAction is a poor-man's variant (plus an additional flag) that
1623   // represents how to replace an NVVM intrinsic with target-generic LLVM IR.
1624   struct SimplifyAction {
1625     // Invariant: At most one of these Optionals has a value.
1626     Optional<Intrinsic::ID> IID;
1627     Optional<Instruction::CastOps> CastOp;
1628     Optional<Instruction::BinaryOps> BinaryOp;
1629     Optional<SpecialCase> Special;
1630 
1631     FtzRequirementTy FtzRequirement = FTZ_Any;
1632 
1633     SimplifyAction() = default;
1634 
1635     SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq)
1636         : IID(IID), FtzRequirement(FtzReq) {}
1637 
1638     // Cast operations don't have anything to do with FTZ, so we skip that
1639     // argument.
1640     SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {}
1641 
1642     SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq)
1643         : BinaryOp(BinaryOp), FtzRequirement(FtzReq) {}
1644 
1645     SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq)
1646         : Special(Special), FtzRequirement(FtzReq) {}
1647   };
1648 
1649   // Try to generate a SimplifyAction describing how to replace our
1650   // IntrinsicInstr with target-generic LLVM IR.
1651   const SimplifyAction Action = [II]() -> SimplifyAction {
1652     switch (II->getIntrinsicID()) {
1653     // NVVM intrinsics that map directly to LLVM intrinsics.
1654     case Intrinsic::nvvm_ceil_d:
1655       return {Intrinsic::ceil, FTZ_Any};
1656     case Intrinsic::nvvm_ceil_f:
1657       return {Intrinsic::ceil, FTZ_MustBeOff};
1658     case Intrinsic::nvvm_ceil_ftz_f:
1659       return {Intrinsic::ceil, FTZ_MustBeOn};
1660     case Intrinsic::nvvm_fabs_d:
1661       return {Intrinsic::fabs, FTZ_Any};
1662     case Intrinsic::nvvm_fabs_f:
1663       return {Intrinsic::fabs, FTZ_MustBeOff};
1664     case Intrinsic::nvvm_fabs_ftz_f:
1665       return {Intrinsic::fabs, FTZ_MustBeOn};
1666     case Intrinsic::nvvm_floor_d:
1667       return {Intrinsic::floor, FTZ_Any};
1668     case Intrinsic::nvvm_floor_f:
1669       return {Intrinsic::floor, FTZ_MustBeOff};
1670     case Intrinsic::nvvm_floor_ftz_f:
1671       return {Intrinsic::floor, FTZ_MustBeOn};
1672     case Intrinsic::nvvm_fma_rn_d:
1673       return {Intrinsic::fma, FTZ_Any};
1674     case Intrinsic::nvvm_fma_rn_f:
1675       return {Intrinsic::fma, FTZ_MustBeOff};
1676     case Intrinsic::nvvm_fma_rn_ftz_f:
1677       return {Intrinsic::fma, FTZ_MustBeOn};
1678     case Intrinsic::nvvm_fmax_d:
1679       return {Intrinsic::maxnum, FTZ_Any};
1680     case Intrinsic::nvvm_fmax_f:
1681       return {Intrinsic::maxnum, FTZ_MustBeOff};
1682     case Intrinsic::nvvm_fmax_ftz_f:
1683       return {Intrinsic::maxnum, FTZ_MustBeOn};
1684     case Intrinsic::nvvm_fmin_d:
1685       return {Intrinsic::minnum, FTZ_Any};
1686     case Intrinsic::nvvm_fmin_f:
1687       return {Intrinsic::minnum, FTZ_MustBeOff};
1688     case Intrinsic::nvvm_fmin_ftz_f:
1689       return {Intrinsic::minnum, FTZ_MustBeOn};
1690     case Intrinsic::nvvm_round_d:
1691       return {Intrinsic::round, FTZ_Any};
1692     case Intrinsic::nvvm_round_f:
1693       return {Intrinsic::round, FTZ_MustBeOff};
1694     case Intrinsic::nvvm_round_ftz_f:
1695       return {Intrinsic::round, FTZ_MustBeOn};
1696     case Intrinsic::nvvm_sqrt_rn_d:
1697       return {Intrinsic::sqrt, FTZ_Any};
1698     case Intrinsic::nvvm_sqrt_f:
1699       // nvvm_sqrt_f is a special case.  For  most intrinsics, foo_ftz_f is the
1700       // ftz version, and foo_f is the non-ftz version.  But nvvm_sqrt_f adopts
1701       // the ftz-ness of the surrounding code.  sqrt_rn_f and sqrt_rn_ftz_f are
1702       // the versions with explicit ftz-ness.
1703       return {Intrinsic::sqrt, FTZ_Any};
1704     case Intrinsic::nvvm_sqrt_rn_f:
1705       return {Intrinsic::sqrt, FTZ_MustBeOff};
1706     case Intrinsic::nvvm_sqrt_rn_ftz_f:
1707       return {Intrinsic::sqrt, FTZ_MustBeOn};
1708     case Intrinsic::nvvm_trunc_d:
1709       return {Intrinsic::trunc, FTZ_Any};
1710     case Intrinsic::nvvm_trunc_f:
1711       return {Intrinsic::trunc, FTZ_MustBeOff};
1712     case Intrinsic::nvvm_trunc_ftz_f:
1713       return {Intrinsic::trunc, FTZ_MustBeOn};
1714 
1715     // NVVM intrinsics that map to LLVM cast operations.
1716     //
1717     // Note that llvm's target-generic conversion operators correspond to the rz
1718     // (round to zero) versions of the nvvm conversion intrinsics, even though
1719     // most everything else here uses the rn (round to nearest even) nvvm ops.
1720     case Intrinsic::nvvm_d2i_rz:
1721     case Intrinsic::nvvm_f2i_rz:
1722     case Intrinsic::nvvm_d2ll_rz:
1723     case Intrinsic::nvvm_f2ll_rz:
1724       return {Instruction::FPToSI};
1725     case Intrinsic::nvvm_d2ui_rz:
1726     case Intrinsic::nvvm_f2ui_rz:
1727     case Intrinsic::nvvm_d2ull_rz:
1728     case Intrinsic::nvvm_f2ull_rz:
1729       return {Instruction::FPToUI};
1730     case Intrinsic::nvvm_i2d_rz:
1731     case Intrinsic::nvvm_i2f_rz:
1732     case Intrinsic::nvvm_ll2d_rz:
1733     case Intrinsic::nvvm_ll2f_rz:
1734       return {Instruction::SIToFP};
1735     case Intrinsic::nvvm_ui2d_rz:
1736     case Intrinsic::nvvm_ui2f_rz:
1737     case Intrinsic::nvvm_ull2d_rz:
1738     case Intrinsic::nvvm_ull2f_rz:
1739       return {Instruction::UIToFP};
1740 
1741     // NVVM intrinsics that map to LLVM binary ops.
1742     case Intrinsic::nvvm_add_rn_d:
1743       return {Instruction::FAdd, FTZ_Any};
1744     case Intrinsic::nvvm_add_rn_f:
1745       return {Instruction::FAdd, FTZ_MustBeOff};
1746     case Intrinsic::nvvm_add_rn_ftz_f:
1747       return {Instruction::FAdd, FTZ_MustBeOn};
1748     case Intrinsic::nvvm_mul_rn_d:
1749       return {Instruction::FMul, FTZ_Any};
1750     case Intrinsic::nvvm_mul_rn_f:
1751       return {Instruction::FMul, FTZ_MustBeOff};
1752     case Intrinsic::nvvm_mul_rn_ftz_f:
1753       return {Instruction::FMul, FTZ_MustBeOn};
1754     case Intrinsic::nvvm_div_rn_d:
1755       return {Instruction::FDiv, FTZ_Any};
1756     case Intrinsic::nvvm_div_rn_f:
1757       return {Instruction::FDiv, FTZ_MustBeOff};
1758     case Intrinsic::nvvm_div_rn_ftz_f:
1759       return {Instruction::FDiv, FTZ_MustBeOn};
1760 
1761     // The remainder of cases are NVVM intrinsics that map to LLVM idioms, but
1762     // need special handling.
1763     //
1764     // We seem to be missing intrinsics for rcp.approx.{ftz.}f32, which is just
1765     // as well.
1766     case Intrinsic::nvvm_rcp_rn_d:
1767       return {SPC_Reciprocal, FTZ_Any};
1768     case Intrinsic::nvvm_rcp_rn_f:
1769       return {SPC_Reciprocal, FTZ_MustBeOff};
1770     case Intrinsic::nvvm_rcp_rn_ftz_f:
1771       return {SPC_Reciprocal, FTZ_MustBeOn};
1772 
1773     // We do not currently simplify intrinsics that give an approximate answer.
1774     // These include:
1775     //
1776     //   - nvvm_cos_approx_{f,ftz_f}
1777     //   - nvvm_ex2_approx_{d,f,ftz_f}
1778     //   - nvvm_lg2_approx_{d,f,ftz_f}
1779     //   - nvvm_sin_approx_{f,ftz_f}
1780     //   - nvvm_sqrt_approx_{f,ftz_f}
1781     //   - nvvm_rsqrt_approx_{d,f,ftz_f}
1782     //   - nvvm_div_approx_{ftz_d,ftz_f,f}
1783     //   - nvvm_rcp_approx_ftz_d
1784     //
1785     // Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast"
1786     // means that fastmath is enabled in the intrinsic.  Unfortunately only
1787     // binary operators (currently) have a fastmath bit in SelectionDAG, so this
1788     // information gets lost and we can't select on it.
1789     //
1790     // TODO: div and rcp are lowered to a binary op, so these we could in theory
1791     // lower them to "fast fdiv".
1792 
1793     default:
1794       return {};
1795     }
1796   }();
1797 
1798   // If Action.FtzRequirementTy is not satisfied by the module's ftz state, we
1799   // can bail out now.  (Notice that in the case that IID is not an NVVM
1800   // intrinsic, we don't have to look up any module metadata, as
1801   // FtzRequirementTy will be FTZ_Any.)
1802   if (Action.FtzRequirement != FTZ_Any) {
1803     bool FtzEnabled =
1804         II->getFunction()->getFnAttribute("nvptx-f32ftz").getValueAsString() ==
1805         "true";
1806 
1807     if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn))
1808       return nullptr;
1809   }
1810 
1811   // Simplify to target-generic intrinsic.
1812   if (Action.IID) {
1813     SmallVector<Value *, 4> Args(II->arg_operands());
1814     // All the target-generic intrinsics currently of interest to us have one
1815     // type argument, equal to that of the nvvm intrinsic's argument.
1816     Type *Tys[] = {II->getArgOperand(0)->getType()};
1817     return CallInst::Create(
1818         Intrinsic::getDeclaration(II->getModule(), *Action.IID, Tys), Args);
1819   }
1820 
1821   // Simplify to target-generic binary op.
1822   if (Action.BinaryOp)
1823     return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0),
1824                                   II->getArgOperand(1), II->getName());
1825 
1826   // Simplify to target-generic cast op.
1827   if (Action.CastOp)
1828     return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(),
1829                             II->getName());
1830 
1831   // All that's left are the special cases.
1832   if (!Action.Special)
1833     return nullptr;
1834 
1835   switch (*Action.Special) {
1836   case SPC_Reciprocal:
1837     // Simplify reciprocal.
1838     return BinaryOperator::Create(
1839         Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1),
1840         II->getArgOperand(0), II->getName());
1841   }
1842   llvm_unreachable("All SpecialCase enumerators should be handled in switch.");
1843 }
1844 
visitVAStartInst(VAStartInst & I)1845 Instruction *InstCombiner::visitVAStartInst(VAStartInst &I) {
1846   removeTriviallyEmptyRange(I, Intrinsic::vastart, Intrinsic::vaend, *this);
1847   return nullptr;
1848 }
1849 
visitVACopyInst(VACopyInst & I)1850 Instruction *InstCombiner::visitVACopyInst(VACopyInst &I) {
1851   removeTriviallyEmptyRange(I, Intrinsic::vacopy, Intrinsic::vaend, *this);
1852   return nullptr;
1853 }
1854 
1855 /// CallInst simplification. This mostly only handles folding of intrinsic
1856 /// instructions. For normal calls, it allows visitCallSite to do the heavy
1857 /// lifting.
visitCallInst(CallInst & CI)1858 Instruction *InstCombiner::visitCallInst(CallInst &CI) {
1859   if (Value *V = SimplifyCall(&CI, SQ.getWithInstruction(&CI)))
1860     return replaceInstUsesWith(CI, V);
1861 
1862   if (isFreeCall(&CI, &TLI))
1863     return visitFree(CI);
1864 
1865   // If the caller function is nounwind, mark the call as nounwind, even if the
1866   // callee isn't.
1867   if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
1868     CI.setDoesNotThrow();
1869     return &CI;
1870   }
1871 
1872   IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
1873   if (!II) return visitCallSite(&CI);
1874 
1875   // Intrinsics cannot occur in an invoke, so handle them here instead of in
1876   // visitCallSite.
1877   if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) {
1878     bool Changed = false;
1879 
1880     // memmove/cpy/set of zero bytes is a noop.
1881     if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
1882       if (NumBytes->isNullValue())
1883         return eraseInstFromFunction(CI);
1884 
1885       if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
1886         if (CI->getZExtValue() == 1) {
1887           // Replace the instruction with just byte operations.  We would
1888           // transform other cases to loads/stores, but we don't know if
1889           // alignment is sufficient.
1890         }
1891     }
1892 
1893     // No other transformations apply to volatile transfers.
1894     if (auto *M = dyn_cast<MemIntrinsic>(MI))
1895       if (M->isVolatile())
1896         return nullptr;
1897 
1898     // If we have a memmove and the source operation is a constant global,
1899     // then the source and dest pointers can't alias, so we can change this
1900     // into a call to memcpy.
1901     if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) {
1902       if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
1903         if (GVSrc->isConstant()) {
1904           Module *M = CI.getModule();
1905           Intrinsic::ID MemCpyID =
1906               isa<AtomicMemMoveInst>(MMI)
1907                   ? Intrinsic::memcpy_element_unordered_atomic
1908                   : Intrinsic::memcpy;
1909           Type *Tys[3] = { CI.getArgOperand(0)->getType(),
1910                            CI.getArgOperand(1)->getType(),
1911                            CI.getArgOperand(2)->getType() };
1912           CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
1913           Changed = true;
1914         }
1915     }
1916 
1917     if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1918       // memmove(x,x,size) -> noop.
1919       if (MTI->getSource() == MTI->getDest())
1920         return eraseInstFromFunction(CI);
1921     }
1922 
1923     // If we can determine a pointer alignment that is bigger than currently
1924     // set, update the alignment.
1925     if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1926       if (Instruction *I = SimplifyAnyMemTransfer(MTI))
1927         return I;
1928     } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) {
1929       if (Instruction *I = SimplifyAnyMemSet(MSI))
1930         return I;
1931     }
1932 
1933     if (Changed) return II;
1934   }
1935 
1936   if (Instruction *I = SimplifyNVVMIntrinsic(II, *this))
1937     return I;
1938 
1939   auto SimplifyDemandedVectorEltsLow = [this](Value *Op, unsigned Width,
1940                                               unsigned DemandedWidth) {
1941     APInt UndefElts(Width, 0);
1942     APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth);
1943     return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts);
1944   };
1945 
1946   switch (II->getIntrinsicID()) {
1947   default: break;
1948   case Intrinsic::objectsize:
1949     if (ConstantInt *N =
1950             lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false))
1951       return replaceInstUsesWith(CI, N);
1952     return nullptr;
1953   case Intrinsic::bswap: {
1954     Value *IIOperand = II->getArgOperand(0);
1955     Value *X = nullptr;
1956 
1957     // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
1958     if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
1959       unsigned C = X->getType()->getPrimitiveSizeInBits() -
1960         IIOperand->getType()->getPrimitiveSizeInBits();
1961       Value *CV = ConstantInt::get(X->getType(), C);
1962       Value *V = Builder.CreateLShr(X, CV);
1963       return new TruncInst(V, IIOperand->getType());
1964     }
1965     break;
1966   }
1967   case Intrinsic::masked_load:
1968     if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II, Builder))
1969       return replaceInstUsesWith(CI, SimplifiedMaskedOp);
1970     break;
1971   case Intrinsic::masked_store:
1972     return simplifyMaskedStore(*II, *this);
1973   case Intrinsic::masked_gather:
1974     return simplifyMaskedGather(*II, *this);
1975   case Intrinsic::masked_scatter:
1976     return simplifyMaskedScatter(*II, *this);
1977   case Intrinsic::launder_invariant_group:
1978   case Intrinsic::strip_invariant_group:
1979     if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this))
1980       return replaceInstUsesWith(*II, SkippedBarrier);
1981     break;
1982   case Intrinsic::powi:
1983     if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
1984       // 0 and 1 are handled in instsimplify
1985 
1986       // powi(x, -1) -> 1/x
1987       if (Power->isMinusOne())
1988         return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
1989                                           II->getArgOperand(0));
1990       // powi(x, 2) -> x*x
1991       if (Power->equalsInt(2))
1992         return BinaryOperator::CreateFMul(II->getArgOperand(0),
1993                                           II->getArgOperand(0));
1994     }
1995     break;
1996 
1997   case Intrinsic::cttz:
1998   case Intrinsic::ctlz:
1999     if (auto *I = foldCttzCtlz(*II, *this))
2000       return I;
2001     break;
2002 
2003   case Intrinsic::ctpop:
2004     if (auto *I = foldCtpop(*II, *this))
2005       return I;
2006     break;
2007 
2008   case Intrinsic::uadd_with_overflow:
2009   case Intrinsic::sadd_with_overflow:
2010   case Intrinsic::umul_with_overflow:
2011   case Intrinsic::smul_with_overflow:
2012     if (isa<Constant>(II->getArgOperand(0)) &&
2013         !isa<Constant>(II->getArgOperand(1))) {
2014       // Canonicalize constants into the RHS.
2015       Value *LHS = II->getArgOperand(0);
2016       II->setArgOperand(0, II->getArgOperand(1));
2017       II->setArgOperand(1, LHS);
2018       return II;
2019     }
2020     LLVM_FALLTHROUGH;
2021 
2022   case Intrinsic::usub_with_overflow:
2023   case Intrinsic::ssub_with_overflow: {
2024     OverflowCheckFlavor OCF =
2025         IntrinsicIDToOverflowCheckFlavor(II->getIntrinsicID());
2026     assert(OCF != OCF_INVALID && "unexpected!");
2027 
2028     Value *OperationResult = nullptr;
2029     Constant *OverflowResult = nullptr;
2030     if (OptimizeOverflowCheck(OCF, II->getArgOperand(0), II->getArgOperand(1),
2031                               *II, OperationResult, OverflowResult))
2032       return CreateOverflowTuple(II, OperationResult, OverflowResult);
2033 
2034     break;
2035   }
2036 
2037   case Intrinsic::minnum:
2038   case Intrinsic::maxnum: {
2039     Value *Arg0 = II->getArgOperand(0);
2040     Value *Arg1 = II->getArgOperand(1);
2041     // Canonicalize constants to the RHS.
2042     if (isa<ConstantFP>(Arg0) && !isa<ConstantFP>(Arg1)) {
2043       II->setArgOperand(0, Arg1);
2044       II->setArgOperand(1, Arg0);
2045       return II;
2046     }
2047 
2048     // FIXME: Simplifications should be in instsimplify.
2049     if (Value *V = simplifyMinnumMaxnum(*II))
2050       return replaceInstUsesWith(*II, V);
2051 
2052     Value *X, *Y;
2053     if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) &&
2054         (Arg0->hasOneUse() || Arg1->hasOneUse())) {
2055       // If both operands are negated, invert the call and negate the result:
2056       // minnum(-X, -Y) --> -(maxnum(X, Y))
2057       // maxnum(-X, -Y) --> -(minnum(X, Y))
2058       Intrinsic::ID NewIID = II->getIntrinsicID() == Intrinsic::maxnum ?
2059           Intrinsic::minnum : Intrinsic::maxnum;
2060       Value *NewCall = Builder.CreateIntrinsic(NewIID, { X, Y }, II);
2061       Instruction *FNeg = BinaryOperator::CreateFNeg(NewCall);
2062       FNeg->copyIRFlags(II);
2063       return FNeg;
2064     }
2065     break;
2066   }
2067   case Intrinsic::fmuladd: {
2068     // Canonicalize fast fmuladd to the separate fmul + fadd.
2069     if (II->isFast()) {
2070       BuilderTy::FastMathFlagGuard Guard(Builder);
2071       Builder.setFastMathFlags(II->getFastMathFlags());
2072       Value *Mul = Builder.CreateFMul(II->getArgOperand(0),
2073                                       II->getArgOperand(1));
2074       Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2));
2075       Add->takeName(II);
2076       return replaceInstUsesWith(*II, Add);
2077     }
2078 
2079     LLVM_FALLTHROUGH;
2080   }
2081   case Intrinsic::fma: {
2082     Value *Src0 = II->getArgOperand(0);
2083     Value *Src1 = II->getArgOperand(1);
2084 
2085     // Canonicalize constant multiply operand to Src1.
2086     if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
2087       II->setArgOperand(0, Src1);
2088       II->setArgOperand(1, Src0);
2089       std::swap(Src0, Src1);
2090     }
2091 
2092     // fma fneg(x), fneg(y), z -> fma x, y, z
2093     Value *X, *Y;
2094     if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) {
2095       II->setArgOperand(0, X);
2096       II->setArgOperand(1, Y);
2097       return II;
2098     }
2099 
2100     // fma fabs(x), fabs(x), z -> fma x, x, z
2101     if (match(Src0, m_FAbs(m_Value(X))) &&
2102         match(Src1, m_FAbs(m_Specific(X)))) {
2103       II->setArgOperand(0, X);
2104       II->setArgOperand(1, X);
2105       return II;
2106     }
2107 
2108     // fma x, 1, z -> fadd x, z
2109     if (match(Src1, m_FPOne())) {
2110       auto *FAdd = BinaryOperator::CreateFAdd(Src0, II->getArgOperand(2));
2111       FAdd->copyFastMathFlags(II);
2112       return FAdd;
2113     }
2114 
2115     break;
2116   }
2117   case Intrinsic::fabs: {
2118     Value *Cond;
2119     Constant *LHS, *RHS;
2120     if (match(II->getArgOperand(0),
2121               m_Select(m_Value(Cond), m_Constant(LHS), m_Constant(RHS)))) {
2122       CallInst *Call0 = Builder.CreateCall(II->getCalledFunction(), {LHS});
2123       CallInst *Call1 = Builder.CreateCall(II->getCalledFunction(), {RHS});
2124       return SelectInst::Create(Cond, Call0, Call1);
2125     }
2126 
2127     LLVM_FALLTHROUGH;
2128   }
2129   case Intrinsic::ceil:
2130   case Intrinsic::floor:
2131   case Intrinsic::round:
2132   case Intrinsic::nearbyint:
2133   case Intrinsic::rint:
2134   case Intrinsic::trunc: {
2135     Value *ExtSrc;
2136     if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) {
2137       // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
2138       Value *NarrowII = Builder.CreateIntrinsic(II->getIntrinsicID(),
2139                                                 { ExtSrc }, II);
2140       return new FPExtInst(NarrowII, II->getType());
2141     }
2142     break;
2143   }
2144   case Intrinsic::cos:
2145   case Intrinsic::amdgcn_cos: {
2146     Value *SrcSrc;
2147     Value *Src = II->getArgOperand(0);
2148     if (match(Src, m_FNeg(m_Value(SrcSrc))) ||
2149         match(Src, m_FAbs(m_Value(SrcSrc)))) {
2150       // cos(-x) -> cos(x)
2151       // cos(fabs(x)) -> cos(x)
2152       II->setArgOperand(0, SrcSrc);
2153       return II;
2154     }
2155 
2156     break;
2157   }
2158   case Intrinsic::ppc_altivec_lvx:
2159   case Intrinsic::ppc_altivec_lvxl:
2160     // Turn PPC lvx -> load if the pointer is known aligned.
2161     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC,
2162                                    &DT) >= 16) {
2163       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
2164                                          PointerType::getUnqual(II->getType()));
2165       return new LoadInst(Ptr);
2166     }
2167     break;
2168   case Intrinsic::ppc_vsx_lxvw4x:
2169   case Intrinsic::ppc_vsx_lxvd2x: {
2170     // Turn PPC VSX loads into normal loads.
2171     Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
2172                                        PointerType::getUnqual(II->getType()));
2173     return new LoadInst(Ptr, Twine(""), false, 1);
2174   }
2175   case Intrinsic::ppc_altivec_stvx:
2176   case Intrinsic::ppc_altivec_stvxl:
2177     // Turn stvx -> store if the pointer is known aligned.
2178     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC,
2179                                    &DT) >= 16) {
2180       Type *OpPtrTy =
2181         PointerType::getUnqual(II->getArgOperand(0)->getType());
2182       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
2183       return new StoreInst(II->getArgOperand(0), Ptr);
2184     }
2185     break;
2186   case Intrinsic::ppc_vsx_stxvw4x:
2187   case Intrinsic::ppc_vsx_stxvd2x: {
2188     // Turn PPC VSX stores into normal stores.
2189     Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType());
2190     Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
2191     return new StoreInst(II->getArgOperand(0), Ptr, false, 1);
2192   }
2193   case Intrinsic::ppc_qpx_qvlfs:
2194     // Turn PPC QPX qvlfs -> load if the pointer is known aligned.
2195     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC,
2196                                    &DT) >= 16) {
2197       Type *VTy = VectorType::get(Builder.getFloatTy(),
2198                                   II->getType()->getVectorNumElements());
2199       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
2200                                          PointerType::getUnqual(VTy));
2201       Value *Load = Builder.CreateLoad(Ptr);
2202       return new FPExtInst(Load, II->getType());
2203     }
2204     break;
2205   case Intrinsic::ppc_qpx_qvlfd:
2206     // Turn PPC QPX qvlfd -> load if the pointer is known aligned.
2207     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, &AC,
2208                                    &DT) >= 32) {
2209       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
2210                                          PointerType::getUnqual(II->getType()));
2211       return new LoadInst(Ptr);
2212     }
2213     break;
2214   case Intrinsic::ppc_qpx_qvstfs:
2215     // Turn PPC QPX qvstfs -> store if the pointer is known aligned.
2216     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC,
2217                                    &DT) >= 16) {
2218       Type *VTy = VectorType::get(Builder.getFloatTy(),
2219           II->getArgOperand(0)->getType()->getVectorNumElements());
2220       Value *TOp = Builder.CreateFPTrunc(II->getArgOperand(0), VTy);
2221       Type *OpPtrTy = PointerType::getUnqual(VTy);
2222       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
2223       return new StoreInst(TOp, Ptr);
2224     }
2225     break;
2226   case Intrinsic::ppc_qpx_qvstfd:
2227     // Turn PPC QPX qvstfd -> store if the pointer is known aligned.
2228     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, &AC,
2229                                    &DT) >= 32) {
2230       Type *OpPtrTy =
2231         PointerType::getUnqual(II->getArgOperand(0)->getType());
2232       Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
2233       return new StoreInst(II->getArgOperand(0), Ptr);
2234     }
2235     break;
2236 
2237   case Intrinsic::x86_bmi_bextr_32:
2238   case Intrinsic::x86_bmi_bextr_64:
2239   case Intrinsic::x86_tbm_bextri_u32:
2240   case Intrinsic::x86_tbm_bextri_u64:
2241     // If the RHS is a constant we can try some simplifications.
2242     if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
2243       uint64_t Shift = C->getZExtValue();
2244       uint64_t Length = (Shift >> 8) & 0xff;
2245       Shift &= 0xff;
2246       unsigned BitWidth = II->getType()->getIntegerBitWidth();
2247       // If the length is 0 or the shift is out of range, replace with zero.
2248       if (Length == 0 || Shift >= BitWidth)
2249         return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0));
2250       // If the LHS is also a constant, we can completely constant fold this.
2251       if (auto *InC = dyn_cast<ConstantInt>(II->getArgOperand(0))) {
2252         uint64_t Result = InC->getZExtValue() >> Shift;
2253         if (Length > BitWidth)
2254           Length = BitWidth;
2255         Result &= maskTrailingOnes<uint64_t>(Length);
2256         return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result));
2257       }
2258       // TODO should we turn this into 'and' if shift is 0? Or 'shl' if we
2259       // are only masking bits that a shift already cleared?
2260     }
2261     break;
2262 
2263   case Intrinsic::x86_bmi_bzhi_32:
2264   case Intrinsic::x86_bmi_bzhi_64:
2265     // If the RHS is a constant we can try some simplifications.
2266     if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
2267       uint64_t Index = C->getZExtValue() & 0xff;
2268       unsigned BitWidth = II->getType()->getIntegerBitWidth();
2269       if (Index >= BitWidth)
2270         return replaceInstUsesWith(CI, II->getArgOperand(0));
2271       if (Index == 0)
2272         return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0));
2273       // If the LHS is also a constant, we can completely constant fold this.
2274       if (auto *InC = dyn_cast<ConstantInt>(II->getArgOperand(0))) {
2275         uint64_t Result = InC->getZExtValue();
2276         Result &= maskTrailingOnes<uint64_t>(Index);
2277         return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result));
2278       }
2279       // TODO should we convert this to an AND if the RHS is constant?
2280     }
2281     break;
2282 
2283   case Intrinsic::x86_vcvtph2ps_128:
2284   case Intrinsic::x86_vcvtph2ps_256: {
2285     auto Arg = II->getArgOperand(0);
2286     auto ArgType = cast<VectorType>(Arg->getType());
2287     auto RetType = cast<VectorType>(II->getType());
2288     unsigned ArgWidth = ArgType->getNumElements();
2289     unsigned RetWidth = RetType->getNumElements();
2290     assert(RetWidth <= ArgWidth && "Unexpected input/return vector widths");
2291     assert(ArgType->isIntOrIntVectorTy() &&
2292            ArgType->getScalarSizeInBits() == 16 &&
2293            "CVTPH2PS input type should be 16-bit integer vector");
2294     assert(RetType->getScalarType()->isFloatTy() &&
2295            "CVTPH2PS output type should be 32-bit float vector");
2296 
2297     // Constant folding: Convert to generic half to single conversion.
2298     if (isa<ConstantAggregateZero>(Arg))
2299       return replaceInstUsesWith(*II, ConstantAggregateZero::get(RetType));
2300 
2301     if (isa<ConstantDataVector>(Arg)) {
2302       auto VectorHalfAsShorts = Arg;
2303       if (RetWidth < ArgWidth) {
2304         SmallVector<uint32_t, 8> SubVecMask;
2305         for (unsigned i = 0; i != RetWidth; ++i)
2306           SubVecMask.push_back((int)i);
2307         VectorHalfAsShorts = Builder.CreateShuffleVector(
2308             Arg, UndefValue::get(ArgType), SubVecMask);
2309       }
2310 
2311       auto VectorHalfType =
2312           VectorType::get(Type::getHalfTy(II->getContext()), RetWidth);
2313       auto VectorHalfs =
2314           Builder.CreateBitCast(VectorHalfAsShorts, VectorHalfType);
2315       auto VectorFloats = Builder.CreateFPExt(VectorHalfs, RetType);
2316       return replaceInstUsesWith(*II, VectorFloats);
2317     }
2318 
2319     // We only use the lowest lanes of the argument.
2320     if (Value *V = SimplifyDemandedVectorEltsLow(Arg, ArgWidth, RetWidth)) {
2321       II->setArgOperand(0, V);
2322       return II;
2323     }
2324     break;
2325   }
2326 
2327   case Intrinsic::x86_sse_cvtss2si:
2328   case Intrinsic::x86_sse_cvtss2si64:
2329   case Intrinsic::x86_sse_cvttss2si:
2330   case Intrinsic::x86_sse_cvttss2si64:
2331   case Intrinsic::x86_sse2_cvtsd2si:
2332   case Intrinsic::x86_sse2_cvtsd2si64:
2333   case Intrinsic::x86_sse2_cvttsd2si:
2334   case Intrinsic::x86_sse2_cvttsd2si64:
2335   case Intrinsic::x86_avx512_vcvtss2si32:
2336   case Intrinsic::x86_avx512_vcvtss2si64:
2337   case Intrinsic::x86_avx512_vcvtss2usi32:
2338   case Intrinsic::x86_avx512_vcvtss2usi64:
2339   case Intrinsic::x86_avx512_vcvtsd2si32:
2340   case Intrinsic::x86_avx512_vcvtsd2si64:
2341   case Intrinsic::x86_avx512_vcvtsd2usi32:
2342   case Intrinsic::x86_avx512_vcvtsd2usi64:
2343   case Intrinsic::x86_avx512_cvttss2si:
2344   case Intrinsic::x86_avx512_cvttss2si64:
2345   case Intrinsic::x86_avx512_cvttss2usi:
2346   case Intrinsic::x86_avx512_cvttss2usi64:
2347   case Intrinsic::x86_avx512_cvttsd2si:
2348   case Intrinsic::x86_avx512_cvttsd2si64:
2349   case Intrinsic::x86_avx512_cvttsd2usi:
2350   case Intrinsic::x86_avx512_cvttsd2usi64: {
2351     // These intrinsics only demand the 0th element of their input vectors. If
2352     // we can simplify the input based on that, do so now.
2353     Value *Arg = II->getArgOperand(0);
2354     unsigned VWidth = Arg->getType()->getVectorNumElements();
2355     if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) {
2356       II->setArgOperand(0, V);
2357       return II;
2358     }
2359     break;
2360   }
2361 
2362   case Intrinsic::x86_sse41_round_ps:
2363   case Intrinsic::x86_sse41_round_pd:
2364   case Intrinsic::x86_avx_round_ps_256:
2365   case Intrinsic::x86_avx_round_pd_256:
2366   case Intrinsic::x86_avx512_mask_rndscale_ps_128:
2367   case Intrinsic::x86_avx512_mask_rndscale_ps_256:
2368   case Intrinsic::x86_avx512_mask_rndscale_ps_512:
2369   case Intrinsic::x86_avx512_mask_rndscale_pd_128:
2370   case Intrinsic::x86_avx512_mask_rndscale_pd_256:
2371   case Intrinsic::x86_avx512_mask_rndscale_pd_512:
2372   case Intrinsic::x86_avx512_mask_rndscale_ss:
2373   case Intrinsic::x86_avx512_mask_rndscale_sd:
2374     if (Value *V = simplifyX86round(*II, Builder))
2375       return replaceInstUsesWith(*II, V);
2376     break;
2377 
2378   case Intrinsic::x86_mmx_pmovmskb:
2379   case Intrinsic::x86_sse_movmsk_ps:
2380   case Intrinsic::x86_sse2_movmsk_pd:
2381   case Intrinsic::x86_sse2_pmovmskb_128:
2382   case Intrinsic::x86_avx_movmsk_pd_256:
2383   case Intrinsic::x86_avx_movmsk_ps_256:
2384   case Intrinsic::x86_avx2_pmovmskb:
2385     if (Value *V = simplifyX86movmsk(*II))
2386       return replaceInstUsesWith(*II, V);
2387     break;
2388 
2389   case Intrinsic::x86_sse_comieq_ss:
2390   case Intrinsic::x86_sse_comige_ss:
2391   case Intrinsic::x86_sse_comigt_ss:
2392   case Intrinsic::x86_sse_comile_ss:
2393   case Intrinsic::x86_sse_comilt_ss:
2394   case Intrinsic::x86_sse_comineq_ss:
2395   case Intrinsic::x86_sse_ucomieq_ss:
2396   case Intrinsic::x86_sse_ucomige_ss:
2397   case Intrinsic::x86_sse_ucomigt_ss:
2398   case Intrinsic::x86_sse_ucomile_ss:
2399   case Intrinsic::x86_sse_ucomilt_ss:
2400   case Intrinsic::x86_sse_ucomineq_ss:
2401   case Intrinsic::x86_sse2_comieq_sd:
2402   case Intrinsic::x86_sse2_comige_sd:
2403   case Intrinsic::x86_sse2_comigt_sd:
2404   case Intrinsic::x86_sse2_comile_sd:
2405   case Intrinsic::x86_sse2_comilt_sd:
2406   case Intrinsic::x86_sse2_comineq_sd:
2407   case Intrinsic::x86_sse2_ucomieq_sd:
2408   case Intrinsic::x86_sse2_ucomige_sd:
2409   case Intrinsic::x86_sse2_ucomigt_sd:
2410   case Intrinsic::x86_sse2_ucomile_sd:
2411   case Intrinsic::x86_sse2_ucomilt_sd:
2412   case Intrinsic::x86_sse2_ucomineq_sd:
2413   case Intrinsic::x86_avx512_vcomi_ss:
2414   case Intrinsic::x86_avx512_vcomi_sd:
2415   case Intrinsic::x86_avx512_mask_cmp_ss:
2416   case Intrinsic::x86_avx512_mask_cmp_sd: {
2417     // These intrinsics only demand the 0th element of their input vectors. If
2418     // we can simplify the input based on that, do so now.
2419     bool MadeChange = false;
2420     Value *Arg0 = II->getArgOperand(0);
2421     Value *Arg1 = II->getArgOperand(1);
2422     unsigned VWidth = Arg0->getType()->getVectorNumElements();
2423     if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) {
2424       II->setArgOperand(0, V);
2425       MadeChange = true;
2426     }
2427     if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) {
2428       II->setArgOperand(1, V);
2429       MadeChange = true;
2430     }
2431     if (MadeChange)
2432       return II;
2433     break;
2434   }
2435   case Intrinsic::x86_avx512_cmp_pd_128:
2436   case Intrinsic::x86_avx512_cmp_pd_256:
2437   case Intrinsic::x86_avx512_cmp_pd_512:
2438   case Intrinsic::x86_avx512_cmp_ps_128:
2439   case Intrinsic::x86_avx512_cmp_ps_256:
2440   case Intrinsic::x86_avx512_cmp_ps_512: {
2441     // Folding cmp(sub(a,b),0) -> cmp(a,b) and cmp(0,sub(a,b)) -> cmp(b,a)
2442     Value *Arg0 = II->getArgOperand(0);
2443     Value *Arg1 = II->getArgOperand(1);
2444     bool Arg0IsZero = match(Arg0, m_PosZeroFP());
2445     if (Arg0IsZero)
2446       std::swap(Arg0, Arg1);
2447     Value *A, *B;
2448     // This fold requires only the NINF(not +/- inf) since inf minus
2449     // inf is nan.
2450     // NSZ(No Signed Zeros) is not needed because zeros of any sign are
2451     // equal for both compares.
2452     // NNAN is not needed because nans compare the same for both compares.
2453     // The compare intrinsic uses the above assumptions and therefore
2454     // doesn't require additional flags.
2455     if ((match(Arg0, m_OneUse(m_FSub(m_Value(A), m_Value(B)))) &&
2456          match(Arg1, m_PosZeroFP()) && isa<Instruction>(Arg0) &&
2457          cast<Instruction>(Arg0)->getFastMathFlags().noInfs())) {
2458       if (Arg0IsZero)
2459         std::swap(A, B);
2460       II->setArgOperand(0, A);
2461       II->setArgOperand(1, B);
2462       return II;
2463     }
2464     break;
2465   }
2466 
2467   case Intrinsic::x86_avx512_add_ps_512:
2468   case Intrinsic::x86_avx512_div_ps_512:
2469   case Intrinsic::x86_avx512_mul_ps_512:
2470   case Intrinsic::x86_avx512_sub_ps_512:
2471   case Intrinsic::x86_avx512_add_pd_512:
2472   case Intrinsic::x86_avx512_div_pd_512:
2473   case Intrinsic::x86_avx512_mul_pd_512:
2474   case Intrinsic::x86_avx512_sub_pd_512:
2475     // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
2476     // IR operations.
2477     if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
2478       if (R->getValue() == 4) {
2479         Value *Arg0 = II->getArgOperand(0);
2480         Value *Arg1 = II->getArgOperand(1);
2481 
2482         Value *V;
2483         switch (II->getIntrinsicID()) {
2484         default: llvm_unreachable("Case stmts out of sync!");
2485         case Intrinsic::x86_avx512_add_ps_512:
2486         case Intrinsic::x86_avx512_add_pd_512:
2487           V = Builder.CreateFAdd(Arg0, Arg1);
2488           break;
2489         case Intrinsic::x86_avx512_sub_ps_512:
2490         case Intrinsic::x86_avx512_sub_pd_512:
2491           V = Builder.CreateFSub(Arg0, Arg1);
2492           break;
2493         case Intrinsic::x86_avx512_mul_ps_512:
2494         case Intrinsic::x86_avx512_mul_pd_512:
2495           V = Builder.CreateFMul(Arg0, Arg1);
2496           break;
2497         case Intrinsic::x86_avx512_div_ps_512:
2498         case Intrinsic::x86_avx512_div_pd_512:
2499           V = Builder.CreateFDiv(Arg0, Arg1);
2500           break;
2501         }
2502 
2503         return replaceInstUsesWith(*II, V);
2504       }
2505     }
2506     break;
2507 
2508   case Intrinsic::x86_avx512_mask_add_ss_round:
2509   case Intrinsic::x86_avx512_mask_div_ss_round:
2510   case Intrinsic::x86_avx512_mask_mul_ss_round:
2511   case Intrinsic::x86_avx512_mask_sub_ss_round:
2512   case Intrinsic::x86_avx512_mask_add_sd_round:
2513   case Intrinsic::x86_avx512_mask_div_sd_round:
2514   case Intrinsic::x86_avx512_mask_mul_sd_round:
2515   case Intrinsic::x86_avx512_mask_sub_sd_round:
2516     // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
2517     // IR operations.
2518     if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(4))) {
2519       if (R->getValue() == 4) {
2520         // Extract the element as scalars.
2521         Value *Arg0 = II->getArgOperand(0);
2522         Value *Arg1 = II->getArgOperand(1);
2523         Value *LHS = Builder.CreateExtractElement(Arg0, (uint64_t)0);
2524         Value *RHS = Builder.CreateExtractElement(Arg1, (uint64_t)0);
2525 
2526         Value *V;
2527         switch (II->getIntrinsicID()) {
2528         default: llvm_unreachable("Case stmts out of sync!");
2529         case Intrinsic::x86_avx512_mask_add_ss_round:
2530         case Intrinsic::x86_avx512_mask_add_sd_round:
2531           V = Builder.CreateFAdd(LHS, RHS);
2532           break;
2533         case Intrinsic::x86_avx512_mask_sub_ss_round:
2534         case Intrinsic::x86_avx512_mask_sub_sd_round:
2535           V = Builder.CreateFSub(LHS, RHS);
2536           break;
2537         case Intrinsic::x86_avx512_mask_mul_ss_round:
2538         case Intrinsic::x86_avx512_mask_mul_sd_round:
2539           V = Builder.CreateFMul(LHS, RHS);
2540           break;
2541         case Intrinsic::x86_avx512_mask_div_ss_round:
2542         case Intrinsic::x86_avx512_mask_div_sd_round:
2543           V = Builder.CreateFDiv(LHS, RHS);
2544           break;
2545         }
2546 
2547         // Handle the masking aspect of the intrinsic.
2548         Value *Mask = II->getArgOperand(3);
2549         auto *C = dyn_cast<ConstantInt>(Mask);
2550         // We don't need a select if we know the mask bit is a 1.
2551         if (!C || !C->getValue()[0]) {
2552           // Cast the mask to an i1 vector and then extract the lowest element.
2553           auto *MaskTy = VectorType::get(Builder.getInt1Ty(),
2554                              cast<IntegerType>(Mask->getType())->getBitWidth());
2555           Mask = Builder.CreateBitCast(Mask, MaskTy);
2556           Mask = Builder.CreateExtractElement(Mask, (uint64_t)0);
2557           // Extract the lowest element from the passthru operand.
2558           Value *Passthru = Builder.CreateExtractElement(II->getArgOperand(2),
2559                                                           (uint64_t)0);
2560           V = Builder.CreateSelect(Mask, V, Passthru);
2561         }
2562 
2563         // Insert the result back into the original argument 0.
2564         V = Builder.CreateInsertElement(Arg0, V, (uint64_t)0);
2565 
2566         return replaceInstUsesWith(*II, V);
2567       }
2568     }
2569     LLVM_FALLTHROUGH;
2570 
2571   // X86 scalar intrinsics simplified with SimplifyDemandedVectorElts.
2572   case Intrinsic::x86_avx512_mask_max_ss_round:
2573   case Intrinsic::x86_avx512_mask_min_ss_round:
2574   case Intrinsic::x86_avx512_mask_max_sd_round:
2575   case Intrinsic::x86_avx512_mask_min_sd_round:
2576   case Intrinsic::x86_sse_cmp_ss:
2577   case Intrinsic::x86_sse_min_ss:
2578   case Intrinsic::x86_sse_max_ss:
2579   case Intrinsic::x86_sse2_cmp_sd:
2580   case Intrinsic::x86_sse2_min_sd:
2581   case Intrinsic::x86_sse2_max_sd:
2582   case Intrinsic::x86_xop_vfrcz_ss:
2583   case Intrinsic::x86_xop_vfrcz_sd: {
2584    unsigned VWidth = II->getType()->getVectorNumElements();
2585    APInt UndefElts(VWidth, 0);
2586    APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
2587    if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) {
2588      if (V != II)
2589        return replaceInstUsesWith(*II, V);
2590      return II;
2591    }
2592    break;
2593   }
2594   case Intrinsic::x86_sse41_round_ss:
2595   case Intrinsic::x86_sse41_round_sd: {
2596     unsigned VWidth = II->getType()->getVectorNumElements();
2597     APInt UndefElts(VWidth, 0);
2598     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
2599     if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) {
2600       if (V != II)
2601         return replaceInstUsesWith(*II, V);
2602       return II;
2603     } else if (Value *V = simplifyX86round(*II, Builder))
2604       return replaceInstUsesWith(*II, V);
2605     break;
2606   }
2607 
2608   // Constant fold ashr( <A x Bi>, Ci ).
2609   // Constant fold lshr( <A x Bi>, Ci ).
2610   // Constant fold shl( <A x Bi>, Ci ).
2611   case Intrinsic::x86_sse2_psrai_d:
2612   case Intrinsic::x86_sse2_psrai_w:
2613   case Intrinsic::x86_avx2_psrai_d:
2614   case Intrinsic::x86_avx2_psrai_w:
2615   case Intrinsic::x86_avx512_psrai_q_128:
2616   case Intrinsic::x86_avx512_psrai_q_256:
2617   case Intrinsic::x86_avx512_psrai_d_512:
2618   case Intrinsic::x86_avx512_psrai_q_512:
2619   case Intrinsic::x86_avx512_psrai_w_512:
2620   case Intrinsic::x86_sse2_psrli_d:
2621   case Intrinsic::x86_sse2_psrli_q:
2622   case Intrinsic::x86_sse2_psrli_w:
2623   case Intrinsic::x86_avx2_psrli_d:
2624   case Intrinsic::x86_avx2_psrli_q:
2625   case Intrinsic::x86_avx2_psrli_w:
2626   case Intrinsic::x86_avx512_psrli_d_512:
2627   case Intrinsic::x86_avx512_psrli_q_512:
2628   case Intrinsic::x86_avx512_psrli_w_512:
2629   case Intrinsic::x86_sse2_pslli_d:
2630   case Intrinsic::x86_sse2_pslli_q:
2631   case Intrinsic::x86_sse2_pslli_w:
2632   case Intrinsic::x86_avx2_pslli_d:
2633   case Intrinsic::x86_avx2_pslli_q:
2634   case Intrinsic::x86_avx2_pslli_w:
2635   case Intrinsic::x86_avx512_pslli_d_512:
2636   case Intrinsic::x86_avx512_pslli_q_512:
2637   case Intrinsic::x86_avx512_pslli_w_512:
2638     if (Value *V = simplifyX86immShift(*II, Builder))
2639       return replaceInstUsesWith(*II, V);
2640     break;
2641 
2642   case Intrinsic::x86_sse2_psra_d:
2643   case Intrinsic::x86_sse2_psra_w:
2644   case Intrinsic::x86_avx2_psra_d:
2645   case Intrinsic::x86_avx2_psra_w:
2646   case Intrinsic::x86_avx512_psra_q_128:
2647   case Intrinsic::x86_avx512_psra_q_256:
2648   case Intrinsic::x86_avx512_psra_d_512:
2649   case Intrinsic::x86_avx512_psra_q_512:
2650   case Intrinsic::x86_avx512_psra_w_512:
2651   case Intrinsic::x86_sse2_psrl_d:
2652   case Intrinsic::x86_sse2_psrl_q:
2653   case Intrinsic::x86_sse2_psrl_w:
2654   case Intrinsic::x86_avx2_psrl_d:
2655   case Intrinsic::x86_avx2_psrl_q:
2656   case Intrinsic::x86_avx2_psrl_w:
2657   case Intrinsic::x86_avx512_psrl_d_512:
2658   case Intrinsic::x86_avx512_psrl_q_512:
2659   case Intrinsic::x86_avx512_psrl_w_512:
2660   case Intrinsic::x86_sse2_psll_d:
2661   case Intrinsic::x86_sse2_psll_q:
2662   case Intrinsic::x86_sse2_psll_w:
2663   case Intrinsic::x86_avx2_psll_d:
2664   case Intrinsic::x86_avx2_psll_q:
2665   case Intrinsic::x86_avx2_psll_w:
2666   case Intrinsic::x86_avx512_psll_d_512:
2667   case Intrinsic::x86_avx512_psll_q_512:
2668   case Intrinsic::x86_avx512_psll_w_512: {
2669     if (Value *V = simplifyX86immShift(*II, Builder))
2670       return replaceInstUsesWith(*II, V);
2671 
2672     // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector
2673     // operand to compute the shift amount.
2674     Value *Arg1 = II->getArgOperand(1);
2675     assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 &&
2676            "Unexpected packed shift size");
2677     unsigned VWidth = Arg1->getType()->getVectorNumElements();
2678 
2679     if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) {
2680       II->setArgOperand(1, V);
2681       return II;
2682     }
2683     break;
2684   }
2685 
2686   case Intrinsic::x86_avx2_psllv_d:
2687   case Intrinsic::x86_avx2_psllv_d_256:
2688   case Intrinsic::x86_avx2_psllv_q:
2689   case Intrinsic::x86_avx2_psllv_q_256:
2690   case Intrinsic::x86_avx512_psllv_d_512:
2691   case Intrinsic::x86_avx512_psllv_q_512:
2692   case Intrinsic::x86_avx512_psllv_w_128:
2693   case Intrinsic::x86_avx512_psllv_w_256:
2694   case Intrinsic::x86_avx512_psllv_w_512:
2695   case Intrinsic::x86_avx2_psrav_d:
2696   case Intrinsic::x86_avx2_psrav_d_256:
2697   case Intrinsic::x86_avx512_psrav_q_128:
2698   case Intrinsic::x86_avx512_psrav_q_256:
2699   case Intrinsic::x86_avx512_psrav_d_512:
2700   case Intrinsic::x86_avx512_psrav_q_512:
2701   case Intrinsic::x86_avx512_psrav_w_128:
2702   case Intrinsic::x86_avx512_psrav_w_256:
2703   case Intrinsic::x86_avx512_psrav_w_512:
2704   case Intrinsic::x86_avx2_psrlv_d:
2705   case Intrinsic::x86_avx2_psrlv_d_256:
2706   case Intrinsic::x86_avx2_psrlv_q:
2707   case Intrinsic::x86_avx2_psrlv_q_256:
2708   case Intrinsic::x86_avx512_psrlv_d_512:
2709   case Intrinsic::x86_avx512_psrlv_q_512:
2710   case Intrinsic::x86_avx512_psrlv_w_128:
2711   case Intrinsic::x86_avx512_psrlv_w_256:
2712   case Intrinsic::x86_avx512_psrlv_w_512:
2713     if (Value *V = simplifyX86varShift(*II, Builder))
2714       return replaceInstUsesWith(*II, V);
2715     break;
2716 
2717   case Intrinsic::x86_sse2_packssdw_128:
2718   case Intrinsic::x86_sse2_packsswb_128:
2719   case Intrinsic::x86_avx2_packssdw:
2720   case Intrinsic::x86_avx2_packsswb:
2721   case Intrinsic::x86_avx512_packssdw_512:
2722   case Intrinsic::x86_avx512_packsswb_512:
2723     if (Value *V = simplifyX86pack(*II, true))
2724       return replaceInstUsesWith(*II, V);
2725     break;
2726 
2727   case Intrinsic::x86_sse2_packuswb_128:
2728   case Intrinsic::x86_sse41_packusdw:
2729   case Intrinsic::x86_avx2_packusdw:
2730   case Intrinsic::x86_avx2_packuswb:
2731   case Intrinsic::x86_avx512_packusdw_512:
2732   case Intrinsic::x86_avx512_packuswb_512:
2733     if (Value *V = simplifyX86pack(*II, false))
2734       return replaceInstUsesWith(*II, V);
2735     break;
2736 
2737   case Intrinsic::x86_pclmulqdq:
2738   case Intrinsic::x86_pclmulqdq_256:
2739   case Intrinsic::x86_pclmulqdq_512: {
2740     if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
2741       unsigned Imm = C->getZExtValue();
2742 
2743       bool MadeChange = false;
2744       Value *Arg0 = II->getArgOperand(0);
2745       Value *Arg1 = II->getArgOperand(1);
2746       unsigned VWidth = Arg0->getType()->getVectorNumElements();
2747 
2748       APInt UndefElts1(VWidth, 0);
2749       APInt DemandedElts1 = APInt::getSplat(VWidth,
2750                                             APInt(2, (Imm & 0x01) ? 2 : 1));
2751       if (Value *V = SimplifyDemandedVectorElts(Arg0, DemandedElts1,
2752                                                 UndefElts1)) {
2753         II->setArgOperand(0, V);
2754         MadeChange = true;
2755       }
2756 
2757       APInt UndefElts2(VWidth, 0);
2758       APInt DemandedElts2 = APInt::getSplat(VWidth,
2759                                             APInt(2, (Imm & 0x10) ? 2 : 1));
2760       if (Value *V = SimplifyDemandedVectorElts(Arg1, DemandedElts2,
2761                                                 UndefElts2)) {
2762         II->setArgOperand(1, V);
2763         MadeChange = true;
2764       }
2765 
2766       // If either input elements are undef, the result is zero.
2767       if (DemandedElts1.isSubsetOf(UndefElts1) ||
2768           DemandedElts2.isSubsetOf(UndefElts2))
2769         return replaceInstUsesWith(*II,
2770                                    ConstantAggregateZero::get(II->getType()));
2771 
2772       if (MadeChange)
2773         return II;
2774     }
2775     break;
2776   }
2777 
2778   case Intrinsic::x86_sse41_insertps:
2779     if (Value *V = simplifyX86insertps(*II, Builder))
2780       return replaceInstUsesWith(*II, V);
2781     break;
2782 
2783   case Intrinsic::x86_sse4a_extrq: {
2784     Value *Op0 = II->getArgOperand(0);
2785     Value *Op1 = II->getArgOperand(1);
2786     unsigned VWidth0 = Op0->getType()->getVectorNumElements();
2787     unsigned VWidth1 = Op1->getType()->getVectorNumElements();
2788     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2789            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
2790            VWidth1 == 16 && "Unexpected operand sizes");
2791 
2792     // See if we're dealing with constant values.
2793     Constant *C1 = dyn_cast<Constant>(Op1);
2794     ConstantInt *CILength =
2795         C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
2796            : nullptr;
2797     ConstantInt *CIIndex =
2798         C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
2799            : nullptr;
2800 
2801     // Attempt to simplify to a constant, shuffle vector or EXTRQI call.
2802     if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder))
2803       return replaceInstUsesWith(*II, V);
2804 
2805     // EXTRQ only uses the lowest 64-bits of the first 128-bit vector
2806     // operands and the lowest 16-bits of the second.
2807     bool MadeChange = false;
2808     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
2809       II->setArgOperand(0, V);
2810       MadeChange = true;
2811     }
2812     if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) {
2813       II->setArgOperand(1, V);
2814       MadeChange = true;
2815     }
2816     if (MadeChange)
2817       return II;
2818     break;
2819   }
2820 
2821   case Intrinsic::x86_sse4a_extrqi: {
2822     // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining
2823     // bits of the lower 64-bits. The upper 64-bits are undefined.
2824     Value *Op0 = II->getArgOperand(0);
2825     unsigned VWidth = Op0->getType()->getVectorNumElements();
2826     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
2827            "Unexpected operand size");
2828 
2829     // See if we're dealing with constant values.
2830     ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(1));
2831     ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(2));
2832 
2833     // Attempt to simplify to a constant or shuffle vector.
2834     if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder))
2835       return replaceInstUsesWith(*II, V);
2836 
2837     // EXTRQI only uses the lowest 64-bits of the first 128-bit vector
2838     // operand.
2839     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
2840       II->setArgOperand(0, V);
2841       return II;
2842     }
2843     break;
2844   }
2845 
2846   case Intrinsic::x86_sse4a_insertq: {
2847     Value *Op0 = II->getArgOperand(0);
2848     Value *Op1 = II->getArgOperand(1);
2849     unsigned VWidth = Op0->getType()->getVectorNumElements();
2850     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2851            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
2852            Op1->getType()->getVectorNumElements() == 2 &&
2853            "Unexpected operand size");
2854 
2855     // See if we're dealing with constant values.
2856     Constant *C1 = dyn_cast<Constant>(Op1);
2857     ConstantInt *CI11 =
2858         C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
2859            : nullptr;
2860 
2861     // Attempt to simplify to a constant, shuffle vector or INSERTQI call.
2862     if (CI11) {
2863       const APInt &V11 = CI11->getValue();
2864       APInt Len = V11.zextOrTrunc(6);
2865       APInt Idx = V11.lshr(8).zextOrTrunc(6);
2866       if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder))
2867         return replaceInstUsesWith(*II, V);
2868     }
2869 
2870     // INSERTQ only uses the lowest 64-bits of the first 128-bit vector
2871     // operand.
2872     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
2873       II->setArgOperand(0, V);
2874       return II;
2875     }
2876     break;
2877   }
2878 
2879   case Intrinsic::x86_sse4a_insertqi: {
2880     // INSERTQI: Extract lowest Length bits from lower half of second source and
2881     // insert over first source starting at Index bit. The upper 64-bits are
2882     // undefined.
2883     Value *Op0 = II->getArgOperand(0);
2884     Value *Op1 = II->getArgOperand(1);
2885     unsigned VWidth0 = Op0->getType()->getVectorNumElements();
2886     unsigned VWidth1 = Op1->getType()->getVectorNumElements();
2887     assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
2888            Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
2889            VWidth1 == 2 && "Unexpected operand sizes");
2890 
2891     // See if we're dealing with constant values.
2892     ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(2));
2893     ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(3));
2894 
2895     // Attempt to simplify to a constant or shuffle vector.
2896     if (CILength && CIIndex) {
2897       APInt Len = CILength->getValue().zextOrTrunc(6);
2898       APInt Idx = CIIndex->getValue().zextOrTrunc(6);
2899       if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder))
2900         return replaceInstUsesWith(*II, V);
2901     }
2902 
2903     // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector
2904     // operands.
2905     bool MadeChange = false;
2906     if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
2907       II->setArgOperand(0, V);
2908       MadeChange = true;
2909     }
2910     if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) {
2911       II->setArgOperand(1, V);
2912       MadeChange = true;
2913     }
2914     if (MadeChange)
2915       return II;
2916     break;
2917   }
2918 
2919   case Intrinsic::x86_sse41_pblendvb:
2920   case Intrinsic::x86_sse41_blendvps:
2921   case Intrinsic::x86_sse41_blendvpd:
2922   case Intrinsic::x86_avx_blendv_ps_256:
2923   case Intrinsic::x86_avx_blendv_pd_256:
2924   case Intrinsic::x86_avx2_pblendvb: {
2925     // Convert blendv* to vector selects if the mask is constant.
2926     // This optimization is convoluted because the intrinsic is defined as
2927     // getting a vector of floats or doubles for the ps and pd versions.
2928     // FIXME: That should be changed.
2929 
2930     Value *Op0 = II->getArgOperand(0);
2931     Value *Op1 = II->getArgOperand(1);
2932     Value *Mask = II->getArgOperand(2);
2933 
2934     // fold (blend A, A, Mask) -> A
2935     if (Op0 == Op1)
2936       return replaceInstUsesWith(CI, Op0);
2937 
2938     // Zero Mask - select 1st argument.
2939     if (isa<ConstantAggregateZero>(Mask))
2940       return replaceInstUsesWith(CI, Op0);
2941 
2942     // Constant Mask - select 1st/2nd argument lane based on top bit of mask.
2943     if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) {
2944       Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask);
2945       return SelectInst::Create(NewSelector, Op1, Op0, "blendv");
2946     }
2947     break;
2948   }
2949 
2950   case Intrinsic::x86_ssse3_pshuf_b_128:
2951   case Intrinsic::x86_avx2_pshuf_b:
2952   case Intrinsic::x86_avx512_pshuf_b_512:
2953     if (Value *V = simplifyX86pshufb(*II, Builder))
2954       return replaceInstUsesWith(*II, V);
2955     break;
2956 
2957   case Intrinsic::x86_avx_vpermilvar_ps:
2958   case Intrinsic::x86_avx_vpermilvar_ps_256:
2959   case Intrinsic::x86_avx512_vpermilvar_ps_512:
2960   case Intrinsic::x86_avx_vpermilvar_pd:
2961   case Intrinsic::x86_avx_vpermilvar_pd_256:
2962   case Intrinsic::x86_avx512_vpermilvar_pd_512:
2963     if (Value *V = simplifyX86vpermilvar(*II, Builder))
2964       return replaceInstUsesWith(*II, V);
2965     break;
2966 
2967   case Intrinsic::x86_avx2_permd:
2968   case Intrinsic::x86_avx2_permps:
2969   case Intrinsic::x86_avx512_permvar_df_256:
2970   case Intrinsic::x86_avx512_permvar_df_512:
2971   case Intrinsic::x86_avx512_permvar_di_256:
2972   case Intrinsic::x86_avx512_permvar_di_512:
2973   case Intrinsic::x86_avx512_permvar_hi_128:
2974   case Intrinsic::x86_avx512_permvar_hi_256:
2975   case Intrinsic::x86_avx512_permvar_hi_512:
2976   case Intrinsic::x86_avx512_permvar_qi_128:
2977   case Intrinsic::x86_avx512_permvar_qi_256:
2978   case Intrinsic::x86_avx512_permvar_qi_512:
2979   case Intrinsic::x86_avx512_permvar_sf_512:
2980   case Intrinsic::x86_avx512_permvar_si_512:
2981     if (Value *V = simplifyX86vpermv(*II, Builder))
2982       return replaceInstUsesWith(*II, V);
2983     break;
2984 
2985   case Intrinsic::x86_avx_maskload_ps:
2986   case Intrinsic::x86_avx_maskload_pd:
2987   case Intrinsic::x86_avx_maskload_ps_256:
2988   case Intrinsic::x86_avx_maskload_pd_256:
2989   case Intrinsic::x86_avx2_maskload_d:
2990   case Intrinsic::x86_avx2_maskload_q:
2991   case Intrinsic::x86_avx2_maskload_d_256:
2992   case Intrinsic::x86_avx2_maskload_q_256:
2993     if (Instruction *I = simplifyX86MaskedLoad(*II, *this))
2994       return I;
2995     break;
2996 
2997   case Intrinsic::x86_sse2_maskmov_dqu:
2998   case Intrinsic::x86_avx_maskstore_ps:
2999   case Intrinsic::x86_avx_maskstore_pd:
3000   case Intrinsic::x86_avx_maskstore_ps_256:
3001   case Intrinsic::x86_avx_maskstore_pd_256:
3002   case Intrinsic::x86_avx2_maskstore_d:
3003   case Intrinsic::x86_avx2_maskstore_q:
3004   case Intrinsic::x86_avx2_maskstore_d_256:
3005   case Intrinsic::x86_avx2_maskstore_q_256:
3006     if (simplifyX86MaskedStore(*II, *this))
3007       return nullptr;
3008     break;
3009 
3010   case Intrinsic::x86_xop_vpcomb:
3011   case Intrinsic::x86_xop_vpcomd:
3012   case Intrinsic::x86_xop_vpcomq:
3013   case Intrinsic::x86_xop_vpcomw:
3014     if (Value *V = simplifyX86vpcom(*II, Builder, true))
3015       return replaceInstUsesWith(*II, V);
3016     break;
3017 
3018   case Intrinsic::x86_xop_vpcomub:
3019   case Intrinsic::x86_xop_vpcomud:
3020   case Intrinsic::x86_xop_vpcomuq:
3021   case Intrinsic::x86_xop_vpcomuw:
3022     if (Value *V = simplifyX86vpcom(*II, Builder, false))
3023       return replaceInstUsesWith(*II, V);
3024     break;
3025 
3026   case Intrinsic::ppc_altivec_vperm:
3027     // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
3028     // Note that ppc_altivec_vperm has a big-endian bias, so when creating
3029     // a vectorshuffle for little endian, we must undo the transformation
3030     // performed on vec_perm in altivec.h.  That is, we must complement
3031     // the permutation mask with respect to 31 and reverse the order of
3032     // V1 and V2.
3033     if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
3034       assert(Mask->getType()->getVectorNumElements() == 16 &&
3035              "Bad type for intrinsic!");
3036 
3037       // Check that all of the elements are integer constants or undefs.
3038       bool AllEltsOk = true;
3039       for (unsigned i = 0; i != 16; ++i) {
3040         Constant *Elt = Mask->getAggregateElement(i);
3041         if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
3042           AllEltsOk = false;
3043           break;
3044         }
3045       }
3046 
3047       if (AllEltsOk) {
3048         // Cast the input vectors to byte vectors.
3049         Value *Op0 = Builder.CreateBitCast(II->getArgOperand(0),
3050                                            Mask->getType());
3051         Value *Op1 = Builder.CreateBitCast(II->getArgOperand(1),
3052                                            Mask->getType());
3053         Value *Result = UndefValue::get(Op0->getType());
3054 
3055         // Only extract each element once.
3056         Value *ExtractedElts[32];
3057         memset(ExtractedElts, 0, sizeof(ExtractedElts));
3058 
3059         for (unsigned i = 0; i != 16; ++i) {
3060           if (isa<UndefValue>(Mask->getAggregateElement(i)))
3061             continue;
3062           unsigned Idx =
3063             cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
3064           Idx &= 31;  // Match the hardware behavior.
3065           if (DL.isLittleEndian())
3066             Idx = 31 - Idx;
3067 
3068           if (!ExtractedElts[Idx]) {
3069             Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
3070             Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
3071             ExtractedElts[Idx] =
3072               Builder.CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
3073                                            Builder.getInt32(Idx&15));
3074           }
3075 
3076           // Insert this value into the result vector.
3077           Result = Builder.CreateInsertElement(Result, ExtractedElts[Idx],
3078                                                Builder.getInt32(i));
3079         }
3080         return CastInst::Create(Instruction::BitCast, Result, CI.getType());
3081       }
3082     }
3083     break;
3084 
3085   case Intrinsic::arm_neon_vld1: {
3086     unsigned MemAlign = getKnownAlignment(II->getArgOperand(0),
3087                                           DL, II, &AC, &DT);
3088     if (Value *V = simplifyNeonVld1(*II, MemAlign, Builder))
3089       return replaceInstUsesWith(*II, V);
3090     break;
3091   }
3092 
3093   case Intrinsic::arm_neon_vld2:
3094   case Intrinsic::arm_neon_vld3:
3095   case Intrinsic::arm_neon_vld4:
3096   case Intrinsic::arm_neon_vld2lane:
3097   case Intrinsic::arm_neon_vld3lane:
3098   case Intrinsic::arm_neon_vld4lane:
3099   case Intrinsic::arm_neon_vst1:
3100   case Intrinsic::arm_neon_vst2:
3101   case Intrinsic::arm_neon_vst3:
3102   case Intrinsic::arm_neon_vst4:
3103   case Intrinsic::arm_neon_vst2lane:
3104   case Intrinsic::arm_neon_vst3lane:
3105   case Intrinsic::arm_neon_vst4lane: {
3106     unsigned MemAlign =
3107         getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT);
3108     unsigned AlignArg = II->getNumArgOperands() - 1;
3109     ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
3110     if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
3111       II->setArgOperand(AlignArg,
3112                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
3113                                          MemAlign, false));
3114       return II;
3115     }
3116     break;
3117   }
3118 
3119   case Intrinsic::arm_neon_vtbl1:
3120   case Intrinsic::aarch64_neon_tbl1:
3121     if (Value *V = simplifyNeonTbl1(*II, Builder))
3122       return replaceInstUsesWith(*II, V);
3123     break;
3124 
3125   case Intrinsic::arm_neon_vmulls:
3126   case Intrinsic::arm_neon_vmullu:
3127   case Intrinsic::aarch64_neon_smull:
3128   case Intrinsic::aarch64_neon_umull: {
3129     Value *Arg0 = II->getArgOperand(0);
3130     Value *Arg1 = II->getArgOperand(1);
3131 
3132     // Handle mul by zero first:
3133     if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
3134       return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
3135     }
3136 
3137     // Check for constant LHS & RHS - in this case we just simplify.
3138     bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu ||
3139                  II->getIntrinsicID() == Intrinsic::aarch64_neon_umull);
3140     VectorType *NewVT = cast<VectorType>(II->getType());
3141     if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
3142       if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
3143         CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
3144         CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
3145 
3146         return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
3147       }
3148 
3149       // Couldn't simplify - canonicalize constant to the RHS.
3150       std::swap(Arg0, Arg1);
3151     }
3152 
3153     // Handle mul by one:
3154     if (Constant *CV1 = dyn_cast<Constant>(Arg1))
3155       if (ConstantInt *Splat =
3156               dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
3157         if (Splat->isOne())
3158           return CastInst::CreateIntegerCast(Arg0, II->getType(),
3159                                              /*isSigned=*/!Zext);
3160 
3161     break;
3162   }
3163   case Intrinsic::arm_neon_aesd:
3164   case Intrinsic::arm_neon_aese:
3165   case Intrinsic::aarch64_crypto_aesd:
3166   case Intrinsic::aarch64_crypto_aese: {
3167     Value *DataArg = II->getArgOperand(0);
3168     Value *KeyArg  = II->getArgOperand(1);
3169 
3170     // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
3171     Value *Data, *Key;
3172     if (match(KeyArg, m_ZeroInt()) &&
3173         match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) {
3174       II->setArgOperand(0, Data);
3175       II->setArgOperand(1, Key);
3176       return II;
3177     }
3178     break;
3179   }
3180   case Intrinsic::amdgcn_rcp: {
3181     Value *Src = II->getArgOperand(0);
3182 
3183     // TODO: Move to ConstantFolding/InstSimplify?
3184     if (isa<UndefValue>(Src))
3185       return replaceInstUsesWith(CI, Src);
3186 
3187     if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
3188       const APFloat &ArgVal = C->getValueAPF();
3189       APFloat Val(ArgVal.getSemantics(), 1.0);
3190       APFloat::opStatus Status = Val.divide(ArgVal,
3191                                             APFloat::rmNearestTiesToEven);
3192       // Only do this if it was exact and therefore not dependent on the
3193       // rounding mode.
3194       if (Status == APFloat::opOK)
3195         return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
3196     }
3197 
3198     break;
3199   }
3200   case Intrinsic::amdgcn_rsq: {
3201     Value *Src = II->getArgOperand(0);
3202 
3203     // TODO: Move to ConstantFolding/InstSimplify?
3204     if (isa<UndefValue>(Src))
3205       return replaceInstUsesWith(CI, Src);
3206     break;
3207   }
3208   case Intrinsic::amdgcn_frexp_mant:
3209   case Intrinsic::amdgcn_frexp_exp: {
3210     Value *Src = II->getArgOperand(0);
3211     if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
3212       int Exp;
3213       APFloat Significand = frexp(C->getValueAPF(), Exp,
3214                                   APFloat::rmNearestTiesToEven);
3215 
3216       if (II->getIntrinsicID() == Intrinsic::amdgcn_frexp_mant) {
3217         return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(),
3218                                                        Significand));
3219       }
3220 
3221       // Match instruction special case behavior.
3222       if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf)
3223         Exp = 0;
3224 
3225       return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Exp));
3226     }
3227 
3228     if (isa<UndefValue>(Src))
3229       return replaceInstUsesWith(CI, UndefValue::get(II->getType()));
3230 
3231     break;
3232   }
3233   case Intrinsic::amdgcn_class: {
3234     enum  {
3235       S_NAN = 1 << 0,        // Signaling NaN
3236       Q_NAN = 1 << 1,        // Quiet NaN
3237       N_INFINITY = 1 << 2,   // Negative infinity
3238       N_NORMAL = 1 << 3,     // Negative normal
3239       N_SUBNORMAL = 1 << 4,  // Negative subnormal
3240       N_ZERO = 1 << 5,       // Negative zero
3241       P_ZERO = 1 << 6,       // Positive zero
3242       P_SUBNORMAL = 1 << 7,  // Positive subnormal
3243       P_NORMAL = 1 << 8,     // Positive normal
3244       P_INFINITY = 1 << 9    // Positive infinity
3245     };
3246 
3247     const uint32_t FullMask = S_NAN | Q_NAN | N_INFINITY | N_NORMAL |
3248       N_SUBNORMAL | N_ZERO | P_ZERO | P_SUBNORMAL | P_NORMAL | P_INFINITY;
3249 
3250     Value *Src0 = II->getArgOperand(0);
3251     Value *Src1 = II->getArgOperand(1);
3252     const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1);
3253     if (!CMask) {
3254       if (isa<UndefValue>(Src0))
3255         return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3256 
3257       if (isa<UndefValue>(Src1))
3258         return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
3259       break;
3260     }
3261 
3262     uint32_t Mask = CMask->getZExtValue();
3263 
3264     // If all tests are made, it doesn't matter what the value is.
3265     if ((Mask & FullMask) == FullMask)
3266       return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), true));
3267 
3268     if ((Mask & FullMask) == 0)
3269       return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
3270 
3271     if (Mask == (S_NAN | Q_NAN)) {
3272       // Equivalent of isnan. Replace with standard fcmp.
3273       Value *FCmp = Builder.CreateFCmpUNO(Src0, Src0);
3274       FCmp->takeName(II);
3275       return replaceInstUsesWith(*II, FCmp);
3276     }
3277 
3278     const ConstantFP *CVal = dyn_cast<ConstantFP>(Src0);
3279     if (!CVal) {
3280       if (isa<UndefValue>(Src0))
3281         return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3282 
3283       // Clamp mask to used bits
3284       if ((Mask & FullMask) != Mask) {
3285         CallInst *NewCall = Builder.CreateCall(II->getCalledFunction(),
3286           { Src0, ConstantInt::get(Src1->getType(), Mask & FullMask) }
3287         );
3288 
3289         NewCall->takeName(II);
3290         return replaceInstUsesWith(*II, NewCall);
3291       }
3292 
3293       break;
3294     }
3295 
3296     const APFloat &Val = CVal->getValueAPF();
3297 
3298     bool Result =
3299       ((Mask & S_NAN) && Val.isNaN() && Val.isSignaling()) ||
3300       ((Mask & Q_NAN) && Val.isNaN() && !Val.isSignaling()) ||
3301       ((Mask & N_INFINITY) && Val.isInfinity() && Val.isNegative()) ||
3302       ((Mask & N_NORMAL) && Val.isNormal() && Val.isNegative()) ||
3303       ((Mask & N_SUBNORMAL) && Val.isDenormal() && Val.isNegative()) ||
3304       ((Mask & N_ZERO) && Val.isZero() && Val.isNegative()) ||
3305       ((Mask & P_ZERO) && Val.isZero() && !Val.isNegative()) ||
3306       ((Mask & P_SUBNORMAL) && Val.isDenormal() && !Val.isNegative()) ||
3307       ((Mask & P_NORMAL) && Val.isNormal() && !Val.isNegative()) ||
3308       ((Mask & P_INFINITY) && Val.isInfinity() && !Val.isNegative());
3309 
3310     return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), Result));
3311   }
3312   case Intrinsic::amdgcn_cvt_pkrtz: {
3313     Value *Src0 = II->getArgOperand(0);
3314     Value *Src1 = II->getArgOperand(1);
3315     if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
3316       if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
3317         const fltSemantics &HalfSem
3318           = II->getType()->getScalarType()->getFltSemantics();
3319         bool LosesInfo;
3320         APFloat Val0 = C0->getValueAPF();
3321         APFloat Val1 = C1->getValueAPF();
3322         Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
3323         Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
3324 
3325         Constant *Folded = ConstantVector::get({
3326             ConstantFP::get(II->getContext(), Val0),
3327             ConstantFP::get(II->getContext(), Val1) });
3328         return replaceInstUsesWith(*II, Folded);
3329       }
3330     }
3331 
3332     if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1))
3333       return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3334 
3335     break;
3336   }
3337   case Intrinsic::amdgcn_cvt_pknorm_i16:
3338   case Intrinsic::amdgcn_cvt_pknorm_u16:
3339   case Intrinsic::amdgcn_cvt_pk_i16:
3340   case Intrinsic::amdgcn_cvt_pk_u16: {
3341     Value *Src0 = II->getArgOperand(0);
3342     Value *Src1 = II->getArgOperand(1);
3343 
3344     if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1))
3345       return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3346 
3347     break;
3348   }
3349   case Intrinsic::amdgcn_ubfe:
3350   case Intrinsic::amdgcn_sbfe: {
3351     // Decompose simple cases into standard shifts.
3352     Value *Src = II->getArgOperand(0);
3353     if (isa<UndefValue>(Src))
3354       return replaceInstUsesWith(*II, Src);
3355 
3356     unsigned Width;
3357     Type *Ty = II->getType();
3358     unsigned IntSize = Ty->getIntegerBitWidth();
3359 
3360     ConstantInt *CWidth = dyn_cast<ConstantInt>(II->getArgOperand(2));
3361     if (CWidth) {
3362       Width = CWidth->getZExtValue();
3363       if ((Width & (IntSize - 1)) == 0)
3364         return replaceInstUsesWith(*II, ConstantInt::getNullValue(Ty));
3365 
3366       if (Width >= IntSize) {
3367         // Hardware ignores high bits, so remove those.
3368         II->setArgOperand(2, ConstantInt::get(CWidth->getType(),
3369                                               Width & (IntSize - 1)));
3370         return II;
3371       }
3372     }
3373 
3374     unsigned Offset;
3375     ConstantInt *COffset = dyn_cast<ConstantInt>(II->getArgOperand(1));
3376     if (COffset) {
3377       Offset = COffset->getZExtValue();
3378       if (Offset >= IntSize) {
3379         II->setArgOperand(1, ConstantInt::get(COffset->getType(),
3380                                               Offset & (IntSize - 1)));
3381         return II;
3382       }
3383     }
3384 
3385     bool Signed = II->getIntrinsicID() == Intrinsic::amdgcn_sbfe;
3386 
3387     // TODO: Also emit sub if only width is constant.
3388     if (!CWidth && COffset && Offset == 0) {
3389       Constant *KSize = ConstantInt::get(COffset->getType(), IntSize);
3390       Value *ShiftVal = Builder.CreateSub(KSize, II->getArgOperand(2));
3391       ShiftVal = Builder.CreateZExt(ShiftVal, II->getType());
3392 
3393       Value *Shl = Builder.CreateShl(Src, ShiftVal);
3394       Value *RightShift = Signed ? Builder.CreateAShr(Shl, ShiftVal)
3395                                  : Builder.CreateLShr(Shl, ShiftVal);
3396       RightShift->takeName(II);
3397       return replaceInstUsesWith(*II, RightShift);
3398     }
3399 
3400     if (!CWidth || !COffset)
3401       break;
3402 
3403     // TODO: This allows folding to undef when the hardware has specific
3404     // behavior?
3405     if (Offset + Width < IntSize) {
3406       Value *Shl = Builder.CreateShl(Src, IntSize - Offset - Width);
3407       Value *RightShift = Signed ? Builder.CreateAShr(Shl, IntSize - Width)
3408                                  : Builder.CreateLShr(Shl, IntSize - Width);
3409       RightShift->takeName(II);
3410       return replaceInstUsesWith(*II, RightShift);
3411     }
3412 
3413     Value *RightShift = Signed ? Builder.CreateAShr(Src, Offset)
3414                                : Builder.CreateLShr(Src, Offset);
3415 
3416     RightShift->takeName(II);
3417     return replaceInstUsesWith(*II, RightShift);
3418   }
3419   case Intrinsic::amdgcn_exp:
3420   case Intrinsic::amdgcn_exp_compr: {
3421     ConstantInt *En = dyn_cast<ConstantInt>(II->getArgOperand(1));
3422     if (!En) // Illegal.
3423       break;
3424 
3425     unsigned EnBits = En->getZExtValue();
3426     if (EnBits == 0xf)
3427       break; // All inputs enabled.
3428 
3429     bool IsCompr = II->getIntrinsicID() == Intrinsic::amdgcn_exp_compr;
3430     bool Changed = false;
3431     for (int I = 0; I < (IsCompr ? 2 : 4); ++I) {
3432       if ((!IsCompr && (EnBits & (1 << I)) == 0) ||
3433           (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) {
3434         Value *Src = II->getArgOperand(I + 2);
3435         if (!isa<UndefValue>(Src)) {
3436           II->setArgOperand(I + 2, UndefValue::get(Src->getType()));
3437           Changed = true;
3438         }
3439       }
3440     }
3441 
3442     if (Changed)
3443       return II;
3444 
3445     break;
3446   }
3447   case Intrinsic::amdgcn_fmed3: {
3448     // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled
3449     // for the shader.
3450 
3451     Value *Src0 = II->getArgOperand(0);
3452     Value *Src1 = II->getArgOperand(1);
3453     Value *Src2 = II->getArgOperand(2);
3454 
3455     // Checking for NaN before canonicalization provides better fidelity when
3456     // mapping other operations onto fmed3 since the order of operands is
3457     // unchanged.
3458     CallInst *NewCall = nullptr;
3459     if (match(Src0, m_NaN()) || isa<UndefValue>(Src0)) {
3460       NewCall = Builder.CreateMinNum(Src1, Src2);
3461     } else if (match(Src1, m_NaN()) || isa<UndefValue>(Src1)) {
3462       NewCall = Builder.CreateMinNum(Src0, Src2);
3463     } else if (match(Src2, m_NaN()) || isa<UndefValue>(Src2)) {
3464       NewCall = Builder.CreateMaxNum(Src0, Src1);
3465     }
3466 
3467     if (NewCall) {
3468       NewCall->copyFastMathFlags(II);
3469       NewCall->takeName(II);
3470       return replaceInstUsesWith(*II, NewCall);
3471     }
3472 
3473     bool Swap = false;
3474     // Canonicalize constants to RHS operands.
3475     //
3476     // fmed3(c0, x, c1) -> fmed3(x, c0, c1)
3477     if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
3478       std::swap(Src0, Src1);
3479       Swap = true;
3480     }
3481 
3482     if (isa<Constant>(Src1) && !isa<Constant>(Src2)) {
3483       std::swap(Src1, Src2);
3484       Swap = true;
3485     }
3486 
3487     if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
3488       std::swap(Src0, Src1);
3489       Swap = true;
3490     }
3491 
3492     if (Swap) {
3493       II->setArgOperand(0, Src0);
3494       II->setArgOperand(1, Src1);
3495       II->setArgOperand(2, Src2);
3496       return II;
3497     }
3498 
3499     if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
3500       if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
3501         if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) {
3502           APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(),
3503                                        C2->getValueAPF());
3504           return replaceInstUsesWith(*II,
3505             ConstantFP::get(Builder.getContext(), Result));
3506         }
3507       }
3508     }
3509 
3510     break;
3511   }
3512   case Intrinsic::amdgcn_icmp:
3513   case Intrinsic::amdgcn_fcmp: {
3514     const ConstantInt *CC = dyn_cast<ConstantInt>(II->getArgOperand(2));
3515     if (!CC)
3516       break;
3517 
3518     // Guard against invalid arguments.
3519     int64_t CCVal = CC->getZExtValue();
3520     bool IsInteger = II->getIntrinsicID() == Intrinsic::amdgcn_icmp;
3521     if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE ||
3522                        CCVal > CmpInst::LAST_ICMP_PREDICATE)) ||
3523         (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE ||
3524                         CCVal > CmpInst::LAST_FCMP_PREDICATE)))
3525       break;
3526 
3527     Value *Src0 = II->getArgOperand(0);
3528     Value *Src1 = II->getArgOperand(1);
3529 
3530     if (auto *CSrc0 = dyn_cast<Constant>(Src0)) {
3531       if (auto *CSrc1 = dyn_cast<Constant>(Src1)) {
3532         Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1);
3533         if (CCmp->isNullValue()) {
3534           return replaceInstUsesWith(
3535               *II, ConstantExpr::getSExt(CCmp, II->getType()));
3536         }
3537 
3538         // The result of V_ICMP/V_FCMP assembly instructions (which this
3539         // intrinsic exposes) is one bit per thread, masked with the EXEC
3540         // register (which contains the bitmask of live threads). So a
3541         // comparison that always returns true is the same as a read of the
3542         // EXEC register.
3543         Value *NewF = Intrinsic::getDeclaration(
3544             II->getModule(), Intrinsic::read_register, II->getType());
3545         Metadata *MDArgs[] = {MDString::get(II->getContext(), "exec")};
3546         MDNode *MD = MDNode::get(II->getContext(), MDArgs);
3547         Value *Args[] = {MetadataAsValue::get(II->getContext(), MD)};
3548         CallInst *NewCall = Builder.CreateCall(NewF, Args);
3549         NewCall->addAttribute(AttributeList::FunctionIndex,
3550                               Attribute::Convergent);
3551         NewCall->takeName(II);
3552         return replaceInstUsesWith(*II, NewCall);
3553       }
3554 
3555       // Canonicalize constants to RHS.
3556       CmpInst::Predicate SwapPred
3557         = CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal));
3558       II->setArgOperand(0, Src1);
3559       II->setArgOperand(1, Src0);
3560       II->setArgOperand(2, ConstantInt::get(CC->getType(),
3561                                             static_cast<int>(SwapPred)));
3562       return II;
3563     }
3564 
3565     if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE)
3566       break;
3567 
3568     // Canonicalize compare eq with true value to compare != 0
3569     // llvm.amdgcn.icmp(zext (i1 x), 1, eq)
3570     //   -> llvm.amdgcn.icmp(zext (i1 x), 0, ne)
3571     // llvm.amdgcn.icmp(sext (i1 x), -1, eq)
3572     //   -> llvm.amdgcn.icmp(sext (i1 x), 0, ne)
3573     Value *ExtSrc;
3574     if (CCVal == CmpInst::ICMP_EQ &&
3575         ((match(Src1, m_One()) && match(Src0, m_ZExt(m_Value(ExtSrc)))) ||
3576          (match(Src1, m_AllOnes()) && match(Src0, m_SExt(m_Value(ExtSrc))))) &&
3577         ExtSrc->getType()->isIntegerTy(1)) {
3578       II->setArgOperand(1, ConstantInt::getNullValue(Src1->getType()));
3579       II->setArgOperand(2, ConstantInt::get(CC->getType(), CmpInst::ICMP_NE));
3580       return II;
3581     }
3582 
3583     CmpInst::Predicate SrcPred;
3584     Value *SrcLHS;
3585     Value *SrcRHS;
3586 
3587     // Fold compare eq/ne with 0 from a compare result as the predicate to the
3588     // intrinsic. The typical use is a wave vote function in the library, which
3589     // will be fed from a user code condition compared with 0. Fold in the
3590     // redundant compare.
3591 
3592     // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne)
3593     //   -> llvm.amdgcn.[if]cmp(a, b, pred)
3594     //
3595     // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq)
3596     //   -> llvm.amdgcn.[if]cmp(a, b, inv pred)
3597     if (match(Src1, m_Zero()) &&
3598         match(Src0,
3599               m_ZExtOrSExt(m_Cmp(SrcPred, m_Value(SrcLHS), m_Value(SrcRHS))))) {
3600       if (CCVal == CmpInst::ICMP_EQ)
3601         SrcPred = CmpInst::getInversePredicate(SrcPred);
3602 
3603       Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) ?
3604         Intrinsic::amdgcn_fcmp : Intrinsic::amdgcn_icmp;
3605 
3606       Value *NewF = Intrinsic::getDeclaration(II->getModule(), NewIID,
3607                                               SrcLHS->getType());
3608       Value *Args[] = { SrcLHS, SrcRHS,
3609                         ConstantInt::get(CC->getType(), SrcPred) };
3610       CallInst *NewCall = Builder.CreateCall(NewF, Args);
3611       NewCall->takeName(II);
3612       return replaceInstUsesWith(*II, NewCall);
3613     }
3614 
3615     break;
3616   }
3617   case Intrinsic::amdgcn_wqm_vote: {
3618     // wqm_vote is identity when the argument is constant.
3619     if (!isa<Constant>(II->getArgOperand(0)))
3620       break;
3621 
3622     return replaceInstUsesWith(*II, II->getArgOperand(0));
3623   }
3624   case Intrinsic::amdgcn_kill: {
3625     const ConstantInt *C = dyn_cast<ConstantInt>(II->getArgOperand(0));
3626     if (!C || !C->getZExtValue())
3627       break;
3628 
3629     // amdgcn.kill(i1 1) is a no-op
3630     return eraseInstFromFunction(CI);
3631   }
3632   case Intrinsic::amdgcn_update_dpp: {
3633     Value *Old = II->getArgOperand(0);
3634 
3635     auto BC = dyn_cast<ConstantInt>(II->getArgOperand(5));
3636     auto RM = dyn_cast<ConstantInt>(II->getArgOperand(3));
3637     auto BM = dyn_cast<ConstantInt>(II->getArgOperand(4));
3638     if (!BC || !RM || !BM ||
3639         BC->isZeroValue() ||
3640         RM->getZExtValue() != 0xF ||
3641         BM->getZExtValue() != 0xF ||
3642         isa<UndefValue>(Old))
3643       break;
3644 
3645     // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value.
3646     II->setOperand(0, UndefValue::get(Old->getType()));
3647     return II;
3648   }
3649   case Intrinsic::stackrestore: {
3650     // If the save is right next to the restore, remove the restore.  This can
3651     // happen when variable allocas are DCE'd.
3652     if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
3653       if (SS->getIntrinsicID() == Intrinsic::stacksave) {
3654         // Skip over debug info.
3655         if (SS->getNextNonDebugInstruction() == II) {
3656           return eraseInstFromFunction(CI);
3657         }
3658       }
3659     }
3660 
3661     // Scan down this block to see if there is another stack restore in the
3662     // same block without an intervening call/alloca.
3663     BasicBlock::iterator BI(II);
3664     TerminatorInst *TI = II->getParent()->getTerminator();
3665     bool CannotRemove = false;
3666     for (++BI; &*BI != TI; ++BI) {
3667       if (isa<AllocaInst>(BI)) {
3668         CannotRemove = true;
3669         break;
3670       }
3671       if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
3672         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
3673           // If there is a stackrestore below this one, remove this one.
3674           if (II->getIntrinsicID() == Intrinsic::stackrestore)
3675             return eraseInstFromFunction(CI);
3676 
3677           // Bail if we cross over an intrinsic with side effects, such as
3678           // llvm.stacksave, llvm.read_register, or llvm.setjmp.
3679           if (II->mayHaveSideEffects()) {
3680             CannotRemove = true;
3681             break;
3682           }
3683         } else {
3684           // If we found a non-intrinsic call, we can't remove the stack
3685           // restore.
3686           CannotRemove = true;
3687           break;
3688         }
3689       }
3690     }
3691 
3692     // If the stack restore is in a return, resume, or unwind block and if there
3693     // are no allocas or calls between the restore and the return, nuke the
3694     // restore.
3695     if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
3696       return eraseInstFromFunction(CI);
3697     break;
3698   }
3699   case Intrinsic::lifetime_start:
3700     // Asan needs to poison memory to detect invalid access which is possible
3701     // even for empty lifetime range.
3702     if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
3703         II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
3704       break;
3705 
3706     if (removeTriviallyEmptyRange(*II, Intrinsic::lifetime_start,
3707                                   Intrinsic::lifetime_end, *this))
3708       return nullptr;
3709     break;
3710   case Intrinsic::assume: {
3711     Value *IIOperand = II->getArgOperand(0);
3712     // Remove an assume if it is followed by an identical assume.
3713     // TODO: Do we need this? Unless there are conflicting assumptions, the
3714     // computeKnownBits(IIOperand) below here eliminates redundant assumes.
3715     Instruction *Next = II->getNextNonDebugInstruction();
3716     if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
3717       return eraseInstFromFunction(CI);
3718 
3719     // Canonicalize assume(a && b) -> assume(a); assume(b);
3720     // Note: New assumption intrinsics created here are registered by
3721     // the InstCombineIRInserter object.
3722     Value *AssumeIntrinsic = II->getCalledValue(), *A, *B;
3723     if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
3724       Builder.CreateCall(AssumeIntrinsic, A, II->getName());
3725       Builder.CreateCall(AssumeIntrinsic, B, II->getName());
3726       return eraseInstFromFunction(*II);
3727     }
3728     // assume(!(a || b)) -> assume(!a); assume(!b);
3729     if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
3730       Builder.CreateCall(AssumeIntrinsic, Builder.CreateNot(A), II->getName());
3731       Builder.CreateCall(AssumeIntrinsic, Builder.CreateNot(B), II->getName());
3732       return eraseInstFromFunction(*II);
3733     }
3734 
3735     // assume( (load addr) != null ) -> add 'nonnull' metadata to load
3736     // (if assume is valid at the load)
3737     CmpInst::Predicate Pred;
3738     Instruction *LHS;
3739     if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) &&
3740         Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load &&
3741         LHS->getType()->isPointerTy() &&
3742         isValidAssumeForContext(II, LHS, &DT)) {
3743       MDNode *MD = MDNode::get(II->getContext(), None);
3744       LHS->setMetadata(LLVMContext::MD_nonnull, MD);
3745       return eraseInstFromFunction(*II);
3746 
3747       // TODO: apply nonnull return attributes to calls and invokes
3748       // TODO: apply range metadata for range check patterns?
3749     }
3750 
3751     // If there is a dominating assume with the same condition as this one,
3752     // then this one is redundant, and should be removed.
3753     KnownBits Known(1);
3754     computeKnownBits(IIOperand, Known, 0, II);
3755     if (Known.isAllOnes())
3756       return eraseInstFromFunction(*II);
3757 
3758     // Update the cache of affected values for this assumption (we might be
3759     // here because we just simplified the condition).
3760     AC.updateAffectedValues(II);
3761     break;
3762   }
3763   case Intrinsic::experimental_gc_relocate: {
3764     // Translate facts known about a pointer before relocating into
3765     // facts about the relocate value, while being careful to
3766     // preserve relocation semantics.
3767     Value *DerivedPtr = cast<GCRelocateInst>(II)->getDerivedPtr();
3768 
3769     // Remove the relocation if unused, note that this check is required
3770     // to prevent the cases below from looping forever.
3771     if (II->use_empty())
3772       return eraseInstFromFunction(*II);
3773 
3774     // Undef is undef, even after relocation.
3775     // TODO: provide a hook for this in GCStrategy.  This is clearly legal for
3776     // most practical collectors, but there was discussion in the review thread
3777     // about whether it was legal for all possible collectors.
3778     if (isa<UndefValue>(DerivedPtr))
3779       // Use undef of gc_relocate's type to replace it.
3780       return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
3781 
3782     if (auto *PT = dyn_cast<PointerType>(II->getType())) {
3783       // The relocation of null will be null for most any collector.
3784       // TODO: provide a hook for this in GCStrategy.  There might be some
3785       // weird collector this property does not hold for.
3786       if (isa<ConstantPointerNull>(DerivedPtr))
3787         // Use null-pointer of gc_relocate's type to replace it.
3788         return replaceInstUsesWith(*II, ConstantPointerNull::get(PT));
3789 
3790       // isKnownNonNull -> nonnull attribute
3791       if (isKnownNonZero(DerivedPtr, DL, 0, &AC, II, &DT))
3792         II->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
3793     }
3794 
3795     // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
3796     // Canonicalize on the type from the uses to the defs
3797 
3798     // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
3799     break;
3800   }
3801 
3802   case Intrinsic::experimental_guard: {
3803     // Is this guard followed by another guard?  We scan forward over a small
3804     // fixed window of instructions to handle common cases with conditions
3805     // computed between guards.
3806     Instruction *NextInst = II->getNextNode();
3807     for (unsigned i = 0; i < GuardWideningWindow; i++) {
3808       // Note: Using context-free form to avoid compile time blow up
3809       if (!isSafeToSpeculativelyExecute(NextInst))
3810         break;
3811       NextInst = NextInst->getNextNode();
3812     }
3813     Value *NextCond = nullptr;
3814     if (match(NextInst,
3815               m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
3816       Value *CurrCond = II->getArgOperand(0);
3817 
3818       // Remove a guard that it is immediately preceded by an identical guard.
3819       if (CurrCond == NextCond)
3820         return eraseInstFromFunction(*NextInst);
3821 
3822       // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
3823       Instruction* MoveI = II->getNextNode();
3824       while (MoveI != NextInst) {
3825         auto *Temp = MoveI;
3826         MoveI = MoveI->getNextNode();
3827         Temp->moveBefore(II);
3828       }
3829       II->setArgOperand(0, Builder.CreateAnd(CurrCond, NextCond));
3830       return eraseInstFromFunction(*NextInst);
3831     }
3832     break;
3833   }
3834   }
3835   return visitCallSite(II);
3836 }
3837 
3838 // Fence instruction simplification
visitFenceInst(FenceInst & FI)3839 Instruction *InstCombiner::visitFenceInst(FenceInst &FI) {
3840   // Remove identical consecutive fences.
3841   Instruction *Next = FI.getNextNonDebugInstruction();
3842   if (auto *NFI = dyn_cast<FenceInst>(Next))
3843     if (FI.isIdenticalTo(NFI))
3844       return eraseInstFromFunction(FI);
3845   return nullptr;
3846 }
3847 
3848 // InvokeInst simplification
visitInvokeInst(InvokeInst & II)3849 Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
3850   return visitCallSite(&II);
3851 }
3852 
3853 /// If this cast does not affect the value passed through the varargs area, we
3854 /// can eliminate the use of the cast.
isSafeToEliminateVarargsCast(const CallSite CS,const DataLayout & DL,const CastInst * const CI,const int ix)3855 static bool isSafeToEliminateVarargsCast(const CallSite CS,
3856                                          const DataLayout &DL,
3857                                          const CastInst *const CI,
3858                                          const int ix) {
3859   if (!CI->isLosslessCast())
3860     return false;
3861 
3862   // If this is a GC intrinsic, avoid munging types.  We need types for
3863   // statepoint reconstruction in SelectionDAG.
3864   // TODO: This is probably something which should be expanded to all
3865   // intrinsics since the entire point of intrinsics is that
3866   // they are understandable by the optimizer.
3867   if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS))
3868     return false;
3869 
3870   // The size of ByVal or InAlloca arguments is derived from the type, so we
3871   // can't change to a type with a different size.  If the size were
3872   // passed explicitly we could avoid this check.
3873   if (!CS.isByValOrInAllocaArgument(ix))
3874     return true;
3875 
3876   Type* SrcTy =
3877             cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
3878   Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
3879   if (!SrcTy->isSized() || !DstTy->isSized())
3880     return false;
3881   if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy))
3882     return false;
3883   return true;
3884 }
3885 
tryOptimizeCall(CallInst * CI)3886 Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) {
3887   if (!CI->getCalledFunction()) return nullptr;
3888 
3889   auto InstCombineRAUW = [this](Instruction *From, Value *With) {
3890     replaceInstUsesWith(*From, With);
3891   };
3892   LibCallSimplifier Simplifier(DL, &TLI, ORE, InstCombineRAUW);
3893   if (Value *With = Simplifier.optimizeCall(CI)) {
3894     ++NumSimplified;
3895     return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
3896   }
3897 
3898   return nullptr;
3899 }
3900 
findInitTrampolineFromAlloca(Value * TrampMem)3901 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
3902   // Strip off at most one level of pointer casts, looking for an alloca.  This
3903   // is good enough in practice and simpler than handling any number of casts.
3904   Value *Underlying = TrampMem->stripPointerCasts();
3905   if (Underlying != TrampMem &&
3906       (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
3907     return nullptr;
3908   if (!isa<AllocaInst>(Underlying))
3909     return nullptr;
3910 
3911   IntrinsicInst *InitTrampoline = nullptr;
3912   for (User *U : TrampMem->users()) {
3913     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3914     if (!II)
3915       return nullptr;
3916     if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
3917       if (InitTrampoline)
3918         // More than one init_trampoline writes to this value.  Give up.
3919         return nullptr;
3920       InitTrampoline = II;
3921       continue;
3922     }
3923     if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
3924       // Allow any number of calls to adjust.trampoline.
3925       continue;
3926     return nullptr;
3927   }
3928 
3929   // No call to init.trampoline found.
3930   if (!InitTrampoline)
3931     return nullptr;
3932 
3933   // Check that the alloca is being used in the expected way.
3934   if (InitTrampoline->getOperand(0) != TrampMem)
3935     return nullptr;
3936 
3937   return InitTrampoline;
3938 }
3939 
findInitTrampolineFromBB(IntrinsicInst * AdjustTramp,Value * TrampMem)3940 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
3941                                                Value *TrampMem) {
3942   // Visit all the previous instructions in the basic block, and try to find a
3943   // init.trampoline which has a direct path to the adjust.trampoline.
3944   for (BasicBlock::iterator I = AdjustTramp->getIterator(),
3945                             E = AdjustTramp->getParent()->begin();
3946        I != E;) {
3947     Instruction *Inst = &*--I;
3948     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
3949       if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
3950           II->getOperand(0) == TrampMem)
3951         return II;
3952     if (Inst->mayWriteToMemory())
3953       return nullptr;
3954   }
3955   return nullptr;
3956 }
3957 
3958 // Given a call to llvm.adjust.trampoline, find and return the corresponding
3959 // call to llvm.init.trampoline if the call to the trampoline can be optimized
3960 // to a direct call to a function.  Otherwise return NULL.
findInitTrampoline(Value * Callee)3961 static IntrinsicInst *findInitTrampoline(Value *Callee) {
3962   Callee = Callee->stripPointerCasts();
3963   IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
3964   if (!AdjustTramp ||
3965       AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
3966     return nullptr;
3967 
3968   Value *TrampMem = AdjustTramp->getOperand(0);
3969 
3970   if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
3971     return IT;
3972   if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
3973     return IT;
3974   return nullptr;
3975 }
3976 
3977 /// Improvements for call and invoke instructions.
visitCallSite(CallSite CS)3978 Instruction *InstCombiner::visitCallSite(CallSite CS) {
3979   if (isAllocLikeFn(CS.getInstruction(), &TLI))
3980     return visitAllocSite(*CS.getInstruction());
3981 
3982   bool Changed = false;
3983 
3984   // Mark any parameters that are known to be non-null with the nonnull
3985   // attribute.  This is helpful for inlining calls to functions with null
3986   // checks on their arguments.
3987   SmallVector<unsigned, 4> ArgNos;
3988   unsigned ArgNo = 0;
3989 
3990   for (Value *V : CS.args()) {
3991     if (V->getType()->isPointerTy() &&
3992         !CS.paramHasAttr(ArgNo, Attribute::NonNull) &&
3993         isKnownNonZero(V, DL, 0, &AC, CS.getInstruction(), &DT))
3994       ArgNos.push_back(ArgNo);
3995     ArgNo++;
3996   }
3997 
3998   assert(ArgNo == CS.arg_size() && "sanity check");
3999 
4000   if (!ArgNos.empty()) {
4001     AttributeList AS = CS.getAttributes();
4002     LLVMContext &Ctx = CS.getInstruction()->getContext();
4003     AS = AS.addParamAttribute(Ctx, ArgNos,
4004                               Attribute::get(Ctx, Attribute::NonNull));
4005     CS.setAttributes(AS);
4006     Changed = true;
4007   }
4008 
4009   // If the callee is a pointer to a function, attempt to move any casts to the
4010   // arguments of the call/invoke.
4011   Value *Callee = CS.getCalledValue();
4012   if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
4013     return nullptr;
4014 
4015   if (Function *CalleeF = dyn_cast<Function>(Callee)) {
4016     // Remove the convergent attr on calls when the callee is not convergent.
4017     if (CS.isConvergent() && !CalleeF->isConvergent() &&
4018         !CalleeF->isIntrinsic()) {
4019       LLVM_DEBUG(dbgs() << "Removing convergent attr from instr "
4020                         << CS.getInstruction() << "\n");
4021       CS.setNotConvergent();
4022       return CS.getInstruction();
4023     }
4024 
4025     // If the call and callee calling conventions don't match, this call must
4026     // be unreachable, as the call is undefined.
4027     if (CalleeF->getCallingConv() != CS.getCallingConv() &&
4028         // Only do this for calls to a function with a body.  A prototype may
4029         // not actually end up matching the implementation's calling conv for a
4030         // variety of reasons (e.g. it may be written in assembly).
4031         !CalleeF->isDeclaration()) {
4032       Instruction *OldCall = CS.getInstruction();
4033       new StoreInst(ConstantInt::getTrue(Callee->getContext()),
4034                 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
4035                                   OldCall);
4036       // If OldCall does not return void then replaceAllUsesWith undef.
4037       // This allows ValueHandlers and custom metadata to adjust itself.
4038       if (!OldCall->getType()->isVoidTy())
4039         replaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
4040       if (isa<CallInst>(OldCall))
4041         return eraseInstFromFunction(*OldCall);
4042 
4043       // We cannot remove an invoke, because it would change the CFG, just
4044       // change the callee to a null pointer.
4045       cast<InvokeInst>(OldCall)->setCalledFunction(
4046                                     Constant::getNullValue(CalleeF->getType()));
4047       return nullptr;
4048     }
4049   }
4050 
4051   if ((isa<ConstantPointerNull>(Callee) &&
4052        !NullPointerIsDefined(CS.getInstruction()->getFunction())) ||
4053       isa<UndefValue>(Callee)) {
4054     // If CS does not return void then replaceAllUsesWith undef.
4055     // This allows ValueHandlers and custom metadata to adjust itself.
4056     if (!CS.getInstruction()->getType()->isVoidTy())
4057       replaceInstUsesWith(*CS.getInstruction(),
4058                           UndefValue::get(CS.getInstruction()->getType()));
4059 
4060     if (isa<InvokeInst>(CS.getInstruction())) {
4061       // Can't remove an invoke because we cannot change the CFG.
4062       return nullptr;
4063     }
4064 
4065     // This instruction is not reachable, just remove it.  We insert a store to
4066     // undef so that we know that this code is not reachable, despite the fact
4067     // that we can't modify the CFG here.
4068     new StoreInst(ConstantInt::getTrue(Callee->getContext()),
4069                   UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
4070                   CS.getInstruction());
4071 
4072     return eraseInstFromFunction(*CS.getInstruction());
4073   }
4074 
4075   if (IntrinsicInst *II = findInitTrampoline(Callee))
4076     return transformCallThroughTrampoline(CS, II);
4077 
4078   PointerType *PTy = cast<PointerType>(Callee->getType());
4079   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
4080   if (FTy->isVarArg()) {
4081     int ix = FTy->getNumParams();
4082     // See if we can optimize any arguments passed through the varargs area of
4083     // the call.
4084     for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(),
4085            E = CS.arg_end(); I != E; ++I, ++ix) {
4086       CastInst *CI = dyn_cast<CastInst>(*I);
4087       if (CI && isSafeToEliminateVarargsCast(CS, DL, CI, ix)) {
4088         *I = CI->getOperand(0);
4089         Changed = true;
4090       }
4091     }
4092   }
4093 
4094   if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
4095     // Inline asm calls cannot throw - mark them 'nounwind'.
4096     CS.setDoesNotThrow();
4097     Changed = true;
4098   }
4099 
4100   // Try to optimize the call if possible, we require DataLayout for most of
4101   // this.  None of these calls are seen as possibly dead so go ahead and
4102   // delete the instruction now.
4103   if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
4104     Instruction *I = tryOptimizeCall(CI);
4105     // If we changed something return the result, etc. Otherwise let
4106     // the fallthrough check.
4107     if (I) return eraseInstFromFunction(*I);
4108   }
4109 
4110   return Changed ? CS.getInstruction() : nullptr;
4111 }
4112 
4113 /// If the callee is a constexpr cast of a function, attempt to move the cast to
4114 /// the arguments of the call/invoke.
transformConstExprCastCall(CallSite CS)4115 bool InstCombiner::transformConstExprCastCall(CallSite CS) {
4116   auto *Callee = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
4117   if (!Callee)
4118     return false;
4119 
4120   // If this is a call to a thunk function, don't remove the cast. Thunks are
4121   // used to transparently forward all incoming parameters and outgoing return
4122   // values, so it's important to leave the cast in place.
4123   if (Callee->hasFnAttribute("thunk"))
4124     return false;
4125 
4126   // If this is a musttail call, the callee's prototype must match the caller's
4127   // prototype with the exception of pointee types. The code below doesn't
4128   // implement that, so we can't do this transform.
4129   // TODO: Do the transform if it only requires adding pointer casts.
4130   if (CS.isMustTailCall())
4131     return false;
4132 
4133   Instruction *Caller = CS.getInstruction();
4134   const AttributeList &CallerPAL = CS.getAttributes();
4135 
4136   // Okay, this is a cast from a function to a different type.  Unless doing so
4137   // would cause a type conversion of one of our arguments, change this call to
4138   // be a direct call with arguments casted to the appropriate types.
4139   FunctionType *FT = Callee->getFunctionType();
4140   Type *OldRetTy = Caller->getType();
4141   Type *NewRetTy = FT->getReturnType();
4142 
4143   // Check to see if we are changing the return type...
4144   if (OldRetTy != NewRetTy) {
4145 
4146     if (NewRetTy->isStructTy())
4147       return false; // TODO: Handle multiple return values.
4148 
4149     if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
4150       if (Callee->isDeclaration())
4151         return false;   // Cannot transform this return value.
4152 
4153       if (!Caller->use_empty() &&
4154           // void -> non-void is handled specially
4155           !NewRetTy->isVoidTy())
4156         return false;   // Cannot transform this return value.
4157     }
4158 
4159     if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
4160       AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
4161       if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
4162         return false;   // Attribute not compatible with transformed value.
4163     }
4164 
4165     // If the callsite is an invoke instruction, and the return value is used by
4166     // a PHI node in a successor, we cannot change the return type of the call
4167     // because there is no place to put the cast instruction (without breaking
4168     // the critical edge).  Bail out in this case.
4169     if (!Caller->use_empty())
4170       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
4171         for (User *U : II->users())
4172           if (PHINode *PN = dyn_cast<PHINode>(U))
4173             if (PN->getParent() == II->getNormalDest() ||
4174                 PN->getParent() == II->getUnwindDest())
4175               return false;
4176   }
4177 
4178   unsigned NumActualArgs = CS.arg_size();
4179   unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
4180 
4181   // Prevent us turning:
4182   // declare void @takes_i32_inalloca(i32* inalloca)
4183   //  call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
4184   //
4185   // into:
4186   //  call void @takes_i32_inalloca(i32* null)
4187   //
4188   //  Similarly, avoid folding away bitcasts of byval calls.
4189   if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
4190       Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
4191     return false;
4192 
4193   CallSite::arg_iterator AI = CS.arg_begin();
4194   for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
4195     Type *ParamTy = FT->getParamType(i);
4196     Type *ActTy = (*AI)->getType();
4197 
4198     if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
4199       return false;   // Cannot transform this parameter value.
4200 
4201     if (AttrBuilder(CallerPAL.getParamAttributes(i))
4202             .overlaps(AttributeFuncs::typeIncompatible(ParamTy)))
4203       return false;   // Attribute not compatible with transformed value.
4204 
4205     if (CS.isInAllocaArgument(i))
4206       return false;   // Cannot transform to and from inalloca.
4207 
4208     // If the parameter is passed as a byval argument, then we have to have a
4209     // sized type and the sized type has to have the same size as the old type.
4210     if (ParamTy != ActTy && CallerPAL.hasParamAttribute(i, Attribute::ByVal)) {
4211       PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
4212       if (!ParamPTy || !ParamPTy->getElementType()->isSized())
4213         return false;
4214 
4215       Type *CurElTy = ActTy->getPointerElementType();
4216       if (DL.getTypeAllocSize(CurElTy) !=
4217           DL.getTypeAllocSize(ParamPTy->getElementType()))
4218         return false;
4219     }
4220   }
4221 
4222   if (Callee->isDeclaration()) {
4223     // Do not delete arguments unless we have a function body.
4224     if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
4225       return false;
4226 
4227     // If the callee is just a declaration, don't change the varargsness of the
4228     // call.  We don't want to introduce a varargs call where one doesn't
4229     // already exist.
4230     PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
4231     if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
4232       return false;
4233 
4234     // If both the callee and the cast type are varargs, we still have to make
4235     // sure the number of fixed parameters are the same or we have the same
4236     // ABI issues as if we introduce a varargs call.
4237     if (FT->isVarArg() &&
4238         cast<FunctionType>(APTy->getElementType())->isVarArg() &&
4239         FT->getNumParams() !=
4240         cast<FunctionType>(APTy->getElementType())->getNumParams())
4241       return false;
4242   }
4243 
4244   if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
4245       !CallerPAL.isEmpty()) {
4246     // In this case we have more arguments than the new function type, but we
4247     // won't be dropping them.  Check that these extra arguments have attributes
4248     // that are compatible with being a vararg call argument.
4249     unsigned SRetIdx;
4250     if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
4251         SRetIdx > FT->getNumParams())
4252       return false;
4253   }
4254 
4255   // Okay, we decided that this is a safe thing to do: go ahead and start
4256   // inserting cast instructions as necessary.
4257   SmallVector<Value *, 8> Args;
4258   SmallVector<AttributeSet, 8> ArgAttrs;
4259   Args.reserve(NumActualArgs);
4260   ArgAttrs.reserve(NumActualArgs);
4261 
4262   // Get any return attributes.
4263   AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
4264 
4265   // If the return value is not being used, the type may not be compatible
4266   // with the existing attributes.  Wipe out any problematic attributes.
4267   RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
4268 
4269   AI = CS.arg_begin();
4270   for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
4271     Type *ParamTy = FT->getParamType(i);
4272 
4273     Value *NewArg = *AI;
4274     if ((*AI)->getType() != ParamTy)
4275       NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
4276     Args.push_back(NewArg);
4277 
4278     // Add any parameter attributes.
4279     ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
4280   }
4281 
4282   // If the function takes more arguments than the call was taking, add them
4283   // now.
4284   for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
4285     Args.push_back(Constant::getNullValue(FT->getParamType(i)));
4286     ArgAttrs.push_back(AttributeSet());
4287   }
4288 
4289   // If we are removing arguments to the function, emit an obnoxious warning.
4290   if (FT->getNumParams() < NumActualArgs) {
4291     // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
4292     if (FT->isVarArg()) {
4293       // Add all of the arguments in their promoted form to the arg list.
4294       for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
4295         Type *PTy = getPromotedType((*AI)->getType());
4296         Value *NewArg = *AI;
4297         if (PTy != (*AI)->getType()) {
4298           // Must promote to pass through va_arg area!
4299           Instruction::CastOps opcode =
4300             CastInst::getCastOpcode(*AI, false, PTy, false);
4301           NewArg = Builder.CreateCast(opcode, *AI, PTy);
4302         }
4303         Args.push_back(NewArg);
4304 
4305         // Add any parameter attributes.
4306         ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
4307       }
4308     }
4309   }
4310 
4311   AttributeSet FnAttrs = CallerPAL.getFnAttributes();
4312 
4313   if (NewRetTy->isVoidTy())
4314     Caller->setName("");   // Void type should not have a name.
4315 
4316   assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
4317          "missing argument attributes");
4318   LLVMContext &Ctx = Callee->getContext();
4319   AttributeList NewCallerPAL = AttributeList::get(
4320       Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
4321 
4322   SmallVector<OperandBundleDef, 1> OpBundles;
4323   CS.getOperandBundlesAsDefs(OpBundles);
4324 
4325   CallSite NewCS;
4326   if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
4327     NewCS = Builder.CreateInvoke(Callee, II->getNormalDest(),
4328                                  II->getUnwindDest(), Args, OpBundles);
4329   } else {
4330     NewCS = Builder.CreateCall(Callee, Args, OpBundles);
4331     cast<CallInst>(NewCS.getInstruction())
4332         ->setTailCallKind(cast<CallInst>(Caller)->getTailCallKind());
4333   }
4334   NewCS->takeName(Caller);
4335   NewCS.setCallingConv(CS.getCallingConv());
4336   NewCS.setAttributes(NewCallerPAL);
4337 
4338   // Preserve the weight metadata for the new call instruction. The metadata
4339   // is used by SamplePGO to check callsite's hotness.
4340   uint64_t W;
4341   if (Caller->extractProfTotalWeight(W))
4342     NewCS->setProfWeight(W);
4343 
4344   // Insert a cast of the return type as necessary.
4345   Instruction *NC = NewCS.getInstruction();
4346   Value *NV = NC;
4347   if (OldRetTy != NV->getType() && !Caller->use_empty()) {
4348     if (!NV->getType()->isVoidTy()) {
4349       NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
4350       NC->setDebugLoc(Caller->getDebugLoc());
4351 
4352       // If this is an invoke instruction, we should insert it after the first
4353       // non-phi, instruction in the normal successor block.
4354       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
4355         BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
4356         InsertNewInstBefore(NC, *I);
4357       } else {
4358         // Otherwise, it's a call, just insert cast right after the call.
4359         InsertNewInstBefore(NC, *Caller);
4360       }
4361       Worklist.AddUsersToWorkList(*Caller);
4362     } else {
4363       NV = UndefValue::get(Caller->getType());
4364     }
4365   }
4366 
4367   if (!Caller->use_empty())
4368     replaceInstUsesWith(*Caller, NV);
4369   else if (Caller->hasValueHandle()) {
4370     if (OldRetTy == NV->getType())
4371       ValueHandleBase::ValueIsRAUWd(Caller, NV);
4372     else
4373       // We cannot call ValueIsRAUWd with a different type, and the
4374       // actual tracked value will disappear.
4375       ValueHandleBase::ValueIsDeleted(Caller);
4376   }
4377 
4378   eraseInstFromFunction(*Caller);
4379   return true;
4380 }
4381 
4382 /// Turn a call to a function created by init_trampoline / adjust_trampoline
4383 /// intrinsic pair into a direct call to the underlying function.
4384 Instruction *
transformCallThroughTrampoline(CallSite CS,IntrinsicInst * Tramp)4385 InstCombiner::transformCallThroughTrampoline(CallSite CS,
4386                                              IntrinsicInst *Tramp) {
4387   Value *Callee = CS.getCalledValue();
4388   PointerType *PTy = cast<PointerType>(Callee->getType());
4389   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
4390   AttributeList Attrs = CS.getAttributes();
4391 
4392   // If the call already has the 'nest' attribute somewhere then give up -
4393   // otherwise 'nest' would occur twice after splicing in the chain.
4394   if (Attrs.hasAttrSomewhere(Attribute::Nest))
4395     return nullptr;
4396 
4397   assert(Tramp &&
4398          "transformCallThroughTrampoline called with incorrect CallSite.");
4399 
4400   Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
4401   FunctionType *NestFTy = cast<FunctionType>(NestF->getValueType());
4402 
4403   AttributeList NestAttrs = NestF->getAttributes();
4404   if (!NestAttrs.isEmpty()) {
4405     unsigned NestArgNo = 0;
4406     Type *NestTy = nullptr;
4407     AttributeSet NestAttr;
4408 
4409     // Look for a parameter marked with the 'nest' attribute.
4410     for (FunctionType::param_iterator I = NestFTy->param_begin(),
4411                                       E = NestFTy->param_end();
4412          I != E; ++NestArgNo, ++I) {
4413       AttributeSet AS = NestAttrs.getParamAttributes(NestArgNo);
4414       if (AS.hasAttribute(Attribute::Nest)) {
4415         // Record the parameter type and any other attributes.
4416         NestTy = *I;
4417         NestAttr = AS;
4418         break;
4419       }
4420     }
4421 
4422     if (NestTy) {
4423       Instruction *Caller = CS.getInstruction();
4424       std::vector<Value*> NewArgs;
4425       std::vector<AttributeSet> NewArgAttrs;
4426       NewArgs.reserve(CS.arg_size() + 1);
4427       NewArgAttrs.reserve(CS.arg_size());
4428 
4429       // Insert the nest argument into the call argument list, which may
4430       // mean appending it.  Likewise for attributes.
4431 
4432       {
4433         unsigned ArgNo = 0;
4434         CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
4435         do {
4436           if (ArgNo == NestArgNo) {
4437             // Add the chain argument and attributes.
4438             Value *NestVal = Tramp->getArgOperand(2);
4439             if (NestVal->getType() != NestTy)
4440               NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest");
4441             NewArgs.push_back(NestVal);
4442             NewArgAttrs.push_back(NestAttr);
4443           }
4444 
4445           if (I == E)
4446             break;
4447 
4448           // Add the original argument and attributes.
4449           NewArgs.push_back(*I);
4450           NewArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
4451 
4452           ++ArgNo;
4453           ++I;
4454         } while (true);
4455       }
4456 
4457       // The trampoline may have been bitcast to a bogus type (FTy).
4458       // Handle this by synthesizing a new function type, equal to FTy
4459       // with the chain parameter inserted.
4460 
4461       std::vector<Type*> NewTypes;
4462       NewTypes.reserve(FTy->getNumParams()+1);
4463 
4464       // Insert the chain's type into the list of parameter types, which may
4465       // mean appending it.
4466       {
4467         unsigned ArgNo = 0;
4468         FunctionType::param_iterator I = FTy->param_begin(),
4469           E = FTy->param_end();
4470 
4471         do {
4472           if (ArgNo == NestArgNo)
4473             // Add the chain's type.
4474             NewTypes.push_back(NestTy);
4475 
4476           if (I == E)
4477             break;
4478 
4479           // Add the original type.
4480           NewTypes.push_back(*I);
4481 
4482           ++ArgNo;
4483           ++I;
4484         } while (true);
4485       }
4486 
4487       // Replace the trampoline call with a direct call.  Let the generic
4488       // code sort out any function type mismatches.
4489       FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
4490                                                 FTy->isVarArg());
4491       Constant *NewCallee =
4492         NestF->getType() == PointerType::getUnqual(NewFTy) ?
4493         NestF : ConstantExpr::getBitCast(NestF,
4494                                          PointerType::getUnqual(NewFTy));
4495       AttributeList NewPAL =
4496           AttributeList::get(FTy->getContext(), Attrs.getFnAttributes(),
4497                              Attrs.getRetAttributes(), NewArgAttrs);
4498 
4499       SmallVector<OperandBundleDef, 1> OpBundles;
4500       CS.getOperandBundlesAsDefs(OpBundles);
4501 
4502       Instruction *NewCaller;
4503       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
4504         NewCaller = InvokeInst::Create(NewCallee,
4505                                        II->getNormalDest(), II->getUnwindDest(),
4506                                        NewArgs, OpBundles);
4507         cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
4508         cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
4509       } else {
4510         NewCaller = CallInst::Create(NewCallee, NewArgs, OpBundles);
4511         cast<CallInst>(NewCaller)->setTailCallKind(
4512             cast<CallInst>(Caller)->getTailCallKind());
4513         cast<CallInst>(NewCaller)->setCallingConv(
4514             cast<CallInst>(Caller)->getCallingConv());
4515         cast<CallInst>(NewCaller)->setAttributes(NewPAL);
4516       }
4517       NewCaller->setDebugLoc(Caller->getDebugLoc());
4518 
4519       return NewCaller;
4520     }
4521   }
4522 
4523   // Replace the trampoline call with a direct call.  Since there is no 'nest'
4524   // parameter, there is no need to adjust the argument list.  Let the generic
4525   // code sort out any function type mismatches.
4526   Constant *NewCallee =
4527     NestF->getType() == PTy ? NestF :
4528                               ConstantExpr::getBitCast(NestF, PTy);
4529   CS.setCalledFunction(NewCallee);
4530   return CS.getInstruction();
4531 }
4532