1 //===- AggressiveInstCombine.cpp ------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the aggressive expression pattern combiner classes.
11 // Currently, it handles expression patterns for:
12 //  * Truncate instruction
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
17 #include "AggressiveInstCombineInternal.h"
18 #include "llvm-c/Initialization.h"
19 #include "llvm-c/Transforms/Scalar.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/GlobalsModRef.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/LegacyPassManager.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 using namespace llvm;
32 using namespace PatternMatch;
33 
34 #define DEBUG_TYPE "aggressive-instcombine"
35 
36 namespace {
37 /// Contains expression pattern combiner logic.
38 /// This class provides both the logic to combine expression patterns and
39 /// combine them. It differs from InstCombiner class in that each pattern
40 /// combiner runs only once as opposed to InstCombine's multi-iteration,
41 /// which allows pattern combiner to have higher complexity than the O(1)
42 /// required by the instruction combiner.
43 class AggressiveInstCombinerLegacyPass : public FunctionPass {
44 public:
45   static char ID; // Pass identification, replacement for typeid
46 
AggressiveInstCombinerLegacyPass()47   AggressiveInstCombinerLegacyPass() : FunctionPass(ID) {
48     initializeAggressiveInstCombinerLegacyPassPass(
49         *PassRegistry::getPassRegistry());
50   }
51 
52   void getAnalysisUsage(AnalysisUsage &AU) const override;
53 
54   /// Run all expression pattern optimizations on the given /p F function.
55   ///
56   /// \param F function to optimize.
57   /// \returns true if the IR is changed.
58   bool runOnFunction(Function &F) override;
59 };
60 } // namespace
61 
62 /// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and
63 /// the bit indexes (Mask) needed by a masked compare. If we're matching a chain
64 /// of 'and' ops, then we also need to capture the fact that we saw an
65 /// "and X, 1", so that's an extra return value for that case.
66 struct MaskOps {
67   Value *Root;
68   APInt Mask;
69   bool MatchAndChain;
70   bool FoundAnd1;
71 
MaskOpsMaskOps72   MaskOps(unsigned BitWidth, bool MatchAnds) :
73       Root(nullptr), Mask(APInt::getNullValue(BitWidth)),
74       MatchAndChain(MatchAnds), FoundAnd1(false) {}
75 };
76 
77 /// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a
78 /// chain of 'and' or 'or' instructions looking for shift ops of a common source
79 /// value. Examples:
80 ///   or (or (or X, (X >> 3)), (X >> 5)), (X >> 8)
81 /// returns { X, 0x129 }
82 ///   and (and (X >> 1), 1), (X >> 4)
83 /// returns { X, 0x12 }
matchAndOrChain(Value * V,MaskOps & MOps)84 static bool matchAndOrChain(Value *V, MaskOps &MOps) {
85   Value *Op0, *Op1;
86   if (MOps.MatchAndChain) {
87     // Recurse through a chain of 'and' operands. This requires an extra check
88     // vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere
89     // in the chain to know that all of the high bits are cleared.
90     if (match(V, m_And(m_Value(Op0), m_One()))) {
91       MOps.FoundAnd1 = true;
92       return matchAndOrChain(Op0, MOps);
93     }
94     if (match(V, m_And(m_Value(Op0), m_Value(Op1))))
95       return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
96   } else {
97     // Recurse through a chain of 'or' operands.
98     if (match(V, m_Or(m_Value(Op0), m_Value(Op1))))
99       return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
100   }
101 
102   // We need a shift-right or a bare value representing a compare of bit 0 of
103   // the original source operand.
104   Value *Candidate;
105   uint64_t BitIndex = 0;
106   if (!match(V, m_LShr(m_Value(Candidate), m_ConstantInt(BitIndex))))
107     Candidate = V;
108 
109   // Initialize result source operand.
110   if (!MOps.Root)
111     MOps.Root = Candidate;
112 
113   // The shift constant is out-of-range? This code hasn't been simplified.
114   if (BitIndex >= MOps.Mask.getBitWidth())
115     return false;
116 
117   // Fill in the mask bit derived from the shift constant.
118   MOps.Mask.setBit(BitIndex);
119   return MOps.Root == Candidate;
120 }
121 
122 /// Match patterns that correspond to "any-bits-set" and "all-bits-set".
123 /// These will include a chain of 'or' or 'and'-shifted bits from a
124 /// common source value:
125 /// and (or  (lshr X, C), ...), 1 --> (X & CMask) != 0
126 /// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask
127 /// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns
128 /// that differ only with a final 'not' of the result. We expect that final
129 /// 'not' to be folded with the compare that we create here (invert predicate).
foldAnyOrAllBitsSet(Instruction & I)130 static bool foldAnyOrAllBitsSet(Instruction &I) {
131   // The 'any-bits-set' ('or' chain) pattern is simpler to match because the
132   // final "and X, 1" instruction must be the final op in the sequence.
133   bool MatchAllBitsSet;
134   if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value())))
135     MatchAllBitsSet = true;
136   else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One())))
137     MatchAllBitsSet = false;
138   else
139     return false;
140 
141   MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet);
142   if (MatchAllBitsSet) {
143     if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1)
144       return false;
145   } else {
146     if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps))
147       return false;
148   }
149 
150   // The pattern was found. Create a masked compare that replaces all of the
151   // shift and logic ops.
152   IRBuilder<> Builder(&I);
153   Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask);
154   Value *And = Builder.CreateAnd(MOps.Root, Mask);
155   Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask) :
156                                  Builder.CreateIsNotNull(And);
157   Value *Zext = Builder.CreateZExt(Cmp, I.getType());
158   I.replaceAllUsesWith(Zext);
159   return true;
160 }
161 
162 /// This is the entry point for folds that could be implemented in regular
163 /// InstCombine, but they are separated because they are not expected to
164 /// occur frequently and/or have more than a constant-length pattern match.
foldUnusualPatterns(Function & F,DominatorTree & DT)165 static bool foldUnusualPatterns(Function &F, DominatorTree &DT) {
166   bool MadeChange = false;
167   for (BasicBlock &BB : F) {
168     // Ignore unreachable basic blocks.
169     if (!DT.isReachableFromEntry(&BB))
170       continue;
171     // Do not delete instructions under here and invalidate the iterator.
172     // Walk the block backwards for efficiency. We're matching a chain of
173     // use->defs, so we're more likely to succeed by starting from the bottom.
174     // Also, we want to avoid matching partial patterns.
175     // TODO: It would be more efficient if we removed dead instructions
176     // iteratively in this loop rather than waiting until the end.
177     for (Instruction &I : make_range(BB.rbegin(), BB.rend()))
178       MadeChange |= foldAnyOrAllBitsSet(I);
179   }
180 
181   // We're done with transforms, so remove dead instructions.
182   if (MadeChange)
183     for (BasicBlock &BB : F)
184       SimplifyInstructionsInBlock(&BB);
185 
186   return MadeChange;
187 }
188 
189 /// This is the entry point for all transforms. Pass manager differences are
190 /// handled in the callers of this function.
runImpl(Function & F,TargetLibraryInfo & TLI,DominatorTree & DT)191 static bool runImpl(Function &F, TargetLibraryInfo &TLI, DominatorTree &DT) {
192   bool MadeChange = false;
193   const DataLayout &DL = F.getParent()->getDataLayout();
194   TruncInstCombine TIC(TLI, DL, DT);
195   MadeChange |= TIC.run(F);
196   MadeChange |= foldUnusualPatterns(F, DT);
197   return MadeChange;
198 }
199 
getAnalysisUsage(AnalysisUsage & AU) const200 void AggressiveInstCombinerLegacyPass::getAnalysisUsage(
201     AnalysisUsage &AU) const {
202   AU.setPreservesCFG();
203   AU.addRequired<DominatorTreeWrapperPass>();
204   AU.addRequired<TargetLibraryInfoWrapperPass>();
205   AU.addPreserved<AAResultsWrapperPass>();
206   AU.addPreserved<BasicAAWrapperPass>();
207   AU.addPreserved<DominatorTreeWrapperPass>();
208   AU.addPreserved<GlobalsAAWrapperPass>();
209 }
210 
runOnFunction(Function & F)211 bool AggressiveInstCombinerLegacyPass::runOnFunction(Function &F) {
212   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
213   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
214   return runImpl(F, TLI, DT);
215 }
216 
run(Function & F,FunctionAnalysisManager & AM)217 PreservedAnalyses AggressiveInstCombinePass::run(Function &F,
218                                                  FunctionAnalysisManager &AM) {
219   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
220   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
221   if (!runImpl(F, TLI, DT)) {
222     // No changes, all analyses are preserved.
223     return PreservedAnalyses::all();
224   }
225   // Mark all the analyses that instcombine updates as preserved.
226   PreservedAnalyses PA;
227   PA.preserveSet<CFGAnalyses>();
228   PA.preserve<AAManager>();
229   PA.preserve<GlobalsAA>();
230   return PA;
231 }
232 
233 char AggressiveInstCombinerLegacyPass::ID = 0;
234 INITIALIZE_PASS_BEGIN(AggressiveInstCombinerLegacyPass,
235                       "aggressive-instcombine",
236                       "Combine pattern based expressions", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)237 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
238 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
239 INITIALIZE_PASS_END(AggressiveInstCombinerLegacyPass, "aggressive-instcombine",
240                     "Combine pattern based expressions", false, false)
241 
242 // Initialization Routines
243 void llvm::initializeAggressiveInstCombine(PassRegistry &Registry) {
244   initializeAggressiveInstCombinerLegacyPassPass(Registry);
245 }
246 
LLVMInitializeAggressiveInstCombiner(LLVMPassRegistryRef R)247 void LLVMInitializeAggressiveInstCombiner(LLVMPassRegistryRef R) {
248   initializeAggressiveInstCombinerLegacyPassPass(*unwrap(R));
249 }
250 
createAggressiveInstCombinerPass()251 FunctionPass *llvm::createAggressiveInstCombinerPass() {
252   return new AggressiveInstCombinerLegacyPass();
253 }
254 
LLVMAddAggressiveInstCombinerPass(LLVMPassManagerRef PM)255 void LLVMAddAggressiveInstCombinerPass(LLVMPassManagerRef PM) {
256   unwrap(PM)->add(createAggressiveInstCombinerPass());
257 }
258