1 //===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation  ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AArch64TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AArch64ISelLowering.h"
15 #include "AArch64CallingConvention.h"
16 #include "AArch64MachineFunctionInfo.h"
17 #include "AArch64PerfectShuffle.h"
18 #include "AArch64RegisterInfo.h"
19 #include "AArch64Subtarget.h"
20 #include "MCTargetDesc/AArch64AddressingModes.h"
21 #include "Utils/AArch64BaseInfo.h"
22 #include "llvm/ADT/APFloat.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/StringSwitch.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/Analysis/VectorUtils.h"
33 #include "llvm/CodeGen/CallingConvLower.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineMemOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/RuntimeLibcalls.h"
42 #include "llvm/CodeGen/SelectionDAG.h"
43 #include "llvm/CodeGen/SelectionDAGNodes.h"
44 #include "llvm/CodeGen/TargetCallingConv.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Attributes.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GetElementPtrTypeIterator.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/Instruction.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/OperandTraits.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Use.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/MC/MCRegisterInfo.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CodeGen.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Compiler.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/MachineValueType.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Target/TargetMachine.h"
76 #include "llvm/Target/TargetOptions.h"
77 #include <algorithm>
78 #include <bitset>
79 #include <cassert>
80 #include <cctype>
81 #include <cstdint>
82 #include <cstdlib>
83 #include <iterator>
84 #include <limits>
85 #include <tuple>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 #define DEBUG_TYPE "aarch64-lower"
92 
93 STATISTIC(NumTailCalls, "Number of tail calls");
94 STATISTIC(NumShiftInserts, "Number of vector shift inserts");
95 STATISTIC(NumOptimizedImms, "Number of times immediates were optimized");
96 
97 static cl::opt<bool>
98 EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
99                            cl::desc("Allow AArch64 SLI/SRI formation"),
100                            cl::init(false));
101 
102 // FIXME: The necessary dtprel relocations don't seem to be supported
103 // well in the GNU bfd and gold linkers at the moment. Therefore, by
104 // default, for now, fall back to GeneralDynamic code generation.
105 cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
106     "aarch64-elf-ldtls-generation", cl::Hidden,
107     cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
108     cl::init(false));
109 
110 static cl::opt<bool>
111 EnableOptimizeLogicalImm("aarch64-enable-logical-imm", cl::Hidden,
112                          cl::desc("Enable AArch64 logical imm instruction "
113                                   "optimization"),
114                          cl::init(true));
115 
116 /// Value type used for condition codes.
117 static const MVT MVT_CC = MVT::i32;
118 
AArch64TargetLowering(const TargetMachine & TM,const AArch64Subtarget & STI)119 AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
120                                              const AArch64Subtarget &STI)
121     : TargetLowering(TM), Subtarget(&STI) {
122   // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
123   // we have to make something up. Arbitrarily, choose ZeroOrOne.
124   setBooleanContents(ZeroOrOneBooleanContent);
125   // When comparing vectors the result sets the different elements in the
126   // vector to all-one or all-zero.
127   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
128 
129   // Set up the register classes.
130   addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
131   addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
132 
133   if (Subtarget->hasFPARMv8()) {
134     addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
135     addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
136     addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
137     addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
138   }
139 
140   if (Subtarget->hasNEON()) {
141     addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
142     addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
143     // Someone set us up the NEON.
144     addDRTypeForNEON(MVT::v2f32);
145     addDRTypeForNEON(MVT::v8i8);
146     addDRTypeForNEON(MVT::v4i16);
147     addDRTypeForNEON(MVT::v2i32);
148     addDRTypeForNEON(MVT::v1i64);
149     addDRTypeForNEON(MVT::v1f64);
150     addDRTypeForNEON(MVT::v4f16);
151 
152     addQRTypeForNEON(MVT::v4f32);
153     addQRTypeForNEON(MVT::v2f64);
154     addQRTypeForNEON(MVT::v16i8);
155     addQRTypeForNEON(MVT::v8i16);
156     addQRTypeForNEON(MVT::v4i32);
157     addQRTypeForNEON(MVT::v2i64);
158     addQRTypeForNEON(MVT::v8f16);
159   }
160 
161   // Compute derived properties from the register classes
162   computeRegisterProperties(Subtarget->getRegisterInfo());
163 
164   // Provide all sorts of operation actions
165   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
166   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
167   setOperationAction(ISD::SETCC, MVT::i32, Custom);
168   setOperationAction(ISD::SETCC, MVT::i64, Custom);
169   setOperationAction(ISD::SETCC, MVT::f16, Custom);
170   setOperationAction(ISD::SETCC, MVT::f32, Custom);
171   setOperationAction(ISD::SETCC, MVT::f64, Custom);
172   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
173   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
174   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
175   setOperationAction(ISD::BR_CC, MVT::i32, Custom);
176   setOperationAction(ISD::BR_CC, MVT::i64, Custom);
177   setOperationAction(ISD::BR_CC, MVT::f16, Custom);
178   setOperationAction(ISD::BR_CC, MVT::f32, Custom);
179   setOperationAction(ISD::BR_CC, MVT::f64, Custom);
180   setOperationAction(ISD::SELECT, MVT::i32, Custom);
181   setOperationAction(ISD::SELECT, MVT::i64, Custom);
182   setOperationAction(ISD::SELECT, MVT::f16, Custom);
183   setOperationAction(ISD::SELECT, MVT::f32, Custom);
184   setOperationAction(ISD::SELECT, MVT::f64, Custom);
185   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
186   setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
187   setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
188   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
189   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
190   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
191   setOperationAction(ISD::JumpTable, MVT::i64, Custom);
192 
193   setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
194   setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
195   setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
196 
197   setOperationAction(ISD::FREM, MVT::f32, Expand);
198   setOperationAction(ISD::FREM, MVT::f64, Expand);
199   setOperationAction(ISD::FREM, MVT::f80, Expand);
200 
201   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
202 
203   // Custom lowering hooks are needed for XOR
204   // to fold it into CSINC/CSINV.
205   setOperationAction(ISD::XOR, MVT::i32, Custom);
206   setOperationAction(ISD::XOR, MVT::i64, Custom);
207 
208   // Virtually no operation on f128 is legal, but LLVM can't expand them when
209   // there's a valid register class, so we need custom operations in most cases.
210   setOperationAction(ISD::FABS, MVT::f128, Expand);
211   setOperationAction(ISD::FADD, MVT::f128, Custom);
212   setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
213   setOperationAction(ISD::FCOS, MVT::f128, Expand);
214   setOperationAction(ISD::FDIV, MVT::f128, Custom);
215   setOperationAction(ISD::FMA, MVT::f128, Expand);
216   setOperationAction(ISD::FMUL, MVT::f128, Custom);
217   setOperationAction(ISD::FNEG, MVT::f128, Expand);
218   setOperationAction(ISD::FPOW, MVT::f128, Expand);
219   setOperationAction(ISD::FREM, MVT::f128, Expand);
220   setOperationAction(ISD::FRINT, MVT::f128, Expand);
221   setOperationAction(ISD::FSIN, MVT::f128, Expand);
222   setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
223   setOperationAction(ISD::FSQRT, MVT::f128, Expand);
224   setOperationAction(ISD::FSUB, MVT::f128, Custom);
225   setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
226   setOperationAction(ISD::SETCC, MVT::f128, Custom);
227   setOperationAction(ISD::BR_CC, MVT::f128, Custom);
228   setOperationAction(ISD::SELECT, MVT::f128, Custom);
229   setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
230   setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
231 
232   // Lowering for many of the conversions is actually specified by the non-f128
233   // type. The LowerXXX function will be trivial when f128 isn't involved.
234   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
235   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
236   setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
237   setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
238   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
239   setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
240   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
241   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
242   setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
243   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
244   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
245   setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
246   setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
247   setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
248 
249   // Variable arguments.
250   setOperationAction(ISD::VASTART, MVT::Other, Custom);
251   setOperationAction(ISD::VAARG, MVT::Other, Custom);
252   setOperationAction(ISD::VACOPY, MVT::Other, Custom);
253   setOperationAction(ISD::VAEND, MVT::Other, Expand);
254 
255   // Variable-sized objects.
256   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
257   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
258 
259   if (Subtarget->isTargetWindows())
260     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
261   else
262     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
263 
264   // Constant pool entries
265   setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
266 
267   // BlockAddress
268   setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
269 
270   // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
271   setOperationAction(ISD::ADDC, MVT::i32, Custom);
272   setOperationAction(ISD::ADDE, MVT::i32, Custom);
273   setOperationAction(ISD::SUBC, MVT::i32, Custom);
274   setOperationAction(ISD::SUBE, MVT::i32, Custom);
275   setOperationAction(ISD::ADDC, MVT::i64, Custom);
276   setOperationAction(ISD::ADDE, MVT::i64, Custom);
277   setOperationAction(ISD::SUBC, MVT::i64, Custom);
278   setOperationAction(ISD::SUBE, MVT::i64, Custom);
279 
280   // AArch64 lacks both left-rotate and popcount instructions.
281   setOperationAction(ISD::ROTL, MVT::i32, Expand);
282   setOperationAction(ISD::ROTL, MVT::i64, Expand);
283   for (MVT VT : MVT::vector_valuetypes()) {
284     setOperationAction(ISD::ROTL, VT, Expand);
285     setOperationAction(ISD::ROTR, VT, Expand);
286   }
287 
288   // AArch64 doesn't have {U|S}MUL_LOHI.
289   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
290   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
291 
292   setOperationAction(ISD::CTPOP, MVT::i32, Custom);
293   setOperationAction(ISD::CTPOP, MVT::i64, Custom);
294 
295   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
296   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
297   for (MVT VT : MVT::vector_valuetypes()) {
298     setOperationAction(ISD::SDIVREM, VT, Expand);
299     setOperationAction(ISD::UDIVREM, VT, Expand);
300   }
301   setOperationAction(ISD::SREM, MVT::i32, Expand);
302   setOperationAction(ISD::SREM, MVT::i64, Expand);
303   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
304   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
305   setOperationAction(ISD::UREM, MVT::i32, Expand);
306   setOperationAction(ISD::UREM, MVT::i64, Expand);
307 
308   // Custom lower Add/Sub/Mul with overflow.
309   setOperationAction(ISD::SADDO, MVT::i32, Custom);
310   setOperationAction(ISD::SADDO, MVT::i64, Custom);
311   setOperationAction(ISD::UADDO, MVT::i32, Custom);
312   setOperationAction(ISD::UADDO, MVT::i64, Custom);
313   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
314   setOperationAction(ISD::SSUBO, MVT::i64, Custom);
315   setOperationAction(ISD::USUBO, MVT::i32, Custom);
316   setOperationAction(ISD::USUBO, MVT::i64, Custom);
317   setOperationAction(ISD::SMULO, MVT::i32, Custom);
318   setOperationAction(ISD::SMULO, MVT::i64, Custom);
319   setOperationAction(ISD::UMULO, MVT::i32, Custom);
320   setOperationAction(ISD::UMULO, MVT::i64, Custom);
321 
322   setOperationAction(ISD::FSIN, MVT::f32, Expand);
323   setOperationAction(ISD::FSIN, MVT::f64, Expand);
324   setOperationAction(ISD::FCOS, MVT::f32, Expand);
325   setOperationAction(ISD::FCOS, MVT::f64, Expand);
326   setOperationAction(ISD::FPOW, MVT::f32, Expand);
327   setOperationAction(ISD::FPOW, MVT::f64, Expand);
328   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
329   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
330   if (Subtarget->hasFullFP16())
331     setOperationAction(ISD::FCOPYSIGN, MVT::f16, Custom);
332   else
333     setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
334 
335   setOperationAction(ISD::FREM,    MVT::f16,   Promote);
336   setOperationAction(ISD::FREM,    MVT::v4f16, Promote);
337   setOperationAction(ISD::FREM,    MVT::v8f16, Promote);
338   setOperationAction(ISD::FPOW,    MVT::f16,   Promote);
339   setOperationAction(ISD::FPOW,    MVT::v4f16, Promote);
340   setOperationAction(ISD::FPOW,    MVT::v8f16, Promote);
341   setOperationAction(ISD::FPOWI,   MVT::f16,   Promote);
342   setOperationAction(ISD::FCOS,    MVT::f16,   Promote);
343   setOperationAction(ISD::FCOS,    MVT::v4f16, Promote);
344   setOperationAction(ISD::FCOS,    MVT::v8f16, Promote);
345   setOperationAction(ISD::FSIN,    MVT::f16,   Promote);
346   setOperationAction(ISD::FSIN,    MVT::v4f16, Promote);
347   setOperationAction(ISD::FSIN,    MVT::v8f16, Promote);
348   setOperationAction(ISD::FSINCOS, MVT::f16,   Promote);
349   setOperationAction(ISD::FSINCOS, MVT::v4f16, Promote);
350   setOperationAction(ISD::FSINCOS, MVT::v8f16, Promote);
351   setOperationAction(ISD::FEXP,    MVT::f16,   Promote);
352   setOperationAction(ISD::FEXP,    MVT::v4f16, Promote);
353   setOperationAction(ISD::FEXP,    MVT::v8f16, Promote);
354   setOperationAction(ISD::FEXP2,   MVT::f16,   Promote);
355   setOperationAction(ISD::FEXP2,   MVT::v4f16, Promote);
356   setOperationAction(ISD::FEXP2,   MVT::v8f16, Promote);
357   setOperationAction(ISD::FLOG,    MVT::f16,   Promote);
358   setOperationAction(ISD::FLOG,    MVT::v4f16, Promote);
359   setOperationAction(ISD::FLOG,    MVT::v8f16, Promote);
360   setOperationAction(ISD::FLOG2,   MVT::f16,   Promote);
361   setOperationAction(ISD::FLOG2,   MVT::v4f16, Promote);
362   setOperationAction(ISD::FLOG2,   MVT::v8f16, Promote);
363   setOperationAction(ISD::FLOG10,  MVT::f16,   Promote);
364   setOperationAction(ISD::FLOG10,  MVT::v4f16, Promote);
365   setOperationAction(ISD::FLOG10,  MVT::v8f16, Promote);
366 
367   if (!Subtarget->hasFullFP16()) {
368     setOperationAction(ISD::SELECT,      MVT::f16,  Promote);
369     setOperationAction(ISD::SELECT_CC,   MVT::f16,  Promote);
370     setOperationAction(ISD::SETCC,       MVT::f16,  Promote);
371     setOperationAction(ISD::BR_CC,       MVT::f16,  Promote);
372     setOperationAction(ISD::FADD,        MVT::f16,  Promote);
373     setOperationAction(ISD::FSUB,        MVT::f16,  Promote);
374     setOperationAction(ISD::FMUL,        MVT::f16,  Promote);
375     setOperationAction(ISD::FDIV,        MVT::f16,  Promote);
376     setOperationAction(ISD::FMA,         MVT::f16,  Promote);
377     setOperationAction(ISD::FNEG,        MVT::f16,  Promote);
378     setOperationAction(ISD::FABS,        MVT::f16,  Promote);
379     setOperationAction(ISD::FCEIL,       MVT::f16,  Promote);
380     setOperationAction(ISD::FSQRT,       MVT::f16,  Promote);
381     setOperationAction(ISD::FFLOOR,      MVT::f16,  Promote);
382     setOperationAction(ISD::FNEARBYINT,  MVT::f16,  Promote);
383     setOperationAction(ISD::FRINT,       MVT::f16,  Promote);
384     setOperationAction(ISD::FROUND,      MVT::f16,  Promote);
385     setOperationAction(ISD::FTRUNC,      MVT::f16,  Promote);
386     setOperationAction(ISD::FMINNUM,     MVT::f16,  Promote);
387     setOperationAction(ISD::FMAXNUM,     MVT::f16,  Promote);
388     setOperationAction(ISD::FMINNAN,     MVT::f16,  Promote);
389     setOperationAction(ISD::FMAXNAN,     MVT::f16,  Promote);
390 
391     // promote v4f16 to v4f32 when that is known to be safe.
392     setOperationAction(ISD::FADD,        MVT::v4f16, Promote);
393     setOperationAction(ISD::FSUB,        MVT::v4f16, Promote);
394     setOperationAction(ISD::FMUL,        MVT::v4f16, Promote);
395     setOperationAction(ISD::FDIV,        MVT::v4f16, Promote);
396     setOperationAction(ISD::FP_EXTEND,   MVT::v4f16, Promote);
397     setOperationAction(ISD::FP_ROUND,    MVT::v4f16, Promote);
398     AddPromotedToType(ISD::FADD,         MVT::v4f16, MVT::v4f32);
399     AddPromotedToType(ISD::FSUB,         MVT::v4f16, MVT::v4f32);
400     AddPromotedToType(ISD::FMUL,         MVT::v4f16, MVT::v4f32);
401     AddPromotedToType(ISD::FDIV,         MVT::v4f16, MVT::v4f32);
402     AddPromotedToType(ISD::FP_EXTEND,    MVT::v4f16, MVT::v4f32);
403     AddPromotedToType(ISD::FP_ROUND,     MVT::v4f16, MVT::v4f32);
404 
405     setOperationAction(ISD::FABS,        MVT::v4f16, Expand);
406     setOperationAction(ISD::FNEG,        MVT::v4f16, Expand);
407     setOperationAction(ISD::FROUND,      MVT::v4f16, Expand);
408     setOperationAction(ISD::FMA,         MVT::v4f16, Expand);
409     setOperationAction(ISD::SETCC,       MVT::v4f16, Expand);
410     setOperationAction(ISD::BR_CC,       MVT::v4f16, Expand);
411     setOperationAction(ISD::SELECT,      MVT::v4f16, Expand);
412     setOperationAction(ISD::SELECT_CC,   MVT::v4f16, Expand);
413     setOperationAction(ISD::FTRUNC,      MVT::v4f16, Expand);
414     setOperationAction(ISD::FCOPYSIGN,   MVT::v4f16, Expand);
415     setOperationAction(ISD::FFLOOR,      MVT::v4f16, Expand);
416     setOperationAction(ISD::FCEIL,       MVT::v4f16, Expand);
417     setOperationAction(ISD::FRINT,       MVT::v4f16, Expand);
418     setOperationAction(ISD::FNEARBYINT,  MVT::v4f16, Expand);
419     setOperationAction(ISD::FSQRT,       MVT::v4f16, Expand);
420 
421     setOperationAction(ISD::FABS,        MVT::v8f16, Expand);
422     setOperationAction(ISD::FADD,        MVT::v8f16, Expand);
423     setOperationAction(ISD::FCEIL,       MVT::v8f16, Expand);
424     setOperationAction(ISD::FCOPYSIGN,   MVT::v8f16, Expand);
425     setOperationAction(ISD::FDIV,        MVT::v8f16, Expand);
426     setOperationAction(ISD::FFLOOR,      MVT::v8f16, Expand);
427     setOperationAction(ISD::FMA,         MVT::v8f16, Expand);
428     setOperationAction(ISD::FMUL,        MVT::v8f16, Expand);
429     setOperationAction(ISD::FNEARBYINT,  MVT::v8f16, Expand);
430     setOperationAction(ISD::FNEG,        MVT::v8f16, Expand);
431     setOperationAction(ISD::FROUND,      MVT::v8f16, Expand);
432     setOperationAction(ISD::FRINT,       MVT::v8f16, Expand);
433     setOperationAction(ISD::FSQRT,       MVT::v8f16, Expand);
434     setOperationAction(ISD::FSUB,        MVT::v8f16, Expand);
435     setOperationAction(ISD::FTRUNC,      MVT::v8f16, Expand);
436     setOperationAction(ISD::SETCC,       MVT::v8f16, Expand);
437     setOperationAction(ISD::BR_CC,       MVT::v8f16, Expand);
438     setOperationAction(ISD::SELECT,      MVT::v8f16, Expand);
439     setOperationAction(ISD::SELECT_CC,   MVT::v8f16, Expand);
440     setOperationAction(ISD::FP_EXTEND,   MVT::v8f16, Expand);
441   }
442 
443   // AArch64 has implementations of a lot of rounding-like FP operations.
444   for (MVT Ty : {MVT::f32, MVT::f64}) {
445     setOperationAction(ISD::FFLOOR, Ty, Legal);
446     setOperationAction(ISD::FNEARBYINT, Ty, Legal);
447     setOperationAction(ISD::FCEIL, Ty, Legal);
448     setOperationAction(ISD::FRINT, Ty, Legal);
449     setOperationAction(ISD::FTRUNC, Ty, Legal);
450     setOperationAction(ISD::FROUND, Ty, Legal);
451     setOperationAction(ISD::FMINNUM, Ty, Legal);
452     setOperationAction(ISD::FMAXNUM, Ty, Legal);
453     setOperationAction(ISD::FMINNAN, Ty, Legal);
454     setOperationAction(ISD::FMAXNAN, Ty, Legal);
455   }
456 
457   if (Subtarget->hasFullFP16()) {
458     setOperationAction(ISD::FNEARBYINT, MVT::f16, Legal);
459     setOperationAction(ISD::FFLOOR,  MVT::f16, Legal);
460     setOperationAction(ISD::FCEIL,   MVT::f16, Legal);
461     setOperationAction(ISD::FRINT,   MVT::f16, Legal);
462     setOperationAction(ISD::FTRUNC,  MVT::f16, Legal);
463     setOperationAction(ISD::FROUND,  MVT::f16, Legal);
464     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
465     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
466     setOperationAction(ISD::FMINNAN, MVT::f16, Legal);
467     setOperationAction(ISD::FMAXNAN, MVT::f16, Legal);
468   }
469 
470   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
471 
472   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
473 
474   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
475   setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
476   setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
477   setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
478   setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
479 
480   // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0.
481   // This requires the Performance Monitors extension.
482   if (Subtarget->hasPerfMon())
483     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
484 
485   if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
486       getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
487     // Issue __sincos_stret if available.
488     setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
489     setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
490   } else {
491     setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
492     setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
493   }
494 
495   // Make floating-point constants legal for the large code model, so they don't
496   // become loads from the constant pool.
497   if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
498     setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
499     setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
500   }
501 
502   // AArch64 does not have floating-point extending loads, i1 sign-extending
503   // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
504   for (MVT VT : MVT::fp_valuetypes()) {
505     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
506     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
507     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
508     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
509   }
510   for (MVT VT : MVT::integer_valuetypes())
511     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
512 
513   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
514   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
515   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
516   setTruncStoreAction(MVT::f128, MVT::f80, Expand);
517   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
518   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
519   setTruncStoreAction(MVT::f128, MVT::f16, Expand);
520 
521   setOperationAction(ISD::BITCAST, MVT::i16, Custom);
522   setOperationAction(ISD::BITCAST, MVT::f16, Custom);
523 
524   // Indexed loads and stores are supported.
525   for (unsigned im = (unsigned)ISD::PRE_INC;
526        im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
527     setIndexedLoadAction(im, MVT::i8, Legal);
528     setIndexedLoadAction(im, MVT::i16, Legal);
529     setIndexedLoadAction(im, MVT::i32, Legal);
530     setIndexedLoadAction(im, MVT::i64, Legal);
531     setIndexedLoadAction(im, MVT::f64, Legal);
532     setIndexedLoadAction(im, MVT::f32, Legal);
533     setIndexedLoadAction(im, MVT::f16, Legal);
534     setIndexedStoreAction(im, MVT::i8, Legal);
535     setIndexedStoreAction(im, MVT::i16, Legal);
536     setIndexedStoreAction(im, MVT::i32, Legal);
537     setIndexedStoreAction(im, MVT::i64, Legal);
538     setIndexedStoreAction(im, MVT::f64, Legal);
539     setIndexedStoreAction(im, MVT::f32, Legal);
540     setIndexedStoreAction(im, MVT::f16, Legal);
541   }
542 
543   // Trap.
544   setOperationAction(ISD::TRAP, MVT::Other, Legal);
545 
546   // We combine OR nodes for bitfield operations.
547   setTargetDAGCombine(ISD::OR);
548 
549   // Vector add and sub nodes may conceal a high-half opportunity.
550   // Also, try to fold ADD into CSINC/CSINV..
551   setTargetDAGCombine(ISD::ADD);
552   setTargetDAGCombine(ISD::SUB);
553   setTargetDAGCombine(ISD::SRL);
554   setTargetDAGCombine(ISD::XOR);
555   setTargetDAGCombine(ISD::SINT_TO_FP);
556   setTargetDAGCombine(ISD::UINT_TO_FP);
557 
558   setTargetDAGCombine(ISD::FP_TO_SINT);
559   setTargetDAGCombine(ISD::FP_TO_UINT);
560   setTargetDAGCombine(ISD::FDIV);
561 
562   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
563 
564   setTargetDAGCombine(ISD::ANY_EXTEND);
565   setTargetDAGCombine(ISD::ZERO_EXTEND);
566   setTargetDAGCombine(ISD::SIGN_EXTEND);
567   setTargetDAGCombine(ISD::BITCAST);
568   setTargetDAGCombine(ISD::CONCAT_VECTORS);
569   setTargetDAGCombine(ISD::STORE);
570   if (Subtarget->supportsAddressTopByteIgnored())
571     setTargetDAGCombine(ISD::LOAD);
572 
573   setTargetDAGCombine(ISD::MUL);
574 
575   setTargetDAGCombine(ISD::SELECT);
576   setTargetDAGCombine(ISD::VSELECT);
577 
578   setTargetDAGCombine(ISD::INTRINSIC_VOID);
579   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
580   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
581 
582   setTargetDAGCombine(ISD::GlobalAddress);
583 
584   // In case of strict alignment, avoid an excessive number of byte wide stores.
585   MaxStoresPerMemsetOptSize = 8;
586   MaxStoresPerMemset = Subtarget->requiresStrictAlign()
587                        ? MaxStoresPerMemsetOptSize : 32;
588 
589   MaxGluedStoresPerMemcpy = 4;
590   MaxStoresPerMemcpyOptSize = 4;
591   MaxStoresPerMemcpy = Subtarget->requiresStrictAlign()
592                        ? MaxStoresPerMemcpyOptSize : 16;
593 
594   MaxStoresPerMemmoveOptSize = MaxStoresPerMemmove = 4;
595 
596   setStackPointerRegisterToSaveRestore(AArch64::SP);
597 
598   setSchedulingPreference(Sched::Hybrid);
599 
600   EnableExtLdPromotion = true;
601 
602   // Set required alignment.
603   setMinFunctionAlignment(2);
604   // Set preferred alignments.
605   setPrefFunctionAlignment(STI.getPrefFunctionAlignment());
606   setPrefLoopAlignment(STI.getPrefLoopAlignment());
607 
608   // Only change the limit for entries in a jump table if specified by
609   // the subtarget, but not at the command line.
610   unsigned MaxJT = STI.getMaximumJumpTableSize();
611   if (MaxJT && getMaximumJumpTableSize() == 0)
612     setMaximumJumpTableSize(MaxJT);
613 
614   setHasExtractBitsInsn(true);
615 
616   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
617 
618   if (Subtarget->hasNEON()) {
619     // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
620     // silliness like this:
621     setOperationAction(ISD::FABS, MVT::v1f64, Expand);
622     setOperationAction(ISD::FADD, MVT::v1f64, Expand);
623     setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
624     setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
625     setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
626     setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
627     setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
628     setOperationAction(ISD::FMA, MVT::v1f64, Expand);
629     setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
630     setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
631     setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
632     setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
633     setOperationAction(ISD::FREM, MVT::v1f64, Expand);
634     setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
635     setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
636     setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
637     setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
638     setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
639     setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
640     setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
641     setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
642     setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
643     setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
644     setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
645     setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
646 
647     setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
648     setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
649     setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
650     setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
651     setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
652 
653     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
654 
655     // AArch64 doesn't have a direct vector ->f32 conversion instructions for
656     // elements smaller than i32, so promote the input to i32 first.
657     setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i8, MVT::v4i32);
658     setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i8, MVT::v4i32);
659     setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i16, MVT::v4i32);
660     setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i16, MVT::v4i32);
661     // i8 and i16 vector elements also need promotion to i32 for v8i8 or v8i16
662     // -> v8f16 conversions.
663     setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i8, MVT::v8i32);
664     setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i8, MVT::v8i32);
665     setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i16, MVT::v8i32);
666     setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i16, MVT::v8i32);
667     // Similarly, there is no direct i32 -> f64 vector conversion instruction.
668     setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
669     setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
670     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
671     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
672     // Or, direct i32 -> f16 vector conversion.  Set it so custom, so the
673     // conversion happens in two steps: v4i32 -> v4f32 -> v4f16
674     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom);
675     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
676 
677     setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
678     setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
679 
680     setOperationAction(ISD::CTTZ,       MVT::v2i8,  Expand);
681     setOperationAction(ISD::CTTZ,       MVT::v4i16, Expand);
682     setOperationAction(ISD::CTTZ,       MVT::v2i32, Expand);
683     setOperationAction(ISD::CTTZ,       MVT::v1i64, Expand);
684     setOperationAction(ISD::CTTZ,       MVT::v16i8, Expand);
685     setOperationAction(ISD::CTTZ,       MVT::v8i16, Expand);
686     setOperationAction(ISD::CTTZ,       MVT::v4i32, Expand);
687     setOperationAction(ISD::CTTZ,       MVT::v2i64, Expand);
688 
689     // AArch64 doesn't have MUL.2d:
690     setOperationAction(ISD::MUL, MVT::v2i64, Expand);
691     // Custom handling for some quad-vector types to detect MULL.
692     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
693     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
694     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
695 
696     // Vector reductions
697     for (MVT VT : MVT::integer_valuetypes()) {
698       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
699       setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
700       setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
701       setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
702       setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
703     }
704     for (MVT VT : MVT::fp_valuetypes()) {
705       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
706       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
707     }
708 
709     setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
710     setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
711     // Likewise, narrowing and extending vector loads/stores aren't handled
712     // directly.
713     for (MVT VT : MVT::vector_valuetypes()) {
714       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
715 
716       if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32) {
717         setOperationAction(ISD::MULHS, VT, Custom);
718         setOperationAction(ISD::MULHU, VT, Custom);
719       } else {
720         setOperationAction(ISD::MULHS, VT, Expand);
721         setOperationAction(ISD::MULHU, VT, Expand);
722       }
723       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
724       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
725 
726       setOperationAction(ISD::BSWAP, VT, Expand);
727 
728       for (MVT InnerVT : MVT::vector_valuetypes()) {
729         setTruncStoreAction(VT, InnerVT, Expand);
730         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
731         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
732         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
733       }
734     }
735 
736     // AArch64 has implementations of a lot of rounding-like FP operations.
737     for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) {
738       setOperationAction(ISD::FFLOOR, Ty, Legal);
739       setOperationAction(ISD::FNEARBYINT, Ty, Legal);
740       setOperationAction(ISD::FCEIL, Ty, Legal);
741       setOperationAction(ISD::FRINT, Ty, Legal);
742       setOperationAction(ISD::FTRUNC, Ty, Legal);
743       setOperationAction(ISD::FROUND, Ty, Legal);
744     }
745 
746     setTruncStoreAction(MVT::v4i16, MVT::v4i8, Custom);
747   }
748 
749   PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive();
750 }
751 
addTypeForNEON(MVT VT,MVT PromotedBitwiseVT)752 void AArch64TargetLowering::addTypeForNEON(MVT VT, MVT PromotedBitwiseVT) {
753   assert(VT.isVector() && "VT should be a vector type");
754 
755   if (VT.isFloatingPoint()) {
756     MVT PromoteTo = EVT(VT).changeVectorElementTypeToInteger().getSimpleVT();
757     setOperationPromotedToType(ISD::LOAD, VT, PromoteTo);
758     setOperationPromotedToType(ISD::STORE, VT, PromoteTo);
759   }
760 
761   // Mark vector float intrinsics as expand.
762   if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
763     setOperationAction(ISD::FSIN, VT, Expand);
764     setOperationAction(ISD::FCOS, VT, Expand);
765     setOperationAction(ISD::FPOW, VT, Expand);
766     setOperationAction(ISD::FLOG, VT, Expand);
767     setOperationAction(ISD::FLOG2, VT, Expand);
768     setOperationAction(ISD::FLOG10, VT, Expand);
769     setOperationAction(ISD::FEXP, VT, Expand);
770     setOperationAction(ISD::FEXP2, VT, Expand);
771 
772     // But we do support custom-lowering for FCOPYSIGN.
773     setOperationAction(ISD::FCOPYSIGN, VT, Custom);
774   }
775 
776   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
777   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
778   setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
779   setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
780   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
781   setOperationAction(ISD::SRA, VT, Custom);
782   setOperationAction(ISD::SRL, VT, Custom);
783   setOperationAction(ISD::SHL, VT, Custom);
784   setOperationAction(ISD::AND, VT, Custom);
785   setOperationAction(ISD::OR, VT, Custom);
786   setOperationAction(ISD::SETCC, VT, Custom);
787   setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
788 
789   setOperationAction(ISD::SELECT, VT, Expand);
790   setOperationAction(ISD::SELECT_CC, VT, Expand);
791   setOperationAction(ISD::VSELECT, VT, Expand);
792   for (MVT InnerVT : MVT::all_valuetypes())
793     setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
794 
795   // CNT supports only B element sizes.
796   if (VT != MVT::v8i8 && VT != MVT::v16i8)
797     setOperationAction(ISD::CTPOP, VT, Expand);
798 
799   setOperationAction(ISD::UDIV, VT, Expand);
800   setOperationAction(ISD::SDIV, VT, Expand);
801   setOperationAction(ISD::UREM, VT, Expand);
802   setOperationAction(ISD::SREM, VT, Expand);
803   setOperationAction(ISD::FREM, VT, Expand);
804 
805   setOperationAction(ISD::FP_TO_SINT, VT, Custom);
806   setOperationAction(ISD::FP_TO_UINT, VT, Custom);
807 
808   if (!VT.isFloatingPoint())
809     setOperationAction(ISD::ABS, VT, Legal);
810 
811   // [SU][MIN|MAX] are available for all NEON types apart from i64.
812   if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64)
813     for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
814       setOperationAction(Opcode, VT, Legal);
815 
816   // F[MIN|MAX][NUM|NAN] are available for all FP NEON types.
817   if (VT.isFloatingPoint() &&
818       (VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16()))
819     for (unsigned Opcode : {ISD::FMINNAN, ISD::FMAXNAN,
820                             ISD::FMINNUM, ISD::FMAXNUM})
821       setOperationAction(Opcode, VT, Legal);
822 
823   if (Subtarget->isLittleEndian()) {
824     for (unsigned im = (unsigned)ISD::PRE_INC;
825          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
826       setIndexedLoadAction(im, VT, Legal);
827       setIndexedStoreAction(im, VT, Legal);
828     }
829   }
830 }
831 
addDRTypeForNEON(MVT VT)832 void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
833   addRegisterClass(VT, &AArch64::FPR64RegClass);
834   addTypeForNEON(VT, MVT::v2i32);
835 }
836 
addQRTypeForNEON(MVT VT)837 void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
838   addRegisterClass(VT, &AArch64::FPR128RegClass);
839   addTypeForNEON(VT, MVT::v4i32);
840 }
841 
getSetCCResultType(const DataLayout &,LLVMContext &,EVT VT) const842 EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
843                                               EVT VT) const {
844   if (!VT.isVector())
845     return MVT::i32;
846   return VT.changeVectorElementTypeToInteger();
847 }
848 
optimizeLogicalImm(SDValue Op,unsigned Size,uint64_t Imm,const APInt & Demanded,TargetLowering::TargetLoweringOpt & TLO,unsigned NewOpc)849 static bool optimizeLogicalImm(SDValue Op, unsigned Size, uint64_t Imm,
850                                const APInt &Demanded,
851                                TargetLowering::TargetLoweringOpt &TLO,
852                                unsigned NewOpc) {
853   uint64_t OldImm = Imm, NewImm, Enc;
854   uint64_t Mask = ((uint64_t)(-1LL) >> (64 - Size)), OrigMask = Mask;
855 
856   // Return if the immediate is already all zeros, all ones, a bimm32 or a
857   // bimm64.
858   if (Imm == 0 || Imm == Mask ||
859       AArch64_AM::isLogicalImmediate(Imm & Mask, Size))
860     return false;
861 
862   unsigned EltSize = Size;
863   uint64_t DemandedBits = Demanded.getZExtValue();
864 
865   // Clear bits that are not demanded.
866   Imm &= DemandedBits;
867 
868   while (true) {
869     // The goal here is to set the non-demanded bits in a way that minimizes
870     // the number of switching between 0 and 1. In order to achieve this goal,
871     // we set the non-demanded bits to the value of the preceding demanded bits.
872     // For example, if we have an immediate 0bx10xx0x1 ('x' indicates a
873     // non-demanded bit), we copy bit0 (1) to the least significant 'x',
874     // bit2 (0) to 'xx', and bit6 (1) to the most significant 'x'.
875     // The final result is 0b11000011.
876     uint64_t NonDemandedBits = ~DemandedBits;
877     uint64_t InvertedImm = ~Imm & DemandedBits;
878     uint64_t RotatedImm =
879         ((InvertedImm << 1) | (InvertedImm >> (EltSize - 1) & 1)) &
880         NonDemandedBits;
881     uint64_t Sum = RotatedImm + NonDemandedBits;
882     bool Carry = NonDemandedBits & ~Sum & (1ULL << (EltSize - 1));
883     uint64_t Ones = (Sum + Carry) & NonDemandedBits;
884     NewImm = (Imm | Ones) & Mask;
885 
886     // If NewImm or its bitwise NOT is a shifted mask, it is a bitmask immediate
887     // or all-ones or all-zeros, in which case we can stop searching. Otherwise,
888     // we halve the element size and continue the search.
889     if (isShiftedMask_64(NewImm) || isShiftedMask_64(~(NewImm | ~Mask)))
890       break;
891 
892     // We cannot shrink the element size any further if it is 2-bits.
893     if (EltSize == 2)
894       return false;
895 
896     EltSize /= 2;
897     Mask >>= EltSize;
898     uint64_t Hi = Imm >> EltSize, DemandedBitsHi = DemandedBits >> EltSize;
899 
900     // Return if there is mismatch in any of the demanded bits of Imm and Hi.
901     if (((Imm ^ Hi) & (DemandedBits & DemandedBitsHi) & Mask) != 0)
902       return false;
903 
904     // Merge the upper and lower halves of Imm and DemandedBits.
905     Imm |= Hi;
906     DemandedBits |= DemandedBitsHi;
907   }
908 
909   ++NumOptimizedImms;
910 
911   // Replicate the element across the register width.
912   while (EltSize < Size) {
913     NewImm |= NewImm << EltSize;
914     EltSize *= 2;
915   }
916 
917   (void)OldImm;
918   assert(((OldImm ^ NewImm) & Demanded.getZExtValue()) == 0 &&
919          "demanded bits should never be altered");
920   assert(OldImm != NewImm && "the new imm shouldn't be equal to the old imm");
921 
922   // Create the new constant immediate node.
923   EVT VT = Op.getValueType();
924   SDLoc DL(Op);
925   SDValue New;
926 
927   // If the new constant immediate is all-zeros or all-ones, let the target
928   // independent DAG combine optimize this node.
929   if (NewImm == 0 || NewImm == OrigMask) {
930     New = TLO.DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0),
931                           TLO.DAG.getConstant(NewImm, DL, VT));
932   // Otherwise, create a machine node so that target independent DAG combine
933   // doesn't undo this optimization.
934   } else {
935     Enc = AArch64_AM::encodeLogicalImmediate(NewImm, Size);
936     SDValue EncConst = TLO.DAG.getTargetConstant(Enc, DL, VT);
937     New = SDValue(
938         TLO.DAG.getMachineNode(NewOpc, DL, VT, Op.getOperand(0), EncConst), 0);
939   }
940 
941   return TLO.CombineTo(Op, New);
942 }
943 
targetShrinkDemandedConstant(SDValue Op,const APInt & Demanded,TargetLoweringOpt & TLO) const944 bool AArch64TargetLowering::targetShrinkDemandedConstant(
945     SDValue Op, const APInt &Demanded, TargetLoweringOpt &TLO) const {
946   // Delay this optimization to as late as possible.
947   if (!TLO.LegalOps)
948     return false;
949 
950   if (!EnableOptimizeLogicalImm)
951     return false;
952 
953   EVT VT = Op.getValueType();
954   if (VT.isVector())
955     return false;
956 
957   unsigned Size = VT.getSizeInBits();
958   assert((Size == 32 || Size == 64) &&
959          "i32 or i64 is expected after legalization.");
960 
961   // Exit early if we demand all bits.
962   if (Demanded.countPopulation() == Size)
963     return false;
964 
965   unsigned NewOpc;
966   switch (Op.getOpcode()) {
967   default:
968     return false;
969   case ISD::AND:
970     NewOpc = Size == 32 ? AArch64::ANDWri : AArch64::ANDXri;
971     break;
972   case ISD::OR:
973     NewOpc = Size == 32 ? AArch64::ORRWri : AArch64::ORRXri;
974     break;
975   case ISD::XOR:
976     NewOpc = Size == 32 ? AArch64::EORWri : AArch64::EORXri;
977     break;
978   }
979   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
980   if (!C)
981     return false;
982   uint64_t Imm = C->getZExtValue();
983   return optimizeLogicalImm(Op, Size, Imm, Demanded, TLO, NewOpc);
984 }
985 
986 /// computeKnownBitsForTargetNode - Determine which of the bits specified in
987 /// Mask are known to be either zero or one and return them Known.
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const988 void AArch64TargetLowering::computeKnownBitsForTargetNode(
989     const SDValue Op, KnownBits &Known,
990     const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
991   switch (Op.getOpcode()) {
992   default:
993     break;
994   case AArch64ISD::CSEL: {
995     KnownBits Known2;
996     DAG.computeKnownBits(Op->getOperand(0), Known, Depth + 1);
997     DAG.computeKnownBits(Op->getOperand(1), Known2, Depth + 1);
998     Known.Zero &= Known2.Zero;
999     Known.One &= Known2.One;
1000     break;
1001   }
1002   case ISD::INTRINSIC_W_CHAIN: {
1003     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
1004     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
1005     switch (IntID) {
1006     default: return;
1007     case Intrinsic::aarch64_ldaxr:
1008     case Intrinsic::aarch64_ldxr: {
1009       unsigned BitWidth = Known.getBitWidth();
1010       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
1011       unsigned MemBits = VT.getScalarSizeInBits();
1012       Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
1013       return;
1014     }
1015     }
1016     break;
1017   }
1018   case ISD::INTRINSIC_WO_CHAIN:
1019   case ISD::INTRINSIC_VOID: {
1020     unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1021     switch (IntNo) {
1022     default:
1023       break;
1024     case Intrinsic::aarch64_neon_umaxv:
1025     case Intrinsic::aarch64_neon_uminv: {
1026       // Figure out the datatype of the vector operand. The UMINV instruction
1027       // will zero extend the result, so we can mark as known zero all the
1028       // bits larger than the element datatype. 32-bit or larget doesn't need
1029       // this as those are legal types and will be handled by isel directly.
1030       MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
1031       unsigned BitWidth = Known.getBitWidth();
1032       if (VT == MVT::v8i8 || VT == MVT::v16i8) {
1033         assert(BitWidth >= 8 && "Unexpected width!");
1034         APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
1035         Known.Zero |= Mask;
1036       } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
1037         assert(BitWidth >= 16 && "Unexpected width!");
1038         APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
1039         Known.Zero |= Mask;
1040       }
1041       break;
1042     } break;
1043     }
1044   }
1045   }
1046 }
1047 
getScalarShiftAmountTy(const DataLayout & DL,EVT) const1048 MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
1049                                                   EVT) const {
1050   return MVT::i64;
1051 }
1052 
allowsMisalignedMemoryAccesses(EVT VT,unsigned AddrSpace,unsigned Align,bool * Fast) const1053 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
1054                                                            unsigned AddrSpace,
1055                                                            unsigned Align,
1056                                                            bool *Fast) const {
1057   if (Subtarget->requiresStrictAlign())
1058     return false;
1059 
1060   if (Fast) {
1061     // Some CPUs are fine with unaligned stores except for 128-bit ones.
1062     *Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 ||
1063             // See comments in performSTORECombine() for more details about
1064             // these conditions.
1065 
1066             // Code that uses clang vector extensions can mark that it
1067             // wants unaligned accesses to be treated as fast by
1068             // underspecifying alignment to be 1 or 2.
1069             Align <= 2 ||
1070 
1071             // Disregard v2i64. Memcpy lowering produces those and splitting
1072             // them regresses performance on micro-benchmarks and olden/bh.
1073             VT == MVT::v2i64;
1074   }
1075   return true;
1076 }
1077 
1078 FastISel *
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo) const1079 AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1080                                       const TargetLibraryInfo *libInfo) const {
1081   return AArch64::createFastISel(funcInfo, libInfo);
1082 }
1083 
getTargetNodeName(unsigned Opcode) const1084 const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
1085   switch ((AArch64ISD::NodeType)Opcode) {
1086   case AArch64ISD::FIRST_NUMBER:      break;
1087   case AArch64ISD::CALL:              return "AArch64ISD::CALL";
1088   case AArch64ISD::ADRP:              return "AArch64ISD::ADRP";
1089   case AArch64ISD::ADDlow:            return "AArch64ISD::ADDlow";
1090   case AArch64ISD::LOADgot:           return "AArch64ISD::LOADgot";
1091   case AArch64ISD::RET_FLAG:          return "AArch64ISD::RET_FLAG";
1092   case AArch64ISD::BRCOND:            return "AArch64ISD::BRCOND";
1093   case AArch64ISD::CSEL:              return "AArch64ISD::CSEL";
1094   case AArch64ISD::FCSEL:             return "AArch64ISD::FCSEL";
1095   case AArch64ISD::CSINV:             return "AArch64ISD::CSINV";
1096   case AArch64ISD::CSNEG:             return "AArch64ISD::CSNEG";
1097   case AArch64ISD::CSINC:             return "AArch64ISD::CSINC";
1098   case AArch64ISD::THREAD_POINTER:    return "AArch64ISD::THREAD_POINTER";
1099   case AArch64ISD::TLSDESC_CALLSEQ:   return "AArch64ISD::TLSDESC_CALLSEQ";
1100   case AArch64ISD::ADC:               return "AArch64ISD::ADC";
1101   case AArch64ISD::SBC:               return "AArch64ISD::SBC";
1102   case AArch64ISD::ADDS:              return "AArch64ISD::ADDS";
1103   case AArch64ISD::SUBS:              return "AArch64ISD::SUBS";
1104   case AArch64ISD::ADCS:              return "AArch64ISD::ADCS";
1105   case AArch64ISD::SBCS:              return "AArch64ISD::SBCS";
1106   case AArch64ISD::ANDS:              return "AArch64ISD::ANDS";
1107   case AArch64ISD::CCMP:              return "AArch64ISD::CCMP";
1108   case AArch64ISD::CCMN:              return "AArch64ISD::CCMN";
1109   case AArch64ISD::FCCMP:             return "AArch64ISD::FCCMP";
1110   case AArch64ISD::FCMP:              return "AArch64ISD::FCMP";
1111   case AArch64ISD::DUP:               return "AArch64ISD::DUP";
1112   case AArch64ISD::DUPLANE8:          return "AArch64ISD::DUPLANE8";
1113   case AArch64ISD::DUPLANE16:         return "AArch64ISD::DUPLANE16";
1114   case AArch64ISD::DUPLANE32:         return "AArch64ISD::DUPLANE32";
1115   case AArch64ISD::DUPLANE64:         return "AArch64ISD::DUPLANE64";
1116   case AArch64ISD::MOVI:              return "AArch64ISD::MOVI";
1117   case AArch64ISD::MOVIshift:         return "AArch64ISD::MOVIshift";
1118   case AArch64ISD::MOVIedit:          return "AArch64ISD::MOVIedit";
1119   case AArch64ISD::MOVImsl:           return "AArch64ISD::MOVImsl";
1120   case AArch64ISD::FMOV:              return "AArch64ISD::FMOV";
1121   case AArch64ISD::MVNIshift:         return "AArch64ISD::MVNIshift";
1122   case AArch64ISD::MVNImsl:           return "AArch64ISD::MVNImsl";
1123   case AArch64ISD::BICi:              return "AArch64ISD::BICi";
1124   case AArch64ISD::ORRi:              return "AArch64ISD::ORRi";
1125   case AArch64ISD::BSL:               return "AArch64ISD::BSL";
1126   case AArch64ISD::NEG:               return "AArch64ISD::NEG";
1127   case AArch64ISD::EXTR:              return "AArch64ISD::EXTR";
1128   case AArch64ISD::ZIP1:              return "AArch64ISD::ZIP1";
1129   case AArch64ISD::ZIP2:              return "AArch64ISD::ZIP2";
1130   case AArch64ISD::UZP1:              return "AArch64ISD::UZP1";
1131   case AArch64ISD::UZP2:              return "AArch64ISD::UZP2";
1132   case AArch64ISD::TRN1:              return "AArch64ISD::TRN1";
1133   case AArch64ISD::TRN2:              return "AArch64ISD::TRN2";
1134   case AArch64ISD::REV16:             return "AArch64ISD::REV16";
1135   case AArch64ISD::REV32:             return "AArch64ISD::REV32";
1136   case AArch64ISD::REV64:             return "AArch64ISD::REV64";
1137   case AArch64ISD::EXT:               return "AArch64ISD::EXT";
1138   case AArch64ISD::VSHL:              return "AArch64ISD::VSHL";
1139   case AArch64ISD::VLSHR:             return "AArch64ISD::VLSHR";
1140   case AArch64ISD::VASHR:             return "AArch64ISD::VASHR";
1141   case AArch64ISD::CMEQ:              return "AArch64ISD::CMEQ";
1142   case AArch64ISD::CMGE:              return "AArch64ISD::CMGE";
1143   case AArch64ISD::CMGT:              return "AArch64ISD::CMGT";
1144   case AArch64ISD::CMHI:              return "AArch64ISD::CMHI";
1145   case AArch64ISD::CMHS:              return "AArch64ISD::CMHS";
1146   case AArch64ISD::FCMEQ:             return "AArch64ISD::FCMEQ";
1147   case AArch64ISD::FCMGE:             return "AArch64ISD::FCMGE";
1148   case AArch64ISD::FCMGT:             return "AArch64ISD::FCMGT";
1149   case AArch64ISD::CMEQz:             return "AArch64ISD::CMEQz";
1150   case AArch64ISD::CMGEz:             return "AArch64ISD::CMGEz";
1151   case AArch64ISD::CMGTz:             return "AArch64ISD::CMGTz";
1152   case AArch64ISD::CMLEz:             return "AArch64ISD::CMLEz";
1153   case AArch64ISD::CMLTz:             return "AArch64ISD::CMLTz";
1154   case AArch64ISD::FCMEQz:            return "AArch64ISD::FCMEQz";
1155   case AArch64ISD::FCMGEz:            return "AArch64ISD::FCMGEz";
1156   case AArch64ISD::FCMGTz:            return "AArch64ISD::FCMGTz";
1157   case AArch64ISD::FCMLEz:            return "AArch64ISD::FCMLEz";
1158   case AArch64ISD::FCMLTz:            return "AArch64ISD::FCMLTz";
1159   case AArch64ISD::SADDV:             return "AArch64ISD::SADDV";
1160   case AArch64ISD::UADDV:             return "AArch64ISD::UADDV";
1161   case AArch64ISD::SMINV:             return "AArch64ISD::SMINV";
1162   case AArch64ISD::UMINV:             return "AArch64ISD::UMINV";
1163   case AArch64ISD::SMAXV:             return "AArch64ISD::SMAXV";
1164   case AArch64ISD::UMAXV:             return "AArch64ISD::UMAXV";
1165   case AArch64ISD::NOT:               return "AArch64ISD::NOT";
1166   case AArch64ISD::BIT:               return "AArch64ISD::BIT";
1167   case AArch64ISD::CBZ:               return "AArch64ISD::CBZ";
1168   case AArch64ISD::CBNZ:              return "AArch64ISD::CBNZ";
1169   case AArch64ISD::TBZ:               return "AArch64ISD::TBZ";
1170   case AArch64ISD::TBNZ:              return "AArch64ISD::TBNZ";
1171   case AArch64ISD::TC_RETURN:         return "AArch64ISD::TC_RETURN";
1172   case AArch64ISD::PREFETCH:          return "AArch64ISD::PREFETCH";
1173   case AArch64ISD::SITOF:             return "AArch64ISD::SITOF";
1174   case AArch64ISD::UITOF:             return "AArch64ISD::UITOF";
1175   case AArch64ISD::NVCAST:            return "AArch64ISD::NVCAST";
1176   case AArch64ISD::SQSHL_I:           return "AArch64ISD::SQSHL_I";
1177   case AArch64ISD::UQSHL_I:           return "AArch64ISD::UQSHL_I";
1178   case AArch64ISD::SRSHR_I:           return "AArch64ISD::SRSHR_I";
1179   case AArch64ISD::URSHR_I:           return "AArch64ISD::URSHR_I";
1180   case AArch64ISD::SQSHLU_I:          return "AArch64ISD::SQSHLU_I";
1181   case AArch64ISD::WrapperLarge:      return "AArch64ISD::WrapperLarge";
1182   case AArch64ISD::LD2post:           return "AArch64ISD::LD2post";
1183   case AArch64ISD::LD3post:           return "AArch64ISD::LD3post";
1184   case AArch64ISD::LD4post:           return "AArch64ISD::LD4post";
1185   case AArch64ISD::ST2post:           return "AArch64ISD::ST2post";
1186   case AArch64ISD::ST3post:           return "AArch64ISD::ST3post";
1187   case AArch64ISD::ST4post:           return "AArch64ISD::ST4post";
1188   case AArch64ISD::LD1x2post:         return "AArch64ISD::LD1x2post";
1189   case AArch64ISD::LD1x3post:         return "AArch64ISD::LD1x3post";
1190   case AArch64ISD::LD1x4post:         return "AArch64ISD::LD1x4post";
1191   case AArch64ISD::ST1x2post:         return "AArch64ISD::ST1x2post";
1192   case AArch64ISD::ST1x3post:         return "AArch64ISD::ST1x3post";
1193   case AArch64ISD::ST1x4post:         return "AArch64ISD::ST1x4post";
1194   case AArch64ISD::LD1DUPpost:        return "AArch64ISD::LD1DUPpost";
1195   case AArch64ISD::LD2DUPpost:        return "AArch64ISD::LD2DUPpost";
1196   case AArch64ISD::LD3DUPpost:        return "AArch64ISD::LD3DUPpost";
1197   case AArch64ISD::LD4DUPpost:        return "AArch64ISD::LD4DUPpost";
1198   case AArch64ISD::LD1LANEpost:       return "AArch64ISD::LD1LANEpost";
1199   case AArch64ISD::LD2LANEpost:       return "AArch64ISD::LD2LANEpost";
1200   case AArch64ISD::LD3LANEpost:       return "AArch64ISD::LD3LANEpost";
1201   case AArch64ISD::LD4LANEpost:       return "AArch64ISD::LD4LANEpost";
1202   case AArch64ISD::ST2LANEpost:       return "AArch64ISD::ST2LANEpost";
1203   case AArch64ISD::ST3LANEpost:       return "AArch64ISD::ST3LANEpost";
1204   case AArch64ISD::ST4LANEpost:       return "AArch64ISD::ST4LANEpost";
1205   case AArch64ISD::SMULL:             return "AArch64ISD::SMULL";
1206   case AArch64ISD::UMULL:             return "AArch64ISD::UMULL";
1207   case AArch64ISD::FRECPE:            return "AArch64ISD::FRECPE";
1208   case AArch64ISD::FRECPS:            return "AArch64ISD::FRECPS";
1209   case AArch64ISD::FRSQRTE:           return "AArch64ISD::FRSQRTE";
1210   case AArch64ISD::FRSQRTS:           return "AArch64ISD::FRSQRTS";
1211   }
1212   return nullptr;
1213 }
1214 
1215 MachineBasicBlock *
EmitF128CSEL(MachineInstr & MI,MachineBasicBlock * MBB) const1216 AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI,
1217                                     MachineBasicBlock *MBB) const {
1218   // We materialise the F128CSEL pseudo-instruction as some control flow and a
1219   // phi node:
1220 
1221   // OrigBB:
1222   //     [... previous instrs leading to comparison ...]
1223   //     b.ne TrueBB
1224   //     b EndBB
1225   // TrueBB:
1226   //     ; Fallthrough
1227   // EndBB:
1228   //     Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
1229 
1230   MachineFunction *MF = MBB->getParent();
1231   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1232   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
1233   DebugLoc DL = MI.getDebugLoc();
1234   MachineFunction::iterator It = ++MBB->getIterator();
1235 
1236   unsigned DestReg = MI.getOperand(0).getReg();
1237   unsigned IfTrueReg = MI.getOperand(1).getReg();
1238   unsigned IfFalseReg = MI.getOperand(2).getReg();
1239   unsigned CondCode = MI.getOperand(3).getImm();
1240   bool NZCVKilled = MI.getOperand(4).isKill();
1241 
1242   MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
1243   MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
1244   MF->insert(It, TrueBB);
1245   MF->insert(It, EndBB);
1246 
1247   // Transfer rest of current basic-block to EndBB
1248   EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
1249                 MBB->end());
1250   EndBB->transferSuccessorsAndUpdatePHIs(MBB);
1251 
1252   BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
1253   BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
1254   MBB->addSuccessor(TrueBB);
1255   MBB->addSuccessor(EndBB);
1256 
1257   // TrueBB falls through to the end.
1258   TrueBB->addSuccessor(EndBB);
1259 
1260   if (!NZCVKilled) {
1261     TrueBB->addLiveIn(AArch64::NZCV);
1262     EndBB->addLiveIn(AArch64::NZCV);
1263   }
1264 
1265   BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
1266       .addReg(IfTrueReg)
1267       .addMBB(TrueBB)
1268       .addReg(IfFalseReg)
1269       .addMBB(MBB);
1270 
1271   MI.eraseFromParent();
1272   return EndBB;
1273 }
1274 
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const1275 MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter(
1276     MachineInstr &MI, MachineBasicBlock *BB) const {
1277   switch (MI.getOpcode()) {
1278   default:
1279 #ifndef NDEBUG
1280     MI.dump();
1281 #endif
1282     llvm_unreachable("Unexpected instruction for custom inserter!");
1283 
1284   case AArch64::F128CSEL:
1285     return EmitF128CSEL(MI, BB);
1286 
1287   case TargetOpcode::STACKMAP:
1288   case TargetOpcode::PATCHPOINT:
1289     return emitPatchPoint(MI, BB);
1290   }
1291 }
1292 
1293 //===----------------------------------------------------------------------===//
1294 // AArch64 Lowering private implementation.
1295 //===----------------------------------------------------------------------===//
1296 
1297 //===----------------------------------------------------------------------===//
1298 // Lowering Code
1299 //===----------------------------------------------------------------------===//
1300 
1301 /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
1302 /// CC
changeIntCCToAArch64CC(ISD::CondCode CC)1303 static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
1304   switch (CC) {
1305   default:
1306     llvm_unreachable("Unknown condition code!");
1307   case ISD::SETNE:
1308     return AArch64CC::NE;
1309   case ISD::SETEQ:
1310     return AArch64CC::EQ;
1311   case ISD::SETGT:
1312     return AArch64CC::GT;
1313   case ISD::SETGE:
1314     return AArch64CC::GE;
1315   case ISD::SETLT:
1316     return AArch64CC::LT;
1317   case ISD::SETLE:
1318     return AArch64CC::LE;
1319   case ISD::SETUGT:
1320     return AArch64CC::HI;
1321   case ISD::SETUGE:
1322     return AArch64CC::HS;
1323   case ISD::SETULT:
1324     return AArch64CC::LO;
1325   case ISD::SETULE:
1326     return AArch64CC::LS;
1327   }
1328 }
1329 
1330 /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
changeFPCCToAArch64CC(ISD::CondCode CC,AArch64CC::CondCode & CondCode,AArch64CC::CondCode & CondCode2)1331 static void changeFPCCToAArch64CC(ISD::CondCode CC,
1332                                   AArch64CC::CondCode &CondCode,
1333                                   AArch64CC::CondCode &CondCode2) {
1334   CondCode2 = AArch64CC::AL;
1335   switch (CC) {
1336   default:
1337     llvm_unreachable("Unknown FP condition!");
1338   case ISD::SETEQ:
1339   case ISD::SETOEQ:
1340     CondCode = AArch64CC::EQ;
1341     break;
1342   case ISD::SETGT:
1343   case ISD::SETOGT:
1344     CondCode = AArch64CC::GT;
1345     break;
1346   case ISD::SETGE:
1347   case ISD::SETOGE:
1348     CondCode = AArch64CC::GE;
1349     break;
1350   case ISD::SETOLT:
1351     CondCode = AArch64CC::MI;
1352     break;
1353   case ISD::SETOLE:
1354     CondCode = AArch64CC::LS;
1355     break;
1356   case ISD::SETONE:
1357     CondCode = AArch64CC::MI;
1358     CondCode2 = AArch64CC::GT;
1359     break;
1360   case ISD::SETO:
1361     CondCode = AArch64CC::VC;
1362     break;
1363   case ISD::SETUO:
1364     CondCode = AArch64CC::VS;
1365     break;
1366   case ISD::SETUEQ:
1367     CondCode = AArch64CC::EQ;
1368     CondCode2 = AArch64CC::VS;
1369     break;
1370   case ISD::SETUGT:
1371     CondCode = AArch64CC::HI;
1372     break;
1373   case ISD::SETUGE:
1374     CondCode = AArch64CC::PL;
1375     break;
1376   case ISD::SETLT:
1377   case ISD::SETULT:
1378     CondCode = AArch64CC::LT;
1379     break;
1380   case ISD::SETLE:
1381   case ISD::SETULE:
1382     CondCode = AArch64CC::LE;
1383     break;
1384   case ISD::SETNE:
1385   case ISD::SETUNE:
1386     CondCode = AArch64CC::NE;
1387     break;
1388   }
1389 }
1390 
1391 /// Convert a DAG fp condition code to an AArch64 CC.
1392 /// This differs from changeFPCCToAArch64CC in that it returns cond codes that
1393 /// should be AND'ed instead of OR'ed.
changeFPCCToANDAArch64CC(ISD::CondCode CC,AArch64CC::CondCode & CondCode,AArch64CC::CondCode & CondCode2)1394 static void changeFPCCToANDAArch64CC(ISD::CondCode CC,
1395                                      AArch64CC::CondCode &CondCode,
1396                                      AArch64CC::CondCode &CondCode2) {
1397   CondCode2 = AArch64CC::AL;
1398   switch (CC) {
1399   default:
1400     changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1401     assert(CondCode2 == AArch64CC::AL);
1402     break;
1403   case ISD::SETONE:
1404     // (a one b)
1405     // == ((a olt b) || (a ogt b))
1406     // == ((a ord b) && (a une b))
1407     CondCode = AArch64CC::VC;
1408     CondCode2 = AArch64CC::NE;
1409     break;
1410   case ISD::SETUEQ:
1411     // (a ueq b)
1412     // == ((a uno b) || (a oeq b))
1413     // == ((a ule b) && (a uge b))
1414     CondCode = AArch64CC::PL;
1415     CondCode2 = AArch64CC::LE;
1416     break;
1417   }
1418 }
1419 
1420 /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1421 /// CC usable with the vector instructions. Fewer operations are available
1422 /// without a real NZCV register, so we have to use less efficient combinations
1423 /// to get the same effect.
changeVectorFPCCToAArch64CC(ISD::CondCode CC,AArch64CC::CondCode & CondCode,AArch64CC::CondCode & CondCode2,bool & Invert)1424 static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
1425                                         AArch64CC::CondCode &CondCode,
1426                                         AArch64CC::CondCode &CondCode2,
1427                                         bool &Invert) {
1428   Invert = false;
1429   switch (CC) {
1430   default:
1431     // Mostly the scalar mappings work fine.
1432     changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1433     break;
1434   case ISD::SETUO:
1435     Invert = true;
1436     LLVM_FALLTHROUGH;
1437   case ISD::SETO:
1438     CondCode = AArch64CC::MI;
1439     CondCode2 = AArch64CC::GE;
1440     break;
1441   case ISD::SETUEQ:
1442   case ISD::SETULT:
1443   case ISD::SETULE:
1444   case ISD::SETUGT:
1445   case ISD::SETUGE:
1446     // All of the compare-mask comparisons are ordered, but we can switch
1447     // between the two by a double inversion. E.g. ULE == !OGT.
1448     Invert = true;
1449     changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
1450     break;
1451   }
1452 }
1453 
isLegalArithImmed(uint64_t C)1454 static bool isLegalArithImmed(uint64_t C) {
1455   // Matches AArch64DAGToDAGISel::SelectArithImmed().
1456   bool IsLegal = (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
1457   LLVM_DEBUG(dbgs() << "Is imm " << C
1458                     << " legal: " << (IsLegal ? "yes\n" : "no\n"));
1459   return IsLegal;
1460 }
1461 
emitComparison(SDValue LHS,SDValue RHS,ISD::CondCode CC,const SDLoc & dl,SelectionDAG & DAG)1462 static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1463                               const SDLoc &dl, SelectionDAG &DAG) {
1464   EVT VT = LHS.getValueType();
1465   const bool FullFP16 =
1466     static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
1467 
1468   if (VT.isFloatingPoint()) {
1469     assert(VT != MVT::f128);
1470     if (VT == MVT::f16 && !FullFP16) {
1471       LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
1472       RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
1473       VT = MVT::f32;
1474     }
1475     return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
1476   }
1477 
1478   // The CMP instruction is just an alias for SUBS, and representing it as
1479   // SUBS means that it's possible to get CSE with subtract operations.
1480   // A later phase can perform the optimization of setting the destination
1481   // register to WZR/XZR if it ends up being unused.
1482   unsigned Opcode = AArch64ISD::SUBS;
1483 
1484   if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
1485       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1486     // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
1487     // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
1488     // can be set differently by this operation. It comes down to whether
1489     // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1490     // everything is fine. If not then the optimization is wrong. Thus general
1491     // comparisons are only valid if op2 != 0.
1492 
1493     // So, finally, the only LLVM-native comparisons that don't mention C and V
1494     // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1495     // the absence of information about op2.
1496     Opcode = AArch64ISD::ADDS;
1497     RHS = RHS.getOperand(1);
1498   } else if (LHS.getOpcode() == ISD::AND && isNullConstant(RHS) &&
1499              !isUnsignedIntSetCC(CC)) {
1500     // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1501     // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1502     // of the signed comparisons.
1503     Opcode = AArch64ISD::ANDS;
1504     RHS = LHS.getOperand(1);
1505     LHS = LHS.getOperand(0);
1506   }
1507 
1508   return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS)
1509       .getValue(1);
1510 }
1511 
1512 /// \defgroup AArch64CCMP CMP;CCMP matching
1513 ///
1514 /// These functions deal with the formation of CMP;CCMP;... sequences.
1515 /// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of
1516 /// a comparison. They set the NZCV flags to a predefined value if their
1517 /// predicate is false. This allows to express arbitrary conjunctions, for
1518 /// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B)))"
1519 /// expressed as:
1520 ///   cmp A
1521 ///   ccmp B, inv(CB), CA
1522 ///   check for CB flags
1523 ///
1524 /// This naturally lets us implement chains of AND operations with SETCC
1525 /// operands. And we can even implement some other situations by transforming
1526 /// them:
1527 ///   - We can implement (NEG SETCC) i.e. negating a single comparison by
1528 ///     negating the flags used in a CCMP/FCCMP operations.
1529 ///   - We can negate the result of a whole chain of CMP/CCMP/FCCMP operations
1530 ///     by negating the flags we test for afterwards. i.e.
1531 ///     NEG (CMP CCMP CCCMP ...) can be implemented.
1532 ///   - Note that we can only ever negate all previously processed results.
1533 ///     What we can not implement by flipping the flags to test is a negation
1534 ///     of two sub-trees (because the negation affects all sub-trees emitted so
1535 ///     far, so the 2nd sub-tree we emit would also affect the first).
1536 /// With those tools we can implement some OR operations:
1537 ///   - (OR (SETCC A) (SETCC B)) can be implemented via:
1538 ///     NEG (AND (NEG (SETCC A)) (NEG (SETCC B)))
1539 ///   - After transforming OR to NEG/AND combinations we may be able to use NEG
1540 ///     elimination rules from earlier to implement the whole thing as a
1541 ///     CCMP/FCCMP chain.
1542 ///
1543 /// As complete example:
1544 ///     or (or (setCA (cmp A)) (setCB (cmp B)))
1545 ///        (and (setCC (cmp C)) (setCD (cmp D)))"
1546 /// can be reassociated to:
1547 ///     or (and (setCC (cmp C)) setCD (cmp D))
1548 //         (or (setCA (cmp A)) (setCB (cmp B)))
1549 /// can be transformed to:
1550 ///     not (and (not (and (setCC (cmp C)) (setCD (cmp D))))
1551 ///              (and (not (setCA (cmp A)) (not (setCB (cmp B))))))"
1552 /// which can be implemented as:
1553 ///   cmp C
1554 ///   ccmp D, inv(CD), CC
1555 ///   ccmp A, CA, inv(CD)
1556 ///   ccmp B, CB, inv(CA)
1557 ///   check for CB flags
1558 ///
1559 /// A counterexample is "or (and A B) (and C D)" which translates to
1560 /// not (and (not (and (not A) (not B))) (not (and (not C) (not D)))), we
1561 /// can only implement 1 of the inner (not) operations, but not both!
1562 /// @{
1563 
1564 /// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate.
emitConditionalComparison(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDValue CCOp,AArch64CC::CondCode Predicate,AArch64CC::CondCode OutCC,const SDLoc & DL,SelectionDAG & DAG)1565 static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS,
1566                                          ISD::CondCode CC, SDValue CCOp,
1567                                          AArch64CC::CondCode Predicate,
1568                                          AArch64CC::CondCode OutCC,
1569                                          const SDLoc &DL, SelectionDAG &DAG) {
1570   unsigned Opcode = 0;
1571   const bool FullFP16 =
1572     static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
1573 
1574   if (LHS.getValueType().isFloatingPoint()) {
1575     assert(LHS.getValueType() != MVT::f128);
1576     if (LHS.getValueType() == MVT::f16 && !FullFP16) {
1577       LHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, LHS);
1578       RHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, RHS);
1579     }
1580     Opcode = AArch64ISD::FCCMP;
1581   } else if (RHS.getOpcode() == ISD::SUB) {
1582     SDValue SubOp0 = RHS.getOperand(0);
1583     if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1584       // See emitComparison() on why we can only do this for SETEQ and SETNE.
1585       Opcode = AArch64ISD::CCMN;
1586       RHS = RHS.getOperand(1);
1587     }
1588   }
1589   if (Opcode == 0)
1590     Opcode = AArch64ISD::CCMP;
1591 
1592   SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC);
1593   AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
1594   unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
1595   SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
1596   return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp);
1597 }
1598 
1599 /// Returns true if @p Val is a tree of AND/OR/SETCC operations that can be
1600 /// expressed as a conjunction. See \ref AArch64CCMP.
1601 /// \param CanNegate    Set to true if we can negate the whole sub-tree just by
1602 ///                     changing the conditions on the SETCC tests.
1603 ///                     (this means we can call emitConjunctionRec() with
1604 ///                      Negate==true on this sub-tree)
1605 /// \param MustBeFirst  Set to true if this subtree needs to be negated and we
1606 ///                     cannot do the negation naturally. We are required to
1607 ///                     emit the subtree first in this case.
1608 /// \param WillNegate   Is true if are called when the result of this
1609 ///                     subexpression must be negated. This happens when the
1610 ///                     outer expression is an OR. We can use this fact to know
1611 ///                     that we have a double negation (or (or ...) ...) that
1612 ///                     can be implemented for free.
canEmitConjunction(const SDValue Val,bool & CanNegate,bool & MustBeFirst,bool WillNegate,unsigned Depth=0)1613 static bool canEmitConjunction(const SDValue Val, bool &CanNegate,
1614                                bool &MustBeFirst, bool WillNegate,
1615                                unsigned Depth = 0) {
1616   if (!Val.hasOneUse())
1617     return false;
1618   unsigned Opcode = Val->getOpcode();
1619   if (Opcode == ISD::SETCC) {
1620     if (Val->getOperand(0).getValueType() == MVT::f128)
1621       return false;
1622     CanNegate = true;
1623     MustBeFirst = false;
1624     return true;
1625   }
1626   // Protect against exponential runtime and stack overflow.
1627   if (Depth > 6)
1628     return false;
1629   if (Opcode == ISD::AND || Opcode == ISD::OR) {
1630     bool IsOR = Opcode == ISD::OR;
1631     SDValue O0 = Val->getOperand(0);
1632     SDValue O1 = Val->getOperand(1);
1633     bool CanNegateL;
1634     bool MustBeFirstL;
1635     if (!canEmitConjunction(O0, CanNegateL, MustBeFirstL, IsOR, Depth+1))
1636       return false;
1637     bool CanNegateR;
1638     bool MustBeFirstR;
1639     if (!canEmitConjunction(O1, CanNegateR, MustBeFirstR, IsOR, Depth+1))
1640       return false;
1641 
1642     if (MustBeFirstL && MustBeFirstR)
1643       return false;
1644 
1645     if (IsOR) {
1646       // For an OR expression we need to be able to naturally negate at least
1647       // one side or we cannot do the transformation at all.
1648       if (!CanNegateL && !CanNegateR)
1649         return false;
1650       // If we the result of the OR will be negated and we can naturally negate
1651       // the leafs, then this sub-tree as a whole negates naturally.
1652       CanNegate = WillNegate && CanNegateL && CanNegateR;
1653       // If we cannot naturally negate the whole sub-tree, then this must be
1654       // emitted first.
1655       MustBeFirst = !CanNegate;
1656     } else {
1657       assert(Opcode == ISD::AND && "Must be OR or AND");
1658       // We cannot naturally negate an AND operation.
1659       CanNegate = false;
1660       MustBeFirst = MustBeFirstL || MustBeFirstR;
1661     }
1662     return true;
1663   }
1664   return false;
1665 }
1666 
1667 /// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
1668 /// of CCMP/CFCMP ops. See @ref AArch64CCMP.
1669 /// Tries to transform the given i1 producing node @p Val to a series compare
1670 /// and conditional compare operations. @returns an NZCV flags producing node
1671 /// and sets @p OutCC to the flags that should be tested or returns SDValue() if
1672 /// transformation was not possible.
1673 /// \p Negate is true if we want this sub-tree being negated just by changing
1674 /// SETCC conditions.
emitConjunctionRec(SelectionDAG & DAG,SDValue Val,AArch64CC::CondCode & OutCC,bool Negate,SDValue CCOp,AArch64CC::CondCode Predicate)1675 static SDValue emitConjunctionRec(SelectionDAG &DAG, SDValue Val,
1676     AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp,
1677     AArch64CC::CondCode Predicate) {
1678   // We're at a tree leaf, produce a conditional comparison operation.
1679   unsigned Opcode = Val->getOpcode();
1680   if (Opcode == ISD::SETCC) {
1681     SDValue LHS = Val->getOperand(0);
1682     SDValue RHS = Val->getOperand(1);
1683     ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get();
1684     bool isInteger = LHS.getValueType().isInteger();
1685     if (Negate)
1686       CC = getSetCCInverse(CC, isInteger);
1687     SDLoc DL(Val);
1688     // Determine OutCC and handle FP special case.
1689     if (isInteger) {
1690       OutCC = changeIntCCToAArch64CC(CC);
1691     } else {
1692       assert(LHS.getValueType().isFloatingPoint());
1693       AArch64CC::CondCode ExtraCC;
1694       changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC);
1695       // Some floating point conditions can't be tested with a single condition
1696       // code. Construct an additional comparison in this case.
1697       if (ExtraCC != AArch64CC::AL) {
1698         SDValue ExtraCmp;
1699         if (!CCOp.getNode())
1700           ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG);
1701         else
1702           ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate,
1703                                                ExtraCC, DL, DAG);
1704         CCOp = ExtraCmp;
1705         Predicate = ExtraCC;
1706       }
1707     }
1708 
1709     // Produce a normal comparison if we are first in the chain
1710     if (!CCOp)
1711       return emitComparison(LHS, RHS, CC, DL, DAG);
1712     // Otherwise produce a ccmp.
1713     return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL,
1714                                      DAG);
1715   }
1716   assert(Val->hasOneUse() && "Valid conjunction/disjunction tree");
1717 
1718   bool IsOR = Opcode == ISD::OR;
1719 
1720   SDValue LHS = Val->getOperand(0);
1721   bool CanNegateL;
1722   bool MustBeFirstL;
1723   bool ValidL = canEmitConjunction(LHS, CanNegateL, MustBeFirstL, IsOR);
1724   assert(ValidL && "Valid conjunction/disjunction tree");
1725   (void)ValidL;
1726 
1727   SDValue RHS = Val->getOperand(1);
1728   bool CanNegateR;
1729   bool MustBeFirstR;
1730   bool ValidR = canEmitConjunction(RHS, CanNegateR, MustBeFirstR, IsOR);
1731   assert(ValidR && "Valid conjunction/disjunction tree");
1732   (void)ValidR;
1733 
1734   // Swap sub-tree that must come first to the right side.
1735   if (MustBeFirstL) {
1736     assert(!MustBeFirstR && "Valid conjunction/disjunction tree");
1737     std::swap(LHS, RHS);
1738     std::swap(CanNegateL, CanNegateR);
1739     std::swap(MustBeFirstL, MustBeFirstR);
1740   }
1741 
1742   bool NegateR;
1743   bool NegateAfterR;
1744   bool NegateL;
1745   bool NegateAfterAll;
1746   if (Opcode == ISD::OR) {
1747     // Swap the sub-tree that we can negate naturally to the left.
1748     if (!CanNegateL) {
1749       assert(CanNegateR && "at least one side must be negatable");
1750       assert(!MustBeFirstR && "invalid conjunction/disjunction tree");
1751       assert(!Negate);
1752       std::swap(LHS, RHS);
1753       NegateR = false;
1754       NegateAfterR = true;
1755     } else {
1756       // Negate the left sub-tree if possible, otherwise negate the result.
1757       NegateR = CanNegateR;
1758       NegateAfterR = !CanNegateR;
1759     }
1760     NegateL = true;
1761     NegateAfterAll = !Negate;
1762   } else {
1763     assert(Opcode == ISD::AND && "Valid conjunction/disjunction tree");
1764     assert(!Negate && "Valid conjunction/disjunction tree");
1765 
1766     NegateL = false;
1767     NegateR = false;
1768     NegateAfterR = false;
1769     NegateAfterAll = false;
1770   }
1771 
1772   // Emit sub-trees.
1773   AArch64CC::CondCode RHSCC;
1774   SDValue CmpR = emitConjunctionRec(DAG, RHS, RHSCC, NegateR, CCOp, Predicate);
1775   if (NegateAfterR)
1776     RHSCC = AArch64CC::getInvertedCondCode(RHSCC);
1777   SDValue CmpL = emitConjunctionRec(DAG, LHS, OutCC, NegateL, CmpR, RHSCC);
1778   if (NegateAfterAll)
1779     OutCC = AArch64CC::getInvertedCondCode(OutCC);
1780   return CmpL;
1781 }
1782 
1783 /// Emit expression as a conjunction (a series of CCMP/CFCMP ops).
1784 /// In some cases this is even possible with OR operations in the expression.
1785 /// See \ref AArch64CCMP.
1786 /// \see emitConjunctionRec().
emitConjunction(SelectionDAG & DAG,SDValue Val,AArch64CC::CondCode & OutCC)1787 static SDValue emitConjunction(SelectionDAG &DAG, SDValue Val,
1788                                AArch64CC::CondCode &OutCC) {
1789   bool DummyCanNegate;
1790   bool DummyMustBeFirst;
1791   if (!canEmitConjunction(Val, DummyCanNegate, DummyMustBeFirst, false))
1792     return SDValue();
1793 
1794   return emitConjunctionRec(DAG, Val, OutCC, false, SDValue(), AArch64CC::AL);
1795 }
1796 
1797 /// @}
1798 
getAArch64Cmp(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDValue & AArch64cc,SelectionDAG & DAG,const SDLoc & dl)1799 static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1800                              SDValue &AArch64cc, SelectionDAG &DAG,
1801                              const SDLoc &dl) {
1802   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1803     EVT VT = RHS.getValueType();
1804     uint64_t C = RHSC->getZExtValue();
1805     if (!isLegalArithImmed(C)) {
1806       // Constant does not fit, try adjusting it by one?
1807       switch (CC) {
1808       default:
1809         break;
1810       case ISD::SETLT:
1811       case ISD::SETGE:
1812         if ((VT == MVT::i32 && C != 0x80000000 &&
1813              isLegalArithImmed((uint32_t)(C - 1))) ||
1814             (VT == MVT::i64 && C != 0x80000000ULL &&
1815              isLegalArithImmed(C - 1ULL))) {
1816           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1817           C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1818           RHS = DAG.getConstant(C, dl, VT);
1819         }
1820         break;
1821       case ISD::SETULT:
1822       case ISD::SETUGE:
1823         if ((VT == MVT::i32 && C != 0 &&
1824              isLegalArithImmed((uint32_t)(C - 1))) ||
1825             (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1826           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1827           C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1828           RHS = DAG.getConstant(C, dl, VT);
1829         }
1830         break;
1831       case ISD::SETLE:
1832       case ISD::SETGT:
1833         if ((VT == MVT::i32 && C != INT32_MAX &&
1834              isLegalArithImmed((uint32_t)(C + 1))) ||
1835             (VT == MVT::i64 && C != INT64_MAX &&
1836              isLegalArithImmed(C + 1ULL))) {
1837           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1838           C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1839           RHS = DAG.getConstant(C, dl, VT);
1840         }
1841         break;
1842       case ISD::SETULE:
1843       case ISD::SETUGT:
1844         if ((VT == MVT::i32 && C != UINT32_MAX &&
1845              isLegalArithImmed((uint32_t)(C + 1))) ||
1846             (VT == MVT::i64 && C != UINT64_MAX &&
1847              isLegalArithImmed(C + 1ULL))) {
1848           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1849           C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1850           RHS = DAG.getConstant(C, dl, VT);
1851         }
1852         break;
1853       }
1854     }
1855   }
1856   SDValue Cmp;
1857   AArch64CC::CondCode AArch64CC;
1858   if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
1859     const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS);
1860 
1861     // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
1862     // For the i8 operand, the largest immediate is 255, so this can be easily
1863     // encoded in the compare instruction. For the i16 operand, however, the
1864     // largest immediate cannot be encoded in the compare.
1865     // Therefore, use a sign extending load and cmn to avoid materializing the
1866     // -1 constant. For example,
1867     // movz w1, #65535
1868     // ldrh w0, [x0, #0]
1869     // cmp w0, w1
1870     // >
1871     // ldrsh w0, [x0, #0]
1872     // cmn w0, #1
1873     // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
1874     // if and only if (sext LHS) == (sext RHS). The checks are in place to
1875     // ensure both the LHS and RHS are truly zero extended and to make sure the
1876     // transformation is profitable.
1877     if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) &&
1878         cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
1879         cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
1880         LHS.getNode()->hasNUsesOfValue(1, 0)) {
1881       int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
1882       if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
1883         SDValue SExt =
1884             DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
1885                         DAG.getValueType(MVT::i16));
1886         Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl,
1887                                                    RHS.getValueType()),
1888                              CC, dl, DAG);
1889         AArch64CC = changeIntCCToAArch64CC(CC);
1890       }
1891     }
1892 
1893     if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) {
1894       if ((Cmp = emitConjunction(DAG, LHS, AArch64CC))) {
1895         if ((CC == ISD::SETNE) ^ RHSC->isNullValue())
1896           AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
1897       }
1898     }
1899   }
1900 
1901   if (!Cmp) {
1902     Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
1903     AArch64CC = changeIntCCToAArch64CC(CC);
1904   }
1905   AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC);
1906   return Cmp;
1907 }
1908 
1909 static std::pair<SDValue, SDValue>
getAArch64XALUOOp(AArch64CC::CondCode & CC,SDValue Op,SelectionDAG & DAG)1910 getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
1911   assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
1912          "Unsupported value type");
1913   SDValue Value, Overflow;
1914   SDLoc DL(Op);
1915   SDValue LHS = Op.getOperand(0);
1916   SDValue RHS = Op.getOperand(1);
1917   unsigned Opc = 0;
1918   switch (Op.getOpcode()) {
1919   default:
1920     llvm_unreachable("Unknown overflow instruction!");
1921   case ISD::SADDO:
1922     Opc = AArch64ISD::ADDS;
1923     CC = AArch64CC::VS;
1924     break;
1925   case ISD::UADDO:
1926     Opc = AArch64ISD::ADDS;
1927     CC = AArch64CC::HS;
1928     break;
1929   case ISD::SSUBO:
1930     Opc = AArch64ISD::SUBS;
1931     CC = AArch64CC::VS;
1932     break;
1933   case ISD::USUBO:
1934     Opc = AArch64ISD::SUBS;
1935     CC = AArch64CC::LO;
1936     break;
1937   // Multiply needs a little bit extra work.
1938   case ISD::SMULO:
1939   case ISD::UMULO: {
1940     CC = AArch64CC::NE;
1941     bool IsSigned = Op.getOpcode() == ISD::SMULO;
1942     if (Op.getValueType() == MVT::i32) {
1943       unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1944       // For a 32 bit multiply with overflow check we want the instruction
1945       // selector to generate a widening multiply (SMADDL/UMADDL). For that we
1946       // need to generate the following pattern:
1947       // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
1948       LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
1949       RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
1950       SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1951       SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
1952                                 DAG.getConstant(0, DL, MVT::i64));
1953       // On AArch64 the upper 32 bits are always zero extended for a 32 bit
1954       // operation. We need to clear out the upper 32 bits, because we used a
1955       // widening multiply that wrote all 64 bits. In the end this should be a
1956       // noop.
1957       Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
1958       if (IsSigned) {
1959         // The signed overflow check requires more than just a simple check for
1960         // any bit set in the upper 32 bits of the result. These bits could be
1961         // just the sign bits of a negative number. To perform the overflow
1962         // check we have to arithmetic shift right the 32nd bit of the result by
1963         // 31 bits. Then we compare the result to the upper 32 bits.
1964         SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
1965                                         DAG.getConstant(32, DL, MVT::i64));
1966         UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
1967         SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
1968                                         DAG.getConstant(31, DL, MVT::i64));
1969         // It is important that LowerBits is last, otherwise the arithmetic
1970         // shift will not be folded into the compare (SUBS).
1971         SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
1972         Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1973                        .getValue(1);
1974       } else {
1975         // The overflow check for unsigned multiply is easy. We only need to
1976         // check if any of the upper 32 bits are set. This can be done with a
1977         // CMP (shifted register). For that we need to generate the following
1978         // pattern:
1979         // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
1980         SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
1981                                         DAG.getConstant(32, DL, MVT::i64));
1982         SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1983         Overflow =
1984             DAG.getNode(AArch64ISD::SUBS, DL, VTs,
1985                         DAG.getConstant(0, DL, MVT::i64),
1986                         UpperBits).getValue(1);
1987       }
1988       break;
1989     }
1990     assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
1991     // For the 64 bit multiply
1992     Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1993     if (IsSigned) {
1994       SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
1995       SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
1996                                       DAG.getConstant(63, DL, MVT::i64));
1997       // It is important that LowerBits is last, otherwise the arithmetic
1998       // shift will not be folded into the compare (SUBS).
1999       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
2000       Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
2001                      .getValue(1);
2002     } else {
2003       SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
2004       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
2005       Overflow =
2006           DAG.getNode(AArch64ISD::SUBS, DL, VTs,
2007                       DAG.getConstant(0, DL, MVT::i64),
2008                       UpperBits).getValue(1);
2009     }
2010     break;
2011   }
2012   } // switch (...)
2013 
2014   if (Opc) {
2015     SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
2016 
2017     // Emit the AArch64 operation with overflow check.
2018     Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
2019     Overflow = Value.getValue(1);
2020   }
2021   return std::make_pair(Value, Overflow);
2022 }
2023 
LowerF128Call(SDValue Op,SelectionDAG & DAG,RTLIB::Libcall Call) const2024 SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
2025                                              RTLIB::Libcall Call) const {
2026   SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
2027   return makeLibCall(DAG, Call, MVT::f128, Ops, false, SDLoc(Op)).first;
2028 }
2029 
2030 // Returns true if the given Op is the overflow flag result of an overflow
2031 // intrinsic operation.
isOverflowIntrOpRes(SDValue Op)2032 static bool isOverflowIntrOpRes(SDValue Op) {
2033   unsigned Opc = Op.getOpcode();
2034   return (Op.getResNo() == 1 &&
2035           (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
2036            Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
2037 }
2038 
LowerXOR(SDValue Op,SelectionDAG & DAG)2039 static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
2040   SDValue Sel = Op.getOperand(0);
2041   SDValue Other = Op.getOperand(1);
2042   SDLoc dl(Sel);
2043 
2044   // If the operand is an overflow checking operation, invert the condition
2045   // code and kill the Not operation. I.e., transform:
2046   // (xor (overflow_op_bool, 1))
2047   //   -->
2048   // (csel 1, 0, invert(cc), overflow_op_bool)
2049   // ... which later gets transformed to just a cset instruction with an
2050   // inverted condition code, rather than a cset + eor sequence.
2051   if (isOneConstant(Other) && isOverflowIntrOpRes(Sel)) {
2052     // Only lower legal XALUO ops.
2053     if (!DAG.getTargetLoweringInfo().isTypeLegal(Sel->getValueType(0)))
2054       return SDValue();
2055 
2056     SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
2057     SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
2058     AArch64CC::CondCode CC;
2059     SDValue Value, Overflow;
2060     std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Sel.getValue(0), DAG);
2061     SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
2062     return DAG.getNode(AArch64ISD::CSEL, dl, Op.getValueType(), TVal, FVal,
2063                        CCVal, Overflow);
2064   }
2065   // If neither operand is a SELECT_CC, give up.
2066   if (Sel.getOpcode() != ISD::SELECT_CC)
2067     std::swap(Sel, Other);
2068   if (Sel.getOpcode() != ISD::SELECT_CC)
2069     return Op;
2070 
2071   // The folding we want to perform is:
2072   // (xor x, (select_cc a, b, cc, 0, -1) )
2073   //   -->
2074   // (csel x, (xor x, -1), cc ...)
2075   //
2076   // The latter will get matched to a CSINV instruction.
2077 
2078   ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
2079   SDValue LHS = Sel.getOperand(0);
2080   SDValue RHS = Sel.getOperand(1);
2081   SDValue TVal = Sel.getOperand(2);
2082   SDValue FVal = Sel.getOperand(3);
2083 
2084   // FIXME: This could be generalized to non-integer comparisons.
2085   if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
2086     return Op;
2087 
2088   ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
2089   ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
2090 
2091   // The values aren't constants, this isn't the pattern we're looking for.
2092   if (!CFVal || !CTVal)
2093     return Op;
2094 
2095   // We can commute the SELECT_CC by inverting the condition.  This
2096   // might be needed to make this fit into a CSINV pattern.
2097   if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
2098     std::swap(TVal, FVal);
2099     std::swap(CTVal, CFVal);
2100     CC = ISD::getSetCCInverse(CC, true);
2101   }
2102 
2103   // If the constants line up, perform the transform!
2104   if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
2105     SDValue CCVal;
2106     SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
2107 
2108     FVal = Other;
2109     TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
2110                        DAG.getConstant(-1ULL, dl, Other.getValueType()));
2111 
2112     return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
2113                        CCVal, Cmp);
2114   }
2115 
2116   return Op;
2117 }
2118 
LowerADDC_ADDE_SUBC_SUBE(SDValue Op,SelectionDAG & DAG)2119 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
2120   EVT VT = Op.getValueType();
2121 
2122   // Let legalize expand this if it isn't a legal type yet.
2123   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
2124     return SDValue();
2125 
2126   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
2127 
2128   unsigned Opc;
2129   bool ExtraOp = false;
2130   switch (Op.getOpcode()) {
2131   default:
2132     llvm_unreachable("Invalid code");
2133   case ISD::ADDC:
2134     Opc = AArch64ISD::ADDS;
2135     break;
2136   case ISD::SUBC:
2137     Opc = AArch64ISD::SUBS;
2138     break;
2139   case ISD::ADDE:
2140     Opc = AArch64ISD::ADCS;
2141     ExtraOp = true;
2142     break;
2143   case ISD::SUBE:
2144     Opc = AArch64ISD::SBCS;
2145     ExtraOp = true;
2146     break;
2147   }
2148 
2149   if (!ExtraOp)
2150     return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
2151   return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
2152                      Op.getOperand(2));
2153 }
2154 
LowerXALUO(SDValue Op,SelectionDAG & DAG)2155 static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
2156   // Let legalize expand this if it isn't a legal type yet.
2157   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
2158     return SDValue();
2159 
2160   SDLoc dl(Op);
2161   AArch64CC::CondCode CC;
2162   // The actual operation that sets the overflow or carry flag.
2163   SDValue Value, Overflow;
2164   std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
2165 
2166   // We use 0 and 1 as false and true values.
2167   SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
2168   SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
2169 
2170   // We use an inverted condition, because the conditional select is inverted
2171   // too. This will allow it to be selected to a single instruction:
2172   // CSINC Wd, WZR, WZR, invert(cond).
2173   SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
2174   Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal,
2175                          CCVal, Overflow);
2176 
2177   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
2178   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
2179 }
2180 
2181 // Prefetch operands are:
2182 // 1: Address to prefetch
2183 // 2: bool isWrite
2184 // 3: int locality (0 = no locality ... 3 = extreme locality)
2185 // 4: bool isDataCache
LowerPREFETCH(SDValue Op,SelectionDAG & DAG)2186 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
2187   SDLoc DL(Op);
2188   unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2189   unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
2190   unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2191 
2192   bool IsStream = !Locality;
2193   // When the locality number is set
2194   if (Locality) {
2195     // The front-end should have filtered out the out-of-range values
2196     assert(Locality <= 3 && "Prefetch locality out-of-range");
2197     // The locality degree is the opposite of the cache speed.
2198     // Put the number the other way around.
2199     // The encoding starts at 0 for level 1
2200     Locality = 3 - Locality;
2201   }
2202 
2203   // built the mask value encoding the expected behavior.
2204   unsigned PrfOp = (IsWrite << 4) |     // Load/Store bit
2205                    (!IsData << 3) |     // IsDataCache bit
2206                    (Locality << 1) |    // Cache level bits
2207                    (unsigned)IsStream;  // Stream bit
2208   return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
2209                      DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1));
2210 }
2211 
LowerFP_EXTEND(SDValue Op,SelectionDAG & DAG) const2212 SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
2213                                               SelectionDAG &DAG) const {
2214   assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
2215 
2216   RTLIB::Libcall LC;
2217   LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
2218 
2219   return LowerF128Call(Op, DAG, LC);
2220 }
2221 
LowerFP_ROUND(SDValue Op,SelectionDAG & DAG) const2222 SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
2223                                              SelectionDAG &DAG) const {
2224   if (Op.getOperand(0).getValueType() != MVT::f128) {
2225     // It's legal except when f128 is involved
2226     return Op;
2227   }
2228 
2229   RTLIB::Libcall LC;
2230   LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
2231 
2232   // FP_ROUND node has a second operand indicating whether it is known to be
2233   // precise. That doesn't take part in the LibCall so we can't directly use
2234   // LowerF128Call.
2235   SDValue SrcVal = Op.getOperand(0);
2236   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
2237                      SDLoc(Op)).first;
2238 }
2239 
LowerVectorFP_TO_INT(SDValue Op,SelectionDAG & DAG)2240 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
2241   // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
2242   // Any additional optimization in this function should be recorded
2243   // in the cost tables.
2244   EVT InVT = Op.getOperand(0).getValueType();
2245   EVT VT = Op.getValueType();
2246   unsigned NumElts = InVT.getVectorNumElements();
2247 
2248   // f16 vectors are promoted to f32 before a conversion.
2249   if (InVT.getVectorElementType() == MVT::f16) {
2250     MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts);
2251     SDLoc dl(Op);
2252     return DAG.getNode(
2253         Op.getOpcode(), dl, Op.getValueType(),
2254         DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0)));
2255   }
2256 
2257   if (VT.getSizeInBits() < InVT.getSizeInBits()) {
2258     SDLoc dl(Op);
2259     SDValue Cv =
2260         DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
2261                     Op.getOperand(0));
2262     return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
2263   }
2264 
2265   if (VT.getSizeInBits() > InVT.getSizeInBits()) {
2266     SDLoc dl(Op);
2267     MVT ExtVT =
2268         MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
2269                          VT.getVectorNumElements());
2270     SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
2271     return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
2272   }
2273 
2274   // Type changing conversions are illegal.
2275   return Op;
2276 }
2277 
LowerFP_TO_INT(SDValue Op,SelectionDAG & DAG) const2278 SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
2279                                               SelectionDAG &DAG) const {
2280   if (Op.getOperand(0).getValueType().isVector())
2281     return LowerVectorFP_TO_INT(Op, DAG);
2282 
2283   // f16 conversions are promoted to f32 when full fp16 is not supported.
2284   if (Op.getOperand(0).getValueType() == MVT::f16 &&
2285       !Subtarget->hasFullFP16()) {
2286     SDLoc dl(Op);
2287     return DAG.getNode(
2288         Op.getOpcode(), dl, Op.getValueType(),
2289         DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Op.getOperand(0)));
2290   }
2291 
2292   if (Op.getOperand(0).getValueType() != MVT::f128) {
2293     // It's legal except when f128 is involved
2294     return Op;
2295   }
2296 
2297   RTLIB::Libcall LC;
2298   if (Op.getOpcode() == ISD::FP_TO_SINT)
2299     LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
2300   else
2301     LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
2302 
2303   SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
2304   return makeLibCall(DAG, LC, Op.getValueType(), Ops, false, SDLoc(Op)).first;
2305 }
2306 
LowerVectorINT_TO_FP(SDValue Op,SelectionDAG & DAG)2307 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2308   // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
2309   // Any additional optimization in this function should be recorded
2310   // in the cost tables.
2311   EVT VT = Op.getValueType();
2312   SDLoc dl(Op);
2313   SDValue In = Op.getOperand(0);
2314   EVT InVT = In.getValueType();
2315 
2316   if (VT.getSizeInBits() < InVT.getSizeInBits()) {
2317     MVT CastVT =
2318         MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
2319                          InVT.getVectorNumElements());
2320     In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
2321     return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl));
2322   }
2323 
2324   if (VT.getSizeInBits() > InVT.getSizeInBits()) {
2325     unsigned CastOpc =
2326         Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2327     EVT CastVT = VT.changeVectorElementTypeToInteger();
2328     In = DAG.getNode(CastOpc, dl, CastVT, In);
2329     return DAG.getNode(Op.getOpcode(), dl, VT, In);
2330   }
2331 
2332   return Op;
2333 }
2334 
LowerINT_TO_FP(SDValue Op,SelectionDAG & DAG) const2335 SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
2336                                             SelectionDAG &DAG) const {
2337   if (Op.getValueType().isVector())
2338     return LowerVectorINT_TO_FP(Op, DAG);
2339 
2340   // f16 conversions are promoted to f32 when full fp16 is not supported.
2341   if (Op.getValueType() == MVT::f16 &&
2342       !Subtarget->hasFullFP16()) {
2343     SDLoc dl(Op);
2344     return DAG.getNode(
2345         ISD::FP_ROUND, dl, MVT::f16,
2346         DAG.getNode(Op.getOpcode(), dl, MVT::f32, Op.getOperand(0)),
2347         DAG.getIntPtrConstant(0, dl));
2348   }
2349 
2350   // i128 conversions are libcalls.
2351   if (Op.getOperand(0).getValueType() == MVT::i128)
2352     return SDValue();
2353 
2354   // Other conversions are legal, unless it's to the completely software-based
2355   // fp128.
2356   if (Op.getValueType() != MVT::f128)
2357     return Op;
2358 
2359   RTLIB::Libcall LC;
2360   if (Op.getOpcode() == ISD::SINT_TO_FP)
2361     LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2362   else
2363     LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2364 
2365   return LowerF128Call(Op, DAG, LC);
2366 }
2367 
LowerFSINCOS(SDValue Op,SelectionDAG & DAG) const2368 SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
2369                                             SelectionDAG &DAG) const {
2370   // For iOS, we want to call an alternative entry point: __sincos_stret,
2371   // which returns the values in two S / D registers.
2372   SDLoc dl(Op);
2373   SDValue Arg = Op.getOperand(0);
2374   EVT ArgVT = Arg.getValueType();
2375   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2376 
2377   ArgListTy Args;
2378   ArgListEntry Entry;
2379 
2380   Entry.Node = Arg;
2381   Entry.Ty = ArgTy;
2382   Entry.IsSExt = false;
2383   Entry.IsZExt = false;
2384   Args.push_back(Entry);
2385 
2386   RTLIB::Libcall LC = ArgVT == MVT::f64 ? RTLIB::SINCOS_STRET_F64
2387                                         : RTLIB::SINCOS_STRET_F32;
2388   const char *LibcallName = getLibcallName(LC);
2389   SDValue Callee =
2390       DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout()));
2391 
2392   StructType *RetTy = StructType::get(ArgTy, ArgTy);
2393   TargetLowering::CallLoweringInfo CLI(DAG);
2394   CLI.setDebugLoc(dl)
2395       .setChain(DAG.getEntryNode())
2396       .setLibCallee(CallingConv::Fast, RetTy, Callee, std::move(Args));
2397 
2398   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2399   return CallResult.first;
2400 }
2401 
LowerBITCAST(SDValue Op,SelectionDAG & DAG)2402 static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
2403   if (Op.getValueType() != MVT::f16)
2404     return SDValue();
2405 
2406   assert(Op.getOperand(0).getValueType() == MVT::i16);
2407   SDLoc DL(Op);
2408 
2409   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
2410   Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
2411   return SDValue(
2412       DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
2413                          DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
2414       0);
2415 }
2416 
getExtensionTo64Bits(const EVT & OrigVT)2417 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
2418   if (OrigVT.getSizeInBits() >= 64)
2419     return OrigVT;
2420 
2421   assert(OrigVT.isSimple() && "Expecting a simple value type");
2422 
2423   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
2424   switch (OrigSimpleTy) {
2425   default: llvm_unreachable("Unexpected Vector Type");
2426   case MVT::v2i8:
2427   case MVT::v2i16:
2428      return MVT::v2i32;
2429   case MVT::v4i8:
2430     return  MVT::v4i16;
2431   }
2432 }
2433 
addRequiredExtensionForVectorMULL(SDValue N,SelectionDAG & DAG,const EVT & OrigTy,const EVT & ExtTy,unsigned ExtOpcode)2434 static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
2435                                                  const EVT &OrigTy,
2436                                                  const EVT &ExtTy,
2437                                                  unsigned ExtOpcode) {
2438   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
2439   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
2440   // 64-bits we need to insert a new extension so that it will be 64-bits.
2441   assert(ExtTy.is128BitVector() && "Unexpected extension size");
2442   if (OrigTy.getSizeInBits() >= 64)
2443     return N;
2444 
2445   // Must extend size to at least 64 bits to be used as an operand for VMULL.
2446   EVT NewVT = getExtensionTo64Bits(OrigTy);
2447 
2448   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
2449 }
2450 
isExtendedBUILD_VECTOR(SDNode * N,SelectionDAG & DAG,bool isSigned)2451 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
2452                                    bool isSigned) {
2453   EVT VT = N->getValueType(0);
2454 
2455   if (N->getOpcode() != ISD::BUILD_VECTOR)
2456     return false;
2457 
2458   for (const SDValue &Elt : N->op_values()) {
2459     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
2460       unsigned EltSize = VT.getScalarSizeInBits();
2461       unsigned HalfSize = EltSize / 2;
2462       if (isSigned) {
2463         if (!isIntN(HalfSize, C->getSExtValue()))
2464           return false;
2465       } else {
2466         if (!isUIntN(HalfSize, C->getZExtValue()))
2467           return false;
2468       }
2469       continue;
2470     }
2471     return false;
2472   }
2473 
2474   return true;
2475 }
2476 
skipExtensionForVectorMULL(SDNode * N,SelectionDAG & DAG)2477 static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
2478   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
2479     return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
2480                                              N->getOperand(0)->getValueType(0),
2481                                              N->getValueType(0),
2482                                              N->getOpcode());
2483 
2484   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
2485   EVT VT = N->getValueType(0);
2486   SDLoc dl(N);
2487   unsigned EltSize = VT.getScalarSizeInBits() / 2;
2488   unsigned NumElts = VT.getVectorNumElements();
2489   MVT TruncVT = MVT::getIntegerVT(EltSize);
2490   SmallVector<SDValue, 8> Ops;
2491   for (unsigned i = 0; i != NumElts; ++i) {
2492     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
2493     const APInt &CInt = C->getAPIntValue();
2494     // Element types smaller than 32 bits are not legal, so use i32 elements.
2495     // The values are implicitly truncated so sext vs. zext doesn't matter.
2496     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
2497   }
2498   return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
2499 }
2500 
isSignExtended(SDNode * N,SelectionDAG & DAG)2501 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
2502   return N->getOpcode() == ISD::SIGN_EXTEND ||
2503          isExtendedBUILD_VECTOR(N, DAG, true);
2504 }
2505 
isZeroExtended(SDNode * N,SelectionDAG & DAG)2506 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
2507   return N->getOpcode() == ISD::ZERO_EXTEND ||
2508          isExtendedBUILD_VECTOR(N, DAG, false);
2509 }
2510 
isAddSubSExt(SDNode * N,SelectionDAG & DAG)2511 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
2512   unsigned Opcode = N->getOpcode();
2513   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2514     SDNode *N0 = N->getOperand(0).getNode();
2515     SDNode *N1 = N->getOperand(1).getNode();
2516     return N0->hasOneUse() && N1->hasOneUse() &&
2517       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
2518   }
2519   return false;
2520 }
2521 
isAddSubZExt(SDNode * N,SelectionDAG & DAG)2522 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
2523   unsigned Opcode = N->getOpcode();
2524   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2525     SDNode *N0 = N->getOperand(0).getNode();
2526     SDNode *N1 = N->getOperand(1).getNode();
2527     return N0->hasOneUse() && N1->hasOneUse() &&
2528       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
2529   }
2530   return false;
2531 }
2532 
LowerFLT_ROUNDS_(SDValue Op,SelectionDAG & DAG) const2533 SDValue AArch64TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
2534                                                 SelectionDAG &DAG) const {
2535   // The rounding mode is in bits 23:22 of the FPSCR.
2536   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
2537   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
2538   // so that the shift + and get folded into a bitfield extract.
2539   SDLoc dl(Op);
2540 
2541   SDValue FPCR_64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i64,
2542                                 DAG.getConstant(Intrinsic::aarch64_get_fpcr, dl,
2543                                                 MVT::i64));
2544   SDValue FPCR_32 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, FPCR_64);
2545   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPCR_32,
2546                                   DAG.getConstant(1U << 22, dl, MVT::i32));
2547   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
2548                               DAG.getConstant(22, dl, MVT::i32));
2549   return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
2550                      DAG.getConstant(3, dl, MVT::i32));
2551 }
2552 
LowerMUL(SDValue Op,SelectionDAG & DAG)2553 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
2554   // Multiplications are only custom-lowered for 128-bit vectors so that
2555   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
2556   EVT VT = Op.getValueType();
2557   assert(VT.is128BitVector() && VT.isInteger() &&
2558          "unexpected type for custom-lowering ISD::MUL");
2559   SDNode *N0 = Op.getOperand(0).getNode();
2560   SDNode *N1 = Op.getOperand(1).getNode();
2561   unsigned NewOpc = 0;
2562   bool isMLA = false;
2563   bool isN0SExt = isSignExtended(N0, DAG);
2564   bool isN1SExt = isSignExtended(N1, DAG);
2565   if (isN0SExt && isN1SExt)
2566     NewOpc = AArch64ISD::SMULL;
2567   else {
2568     bool isN0ZExt = isZeroExtended(N0, DAG);
2569     bool isN1ZExt = isZeroExtended(N1, DAG);
2570     if (isN0ZExt && isN1ZExt)
2571       NewOpc = AArch64ISD::UMULL;
2572     else if (isN1SExt || isN1ZExt) {
2573       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
2574       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
2575       if (isN1SExt && isAddSubSExt(N0, DAG)) {
2576         NewOpc = AArch64ISD::SMULL;
2577         isMLA = true;
2578       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
2579         NewOpc =  AArch64ISD::UMULL;
2580         isMLA = true;
2581       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
2582         std::swap(N0, N1);
2583         NewOpc =  AArch64ISD::UMULL;
2584         isMLA = true;
2585       }
2586     }
2587 
2588     if (!NewOpc) {
2589       if (VT == MVT::v2i64)
2590         // Fall through to expand this.  It is not legal.
2591         return SDValue();
2592       else
2593         // Other vector multiplications are legal.
2594         return Op;
2595     }
2596   }
2597 
2598   // Legalize to a S/UMULL instruction
2599   SDLoc DL(Op);
2600   SDValue Op0;
2601   SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
2602   if (!isMLA) {
2603     Op0 = skipExtensionForVectorMULL(N0, DAG);
2604     assert(Op0.getValueType().is64BitVector() &&
2605            Op1.getValueType().is64BitVector() &&
2606            "unexpected types for extended operands to VMULL");
2607     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
2608   }
2609   // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
2610   // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
2611   // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
2612   SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
2613   SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
2614   EVT Op1VT = Op1.getValueType();
2615   return DAG.getNode(N0->getOpcode(), DL, VT,
2616                      DAG.getNode(NewOpc, DL, VT,
2617                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
2618                      DAG.getNode(NewOpc, DL, VT,
2619                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
2620 }
2621 
2622 // Lower vector multiply high (ISD::MULHS and ISD::MULHU).
LowerMULH(SDValue Op,SelectionDAG & DAG)2623 static SDValue LowerMULH(SDValue Op, SelectionDAG &DAG) {
2624   // Multiplications are only custom-lowered for 128-bit vectors so that
2625   // {S,U}MULL{2} can be detected.  Otherwise v2i64 multiplications are not
2626   // legal.
2627   EVT VT = Op.getValueType();
2628   assert(VT.is128BitVector() && VT.isInteger() &&
2629          "unexpected type for custom-lowering ISD::MULH{U,S}");
2630 
2631   SDValue V0 = Op.getOperand(0);
2632   SDValue V1 = Op.getOperand(1);
2633 
2634   SDLoc DL(Op);
2635 
2636   EVT ExtractVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
2637 
2638   // We turn (V0 mulhs/mulhu V1) to:
2639   //
2640   // (uzp2 (smull (extract_subvector (ExtractVT V128:V0, (i64 0)),
2641   //              (extract_subvector (ExtractVT V128:V1, (i64 0))))),
2642   //       (smull (extract_subvector (ExtractVT V128:V0, (i64 VMull2Idx)),
2643   //              (extract_subvector (ExtractVT V128:V2, (i64 VMull2Idx))))))
2644   //
2645   // Where ExtractVT is a subvector with half number of elements, and
2646   // VMullIdx2 is the index of the middle element (the high part).
2647   //
2648   // The vector hight part extract and multiply will be matched against
2649   // {S,U}MULL{v16i8_v8i16,v8i16_v4i32,v4i32_v2i64} which in turn will
2650   // issue a {s}mull2 instruction.
2651   //
2652   // This basically multiply the lower subvector with '{s,u}mull', the high
2653   // subvector with '{s,u}mull2', and shuffle both results high part in
2654   // resulting vector.
2655   unsigned Mull2VectorIdx = VT.getVectorNumElements () / 2;
2656   SDValue VMullIdx = DAG.getConstant(0, DL, MVT::i64);
2657   SDValue VMull2Idx = DAG.getConstant(Mull2VectorIdx, DL, MVT::i64);
2658 
2659   SDValue VMullV0 =
2660     DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtractVT, V0, VMullIdx);
2661   SDValue VMullV1 =
2662     DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtractVT, V1, VMullIdx);
2663 
2664   SDValue VMull2V0 =
2665     DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtractVT, V0, VMull2Idx);
2666   SDValue VMull2V1 =
2667     DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtractVT, V1, VMull2Idx);
2668 
2669   unsigned MullOpc = Op.getOpcode() == ISD::MULHS ? AArch64ISD::SMULL
2670                                                   : AArch64ISD::UMULL;
2671 
2672   EVT MullVT = ExtractVT.widenIntegerVectorElementType(*DAG.getContext());
2673   SDValue Mull  = DAG.getNode(MullOpc, DL, MullVT, VMullV0, VMullV1);
2674   SDValue Mull2 = DAG.getNode(MullOpc, DL, MullVT, VMull2V0, VMull2V1);
2675 
2676   Mull  = DAG.getNode(ISD::BITCAST, DL, VT, Mull);
2677   Mull2 = DAG.getNode(ISD::BITCAST, DL, VT, Mull2);
2678 
2679   return DAG.getNode(AArch64ISD::UZP2, DL, VT, Mull, Mull2);
2680 }
2681 
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const2682 SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2683                                                      SelectionDAG &DAG) const {
2684   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2685   SDLoc dl(Op);
2686   switch (IntNo) {
2687   default: return SDValue();    // Don't custom lower most intrinsics.
2688   case Intrinsic::thread_pointer: {
2689     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2690     return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT);
2691   }
2692   case Intrinsic::aarch64_neon_abs:
2693     return DAG.getNode(ISD::ABS, dl, Op.getValueType(),
2694                        Op.getOperand(1));
2695   case Intrinsic::aarch64_neon_smax:
2696     return DAG.getNode(ISD::SMAX, dl, Op.getValueType(),
2697                        Op.getOperand(1), Op.getOperand(2));
2698   case Intrinsic::aarch64_neon_umax:
2699     return DAG.getNode(ISD::UMAX, dl, Op.getValueType(),
2700                        Op.getOperand(1), Op.getOperand(2));
2701   case Intrinsic::aarch64_neon_smin:
2702     return DAG.getNode(ISD::SMIN, dl, Op.getValueType(),
2703                        Op.getOperand(1), Op.getOperand(2));
2704   case Intrinsic::aarch64_neon_umin:
2705     return DAG.getNode(ISD::UMIN, dl, Op.getValueType(),
2706                        Op.getOperand(1), Op.getOperand(2));
2707   }
2708 }
2709 
2710 // Custom lower trunc store for v4i8 vectors, since it is promoted to v4i16.
LowerTruncateVectorStore(SDLoc DL,StoreSDNode * ST,EVT VT,EVT MemVT,SelectionDAG & DAG)2711 static SDValue LowerTruncateVectorStore(SDLoc DL, StoreSDNode *ST,
2712                                         EVT VT, EVT MemVT,
2713                                         SelectionDAG &DAG) {
2714   assert(VT.isVector() && "VT should be a vector type");
2715   assert(MemVT == MVT::v4i8 && VT == MVT::v4i16);
2716 
2717   SDValue Value = ST->getValue();
2718 
2719   // It first extend the promoted v4i16 to v8i16, truncate to v8i8, and extract
2720   // the word lane which represent the v4i8 subvector.  It optimizes the store
2721   // to:
2722   //
2723   //   xtn  v0.8b, v0.8h
2724   //   str  s0, [x0]
2725 
2726   SDValue Undef = DAG.getUNDEF(MVT::i16);
2727   SDValue UndefVec = DAG.getBuildVector(MVT::v4i16, DL,
2728                                         {Undef, Undef, Undef, Undef});
2729 
2730   SDValue TruncExt = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16,
2731                                  Value, UndefVec);
2732   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, TruncExt);
2733 
2734   Trunc = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Trunc);
2735   SDValue ExtractTrunc = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
2736                                      Trunc, DAG.getConstant(0, DL, MVT::i64));
2737 
2738   return DAG.getStore(ST->getChain(), DL, ExtractTrunc,
2739                       ST->getBasePtr(), ST->getMemOperand());
2740 }
2741 
2742 // Custom lowering for any store, vector or scalar and/or default or with
2743 // a truncate operations.  Currently only custom lower truncate operation
2744 // from vector v4i16 to v4i8.
LowerSTORE(SDValue Op,SelectionDAG & DAG) const2745 SDValue AArch64TargetLowering::LowerSTORE(SDValue Op,
2746                                           SelectionDAG &DAG) const {
2747   SDLoc Dl(Op);
2748   StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
2749   assert (StoreNode && "Can only custom lower store nodes");
2750 
2751   SDValue Value = StoreNode->getValue();
2752 
2753   EVT VT = Value.getValueType();
2754   EVT MemVT = StoreNode->getMemoryVT();
2755 
2756   assert (VT.isVector() && "Can only custom lower vector store types");
2757 
2758   unsigned AS = StoreNode->getAddressSpace();
2759   unsigned Align = StoreNode->getAlignment();
2760   if (Align < MemVT.getStoreSize() &&
2761       !allowsMisalignedMemoryAccesses(MemVT, AS, Align, nullptr)) {
2762     return scalarizeVectorStore(StoreNode, DAG);
2763   }
2764 
2765   if (StoreNode->isTruncatingStore()) {
2766     return LowerTruncateVectorStore(Dl, StoreNode, VT, MemVT, DAG);
2767   }
2768 
2769   return SDValue();
2770 }
2771 
LowerOperation(SDValue Op,SelectionDAG & DAG) const2772 SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
2773                                               SelectionDAG &DAG) const {
2774   LLVM_DEBUG(dbgs() << "Custom lowering: ");
2775   LLVM_DEBUG(Op.dump());
2776 
2777   switch (Op.getOpcode()) {
2778   default:
2779     llvm_unreachable("unimplemented operand");
2780     return SDValue();
2781   case ISD::BITCAST:
2782     return LowerBITCAST(Op, DAG);
2783   case ISD::GlobalAddress:
2784     return LowerGlobalAddress(Op, DAG);
2785   case ISD::GlobalTLSAddress:
2786     return LowerGlobalTLSAddress(Op, DAG);
2787   case ISD::SETCC:
2788     return LowerSETCC(Op, DAG);
2789   case ISD::BR_CC:
2790     return LowerBR_CC(Op, DAG);
2791   case ISD::SELECT:
2792     return LowerSELECT(Op, DAG);
2793   case ISD::SELECT_CC:
2794     return LowerSELECT_CC(Op, DAG);
2795   case ISD::JumpTable:
2796     return LowerJumpTable(Op, DAG);
2797   case ISD::ConstantPool:
2798     return LowerConstantPool(Op, DAG);
2799   case ISD::BlockAddress:
2800     return LowerBlockAddress(Op, DAG);
2801   case ISD::VASTART:
2802     return LowerVASTART(Op, DAG);
2803   case ISD::VACOPY:
2804     return LowerVACOPY(Op, DAG);
2805   case ISD::VAARG:
2806     return LowerVAARG(Op, DAG);
2807   case ISD::ADDC:
2808   case ISD::ADDE:
2809   case ISD::SUBC:
2810   case ISD::SUBE:
2811     return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
2812   case ISD::SADDO:
2813   case ISD::UADDO:
2814   case ISD::SSUBO:
2815   case ISD::USUBO:
2816   case ISD::SMULO:
2817   case ISD::UMULO:
2818     return LowerXALUO(Op, DAG);
2819   case ISD::FADD:
2820     return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
2821   case ISD::FSUB:
2822     return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
2823   case ISD::FMUL:
2824     return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
2825   case ISD::FDIV:
2826     return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
2827   case ISD::FP_ROUND:
2828     return LowerFP_ROUND(Op, DAG);
2829   case ISD::FP_EXTEND:
2830     return LowerFP_EXTEND(Op, DAG);
2831   case ISD::FRAMEADDR:
2832     return LowerFRAMEADDR(Op, DAG);
2833   case ISD::RETURNADDR:
2834     return LowerRETURNADDR(Op, DAG);
2835   case ISD::INSERT_VECTOR_ELT:
2836     return LowerINSERT_VECTOR_ELT(Op, DAG);
2837   case ISD::EXTRACT_VECTOR_ELT:
2838     return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2839   case ISD::BUILD_VECTOR:
2840     return LowerBUILD_VECTOR(Op, DAG);
2841   case ISD::VECTOR_SHUFFLE:
2842     return LowerVECTOR_SHUFFLE(Op, DAG);
2843   case ISD::EXTRACT_SUBVECTOR:
2844     return LowerEXTRACT_SUBVECTOR(Op, DAG);
2845   case ISD::SRA:
2846   case ISD::SRL:
2847   case ISD::SHL:
2848     return LowerVectorSRA_SRL_SHL(Op, DAG);
2849   case ISD::SHL_PARTS:
2850     return LowerShiftLeftParts(Op, DAG);
2851   case ISD::SRL_PARTS:
2852   case ISD::SRA_PARTS:
2853     return LowerShiftRightParts(Op, DAG);
2854   case ISD::CTPOP:
2855     return LowerCTPOP(Op, DAG);
2856   case ISD::FCOPYSIGN:
2857     return LowerFCOPYSIGN(Op, DAG);
2858   case ISD::AND:
2859     return LowerVectorAND(Op, DAG);
2860   case ISD::OR:
2861     return LowerVectorOR(Op, DAG);
2862   case ISD::XOR:
2863     return LowerXOR(Op, DAG);
2864   case ISD::PREFETCH:
2865     return LowerPREFETCH(Op, DAG);
2866   case ISD::SINT_TO_FP:
2867   case ISD::UINT_TO_FP:
2868     return LowerINT_TO_FP(Op, DAG);
2869   case ISD::FP_TO_SINT:
2870   case ISD::FP_TO_UINT:
2871     return LowerFP_TO_INT(Op, DAG);
2872   case ISD::FSINCOS:
2873     return LowerFSINCOS(Op, DAG);
2874   case ISD::FLT_ROUNDS_:
2875     return LowerFLT_ROUNDS_(Op, DAG);
2876   case ISD::MUL:
2877     return LowerMUL(Op, DAG);
2878   case ISD::MULHS:
2879   case ISD::MULHU:
2880     return LowerMULH(Op, DAG);
2881   case ISD::INTRINSIC_WO_CHAIN:
2882     return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2883   case ISD::STORE:
2884     return LowerSTORE(Op, DAG);
2885   case ISD::VECREDUCE_ADD:
2886   case ISD::VECREDUCE_SMAX:
2887   case ISD::VECREDUCE_SMIN:
2888   case ISD::VECREDUCE_UMAX:
2889   case ISD::VECREDUCE_UMIN:
2890   case ISD::VECREDUCE_FMAX:
2891   case ISD::VECREDUCE_FMIN:
2892     return LowerVECREDUCE(Op, DAG);
2893   case ISD::ATOMIC_LOAD_SUB:
2894     return LowerATOMIC_LOAD_SUB(Op, DAG);
2895   case ISD::ATOMIC_LOAD_AND:
2896     return LowerATOMIC_LOAD_AND(Op, DAG);
2897   case ISD::DYNAMIC_STACKALLOC:
2898     return LowerDYNAMIC_STACKALLOC(Op, DAG);
2899   }
2900 }
2901 
2902 //===----------------------------------------------------------------------===//
2903 //                      Calling Convention Implementation
2904 //===----------------------------------------------------------------------===//
2905 
2906 #include "AArch64GenCallingConv.inc"
2907 
2908 /// Selects the correct CCAssignFn for a given CallingConvention value.
CCAssignFnForCall(CallingConv::ID CC,bool IsVarArg) const2909 CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
2910                                                      bool IsVarArg) const {
2911   switch (CC) {
2912   default:
2913     report_fatal_error("Unsupported calling convention.");
2914   case CallingConv::WebKit_JS:
2915     return CC_AArch64_WebKit_JS;
2916   case CallingConv::GHC:
2917     return CC_AArch64_GHC;
2918   case CallingConv::C:
2919   case CallingConv::Fast:
2920   case CallingConv::PreserveMost:
2921   case CallingConv::CXX_FAST_TLS:
2922   case CallingConv::Swift:
2923     if (Subtarget->isTargetWindows() && IsVarArg)
2924       return CC_AArch64_Win64_VarArg;
2925     if (!Subtarget->isTargetDarwin())
2926       return CC_AArch64_AAPCS;
2927     return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
2928   case CallingConv::Win64:
2929     return IsVarArg ? CC_AArch64_Win64_VarArg : CC_AArch64_AAPCS;
2930   }
2931 }
2932 
2933 CCAssignFn *
CCAssignFnForReturn(CallingConv::ID CC) const2934 AArch64TargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const {
2935   return CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS
2936                                       : RetCC_AArch64_AAPCS;
2937 }
2938 
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const2939 SDValue AArch64TargetLowering::LowerFormalArguments(
2940     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2941     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2942     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2943   MachineFunction &MF = DAG.getMachineFunction();
2944   MachineFrameInfo &MFI = MF.getFrameInfo();
2945   bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv());
2946 
2947   // Assign locations to all of the incoming arguments.
2948   SmallVector<CCValAssign, 16> ArgLocs;
2949   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2950                  *DAG.getContext());
2951 
2952   // At this point, Ins[].VT may already be promoted to i32. To correctly
2953   // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2954   // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2955   // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
2956   // we use a special version of AnalyzeFormalArguments to pass in ValVT and
2957   // LocVT.
2958   unsigned NumArgs = Ins.size();
2959   Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
2960   unsigned CurArgIdx = 0;
2961   for (unsigned i = 0; i != NumArgs; ++i) {
2962     MVT ValVT = Ins[i].VT;
2963     if (Ins[i].isOrigArg()) {
2964       std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
2965       CurArgIdx = Ins[i].getOrigArgIndex();
2966 
2967       // Get type of the original argument.
2968       EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(),
2969                                   /*AllowUnknown*/ true);
2970       MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
2971       // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
2972       if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
2973         ValVT = MVT::i8;
2974       else if (ActualMVT == MVT::i16)
2975         ValVT = MVT::i16;
2976     }
2977     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2978     bool Res =
2979         AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
2980     assert(!Res && "Call operand has unhandled type");
2981     (void)Res;
2982   }
2983   assert(ArgLocs.size() == Ins.size());
2984   SmallVector<SDValue, 16> ArgValues;
2985   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2986     CCValAssign &VA = ArgLocs[i];
2987 
2988     if (Ins[i].Flags.isByVal()) {
2989       // Byval is used for HFAs in the PCS, but the system should work in a
2990       // non-compliant manner for larger structs.
2991       EVT PtrVT = getPointerTy(DAG.getDataLayout());
2992       int Size = Ins[i].Flags.getByValSize();
2993       unsigned NumRegs = (Size + 7) / 8;
2994 
2995       // FIXME: This works on big-endian for composite byvals, which are the common
2996       // case. It should also work for fundamental types too.
2997       unsigned FrameIdx =
2998         MFI.CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
2999       SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT);
3000       InVals.push_back(FrameIdxN);
3001 
3002       continue;
3003     }
3004 
3005     if (VA.isRegLoc()) {
3006       // Arguments stored in registers.
3007       EVT RegVT = VA.getLocVT();
3008 
3009       SDValue ArgValue;
3010       const TargetRegisterClass *RC;
3011 
3012       if (RegVT == MVT::i32)
3013         RC = &AArch64::GPR32RegClass;
3014       else if (RegVT == MVT::i64)
3015         RC = &AArch64::GPR64RegClass;
3016       else if (RegVT == MVT::f16)
3017         RC = &AArch64::FPR16RegClass;
3018       else if (RegVT == MVT::f32)
3019         RC = &AArch64::FPR32RegClass;
3020       else if (RegVT == MVT::f64 || RegVT.is64BitVector())
3021         RC = &AArch64::FPR64RegClass;
3022       else if (RegVT == MVT::f128 || RegVT.is128BitVector())
3023         RC = &AArch64::FPR128RegClass;
3024       else
3025         llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3026 
3027       // Transform the arguments in physical registers into virtual ones.
3028       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3029       ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
3030 
3031       // If this is an 8, 16 or 32-bit value, it is really passed promoted
3032       // to 64 bits.  Insert an assert[sz]ext to capture this, then
3033       // truncate to the right size.
3034       switch (VA.getLocInfo()) {
3035       default:
3036         llvm_unreachable("Unknown loc info!");
3037       case CCValAssign::Full:
3038         break;
3039       case CCValAssign::BCvt:
3040         ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
3041         break;
3042       case CCValAssign::AExt:
3043       case CCValAssign::SExt:
3044       case CCValAssign::ZExt:
3045         // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
3046         // nodes after our lowering.
3047         assert(RegVT == Ins[i].VT && "incorrect register location selected");
3048         break;
3049       }
3050 
3051       InVals.push_back(ArgValue);
3052 
3053     } else { // VA.isRegLoc()
3054       assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
3055       unsigned ArgOffset = VA.getLocMemOffset();
3056       unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
3057 
3058       uint32_t BEAlign = 0;
3059       if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
3060           !Ins[i].Flags.isInConsecutiveRegs())
3061         BEAlign = 8 - ArgSize;
3062 
3063       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
3064 
3065       // Create load nodes to retrieve arguments from the stack.
3066       SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3067       SDValue ArgValue;
3068 
3069       // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
3070       ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
3071       MVT MemVT = VA.getValVT();
3072 
3073       switch (VA.getLocInfo()) {
3074       default:
3075         break;
3076       case CCValAssign::BCvt:
3077         MemVT = VA.getLocVT();
3078         break;
3079       case CCValAssign::SExt:
3080         ExtType = ISD::SEXTLOAD;
3081         break;
3082       case CCValAssign::ZExt:
3083         ExtType = ISD::ZEXTLOAD;
3084         break;
3085       case CCValAssign::AExt:
3086         ExtType = ISD::EXTLOAD;
3087         break;
3088       }
3089 
3090       ArgValue = DAG.getExtLoad(
3091           ExtType, DL, VA.getLocVT(), Chain, FIN,
3092           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
3093           MemVT);
3094 
3095       InVals.push_back(ArgValue);
3096     }
3097   }
3098 
3099   // varargs
3100   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3101   if (isVarArg) {
3102     if (!Subtarget->isTargetDarwin() || IsWin64) {
3103       // The AAPCS variadic function ABI is identical to the non-variadic
3104       // one. As a result there may be more arguments in registers and we should
3105       // save them for future reference.
3106       // Win64 variadic functions also pass arguments in registers, but all float
3107       // arguments are passed in integer registers.
3108       saveVarArgRegisters(CCInfo, DAG, DL, Chain);
3109     }
3110 
3111     // This will point to the next argument passed via stack.
3112     unsigned StackOffset = CCInfo.getNextStackOffset();
3113     // We currently pass all varargs at 8-byte alignment.
3114     StackOffset = ((StackOffset + 7) & ~7);
3115     FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));
3116   }
3117 
3118   unsigned StackArgSize = CCInfo.getNextStackOffset();
3119   bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3120   if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
3121     // This is a non-standard ABI so by fiat I say we're allowed to make full
3122     // use of the stack area to be popped, which must be aligned to 16 bytes in
3123     // any case:
3124     StackArgSize = alignTo(StackArgSize, 16);
3125 
3126     // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
3127     // a multiple of 16.
3128     FuncInfo->setArgumentStackToRestore(StackArgSize);
3129 
3130     // This realignment carries over to the available bytes below. Our own
3131     // callers will guarantee the space is free by giving an aligned value to
3132     // CALLSEQ_START.
3133   }
3134   // Even if we're not expected to free up the space, it's useful to know how
3135   // much is there while considering tail calls (because we can reuse it).
3136   FuncInfo->setBytesInStackArgArea(StackArgSize);
3137 
3138   return Chain;
3139 }
3140 
saveVarArgRegisters(CCState & CCInfo,SelectionDAG & DAG,const SDLoc & DL,SDValue & Chain) const3141 void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
3142                                                 SelectionDAG &DAG,
3143                                                 const SDLoc &DL,
3144                                                 SDValue &Chain) const {
3145   MachineFunction &MF = DAG.getMachineFunction();
3146   MachineFrameInfo &MFI = MF.getFrameInfo();
3147   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3148   auto PtrVT = getPointerTy(DAG.getDataLayout());
3149   bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv());
3150 
3151   SmallVector<SDValue, 8> MemOps;
3152 
3153   static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
3154                                           AArch64::X3, AArch64::X4, AArch64::X5,
3155                                           AArch64::X6, AArch64::X7 };
3156   static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
3157   unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
3158 
3159   unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
3160   int GPRIdx = 0;
3161   if (GPRSaveSize != 0) {
3162     if (IsWin64) {
3163       GPRIdx = MFI.CreateFixedObject(GPRSaveSize, -(int)GPRSaveSize, false);
3164       if (GPRSaveSize & 15)
3165         // The extra size here, if triggered, will always be 8.
3166         MFI.CreateFixedObject(16 - (GPRSaveSize & 15), -(int)alignTo(GPRSaveSize, 16), false);
3167     } else
3168       GPRIdx = MFI.CreateStackObject(GPRSaveSize, 8, false);
3169 
3170     SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT);
3171 
3172     for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
3173       unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
3174       SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
3175       SDValue Store = DAG.getStore(
3176           Val.getValue(1), DL, Val, FIN,
3177           IsWin64
3178               ? MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
3179                                                   GPRIdx,
3180                                                   (i - FirstVariadicGPR) * 8)
3181               : MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8));
3182       MemOps.push_back(Store);
3183       FIN =
3184           DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT));
3185     }
3186   }
3187   FuncInfo->setVarArgsGPRIndex(GPRIdx);
3188   FuncInfo->setVarArgsGPRSize(GPRSaveSize);
3189 
3190   if (Subtarget->hasFPARMv8() && !IsWin64) {
3191     static const MCPhysReg FPRArgRegs[] = {
3192         AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
3193         AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
3194     static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
3195     unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
3196 
3197     unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
3198     int FPRIdx = 0;
3199     if (FPRSaveSize != 0) {
3200       FPRIdx = MFI.CreateStackObject(FPRSaveSize, 16, false);
3201 
3202       SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT);
3203 
3204       for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
3205         unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
3206         SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
3207 
3208         SDValue Store = DAG.getStore(
3209             Val.getValue(1), DL, Val, FIN,
3210             MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16));
3211         MemOps.push_back(Store);
3212         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
3213                           DAG.getConstant(16, DL, PtrVT));
3214       }
3215     }
3216     FuncInfo->setVarArgsFPRIndex(FPRIdx);
3217     FuncInfo->setVarArgsFPRSize(FPRSaveSize);
3218   }
3219 
3220   if (!MemOps.empty()) {
3221     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3222   }
3223 }
3224 
3225 /// LowerCallResult - Lower the result values of a call into the
3226 /// appropriate copies out of appropriate physical registers.
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,bool isThisReturn,SDValue ThisVal) const3227 SDValue AArch64TargetLowering::LowerCallResult(
3228     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
3229     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3230     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
3231     SDValue ThisVal) const {
3232   CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3233                           ? RetCC_AArch64_WebKit_JS
3234                           : RetCC_AArch64_AAPCS;
3235   // Assign locations to each value returned by this call.
3236   SmallVector<CCValAssign, 16> RVLocs;
3237   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3238                  *DAG.getContext());
3239   CCInfo.AnalyzeCallResult(Ins, RetCC);
3240 
3241   // Copy all of the result registers out of their specified physreg.
3242   for (unsigned i = 0; i != RVLocs.size(); ++i) {
3243     CCValAssign VA = RVLocs[i];
3244 
3245     // Pass 'this' value directly from the argument to return value, to avoid
3246     // reg unit interference
3247     if (i == 0 && isThisReturn) {
3248       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
3249              "unexpected return calling convention register assignment");
3250       InVals.push_back(ThisVal);
3251       continue;
3252     }
3253 
3254     SDValue Val =
3255         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
3256     Chain = Val.getValue(1);
3257     InFlag = Val.getValue(2);
3258 
3259     switch (VA.getLocInfo()) {
3260     default:
3261       llvm_unreachable("Unknown loc info!");
3262     case CCValAssign::Full:
3263       break;
3264     case CCValAssign::BCvt:
3265       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
3266       break;
3267     }
3268 
3269     InVals.push_back(Val);
3270   }
3271 
3272   return Chain;
3273 }
3274 
3275 /// Return true if the calling convention is one that we can guarantee TCO for.
canGuaranteeTCO(CallingConv::ID CC)3276 static bool canGuaranteeTCO(CallingConv::ID CC) {
3277   return CC == CallingConv::Fast;
3278 }
3279 
3280 /// Return true if we might ever do TCO for calls with this calling convention.
mayTailCallThisCC(CallingConv::ID CC)3281 static bool mayTailCallThisCC(CallingConv::ID CC) {
3282   switch (CC) {
3283   case CallingConv::C:
3284   case CallingConv::PreserveMost:
3285   case CallingConv::Swift:
3286     return true;
3287   default:
3288     return canGuaranteeTCO(CC);
3289   }
3290 }
3291 
isEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const3292 bool AArch64TargetLowering::isEligibleForTailCallOptimization(
3293     SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
3294     const SmallVectorImpl<ISD::OutputArg> &Outs,
3295     const SmallVectorImpl<SDValue> &OutVals,
3296     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
3297   if (!mayTailCallThisCC(CalleeCC))
3298     return false;
3299 
3300   MachineFunction &MF = DAG.getMachineFunction();
3301   const Function &CallerF = MF.getFunction();
3302   CallingConv::ID CallerCC = CallerF.getCallingConv();
3303   bool CCMatch = CallerCC == CalleeCC;
3304 
3305   // Byval parameters hand the function a pointer directly into the stack area
3306   // we want to reuse during a tail call. Working around this *is* possible (see
3307   // X86) but less efficient and uglier in LowerCall.
3308   for (Function::const_arg_iterator i = CallerF.arg_begin(),
3309                                     e = CallerF.arg_end();
3310        i != e; ++i)
3311     if (i->hasByValAttr())
3312       return false;
3313 
3314   if (getTargetMachine().Options.GuaranteedTailCallOpt)
3315     return canGuaranteeTCO(CalleeCC) && CCMatch;
3316 
3317   // Externally-defined functions with weak linkage should not be
3318   // tail-called on AArch64 when the OS does not support dynamic
3319   // pre-emption of symbols, as the AAELF spec requires normal calls
3320   // to undefined weak functions to be replaced with a NOP or jump to the
3321   // next instruction. The behaviour of branch instructions in this
3322   // situation (as used for tail calls) is implementation-defined, so we
3323   // cannot rely on the linker replacing the tail call with a return.
3324   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3325     const GlobalValue *GV = G->getGlobal();
3326     const Triple &TT = getTargetMachine().getTargetTriple();
3327     if (GV->hasExternalWeakLinkage() &&
3328         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
3329       return false;
3330   }
3331 
3332   // Now we search for cases where we can use a tail call without changing the
3333   // ABI. Sibcall is used in some places (particularly gcc) to refer to this
3334   // concept.
3335 
3336   // I want anyone implementing a new calling convention to think long and hard
3337   // about this assert.
3338   assert((!isVarArg || CalleeCC == CallingConv::C) &&
3339          "Unexpected variadic calling convention");
3340 
3341   LLVMContext &C = *DAG.getContext();
3342   if (isVarArg && !Outs.empty()) {
3343     // At least two cases here: if caller is fastcc then we can't have any
3344     // memory arguments (we'd be expected to clean up the stack afterwards). If
3345     // caller is C then we could potentially use its argument area.
3346 
3347     // FIXME: for now we take the most conservative of these in both cases:
3348     // disallow all variadic memory operands.
3349     SmallVector<CCValAssign, 16> ArgLocs;
3350     CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
3351 
3352     CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
3353     for (const CCValAssign &ArgLoc : ArgLocs)
3354       if (!ArgLoc.isRegLoc())
3355         return false;
3356   }
3357 
3358   // Check that the call results are passed in the same way.
3359   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
3360                                   CCAssignFnForCall(CalleeCC, isVarArg),
3361                                   CCAssignFnForCall(CallerCC, isVarArg)))
3362     return false;
3363   // The callee has to preserve all registers the caller needs to preserve.
3364   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
3365   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
3366   if (!CCMatch) {
3367     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
3368     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
3369       return false;
3370   }
3371 
3372   // Nothing more to check if the callee is taking no arguments
3373   if (Outs.empty())
3374     return true;
3375 
3376   SmallVector<CCValAssign, 16> ArgLocs;
3377   CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
3378 
3379   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
3380 
3381   const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3382 
3383   // If the stack arguments for this call do not fit into our own save area then
3384   // the call cannot be made tail.
3385   if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
3386     return false;
3387 
3388   const MachineRegisterInfo &MRI = MF.getRegInfo();
3389   if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
3390     return false;
3391 
3392   return true;
3393 }
3394 
addTokenForArgument(SDValue Chain,SelectionDAG & DAG,MachineFrameInfo & MFI,int ClobberedFI) const3395 SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
3396                                                    SelectionDAG &DAG,
3397                                                    MachineFrameInfo &MFI,
3398                                                    int ClobberedFI) const {
3399   SmallVector<SDValue, 8> ArgChains;
3400   int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
3401   int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
3402 
3403   // Include the original chain at the beginning of the list. When this is
3404   // used by target LowerCall hooks, this helps legalize find the
3405   // CALLSEQ_BEGIN node.
3406   ArgChains.push_back(Chain);
3407 
3408   // Add a chain value for each stack argument corresponding
3409   for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
3410                             UE = DAG.getEntryNode().getNode()->use_end();
3411        U != UE; ++U)
3412     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3413       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3414         if (FI->getIndex() < 0) {
3415           int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
3416           int64_t InLastByte = InFirstByte;
3417           InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
3418 
3419           if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
3420               (FirstByte <= InFirstByte && InFirstByte <= LastByte))
3421             ArgChains.push_back(SDValue(L, 1));
3422         }
3423 
3424   // Build a tokenfactor for all the chains.
3425   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
3426 }
3427 
DoesCalleeRestoreStack(CallingConv::ID CallCC,bool TailCallOpt) const3428 bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
3429                                                    bool TailCallOpt) const {
3430   return CallCC == CallingConv::Fast && TailCallOpt;
3431 }
3432 
3433 /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
3434 /// and add input and output parameter nodes.
3435 SDValue
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const3436 AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
3437                                  SmallVectorImpl<SDValue> &InVals) const {
3438   SelectionDAG &DAG = CLI.DAG;
3439   SDLoc &DL = CLI.DL;
3440   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3441   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
3442   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
3443   SDValue Chain = CLI.Chain;
3444   SDValue Callee = CLI.Callee;
3445   bool &IsTailCall = CLI.IsTailCall;
3446   CallingConv::ID CallConv = CLI.CallConv;
3447   bool IsVarArg = CLI.IsVarArg;
3448 
3449   MachineFunction &MF = DAG.getMachineFunction();
3450   bool IsThisReturn = false;
3451 
3452   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3453   bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3454   bool IsSibCall = false;
3455 
3456   if (IsTailCall) {
3457     // Check if it's really possible to do a tail call.
3458     IsTailCall = isEligibleForTailCallOptimization(
3459         Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
3460     if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall())
3461       report_fatal_error("failed to perform tail call elimination on a call "
3462                          "site marked musttail");
3463 
3464     // A sibling call is one where we're under the usual C ABI and not planning
3465     // to change that but can still do a tail call:
3466     if (!TailCallOpt && IsTailCall)
3467       IsSibCall = true;
3468 
3469     if (IsTailCall)
3470       ++NumTailCalls;
3471   }
3472 
3473   // Analyze operands of the call, assigning locations to each operand.
3474   SmallVector<CCValAssign, 16> ArgLocs;
3475   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
3476                  *DAG.getContext());
3477 
3478   if (IsVarArg) {
3479     // Handle fixed and variable vector arguments differently.
3480     // Variable vector arguments always go into memory.
3481     unsigned NumArgs = Outs.size();
3482 
3483     for (unsigned i = 0; i != NumArgs; ++i) {
3484       MVT ArgVT = Outs[i].VT;
3485       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3486       CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
3487                                                /*IsVarArg=*/ !Outs[i].IsFixed);
3488       bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3489       assert(!Res && "Call operand has unhandled type");
3490       (void)Res;
3491     }
3492   } else {
3493     // At this point, Outs[].VT may already be promoted to i32. To correctly
3494     // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
3495     // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
3496     // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
3497     // we use a special version of AnalyzeCallOperands to pass in ValVT and
3498     // LocVT.
3499     unsigned NumArgs = Outs.size();
3500     for (unsigned i = 0; i != NumArgs; ++i) {
3501       MVT ValVT = Outs[i].VT;
3502       // Get type of the original argument.
3503       EVT ActualVT = getValueType(DAG.getDataLayout(),
3504                                   CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
3505                                   /*AllowUnknown*/ true);
3506       MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
3507       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3508       // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
3509       if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
3510         ValVT = MVT::i8;
3511       else if (ActualMVT == MVT::i16)
3512         ValVT = MVT::i16;
3513 
3514       CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
3515       bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
3516       assert(!Res && "Call operand has unhandled type");
3517       (void)Res;
3518     }
3519   }
3520 
3521   // Get a count of how many bytes are to be pushed on the stack.
3522   unsigned NumBytes = CCInfo.getNextStackOffset();
3523 
3524   if (IsSibCall) {
3525     // Since we're not changing the ABI to make this a tail call, the memory
3526     // operands are already available in the caller's incoming argument space.
3527     NumBytes = 0;
3528   }
3529 
3530   // FPDiff is the byte offset of the call's argument area from the callee's.
3531   // Stores to callee stack arguments will be placed in FixedStackSlots offset
3532   // by this amount for a tail call. In a sibling call it must be 0 because the
3533   // caller will deallocate the entire stack and the callee still expects its
3534   // arguments to begin at SP+0. Completely unused for non-tail calls.
3535   int FPDiff = 0;
3536 
3537   if (IsTailCall && !IsSibCall) {
3538     unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
3539 
3540     // Since callee will pop argument stack as a tail call, we must keep the
3541     // popped size 16-byte aligned.
3542     NumBytes = alignTo(NumBytes, 16);
3543 
3544     // FPDiff will be negative if this tail call requires more space than we
3545     // would automatically have in our incoming argument space. Positive if we
3546     // can actually shrink the stack.
3547     FPDiff = NumReusableBytes - NumBytes;
3548 
3549     // The stack pointer must be 16-byte aligned at all times it's used for a
3550     // memory operation, which in practice means at *all* times and in
3551     // particular across call boundaries. Therefore our own arguments started at
3552     // a 16-byte aligned SP and the delta applied for the tail call should
3553     // satisfy the same constraint.
3554     assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
3555   }
3556 
3557   // Adjust the stack pointer for the new arguments...
3558   // These operations are automatically eliminated by the prolog/epilog pass
3559   if (!IsSibCall)
3560     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
3561 
3562   SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP,
3563                                         getPointerTy(DAG.getDataLayout()));
3564 
3565   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3566   SmallVector<SDValue, 8> MemOpChains;
3567   auto PtrVT = getPointerTy(DAG.getDataLayout());
3568 
3569   // Walk the register/memloc assignments, inserting copies/loads.
3570   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
3571        ++i, ++realArgIdx) {
3572     CCValAssign &VA = ArgLocs[i];
3573     SDValue Arg = OutVals[realArgIdx];
3574     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
3575 
3576     // Promote the value if needed.
3577     switch (VA.getLocInfo()) {
3578     default:
3579       llvm_unreachable("Unknown loc info!");
3580     case CCValAssign::Full:
3581       break;
3582     case CCValAssign::SExt:
3583       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3584       break;
3585     case CCValAssign::ZExt:
3586       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3587       break;
3588     case CCValAssign::AExt:
3589       if (Outs[realArgIdx].ArgVT == MVT::i1) {
3590         // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
3591         Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
3592         Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
3593       }
3594       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3595       break;
3596     case CCValAssign::BCvt:
3597       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3598       break;
3599     case CCValAssign::FPExt:
3600       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3601       break;
3602     }
3603 
3604     if (VA.isRegLoc()) {
3605       if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
3606           Outs[0].VT == MVT::i64) {
3607         assert(VA.getLocVT() == MVT::i64 &&
3608                "unexpected calling convention register assignment");
3609         assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
3610                "unexpected use of 'returned'");
3611         IsThisReturn = true;
3612       }
3613       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3614     } else {
3615       assert(VA.isMemLoc());
3616 
3617       SDValue DstAddr;
3618       MachinePointerInfo DstInfo;
3619 
3620       // FIXME: This works on big-endian for composite byvals, which are the
3621       // common case. It should also work for fundamental types too.
3622       uint32_t BEAlign = 0;
3623       unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
3624                                         : VA.getValVT().getSizeInBits();
3625       OpSize = (OpSize + 7) / 8;
3626       if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
3627           !Flags.isInConsecutiveRegs()) {
3628         if (OpSize < 8)
3629           BEAlign = 8 - OpSize;
3630       }
3631       unsigned LocMemOffset = VA.getLocMemOffset();
3632       int32_t Offset = LocMemOffset + BEAlign;
3633       SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
3634       PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
3635 
3636       if (IsTailCall) {
3637         Offset = Offset + FPDiff;
3638         int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
3639 
3640         DstAddr = DAG.getFrameIndex(FI, PtrVT);
3641         DstInfo =
3642             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
3643 
3644         // Make sure any stack arguments overlapping with where we're storing
3645         // are loaded before this eventual operation. Otherwise they'll be
3646         // clobbered.
3647         Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
3648       } else {
3649         SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
3650 
3651         DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
3652         DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(),
3653                                                LocMemOffset);
3654       }
3655 
3656       if (Outs[i].Flags.isByVal()) {
3657         SDValue SizeNode =
3658             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64);
3659         SDValue Cpy = DAG.getMemcpy(
3660             Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
3661             /*isVol = */ false, /*AlwaysInline = */ false,
3662             /*isTailCall = */ false,
3663             DstInfo, MachinePointerInfo());
3664 
3665         MemOpChains.push_back(Cpy);
3666       } else {
3667         // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
3668         // promoted to a legal register type i32, we should truncate Arg back to
3669         // i1/i8/i16.
3670         if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
3671             VA.getValVT() == MVT::i16)
3672           Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
3673 
3674         SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo);
3675         MemOpChains.push_back(Store);
3676       }
3677     }
3678   }
3679 
3680   if (!MemOpChains.empty())
3681     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3682 
3683   // Build a sequence of copy-to-reg nodes chained together with token chain
3684   // and flag operands which copy the outgoing args into the appropriate regs.
3685   SDValue InFlag;
3686   for (auto &RegToPass : RegsToPass) {
3687     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3688                              RegToPass.second, InFlag);
3689     InFlag = Chain.getValue(1);
3690   }
3691 
3692   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3693   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3694   // node so that legalize doesn't hack it.
3695   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3696     auto GV = G->getGlobal();
3697     if (Subtarget->classifyGlobalFunctionReference(GV, getTargetMachine()) ==
3698         AArch64II::MO_GOT) {
3699       Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_GOT);
3700       Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
3701     } else if (Subtarget->isTargetCOFF() && GV->hasDLLImportStorageClass()) {
3702       assert(Subtarget->isTargetWindows() &&
3703              "Windows is the only supported COFF target");
3704       Callee = getGOT(G, DAG, AArch64II::MO_DLLIMPORT);
3705     } else {
3706       const GlobalValue *GV = G->getGlobal();
3707       Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
3708     }
3709   } else if (auto *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3710     if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3711         Subtarget->isTargetMachO()) {
3712       const char *Sym = S->getSymbol();
3713       Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT);
3714       Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
3715     } else {
3716       const char *Sym = S->getSymbol();
3717       Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0);
3718     }
3719   }
3720 
3721   // We don't usually want to end the call-sequence here because we would tidy
3722   // the frame up *after* the call, however in the ABI-changing tail-call case
3723   // we've carefully laid out the parameters so that when sp is reset they'll be
3724   // in the correct location.
3725   if (IsTailCall && !IsSibCall) {
3726     Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
3727                                DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
3728     InFlag = Chain.getValue(1);
3729   }
3730 
3731   std::vector<SDValue> Ops;
3732   Ops.push_back(Chain);
3733   Ops.push_back(Callee);
3734 
3735   if (IsTailCall) {
3736     // Each tail call may have to adjust the stack by a different amount, so
3737     // this information must travel along with the operation for eventual
3738     // consumption by emitEpilogue.
3739     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3740   }
3741 
3742   // Add argument registers to the end of the list so that they are known live
3743   // into the call.
3744   for (auto &RegToPass : RegsToPass)
3745     Ops.push_back(DAG.getRegister(RegToPass.first,
3746                                   RegToPass.second.getValueType()));
3747 
3748   // Add a register mask operand representing the call-preserved registers.
3749   const uint32_t *Mask;
3750   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
3751   if (IsThisReturn) {
3752     // For 'this' returns, use the X0-preserving mask if applicable
3753     Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
3754     if (!Mask) {
3755       IsThisReturn = false;
3756       Mask = TRI->getCallPreservedMask(MF, CallConv);
3757     }
3758   } else
3759     Mask = TRI->getCallPreservedMask(MF, CallConv);
3760 
3761   assert(Mask && "Missing call preserved mask for calling convention");
3762   Ops.push_back(DAG.getRegisterMask(Mask));
3763 
3764   if (InFlag.getNode())
3765     Ops.push_back(InFlag);
3766 
3767   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3768 
3769   // If we're doing a tall call, use a TC_RETURN here rather than an
3770   // actual call instruction.
3771   if (IsTailCall) {
3772     MF.getFrameInfo().setHasTailCall();
3773     return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
3774   }
3775 
3776   // Returns a chain and a flag for retval copy to use.
3777   Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
3778   InFlag = Chain.getValue(1);
3779 
3780   uint64_t CalleePopBytes =
3781       DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0;
3782 
3783   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
3784                              DAG.getIntPtrConstant(CalleePopBytes, DL, true),
3785                              InFlag, DL);
3786   if (!Ins.empty())
3787     InFlag = Chain.getValue(1);
3788 
3789   // Handle result values, copying them out of physregs into vregs that we
3790   // return.
3791   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3792                          InVals, IsThisReturn,
3793                          IsThisReturn ? OutVals[0] : SDValue());
3794 }
3795 
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const3796 bool AArch64TargetLowering::CanLowerReturn(
3797     CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
3798     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
3799   CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3800                           ? RetCC_AArch64_WebKit_JS
3801                           : RetCC_AArch64_AAPCS;
3802   SmallVector<CCValAssign, 16> RVLocs;
3803   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
3804   return CCInfo.CheckReturn(Outs, RetCC);
3805 }
3806 
3807 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const3808 AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3809                                    bool isVarArg,
3810                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3811                                    const SmallVectorImpl<SDValue> &OutVals,
3812                                    const SDLoc &DL, SelectionDAG &DAG) const {
3813   CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3814                           ? RetCC_AArch64_WebKit_JS
3815                           : RetCC_AArch64_AAPCS;
3816   SmallVector<CCValAssign, 16> RVLocs;
3817   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3818                  *DAG.getContext());
3819   CCInfo.AnalyzeReturn(Outs, RetCC);
3820 
3821   // Copy the result values into the output registers.
3822   SDValue Flag;
3823   SmallVector<SDValue, 4> RetOps(1, Chain);
3824   for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
3825        ++i, ++realRVLocIdx) {
3826     CCValAssign &VA = RVLocs[i];
3827     assert(VA.isRegLoc() && "Can only return in registers!");
3828     SDValue Arg = OutVals[realRVLocIdx];
3829 
3830     switch (VA.getLocInfo()) {
3831     default:
3832       llvm_unreachable("Unknown loc info!");
3833     case CCValAssign::Full:
3834       if (Outs[i].ArgVT == MVT::i1) {
3835         // AAPCS requires i1 to be zero-extended to i8 by the producer of the
3836         // value. This is strictly redundant on Darwin (which uses "zeroext
3837         // i1"), but will be optimised out before ISel.
3838         Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
3839         Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3840       }
3841       break;
3842     case CCValAssign::BCvt:
3843       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3844       break;
3845     }
3846 
3847     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
3848     Flag = Chain.getValue(1);
3849     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3850   }
3851   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
3852   const MCPhysReg *I =
3853       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
3854   if (I) {
3855     for (; *I; ++I) {
3856       if (AArch64::GPR64RegClass.contains(*I))
3857         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
3858       else if (AArch64::FPR64RegClass.contains(*I))
3859         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
3860       else
3861         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
3862     }
3863   }
3864 
3865   RetOps[0] = Chain; // Update chain.
3866 
3867   // Add the flag if we have it.
3868   if (Flag.getNode())
3869     RetOps.push_back(Flag);
3870 
3871   return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
3872 }
3873 
3874 //===----------------------------------------------------------------------===//
3875 //  Other Lowering Code
3876 //===----------------------------------------------------------------------===//
3877 
getTargetNode(GlobalAddressSDNode * N,EVT Ty,SelectionDAG & DAG,unsigned Flag) const3878 SDValue AArch64TargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
3879                                              SelectionDAG &DAG,
3880                                              unsigned Flag) const {
3881   return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty,
3882                                     N->getOffset(), Flag);
3883 }
3884 
getTargetNode(JumpTableSDNode * N,EVT Ty,SelectionDAG & DAG,unsigned Flag) const3885 SDValue AArch64TargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
3886                                              SelectionDAG &DAG,
3887                                              unsigned Flag) const {
3888   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
3889 }
3890 
getTargetNode(ConstantPoolSDNode * N,EVT Ty,SelectionDAG & DAG,unsigned Flag) const3891 SDValue AArch64TargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
3892                                              SelectionDAG &DAG,
3893                                              unsigned Flag) const {
3894   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
3895                                    N->getOffset(), Flag);
3896 }
3897 
getTargetNode(BlockAddressSDNode * N,EVT Ty,SelectionDAG & DAG,unsigned Flag) const3898 SDValue AArch64TargetLowering::getTargetNode(BlockAddressSDNode* N, EVT Ty,
3899                                              SelectionDAG &DAG,
3900                                              unsigned Flag) const {
3901   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
3902 }
3903 
3904 // (loadGOT sym)
3905 template <class NodeTy>
getGOT(NodeTy * N,SelectionDAG & DAG,unsigned Flags) const3906 SDValue AArch64TargetLowering::getGOT(NodeTy *N, SelectionDAG &DAG,
3907                                       unsigned Flags) const {
3908   LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getGOT\n");
3909   SDLoc DL(N);
3910   EVT Ty = getPointerTy(DAG.getDataLayout());
3911   SDValue GotAddr = getTargetNode(N, Ty, DAG, AArch64II::MO_GOT | Flags);
3912   // FIXME: Once remat is capable of dealing with instructions with register
3913   // operands, expand this into two nodes instead of using a wrapper node.
3914   return DAG.getNode(AArch64ISD::LOADgot, DL, Ty, GotAddr);
3915 }
3916 
3917 // (wrapper %highest(sym), %higher(sym), %hi(sym), %lo(sym))
3918 template <class NodeTy>
getAddrLarge(NodeTy * N,SelectionDAG & DAG,unsigned Flags) const3919 SDValue AArch64TargetLowering::getAddrLarge(NodeTy *N, SelectionDAG &DAG,
3920                                             unsigned Flags) const {
3921   LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrLarge\n");
3922   SDLoc DL(N);
3923   EVT Ty = getPointerTy(DAG.getDataLayout());
3924   const unsigned char MO_NC = AArch64II::MO_NC;
3925   return DAG.getNode(
3926       AArch64ISD::WrapperLarge, DL, Ty,
3927       getTargetNode(N, Ty, DAG, AArch64II::MO_G3 | Flags),
3928       getTargetNode(N, Ty, DAG, AArch64II::MO_G2 | MO_NC | Flags),
3929       getTargetNode(N, Ty, DAG, AArch64II::MO_G1 | MO_NC | Flags),
3930       getTargetNode(N, Ty, DAG, AArch64II::MO_G0 | MO_NC | Flags));
3931 }
3932 
3933 // (addlow (adrp %hi(sym)) %lo(sym))
3934 template <class NodeTy>
getAddr(NodeTy * N,SelectionDAG & DAG,unsigned Flags) const3935 SDValue AArch64TargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3936                                        unsigned Flags) const {
3937   LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddr\n");
3938   SDLoc DL(N);
3939   EVT Ty = getPointerTy(DAG.getDataLayout());
3940   SDValue Hi = getTargetNode(N, Ty, DAG, AArch64II::MO_PAGE | Flags);
3941   SDValue Lo = getTargetNode(N, Ty, DAG,
3942                              AArch64II::MO_PAGEOFF | AArch64II::MO_NC | Flags);
3943   SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, Ty, Hi);
3944   return DAG.getNode(AArch64ISD::ADDlow, DL, Ty, ADRP, Lo);
3945 }
3946 
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const3947 SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
3948                                                   SelectionDAG &DAG) const {
3949   GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
3950   const GlobalValue *GV = GN->getGlobal();
3951   const AArch64II::TOF TargetFlags =
3952       (GV->hasDLLImportStorageClass() ? AArch64II::MO_DLLIMPORT
3953                                       : AArch64II::MO_NO_FLAG);
3954   unsigned char OpFlags =
3955       Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
3956 
3957   if (OpFlags != AArch64II::MO_NO_FLAG)
3958     assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
3959            "unexpected offset in global node");
3960 
3961   // This also catches the large code model case for Darwin.
3962   if ((OpFlags & AArch64II::MO_GOT) != 0) {
3963     return getGOT(GN, DAG, TargetFlags);
3964   }
3965 
3966   SDValue Result;
3967   if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3968     Result = getAddrLarge(GN, DAG, TargetFlags);
3969   } else {
3970     Result = getAddr(GN, DAG, TargetFlags);
3971   }
3972   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3973   SDLoc DL(GN);
3974   if (GV->hasDLLImportStorageClass())
3975     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3976                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3977   return Result;
3978 }
3979 
3980 /// Convert a TLS address reference into the correct sequence of loads
3981 /// and calls to compute the variable's address (for Darwin, currently) and
3982 /// return an SDValue containing the final node.
3983 
3984 /// Darwin only has one TLS scheme which must be capable of dealing with the
3985 /// fully general situation, in the worst case. This means:
3986 ///     + "extern __thread" declaration.
3987 ///     + Defined in a possibly unknown dynamic library.
3988 ///
3989 /// The general system is that each __thread variable has a [3 x i64] descriptor
3990 /// which contains information used by the runtime to calculate the address. The
3991 /// only part of this the compiler needs to know about is the first xword, which
3992 /// contains a function pointer that must be called with the address of the
3993 /// entire descriptor in "x0".
3994 ///
3995 /// Since this descriptor may be in a different unit, in general even the
3996 /// descriptor must be accessed via an indirect load. The "ideal" code sequence
3997 /// is:
3998 ///     adrp x0, _var@TLVPPAGE
3999 ///     ldr x0, [x0, _var@TLVPPAGEOFF]   ; x0 now contains address of descriptor
4000 ///     ldr x1, [x0]                     ; x1 contains 1st entry of descriptor,
4001 ///                                      ; the function pointer
4002 ///     blr x1                           ; Uses descriptor address in x0
4003 ///     ; Address of _var is now in x0.
4004 ///
4005 /// If the address of _var's descriptor *is* known to the linker, then it can
4006 /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
4007 /// a slight efficiency gain.
4008 SDValue
LowerDarwinGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const4009 AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
4010                                                    SelectionDAG &DAG) const {
4011   assert(Subtarget->isTargetDarwin() &&
4012          "This function expects a Darwin target");
4013 
4014   SDLoc DL(Op);
4015   MVT PtrVT = getPointerTy(DAG.getDataLayout());
4016   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4017 
4018   SDValue TLVPAddr =
4019       DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
4020   SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
4021 
4022   // The first entry in the descriptor is a function pointer that we must call
4023   // to obtain the address of the variable.
4024   SDValue Chain = DAG.getEntryNode();
4025   SDValue FuncTLVGet = DAG.getLoad(
4026       MVT::i64, DL, Chain, DescAddr,
4027       MachinePointerInfo::getGOT(DAG.getMachineFunction()),
4028       /* Alignment = */ 8,
4029       MachineMemOperand::MONonTemporal | MachineMemOperand::MOInvariant |
4030           MachineMemOperand::MODereferenceable);
4031   Chain = FuncTLVGet.getValue(1);
4032 
4033   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
4034   MFI.setAdjustsStack(true);
4035 
4036   // TLS calls preserve all registers except those that absolutely must be
4037   // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
4038   // silly).
4039   const uint32_t *Mask =
4040       Subtarget->getRegisterInfo()->getTLSCallPreservedMask();
4041 
4042   // Finally, we can make the call. This is just a degenerate version of a
4043   // normal AArch64 call node: x0 takes the address of the descriptor, and
4044   // returns the address of the variable in this thread.
4045   Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
4046   Chain =
4047       DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
4048                   Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
4049                   DAG.getRegisterMask(Mask), Chain.getValue(1));
4050   return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
4051 }
4052 
4053 /// When accessing thread-local variables under either the general-dynamic or
4054 /// local-dynamic system, we make a "TLS-descriptor" call. The variable will
4055 /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
4056 /// is a function pointer to carry out the resolution.
4057 ///
4058 /// The sequence is:
4059 ///    adrp  x0, :tlsdesc:var
4060 ///    ldr   x1, [x0, #:tlsdesc_lo12:var]
4061 ///    add   x0, x0, #:tlsdesc_lo12:var
4062 ///    .tlsdesccall var
4063 ///    blr   x1
4064 ///    (TPIDR_EL0 offset now in x0)
4065 ///
4066 ///  The above sequence must be produced unscheduled, to enable the linker to
4067 ///  optimize/relax this sequence.
4068 ///  Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
4069 ///  above sequence, and expanded really late in the compilation flow, to ensure
4070 ///  the sequence is produced as per above.
LowerELFTLSDescCallSeq(SDValue SymAddr,const SDLoc & DL,SelectionDAG & DAG) const4071 SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr,
4072                                                       const SDLoc &DL,
4073                                                       SelectionDAG &DAG) const {
4074   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4075 
4076   SDValue Chain = DAG.getEntryNode();
4077   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
4078 
4079   Chain =
4080       DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, {Chain, SymAddr});
4081   SDValue Glue = Chain.getValue(1);
4082 
4083   return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
4084 }
4085 
4086 SDValue
LowerELFGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const4087 AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
4088                                                 SelectionDAG &DAG) const {
4089   assert(Subtarget->isTargetELF() && "This function expects an ELF target");
4090   assert(Subtarget->useSmallAddressing() &&
4091          "ELF TLS only supported in small memory model");
4092   // Different choices can be made for the maximum size of the TLS area for a
4093   // module. For the small address model, the default TLS size is 16MiB and the
4094   // maximum TLS size is 4GiB.
4095   // FIXME: add -mtls-size command line option and make it control the 16MiB
4096   // vs. 4GiB code sequence generation.
4097   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4098 
4099   TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
4100 
4101   if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
4102     if (Model == TLSModel::LocalDynamic)
4103       Model = TLSModel::GeneralDynamic;
4104   }
4105 
4106   SDValue TPOff;
4107   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4108   SDLoc DL(Op);
4109   const GlobalValue *GV = GA->getGlobal();
4110 
4111   SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
4112 
4113   if (Model == TLSModel::LocalExec) {
4114     SDValue HiVar = DAG.getTargetGlobalAddress(
4115         GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
4116     SDValue LoVar = DAG.getTargetGlobalAddress(
4117         GV, DL, PtrVT, 0,
4118         AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4119 
4120     SDValue TPWithOff_lo =
4121         SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
4122                                    HiVar,
4123                                    DAG.getTargetConstant(0, DL, MVT::i32)),
4124                 0);
4125     SDValue TPWithOff =
4126         SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPWithOff_lo,
4127                                    LoVar,
4128                                    DAG.getTargetConstant(0, DL, MVT::i32)),
4129                 0);
4130     return TPWithOff;
4131   } else if (Model == TLSModel::InitialExec) {
4132     TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
4133     TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
4134   } else if (Model == TLSModel::LocalDynamic) {
4135     // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
4136     // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
4137     // the beginning of the module's TLS region, followed by a DTPREL offset
4138     // calculation.
4139 
4140     // These accesses will need deduplicating if there's more than one.
4141     AArch64FunctionInfo *MFI =
4142         DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
4143     MFI->incNumLocalDynamicTLSAccesses();
4144 
4145     // The call needs a relocation too for linker relaxation. It doesn't make
4146     // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
4147     // the address.
4148     SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
4149                                                   AArch64II::MO_TLS);
4150 
4151     // Now we can calculate the offset from TPIDR_EL0 to this module's
4152     // thread-local area.
4153     TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
4154 
4155     // Now use :dtprel_whatever: operations to calculate this variable's offset
4156     // in its thread-storage area.
4157     SDValue HiVar = DAG.getTargetGlobalAddress(
4158         GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
4159     SDValue LoVar = DAG.getTargetGlobalAddress(
4160         GV, DL, MVT::i64, 0,
4161         AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4162 
4163     TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
4164                                        DAG.getTargetConstant(0, DL, MVT::i32)),
4165                     0);
4166     TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
4167                                        DAG.getTargetConstant(0, DL, MVT::i32)),
4168                     0);
4169   } else if (Model == TLSModel::GeneralDynamic) {
4170     // The call needs a relocation too for linker relaxation. It doesn't make
4171     // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
4172     // the address.
4173     SDValue SymAddr =
4174         DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
4175 
4176     // Finally we can make a call to calculate the offset from tpidr_el0.
4177     TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
4178   } else
4179     llvm_unreachable("Unsupported ELF TLS access model");
4180 
4181   return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
4182 }
4183 
4184 SDValue
LowerWindowsGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const4185 AArch64TargetLowering::LowerWindowsGlobalTLSAddress(SDValue Op,
4186                                                     SelectionDAG &DAG) const {
4187   assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
4188 
4189   SDValue Chain = DAG.getEntryNode();
4190   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4191   SDLoc DL(Op);
4192 
4193   SDValue TEB = DAG.getRegister(AArch64::X18, MVT::i64);
4194 
4195   // Load the ThreadLocalStoragePointer from the TEB
4196   // A pointer to the TLS array is located at offset 0x58 from the TEB.
4197   SDValue TLSArray =
4198       DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x58, DL));
4199   TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
4200   Chain = TLSArray.getValue(1);
4201 
4202   // Load the TLS index from the C runtime;
4203   // This does the same as getAddr(), but without having a GlobalAddressSDNode.
4204   // This also does the same as LOADgot, but using a generic i32 load,
4205   // while LOADgot only loads i64.
4206   SDValue TLSIndexHi =
4207       DAG.getTargetExternalSymbol("_tls_index", PtrVT, AArch64II::MO_PAGE);
4208   SDValue TLSIndexLo = DAG.getTargetExternalSymbol(
4209       "_tls_index", PtrVT, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4210   SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, TLSIndexHi);
4211   SDValue TLSIndex =
4212       DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, TLSIndexLo);
4213   TLSIndex = DAG.getLoad(MVT::i32, DL, Chain, TLSIndex, MachinePointerInfo());
4214   Chain = TLSIndex.getValue(1);
4215 
4216   // The pointer to the thread's TLS data area is at the TLS Index scaled by 8
4217   // offset into the TLSArray.
4218   TLSIndex = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TLSIndex);
4219   SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
4220                              DAG.getConstant(3, DL, PtrVT));
4221   SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
4222                             DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
4223                             MachinePointerInfo());
4224   Chain = TLS.getValue(1);
4225 
4226   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4227   const GlobalValue *GV = GA->getGlobal();
4228   SDValue TGAHi = DAG.getTargetGlobalAddress(
4229       GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
4230   SDValue TGALo = DAG.getTargetGlobalAddress(
4231       GV, DL, PtrVT, 0,
4232       AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4233 
4234   // Add the offset from the start of the .tls section (section base).
4235   SDValue Addr =
4236       SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TLS, TGAHi,
4237                                  DAG.getTargetConstant(0, DL, MVT::i32)),
4238               0);
4239   Addr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, Addr, TGALo);
4240   return Addr;
4241 }
4242 
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const4243 SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
4244                                                      SelectionDAG &DAG) const {
4245   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4246   if (DAG.getTarget().useEmulatedTLS())
4247     return LowerToTLSEmulatedModel(GA, DAG);
4248 
4249   if (Subtarget->isTargetDarwin())
4250     return LowerDarwinGlobalTLSAddress(Op, DAG);
4251   if (Subtarget->isTargetELF())
4252     return LowerELFGlobalTLSAddress(Op, DAG);
4253   if (Subtarget->isTargetWindows())
4254     return LowerWindowsGlobalTLSAddress(Op, DAG);
4255 
4256   llvm_unreachable("Unexpected platform trying to use TLS");
4257 }
4258 
LowerBR_CC(SDValue Op,SelectionDAG & DAG) const4259 SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
4260   SDValue Chain = Op.getOperand(0);
4261   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4262   SDValue LHS = Op.getOperand(2);
4263   SDValue RHS = Op.getOperand(3);
4264   SDValue Dest = Op.getOperand(4);
4265   SDLoc dl(Op);
4266 
4267   // Handle f128 first, since lowering it will result in comparing the return
4268   // value of a libcall against zero, which is just what the rest of LowerBR_CC
4269   // is expecting to deal with.
4270   if (LHS.getValueType() == MVT::f128) {
4271     softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
4272 
4273     // If softenSetCCOperands returned a scalar, we need to compare the result
4274     // against zero to select between true and false values.
4275     if (!RHS.getNode()) {
4276       RHS = DAG.getConstant(0, dl, LHS.getValueType());
4277       CC = ISD::SETNE;
4278     }
4279   }
4280 
4281   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4282   // instruction.
4283   if (isOverflowIntrOpRes(LHS) && isOneConstant(RHS) &&
4284       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
4285     // Only lower legal XALUO ops.
4286     if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
4287       return SDValue();
4288 
4289     // The actual operation with overflow check.
4290     AArch64CC::CondCode OFCC;
4291     SDValue Value, Overflow;
4292     std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
4293 
4294     if (CC == ISD::SETNE)
4295       OFCC = getInvertedCondCode(OFCC);
4296     SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32);
4297 
4298     return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
4299                        Overflow);
4300   }
4301 
4302   if (LHS.getValueType().isInteger()) {
4303     assert((LHS.getValueType() == RHS.getValueType()) &&
4304            (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
4305 
4306     // If the RHS of the comparison is zero, we can potentially fold this
4307     // to a specialized branch.
4308     const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
4309     if (RHSC && RHSC->getZExtValue() == 0) {
4310       if (CC == ISD::SETEQ) {
4311         // See if we can use a TBZ to fold in an AND as well.
4312         // TBZ has a smaller branch displacement than CBZ.  If the offset is
4313         // out of bounds, a late MI-layer pass rewrites branches.
4314         // 403.gcc is an example that hits this case.
4315         if (LHS.getOpcode() == ISD::AND &&
4316             isa<ConstantSDNode>(LHS.getOperand(1)) &&
4317             isPowerOf2_64(LHS.getConstantOperandVal(1))) {
4318           SDValue Test = LHS.getOperand(0);
4319           uint64_t Mask = LHS.getConstantOperandVal(1);
4320           return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
4321                              DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
4322                              Dest);
4323         }
4324 
4325         return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
4326       } else if (CC == ISD::SETNE) {
4327         // See if we can use a TBZ to fold in an AND as well.
4328         // TBZ has a smaller branch displacement than CBZ.  If the offset is
4329         // out of bounds, a late MI-layer pass rewrites branches.
4330         // 403.gcc is an example that hits this case.
4331         if (LHS.getOpcode() == ISD::AND &&
4332             isa<ConstantSDNode>(LHS.getOperand(1)) &&
4333             isPowerOf2_64(LHS.getConstantOperandVal(1))) {
4334           SDValue Test = LHS.getOperand(0);
4335           uint64_t Mask = LHS.getConstantOperandVal(1);
4336           return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
4337                              DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
4338                              Dest);
4339         }
4340 
4341         return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
4342       } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
4343         // Don't combine AND since emitComparison converts the AND to an ANDS
4344         // (a.k.a. TST) and the test in the test bit and branch instruction
4345         // becomes redundant.  This would also increase register pressure.
4346         uint64_t Mask = LHS.getValueSizeInBits() - 1;
4347         return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
4348                            DAG.getConstant(Mask, dl, MVT::i64), Dest);
4349       }
4350     }
4351     if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
4352         LHS.getOpcode() != ISD::AND) {
4353       // Don't combine AND since emitComparison converts the AND to an ANDS
4354       // (a.k.a. TST) and the test in the test bit and branch instruction
4355       // becomes redundant.  This would also increase register pressure.
4356       uint64_t Mask = LHS.getValueSizeInBits() - 1;
4357       return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
4358                          DAG.getConstant(Mask, dl, MVT::i64), Dest);
4359     }
4360 
4361     SDValue CCVal;
4362     SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
4363     return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
4364                        Cmp);
4365   }
4366 
4367   assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
4368          LHS.getValueType() == MVT::f64);
4369 
4370   // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
4371   // clean.  Some of them require two branches to implement.
4372   SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
4373   AArch64CC::CondCode CC1, CC2;
4374   changeFPCCToAArch64CC(CC, CC1, CC2);
4375   SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
4376   SDValue BR1 =
4377       DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
4378   if (CC2 != AArch64CC::AL) {
4379     SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
4380     return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
4381                        Cmp);
4382   }
4383 
4384   return BR1;
4385 }
4386 
LowerFCOPYSIGN(SDValue Op,SelectionDAG & DAG) const4387 SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
4388                                               SelectionDAG &DAG) const {
4389   EVT VT = Op.getValueType();
4390   SDLoc DL(Op);
4391 
4392   SDValue In1 = Op.getOperand(0);
4393   SDValue In2 = Op.getOperand(1);
4394   EVT SrcVT = In2.getValueType();
4395 
4396   if (SrcVT.bitsLT(VT))
4397     In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
4398   else if (SrcVT.bitsGT(VT))
4399     In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL));
4400 
4401   EVT VecVT;
4402   uint64_t EltMask;
4403   SDValue VecVal1, VecVal2;
4404 
4405   auto setVecVal = [&] (int Idx) {
4406     if (!VT.isVector()) {
4407       VecVal1 = DAG.getTargetInsertSubreg(Idx, DL, VecVT,
4408                                           DAG.getUNDEF(VecVT), In1);
4409       VecVal2 = DAG.getTargetInsertSubreg(Idx, DL, VecVT,
4410                                           DAG.getUNDEF(VecVT), In2);
4411     } else {
4412       VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
4413       VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
4414     }
4415   };
4416 
4417   if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
4418     VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32);
4419     EltMask = 0x80000000ULL;
4420     setVecVal(AArch64::ssub);
4421   } else if (VT == MVT::f64 || VT == MVT::v2f64) {
4422     VecVT = MVT::v2i64;
4423 
4424     // We want to materialize a mask with the high bit set, but the AdvSIMD
4425     // immediate moves cannot materialize that in a single instruction for
4426     // 64-bit elements. Instead, materialize zero and then negate it.
4427     EltMask = 0;
4428 
4429     setVecVal(AArch64::dsub);
4430   } else if (VT == MVT::f16 || VT == MVT::v4f16 || VT == MVT::v8f16) {
4431     VecVT = (VT == MVT::v4f16 ? MVT::v4i16 : MVT::v8i16);
4432     EltMask = 0x8000ULL;
4433     setVecVal(AArch64::hsub);
4434   } else {
4435     llvm_unreachable("Invalid type for copysign!");
4436   }
4437 
4438   SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT);
4439 
4440   // If we couldn't materialize the mask above, then the mask vector will be
4441   // the zero vector, and we need to negate it here.
4442   if (VT == MVT::f64 || VT == MVT::v2f64) {
4443     BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
4444     BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
4445     BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
4446   }
4447 
4448   SDValue Sel =
4449       DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
4450 
4451   if (VT == MVT::f16)
4452     return DAG.getTargetExtractSubreg(AArch64::hsub, DL, VT, Sel);
4453   if (VT == MVT::f32)
4454     return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
4455   else if (VT == MVT::f64)
4456     return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
4457   else
4458     return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
4459 }
4460 
LowerCTPOP(SDValue Op,SelectionDAG & DAG) const4461 SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
4462   if (DAG.getMachineFunction().getFunction().hasFnAttribute(
4463           Attribute::NoImplicitFloat))
4464     return SDValue();
4465 
4466   if (!Subtarget->hasNEON())
4467     return SDValue();
4468 
4469   // While there is no integer popcount instruction, it can
4470   // be more efficiently lowered to the following sequence that uses
4471   // AdvSIMD registers/instructions as long as the copies to/from
4472   // the AdvSIMD registers are cheap.
4473   //  FMOV    D0, X0        // copy 64-bit int to vector, high bits zero'd
4474   //  CNT     V0.8B, V0.8B  // 8xbyte pop-counts
4475   //  ADDV    B0, V0.8B     // sum 8xbyte pop-counts
4476   //  UMOV    X0, V0.B[0]   // copy byte result back to integer reg
4477   SDValue Val = Op.getOperand(0);
4478   SDLoc DL(Op);
4479   EVT VT = Op.getValueType();
4480 
4481   if (VT == MVT::i32)
4482     Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
4483   Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
4484 
4485   SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
4486   SDValue UaddLV = DAG.getNode(
4487       ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
4488       DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop);
4489 
4490   if (VT == MVT::i64)
4491     UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
4492   return UaddLV;
4493 }
4494 
LowerSETCC(SDValue Op,SelectionDAG & DAG) const4495 SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
4496 
4497   if (Op.getValueType().isVector())
4498     return LowerVSETCC(Op, DAG);
4499 
4500   SDValue LHS = Op.getOperand(0);
4501   SDValue RHS = Op.getOperand(1);
4502   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
4503   SDLoc dl(Op);
4504 
4505   // We chose ZeroOrOneBooleanContents, so use zero and one.
4506   EVT VT = Op.getValueType();
4507   SDValue TVal = DAG.getConstant(1, dl, VT);
4508   SDValue FVal = DAG.getConstant(0, dl, VT);
4509 
4510   // Handle f128 first, since one possible outcome is a normal integer
4511   // comparison which gets picked up by the next if statement.
4512   if (LHS.getValueType() == MVT::f128) {
4513     softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
4514 
4515     // If softenSetCCOperands returned a scalar, use it.
4516     if (!RHS.getNode()) {
4517       assert(LHS.getValueType() == Op.getValueType() &&
4518              "Unexpected setcc expansion!");
4519       return LHS;
4520     }
4521   }
4522 
4523   if (LHS.getValueType().isInteger()) {
4524     SDValue CCVal;
4525     SDValue Cmp =
4526         getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
4527 
4528     // Note that we inverted the condition above, so we reverse the order of
4529     // the true and false operands here.  This will allow the setcc to be
4530     // matched to a single CSINC instruction.
4531     return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
4532   }
4533 
4534   // Now we know we're dealing with FP values.
4535   assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
4536          LHS.getValueType() == MVT::f64);
4537 
4538   // If that fails, we'll need to perform an FCMP + CSEL sequence.  Go ahead
4539   // and do the comparison.
4540   SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
4541 
4542   AArch64CC::CondCode CC1, CC2;
4543   changeFPCCToAArch64CC(CC, CC1, CC2);
4544   if (CC2 == AArch64CC::AL) {
4545     changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
4546     SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
4547 
4548     // Note that we inverted the condition above, so we reverse the order of
4549     // the true and false operands here.  This will allow the setcc to be
4550     // matched to a single CSINC instruction.
4551     return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
4552   } else {
4553     // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
4554     // totally clean.  Some of them require two CSELs to implement.  As is in
4555     // this case, we emit the first CSEL and then emit a second using the output
4556     // of the first as the RHS.  We're effectively OR'ing the two CC's together.
4557 
4558     // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
4559     SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
4560     SDValue CS1 =
4561         DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
4562 
4563     SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
4564     return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
4565   }
4566 }
4567 
LowerSELECT_CC(ISD::CondCode CC,SDValue LHS,SDValue RHS,SDValue TVal,SDValue FVal,const SDLoc & dl,SelectionDAG & DAG) const4568 SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS,
4569                                               SDValue RHS, SDValue TVal,
4570                                               SDValue FVal, const SDLoc &dl,
4571                                               SelectionDAG &DAG) const {
4572   // Handle f128 first, because it will result in a comparison of some RTLIB
4573   // call result against zero.
4574   if (LHS.getValueType() == MVT::f128) {
4575     softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
4576 
4577     // If softenSetCCOperands returned a scalar, we need to compare the result
4578     // against zero to select between true and false values.
4579     if (!RHS.getNode()) {
4580       RHS = DAG.getConstant(0, dl, LHS.getValueType());
4581       CC = ISD::SETNE;
4582     }
4583   }
4584 
4585   // Also handle f16, for which we need to do a f32 comparison.
4586   if (LHS.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) {
4587     LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
4588     RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
4589   }
4590 
4591   // Next, handle integers.
4592   if (LHS.getValueType().isInteger()) {
4593     assert((LHS.getValueType() == RHS.getValueType()) &&
4594            (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
4595 
4596     unsigned Opcode = AArch64ISD::CSEL;
4597 
4598     // If both the TVal and the FVal are constants, see if we can swap them in
4599     // order to for a CSINV or CSINC out of them.
4600     ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
4601     ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
4602 
4603     if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
4604       std::swap(TVal, FVal);
4605       std::swap(CTVal, CFVal);
4606       CC = ISD::getSetCCInverse(CC, true);
4607     } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
4608       std::swap(TVal, FVal);
4609       std::swap(CTVal, CFVal);
4610       CC = ISD::getSetCCInverse(CC, true);
4611     } else if (TVal.getOpcode() == ISD::XOR) {
4612       // If TVal is a NOT we want to swap TVal and FVal so that we can match
4613       // with a CSINV rather than a CSEL.
4614       if (isAllOnesConstant(TVal.getOperand(1))) {
4615         std::swap(TVal, FVal);
4616         std::swap(CTVal, CFVal);
4617         CC = ISD::getSetCCInverse(CC, true);
4618       }
4619     } else if (TVal.getOpcode() == ISD::SUB) {
4620       // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
4621       // that we can match with a CSNEG rather than a CSEL.
4622       if (isNullConstant(TVal.getOperand(0))) {
4623         std::swap(TVal, FVal);
4624         std::swap(CTVal, CFVal);
4625         CC = ISD::getSetCCInverse(CC, true);
4626       }
4627     } else if (CTVal && CFVal) {
4628       const int64_t TrueVal = CTVal->getSExtValue();
4629       const int64_t FalseVal = CFVal->getSExtValue();
4630       bool Swap = false;
4631 
4632       // If both TVal and FVal are constants, see if FVal is the
4633       // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
4634       // instead of a CSEL in that case.
4635       if (TrueVal == ~FalseVal) {
4636         Opcode = AArch64ISD::CSINV;
4637       } else if (TrueVal == -FalseVal) {
4638         Opcode = AArch64ISD::CSNEG;
4639       } else if (TVal.getValueType() == MVT::i32) {
4640         // If our operands are only 32-bit wide, make sure we use 32-bit
4641         // arithmetic for the check whether we can use CSINC. This ensures that
4642         // the addition in the check will wrap around properly in case there is
4643         // an overflow (which would not be the case if we do the check with
4644         // 64-bit arithmetic).
4645         const uint32_t TrueVal32 = CTVal->getZExtValue();
4646         const uint32_t FalseVal32 = CFVal->getZExtValue();
4647 
4648         if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
4649           Opcode = AArch64ISD::CSINC;
4650 
4651           if (TrueVal32 > FalseVal32) {
4652             Swap = true;
4653           }
4654         }
4655         // 64-bit check whether we can use CSINC.
4656       } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
4657         Opcode = AArch64ISD::CSINC;
4658 
4659         if (TrueVal > FalseVal) {
4660           Swap = true;
4661         }
4662       }
4663 
4664       // Swap TVal and FVal if necessary.
4665       if (Swap) {
4666         std::swap(TVal, FVal);
4667         std::swap(CTVal, CFVal);
4668         CC = ISD::getSetCCInverse(CC, true);
4669       }
4670 
4671       if (Opcode != AArch64ISD::CSEL) {
4672         // Drop FVal since we can get its value by simply inverting/negating
4673         // TVal.
4674         FVal = TVal;
4675       }
4676     }
4677 
4678     // Avoid materializing a constant when possible by reusing a known value in
4679     // a register.  However, don't perform this optimization if the known value
4680     // is one, zero or negative one in the case of a CSEL.  We can always
4681     // materialize these values using CSINC, CSEL and CSINV with wzr/xzr as the
4682     // FVal, respectively.
4683     ConstantSDNode *RHSVal = dyn_cast<ConstantSDNode>(RHS);
4684     if (Opcode == AArch64ISD::CSEL && RHSVal && !RHSVal->isOne() &&
4685         !RHSVal->isNullValue() && !RHSVal->isAllOnesValue()) {
4686       AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
4687       // Transform "a == C ? C : x" to "a == C ? a : x" and "a != C ? x : C" to
4688       // "a != C ? x : a" to avoid materializing C.
4689       if (CTVal && CTVal == RHSVal && AArch64CC == AArch64CC::EQ)
4690         TVal = LHS;
4691       else if (CFVal && CFVal == RHSVal && AArch64CC == AArch64CC::NE)
4692         FVal = LHS;
4693     } else if (Opcode == AArch64ISD::CSNEG && RHSVal && RHSVal->isOne()) {
4694       assert (CTVal && CFVal && "Expected constant operands for CSNEG.");
4695       // Use a CSINV to transform "a == C ? 1 : -1" to "a == C ? a : -1" to
4696       // avoid materializing C.
4697       AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
4698       if (CTVal == RHSVal && AArch64CC == AArch64CC::EQ) {
4699         Opcode = AArch64ISD::CSINV;
4700         TVal = LHS;
4701         FVal = DAG.getConstant(0, dl, FVal.getValueType());
4702       }
4703     }
4704 
4705     SDValue CCVal;
4706     SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
4707     EVT VT = TVal.getValueType();
4708     return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
4709   }
4710 
4711   // Now we know we're dealing with FP values.
4712   assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
4713          LHS.getValueType() == MVT::f64);
4714   assert(LHS.getValueType() == RHS.getValueType());
4715   EVT VT = TVal.getValueType();
4716   SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
4717 
4718   // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
4719   // clean.  Some of them require two CSELs to implement.
4720   AArch64CC::CondCode CC1, CC2;
4721   changeFPCCToAArch64CC(CC, CC1, CC2);
4722 
4723   if (DAG.getTarget().Options.UnsafeFPMath) {
4724     // Transform "a == 0.0 ? 0.0 : x" to "a == 0.0 ? a : x" and
4725     // "a != 0.0 ? x : 0.0" to "a != 0.0 ? x : a" to avoid materializing 0.0.
4726     ConstantFPSDNode *RHSVal = dyn_cast<ConstantFPSDNode>(RHS);
4727     if (RHSVal && RHSVal->isZero()) {
4728       ConstantFPSDNode *CFVal = dyn_cast<ConstantFPSDNode>(FVal);
4729       ConstantFPSDNode *CTVal = dyn_cast<ConstantFPSDNode>(TVal);
4730 
4731       if ((CC == ISD::SETEQ || CC == ISD::SETOEQ || CC == ISD::SETUEQ) &&
4732           CTVal && CTVal->isZero() && TVal.getValueType() == LHS.getValueType())
4733         TVal = LHS;
4734       else if ((CC == ISD::SETNE || CC == ISD::SETONE || CC == ISD::SETUNE) &&
4735                CFVal && CFVal->isZero() &&
4736                FVal.getValueType() == LHS.getValueType())
4737         FVal = LHS;
4738     }
4739   }
4740 
4741   // Emit first, and possibly only, CSEL.
4742   SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
4743   SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
4744 
4745   // If we need a second CSEL, emit it, using the output of the first as the
4746   // RHS.  We're effectively OR'ing the two CC's together.
4747   if (CC2 != AArch64CC::AL) {
4748     SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
4749     return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
4750   }
4751 
4752   // Otherwise, return the output of the first CSEL.
4753   return CS1;
4754 }
4755 
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const4756 SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
4757                                               SelectionDAG &DAG) const {
4758   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4759   SDValue LHS = Op.getOperand(0);
4760   SDValue RHS = Op.getOperand(1);
4761   SDValue TVal = Op.getOperand(2);
4762   SDValue FVal = Op.getOperand(3);
4763   SDLoc DL(Op);
4764   return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
4765 }
4766 
LowerSELECT(SDValue Op,SelectionDAG & DAG) const4767 SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
4768                                            SelectionDAG &DAG) const {
4769   SDValue CCVal = Op->getOperand(0);
4770   SDValue TVal = Op->getOperand(1);
4771   SDValue FVal = Op->getOperand(2);
4772   SDLoc DL(Op);
4773 
4774   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
4775   // instruction.
4776   if (isOverflowIntrOpRes(CCVal)) {
4777     // Only lower legal XALUO ops.
4778     if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0)))
4779       return SDValue();
4780 
4781     AArch64CC::CondCode OFCC;
4782     SDValue Value, Overflow;
4783     std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG);
4784     SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32);
4785 
4786     return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
4787                        CCVal, Overflow);
4788   }
4789 
4790   // Lower it the same way as we would lower a SELECT_CC node.
4791   ISD::CondCode CC;
4792   SDValue LHS, RHS;
4793   if (CCVal.getOpcode() == ISD::SETCC) {
4794     LHS = CCVal.getOperand(0);
4795     RHS = CCVal.getOperand(1);
4796     CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get();
4797   } else {
4798     LHS = CCVal;
4799     RHS = DAG.getConstant(0, DL, CCVal.getValueType());
4800     CC = ISD::SETNE;
4801   }
4802   return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
4803 }
4804 
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const4805 SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
4806                                               SelectionDAG &DAG) const {
4807   // Jump table entries as PC relative offsets. No additional tweaking
4808   // is necessary here. Just get the address of the jump table.
4809   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4810 
4811   if (getTargetMachine().getCodeModel() == CodeModel::Large &&
4812       !Subtarget->isTargetMachO()) {
4813     return getAddrLarge(JT, DAG);
4814   }
4815   return getAddr(JT, DAG);
4816 }
4817 
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const4818 SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
4819                                                  SelectionDAG &DAG) const {
4820   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4821 
4822   if (getTargetMachine().getCodeModel() == CodeModel::Large) {
4823     // Use the GOT for the large code model on iOS.
4824     if (Subtarget->isTargetMachO()) {
4825       return getGOT(CP, DAG);
4826     }
4827     return getAddrLarge(CP, DAG);
4828   } else {
4829     return getAddr(CP, DAG);
4830   }
4831 }
4832 
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const4833 SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
4834                                                SelectionDAG &DAG) const {
4835   BlockAddressSDNode *BA = cast<BlockAddressSDNode>(Op);
4836   if (getTargetMachine().getCodeModel() == CodeModel::Large &&
4837       !Subtarget->isTargetMachO()) {
4838     return getAddrLarge(BA, DAG);
4839   } else {
4840     return getAddr(BA, DAG);
4841   }
4842 }
4843 
LowerDarwin_VASTART(SDValue Op,SelectionDAG & DAG) const4844 SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
4845                                                  SelectionDAG &DAG) const {
4846   AArch64FunctionInfo *FuncInfo =
4847       DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
4848 
4849   SDLoc DL(Op);
4850   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(),
4851                                  getPointerTy(DAG.getDataLayout()));
4852   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4853   return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
4854                       MachinePointerInfo(SV));
4855 }
4856 
LowerWin64_VASTART(SDValue Op,SelectionDAG & DAG) const4857 SDValue AArch64TargetLowering::LowerWin64_VASTART(SDValue Op,
4858                                                   SelectionDAG &DAG) const {
4859   AArch64FunctionInfo *FuncInfo =
4860       DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
4861 
4862   SDLoc DL(Op);
4863   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsGPRSize() > 0
4864                                      ? FuncInfo->getVarArgsGPRIndex()
4865                                      : FuncInfo->getVarArgsStackIndex(),
4866                                  getPointerTy(DAG.getDataLayout()));
4867   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4868   return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
4869                       MachinePointerInfo(SV));
4870 }
4871 
LowerAAPCS_VASTART(SDValue Op,SelectionDAG & DAG) const4872 SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
4873                                                 SelectionDAG &DAG) const {
4874   // The layout of the va_list struct is specified in the AArch64 Procedure Call
4875   // Standard, section B.3.
4876   MachineFunction &MF = DAG.getMachineFunction();
4877   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
4878   auto PtrVT = getPointerTy(DAG.getDataLayout());
4879   SDLoc DL(Op);
4880 
4881   SDValue Chain = Op.getOperand(0);
4882   SDValue VAList = Op.getOperand(1);
4883   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4884   SmallVector<SDValue, 4> MemOps;
4885 
4886   // void *__stack at offset 0
4887   SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT);
4888   MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
4889                                 MachinePointerInfo(SV), /* Alignment = */ 8));
4890 
4891   // void *__gr_top at offset 8
4892   int GPRSize = FuncInfo->getVarArgsGPRSize();
4893   if (GPRSize > 0) {
4894     SDValue GRTop, GRTopAddr;
4895 
4896     GRTopAddr =
4897         DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT));
4898 
4899     GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT);
4900     GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop,
4901                         DAG.getConstant(GPRSize, DL, PtrVT));
4902 
4903     MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
4904                                   MachinePointerInfo(SV, 8),
4905                                   /* Alignment = */ 8));
4906   }
4907 
4908   // void *__vr_top at offset 16
4909   int FPRSize = FuncInfo->getVarArgsFPRSize();
4910   if (FPRSize > 0) {
4911     SDValue VRTop, VRTopAddr;
4912     VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4913                             DAG.getConstant(16, DL, PtrVT));
4914 
4915     VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT);
4916     VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop,
4917                         DAG.getConstant(FPRSize, DL, PtrVT));
4918 
4919     MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
4920                                   MachinePointerInfo(SV, 16),
4921                                   /* Alignment = */ 8));
4922   }
4923 
4924   // int __gr_offs at offset 24
4925   SDValue GROffsAddr =
4926       DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT));
4927   MemOps.push_back(DAG.getStore(
4928       Chain, DL, DAG.getConstant(-GPRSize, DL, MVT::i32), GROffsAddr,
4929       MachinePointerInfo(SV, 24), /* Alignment = */ 4));
4930 
4931   // int __vr_offs at offset 28
4932   SDValue VROffsAddr =
4933       DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT));
4934   MemOps.push_back(DAG.getStore(
4935       Chain, DL, DAG.getConstant(-FPRSize, DL, MVT::i32), VROffsAddr,
4936       MachinePointerInfo(SV, 28), /* Alignment = */ 4));
4937 
4938   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
4939 }
4940 
LowerVASTART(SDValue Op,SelectionDAG & DAG) const4941 SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
4942                                             SelectionDAG &DAG) const {
4943   MachineFunction &MF = DAG.getMachineFunction();
4944 
4945   if (Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv()))
4946     return LowerWin64_VASTART(Op, DAG);
4947   else if (Subtarget->isTargetDarwin())
4948     return LowerDarwin_VASTART(Op, DAG);
4949   else
4950     return LowerAAPCS_VASTART(Op, DAG);
4951 }
4952 
LowerVACOPY(SDValue Op,SelectionDAG & DAG) const4953 SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
4954                                            SelectionDAG &DAG) const {
4955   // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
4956   // pointer.
4957   SDLoc DL(Op);
4958   unsigned VaListSize =
4959       Subtarget->isTargetDarwin() || Subtarget->isTargetWindows() ? 8 : 32;
4960   const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
4961   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
4962 
4963   return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1),
4964                        Op.getOperand(2),
4965                        DAG.getConstant(VaListSize, DL, MVT::i32),
4966                        8, false, false, false, MachinePointerInfo(DestSV),
4967                        MachinePointerInfo(SrcSV));
4968 }
4969 
LowerVAARG(SDValue Op,SelectionDAG & DAG) const4970 SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
4971   assert(Subtarget->isTargetDarwin() &&
4972          "automatic va_arg instruction only works on Darwin");
4973 
4974   const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4975   EVT VT = Op.getValueType();
4976   SDLoc DL(Op);
4977   SDValue Chain = Op.getOperand(0);
4978   SDValue Addr = Op.getOperand(1);
4979   unsigned Align = Op.getConstantOperandVal(3);
4980   auto PtrVT = getPointerTy(DAG.getDataLayout());
4981 
4982   SDValue VAList = DAG.getLoad(PtrVT, DL, Chain, Addr, MachinePointerInfo(V));
4983   Chain = VAList.getValue(1);
4984 
4985   if (Align > 8) {
4986     assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
4987     VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4988                          DAG.getConstant(Align - 1, DL, PtrVT));
4989     VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList,
4990                          DAG.getConstant(-(int64_t)Align, DL, PtrVT));
4991   }
4992 
4993   Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
4994   uint64_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
4995 
4996   // Scalar integer and FP values smaller than 64 bits are implicitly extended
4997   // up to 64 bits.  At the very least, we have to increase the striding of the
4998   // vaargs list to match this, and for FP values we need to introduce
4999   // FP_ROUND nodes as well.
5000   if (VT.isInteger() && !VT.isVector())
5001     ArgSize = 8;
5002   bool NeedFPTrunc = false;
5003   if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
5004     ArgSize = 8;
5005     NeedFPTrunc = true;
5006   }
5007 
5008   // Increment the pointer, VAList, to the next vaarg
5009   SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
5010                                DAG.getConstant(ArgSize, DL, PtrVT));
5011   // Store the incremented VAList to the legalized pointer
5012   SDValue APStore =
5013       DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V));
5014 
5015   // Load the actual argument out of the pointer VAList
5016   if (NeedFPTrunc) {
5017     // Load the value as an f64.
5018     SDValue WideFP =
5019         DAG.getLoad(MVT::f64, DL, APStore, VAList, MachinePointerInfo());
5020     // Round the value down to an f32.
5021     SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
5022                                    DAG.getIntPtrConstant(1, DL));
5023     SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
5024     // Merge the rounded value with the chain output of the load.
5025     return DAG.getMergeValues(Ops, DL);
5026   }
5027 
5028   return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo());
5029 }
5030 
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const5031 SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
5032                                               SelectionDAG &DAG) const {
5033   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5034   MFI.setFrameAddressIsTaken(true);
5035 
5036   EVT VT = Op.getValueType();
5037   SDLoc DL(Op);
5038   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5039   SDValue FrameAddr =
5040       DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
5041   while (Depth--)
5042     FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
5043                             MachinePointerInfo());
5044   return FrameAddr;
5045 }
5046 
5047 // FIXME? Maybe this could be a TableGen attribute on some registers and
5048 // this table could be generated automatically from RegInfo.
getRegisterByName(const char * RegName,EVT VT,SelectionDAG & DAG) const5049 unsigned AArch64TargetLowering::getRegisterByName(const char* RegName, EVT VT,
5050                                                   SelectionDAG &DAG) const {
5051   unsigned Reg = StringSwitch<unsigned>(RegName)
5052                        .Case("sp", AArch64::SP)
5053                        .Case("x18", AArch64::X18)
5054                        .Case("w18", AArch64::W18)
5055                        .Case("x20", AArch64::X20)
5056                        .Case("w20", AArch64::W20)
5057                        .Default(0);
5058   if (((Reg == AArch64::X18 || Reg == AArch64::W18) &&
5059       !Subtarget->isX18Reserved()) ||
5060       ((Reg == AArch64::X20 || Reg == AArch64::W20) &&
5061       !Subtarget->isX20Reserved()))
5062     Reg = 0;
5063   if (Reg)
5064     return Reg;
5065   report_fatal_error(Twine("Invalid register name \""
5066                               + StringRef(RegName)  + "\"."));
5067 }
5068 
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const5069 SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
5070                                                SelectionDAG &DAG) const {
5071   MachineFunction &MF = DAG.getMachineFunction();
5072   MachineFrameInfo &MFI = MF.getFrameInfo();
5073   MFI.setReturnAddressIsTaken(true);
5074 
5075   EVT VT = Op.getValueType();
5076   SDLoc DL(Op);
5077   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5078   if (Depth) {
5079     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5080     SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
5081     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
5082                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
5083                        MachinePointerInfo());
5084   }
5085 
5086   // Return LR, which contains the return address. Mark it an implicit live-in.
5087   unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
5088   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
5089 }
5090 
5091 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5092 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
LowerShiftRightParts(SDValue Op,SelectionDAG & DAG) const5093 SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
5094                                                     SelectionDAG &DAG) const {
5095   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5096   EVT VT = Op.getValueType();
5097   unsigned VTBits = VT.getSizeInBits();
5098   SDLoc dl(Op);
5099   SDValue ShOpLo = Op.getOperand(0);
5100   SDValue ShOpHi = Op.getOperand(1);
5101   SDValue ShAmt = Op.getOperand(2);
5102   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
5103 
5104   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
5105 
5106   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
5107                                  DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
5108   SDValue HiBitsForLo = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
5109 
5110   // Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which
5111   // is "undef". We wanted 0, so CSEL it directly.
5112   SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
5113                                ISD::SETEQ, dl, DAG);
5114   SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
5115   HiBitsForLo =
5116       DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
5117                   HiBitsForLo, CCVal, Cmp);
5118 
5119   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
5120                                    DAG.getConstant(VTBits, dl, MVT::i64));
5121 
5122   SDValue LoBitsForLo = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
5123   SDValue LoForNormalShift =
5124       DAG.getNode(ISD::OR, dl, VT, LoBitsForLo, HiBitsForLo);
5125 
5126   Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
5127                        dl, DAG);
5128   CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
5129   SDValue LoForBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
5130   SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
5131                            LoForNormalShift, CCVal, Cmp);
5132 
5133   // AArch64 shifts larger than the register width are wrapped rather than
5134   // clamped, so we can't just emit "hi >> x".
5135   SDValue HiForNormalShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
5136   SDValue HiForBigShift =
5137       Opc == ISD::SRA
5138           ? DAG.getNode(Opc, dl, VT, ShOpHi,
5139                         DAG.getConstant(VTBits - 1, dl, MVT::i64))
5140           : DAG.getConstant(0, dl, VT);
5141   SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
5142                            HiForNormalShift, CCVal, Cmp);
5143 
5144   SDValue Ops[2] = { Lo, Hi };
5145   return DAG.getMergeValues(Ops, dl);
5146 }
5147 
5148 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5149 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
LowerShiftLeftParts(SDValue Op,SelectionDAG & DAG) const5150 SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
5151                                                    SelectionDAG &DAG) const {
5152   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5153   EVT VT = Op.getValueType();
5154   unsigned VTBits = VT.getSizeInBits();
5155   SDLoc dl(Op);
5156   SDValue ShOpLo = Op.getOperand(0);
5157   SDValue ShOpHi = Op.getOperand(1);
5158   SDValue ShAmt = Op.getOperand(2);
5159 
5160   assert(Op.getOpcode() == ISD::SHL_PARTS);
5161   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
5162                                  DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
5163   SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
5164 
5165   // Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which
5166   // is "undef". We wanted 0, so CSEL it directly.
5167   SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
5168                                ISD::SETEQ, dl, DAG);
5169   SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
5170   LoBitsForHi =
5171       DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
5172                   LoBitsForHi, CCVal, Cmp);
5173 
5174   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
5175                                    DAG.getConstant(VTBits, dl, MVT::i64));
5176   SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
5177   SDValue HiForNormalShift =
5178       DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi);
5179 
5180   SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
5181 
5182   Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
5183                        dl, DAG);
5184   CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
5185   SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
5186                            HiForNormalShift, CCVal, Cmp);
5187 
5188   // AArch64 shifts of larger than register sizes are wrapped rather than
5189   // clamped, so we can't just emit "lo << a" if a is too big.
5190   SDValue LoForBigShift = DAG.getConstant(0, dl, VT);
5191   SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5192   SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
5193                            LoForNormalShift, CCVal, Cmp);
5194 
5195   SDValue Ops[2] = { Lo, Hi };
5196   return DAG.getMergeValues(Ops, dl);
5197 }
5198 
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const5199 bool AArch64TargetLowering::isOffsetFoldingLegal(
5200     const GlobalAddressSDNode *GA) const {
5201   // Offsets are folded in the DAG combine rather than here so that we can
5202   // intelligently choose an offset based on the uses.
5203   return false;
5204 }
5205 
isFPImmLegal(const APFloat & Imm,EVT VT) const5206 bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
5207   // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
5208   // FIXME: We should be able to handle f128 as well with a clever lowering.
5209   if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32 ||
5210                           (VT == MVT::f16 && Subtarget->hasFullFP16()))) {
5211     LLVM_DEBUG(
5212         dbgs() << "Legal fp imm: materialize 0 using the zero register\n");
5213     return true;
5214   }
5215 
5216   StringRef FPType;
5217   bool IsLegal = false;
5218   SmallString<128> ImmStrVal;
5219   Imm.toString(ImmStrVal);
5220 
5221   if (VT == MVT::f64) {
5222     FPType = "f64";
5223     IsLegal = AArch64_AM::getFP64Imm(Imm) != -1;
5224   } else if (VT == MVT::f32) {
5225     FPType = "f32";
5226     IsLegal = AArch64_AM::getFP32Imm(Imm) != -1;
5227   } else if (VT == MVT::f16 && Subtarget->hasFullFP16()) {
5228     FPType = "f16";
5229     IsLegal = AArch64_AM::getFP16Imm(Imm) != -1;
5230   }
5231 
5232   if (IsLegal) {
5233     LLVM_DEBUG(dbgs() << "Legal " << FPType << " imm value: " << ImmStrVal
5234                       << "\n");
5235     return true;
5236   }
5237 
5238   if (!FPType.empty())
5239     LLVM_DEBUG(dbgs() << "Illegal " << FPType << " imm value: " << ImmStrVal
5240                       << "\n");
5241   else
5242     LLVM_DEBUG(dbgs() << "Illegal fp imm " << ImmStrVal
5243                       << ": unsupported fp type\n");
5244 
5245   return false;
5246 }
5247 
5248 //===----------------------------------------------------------------------===//
5249 //                          AArch64 Optimization Hooks
5250 //===----------------------------------------------------------------------===//
5251 
getEstimate(const AArch64Subtarget * ST,unsigned Opcode,SDValue Operand,SelectionDAG & DAG,int & ExtraSteps)5252 static SDValue getEstimate(const AArch64Subtarget *ST, unsigned Opcode,
5253                            SDValue Operand, SelectionDAG &DAG,
5254                            int &ExtraSteps) {
5255   EVT VT = Operand.getValueType();
5256   if (ST->hasNEON() &&
5257       (VT == MVT::f64 || VT == MVT::v1f64 || VT == MVT::v2f64 ||
5258        VT == MVT::f32 || VT == MVT::v1f32 ||
5259        VT == MVT::v2f32 || VT == MVT::v4f32)) {
5260     if (ExtraSteps == TargetLoweringBase::ReciprocalEstimate::Unspecified)
5261       // For the reciprocal estimates, convergence is quadratic, so the number
5262       // of digits is doubled after each iteration.  In ARMv8, the accuracy of
5263       // the initial estimate is 2^-8.  Thus the number of extra steps to refine
5264       // the result for float (23 mantissa bits) is 2 and for double (52
5265       // mantissa bits) is 3.
5266       ExtraSteps = VT.getScalarType() == MVT::f64 ? 3 : 2;
5267 
5268     return DAG.getNode(Opcode, SDLoc(Operand), VT, Operand);
5269   }
5270 
5271   return SDValue();
5272 }
5273 
getSqrtEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & ExtraSteps,bool & UseOneConst,bool Reciprocal) const5274 SDValue AArch64TargetLowering::getSqrtEstimate(SDValue Operand,
5275                                                SelectionDAG &DAG, int Enabled,
5276                                                int &ExtraSteps,
5277                                                bool &UseOneConst,
5278                                                bool Reciprocal) const {
5279   if (Enabled == ReciprocalEstimate::Enabled ||
5280       (Enabled == ReciprocalEstimate::Unspecified && Subtarget->useRSqrt()))
5281     if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRSQRTE, Operand,
5282                                        DAG, ExtraSteps)) {
5283       SDLoc DL(Operand);
5284       EVT VT = Operand.getValueType();
5285 
5286       SDNodeFlags Flags;
5287       Flags.setAllowReassociation(true);
5288 
5289       // Newton reciprocal square root iteration: E * 0.5 * (3 - X * E^2)
5290       // AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N)
5291       for (int i = ExtraSteps; i > 0; --i) {
5292         SDValue Step = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Estimate,
5293                                    Flags);
5294         Step = DAG.getNode(AArch64ISD::FRSQRTS, DL, VT, Operand, Step, Flags);
5295         Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
5296       }
5297       if (!Reciprocal) {
5298         EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
5299                                       VT);
5300         SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
5301         SDValue Eq = DAG.getSetCC(DL, CCVT, Operand, FPZero, ISD::SETEQ);
5302 
5303         Estimate = DAG.getNode(ISD::FMUL, DL, VT, Operand, Estimate, Flags);
5304         // Correct the result if the operand is 0.0.
5305         Estimate = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL,
5306                                VT, Eq, Operand, Estimate);
5307       }
5308 
5309       ExtraSteps = 0;
5310       return Estimate;
5311     }
5312 
5313   return SDValue();
5314 }
5315 
getRecipEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & ExtraSteps) const5316 SDValue AArch64TargetLowering::getRecipEstimate(SDValue Operand,
5317                                                 SelectionDAG &DAG, int Enabled,
5318                                                 int &ExtraSteps) const {
5319   if (Enabled == ReciprocalEstimate::Enabled)
5320     if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRECPE, Operand,
5321                                        DAG, ExtraSteps)) {
5322       SDLoc DL(Operand);
5323       EVT VT = Operand.getValueType();
5324 
5325       SDNodeFlags Flags;
5326       Flags.setAllowReassociation(true);
5327 
5328       // Newton reciprocal iteration: E * (2 - X * E)
5329       // AArch64 reciprocal iteration instruction: (2 - M * N)
5330       for (int i = ExtraSteps; i > 0; --i) {
5331         SDValue Step = DAG.getNode(AArch64ISD::FRECPS, DL, VT, Operand,
5332                                    Estimate, Flags);
5333         Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
5334       }
5335 
5336       ExtraSteps = 0;
5337       return Estimate;
5338     }
5339 
5340   return SDValue();
5341 }
5342 
5343 //===----------------------------------------------------------------------===//
5344 //                          AArch64 Inline Assembly Support
5345 //===----------------------------------------------------------------------===//
5346 
5347 // Table of Constraints
5348 // TODO: This is the current set of constraints supported by ARM for the
5349 // compiler, not all of them may make sense.
5350 //
5351 // r - A general register
5352 // w - An FP/SIMD register of some size in the range v0-v31
5353 // x - An FP/SIMD register of some size in the range v0-v15
5354 // I - Constant that can be used with an ADD instruction
5355 // J - Constant that can be used with a SUB instruction
5356 // K - Constant that can be used with a 32-bit logical instruction
5357 // L - Constant that can be used with a 64-bit logical instruction
5358 // M - Constant that can be used as a 32-bit MOV immediate
5359 // N - Constant that can be used as a 64-bit MOV immediate
5360 // Q - A memory reference with base register and no offset
5361 // S - A symbolic address
5362 // Y - Floating point constant zero
5363 // Z - Integer constant zero
5364 //
5365 //   Note that general register operands will be output using their 64-bit x
5366 // register name, whatever the size of the variable, unless the asm operand
5367 // is prefixed by the %w modifier. Floating-point and SIMD register operands
5368 // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
5369 // %q modifier.
LowerXConstraint(EVT ConstraintVT) const5370 const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5371   // At this point, we have to lower this constraint to something else, so we
5372   // lower it to an "r" or "w". However, by doing this we will force the result
5373   // to be in register, while the X constraint is much more permissive.
5374   //
5375   // Although we are correct (we are free to emit anything, without
5376   // constraints), we might break use cases that would expect us to be more
5377   // efficient and emit something else.
5378   if (!Subtarget->hasFPARMv8())
5379     return "r";
5380 
5381   if (ConstraintVT.isFloatingPoint())
5382     return "w";
5383 
5384   if (ConstraintVT.isVector() &&
5385      (ConstraintVT.getSizeInBits() == 64 ||
5386       ConstraintVT.getSizeInBits() == 128))
5387     return "w";
5388 
5389   return "r";
5390 }
5391 
5392 /// getConstraintType - Given a constraint letter, return the type of
5393 /// constraint it is for this target.
5394 AArch64TargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const5395 AArch64TargetLowering::getConstraintType(StringRef Constraint) const {
5396   if (Constraint.size() == 1) {
5397     switch (Constraint[0]) {
5398     default:
5399       break;
5400     case 'z':
5401       return C_Other;
5402     case 'x':
5403     case 'w':
5404       return C_RegisterClass;
5405     // An address with a single base register. Due to the way we
5406     // currently handle addresses it is the same as 'r'.
5407     case 'Q':
5408       return C_Memory;
5409     case 'S': // A symbolic address
5410       return C_Other;
5411     }
5412   }
5413   return TargetLowering::getConstraintType(Constraint);
5414 }
5415 
5416 /// Examine constraint type and operand type and determine a weight value.
5417 /// This object must already have been set up with the operand type
5418 /// and the current alternative constraint selected.
5419 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const5420 AArch64TargetLowering::getSingleConstraintMatchWeight(
5421     AsmOperandInfo &info, const char *constraint) const {
5422   ConstraintWeight weight = CW_Invalid;
5423   Value *CallOperandVal = info.CallOperandVal;
5424   // If we don't have a value, we can't do a match,
5425   // but allow it at the lowest weight.
5426   if (!CallOperandVal)
5427     return CW_Default;
5428   Type *type = CallOperandVal->getType();
5429   // Look at the constraint type.
5430   switch (*constraint) {
5431   default:
5432     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
5433     break;
5434   case 'x':
5435   case 'w':
5436     if (type->isFloatingPointTy() || type->isVectorTy())
5437       weight = CW_Register;
5438     break;
5439   case 'z':
5440     weight = CW_Constant;
5441     break;
5442   }
5443   return weight;
5444 }
5445 
5446 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const5447 AArch64TargetLowering::getRegForInlineAsmConstraint(
5448     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
5449   if (Constraint.size() == 1) {
5450     switch (Constraint[0]) {
5451     case 'r':
5452       if (VT.getSizeInBits() == 64)
5453         return std::make_pair(0U, &AArch64::GPR64commonRegClass);
5454       return std::make_pair(0U, &AArch64::GPR32commonRegClass);
5455     case 'w':
5456       if (VT.getSizeInBits() == 16)
5457         return std::make_pair(0U, &AArch64::FPR16RegClass);
5458       if (VT.getSizeInBits() == 32)
5459         return std::make_pair(0U, &AArch64::FPR32RegClass);
5460       if (VT.getSizeInBits() == 64)
5461         return std::make_pair(0U, &AArch64::FPR64RegClass);
5462       if (VT.getSizeInBits() == 128)
5463         return std::make_pair(0U, &AArch64::FPR128RegClass);
5464       break;
5465     // The instructions that this constraint is designed for can
5466     // only take 128-bit registers so just use that regclass.
5467     case 'x':
5468       if (VT.getSizeInBits() == 128)
5469         return std::make_pair(0U, &AArch64::FPR128_loRegClass);
5470       break;
5471     }
5472   }
5473   if (StringRef("{cc}").equals_lower(Constraint))
5474     return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
5475 
5476   // Use the default implementation in TargetLowering to convert the register
5477   // constraint into a member of a register class.
5478   std::pair<unsigned, const TargetRegisterClass *> Res;
5479   Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
5480 
5481   // Not found as a standard register?
5482   if (!Res.second) {
5483     unsigned Size = Constraint.size();
5484     if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
5485         tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
5486       int RegNo;
5487       bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo);
5488       if (!Failed && RegNo >= 0 && RegNo <= 31) {
5489         // v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size.
5490         // By default we'll emit v0-v31 for this unless there's a modifier where
5491         // we'll emit the correct register as well.
5492         if (VT != MVT::Other && VT.getSizeInBits() == 64) {
5493           Res.first = AArch64::FPR64RegClass.getRegister(RegNo);
5494           Res.second = &AArch64::FPR64RegClass;
5495         } else {
5496           Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
5497           Res.second = &AArch64::FPR128RegClass;
5498         }
5499       }
5500     }
5501   }
5502 
5503   return Res;
5504 }
5505 
5506 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5507 /// vector.  If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const5508 void AArch64TargetLowering::LowerAsmOperandForConstraint(
5509     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
5510     SelectionDAG &DAG) const {
5511   SDValue Result;
5512 
5513   // Currently only support length 1 constraints.
5514   if (Constraint.length() != 1)
5515     return;
5516 
5517   char ConstraintLetter = Constraint[0];
5518   switch (ConstraintLetter) {
5519   default:
5520     break;
5521 
5522   // This set of constraints deal with valid constants for various instructions.
5523   // Validate and return a target constant for them if we can.
5524   case 'z': {
5525     // 'z' maps to xzr or wzr so it needs an input of 0.
5526     if (!isNullConstant(Op))
5527       return;
5528 
5529     if (Op.getValueType() == MVT::i64)
5530       Result = DAG.getRegister(AArch64::XZR, MVT::i64);
5531     else
5532       Result = DAG.getRegister(AArch64::WZR, MVT::i32);
5533     break;
5534   }
5535   case 'S': {
5536     // An absolute symbolic address or label reference.
5537     if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5538       Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5539                                           GA->getValueType(0));
5540     } else if (const BlockAddressSDNode *BA =
5541                    dyn_cast<BlockAddressSDNode>(Op)) {
5542       Result =
5543           DAG.getTargetBlockAddress(BA->getBlockAddress(), BA->getValueType(0));
5544     } else if (const ExternalSymbolSDNode *ES =
5545                    dyn_cast<ExternalSymbolSDNode>(Op)) {
5546       Result =
5547           DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0));
5548     } else
5549       return;
5550     break;
5551   }
5552 
5553   case 'I':
5554   case 'J':
5555   case 'K':
5556   case 'L':
5557   case 'M':
5558   case 'N':
5559     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
5560     if (!C)
5561       return;
5562 
5563     // Grab the value and do some validation.
5564     uint64_t CVal = C->getZExtValue();
5565     switch (ConstraintLetter) {
5566     // The I constraint applies only to simple ADD or SUB immediate operands:
5567     // i.e. 0 to 4095 with optional shift by 12
5568     // The J constraint applies only to ADD or SUB immediates that would be
5569     // valid when negated, i.e. if [an add pattern] were to be output as a SUB
5570     // instruction [or vice versa], in other words -1 to -4095 with optional
5571     // left shift by 12.
5572     case 'I':
5573       if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
5574         break;
5575       return;
5576     case 'J': {
5577       uint64_t NVal = -C->getSExtValue();
5578       if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
5579         CVal = C->getSExtValue();
5580         break;
5581       }
5582       return;
5583     }
5584     // The K and L constraints apply *only* to logical immediates, including
5585     // what used to be the MOVI alias for ORR (though the MOVI alias has now
5586     // been removed and MOV should be used). So these constraints have to
5587     // distinguish between bit patterns that are valid 32-bit or 64-bit
5588     // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
5589     // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
5590     // versa.
5591     case 'K':
5592       if (AArch64_AM::isLogicalImmediate(CVal, 32))
5593         break;
5594       return;
5595     case 'L':
5596       if (AArch64_AM::isLogicalImmediate(CVal, 64))
5597         break;
5598       return;
5599     // The M and N constraints are a superset of K and L respectively, for use
5600     // with the MOV (immediate) alias. As well as the logical immediates they
5601     // also match 32 or 64-bit immediates that can be loaded either using a
5602     // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
5603     // (M) or 64-bit 0x1234000000000000 (N) etc.
5604     // As a note some of this code is liberally stolen from the asm parser.
5605     case 'M': {
5606       if (!isUInt<32>(CVal))
5607         return;
5608       if (AArch64_AM::isLogicalImmediate(CVal, 32))
5609         break;
5610       if ((CVal & 0xFFFF) == CVal)
5611         break;
5612       if ((CVal & 0xFFFF0000ULL) == CVal)
5613         break;
5614       uint64_t NCVal = ~(uint32_t)CVal;
5615       if ((NCVal & 0xFFFFULL) == NCVal)
5616         break;
5617       if ((NCVal & 0xFFFF0000ULL) == NCVal)
5618         break;
5619       return;
5620     }
5621     case 'N': {
5622       if (AArch64_AM::isLogicalImmediate(CVal, 64))
5623         break;
5624       if ((CVal & 0xFFFFULL) == CVal)
5625         break;
5626       if ((CVal & 0xFFFF0000ULL) == CVal)
5627         break;
5628       if ((CVal & 0xFFFF00000000ULL) == CVal)
5629         break;
5630       if ((CVal & 0xFFFF000000000000ULL) == CVal)
5631         break;
5632       uint64_t NCVal = ~CVal;
5633       if ((NCVal & 0xFFFFULL) == NCVal)
5634         break;
5635       if ((NCVal & 0xFFFF0000ULL) == NCVal)
5636         break;
5637       if ((NCVal & 0xFFFF00000000ULL) == NCVal)
5638         break;
5639       if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
5640         break;
5641       return;
5642     }
5643     default:
5644       return;
5645     }
5646 
5647     // All assembler immediates are 64-bit integers.
5648     Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64);
5649     break;
5650   }
5651 
5652   if (Result.getNode()) {
5653     Ops.push_back(Result);
5654     return;
5655   }
5656 
5657   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5658 }
5659 
5660 //===----------------------------------------------------------------------===//
5661 //                     AArch64 Advanced SIMD Support
5662 //===----------------------------------------------------------------------===//
5663 
5664 /// WidenVector - Given a value in the V64 register class, produce the
5665 /// equivalent value in the V128 register class.
WidenVector(SDValue V64Reg,SelectionDAG & DAG)5666 static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
5667   EVT VT = V64Reg.getValueType();
5668   unsigned NarrowSize = VT.getVectorNumElements();
5669   MVT EltTy = VT.getVectorElementType().getSimpleVT();
5670   MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
5671   SDLoc DL(V64Reg);
5672 
5673   return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
5674                      V64Reg, DAG.getConstant(0, DL, MVT::i32));
5675 }
5676 
5677 /// getExtFactor - Determine the adjustment factor for the position when
5678 /// generating an "extract from vector registers" instruction.
getExtFactor(SDValue & V)5679 static unsigned getExtFactor(SDValue &V) {
5680   EVT EltType = V.getValueType().getVectorElementType();
5681   return EltType.getSizeInBits() / 8;
5682 }
5683 
5684 /// NarrowVector - Given a value in the V128 register class, produce the
5685 /// equivalent value in the V64 register class.
NarrowVector(SDValue V128Reg,SelectionDAG & DAG)5686 static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
5687   EVT VT = V128Reg.getValueType();
5688   unsigned WideSize = VT.getVectorNumElements();
5689   MVT EltTy = VT.getVectorElementType().getSimpleVT();
5690   MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
5691   SDLoc DL(V128Reg);
5692 
5693   return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
5694 }
5695 
5696 // Gather data to see if the operation can be modelled as a
5697 // shuffle in combination with VEXTs.
ReconstructShuffle(SDValue Op,SelectionDAG & DAG) const5698 SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
5699                                                   SelectionDAG &DAG) const {
5700   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
5701   LLVM_DEBUG(dbgs() << "AArch64TargetLowering::ReconstructShuffle\n");
5702   SDLoc dl(Op);
5703   EVT VT = Op.getValueType();
5704   unsigned NumElts = VT.getVectorNumElements();
5705 
5706   struct ShuffleSourceInfo {
5707     SDValue Vec;
5708     unsigned MinElt;
5709     unsigned MaxElt;
5710 
5711     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
5712     // be compatible with the shuffle we intend to construct. As a result
5713     // ShuffleVec will be some sliding window into the original Vec.
5714     SDValue ShuffleVec;
5715 
5716     // Code should guarantee that element i in Vec starts at element "WindowBase
5717     // + i * WindowScale in ShuffleVec".
5718     int WindowBase;
5719     int WindowScale;
5720 
5721     ShuffleSourceInfo(SDValue Vec)
5722       : Vec(Vec), MinElt(std::numeric_limits<unsigned>::max()), MaxElt(0),
5723           ShuffleVec(Vec), WindowBase(0), WindowScale(1) {}
5724 
5725     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
5726   };
5727 
5728   // First gather all vectors used as an immediate source for this BUILD_VECTOR
5729   // node.
5730   SmallVector<ShuffleSourceInfo, 2> Sources;
5731   for (unsigned i = 0; i < NumElts; ++i) {
5732     SDValue V = Op.getOperand(i);
5733     if (V.isUndef())
5734       continue;
5735     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5736              !isa<ConstantSDNode>(V.getOperand(1))) {
5737       LLVM_DEBUG(
5738           dbgs() << "Reshuffle failed: "
5739                     "a shuffle can only come from building a vector from "
5740                     "various elements of other vectors, provided their "
5741                     "indices are constant\n");
5742       return SDValue();
5743     }
5744 
5745     // Add this element source to the list if it's not already there.
5746     SDValue SourceVec = V.getOperand(0);
5747     auto Source = find(Sources, SourceVec);
5748     if (Source == Sources.end())
5749       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
5750 
5751     // Update the minimum and maximum lane number seen.
5752     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
5753     Source->MinElt = std::min(Source->MinElt, EltNo);
5754     Source->MaxElt = std::max(Source->MaxElt, EltNo);
5755   }
5756 
5757   if (Sources.size() > 2) {
5758     LLVM_DEBUG(
5759         dbgs() << "Reshuffle failed: currently only do something sane when at "
5760                   "most two source vectors are involved\n");
5761     return SDValue();
5762   }
5763 
5764   // Find out the smallest element size among result and two sources, and use
5765   // it as element size to build the shuffle_vector.
5766   EVT SmallestEltTy = VT.getVectorElementType();
5767   for (auto &Source : Sources) {
5768     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
5769     if (SrcEltTy.bitsLT(SmallestEltTy)) {
5770       SmallestEltTy = SrcEltTy;
5771     }
5772   }
5773   unsigned ResMultiplier =
5774       VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
5775   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
5776   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
5777 
5778   // If the source vector is too wide or too narrow, we may nevertheless be able
5779   // to construct a compatible shuffle either by concatenating it with UNDEF or
5780   // extracting a suitable range of elements.
5781   for (auto &Src : Sources) {
5782     EVT SrcVT = Src.ShuffleVec.getValueType();
5783 
5784     if (SrcVT.getSizeInBits() == VT.getSizeInBits())
5785       continue;
5786 
5787     // This stage of the search produces a source with the same element type as
5788     // the original, but with a total width matching the BUILD_VECTOR output.
5789     EVT EltVT = SrcVT.getVectorElementType();
5790     unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
5791     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
5792 
5793     if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
5794       assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
5795       // We can pad out the smaller vector for free, so if it's part of a
5796       // shuffle...
5797       Src.ShuffleVec =
5798           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
5799                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
5800       continue;
5801     }
5802 
5803     assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
5804 
5805     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
5806       LLVM_DEBUG(
5807           dbgs() << "Reshuffle failed: span too large for a VEXT to cope\n");
5808       return SDValue();
5809     }
5810 
5811     if (Src.MinElt >= NumSrcElts) {
5812       // The extraction can just take the second half
5813       Src.ShuffleVec =
5814           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5815                       DAG.getConstant(NumSrcElts, dl, MVT::i64));
5816       Src.WindowBase = -NumSrcElts;
5817     } else if (Src.MaxElt < NumSrcElts) {
5818       // The extraction can just take the first half
5819       Src.ShuffleVec =
5820           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5821                       DAG.getConstant(0, dl, MVT::i64));
5822     } else {
5823       // An actual VEXT is needed
5824       SDValue VEXTSrc1 =
5825           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5826                       DAG.getConstant(0, dl, MVT::i64));
5827       SDValue VEXTSrc2 =
5828           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5829                       DAG.getConstant(NumSrcElts, dl, MVT::i64));
5830       unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
5831 
5832       Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
5833                                    VEXTSrc2,
5834                                    DAG.getConstant(Imm, dl, MVT::i32));
5835       Src.WindowBase = -Src.MinElt;
5836     }
5837   }
5838 
5839   // Another possible incompatibility occurs from the vector element types. We
5840   // can fix this by bitcasting the source vectors to the same type we intend
5841   // for the shuffle.
5842   for (auto &Src : Sources) {
5843     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
5844     if (SrcEltTy == SmallestEltTy)
5845       continue;
5846     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
5847     Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
5848     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
5849     Src.WindowBase *= Src.WindowScale;
5850   }
5851 
5852   // Final sanity check before we try to actually produce a shuffle.
5853   LLVM_DEBUG(for (auto Src
5854                   : Sources)
5855                  assert(Src.ShuffleVec.getValueType() == ShuffleVT););
5856 
5857   // The stars all align, our next step is to produce the mask for the shuffle.
5858   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
5859   int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
5860   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
5861     SDValue Entry = Op.getOperand(i);
5862     if (Entry.isUndef())
5863       continue;
5864 
5865     auto Src = find(Sources, Entry.getOperand(0));
5866     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
5867 
5868     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
5869     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
5870     // segment.
5871     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
5872     int BitsDefined =
5873         std::min(OrigEltTy.getSizeInBits(), VT.getScalarSizeInBits());
5874     int LanesDefined = BitsDefined / BitsPerShuffleLane;
5875 
5876     // This source is expected to fill ResMultiplier lanes of the final shuffle,
5877     // starting at the appropriate offset.
5878     int *LaneMask = &Mask[i * ResMultiplier];
5879 
5880     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
5881     ExtractBase += NumElts * (Src - Sources.begin());
5882     for (int j = 0; j < LanesDefined; ++j)
5883       LaneMask[j] = ExtractBase + j;
5884   }
5885 
5886   // Final check before we try to produce nonsense...
5887   if (!isShuffleMaskLegal(Mask, ShuffleVT)) {
5888     LLVM_DEBUG(dbgs() << "Reshuffle failed: illegal shuffle mask\n");
5889     return SDValue();
5890   }
5891 
5892   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
5893   for (unsigned i = 0; i < Sources.size(); ++i)
5894     ShuffleOps[i] = Sources[i].ShuffleVec;
5895 
5896   SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
5897                                          ShuffleOps[1], Mask);
5898   SDValue V = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
5899 
5900   LLVM_DEBUG(dbgs() << "Reshuffle, creating node: "; Shuffle.dump();
5901              dbgs() << "Reshuffle, creating node: "; V.dump(););
5902 
5903   return V;
5904 }
5905 
5906 // check if an EXT instruction can handle the shuffle mask when the
5907 // vector sources of the shuffle are the same.
isSingletonEXTMask(ArrayRef<int> M,EVT VT,unsigned & Imm)5908 static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
5909   unsigned NumElts = VT.getVectorNumElements();
5910 
5911   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
5912   if (M[0] < 0)
5913     return false;
5914 
5915   Imm = M[0];
5916 
5917   // If this is a VEXT shuffle, the immediate value is the index of the first
5918   // element.  The other shuffle indices must be the successive elements after
5919   // the first one.
5920   unsigned ExpectedElt = Imm;
5921   for (unsigned i = 1; i < NumElts; ++i) {
5922     // Increment the expected index.  If it wraps around, just follow it
5923     // back to index zero and keep going.
5924     ++ExpectedElt;
5925     if (ExpectedElt == NumElts)
5926       ExpectedElt = 0;
5927 
5928     if (M[i] < 0)
5929       continue; // ignore UNDEF indices
5930     if (ExpectedElt != static_cast<unsigned>(M[i]))
5931       return false;
5932   }
5933 
5934   return true;
5935 }
5936 
5937 // check if an EXT instruction can handle the shuffle mask when the
5938 // vector sources of the shuffle are different.
isEXTMask(ArrayRef<int> M,EVT VT,bool & ReverseEXT,unsigned & Imm)5939 static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
5940                       unsigned &Imm) {
5941   // Look for the first non-undef element.
5942   const int *FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; });
5943 
5944   // Benefit form APInt to handle overflow when calculating expected element.
5945   unsigned NumElts = VT.getVectorNumElements();
5946   unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
5947   APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
5948   // The following shuffle indices must be the successive elements after the
5949   // first real element.
5950   const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
5951       [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
5952   if (FirstWrongElt != M.end())
5953     return false;
5954 
5955   // The index of an EXT is the first element if it is not UNDEF.
5956   // Watch out for the beginning UNDEFs. The EXT index should be the expected
5957   // value of the first element.  E.g.
5958   // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
5959   // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
5960   // ExpectedElt is the last mask index plus 1.
5961   Imm = ExpectedElt.getZExtValue();
5962 
5963   // There are two difference cases requiring to reverse input vectors.
5964   // For example, for vector <4 x i32> we have the following cases,
5965   // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
5966   // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
5967   // For both cases, we finally use mask <5, 6, 7, 0>, which requires
5968   // to reverse two input vectors.
5969   if (Imm < NumElts)
5970     ReverseEXT = true;
5971   else
5972     Imm -= NumElts;
5973 
5974   return true;
5975 }
5976 
5977 /// isREVMask - Check if a vector shuffle corresponds to a REV
5978 /// instruction with the specified blocksize.  (The order of the elements
5979 /// within each block of the vector is reversed.)
isREVMask(ArrayRef<int> M,EVT VT,unsigned BlockSize)5980 static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
5981   assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
5982          "Only possible block sizes for REV are: 16, 32, 64");
5983 
5984   unsigned EltSz = VT.getScalarSizeInBits();
5985   if (EltSz == 64)
5986     return false;
5987 
5988   unsigned NumElts = VT.getVectorNumElements();
5989   unsigned BlockElts = M[0] + 1;
5990   // If the first shuffle index is UNDEF, be optimistic.
5991   if (M[0] < 0)
5992     BlockElts = BlockSize / EltSz;
5993 
5994   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
5995     return false;
5996 
5997   for (unsigned i = 0; i < NumElts; ++i) {
5998     if (M[i] < 0)
5999       continue; // ignore UNDEF indices
6000     if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
6001       return false;
6002   }
6003 
6004   return true;
6005 }
6006 
isZIPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6007 static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6008   unsigned NumElts = VT.getVectorNumElements();
6009   WhichResult = (M[0] == 0 ? 0 : 1);
6010   unsigned Idx = WhichResult * NumElts / 2;
6011   for (unsigned i = 0; i != NumElts; i += 2) {
6012     if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
6013         (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
6014       return false;
6015     Idx += 1;
6016   }
6017 
6018   return true;
6019 }
6020 
isUZPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6021 static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6022   unsigned NumElts = VT.getVectorNumElements();
6023   WhichResult = (M[0] == 0 ? 0 : 1);
6024   for (unsigned i = 0; i != NumElts; ++i) {
6025     if (M[i] < 0)
6026       continue; // ignore UNDEF indices
6027     if ((unsigned)M[i] != 2 * i + WhichResult)
6028       return false;
6029   }
6030 
6031   return true;
6032 }
6033 
isTRNMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6034 static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6035   unsigned NumElts = VT.getVectorNumElements();
6036   WhichResult = (M[0] == 0 ? 0 : 1);
6037   for (unsigned i = 0; i < NumElts; i += 2) {
6038     if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
6039         (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
6040       return false;
6041   }
6042   return true;
6043 }
6044 
6045 /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
6046 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6047 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
isZIP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6048 static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6049   unsigned NumElts = VT.getVectorNumElements();
6050   WhichResult = (M[0] == 0 ? 0 : 1);
6051   unsigned Idx = WhichResult * NumElts / 2;
6052   for (unsigned i = 0; i != NumElts; i += 2) {
6053     if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
6054         (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
6055       return false;
6056     Idx += 1;
6057   }
6058 
6059   return true;
6060 }
6061 
6062 /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
6063 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6064 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
isUZP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6065 static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6066   unsigned Half = VT.getVectorNumElements() / 2;
6067   WhichResult = (M[0] == 0 ? 0 : 1);
6068   for (unsigned j = 0; j != 2; ++j) {
6069     unsigned Idx = WhichResult;
6070     for (unsigned i = 0; i != Half; ++i) {
6071       int MIdx = M[i + j * Half];
6072       if (MIdx >= 0 && (unsigned)MIdx != Idx)
6073         return false;
6074       Idx += 2;
6075     }
6076   }
6077 
6078   return true;
6079 }
6080 
6081 /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
6082 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6083 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
isTRN_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6084 static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6085   unsigned NumElts = VT.getVectorNumElements();
6086   WhichResult = (M[0] == 0 ? 0 : 1);
6087   for (unsigned i = 0; i < NumElts; i += 2) {
6088     if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
6089         (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
6090       return false;
6091   }
6092   return true;
6093 }
6094 
isINSMask(ArrayRef<int> M,int NumInputElements,bool & DstIsLeft,int & Anomaly)6095 static bool isINSMask(ArrayRef<int> M, int NumInputElements,
6096                       bool &DstIsLeft, int &Anomaly) {
6097   if (M.size() != static_cast<size_t>(NumInputElements))
6098     return false;
6099 
6100   int NumLHSMatch = 0, NumRHSMatch = 0;
6101   int LastLHSMismatch = -1, LastRHSMismatch = -1;
6102 
6103   for (int i = 0; i < NumInputElements; ++i) {
6104     if (M[i] == -1) {
6105       ++NumLHSMatch;
6106       ++NumRHSMatch;
6107       continue;
6108     }
6109 
6110     if (M[i] == i)
6111       ++NumLHSMatch;
6112     else
6113       LastLHSMismatch = i;
6114 
6115     if (M[i] == i + NumInputElements)
6116       ++NumRHSMatch;
6117     else
6118       LastRHSMismatch = i;
6119   }
6120 
6121   if (NumLHSMatch == NumInputElements - 1) {
6122     DstIsLeft = true;
6123     Anomaly = LastLHSMismatch;
6124     return true;
6125   } else if (NumRHSMatch == NumInputElements - 1) {
6126     DstIsLeft = false;
6127     Anomaly = LastRHSMismatch;
6128     return true;
6129   }
6130 
6131   return false;
6132 }
6133 
isConcatMask(ArrayRef<int> Mask,EVT VT,bool SplitLHS)6134 static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
6135   if (VT.getSizeInBits() != 128)
6136     return false;
6137 
6138   unsigned NumElts = VT.getVectorNumElements();
6139 
6140   for (int I = 0, E = NumElts / 2; I != E; I++) {
6141     if (Mask[I] != I)
6142       return false;
6143   }
6144 
6145   int Offset = NumElts / 2;
6146   for (int I = NumElts / 2, E = NumElts; I != E; I++) {
6147     if (Mask[I] != I + SplitLHS * Offset)
6148       return false;
6149   }
6150 
6151   return true;
6152 }
6153 
tryFormConcatFromShuffle(SDValue Op,SelectionDAG & DAG)6154 static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
6155   SDLoc DL(Op);
6156   EVT VT = Op.getValueType();
6157   SDValue V0 = Op.getOperand(0);
6158   SDValue V1 = Op.getOperand(1);
6159   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
6160 
6161   if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
6162       VT.getVectorElementType() != V1.getValueType().getVectorElementType())
6163     return SDValue();
6164 
6165   bool SplitV0 = V0.getValueSizeInBits() == 128;
6166 
6167   if (!isConcatMask(Mask, VT, SplitV0))
6168     return SDValue();
6169 
6170   EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
6171                                 VT.getVectorNumElements() / 2);
6172   if (SplitV0) {
6173     V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
6174                      DAG.getConstant(0, DL, MVT::i64));
6175   }
6176   if (V1.getValueSizeInBits() == 128) {
6177     V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
6178                      DAG.getConstant(0, DL, MVT::i64));
6179   }
6180   return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
6181 }
6182 
6183 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
6184 /// the specified operations to build the shuffle.
GeneratePerfectShuffle(unsigned PFEntry,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl)6185 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
6186                                       SDValue RHS, SelectionDAG &DAG,
6187                                       const SDLoc &dl) {
6188   unsigned OpNum = (PFEntry >> 26) & 0x0F;
6189   unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
6190   unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
6191 
6192   enum {
6193     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
6194     OP_VREV,
6195     OP_VDUP0,
6196     OP_VDUP1,
6197     OP_VDUP2,
6198     OP_VDUP3,
6199     OP_VEXT1,
6200     OP_VEXT2,
6201     OP_VEXT3,
6202     OP_VUZPL, // VUZP, left result
6203     OP_VUZPR, // VUZP, right result
6204     OP_VZIPL, // VZIP, left result
6205     OP_VZIPR, // VZIP, right result
6206     OP_VTRNL, // VTRN, left result
6207     OP_VTRNR  // VTRN, right result
6208   };
6209 
6210   if (OpNum == OP_COPY) {
6211     if (LHSID == (1 * 9 + 2) * 9 + 3)
6212       return LHS;
6213     assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
6214     return RHS;
6215   }
6216 
6217   SDValue OpLHS, OpRHS;
6218   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
6219   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
6220   EVT VT = OpLHS.getValueType();
6221 
6222   switch (OpNum) {
6223   default:
6224     llvm_unreachable("Unknown shuffle opcode!");
6225   case OP_VREV:
6226     // VREV divides the vector in half and swaps within the half.
6227     if (VT.getVectorElementType() == MVT::i32 ||
6228         VT.getVectorElementType() == MVT::f32)
6229       return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
6230     // vrev <4 x i16> -> REV32
6231     if (VT.getVectorElementType() == MVT::i16 ||
6232         VT.getVectorElementType() == MVT::f16)
6233       return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
6234     // vrev <4 x i8> -> REV16
6235     assert(VT.getVectorElementType() == MVT::i8);
6236     return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
6237   case OP_VDUP0:
6238   case OP_VDUP1:
6239   case OP_VDUP2:
6240   case OP_VDUP3: {
6241     EVT EltTy = VT.getVectorElementType();
6242     unsigned Opcode;
6243     if (EltTy == MVT::i8)
6244       Opcode = AArch64ISD::DUPLANE8;
6245     else if (EltTy == MVT::i16 || EltTy == MVT::f16)
6246       Opcode = AArch64ISD::DUPLANE16;
6247     else if (EltTy == MVT::i32 || EltTy == MVT::f32)
6248       Opcode = AArch64ISD::DUPLANE32;
6249     else if (EltTy == MVT::i64 || EltTy == MVT::f64)
6250       Opcode = AArch64ISD::DUPLANE64;
6251     else
6252       llvm_unreachable("Invalid vector element type?");
6253 
6254     if (VT.getSizeInBits() == 64)
6255       OpLHS = WidenVector(OpLHS, DAG);
6256     SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64);
6257     return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
6258   }
6259   case OP_VEXT1:
6260   case OP_VEXT2:
6261   case OP_VEXT3: {
6262     unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
6263     return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
6264                        DAG.getConstant(Imm, dl, MVT::i32));
6265   }
6266   case OP_VUZPL:
6267     return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
6268                        OpRHS);
6269   case OP_VUZPR:
6270     return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
6271                        OpRHS);
6272   case OP_VZIPL:
6273     return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
6274                        OpRHS);
6275   case OP_VZIPR:
6276     return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
6277                        OpRHS);
6278   case OP_VTRNL:
6279     return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
6280                        OpRHS);
6281   case OP_VTRNR:
6282     return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
6283                        OpRHS);
6284   }
6285 }
6286 
GenerateTBL(SDValue Op,ArrayRef<int> ShuffleMask,SelectionDAG & DAG)6287 static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
6288                            SelectionDAG &DAG) {
6289   // Check to see if we can use the TBL instruction.
6290   SDValue V1 = Op.getOperand(0);
6291   SDValue V2 = Op.getOperand(1);
6292   SDLoc DL(Op);
6293 
6294   EVT EltVT = Op.getValueType().getVectorElementType();
6295   unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
6296 
6297   SmallVector<SDValue, 8> TBLMask;
6298   for (int Val : ShuffleMask) {
6299     for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
6300       unsigned Offset = Byte + Val * BytesPerElt;
6301       TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32));
6302     }
6303   }
6304 
6305   MVT IndexVT = MVT::v8i8;
6306   unsigned IndexLen = 8;
6307   if (Op.getValueSizeInBits() == 128) {
6308     IndexVT = MVT::v16i8;
6309     IndexLen = 16;
6310   }
6311 
6312   SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
6313   SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
6314 
6315   SDValue Shuffle;
6316   if (V2.getNode()->isUndef()) {
6317     if (IndexLen == 8)
6318       V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
6319     Shuffle = DAG.getNode(
6320         ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
6321         DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
6322         DAG.getBuildVector(IndexVT, DL,
6323                            makeArrayRef(TBLMask.data(), IndexLen)));
6324   } else {
6325     if (IndexLen == 8) {
6326       V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
6327       Shuffle = DAG.getNode(
6328           ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
6329           DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
6330           DAG.getBuildVector(IndexVT, DL,
6331                              makeArrayRef(TBLMask.data(), IndexLen)));
6332     } else {
6333       // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
6334       // cannot currently represent the register constraints on the input
6335       // table registers.
6336       //  Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
6337       //                   DAG.getBuildVector(IndexVT, DL, &TBLMask[0],
6338       //                   IndexLen));
6339       Shuffle = DAG.getNode(
6340           ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
6341           DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), V1Cst,
6342           V2Cst, DAG.getBuildVector(IndexVT, DL,
6343                                     makeArrayRef(TBLMask.data(), IndexLen)));
6344     }
6345   }
6346   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
6347 }
6348 
getDUPLANEOp(EVT EltType)6349 static unsigned getDUPLANEOp(EVT EltType) {
6350   if (EltType == MVT::i8)
6351     return AArch64ISD::DUPLANE8;
6352   if (EltType == MVT::i16 || EltType == MVT::f16)
6353     return AArch64ISD::DUPLANE16;
6354   if (EltType == MVT::i32 || EltType == MVT::f32)
6355     return AArch64ISD::DUPLANE32;
6356   if (EltType == MVT::i64 || EltType == MVT::f64)
6357     return AArch64ISD::DUPLANE64;
6358 
6359   llvm_unreachable("Invalid vector element type?");
6360 }
6361 
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const6362 SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
6363                                                    SelectionDAG &DAG) const {
6364   SDLoc dl(Op);
6365   EVT VT = Op.getValueType();
6366 
6367   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
6368 
6369   // Convert shuffles that are directly supported on NEON to target-specific
6370   // DAG nodes, instead of keeping them as shuffles and matching them again
6371   // during code selection.  This is more efficient and avoids the possibility
6372   // of inconsistencies between legalization and selection.
6373   ArrayRef<int> ShuffleMask = SVN->getMask();
6374 
6375   SDValue V1 = Op.getOperand(0);
6376   SDValue V2 = Op.getOperand(1);
6377 
6378   if (SVN->isSplat()) {
6379     int Lane = SVN->getSplatIndex();
6380     // If this is undef splat, generate it via "just" vdup, if possible.
6381     if (Lane == -1)
6382       Lane = 0;
6383 
6384     if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
6385       return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
6386                          V1.getOperand(0));
6387     // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
6388     // constant. If so, we can just reference the lane's definition directly.
6389     if (V1.getOpcode() == ISD::BUILD_VECTOR &&
6390         !isa<ConstantSDNode>(V1.getOperand(Lane)))
6391       return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
6392 
6393     // Otherwise, duplicate from the lane of the input vector.
6394     unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
6395 
6396     // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
6397     // to make a vector of the same size as this SHUFFLE. We can ignore the
6398     // extract entirely, and canonicalise the concat using WidenVector.
6399     if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
6400       Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
6401       V1 = V1.getOperand(0);
6402     } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
6403       unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
6404       Lane -= Idx * VT.getVectorNumElements() / 2;
6405       V1 = WidenVector(V1.getOperand(Idx), DAG);
6406     } else if (VT.getSizeInBits() == 64)
6407       V1 = WidenVector(V1, DAG);
6408 
6409     return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64));
6410   }
6411 
6412   if (isREVMask(ShuffleMask, VT, 64))
6413     return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
6414   if (isREVMask(ShuffleMask, VT, 32))
6415     return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
6416   if (isREVMask(ShuffleMask, VT, 16))
6417     return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
6418 
6419   bool ReverseEXT = false;
6420   unsigned Imm;
6421   if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
6422     if (ReverseEXT)
6423       std::swap(V1, V2);
6424     Imm *= getExtFactor(V1);
6425     return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
6426                        DAG.getConstant(Imm, dl, MVT::i32));
6427   } else if (V2->isUndef() && isSingletonEXTMask(ShuffleMask, VT, Imm)) {
6428     Imm *= getExtFactor(V1);
6429     return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
6430                        DAG.getConstant(Imm, dl, MVT::i32));
6431   }
6432 
6433   unsigned WhichResult;
6434   if (isZIPMask(ShuffleMask, VT, WhichResult)) {
6435     unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
6436     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
6437   }
6438   if (isUZPMask(ShuffleMask, VT, WhichResult)) {
6439     unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
6440     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
6441   }
6442   if (isTRNMask(ShuffleMask, VT, WhichResult)) {
6443     unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
6444     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
6445   }
6446 
6447   if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
6448     unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
6449     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
6450   }
6451   if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
6452     unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
6453     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
6454   }
6455   if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
6456     unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
6457     return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
6458   }
6459 
6460   if (SDValue Concat = tryFormConcatFromShuffle(Op, DAG))
6461     return Concat;
6462 
6463   bool DstIsLeft;
6464   int Anomaly;
6465   int NumInputElements = V1.getValueType().getVectorNumElements();
6466   if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
6467     SDValue DstVec = DstIsLeft ? V1 : V2;
6468     SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64);
6469 
6470     SDValue SrcVec = V1;
6471     int SrcLane = ShuffleMask[Anomaly];
6472     if (SrcLane >= NumInputElements) {
6473       SrcVec = V2;
6474       SrcLane -= VT.getVectorNumElements();
6475     }
6476     SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64);
6477 
6478     EVT ScalarVT = VT.getVectorElementType();
6479 
6480     if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
6481       ScalarVT = MVT::i32;
6482 
6483     return DAG.getNode(
6484         ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
6485         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
6486         DstLaneV);
6487   }
6488 
6489   // If the shuffle is not directly supported and it has 4 elements, use
6490   // the PerfectShuffle-generated table to synthesize it from other shuffles.
6491   unsigned NumElts = VT.getVectorNumElements();
6492   if (NumElts == 4) {
6493     unsigned PFIndexes[4];
6494     for (unsigned i = 0; i != 4; ++i) {
6495       if (ShuffleMask[i] < 0)
6496         PFIndexes[i] = 8;
6497       else
6498         PFIndexes[i] = ShuffleMask[i];
6499     }
6500 
6501     // Compute the index in the perfect shuffle table.
6502     unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
6503                             PFIndexes[2] * 9 + PFIndexes[3];
6504     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6505     unsigned Cost = (PFEntry >> 30);
6506 
6507     if (Cost <= 4)
6508       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
6509   }
6510 
6511   return GenerateTBL(Op, ShuffleMask, DAG);
6512 }
6513 
resolveBuildVector(BuildVectorSDNode * BVN,APInt & CnstBits,APInt & UndefBits)6514 static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
6515                                APInt &UndefBits) {
6516   EVT VT = BVN->getValueType(0);
6517   APInt SplatBits, SplatUndef;
6518   unsigned SplatBitSize;
6519   bool HasAnyUndefs;
6520   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6521     unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
6522 
6523     for (unsigned i = 0; i < NumSplats; ++i) {
6524       CnstBits <<= SplatBitSize;
6525       UndefBits <<= SplatBitSize;
6526       CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
6527       UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
6528     }
6529 
6530     return true;
6531   }
6532 
6533   return false;
6534 }
6535 
6536 // Try 64-bit splatted SIMD immediate.
tryAdvSIMDModImm64(unsigned NewOp,SDValue Op,SelectionDAG & DAG,const APInt & Bits)6537 static SDValue tryAdvSIMDModImm64(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
6538                                  const APInt &Bits) {
6539   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
6540     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
6541     EVT VT = Op.getValueType();
6542     MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v2i64 : MVT::f64;
6543 
6544     if (AArch64_AM::isAdvSIMDModImmType10(Value)) {
6545       Value = AArch64_AM::encodeAdvSIMDModImmType10(Value);
6546 
6547       SDLoc dl(Op);
6548       SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
6549                                 DAG.getConstant(Value, dl, MVT::i32));
6550       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6551     }
6552   }
6553 
6554   return SDValue();
6555 }
6556 
6557 // Try 32-bit splatted SIMD immediate.
tryAdvSIMDModImm32(unsigned NewOp,SDValue Op,SelectionDAG & DAG,const APInt & Bits,const SDValue * LHS=nullptr)6558 static SDValue tryAdvSIMDModImm32(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
6559                                   const APInt &Bits,
6560                                   const SDValue *LHS = nullptr) {
6561   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
6562     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
6563     EVT VT = Op.getValueType();
6564     MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6565     bool isAdvSIMDModImm = false;
6566     uint64_t Shift;
6567 
6568     if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType1(Value))) {
6569       Value = AArch64_AM::encodeAdvSIMDModImmType1(Value);
6570       Shift = 0;
6571     }
6572     else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType2(Value))) {
6573       Value = AArch64_AM::encodeAdvSIMDModImmType2(Value);
6574       Shift = 8;
6575     }
6576     else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType3(Value))) {
6577       Value = AArch64_AM::encodeAdvSIMDModImmType3(Value);
6578       Shift = 16;
6579     }
6580     else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType4(Value))) {
6581       Value = AArch64_AM::encodeAdvSIMDModImmType4(Value);
6582       Shift = 24;
6583     }
6584 
6585     if (isAdvSIMDModImm) {
6586       SDLoc dl(Op);
6587       SDValue Mov;
6588 
6589       if (LHS)
6590         Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
6591                           DAG.getConstant(Value, dl, MVT::i32),
6592                           DAG.getConstant(Shift, dl, MVT::i32));
6593       else
6594         Mov = DAG.getNode(NewOp, dl, MovTy,
6595                           DAG.getConstant(Value, dl, MVT::i32),
6596                           DAG.getConstant(Shift, dl, MVT::i32));
6597 
6598       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6599     }
6600   }
6601 
6602   return SDValue();
6603 }
6604 
6605 // Try 16-bit splatted SIMD immediate.
tryAdvSIMDModImm16(unsigned NewOp,SDValue Op,SelectionDAG & DAG,const APInt & Bits,const SDValue * LHS=nullptr)6606 static SDValue tryAdvSIMDModImm16(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
6607                                   const APInt &Bits,
6608                                   const SDValue *LHS = nullptr) {
6609   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
6610     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
6611     EVT VT = Op.getValueType();
6612     MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6613     bool isAdvSIMDModImm = false;
6614     uint64_t Shift;
6615 
6616     if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType5(Value))) {
6617       Value = AArch64_AM::encodeAdvSIMDModImmType5(Value);
6618       Shift = 0;
6619     }
6620     else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType6(Value))) {
6621       Value = AArch64_AM::encodeAdvSIMDModImmType6(Value);
6622       Shift = 8;
6623     }
6624 
6625     if (isAdvSIMDModImm) {
6626       SDLoc dl(Op);
6627       SDValue Mov;
6628 
6629       if (LHS)
6630         Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
6631                           DAG.getConstant(Value, dl, MVT::i32),
6632                           DAG.getConstant(Shift, dl, MVT::i32));
6633       else
6634         Mov = DAG.getNode(NewOp, dl, MovTy,
6635                           DAG.getConstant(Value, dl, MVT::i32),
6636                           DAG.getConstant(Shift, dl, MVT::i32));
6637 
6638       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6639     }
6640   }
6641 
6642   return SDValue();
6643 }
6644 
6645 // Try 32-bit splatted SIMD immediate with shifted ones.
tryAdvSIMDModImm321s(unsigned NewOp,SDValue Op,SelectionDAG & DAG,const APInt & Bits)6646 static SDValue tryAdvSIMDModImm321s(unsigned NewOp, SDValue Op,
6647                                     SelectionDAG &DAG, const APInt &Bits) {
6648   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
6649     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
6650     EVT VT = Op.getValueType();
6651     MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6652     bool isAdvSIMDModImm = false;
6653     uint64_t Shift;
6654 
6655     if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType7(Value))) {
6656       Value = AArch64_AM::encodeAdvSIMDModImmType7(Value);
6657       Shift = 264;
6658     }
6659     else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType8(Value))) {
6660       Value = AArch64_AM::encodeAdvSIMDModImmType8(Value);
6661       Shift = 272;
6662     }
6663 
6664     if (isAdvSIMDModImm) {
6665       SDLoc dl(Op);
6666       SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
6667                                 DAG.getConstant(Value, dl, MVT::i32),
6668                                 DAG.getConstant(Shift, dl, MVT::i32));
6669       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6670     }
6671   }
6672 
6673   return SDValue();
6674 }
6675 
6676 // Try 8-bit splatted SIMD immediate.
tryAdvSIMDModImm8(unsigned NewOp,SDValue Op,SelectionDAG & DAG,const APInt & Bits)6677 static SDValue tryAdvSIMDModImm8(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
6678                                  const APInt &Bits) {
6679   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
6680     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
6681     EVT VT = Op.getValueType();
6682     MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
6683 
6684     if (AArch64_AM::isAdvSIMDModImmType9(Value)) {
6685       Value = AArch64_AM::encodeAdvSIMDModImmType9(Value);
6686 
6687       SDLoc dl(Op);
6688       SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
6689                                 DAG.getConstant(Value, dl, MVT::i32));
6690       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6691     }
6692   }
6693 
6694   return SDValue();
6695 }
6696 
6697 // Try FP splatted SIMD immediate.
tryAdvSIMDModImmFP(unsigned NewOp,SDValue Op,SelectionDAG & DAG,const APInt & Bits)6698 static SDValue tryAdvSIMDModImmFP(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
6699                                   const APInt &Bits) {
6700   if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
6701     uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
6702     EVT VT = Op.getValueType();
6703     bool isWide = (VT.getSizeInBits() == 128);
6704     MVT MovTy;
6705     bool isAdvSIMDModImm = false;
6706 
6707     if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType11(Value))) {
6708       Value = AArch64_AM::encodeAdvSIMDModImmType11(Value);
6709       MovTy = isWide ? MVT::v4f32 : MVT::v2f32;
6710     }
6711     else if (isWide &&
6712              (isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType12(Value))) {
6713       Value = AArch64_AM::encodeAdvSIMDModImmType12(Value);
6714       MovTy = MVT::v2f64;
6715     }
6716 
6717     if (isAdvSIMDModImm) {
6718       SDLoc dl(Op);
6719       SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
6720                                 DAG.getConstant(Value, dl, MVT::i32));
6721       return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6722     }
6723   }
6724 
6725   return SDValue();
6726 }
6727 
LowerVectorAND(SDValue Op,SelectionDAG & DAG) const6728 SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
6729                                               SelectionDAG &DAG) const {
6730   SDValue LHS = Op.getOperand(0);
6731   EVT VT = Op.getValueType();
6732 
6733   BuildVectorSDNode *BVN =
6734       dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
6735   if (!BVN) {
6736     // AND commutes, so try swapping the operands.
6737     LHS = Op.getOperand(1);
6738     BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
6739   }
6740   if (!BVN)
6741     return Op;
6742 
6743   APInt DefBits(VT.getSizeInBits(), 0);
6744   APInt UndefBits(VT.getSizeInBits(), 0);
6745   if (resolveBuildVector(BVN, DefBits, UndefBits)) {
6746     SDValue NewOp;
6747 
6748     // We only have BIC vector immediate instruction, which is and-not.
6749     DefBits = ~DefBits;
6750     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, Op, DAG,
6751                                     DefBits, &LHS)) ||
6752         (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, Op, DAG,
6753                                     DefBits, &LHS)))
6754       return NewOp;
6755 
6756     UndefBits = ~UndefBits;
6757     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, Op, DAG,
6758                                     UndefBits, &LHS)) ||
6759         (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, Op, DAG,
6760                                     UndefBits, &LHS)))
6761       return NewOp;
6762   }
6763 
6764   // We can always fall back to a non-immediate AND.
6765   return Op;
6766 }
6767 
6768 // Specialized code to quickly find if PotentialBVec is a BuildVector that
6769 // consists of only the same constant int value, returned in reference arg
6770 // ConstVal
isAllConstantBuildVector(const SDValue & PotentialBVec,uint64_t & ConstVal)6771 static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
6772                                      uint64_t &ConstVal) {
6773   BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
6774   if (!Bvec)
6775     return false;
6776   ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
6777   if (!FirstElt)
6778     return false;
6779   EVT VT = Bvec->getValueType(0);
6780   unsigned NumElts = VT.getVectorNumElements();
6781   for (unsigned i = 1; i < NumElts; ++i)
6782     if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
6783       return false;
6784   ConstVal = FirstElt->getZExtValue();
6785   return true;
6786 }
6787 
getIntrinsicID(const SDNode * N)6788 static unsigned getIntrinsicID(const SDNode *N) {
6789   unsigned Opcode = N->getOpcode();
6790   switch (Opcode) {
6791   default:
6792     return Intrinsic::not_intrinsic;
6793   case ISD::INTRINSIC_WO_CHAIN: {
6794     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
6795     if (IID < Intrinsic::num_intrinsics)
6796       return IID;
6797     return Intrinsic::not_intrinsic;
6798   }
6799   }
6800 }
6801 
6802 // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
6803 // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
6804 // BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
6805 // Also, logical shift right -> sri, with the same structure.
tryLowerToSLI(SDNode * N,SelectionDAG & DAG)6806 static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
6807   EVT VT = N->getValueType(0);
6808 
6809   if (!VT.isVector())
6810     return SDValue();
6811 
6812   SDLoc DL(N);
6813 
6814   // Is the first op an AND?
6815   const SDValue And = N->getOperand(0);
6816   if (And.getOpcode() != ISD::AND)
6817     return SDValue();
6818 
6819   // Is the second op an shl or lshr?
6820   SDValue Shift = N->getOperand(1);
6821   // This will have been turned into: AArch64ISD::VSHL vector, #shift
6822   // or AArch64ISD::VLSHR vector, #shift
6823   unsigned ShiftOpc = Shift.getOpcode();
6824   if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
6825     return SDValue();
6826   bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
6827 
6828   // Is the shift amount constant?
6829   ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
6830   if (!C2node)
6831     return SDValue();
6832 
6833   // Is the and mask vector all constant?
6834   uint64_t C1;
6835   if (!isAllConstantBuildVector(And.getOperand(1), C1))
6836     return SDValue();
6837 
6838   // Is C1 == ~C2, taking into account how much one can shift elements of a
6839   // particular size?
6840   uint64_t C2 = C2node->getZExtValue();
6841   unsigned ElemSizeInBits = VT.getScalarSizeInBits();
6842   if (C2 > ElemSizeInBits)
6843     return SDValue();
6844   unsigned ElemMask = (1 << ElemSizeInBits) - 1;
6845   if ((C1 & ElemMask) != (~C2 & ElemMask))
6846     return SDValue();
6847 
6848   SDValue X = And.getOperand(0);
6849   SDValue Y = Shift.getOperand(0);
6850 
6851   unsigned Intrin =
6852       IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
6853   SDValue ResultSLI =
6854       DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6855                   DAG.getConstant(Intrin, DL, MVT::i32), X, Y,
6856                   Shift.getOperand(1));
6857 
6858   LLVM_DEBUG(dbgs() << "aarch64-lower: transformed: \n");
6859   LLVM_DEBUG(N->dump(&DAG));
6860   LLVM_DEBUG(dbgs() << "into: \n");
6861   LLVM_DEBUG(ResultSLI->dump(&DAG));
6862 
6863   ++NumShiftInserts;
6864   return ResultSLI;
6865 }
6866 
LowerVectorOR(SDValue Op,SelectionDAG & DAG) const6867 SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
6868                                              SelectionDAG &DAG) const {
6869   // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
6870   if (EnableAArch64SlrGeneration) {
6871     if (SDValue Res = tryLowerToSLI(Op.getNode(), DAG))
6872       return Res;
6873   }
6874 
6875   EVT VT = Op.getValueType();
6876 
6877   SDValue LHS = Op.getOperand(0);
6878   BuildVectorSDNode *BVN =
6879       dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
6880   if (!BVN) {
6881     // OR commutes, so try swapping the operands.
6882     LHS = Op.getOperand(1);
6883     BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
6884   }
6885   if (!BVN)
6886     return Op;
6887 
6888   APInt DefBits(VT.getSizeInBits(), 0);
6889   APInt UndefBits(VT.getSizeInBits(), 0);
6890   if (resolveBuildVector(BVN, DefBits, UndefBits)) {
6891     SDValue NewOp;
6892 
6893     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
6894                                     DefBits, &LHS)) ||
6895         (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
6896                                     DefBits, &LHS)))
6897       return NewOp;
6898 
6899     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
6900                                     UndefBits, &LHS)) ||
6901         (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
6902                                     UndefBits, &LHS)))
6903       return NewOp;
6904   }
6905 
6906   // We can always fall back to a non-immediate OR.
6907   return Op;
6908 }
6909 
6910 // Normalize the operands of BUILD_VECTOR. The value of constant operands will
6911 // be truncated to fit element width.
NormalizeBuildVector(SDValue Op,SelectionDAG & DAG)6912 static SDValue NormalizeBuildVector(SDValue Op,
6913                                     SelectionDAG &DAG) {
6914   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
6915   SDLoc dl(Op);
6916   EVT VT = Op.getValueType();
6917   EVT EltTy= VT.getVectorElementType();
6918 
6919   if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
6920     return Op;
6921 
6922   SmallVector<SDValue, 16> Ops;
6923   for (SDValue Lane : Op->ops()) {
6924     if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) {
6925       APInt LowBits(EltTy.getSizeInBits(),
6926                     CstLane->getZExtValue());
6927       Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32);
6928     }
6929     Ops.push_back(Lane);
6930   }
6931   return DAG.getBuildVector(VT, dl, Ops);
6932 }
6933 
ConstantBuildVector(SDValue Op,SelectionDAG & DAG)6934 static SDValue ConstantBuildVector(SDValue Op, SelectionDAG &DAG) {
6935   EVT VT = Op.getValueType();
6936 
6937   APInt DefBits(VT.getSizeInBits(), 0);
6938   APInt UndefBits(VT.getSizeInBits(), 0);
6939   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
6940   if (resolveBuildVector(BVN, DefBits, UndefBits)) {
6941     SDValue NewOp;
6942     if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
6943         (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
6944         (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
6945         (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
6946         (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
6947         (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
6948       return NewOp;
6949 
6950     DefBits = ~DefBits;
6951     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
6952         (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
6953         (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
6954       return NewOp;
6955 
6956     DefBits = UndefBits;
6957     if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
6958         (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
6959         (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
6960         (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
6961         (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
6962         (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
6963       return NewOp;
6964 
6965     DefBits = ~UndefBits;
6966     if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
6967         (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
6968         (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
6969       return NewOp;
6970   }
6971 
6972   return SDValue();
6973 }
6974 
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const6975 SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
6976                                                  SelectionDAG &DAG) const {
6977   EVT VT = Op.getValueType();
6978 
6979   // Try to build a simple constant vector.
6980   Op = NormalizeBuildVector(Op, DAG);
6981   if (VT.isInteger()) {
6982     // Certain vector constants, used to express things like logical NOT and
6983     // arithmetic NEG, are passed through unmodified.  This allows special
6984     // patterns for these operations to match, which will lower these constants
6985     // to whatever is proven necessary.
6986     BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
6987     if (BVN->isConstant())
6988       if (ConstantSDNode *Const = BVN->getConstantSplatNode()) {
6989         unsigned BitSize = VT.getVectorElementType().getSizeInBits();
6990         APInt Val(BitSize,
6991                   Const->getAPIntValue().zextOrTrunc(BitSize).getZExtValue());
6992         if (Val.isNullValue() || Val.isAllOnesValue())
6993           return Op;
6994       }
6995   }
6996 
6997   if (SDValue V = ConstantBuildVector(Op, DAG))
6998     return V;
6999 
7000   // Scan through the operands to find some interesting properties we can
7001   // exploit:
7002   //   1) If only one value is used, we can use a DUP, or
7003   //   2) if only the low element is not undef, we can just insert that, or
7004   //   3) if only one constant value is used (w/ some non-constant lanes),
7005   //      we can splat the constant value into the whole vector then fill
7006   //      in the non-constant lanes.
7007   //   4) FIXME: If different constant values are used, but we can intelligently
7008   //             select the values we'll be overwriting for the non-constant
7009   //             lanes such that we can directly materialize the vector
7010   //             some other way (MOVI, e.g.), we can be sneaky.
7011   //   5) if all operands are EXTRACT_VECTOR_ELT, check for VUZP.
7012   SDLoc dl(Op);
7013   unsigned NumElts = VT.getVectorNumElements();
7014   bool isOnlyLowElement = true;
7015   bool usesOnlyOneValue = true;
7016   bool usesOnlyOneConstantValue = true;
7017   bool isConstant = true;
7018   bool AllLanesExtractElt = true;
7019   unsigned NumConstantLanes = 0;
7020   SDValue Value;
7021   SDValue ConstantValue;
7022   for (unsigned i = 0; i < NumElts; ++i) {
7023     SDValue V = Op.getOperand(i);
7024     if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7025       AllLanesExtractElt = false;
7026     if (V.isUndef())
7027       continue;
7028     if (i > 0)
7029       isOnlyLowElement = false;
7030     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
7031       isConstant = false;
7032 
7033     if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
7034       ++NumConstantLanes;
7035       if (!ConstantValue.getNode())
7036         ConstantValue = V;
7037       else if (ConstantValue != V)
7038         usesOnlyOneConstantValue = false;
7039     }
7040 
7041     if (!Value.getNode())
7042       Value = V;
7043     else if (V != Value)
7044       usesOnlyOneValue = false;
7045   }
7046 
7047   if (!Value.getNode()) {
7048     LLVM_DEBUG(
7049         dbgs() << "LowerBUILD_VECTOR: value undefined, creating undef node\n");
7050     return DAG.getUNDEF(VT);
7051   }
7052 
7053   if (isOnlyLowElement) {
7054     LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: only low element used, creating 1 "
7055                          "SCALAR_TO_VECTOR node\n");
7056     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
7057   }
7058 
7059   if (AllLanesExtractElt) {
7060     SDNode *Vector = nullptr;
7061     bool Even = false;
7062     bool Odd = false;
7063     // Check whether the extract elements match the Even pattern <0,2,4,...> or
7064     // the Odd pattern <1,3,5,...>.
7065     for (unsigned i = 0; i < NumElts; ++i) {
7066       SDValue V = Op.getOperand(i);
7067       const SDNode *N = V.getNode();
7068       if (!isa<ConstantSDNode>(N->getOperand(1)))
7069         break;
7070       SDValue N0 = N->getOperand(0);
7071 
7072       // All elements are extracted from the same vector.
7073       if (!Vector) {
7074         Vector = N0.getNode();
7075         // Check that the type of EXTRACT_VECTOR_ELT matches the type of
7076         // BUILD_VECTOR.
7077         if (VT.getVectorElementType() !=
7078             N0.getValueType().getVectorElementType())
7079           break;
7080       } else if (Vector != N0.getNode()) {
7081         Odd = false;
7082         Even = false;
7083         break;
7084       }
7085 
7086       // Extracted values are either at Even indices <0,2,4,...> or at Odd
7087       // indices <1,3,5,...>.
7088       uint64_t Val = N->getConstantOperandVal(1);
7089       if (Val == 2 * i) {
7090         Even = true;
7091         continue;
7092       }
7093       if (Val - 1 == 2 * i) {
7094         Odd = true;
7095         continue;
7096       }
7097 
7098       // Something does not match: abort.
7099       Odd = false;
7100       Even = false;
7101       break;
7102     }
7103     if (Even || Odd) {
7104       SDValue LHS =
7105           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
7106                       DAG.getConstant(0, dl, MVT::i64));
7107       SDValue RHS =
7108           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
7109                       DAG.getConstant(NumElts, dl, MVT::i64));
7110 
7111       if (Even && !Odd)
7112         return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), LHS,
7113                            RHS);
7114       if (Odd && !Even)
7115         return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), LHS,
7116                            RHS);
7117     }
7118   }
7119 
7120   // Use DUP for non-constant splats. For f32 constant splats, reduce to
7121   // i32 and try again.
7122   if (usesOnlyOneValue) {
7123     if (!isConstant) {
7124       if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
7125           Value.getValueType() != VT) {
7126         LLVM_DEBUG(
7127             dbgs() << "LowerBUILD_VECTOR: use DUP for non-constant splats\n");
7128         return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
7129       }
7130 
7131       // This is actually a DUPLANExx operation, which keeps everything vectory.
7132 
7133       SDValue Lane = Value.getOperand(1);
7134       Value = Value.getOperand(0);
7135       if (Value.getValueSizeInBits() == 64) {
7136         LLVM_DEBUG(
7137             dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, "
7138                       "widening it\n");
7139         Value = WidenVector(Value, DAG);
7140       }
7141 
7142       unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
7143       return DAG.getNode(Opcode, dl, VT, Value, Lane);
7144     }
7145 
7146     if (VT.getVectorElementType().isFloatingPoint()) {
7147       SmallVector<SDValue, 8> Ops;
7148       EVT EltTy = VT.getVectorElementType();
7149       assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) &&
7150               "Unsupported floating-point vector type");
7151       LLVM_DEBUG(
7152           dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int "
7153                     "BITCASTS, and try again\n");
7154       MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
7155       for (unsigned i = 0; i < NumElts; ++i)
7156         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
7157       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
7158       SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
7159       LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: trying to lower new vector: ";
7160                  Val.dump(););
7161       Val = LowerBUILD_VECTOR(Val, DAG);
7162       if (Val.getNode())
7163         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7164     }
7165   }
7166 
7167   // If there was only one constant value used and for more than one lane,
7168   // start by splatting that value, then replace the non-constant lanes. This
7169   // is better than the default, which will perform a separate initialization
7170   // for each lane.
7171   if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
7172     // Firstly, try to materialize the splat constant.
7173     SDValue Vec = DAG.getSplatBuildVector(VT, dl, ConstantValue),
7174             Val = ConstantBuildVector(Vec, DAG);
7175     if (!Val) {
7176       // Otherwise, materialize the constant and splat it.
7177       Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
7178       DAG.ReplaceAllUsesWith(Vec.getNode(), &Val);
7179     }
7180 
7181     // Now insert the non-constant lanes.
7182     for (unsigned i = 0; i < NumElts; ++i) {
7183       SDValue V = Op.getOperand(i);
7184       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
7185       if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V))
7186         // Note that type legalization likely mucked about with the VT of the
7187         // source operand, so we may have to convert it here before inserting.
7188         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
7189     }
7190     return Val;
7191   }
7192 
7193   // This will generate a load from the constant pool.
7194   if (isConstant) {
7195     LLVM_DEBUG(
7196         dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default "
7197                   "expansion\n");
7198     return SDValue();
7199   }
7200 
7201   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
7202   if (NumElts >= 4) {
7203     if (SDValue shuffle = ReconstructShuffle(Op, DAG))
7204       return shuffle;
7205   }
7206 
7207   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
7208   // know the default expansion would otherwise fall back on something even
7209   // worse. For a vector with one or two non-undef values, that's
7210   // scalar_to_vector for the elements followed by a shuffle (provided the
7211   // shuffle is valid for the target) and materialization element by element
7212   // on the stack followed by a load for everything else.
7213   if (!isConstant && !usesOnlyOneValue) {
7214     LLVM_DEBUG(
7215         dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence "
7216                   "of INSERT_VECTOR_ELT\n");
7217 
7218     SDValue Vec = DAG.getUNDEF(VT);
7219     SDValue Op0 = Op.getOperand(0);
7220     unsigned i = 0;
7221 
7222     // Use SCALAR_TO_VECTOR for lane zero to
7223     // a) Avoid a RMW dependency on the full vector register, and
7224     // b) Allow the register coalescer to fold away the copy if the
7225     //    value is already in an S or D register, and we're forced to emit an
7226     //    INSERT_SUBREG that we can't fold anywhere.
7227     //
7228     // We also allow types like i8 and i16 which are illegal scalar but legal
7229     // vector element types. After type-legalization the inserted value is
7230     // extended (i32) and it is safe to cast them to the vector type by ignoring
7231     // the upper bits of the lowest lane (e.g. v8i8, v4i16).
7232     if (!Op0.isUndef()) {
7233       LLVM_DEBUG(dbgs() << "Creating node for op0, it is not undefined:\n");
7234       Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op0);
7235       ++i;
7236     }
7237     LLVM_DEBUG(if (i < NumElts) dbgs()
7238                    << "Creating nodes for the other vector elements:\n";);
7239     for (; i < NumElts; ++i) {
7240       SDValue V = Op.getOperand(i);
7241       if (V.isUndef())
7242         continue;
7243       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
7244       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
7245     }
7246     return Vec;
7247   }
7248 
7249   LLVM_DEBUG(
7250       dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find "
7251                 "better alternative\n");
7252   return SDValue();
7253 }
7254 
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const7255 SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
7256                                                       SelectionDAG &DAG) const {
7257   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
7258 
7259   // Check for non-constant or out of range lane.
7260   EVT VT = Op.getOperand(0).getValueType();
7261   ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
7262   if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
7263     return SDValue();
7264 
7265 
7266   // Insertion/extraction are legal for V128 types.
7267   if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
7268       VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
7269       VT == MVT::v8f16)
7270     return Op;
7271 
7272   if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
7273       VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
7274     return SDValue();
7275 
7276   // For V64 types, we perform insertion by expanding the value
7277   // to a V128 type and perform the insertion on that.
7278   SDLoc DL(Op);
7279   SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
7280   EVT WideTy = WideVec.getValueType();
7281 
7282   SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
7283                              Op.getOperand(1), Op.getOperand(2));
7284   // Re-narrow the resultant vector.
7285   return NarrowVector(Node, DAG);
7286 }
7287 
7288 SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const7289 AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7290                                                SelectionDAG &DAG) const {
7291   assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
7292 
7293   // Check for non-constant or out of range lane.
7294   EVT VT = Op.getOperand(0).getValueType();
7295   ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7296   if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
7297     return SDValue();
7298 
7299 
7300   // Insertion/extraction are legal for V128 types.
7301   if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
7302       VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
7303       VT == MVT::v8f16)
7304     return Op;
7305 
7306   if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
7307       VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
7308     return SDValue();
7309 
7310   // For V64 types, we perform extraction by expanding the value
7311   // to a V128 type and perform the extraction on that.
7312   SDLoc DL(Op);
7313   SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
7314   EVT WideTy = WideVec.getValueType();
7315 
7316   EVT ExtrTy = WideTy.getVectorElementType();
7317   if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
7318     ExtrTy = MVT::i32;
7319 
7320   // For extractions, we just return the result directly.
7321   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
7322                      Op.getOperand(1));
7323 }
7324 
LowerEXTRACT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const7325 SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
7326                                                       SelectionDAG &DAG) const {
7327   EVT VT = Op.getOperand(0).getValueType();
7328   SDLoc dl(Op);
7329   // Just in case...
7330   if (!VT.isVector())
7331     return SDValue();
7332 
7333   ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7334   if (!Cst)
7335     return SDValue();
7336   unsigned Val = Cst->getZExtValue();
7337 
7338   unsigned Size = Op.getValueSizeInBits();
7339 
7340   // This will get lowered to an appropriate EXTRACT_SUBREG in ISel.
7341   if (Val == 0)
7342     return Op;
7343 
7344   // If this is extracting the upper 64-bits of a 128-bit vector, we match
7345   // that directly.
7346   if (Size == 64 && Val * VT.getScalarSizeInBits() == 64)
7347     return Op;
7348 
7349   return SDValue();
7350 }
7351 
isShuffleMaskLegal(ArrayRef<int> M,EVT VT) const7352 bool AArch64TargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
7353   if (VT.getVectorNumElements() == 4 &&
7354       (VT.is128BitVector() || VT.is64BitVector())) {
7355     unsigned PFIndexes[4];
7356     for (unsigned i = 0; i != 4; ++i) {
7357       if (M[i] < 0)
7358         PFIndexes[i] = 8;
7359       else
7360         PFIndexes[i] = M[i];
7361     }
7362 
7363     // Compute the index in the perfect shuffle table.
7364     unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
7365                             PFIndexes[2] * 9 + PFIndexes[3];
7366     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7367     unsigned Cost = (PFEntry >> 30);
7368 
7369     if (Cost <= 4)
7370       return true;
7371   }
7372 
7373   bool DummyBool;
7374   int DummyInt;
7375   unsigned DummyUnsigned;
7376 
7377   return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
7378           isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
7379           isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
7380           // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
7381           isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
7382           isZIPMask(M, VT, DummyUnsigned) ||
7383           isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
7384           isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
7385           isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
7386           isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
7387           isConcatMask(M, VT, VT.getSizeInBits() == 128));
7388 }
7389 
7390 /// getVShiftImm - Check if this is a valid build_vector for the immediate
7391 /// operand of a vector shift operation, where all the elements of the
7392 /// build_vector must have the same constant integer value.
getVShiftImm(SDValue Op,unsigned ElementBits,int64_t & Cnt)7393 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
7394   // Ignore bit_converts.
7395   while (Op.getOpcode() == ISD::BITCAST)
7396     Op = Op.getOperand(0);
7397   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7398   APInt SplatBits, SplatUndef;
7399   unsigned SplatBitSize;
7400   bool HasAnyUndefs;
7401   if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
7402                                     HasAnyUndefs, ElementBits) ||
7403       SplatBitSize > ElementBits)
7404     return false;
7405   Cnt = SplatBits.getSExtValue();
7406   return true;
7407 }
7408 
7409 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
7410 /// operand of a vector shift left operation.  That value must be in the range:
7411 ///   0 <= Value < ElementBits for a left shift; or
7412 ///   0 <= Value <= ElementBits for a long left shift.
isVShiftLImm(SDValue Op,EVT VT,bool isLong,int64_t & Cnt)7413 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
7414   assert(VT.isVector() && "vector shift count is not a vector type");
7415   int64_t ElementBits = VT.getScalarSizeInBits();
7416   if (!getVShiftImm(Op, ElementBits, Cnt))
7417     return false;
7418   return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
7419 }
7420 
7421 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
7422 /// operand of a vector shift right operation. The value must be in the range:
7423 ///   1 <= Value <= ElementBits for a right shift; or
isVShiftRImm(SDValue Op,EVT VT,bool isNarrow,int64_t & Cnt)7424 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) {
7425   assert(VT.isVector() && "vector shift count is not a vector type");
7426   int64_t ElementBits = VT.getScalarSizeInBits();
7427   if (!getVShiftImm(Op, ElementBits, Cnt))
7428     return false;
7429   return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
7430 }
7431 
LowerVectorSRA_SRL_SHL(SDValue Op,SelectionDAG & DAG) const7432 SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
7433                                                       SelectionDAG &DAG) const {
7434   EVT VT = Op.getValueType();
7435   SDLoc DL(Op);
7436   int64_t Cnt;
7437 
7438   if (!Op.getOperand(1).getValueType().isVector())
7439     return Op;
7440   unsigned EltSize = VT.getScalarSizeInBits();
7441 
7442   switch (Op.getOpcode()) {
7443   default:
7444     llvm_unreachable("unexpected shift opcode");
7445 
7446   case ISD::SHL:
7447     if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
7448       return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0),
7449                          DAG.getConstant(Cnt, DL, MVT::i32));
7450     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
7451                        DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL,
7452                                        MVT::i32),
7453                        Op.getOperand(0), Op.getOperand(1));
7454   case ISD::SRA:
7455   case ISD::SRL:
7456     // Right shift immediate
7457     if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) {
7458       unsigned Opc =
7459           (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
7460       return DAG.getNode(Opc, DL, VT, Op.getOperand(0),
7461                          DAG.getConstant(Cnt, DL, MVT::i32));
7462     }
7463 
7464     // Right shift register.  Note, there is not a shift right register
7465     // instruction, but the shift left register instruction takes a signed
7466     // value, where negative numbers specify a right shift.
7467     unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
7468                                                 : Intrinsic::aarch64_neon_ushl;
7469     // negate the shift amount
7470     SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
7471     SDValue NegShiftLeft =
7472         DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
7473                     DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0),
7474                     NegShift);
7475     return NegShiftLeft;
7476   }
7477 
7478   return SDValue();
7479 }
7480 
EmitVectorComparison(SDValue LHS,SDValue RHS,AArch64CC::CondCode CC,bool NoNans,EVT VT,const SDLoc & dl,SelectionDAG & DAG)7481 static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
7482                                     AArch64CC::CondCode CC, bool NoNans, EVT VT,
7483                                     const SDLoc &dl, SelectionDAG &DAG) {
7484   EVT SrcVT = LHS.getValueType();
7485   assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
7486          "function only supposed to emit natural comparisons");
7487 
7488   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
7489   APInt CnstBits(VT.getSizeInBits(), 0);
7490   APInt UndefBits(VT.getSizeInBits(), 0);
7491   bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
7492   bool IsZero = IsCnst && (CnstBits == 0);
7493 
7494   if (SrcVT.getVectorElementType().isFloatingPoint()) {
7495     switch (CC) {
7496     default:
7497       return SDValue();
7498     case AArch64CC::NE: {
7499       SDValue Fcmeq;
7500       if (IsZero)
7501         Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
7502       else
7503         Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
7504       return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
7505     }
7506     case AArch64CC::EQ:
7507       if (IsZero)
7508         return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
7509       return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
7510     case AArch64CC::GE:
7511       if (IsZero)
7512         return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
7513       return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
7514     case AArch64CC::GT:
7515       if (IsZero)
7516         return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
7517       return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
7518     case AArch64CC::LS:
7519       if (IsZero)
7520         return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
7521       return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
7522     case AArch64CC::LT:
7523       if (!NoNans)
7524         return SDValue();
7525       // If we ignore NaNs then we can use to the MI implementation.
7526       LLVM_FALLTHROUGH;
7527     case AArch64CC::MI:
7528       if (IsZero)
7529         return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
7530       return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
7531     }
7532   }
7533 
7534   switch (CC) {
7535   default:
7536     return SDValue();
7537   case AArch64CC::NE: {
7538     SDValue Cmeq;
7539     if (IsZero)
7540       Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
7541     else
7542       Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
7543     return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
7544   }
7545   case AArch64CC::EQ:
7546     if (IsZero)
7547       return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
7548     return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
7549   case AArch64CC::GE:
7550     if (IsZero)
7551       return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
7552     return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
7553   case AArch64CC::GT:
7554     if (IsZero)
7555       return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
7556     return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
7557   case AArch64CC::LE:
7558     if (IsZero)
7559       return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
7560     return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
7561   case AArch64CC::LS:
7562     return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
7563   case AArch64CC::LO:
7564     return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
7565   case AArch64CC::LT:
7566     if (IsZero)
7567       return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
7568     return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
7569   case AArch64CC::HI:
7570     return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
7571   case AArch64CC::HS:
7572     return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
7573   }
7574 }
7575 
LowerVSETCC(SDValue Op,SelectionDAG & DAG) const7576 SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
7577                                            SelectionDAG &DAG) const {
7578   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7579   SDValue LHS = Op.getOperand(0);
7580   SDValue RHS = Op.getOperand(1);
7581   EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
7582   SDLoc dl(Op);
7583 
7584   if (LHS.getValueType().getVectorElementType().isInteger()) {
7585     assert(LHS.getValueType() == RHS.getValueType());
7586     AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
7587     SDValue Cmp =
7588         EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
7589     return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
7590   }
7591 
7592   const bool FullFP16 =
7593     static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
7594 
7595   // Make v4f16 (only) fcmp operations utilise vector instructions
7596   // v8f16 support will be a litle more complicated
7597   if (LHS.getValueType().getVectorElementType() == MVT::f16) {
7598     if (!FullFP16 && LHS.getValueType().getVectorNumElements() == 4) {
7599       LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, LHS);
7600       RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, RHS);
7601       SDValue NewSetcc = DAG.getSetCC(dl, MVT::v4i16, LHS, RHS, CC);
7602       DAG.ReplaceAllUsesWith(Op, NewSetcc);
7603       CmpVT = MVT::v4i32;
7604     } else
7605       return SDValue();
7606   }
7607 
7608   assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
7609          LHS.getValueType().getVectorElementType() == MVT::f64);
7610 
7611   // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
7612   // clean.  Some of them require two branches to implement.
7613   AArch64CC::CondCode CC1, CC2;
7614   bool ShouldInvert;
7615   changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
7616 
7617   bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
7618   SDValue Cmp =
7619       EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
7620   if (!Cmp.getNode())
7621     return SDValue();
7622 
7623   if (CC2 != AArch64CC::AL) {
7624     SDValue Cmp2 =
7625         EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
7626     if (!Cmp2.getNode())
7627       return SDValue();
7628 
7629     Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
7630   }
7631 
7632   Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
7633 
7634   if (ShouldInvert)
7635     return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
7636 
7637   return Cmp;
7638 }
7639 
getReductionSDNode(unsigned Op,SDLoc DL,SDValue ScalarOp,SelectionDAG & DAG)7640 static SDValue getReductionSDNode(unsigned Op, SDLoc DL, SDValue ScalarOp,
7641                                   SelectionDAG &DAG) {
7642   SDValue VecOp = ScalarOp.getOperand(0);
7643   auto Rdx = DAG.getNode(Op, DL, VecOp.getSimpleValueType(), VecOp);
7644   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarOp.getValueType(), Rdx,
7645                      DAG.getConstant(0, DL, MVT::i64));
7646 }
7647 
LowerVECREDUCE(SDValue Op,SelectionDAG & DAG) const7648 SDValue AArch64TargetLowering::LowerVECREDUCE(SDValue Op,
7649                                               SelectionDAG &DAG) const {
7650   SDLoc dl(Op);
7651   switch (Op.getOpcode()) {
7652   case ISD::VECREDUCE_ADD:
7653     return getReductionSDNode(AArch64ISD::UADDV, dl, Op, DAG);
7654   case ISD::VECREDUCE_SMAX:
7655     return getReductionSDNode(AArch64ISD::SMAXV, dl, Op, DAG);
7656   case ISD::VECREDUCE_SMIN:
7657     return getReductionSDNode(AArch64ISD::SMINV, dl, Op, DAG);
7658   case ISD::VECREDUCE_UMAX:
7659     return getReductionSDNode(AArch64ISD::UMAXV, dl, Op, DAG);
7660   case ISD::VECREDUCE_UMIN:
7661     return getReductionSDNode(AArch64ISD::UMINV, dl, Op, DAG);
7662   case ISD::VECREDUCE_FMAX: {
7663     assert(Op->getFlags().hasNoNaNs() && "fmax vector reduction needs NoNaN flag");
7664     return DAG.getNode(
7665         ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
7666         DAG.getConstant(Intrinsic::aarch64_neon_fmaxnmv, dl, MVT::i32),
7667         Op.getOperand(0));
7668   }
7669   case ISD::VECREDUCE_FMIN: {
7670     assert(Op->getFlags().hasNoNaNs() && "fmin vector reduction needs NoNaN flag");
7671     return DAG.getNode(
7672         ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
7673         DAG.getConstant(Intrinsic::aarch64_neon_fminnmv, dl, MVT::i32),
7674         Op.getOperand(0));
7675   }
7676   default:
7677     llvm_unreachable("Unhandled reduction");
7678   }
7679 }
7680 
LowerATOMIC_LOAD_SUB(SDValue Op,SelectionDAG & DAG) const7681 SDValue AArch64TargetLowering::LowerATOMIC_LOAD_SUB(SDValue Op,
7682                                                     SelectionDAG &DAG) const {
7683   auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget());
7684   if (!Subtarget.hasLSE())
7685     return SDValue();
7686 
7687   // LSE has an atomic load-add instruction, but not a load-sub.
7688   SDLoc dl(Op);
7689   MVT VT = Op.getSimpleValueType();
7690   SDValue RHS = Op.getOperand(2);
7691   AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
7692   RHS = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), RHS);
7693   return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, AN->getMemoryVT(),
7694                        Op.getOperand(0), Op.getOperand(1), RHS,
7695                        AN->getMemOperand());
7696 }
7697 
LowerATOMIC_LOAD_AND(SDValue Op,SelectionDAG & DAG) const7698 SDValue AArch64TargetLowering::LowerATOMIC_LOAD_AND(SDValue Op,
7699                                                     SelectionDAG &DAG) const {
7700   auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget());
7701   if (!Subtarget.hasLSE())
7702     return SDValue();
7703 
7704   // LSE has an atomic load-clear instruction, but not a load-and.
7705   SDLoc dl(Op);
7706   MVT VT = Op.getSimpleValueType();
7707   SDValue RHS = Op.getOperand(2);
7708   AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
7709   RHS = DAG.getNode(ISD::XOR, dl, VT, DAG.getConstant(-1ULL, dl, VT), RHS);
7710   return DAG.getAtomic(ISD::ATOMIC_LOAD_CLR, dl, AN->getMemoryVT(),
7711                        Op.getOperand(0), Op.getOperand(1), RHS,
7712                        AN->getMemOperand());
7713 }
7714 
LowerWindowsDYNAMIC_STACKALLOC(SDValue Op,SDValue Chain,SDValue & Size,SelectionDAG & DAG) const7715 SDValue AArch64TargetLowering::LowerWindowsDYNAMIC_STACKALLOC(
7716     SDValue Op, SDValue Chain, SDValue &Size, SelectionDAG &DAG) const {
7717   SDLoc dl(Op);
7718   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7719   SDValue Callee = DAG.getTargetExternalSymbol("__chkstk", PtrVT, 0);
7720 
7721   const uint32_t *Mask =
7722       Subtarget->getRegisterInfo()->getWindowsStackProbePreservedMask();
7723 
7724   Size = DAG.getNode(ISD::SRL, dl, MVT::i64, Size,
7725                      DAG.getConstant(4, dl, MVT::i64));
7726   Chain = DAG.getCopyToReg(Chain, dl, AArch64::X15, Size, SDValue());
7727   Chain =
7728       DAG.getNode(AArch64ISD::CALL, dl, DAG.getVTList(MVT::Other, MVT::Glue),
7729                   Chain, Callee, DAG.getRegister(AArch64::X15, MVT::i64),
7730                   DAG.getRegisterMask(Mask), Chain.getValue(1));
7731   // To match the actual intent better, we should read the output from X15 here
7732   // again (instead of potentially spilling it to the stack), but rereading Size
7733   // from X15 here doesn't work at -O0, since it thinks that X15 is undefined
7734   // here.
7735 
7736   Size = DAG.getNode(ISD::SHL, dl, MVT::i64, Size,
7737                      DAG.getConstant(4, dl, MVT::i64));
7738   return Chain;
7739 }
7740 
7741 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const7742 AArch64TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7743                                                SelectionDAG &DAG) const {
7744   assert(Subtarget->isTargetWindows() &&
7745          "Only Windows alloca probing supported");
7746   SDLoc dl(Op);
7747   // Get the inputs.
7748   SDNode *Node = Op.getNode();
7749   SDValue Chain = Op.getOperand(0);
7750   SDValue Size = Op.getOperand(1);
7751   unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
7752   EVT VT = Node->getValueType(0);
7753 
7754   if (DAG.getMachineFunction().getFunction().hasFnAttribute(
7755           "no-stack-arg-probe")) {
7756     SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
7757     Chain = SP.getValue(1);
7758     SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
7759     if (Align)
7760       SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
7761                        DAG.getConstant(-(uint64_t)Align, dl, VT));
7762     Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
7763     SDValue Ops[2] = {SP, Chain};
7764     return DAG.getMergeValues(Ops, dl);
7765   }
7766 
7767   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
7768 
7769   Chain = LowerWindowsDYNAMIC_STACKALLOC(Op, Chain, Size, DAG);
7770 
7771   SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
7772   Chain = SP.getValue(1);
7773   SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
7774   if (Align)
7775     SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
7776                      DAG.getConstant(-(uint64_t)Align, dl, VT));
7777   Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
7778 
7779   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
7780                              DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
7781 
7782   SDValue Ops[2] = {SP, Chain};
7783   return DAG.getMergeValues(Ops, dl);
7784 }
7785 
7786 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
7787 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
7788 /// specified in the intrinsic calls.
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const7789 bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
7790                                                const CallInst &I,
7791                                                MachineFunction &MF,
7792                                                unsigned Intrinsic) const {
7793   auto &DL = I.getModule()->getDataLayout();
7794   switch (Intrinsic) {
7795   case Intrinsic::aarch64_neon_ld2:
7796   case Intrinsic::aarch64_neon_ld3:
7797   case Intrinsic::aarch64_neon_ld4:
7798   case Intrinsic::aarch64_neon_ld1x2:
7799   case Intrinsic::aarch64_neon_ld1x3:
7800   case Intrinsic::aarch64_neon_ld1x4:
7801   case Intrinsic::aarch64_neon_ld2lane:
7802   case Intrinsic::aarch64_neon_ld3lane:
7803   case Intrinsic::aarch64_neon_ld4lane:
7804   case Intrinsic::aarch64_neon_ld2r:
7805   case Intrinsic::aarch64_neon_ld3r:
7806   case Intrinsic::aarch64_neon_ld4r: {
7807     Info.opc = ISD::INTRINSIC_W_CHAIN;
7808     // Conservatively set memVT to the entire set of vectors loaded.
7809     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
7810     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
7811     Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
7812     Info.offset = 0;
7813     Info.align = 0;
7814     // volatile loads with NEON intrinsics not supported
7815     Info.flags = MachineMemOperand::MOLoad;
7816     return true;
7817   }
7818   case Intrinsic::aarch64_neon_st2:
7819   case Intrinsic::aarch64_neon_st3:
7820   case Intrinsic::aarch64_neon_st4:
7821   case Intrinsic::aarch64_neon_st1x2:
7822   case Intrinsic::aarch64_neon_st1x3:
7823   case Intrinsic::aarch64_neon_st1x4:
7824   case Intrinsic::aarch64_neon_st2lane:
7825   case Intrinsic::aarch64_neon_st3lane:
7826   case Intrinsic::aarch64_neon_st4lane: {
7827     Info.opc = ISD::INTRINSIC_VOID;
7828     // Conservatively set memVT to the entire set of vectors stored.
7829     unsigned NumElts = 0;
7830     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
7831       Type *ArgTy = I.getArgOperand(ArgI)->getType();
7832       if (!ArgTy->isVectorTy())
7833         break;
7834       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
7835     }
7836     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
7837     Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
7838     Info.offset = 0;
7839     Info.align = 0;
7840     // volatile stores with NEON intrinsics not supported
7841     Info.flags = MachineMemOperand::MOStore;
7842     return true;
7843   }
7844   case Intrinsic::aarch64_ldaxr:
7845   case Intrinsic::aarch64_ldxr: {
7846     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
7847     Info.opc = ISD::INTRINSIC_W_CHAIN;
7848     Info.memVT = MVT::getVT(PtrTy->getElementType());
7849     Info.ptrVal = I.getArgOperand(0);
7850     Info.offset = 0;
7851     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
7852     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
7853     return true;
7854   }
7855   case Intrinsic::aarch64_stlxr:
7856   case Intrinsic::aarch64_stxr: {
7857     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
7858     Info.opc = ISD::INTRINSIC_W_CHAIN;
7859     Info.memVT = MVT::getVT(PtrTy->getElementType());
7860     Info.ptrVal = I.getArgOperand(1);
7861     Info.offset = 0;
7862     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
7863     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
7864     return true;
7865   }
7866   case Intrinsic::aarch64_ldaxp:
7867   case Intrinsic::aarch64_ldxp:
7868     Info.opc = ISD::INTRINSIC_W_CHAIN;
7869     Info.memVT = MVT::i128;
7870     Info.ptrVal = I.getArgOperand(0);
7871     Info.offset = 0;
7872     Info.align = 16;
7873     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
7874     return true;
7875   case Intrinsic::aarch64_stlxp:
7876   case Intrinsic::aarch64_stxp:
7877     Info.opc = ISD::INTRINSIC_W_CHAIN;
7878     Info.memVT = MVT::i128;
7879     Info.ptrVal = I.getArgOperand(2);
7880     Info.offset = 0;
7881     Info.align = 16;
7882     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
7883     return true;
7884   default:
7885     break;
7886   }
7887 
7888   return false;
7889 }
7890 
shouldReduceLoadWidth(SDNode * Load,ISD::LoadExtType ExtTy,EVT NewVT) const7891 bool AArch64TargetLowering::shouldReduceLoadWidth(SDNode *Load,
7892                                                   ISD::LoadExtType ExtTy,
7893                                                   EVT NewVT) const {
7894   // If we're reducing the load width in order to avoid having to use an extra
7895   // instruction to do extension then it's probably a good idea.
7896   if (ExtTy != ISD::NON_EXTLOAD)
7897     return true;
7898   // Don't reduce load width if it would prevent us from combining a shift into
7899   // the offset.
7900   MemSDNode *Mem = dyn_cast<MemSDNode>(Load);
7901   assert(Mem);
7902   const SDValue &Base = Mem->getBasePtr();
7903   if (Base.getOpcode() == ISD::ADD &&
7904       Base.getOperand(1).getOpcode() == ISD::SHL &&
7905       Base.getOperand(1).hasOneUse() &&
7906       Base.getOperand(1).getOperand(1).getOpcode() == ISD::Constant) {
7907     // The shift can be combined if it matches the size of the value being
7908     // loaded (and so reducing the width would make it not match).
7909     uint64_t ShiftAmount = Base.getOperand(1).getConstantOperandVal(1);
7910     uint64_t LoadBytes = Mem->getMemoryVT().getSizeInBits()/8;
7911     if (ShiftAmount == Log2_32(LoadBytes))
7912       return false;
7913   }
7914   // We have no reason to disallow reducing the load width, so allow it.
7915   return true;
7916 }
7917 
7918 // Truncations from 64-bit GPR to 32-bit GPR is free.
isTruncateFree(Type * Ty1,Type * Ty2) const7919 bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
7920   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
7921     return false;
7922   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7923   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7924   return NumBits1 > NumBits2;
7925 }
isTruncateFree(EVT VT1,EVT VT2) const7926 bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
7927   if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
7928     return false;
7929   unsigned NumBits1 = VT1.getSizeInBits();
7930   unsigned NumBits2 = VT2.getSizeInBits();
7931   return NumBits1 > NumBits2;
7932 }
7933 
7934 /// Check if it is profitable to hoist instruction in then/else to if.
7935 /// Not profitable if I and it's user can form a FMA instruction
7936 /// because we prefer FMSUB/FMADD.
isProfitableToHoist(Instruction * I) const7937 bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
7938   if (I->getOpcode() != Instruction::FMul)
7939     return true;
7940 
7941   if (!I->hasOneUse())
7942     return true;
7943 
7944   Instruction *User = I->user_back();
7945 
7946   if (User &&
7947       !(User->getOpcode() == Instruction::FSub ||
7948         User->getOpcode() == Instruction::FAdd))
7949     return true;
7950 
7951   const TargetOptions &Options = getTargetMachine().Options;
7952   const DataLayout &DL = I->getModule()->getDataLayout();
7953   EVT VT = getValueType(DL, User->getOperand(0)->getType());
7954 
7955   return !(isFMAFasterThanFMulAndFAdd(VT) &&
7956            isOperationLegalOrCustom(ISD::FMA, VT) &&
7957            (Options.AllowFPOpFusion == FPOpFusion::Fast ||
7958             Options.UnsafeFPMath));
7959 }
7960 
7961 // All 32-bit GPR operations implicitly zero the high-half of the corresponding
7962 // 64-bit GPR.
isZExtFree(Type * Ty1,Type * Ty2) const7963 bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
7964   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
7965     return false;
7966   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7967   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7968   return NumBits1 == 32 && NumBits2 == 64;
7969 }
isZExtFree(EVT VT1,EVT VT2) const7970 bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
7971   if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
7972     return false;
7973   unsigned NumBits1 = VT1.getSizeInBits();
7974   unsigned NumBits2 = VT2.getSizeInBits();
7975   return NumBits1 == 32 && NumBits2 == 64;
7976 }
7977 
isZExtFree(SDValue Val,EVT VT2) const7978 bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
7979   EVT VT1 = Val.getValueType();
7980   if (isZExtFree(VT1, VT2)) {
7981     return true;
7982   }
7983 
7984   if (Val.getOpcode() != ISD::LOAD)
7985     return false;
7986 
7987   // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
7988   return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
7989           VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
7990           VT1.getSizeInBits() <= 32);
7991 }
7992 
isExtFreeImpl(const Instruction * Ext) const7993 bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const {
7994   if (isa<FPExtInst>(Ext))
7995     return false;
7996 
7997   // Vector types are not free.
7998   if (Ext->getType()->isVectorTy())
7999     return false;
8000 
8001   for (const Use &U : Ext->uses()) {
8002     // The extension is free if we can fold it with a left shift in an
8003     // addressing mode or an arithmetic operation: add, sub, and cmp.
8004 
8005     // Is there a shift?
8006     const Instruction *Instr = cast<Instruction>(U.getUser());
8007 
8008     // Is this a constant shift?
8009     switch (Instr->getOpcode()) {
8010     case Instruction::Shl:
8011       if (!isa<ConstantInt>(Instr->getOperand(1)))
8012         return false;
8013       break;
8014     case Instruction::GetElementPtr: {
8015       gep_type_iterator GTI = gep_type_begin(Instr);
8016       auto &DL = Ext->getModule()->getDataLayout();
8017       std::advance(GTI, U.getOperandNo()-1);
8018       Type *IdxTy = GTI.getIndexedType();
8019       // This extension will end up with a shift because of the scaling factor.
8020       // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
8021       // Get the shift amount based on the scaling factor:
8022       // log2(sizeof(IdxTy)) - log2(8).
8023       uint64_t ShiftAmt =
8024           countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy)) - 3;
8025       // Is the constant foldable in the shift of the addressing mode?
8026       // I.e., shift amount is between 1 and 4 inclusive.
8027       if (ShiftAmt == 0 || ShiftAmt > 4)
8028         return false;
8029       break;
8030     }
8031     case Instruction::Trunc:
8032       // Check if this is a noop.
8033       // trunc(sext ty1 to ty2) to ty1.
8034       if (Instr->getType() == Ext->getOperand(0)->getType())
8035         continue;
8036       LLVM_FALLTHROUGH;
8037     default:
8038       return false;
8039     }
8040 
8041     // At this point we can use the bfm family, so this extension is free
8042     // for that use.
8043   }
8044   return true;
8045 }
8046 
hasPairedLoad(EVT LoadedType,unsigned & RequiredAligment) const8047 bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
8048                                           unsigned &RequiredAligment) const {
8049   if (!LoadedType.isSimple() ||
8050       (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
8051     return false;
8052   // Cyclone supports unaligned accesses.
8053   RequiredAligment = 0;
8054   unsigned NumBits = LoadedType.getSizeInBits();
8055   return NumBits == 32 || NumBits == 64;
8056 }
8057 
8058 /// A helper function for determining the number of interleaved accesses we
8059 /// will generate when lowering accesses of the given type.
8060 unsigned
getNumInterleavedAccesses(VectorType * VecTy,const DataLayout & DL) const8061 AArch64TargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
8062                                                  const DataLayout &DL) const {
8063   return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
8064 }
8065 
8066 MachineMemOperand::Flags
getMMOFlags(const Instruction & I) const8067 AArch64TargetLowering::getMMOFlags(const Instruction &I) const {
8068   if (Subtarget->getProcFamily() == AArch64Subtarget::Falkor &&
8069       I.getMetadata(FALKOR_STRIDED_ACCESS_MD) != nullptr)
8070     return MOStridedAccess;
8071   return MachineMemOperand::MONone;
8072 }
8073 
isLegalInterleavedAccessType(VectorType * VecTy,const DataLayout & DL) const8074 bool AArch64TargetLowering::isLegalInterleavedAccessType(
8075     VectorType *VecTy, const DataLayout &DL) const {
8076 
8077   unsigned VecSize = DL.getTypeSizeInBits(VecTy);
8078   unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
8079 
8080   // Ensure the number of vector elements is greater than 1.
8081   if (VecTy->getNumElements() < 2)
8082     return false;
8083 
8084   // Ensure the element type is legal.
8085   if (ElSize != 8 && ElSize != 16 && ElSize != 32 && ElSize != 64)
8086     return false;
8087 
8088   // Ensure the total vector size is 64 or a multiple of 128. Types larger than
8089   // 128 will be split into multiple interleaved accesses.
8090   return VecSize == 64 || VecSize % 128 == 0;
8091 }
8092 
8093 /// Lower an interleaved load into a ldN intrinsic.
8094 ///
8095 /// E.g. Lower an interleaved load (Factor = 2):
8096 ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
8097 ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
8098 ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
8099 ///
8100 ///      Into:
8101 ///        %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
8102 ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
8103 ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
lowerInterleavedLoad(LoadInst * LI,ArrayRef<ShuffleVectorInst * > Shuffles,ArrayRef<unsigned> Indices,unsigned Factor) const8104 bool AArch64TargetLowering::lowerInterleavedLoad(
8105     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
8106     ArrayRef<unsigned> Indices, unsigned Factor) const {
8107   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
8108          "Invalid interleave factor");
8109   assert(!Shuffles.empty() && "Empty shufflevector input");
8110   assert(Shuffles.size() == Indices.size() &&
8111          "Unmatched number of shufflevectors and indices");
8112 
8113   const DataLayout &DL = LI->getModule()->getDataLayout();
8114 
8115   VectorType *VecTy = Shuffles[0]->getType();
8116 
8117   // Skip if we do not have NEON and skip illegal vector types. We can
8118   // "legalize" wide vector types into multiple interleaved accesses as long as
8119   // the vector types are divisible by 128.
8120   if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL))
8121     return false;
8122 
8123   unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
8124 
8125   // A pointer vector can not be the return type of the ldN intrinsics. Need to
8126   // load integer vectors first and then convert to pointer vectors.
8127   Type *EltTy = VecTy->getVectorElementType();
8128   if (EltTy->isPointerTy())
8129     VecTy =
8130         VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
8131 
8132   IRBuilder<> Builder(LI);
8133 
8134   // The base address of the load.
8135   Value *BaseAddr = LI->getPointerOperand();
8136 
8137   if (NumLoads > 1) {
8138     // If we're going to generate more than one load, reset the sub-vector type
8139     // to something legal.
8140     VecTy = VectorType::get(VecTy->getVectorElementType(),
8141                             VecTy->getVectorNumElements() / NumLoads);
8142 
8143     // We will compute the pointer operand of each load from the original base
8144     // address using GEPs. Cast the base address to a pointer to the scalar
8145     // element type.
8146     BaseAddr = Builder.CreateBitCast(
8147         BaseAddr, VecTy->getVectorElementType()->getPointerTo(
8148                       LI->getPointerAddressSpace()));
8149   }
8150 
8151   Type *PtrTy = VecTy->getPointerTo(LI->getPointerAddressSpace());
8152   Type *Tys[2] = {VecTy, PtrTy};
8153   static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2,
8154                                             Intrinsic::aarch64_neon_ld3,
8155                                             Intrinsic::aarch64_neon_ld4};
8156   Function *LdNFunc =
8157       Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
8158 
8159   // Holds sub-vectors extracted from the load intrinsic return values. The
8160   // sub-vectors are associated with the shufflevector instructions they will
8161   // replace.
8162   DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
8163 
8164   for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
8165 
8166     // If we're generating more than one load, compute the base address of
8167     // subsequent loads as an offset from the previous.
8168     if (LoadCount > 0)
8169       BaseAddr = Builder.CreateConstGEP1_32(
8170           BaseAddr, VecTy->getVectorNumElements() * Factor);
8171 
8172     CallInst *LdN = Builder.CreateCall(
8173         LdNFunc, Builder.CreateBitCast(BaseAddr, PtrTy), "ldN");
8174 
8175     // Extract and store the sub-vectors returned by the load intrinsic.
8176     for (unsigned i = 0; i < Shuffles.size(); i++) {
8177       ShuffleVectorInst *SVI = Shuffles[i];
8178       unsigned Index = Indices[i];
8179 
8180       Value *SubVec = Builder.CreateExtractValue(LdN, Index);
8181 
8182       // Convert the integer vector to pointer vector if the element is pointer.
8183       if (EltTy->isPointerTy())
8184         SubVec = Builder.CreateIntToPtr(
8185             SubVec, VectorType::get(SVI->getType()->getVectorElementType(),
8186                                     VecTy->getVectorNumElements()));
8187       SubVecs[SVI].push_back(SubVec);
8188     }
8189   }
8190 
8191   // Replace uses of the shufflevector instructions with the sub-vectors
8192   // returned by the load intrinsic. If a shufflevector instruction is
8193   // associated with more than one sub-vector, those sub-vectors will be
8194   // concatenated into a single wide vector.
8195   for (ShuffleVectorInst *SVI : Shuffles) {
8196     auto &SubVec = SubVecs[SVI];
8197     auto *WideVec =
8198         SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
8199     SVI->replaceAllUsesWith(WideVec);
8200   }
8201 
8202   return true;
8203 }
8204 
8205 /// Lower an interleaved store into a stN intrinsic.
8206 ///
8207 /// E.g. Lower an interleaved store (Factor = 3):
8208 ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
8209 ///                 <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
8210 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr
8211 ///
8212 ///      Into:
8213 ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
8214 ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
8215 ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
8216 ///        call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
8217 ///
8218 /// Note that the new shufflevectors will be removed and we'll only generate one
8219 /// st3 instruction in CodeGen.
8220 ///
8221 /// Example for a more general valid mask (Factor 3). Lower:
8222 ///        %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
8223 ///                 <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
8224 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr
8225 ///
8226 ///      Into:
8227 ///        %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
8228 ///        %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
8229 ///        %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
8230 ///        call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
lowerInterleavedStore(StoreInst * SI,ShuffleVectorInst * SVI,unsigned Factor) const8231 bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI,
8232                                                   ShuffleVectorInst *SVI,
8233                                                   unsigned Factor) const {
8234   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
8235          "Invalid interleave factor");
8236 
8237   VectorType *VecTy = SVI->getType();
8238   assert(VecTy->getVectorNumElements() % Factor == 0 &&
8239          "Invalid interleaved store");
8240 
8241   unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
8242   Type *EltTy = VecTy->getVectorElementType();
8243   VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
8244 
8245   const DataLayout &DL = SI->getModule()->getDataLayout();
8246 
8247   // Skip if we do not have NEON and skip illegal vector types. We can
8248   // "legalize" wide vector types into multiple interleaved accesses as long as
8249   // the vector types are divisible by 128.
8250   if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
8251     return false;
8252 
8253   unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
8254 
8255   Value *Op0 = SVI->getOperand(0);
8256   Value *Op1 = SVI->getOperand(1);
8257   IRBuilder<> Builder(SI);
8258 
8259   // StN intrinsics don't support pointer vectors as arguments. Convert pointer
8260   // vectors to integer vectors.
8261   if (EltTy->isPointerTy()) {
8262     Type *IntTy = DL.getIntPtrType(EltTy);
8263     unsigned NumOpElts = Op0->getType()->getVectorNumElements();
8264 
8265     // Convert to the corresponding integer vector.
8266     Type *IntVecTy = VectorType::get(IntTy, NumOpElts);
8267     Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
8268     Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
8269 
8270     SubVecTy = VectorType::get(IntTy, LaneLen);
8271   }
8272 
8273   // The base address of the store.
8274   Value *BaseAddr = SI->getPointerOperand();
8275 
8276   if (NumStores > 1) {
8277     // If we're going to generate more than one store, reset the lane length
8278     // and sub-vector type to something legal.
8279     LaneLen /= NumStores;
8280     SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
8281 
8282     // We will compute the pointer operand of each store from the original base
8283     // address using GEPs. Cast the base address to a pointer to the scalar
8284     // element type.
8285     BaseAddr = Builder.CreateBitCast(
8286         BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
8287                       SI->getPointerAddressSpace()));
8288   }
8289 
8290   auto Mask = SVI->getShuffleMask();
8291 
8292   Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace());
8293   Type *Tys[2] = {SubVecTy, PtrTy};
8294   static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2,
8295                                              Intrinsic::aarch64_neon_st3,
8296                                              Intrinsic::aarch64_neon_st4};
8297   Function *StNFunc =
8298       Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
8299 
8300   for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
8301 
8302     SmallVector<Value *, 5> Ops;
8303 
8304     // Split the shufflevector operands into sub vectors for the new stN call.
8305     for (unsigned i = 0; i < Factor; i++) {
8306       unsigned IdxI = StoreCount * LaneLen * Factor + i;
8307       if (Mask[IdxI] >= 0) {
8308         Ops.push_back(Builder.CreateShuffleVector(
8309             Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
8310       } else {
8311         unsigned StartMask = 0;
8312         for (unsigned j = 1; j < LaneLen; j++) {
8313           unsigned IdxJ = StoreCount * LaneLen * Factor + j;
8314           if (Mask[IdxJ * Factor + IdxI] >= 0) {
8315             StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
8316             break;
8317           }
8318         }
8319         // Note: Filling undef gaps with random elements is ok, since
8320         // those elements were being written anyway (with undefs).
8321         // In the case of all undefs we're defaulting to using elems from 0
8322         // Note: StartMask cannot be negative, it's checked in
8323         // isReInterleaveMask
8324         Ops.push_back(Builder.CreateShuffleVector(
8325             Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
8326       }
8327     }
8328 
8329     // If we generating more than one store, we compute the base address of
8330     // subsequent stores as an offset from the previous.
8331     if (StoreCount > 0)
8332       BaseAddr = Builder.CreateConstGEP1_32(BaseAddr, LaneLen * Factor);
8333 
8334     Ops.push_back(Builder.CreateBitCast(BaseAddr, PtrTy));
8335     Builder.CreateCall(StNFunc, Ops);
8336   }
8337   return true;
8338 }
8339 
memOpAlign(unsigned DstAlign,unsigned SrcAlign,unsigned AlignCheck)8340 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
8341                        unsigned AlignCheck) {
8342   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
8343           (DstAlign == 0 || DstAlign % AlignCheck == 0));
8344 }
8345 
getOptimalMemOpType(uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool IsMemset,bool ZeroMemset,bool MemcpyStrSrc,MachineFunction & MF) const8346 EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
8347                                                unsigned SrcAlign, bool IsMemset,
8348                                                bool ZeroMemset,
8349                                                bool MemcpyStrSrc,
8350                                                MachineFunction &MF) const {
8351   // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
8352   // instruction to materialize the v2i64 zero and one store (with restrictive
8353   // addressing mode). Just do two i64 store of zero-registers.
8354   bool Fast;
8355   const Function &F = MF.getFunction();
8356   if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
8357       !F.hasFnAttribute(Attribute::NoImplicitFloat) &&
8358       (memOpAlign(SrcAlign, DstAlign, 16) ||
8359        (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast)))
8360     return MVT::f128;
8361 
8362   if (Size >= 8 &&
8363       (memOpAlign(SrcAlign, DstAlign, 8) ||
8364        (allowsMisalignedMemoryAccesses(MVT::i64, 0, 1, &Fast) && Fast)))
8365     return MVT::i64;
8366 
8367   if (Size >= 4 &&
8368       (memOpAlign(SrcAlign, DstAlign, 4) ||
8369        (allowsMisalignedMemoryAccesses(MVT::i32, 0, 1, &Fast) && Fast)))
8370     return MVT::i32;
8371 
8372   return MVT::Other;
8373 }
8374 
8375 // 12-bit optionally shifted immediates are legal for adds.
isLegalAddImmediate(int64_t Immed) const8376 bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
8377   if (Immed == std::numeric_limits<int64_t>::min()) {
8378     LLVM_DEBUG(dbgs() << "Illegal add imm " << Immed
8379                       << ": avoid UB for INT64_MIN\n");
8380     return false;
8381   }
8382   // Same encoding for add/sub, just flip the sign.
8383   Immed = std::abs(Immed);
8384   bool IsLegal = ((Immed >> 12) == 0 ||
8385                   ((Immed & 0xfff) == 0 && Immed >> 24 == 0));
8386   LLVM_DEBUG(dbgs() << "Is " << Immed
8387                     << " legal add imm: " << (IsLegal ? "yes" : "no") << "\n");
8388   return IsLegal;
8389 }
8390 
8391 // Integer comparisons are implemented with ADDS/SUBS, so the range of valid
8392 // immediates is the same as for an add or a sub.
isLegalICmpImmediate(int64_t Immed) const8393 bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
8394   return isLegalAddImmediate(Immed);
8395 }
8396 
8397 /// isLegalAddressingMode - Return true if the addressing mode represented
8398 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const8399 bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL,
8400                                                   const AddrMode &AM, Type *Ty,
8401                                                   unsigned AS, Instruction *I) const {
8402   // AArch64 has five basic addressing modes:
8403   //  reg
8404   //  reg + 9-bit signed offset
8405   //  reg + SIZE_IN_BYTES * 12-bit unsigned offset
8406   //  reg1 + reg2
8407   //  reg + SIZE_IN_BYTES * reg
8408 
8409   // No global is ever allowed as a base.
8410   if (AM.BaseGV)
8411     return false;
8412 
8413   // No reg+reg+imm addressing.
8414   if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
8415     return false;
8416 
8417   // check reg + imm case:
8418   // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
8419   uint64_t NumBytes = 0;
8420   if (Ty->isSized()) {
8421     uint64_t NumBits = DL.getTypeSizeInBits(Ty);
8422     NumBytes = NumBits / 8;
8423     if (!isPowerOf2_64(NumBits))
8424       NumBytes = 0;
8425   }
8426 
8427   if (!AM.Scale) {
8428     int64_t Offset = AM.BaseOffs;
8429 
8430     // 9-bit signed offset
8431     if (isInt<9>(Offset))
8432       return true;
8433 
8434     // 12-bit unsigned offset
8435     unsigned shift = Log2_64(NumBytes);
8436     if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
8437         // Must be a multiple of NumBytes (NumBytes is a power of 2)
8438         (Offset >> shift) << shift == Offset)
8439       return true;
8440     return false;
8441   }
8442 
8443   // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
8444 
8445   return AM.Scale == 1 || (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes);
8446 }
8447 
shouldConsiderGEPOffsetSplit() const8448 bool AArch64TargetLowering::shouldConsiderGEPOffsetSplit() const {
8449   // Consider splitting large offset of struct or array.
8450   return true;
8451 }
8452 
getScalingFactorCost(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const8453 int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL,
8454                                                 const AddrMode &AM, Type *Ty,
8455                                                 unsigned AS) const {
8456   // Scaling factors are not free at all.
8457   // Operands                     | Rt Latency
8458   // -------------------------------------------
8459   // Rt, [Xn, Xm]                 | 4
8460   // -------------------------------------------
8461   // Rt, [Xn, Xm, lsl #imm]       | Rn: 4 Rm: 5
8462   // Rt, [Xn, Wm, <extend> #imm]  |
8463   if (isLegalAddressingMode(DL, AM, Ty, AS))
8464     // Scale represents reg2 * scale, thus account for 1 if
8465     // it is not equal to 0 or 1.
8466     return AM.Scale != 0 && AM.Scale != 1;
8467   return -1;
8468 }
8469 
isFMAFasterThanFMulAndFAdd(EVT VT) const8470 bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
8471   VT = VT.getScalarType();
8472 
8473   if (!VT.isSimple())
8474     return false;
8475 
8476   switch (VT.getSimpleVT().SimpleTy) {
8477   case MVT::f32:
8478   case MVT::f64:
8479     return true;
8480   default:
8481     break;
8482   }
8483 
8484   return false;
8485 }
8486 
8487 const MCPhysReg *
getScratchRegisters(CallingConv::ID) const8488 AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
8489   // LR is a callee-save register, but we must treat it as clobbered by any call
8490   // site. Hence we include LR in the scratch registers, which are in turn added
8491   // as implicit-defs for stackmaps and patchpoints.
8492   static const MCPhysReg ScratchRegs[] = {
8493     AArch64::X16, AArch64::X17, AArch64::LR, 0
8494   };
8495   return ScratchRegs;
8496 }
8497 
8498 bool
isDesirableToCommuteWithShift(const SDNode * N) const8499 AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
8500   EVT VT = N->getValueType(0);
8501     // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
8502     // it with shift to let it be lowered to UBFX.
8503   if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
8504       isa<ConstantSDNode>(N->getOperand(1))) {
8505     uint64_t TruncMask = N->getConstantOperandVal(1);
8506     if (isMask_64(TruncMask) &&
8507       N->getOperand(0).getOpcode() == ISD::SRL &&
8508       isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
8509       return false;
8510   }
8511   return true;
8512 }
8513 
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty) const8514 bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
8515                                                               Type *Ty) const {
8516   assert(Ty->isIntegerTy());
8517 
8518   unsigned BitSize = Ty->getPrimitiveSizeInBits();
8519   if (BitSize == 0)
8520     return false;
8521 
8522   int64_t Val = Imm.getSExtValue();
8523   if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
8524     return true;
8525 
8526   if ((int64_t)Val < 0)
8527     Val = ~Val;
8528   if (BitSize == 32)
8529     Val &= (1LL << 32) - 1;
8530 
8531   unsigned LZ = countLeadingZeros((uint64_t)Val);
8532   unsigned Shift = (63 - LZ) / 16;
8533   // MOVZ is free so return true for one or fewer MOVK.
8534   return Shift < 3;
8535 }
8536 
isExtractSubvectorCheap(EVT ResVT,EVT SrcVT,unsigned Index) const8537 bool AArch64TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
8538                                                     unsigned Index) const {
8539   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
8540     return false;
8541 
8542   return (Index == 0 || Index == ResVT.getVectorNumElements());
8543 }
8544 
8545 /// Turn vector tests of the signbit in the form of:
8546 ///   xor (sra X, elt_size(X)-1), -1
8547 /// into:
8548 ///   cmge X, X, #0
foldVectorXorShiftIntoCmp(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)8549 static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG,
8550                                          const AArch64Subtarget *Subtarget) {
8551   EVT VT = N->getValueType(0);
8552   if (!Subtarget->hasNEON() || !VT.isVector())
8553     return SDValue();
8554 
8555   // There must be a shift right algebraic before the xor, and the xor must be a
8556   // 'not' operation.
8557   SDValue Shift = N->getOperand(0);
8558   SDValue Ones = N->getOperand(1);
8559   if (Shift.getOpcode() != AArch64ISD::VASHR || !Shift.hasOneUse() ||
8560       !ISD::isBuildVectorAllOnes(Ones.getNode()))
8561     return SDValue();
8562 
8563   // The shift should be smearing the sign bit across each vector element.
8564   auto *ShiftAmt = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
8565   EVT ShiftEltTy = Shift.getValueType().getVectorElementType();
8566   if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1)
8567     return SDValue();
8568 
8569   return DAG.getNode(AArch64ISD::CMGEz, SDLoc(N), VT, Shift.getOperand(0));
8570 }
8571 
8572 // Generate SUBS and CSEL for integer abs.
performIntegerAbsCombine(SDNode * N,SelectionDAG & DAG)8573 static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
8574   EVT VT = N->getValueType(0);
8575 
8576   SDValue N0 = N->getOperand(0);
8577   SDValue N1 = N->getOperand(1);
8578   SDLoc DL(N);
8579 
8580   // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
8581   // and change it to SUB and CSEL.
8582   if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
8583       N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
8584       N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
8585     if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
8586       if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
8587         SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
8588                                   N0.getOperand(0));
8589         // Generate SUBS & CSEL.
8590         SDValue Cmp =
8591             DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
8592                         N0.getOperand(0), DAG.getConstant(0, DL, VT));
8593         return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
8594                            DAG.getConstant(AArch64CC::PL, DL, MVT::i32),
8595                            SDValue(Cmp.getNode(), 1));
8596       }
8597   return SDValue();
8598 }
8599 
performXorCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)8600 static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
8601                                  TargetLowering::DAGCombinerInfo &DCI,
8602                                  const AArch64Subtarget *Subtarget) {
8603   if (DCI.isBeforeLegalizeOps())
8604     return SDValue();
8605 
8606   if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget))
8607     return Cmp;
8608 
8609   return performIntegerAbsCombine(N, DAG);
8610 }
8611 
8612 SDValue
BuildSDIVPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created) const8613 AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
8614                                      SelectionDAG &DAG,
8615                                      SmallVectorImpl<SDNode *> &Created) const {
8616   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
8617   if (isIntDivCheap(N->getValueType(0), Attr))
8618     return SDValue(N,0); // Lower SDIV as SDIV
8619 
8620   // fold (sdiv X, pow2)
8621   EVT VT = N->getValueType(0);
8622   if ((VT != MVT::i32 && VT != MVT::i64) ||
8623       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
8624     return SDValue();
8625 
8626   SDLoc DL(N);
8627   SDValue N0 = N->getOperand(0);
8628   unsigned Lg2 = Divisor.countTrailingZeros();
8629   SDValue Zero = DAG.getConstant(0, DL, VT);
8630   SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
8631 
8632   // Add (N0 < 0) ? Pow2 - 1 : 0;
8633   SDValue CCVal;
8634   SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
8635   SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
8636   SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
8637 
8638   Created.push_back(Cmp.getNode());
8639   Created.push_back(Add.getNode());
8640   Created.push_back(CSel.getNode());
8641 
8642   // Divide by pow2.
8643   SDValue SRA =
8644       DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64));
8645 
8646   // If we're dividing by a positive value, we're done.  Otherwise, we must
8647   // negate the result.
8648   if (Divisor.isNonNegative())
8649     return SRA;
8650 
8651   Created.push_back(SRA.getNode());
8652   return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
8653 }
8654 
performMulCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)8655 static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
8656                                  TargetLowering::DAGCombinerInfo &DCI,
8657                                  const AArch64Subtarget *Subtarget) {
8658   if (DCI.isBeforeLegalizeOps())
8659     return SDValue();
8660 
8661   // The below optimizations require a constant RHS.
8662   if (!isa<ConstantSDNode>(N->getOperand(1)))
8663     return SDValue();
8664 
8665   ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1));
8666   const APInt &ConstValue = C->getAPIntValue();
8667 
8668   // Multiplication of a power of two plus/minus one can be done more
8669   // cheaply as as shift+add/sub. For now, this is true unilaterally. If
8670   // future CPUs have a cheaper MADD instruction, this may need to be
8671   // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
8672   // 64-bit is 5 cycles, so this is always a win.
8673   // More aggressively, some multiplications N0 * C can be lowered to
8674   // shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M,
8675   // e.g. 6=3*2=(2+1)*2.
8676   // TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45
8677   // which equals to (1+2)*16-(1+2).
8678   SDValue N0 = N->getOperand(0);
8679   // TrailingZeroes is used to test if the mul can be lowered to
8680   // shift+add+shift.
8681   unsigned TrailingZeroes = ConstValue.countTrailingZeros();
8682   if (TrailingZeroes) {
8683     // Conservatively do not lower to shift+add+shift if the mul might be
8684     // folded into smul or umul.
8685     if (N0->hasOneUse() && (isSignExtended(N0.getNode(), DAG) ||
8686                             isZeroExtended(N0.getNode(), DAG)))
8687       return SDValue();
8688     // Conservatively do not lower to shift+add+shift if the mul might be
8689     // folded into madd or msub.
8690     if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ADD ||
8691                            N->use_begin()->getOpcode() == ISD::SUB))
8692       return SDValue();
8693   }
8694   // Use ShiftedConstValue instead of ConstValue to support both shift+add/sub
8695   // and shift+add+shift.
8696   APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes);
8697 
8698   unsigned ShiftAmt, AddSubOpc;
8699   // Is the shifted value the LHS operand of the add/sub?
8700   bool ShiftValUseIsN0 = true;
8701   // Do we need to negate the result?
8702   bool NegateResult = false;
8703 
8704   if (ConstValue.isNonNegative()) {
8705     // (mul x, 2^N + 1) => (add (shl x, N), x)
8706     // (mul x, 2^N - 1) => (sub (shl x, N), x)
8707     // (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M)
8708     APInt SCVMinus1 = ShiftedConstValue - 1;
8709     APInt CVPlus1 = ConstValue + 1;
8710     if (SCVMinus1.isPowerOf2()) {
8711       ShiftAmt = SCVMinus1.logBase2();
8712       AddSubOpc = ISD::ADD;
8713     } else if (CVPlus1.isPowerOf2()) {
8714       ShiftAmt = CVPlus1.logBase2();
8715       AddSubOpc = ISD::SUB;
8716     } else
8717       return SDValue();
8718   } else {
8719     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
8720     // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
8721     APInt CVNegPlus1 = -ConstValue + 1;
8722     APInt CVNegMinus1 = -ConstValue - 1;
8723     if (CVNegPlus1.isPowerOf2()) {
8724       ShiftAmt = CVNegPlus1.logBase2();
8725       AddSubOpc = ISD::SUB;
8726       ShiftValUseIsN0 = false;
8727     } else if (CVNegMinus1.isPowerOf2()) {
8728       ShiftAmt = CVNegMinus1.logBase2();
8729       AddSubOpc = ISD::ADD;
8730       NegateResult = true;
8731     } else
8732       return SDValue();
8733   }
8734 
8735   SDLoc DL(N);
8736   EVT VT = N->getValueType(0);
8737   SDValue ShiftedVal = DAG.getNode(ISD::SHL, DL, VT, N0,
8738                                    DAG.getConstant(ShiftAmt, DL, MVT::i64));
8739 
8740   SDValue AddSubN0 = ShiftValUseIsN0 ? ShiftedVal : N0;
8741   SDValue AddSubN1 = ShiftValUseIsN0 ? N0 : ShiftedVal;
8742   SDValue Res = DAG.getNode(AddSubOpc, DL, VT, AddSubN0, AddSubN1);
8743   assert(!(NegateResult && TrailingZeroes) &&
8744          "NegateResult and TrailingZeroes cannot both be true for now.");
8745   // Negate the result.
8746   if (NegateResult)
8747     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
8748   // Shift the result.
8749   if (TrailingZeroes)
8750     return DAG.getNode(ISD::SHL, DL, VT, Res,
8751                        DAG.getConstant(TrailingZeroes, DL, MVT::i64));
8752   return Res;
8753 }
8754 
performVectorCompareAndMaskUnaryOpCombine(SDNode * N,SelectionDAG & DAG)8755 static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
8756                                                          SelectionDAG &DAG) {
8757   // Take advantage of vector comparisons producing 0 or -1 in each lane to
8758   // optimize away operation when it's from a constant.
8759   //
8760   // The general transformation is:
8761   //    UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
8762   //       AND(VECTOR_CMP(x,y), constant2)
8763   //    constant2 = UNARYOP(constant)
8764 
8765   // Early exit if this isn't a vector operation, the operand of the
8766   // unary operation isn't a bitwise AND, or if the sizes of the operations
8767   // aren't the same.
8768   EVT VT = N->getValueType(0);
8769   if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
8770       N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
8771       VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
8772     return SDValue();
8773 
8774   // Now check that the other operand of the AND is a constant. We could
8775   // make the transformation for non-constant splats as well, but it's unclear
8776   // that would be a benefit as it would not eliminate any operations, just
8777   // perform one more step in scalar code before moving to the vector unit.
8778   if (BuildVectorSDNode *BV =
8779           dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
8780     // Bail out if the vector isn't a constant.
8781     if (!BV->isConstant())
8782       return SDValue();
8783 
8784     // Everything checks out. Build up the new and improved node.
8785     SDLoc DL(N);
8786     EVT IntVT = BV->getValueType(0);
8787     // Create a new constant of the appropriate type for the transformed
8788     // DAG.
8789     SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
8790     // The AND node needs bitcasts to/from an integer vector type around it.
8791     SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
8792     SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
8793                                  N->getOperand(0)->getOperand(0), MaskConst);
8794     SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
8795     return Res;
8796   }
8797 
8798   return SDValue();
8799 }
8800 
performIntToFpCombine(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)8801 static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
8802                                      const AArch64Subtarget *Subtarget) {
8803   // First try to optimize away the conversion when it's conditionally from
8804   // a constant. Vectors only.
8805   if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG))
8806     return Res;
8807 
8808   EVT VT = N->getValueType(0);
8809   if (VT != MVT::f32 && VT != MVT::f64)
8810     return SDValue();
8811 
8812   // Only optimize when the source and destination types have the same width.
8813   if (VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits())
8814     return SDValue();
8815 
8816   // If the result of an integer load is only used by an integer-to-float
8817   // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
8818   // This eliminates an "integer-to-vector-move" UOP and improves throughput.
8819   SDValue N0 = N->getOperand(0);
8820   if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
8821       // Do not change the width of a volatile load.
8822       !cast<LoadSDNode>(N0)->isVolatile()) {
8823     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
8824     SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
8825                                LN0->getPointerInfo(), LN0->getAlignment(),
8826                                LN0->getMemOperand()->getFlags());
8827 
8828     // Make sure successors of the original load stay after it by updating them
8829     // to use the new Chain.
8830     DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
8831 
8832     unsigned Opcode =
8833         (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
8834     return DAG.getNode(Opcode, SDLoc(N), VT, Load);
8835   }
8836 
8837   return SDValue();
8838 }
8839 
8840 /// Fold a floating-point multiply by power of two into floating-point to
8841 /// fixed-point conversion.
performFpToIntCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)8842 static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG,
8843                                      TargetLowering::DAGCombinerInfo &DCI,
8844                                      const AArch64Subtarget *Subtarget) {
8845   if (!Subtarget->hasNEON())
8846     return SDValue();
8847 
8848   SDValue Op = N->getOperand(0);
8849   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
8850       Op.getOpcode() != ISD::FMUL)
8851     return SDValue();
8852 
8853   SDValue ConstVec = Op->getOperand(1);
8854   if (!isa<BuildVectorSDNode>(ConstVec))
8855     return SDValue();
8856 
8857   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
8858   uint32_t FloatBits = FloatTy.getSizeInBits();
8859   if (FloatBits != 32 && FloatBits != 64)
8860     return SDValue();
8861 
8862   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
8863   uint32_t IntBits = IntTy.getSizeInBits();
8864   if (IntBits != 16 && IntBits != 32 && IntBits != 64)
8865     return SDValue();
8866 
8867   // Avoid conversions where iN is larger than the float (e.g., float -> i64).
8868   if (IntBits > FloatBits)
8869     return SDValue();
8870 
8871   BitVector UndefElements;
8872   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
8873   int32_t Bits = IntBits == 64 ? 64 : 32;
8874   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1);
8875   if (C == -1 || C == 0 || C > Bits)
8876     return SDValue();
8877 
8878   MVT ResTy;
8879   unsigned NumLanes = Op.getValueType().getVectorNumElements();
8880   switch (NumLanes) {
8881   default:
8882     return SDValue();
8883   case 2:
8884     ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
8885     break;
8886   case 4:
8887     ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
8888     break;
8889   }
8890 
8891   if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
8892     return SDValue();
8893 
8894   assert((ResTy != MVT::v4i64 || DCI.isBeforeLegalizeOps()) &&
8895          "Illegal vector type after legalization");
8896 
8897   SDLoc DL(N);
8898   bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
8899   unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs
8900                                       : Intrinsic::aarch64_neon_vcvtfp2fxu;
8901   SDValue FixConv =
8902       DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy,
8903                   DAG.getConstant(IntrinsicOpcode, DL, MVT::i32),
8904                   Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32));
8905   // We can handle smaller integers by generating an extra trunc.
8906   if (IntBits < FloatBits)
8907     FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv);
8908 
8909   return FixConv;
8910 }
8911 
8912 /// Fold a floating-point divide by power of two into fixed-point to
8913 /// floating-point conversion.
performFDivCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)8914 static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG,
8915                                   TargetLowering::DAGCombinerInfo &DCI,
8916                                   const AArch64Subtarget *Subtarget) {
8917   if (!Subtarget->hasNEON())
8918     return SDValue();
8919 
8920   SDValue Op = N->getOperand(0);
8921   unsigned Opc = Op->getOpcode();
8922   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
8923       !Op.getOperand(0).getValueType().isSimple() ||
8924       (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP))
8925     return SDValue();
8926 
8927   SDValue ConstVec = N->getOperand(1);
8928   if (!isa<BuildVectorSDNode>(ConstVec))
8929     return SDValue();
8930 
8931   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
8932   int32_t IntBits = IntTy.getSizeInBits();
8933   if (IntBits != 16 && IntBits != 32 && IntBits != 64)
8934     return SDValue();
8935 
8936   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
8937   int32_t FloatBits = FloatTy.getSizeInBits();
8938   if (FloatBits != 32 && FloatBits != 64)
8939     return SDValue();
8940 
8941   // Avoid conversions where iN is larger than the float (e.g., i64 -> float).
8942   if (IntBits > FloatBits)
8943     return SDValue();
8944 
8945   BitVector UndefElements;
8946   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
8947   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1);
8948   if (C == -1 || C == 0 || C > FloatBits)
8949     return SDValue();
8950 
8951   MVT ResTy;
8952   unsigned NumLanes = Op.getValueType().getVectorNumElements();
8953   switch (NumLanes) {
8954   default:
8955     return SDValue();
8956   case 2:
8957     ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
8958     break;
8959   case 4:
8960     ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
8961     break;
8962   }
8963 
8964   if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
8965     return SDValue();
8966 
8967   SDLoc DL(N);
8968   SDValue ConvInput = Op.getOperand(0);
8969   bool IsSigned = Opc == ISD::SINT_TO_FP;
8970   if (IntBits < FloatBits)
8971     ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
8972                             ResTy, ConvInput);
8973 
8974   unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp
8975                                       : Intrinsic::aarch64_neon_vcvtfxu2fp;
8976   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
8977                      DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput,
8978                      DAG.getConstant(C, DL, MVT::i32));
8979 }
8980 
8981 /// An EXTR instruction is made up of two shifts, ORed together. This helper
8982 /// searches for and classifies those shifts.
findEXTRHalf(SDValue N,SDValue & Src,uint32_t & ShiftAmount,bool & FromHi)8983 static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
8984                          bool &FromHi) {
8985   if (N.getOpcode() == ISD::SHL)
8986     FromHi = false;
8987   else if (N.getOpcode() == ISD::SRL)
8988     FromHi = true;
8989   else
8990     return false;
8991 
8992   if (!isa<ConstantSDNode>(N.getOperand(1)))
8993     return false;
8994 
8995   ShiftAmount = N->getConstantOperandVal(1);
8996   Src = N->getOperand(0);
8997   return true;
8998 }
8999 
9000 /// EXTR instruction extracts a contiguous chunk of bits from two existing
9001 /// registers viewed as a high/low pair. This function looks for the pattern:
9002 /// <tt>(or (shl VAL1, \#N), (srl VAL2, \#RegWidth-N))</tt> and replaces it
9003 /// with an EXTR. Can't quite be done in TableGen because the two immediates
9004 /// aren't independent.
tryCombineToEXTR(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)9005 static SDValue tryCombineToEXTR(SDNode *N,
9006                                 TargetLowering::DAGCombinerInfo &DCI) {
9007   SelectionDAG &DAG = DCI.DAG;
9008   SDLoc DL(N);
9009   EVT VT = N->getValueType(0);
9010 
9011   assert(N->getOpcode() == ISD::OR && "Unexpected root");
9012 
9013   if (VT != MVT::i32 && VT != MVT::i64)
9014     return SDValue();
9015 
9016   SDValue LHS;
9017   uint32_t ShiftLHS = 0;
9018   bool LHSFromHi = false;
9019   if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
9020     return SDValue();
9021 
9022   SDValue RHS;
9023   uint32_t ShiftRHS = 0;
9024   bool RHSFromHi = false;
9025   if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
9026     return SDValue();
9027 
9028   // If they're both trying to come from the high part of the register, they're
9029   // not really an EXTR.
9030   if (LHSFromHi == RHSFromHi)
9031     return SDValue();
9032 
9033   if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
9034     return SDValue();
9035 
9036   if (LHSFromHi) {
9037     std::swap(LHS, RHS);
9038     std::swap(ShiftLHS, ShiftRHS);
9039   }
9040 
9041   return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
9042                      DAG.getConstant(ShiftRHS, DL, MVT::i64));
9043 }
9044 
tryCombineToBSL(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)9045 static SDValue tryCombineToBSL(SDNode *N,
9046                                 TargetLowering::DAGCombinerInfo &DCI) {
9047   EVT VT = N->getValueType(0);
9048   SelectionDAG &DAG = DCI.DAG;
9049   SDLoc DL(N);
9050 
9051   if (!VT.isVector())
9052     return SDValue();
9053 
9054   SDValue N0 = N->getOperand(0);
9055   if (N0.getOpcode() != ISD::AND)
9056     return SDValue();
9057 
9058   SDValue N1 = N->getOperand(1);
9059   if (N1.getOpcode() != ISD::AND)
9060     return SDValue();
9061 
9062   // We only have to look for constant vectors here since the general, variable
9063   // case can be handled in TableGen.
9064   unsigned Bits = VT.getScalarSizeInBits();
9065   uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
9066   for (int i = 1; i >= 0; --i)
9067     for (int j = 1; j >= 0; --j) {
9068       BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
9069       BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
9070       if (!BVN0 || !BVN1)
9071         continue;
9072 
9073       bool FoundMatch = true;
9074       for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
9075         ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
9076         ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
9077         if (!CN0 || !CN1 ||
9078             CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
9079           FoundMatch = false;
9080           break;
9081         }
9082       }
9083 
9084       if (FoundMatch)
9085         return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
9086                            N0->getOperand(1 - i), N1->getOperand(1 - j));
9087     }
9088 
9089   return SDValue();
9090 }
9091 
performORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)9092 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
9093                                 const AArch64Subtarget *Subtarget) {
9094   // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
9095   SelectionDAG &DAG = DCI.DAG;
9096   EVT VT = N->getValueType(0);
9097 
9098   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9099     return SDValue();
9100 
9101   if (SDValue Res = tryCombineToEXTR(N, DCI))
9102     return Res;
9103 
9104   if (SDValue Res = tryCombineToBSL(N, DCI))
9105     return Res;
9106 
9107   return SDValue();
9108 }
9109 
performSRLCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)9110 static SDValue performSRLCombine(SDNode *N,
9111                                  TargetLowering::DAGCombinerInfo &DCI) {
9112   SelectionDAG &DAG = DCI.DAG;
9113   EVT VT = N->getValueType(0);
9114   if (VT != MVT::i32 && VT != MVT::i64)
9115     return SDValue();
9116 
9117   // Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the
9118   // high 16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32)
9119   // to (rotr (bswap i64 x), 32), if the high 32-bits of x are zero.
9120   SDValue N0 = N->getOperand(0);
9121   if (N0.getOpcode() == ISD::BSWAP) {
9122     SDLoc DL(N);
9123     SDValue N1 = N->getOperand(1);
9124     SDValue N00 = N0.getOperand(0);
9125     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
9126       uint64_t ShiftAmt = C->getZExtValue();
9127       if (VT == MVT::i32 && ShiftAmt == 16 &&
9128           DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(32, 16)))
9129         return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
9130       if (VT == MVT::i64 && ShiftAmt == 32 &&
9131           DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(64, 32)))
9132         return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
9133     }
9134   }
9135   return SDValue();
9136 }
9137 
performBitcastCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)9138 static SDValue performBitcastCombine(SDNode *N,
9139                                      TargetLowering::DAGCombinerInfo &DCI,
9140                                      SelectionDAG &DAG) {
9141   // Wait 'til after everything is legalized to try this. That way we have
9142   // legal vector types and such.
9143   if (DCI.isBeforeLegalizeOps())
9144     return SDValue();
9145 
9146   // Remove extraneous bitcasts around an extract_subvector.
9147   // For example,
9148   //    (v4i16 (bitconvert
9149   //             (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
9150   //  becomes
9151   //    (extract_subvector ((v8i16 ...), (i64 4)))
9152 
9153   // Only interested in 64-bit vectors as the ultimate result.
9154   EVT VT = N->getValueType(0);
9155   if (!VT.isVector())
9156     return SDValue();
9157   if (VT.getSimpleVT().getSizeInBits() != 64)
9158     return SDValue();
9159   // Is the operand an extract_subvector starting at the beginning or halfway
9160   // point of the vector? A low half may also come through as an
9161   // EXTRACT_SUBREG, so look for that, too.
9162   SDValue Op0 = N->getOperand(0);
9163   if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
9164       !(Op0->isMachineOpcode() &&
9165         Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
9166     return SDValue();
9167   uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
9168   if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
9169     if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
9170       return SDValue();
9171   } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
9172     if (idx != AArch64::dsub)
9173       return SDValue();
9174     // The dsub reference is equivalent to a lane zero subvector reference.
9175     idx = 0;
9176   }
9177   // Look through the bitcast of the input to the extract.
9178   if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
9179     return SDValue();
9180   SDValue Source = Op0->getOperand(0)->getOperand(0);
9181   // If the source type has twice the number of elements as our destination
9182   // type, we know this is an extract of the high or low half of the vector.
9183   EVT SVT = Source->getValueType(0);
9184   if (!SVT.isVector() ||
9185       SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
9186     return SDValue();
9187 
9188   LLVM_DEBUG(
9189       dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
9190 
9191   // Create the simplified form to just extract the low or high half of the
9192   // vector directly rather than bothering with the bitcasts.
9193   SDLoc dl(N);
9194   unsigned NumElements = VT.getVectorNumElements();
9195   if (idx) {
9196     SDValue HalfIdx = DAG.getConstant(NumElements, dl, MVT::i64);
9197     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
9198   } else {
9199     SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, dl, MVT::i32);
9200     return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
9201                                       Source, SubReg),
9202                    0);
9203   }
9204 }
9205 
performConcatVectorsCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)9206 static SDValue performConcatVectorsCombine(SDNode *N,
9207                                            TargetLowering::DAGCombinerInfo &DCI,
9208                                            SelectionDAG &DAG) {
9209   SDLoc dl(N);
9210   EVT VT = N->getValueType(0);
9211   SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
9212 
9213   // Optimize concat_vectors of truncated vectors, where the intermediate
9214   // type is illegal, to avoid said illegality,  e.g.,
9215   //   (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
9216   //                          (v2i16 (truncate (v2i64)))))
9217   // ->
9218   //   (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
9219   //                                    (v4i32 (bitcast (v2i64))),
9220   //                                    <0, 2, 4, 6>)))
9221   // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
9222   // on both input and result type, so we might generate worse code.
9223   // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
9224   if (N->getNumOperands() == 2 &&
9225       N0->getOpcode() == ISD::TRUNCATE &&
9226       N1->getOpcode() == ISD::TRUNCATE) {
9227     SDValue N00 = N0->getOperand(0);
9228     SDValue N10 = N1->getOperand(0);
9229     EVT N00VT = N00.getValueType();
9230 
9231     if (N00VT == N10.getValueType() &&
9232         (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
9233         N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
9234       MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
9235       SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
9236       for (size_t i = 0; i < Mask.size(); ++i)
9237         Mask[i] = i * 2;
9238       return DAG.getNode(ISD::TRUNCATE, dl, VT,
9239                          DAG.getVectorShuffle(
9240                              MidVT, dl,
9241                              DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
9242                              DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
9243     }
9244   }
9245 
9246   // Wait 'til after everything is legalized to try this. That way we have
9247   // legal vector types and such.
9248   if (DCI.isBeforeLegalizeOps())
9249     return SDValue();
9250 
9251   // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
9252   // splat. The indexed instructions are going to be expecting a DUPLANE64, so
9253   // canonicalise to that.
9254   if (N0 == N1 && VT.getVectorNumElements() == 2) {
9255     assert(VT.getScalarSizeInBits() == 64);
9256     return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
9257                        DAG.getConstant(0, dl, MVT::i64));
9258   }
9259 
9260   // Canonicalise concat_vectors so that the right-hand vector has as few
9261   // bit-casts as possible before its real operation. The primary matching
9262   // destination for these operations will be the narrowing "2" instructions,
9263   // which depend on the operation being performed on this right-hand vector.
9264   // For example,
9265   //    (concat_vectors LHS,  (v1i64 (bitconvert (v4i16 RHS))))
9266   // becomes
9267   //    (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
9268 
9269   if (N1->getOpcode() != ISD::BITCAST)
9270     return SDValue();
9271   SDValue RHS = N1->getOperand(0);
9272   MVT RHSTy = RHS.getValueType().getSimpleVT();
9273   // If the RHS is not a vector, this is not the pattern we're looking for.
9274   if (!RHSTy.isVector())
9275     return SDValue();
9276 
9277   LLVM_DEBUG(
9278       dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
9279 
9280   MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
9281                                   RHSTy.getVectorNumElements() * 2);
9282   return DAG.getNode(ISD::BITCAST, dl, VT,
9283                      DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
9284                                  DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
9285                                  RHS));
9286 }
9287 
tryCombineFixedPointConvert(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)9288 static SDValue tryCombineFixedPointConvert(SDNode *N,
9289                                            TargetLowering::DAGCombinerInfo &DCI,
9290                                            SelectionDAG &DAG) {
9291   // Wait until after everything is legalized to try this. That way we have
9292   // legal vector types and such.
9293   if (DCI.isBeforeLegalizeOps())
9294     return SDValue();
9295   // Transform a scalar conversion of a value from a lane extract into a
9296   // lane extract of a vector conversion. E.g., from foo1 to foo2:
9297   // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
9298   // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
9299   //
9300   // The second form interacts better with instruction selection and the
9301   // register allocator to avoid cross-class register copies that aren't
9302   // coalescable due to a lane reference.
9303 
9304   // Check the operand and see if it originates from a lane extract.
9305   SDValue Op1 = N->getOperand(1);
9306   if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
9307     // Yep, no additional predication needed. Perform the transform.
9308     SDValue IID = N->getOperand(0);
9309     SDValue Shift = N->getOperand(2);
9310     SDValue Vec = Op1.getOperand(0);
9311     SDValue Lane = Op1.getOperand(1);
9312     EVT ResTy = N->getValueType(0);
9313     EVT VecResTy;
9314     SDLoc DL(N);
9315 
9316     // The vector width should be 128 bits by the time we get here, even
9317     // if it started as 64 bits (the extract_vector handling will have
9318     // done so).
9319     assert(Vec.getValueSizeInBits() == 128 &&
9320            "unexpected vector size on extract_vector_elt!");
9321     if (Vec.getValueType() == MVT::v4i32)
9322       VecResTy = MVT::v4f32;
9323     else if (Vec.getValueType() == MVT::v2i64)
9324       VecResTy = MVT::v2f64;
9325     else
9326       llvm_unreachable("unexpected vector type!");
9327 
9328     SDValue Convert =
9329         DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
9330     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
9331   }
9332   return SDValue();
9333 }
9334 
9335 // AArch64 high-vector "long" operations are formed by performing the non-high
9336 // version on an extract_subvector of each operand which gets the high half:
9337 //
9338 //  (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
9339 //
9340 // However, there are cases which don't have an extract_high explicitly, but
9341 // have another operation that can be made compatible with one for free. For
9342 // example:
9343 //
9344 //  (dupv64 scalar) --> (extract_high (dup128 scalar))
9345 //
9346 // This routine does the actual conversion of such DUPs, once outer routines
9347 // have determined that everything else is in order.
9348 // It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
9349 // similarly here.
tryExtendDUPToExtractHigh(SDValue N,SelectionDAG & DAG)9350 static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
9351   switch (N.getOpcode()) {
9352   case AArch64ISD::DUP:
9353   case AArch64ISD::DUPLANE8:
9354   case AArch64ISD::DUPLANE16:
9355   case AArch64ISD::DUPLANE32:
9356   case AArch64ISD::DUPLANE64:
9357   case AArch64ISD::MOVI:
9358   case AArch64ISD::MOVIshift:
9359   case AArch64ISD::MOVIedit:
9360   case AArch64ISD::MOVImsl:
9361   case AArch64ISD::MVNIshift:
9362   case AArch64ISD::MVNImsl:
9363     break;
9364   default:
9365     // FMOV could be supported, but isn't very useful, as it would only occur
9366     // if you passed a bitcast' floating point immediate to an eligible long
9367     // integer op (addl, smull, ...).
9368     return SDValue();
9369   }
9370 
9371   MVT NarrowTy = N.getSimpleValueType();
9372   if (!NarrowTy.is64BitVector())
9373     return SDValue();
9374 
9375   MVT ElementTy = NarrowTy.getVectorElementType();
9376   unsigned NumElems = NarrowTy.getVectorNumElements();
9377   MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2);
9378 
9379   SDLoc dl(N);
9380   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy,
9381                      DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()),
9382                      DAG.getConstant(NumElems, dl, MVT::i64));
9383 }
9384 
isEssentiallyExtractSubvector(SDValue N)9385 static bool isEssentiallyExtractSubvector(SDValue N) {
9386   if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9387     return true;
9388 
9389   return N.getOpcode() == ISD::BITCAST &&
9390          N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
9391 }
9392 
9393 /// Helper structure to keep track of ISD::SET_CC operands.
9394 struct GenericSetCCInfo {
9395   const SDValue *Opnd0;
9396   const SDValue *Opnd1;
9397   ISD::CondCode CC;
9398 };
9399 
9400 /// Helper structure to keep track of a SET_CC lowered into AArch64 code.
9401 struct AArch64SetCCInfo {
9402   const SDValue *Cmp;
9403   AArch64CC::CondCode CC;
9404 };
9405 
9406 /// Helper structure to keep track of SetCC information.
9407 union SetCCInfo {
9408   GenericSetCCInfo Generic;
9409   AArch64SetCCInfo AArch64;
9410 };
9411 
9412 /// Helper structure to be able to read SetCC information.  If set to
9413 /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
9414 /// GenericSetCCInfo.
9415 struct SetCCInfoAndKind {
9416   SetCCInfo Info;
9417   bool IsAArch64;
9418 };
9419 
9420 /// Check whether or not \p Op is a SET_CC operation, either a generic or
9421 /// an
9422 /// AArch64 lowered one.
9423 /// \p SetCCInfo is filled accordingly.
9424 /// \post SetCCInfo is meanginfull only when this function returns true.
9425 /// \return True when Op is a kind of SET_CC operation.
isSetCC(SDValue Op,SetCCInfoAndKind & SetCCInfo)9426 static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
9427   // If this is a setcc, this is straight forward.
9428   if (Op.getOpcode() == ISD::SETCC) {
9429     SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
9430     SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
9431     SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
9432     SetCCInfo.IsAArch64 = false;
9433     return true;
9434   }
9435   // Otherwise, check if this is a matching csel instruction.
9436   // In other words:
9437   // - csel 1, 0, cc
9438   // - csel 0, 1, !cc
9439   if (Op.getOpcode() != AArch64ISD::CSEL)
9440     return false;
9441   // Set the information about the operands.
9442   // TODO: we want the operands of the Cmp not the csel
9443   SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
9444   SetCCInfo.IsAArch64 = true;
9445   SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
9446       cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
9447 
9448   // Check that the operands matches the constraints:
9449   // (1) Both operands must be constants.
9450   // (2) One must be 1 and the other must be 0.
9451   ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
9452   ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9453 
9454   // Check (1).
9455   if (!TValue || !FValue)
9456     return false;
9457 
9458   // Check (2).
9459   if (!TValue->isOne()) {
9460     // Update the comparison when we are interested in !cc.
9461     std::swap(TValue, FValue);
9462     SetCCInfo.Info.AArch64.CC =
9463         AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
9464   }
9465   return TValue->isOne() && FValue->isNullValue();
9466 }
9467 
9468 // Returns true if Op is setcc or zext of setcc.
isSetCCOrZExtSetCC(const SDValue & Op,SetCCInfoAndKind & Info)9469 static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
9470   if (isSetCC(Op, Info))
9471     return true;
9472   return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
9473     isSetCC(Op->getOperand(0), Info));
9474 }
9475 
9476 // The folding we want to perform is:
9477 // (add x, [zext] (setcc cc ...) )
9478 //   -->
9479 // (csel x, (add x, 1), !cc ...)
9480 //
9481 // The latter will get matched to a CSINC instruction.
performSetccAddFolding(SDNode * Op,SelectionDAG & DAG)9482 static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
9483   assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
9484   SDValue LHS = Op->getOperand(0);
9485   SDValue RHS = Op->getOperand(1);
9486   SetCCInfoAndKind InfoAndKind;
9487 
9488   // If neither operand is a SET_CC, give up.
9489   if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
9490     std::swap(LHS, RHS);
9491     if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
9492       return SDValue();
9493   }
9494 
9495   // FIXME: This could be generatized to work for FP comparisons.
9496   EVT CmpVT = InfoAndKind.IsAArch64
9497                   ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
9498                   : InfoAndKind.Info.Generic.Opnd0->getValueType();
9499   if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
9500     return SDValue();
9501 
9502   SDValue CCVal;
9503   SDValue Cmp;
9504   SDLoc dl(Op);
9505   if (InfoAndKind.IsAArch64) {
9506     CCVal = DAG.getConstant(
9507         AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl,
9508         MVT::i32);
9509     Cmp = *InfoAndKind.Info.AArch64.Cmp;
9510   } else
9511     Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
9512                       *InfoAndKind.Info.Generic.Opnd1,
9513                       ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
9514                       CCVal, DAG, dl);
9515 
9516   EVT VT = Op->getValueType(0);
9517   LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT));
9518   return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
9519 }
9520 
9521 // The basic add/sub long vector instructions have variants with "2" on the end
9522 // which act on the high-half of their inputs. They are normally matched by
9523 // patterns like:
9524 //
9525 // (add (zeroext (extract_high LHS)),
9526 //      (zeroext (extract_high RHS)))
9527 // -> uaddl2 vD, vN, vM
9528 //
9529 // However, if one of the extracts is something like a duplicate, this
9530 // instruction can still be used profitably. This function puts the DAG into a
9531 // more appropriate form for those patterns to trigger.
performAddSubLongCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)9532 static SDValue performAddSubLongCombine(SDNode *N,
9533                                         TargetLowering::DAGCombinerInfo &DCI,
9534                                         SelectionDAG &DAG) {
9535   if (DCI.isBeforeLegalizeOps())
9536     return SDValue();
9537 
9538   MVT VT = N->getSimpleValueType(0);
9539   if (!VT.is128BitVector()) {
9540     if (N->getOpcode() == ISD::ADD)
9541       return performSetccAddFolding(N, DAG);
9542     return SDValue();
9543   }
9544 
9545   // Make sure both branches are extended in the same way.
9546   SDValue LHS = N->getOperand(0);
9547   SDValue RHS = N->getOperand(1);
9548   if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
9549        LHS.getOpcode() != ISD::SIGN_EXTEND) ||
9550       LHS.getOpcode() != RHS.getOpcode())
9551     return SDValue();
9552 
9553   unsigned ExtType = LHS.getOpcode();
9554 
9555   // It's not worth doing if at least one of the inputs isn't already an
9556   // extract, but we don't know which it'll be so we have to try both.
9557   if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
9558     RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
9559     if (!RHS.getNode())
9560       return SDValue();
9561 
9562     RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
9563   } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
9564     LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
9565     if (!LHS.getNode())
9566       return SDValue();
9567 
9568     LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
9569   }
9570 
9571   return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
9572 }
9573 
9574 // Massage DAGs which we can use the high-half "long" operations on into
9575 // something isel will recognize better. E.g.
9576 //
9577 // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
9578 //   (aarch64_neon_umull (extract_high (v2i64 vec)))
9579 //                     (extract_high (v2i64 (dup128 scalar)))))
9580 //
tryCombineLongOpWithDup(unsigned IID,SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)9581 static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
9582                                        TargetLowering::DAGCombinerInfo &DCI,
9583                                        SelectionDAG &DAG) {
9584   if (DCI.isBeforeLegalizeOps())
9585     return SDValue();
9586 
9587   SDValue LHS = N->getOperand(1);
9588   SDValue RHS = N->getOperand(2);
9589   assert(LHS.getValueType().is64BitVector() &&
9590          RHS.getValueType().is64BitVector() &&
9591          "unexpected shape for long operation");
9592 
9593   // Either node could be a DUP, but it's not worth doing both of them (you'd
9594   // just as well use the non-high version) so look for a corresponding extract
9595   // operation on the other "wing".
9596   if (isEssentiallyExtractSubvector(LHS)) {
9597     RHS = tryExtendDUPToExtractHigh(RHS, DAG);
9598     if (!RHS.getNode())
9599       return SDValue();
9600   } else if (isEssentiallyExtractSubvector(RHS)) {
9601     LHS = tryExtendDUPToExtractHigh(LHS, DAG);
9602     if (!LHS.getNode())
9603       return SDValue();
9604   }
9605 
9606   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
9607                      N->getOperand(0), LHS, RHS);
9608 }
9609 
tryCombineShiftImm(unsigned IID,SDNode * N,SelectionDAG & DAG)9610 static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
9611   MVT ElemTy = N->getSimpleValueType(0).getScalarType();
9612   unsigned ElemBits = ElemTy.getSizeInBits();
9613 
9614   int64_t ShiftAmount;
9615   if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
9616     APInt SplatValue, SplatUndef;
9617     unsigned SplatBitSize;
9618     bool HasAnyUndefs;
9619     if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
9620                               HasAnyUndefs, ElemBits) ||
9621         SplatBitSize != ElemBits)
9622       return SDValue();
9623 
9624     ShiftAmount = SplatValue.getSExtValue();
9625   } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
9626     ShiftAmount = CVN->getSExtValue();
9627   } else
9628     return SDValue();
9629 
9630   unsigned Opcode;
9631   bool IsRightShift;
9632   switch (IID) {
9633   default:
9634     llvm_unreachable("Unknown shift intrinsic");
9635   case Intrinsic::aarch64_neon_sqshl:
9636     Opcode = AArch64ISD::SQSHL_I;
9637     IsRightShift = false;
9638     break;
9639   case Intrinsic::aarch64_neon_uqshl:
9640     Opcode = AArch64ISD::UQSHL_I;
9641     IsRightShift = false;
9642     break;
9643   case Intrinsic::aarch64_neon_srshl:
9644     Opcode = AArch64ISD::SRSHR_I;
9645     IsRightShift = true;
9646     break;
9647   case Intrinsic::aarch64_neon_urshl:
9648     Opcode = AArch64ISD::URSHR_I;
9649     IsRightShift = true;
9650     break;
9651   case Intrinsic::aarch64_neon_sqshlu:
9652     Opcode = AArch64ISD::SQSHLU_I;
9653     IsRightShift = false;
9654     break;
9655   }
9656 
9657   if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) {
9658     SDLoc dl(N);
9659     return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
9660                        DAG.getConstant(-ShiftAmount, dl, MVT::i32));
9661   } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) {
9662     SDLoc dl(N);
9663     return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
9664                        DAG.getConstant(ShiftAmount, dl, MVT::i32));
9665   }
9666 
9667   return SDValue();
9668 }
9669 
9670 // The CRC32[BH] instructions ignore the high bits of their data operand. Since
9671 // the intrinsics must be legal and take an i32, this means there's almost
9672 // certainly going to be a zext in the DAG which we can eliminate.
tryCombineCRC32(unsigned Mask,SDNode * N,SelectionDAG & DAG)9673 static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
9674   SDValue AndN = N->getOperand(2);
9675   if (AndN.getOpcode() != ISD::AND)
9676     return SDValue();
9677 
9678   ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
9679   if (!CMask || CMask->getZExtValue() != Mask)
9680     return SDValue();
9681 
9682   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
9683                      N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
9684 }
9685 
combineAcrossLanesIntrinsic(unsigned Opc,SDNode * N,SelectionDAG & DAG)9686 static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
9687                                            SelectionDAG &DAG) {
9688   SDLoc dl(N);
9689   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0),
9690                      DAG.getNode(Opc, dl,
9691                                  N->getOperand(1).getSimpleValueType(),
9692                                  N->getOperand(1)),
9693                      DAG.getConstant(0, dl, MVT::i64));
9694 }
9695 
performIntrinsicCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)9696 static SDValue performIntrinsicCombine(SDNode *N,
9697                                        TargetLowering::DAGCombinerInfo &DCI,
9698                                        const AArch64Subtarget *Subtarget) {
9699   SelectionDAG &DAG = DCI.DAG;
9700   unsigned IID = getIntrinsicID(N);
9701   switch (IID) {
9702   default:
9703     break;
9704   case Intrinsic::aarch64_neon_vcvtfxs2fp:
9705   case Intrinsic::aarch64_neon_vcvtfxu2fp:
9706     return tryCombineFixedPointConvert(N, DCI, DAG);
9707   case Intrinsic::aarch64_neon_saddv:
9708     return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
9709   case Intrinsic::aarch64_neon_uaddv:
9710     return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
9711   case Intrinsic::aarch64_neon_sminv:
9712     return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
9713   case Intrinsic::aarch64_neon_uminv:
9714     return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
9715   case Intrinsic::aarch64_neon_smaxv:
9716     return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
9717   case Intrinsic::aarch64_neon_umaxv:
9718     return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
9719   case Intrinsic::aarch64_neon_fmax:
9720     return DAG.getNode(ISD::FMAXNAN, SDLoc(N), N->getValueType(0),
9721                        N->getOperand(1), N->getOperand(2));
9722   case Intrinsic::aarch64_neon_fmin:
9723     return DAG.getNode(ISD::FMINNAN, SDLoc(N), N->getValueType(0),
9724                        N->getOperand(1), N->getOperand(2));
9725   case Intrinsic::aarch64_neon_fmaxnm:
9726     return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0),
9727                        N->getOperand(1), N->getOperand(2));
9728   case Intrinsic::aarch64_neon_fminnm:
9729     return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0),
9730                        N->getOperand(1), N->getOperand(2));
9731   case Intrinsic::aarch64_neon_smull:
9732   case Intrinsic::aarch64_neon_umull:
9733   case Intrinsic::aarch64_neon_pmull:
9734   case Intrinsic::aarch64_neon_sqdmull:
9735     return tryCombineLongOpWithDup(IID, N, DCI, DAG);
9736   case Intrinsic::aarch64_neon_sqshl:
9737   case Intrinsic::aarch64_neon_uqshl:
9738   case Intrinsic::aarch64_neon_sqshlu:
9739   case Intrinsic::aarch64_neon_srshl:
9740   case Intrinsic::aarch64_neon_urshl:
9741     return tryCombineShiftImm(IID, N, DAG);
9742   case Intrinsic::aarch64_crc32b:
9743   case Intrinsic::aarch64_crc32cb:
9744     return tryCombineCRC32(0xff, N, DAG);
9745   case Intrinsic::aarch64_crc32h:
9746   case Intrinsic::aarch64_crc32ch:
9747     return tryCombineCRC32(0xffff, N, DAG);
9748   }
9749   return SDValue();
9750 }
9751 
performExtendCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)9752 static SDValue performExtendCombine(SDNode *N,
9753                                     TargetLowering::DAGCombinerInfo &DCI,
9754                                     SelectionDAG &DAG) {
9755   // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
9756   // we can convert that DUP into another extract_high (of a bigger DUP), which
9757   // helps the backend to decide that an sabdl2 would be useful, saving a real
9758   // extract_high operation.
9759   if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
9760       N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
9761     SDNode *ABDNode = N->getOperand(0).getNode();
9762     unsigned IID = getIntrinsicID(ABDNode);
9763     if (IID == Intrinsic::aarch64_neon_sabd ||
9764         IID == Intrinsic::aarch64_neon_uabd) {
9765       SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
9766       if (!NewABD.getNode())
9767         return SDValue();
9768 
9769       return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
9770                          NewABD);
9771     }
9772   }
9773 
9774   // This is effectively a custom type legalization for AArch64.
9775   //
9776   // Type legalization will split an extend of a small, legal, type to a larger
9777   // illegal type by first splitting the destination type, often creating
9778   // illegal source types, which then get legalized in isel-confusing ways,
9779   // leading to really terrible codegen. E.g.,
9780   //   %result = v8i32 sext v8i8 %value
9781   // becomes
9782   //   %losrc = extract_subreg %value, ...
9783   //   %hisrc = extract_subreg %value, ...
9784   //   %lo = v4i32 sext v4i8 %losrc
9785   //   %hi = v4i32 sext v4i8 %hisrc
9786   // Things go rapidly downhill from there.
9787   //
9788   // For AArch64, the [sz]ext vector instructions can only go up one element
9789   // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
9790   // take two instructions.
9791   //
9792   // This implies that the most efficient way to do the extend from v8i8
9793   // to two v4i32 values is to first extend the v8i8 to v8i16, then do
9794   // the normal splitting to happen for the v8i16->v8i32.
9795 
9796   // This is pre-legalization to catch some cases where the default
9797   // type legalization will create ill-tempered code.
9798   if (!DCI.isBeforeLegalizeOps())
9799     return SDValue();
9800 
9801   // We're only interested in cleaning things up for non-legal vector types
9802   // here. If both the source and destination are legal, things will just
9803   // work naturally without any fiddling.
9804   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9805   EVT ResVT = N->getValueType(0);
9806   if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
9807     return SDValue();
9808   // If the vector type isn't a simple VT, it's beyond the scope of what
9809   // we're  worried about here. Let legalization do its thing and hope for
9810   // the best.
9811   SDValue Src = N->getOperand(0);
9812   EVT SrcVT = Src->getValueType(0);
9813   if (!ResVT.isSimple() || !SrcVT.isSimple())
9814     return SDValue();
9815 
9816   // If the source VT is a 64-bit vector, we can play games and get the
9817   // better results we want.
9818   if (SrcVT.getSizeInBits() != 64)
9819     return SDValue();
9820 
9821   unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
9822   unsigned ElementCount = SrcVT.getVectorNumElements();
9823   SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
9824   SDLoc DL(N);
9825   Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
9826 
9827   // Now split the rest of the operation into two halves, each with a 64
9828   // bit source.
9829   EVT LoVT, HiVT;
9830   SDValue Lo, Hi;
9831   unsigned NumElements = ResVT.getVectorNumElements();
9832   assert(!(NumElements & 1) && "Splitting vector, but not in half!");
9833   LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
9834                                  ResVT.getVectorElementType(), NumElements / 2);
9835 
9836   EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
9837                                LoVT.getVectorNumElements());
9838   Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
9839                    DAG.getConstant(0, DL, MVT::i64));
9840   Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
9841                    DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64));
9842   Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
9843   Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
9844 
9845   // Now combine the parts back together so we still have a single result
9846   // like the combiner expects.
9847   return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
9848 }
9849 
splitStoreSplat(SelectionDAG & DAG,StoreSDNode & St,SDValue SplatVal,unsigned NumVecElts)9850 static SDValue splitStoreSplat(SelectionDAG &DAG, StoreSDNode &St,
9851                                SDValue SplatVal, unsigned NumVecElts) {
9852   unsigned OrigAlignment = St.getAlignment();
9853   unsigned EltOffset = SplatVal.getValueType().getSizeInBits() / 8;
9854 
9855   // Create scalar stores. This is at least as good as the code sequence for a
9856   // split unaligned store which is a dup.s, ext.b, and two stores.
9857   // Most of the time the three stores should be replaced by store pair
9858   // instructions (stp).
9859   SDLoc DL(&St);
9860   SDValue BasePtr = St.getBasePtr();
9861   uint64_t BaseOffset = 0;
9862 
9863   const MachinePointerInfo &PtrInfo = St.getPointerInfo();
9864   SDValue NewST1 =
9865       DAG.getStore(St.getChain(), DL, SplatVal, BasePtr, PtrInfo,
9866                    OrigAlignment, St.getMemOperand()->getFlags());
9867 
9868   // As this in ISel, we will not merge this add which may degrade results.
9869   if (BasePtr->getOpcode() == ISD::ADD &&
9870       isa<ConstantSDNode>(BasePtr->getOperand(1))) {
9871     BaseOffset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
9872     BasePtr = BasePtr->getOperand(0);
9873   }
9874 
9875   unsigned Offset = EltOffset;
9876   while (--NumVecElts) {
9877     unsigned Alignment = MinAlign(OrigAlignment, Offset);
9878     SDValue OffsetPtr =
9879         DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
9880                     DAG.getConstant(BaseOffset + Offset, DL, MVT::i64));
9881     NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
9882                           PtrInfo.getWithOffset(Offset), Alignment,
9883                           St.getMemOperand()->getFlags());
9884     Offset += EltOffset;
9885   }
9886   return NewST1;
9887 }
9888 
9889 /// Replace a splat of zeros to a vector store by scalar stores of WZR/XZR.  The
9890 /// load store optimizer pass will merge them to store pair stores.  This should
9891 /// be better than a movi to create the vector zero followed by a vector store
9892 /// if the zero constant is not re-used, since one instructions and one register
9893 /// live range will be removed.
9894 ///
9895 /// For example, the final generated code should be:
9896 ///
9897 ///   stp xzr, xzr, [x0]
9898 ///
9899 /// instead of:
9900 ///
9901 ///   movi v0.2d, #0
9902 ///   str q0, [x0]
9903 ///
replaceZeroVectorStore(SelectionDAG & DAG,StoreSDNode & St)9904 static SDValue replaceZeroVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
9905   SDValue StVal = St.getValue();
9906   EVT VT = StVal.getValueType();
9907 
9908   // It is beneficial to scalarize a zero splat store for 2 or 3 i64 elements or
9909   // 2, 3 or 4 i32 elements.
9910   int NumVecElts = VT.getVectorNumElements();
9911   if (!(((NumVecElts == 2 || NumVecElts == 3) &&
9912          VT.getVectorElementType().getSizeInBits() == 64) ||
9913         ((NumVecElts == 2 || NumVecElts == 3 || NumVecElts == 4) &&
9914          VT.getVectorElementType().getSizeInBits() == 32)))
9915     return SDValue();
9916 
9917   if (StVal.getOpcode() != ISD::BUILD_VECTOR)
9918     return SDValue();
9919 
9920   // If the zero constant has more than one use then the vector store could be
9921   // better since the constant mov will be amortized and stp q instructions
9922   // should be able to be formed.
9923   if (!StVal.hasOneUse())
9924     return SDValue();
9925 
9926   // If the immediate offset of the address operand is too large for the stp
9927   // instruction, then bail out.
9928   if (DAG.isBaseWithConstantOffset(St.getBasePtr())) {
9929     int64_t Offset = St.getBasePtr()->getConstantOperandVal(1);
9930     if (Offset < -512 || Offset > 504)
9931       return SDValue();
9932   }
9933 
9934   for (int I = 0; I < NumVecElts; ++I) {
9935     SDValue EltVal = StVal.getOperand(I);
9936     if (!isNullConstant(EltVal) && !isNullFPConstant(EltVal))
9937       return SDValue();
9938   }
9939 
9940   // Use a CopyFromReg WZR/XZR here to prevent
9941   // DAGCombiner::MergeConsecutiveStores from undoing this transformation.
9942   SDLoc DL(&St);
9943   unsigned ZeroReg;
9944   EVT ZeroVT;
9945   if (VT.getVectorElementType().getSizeInBits() == 32) {
9946     ZeroReg = AArch64::WZR;
9947     ZeroVT = MVT::i32;
9948   } else {
9949     ZeroReg = AArch64::XZR;
9950     ZeroVT = MVT::i64;
9951   }
9952   SDValue SplatVal =
9953       DAG.getCopyFromReg(DAG.getEntryNode(), DL, ZeroReg, ZeroVT);
9954   return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
9955 }
9956 
9957 /// Replace a splat of a scalar to a vector store by scalar stores of the scalar
9958 /// value. The load store optimizer pass will merge them to store pair stores.
9959 /// This has better performance than a splat of the scalar followed by a split
9960 /// vector store. Even if the stores are not merged it is four stores vs a dup,
9961 /// followed by an ext.b and two stores.
replaceSplatVectorStore(SelectionDAG & DAG,StoreSDNode & St)9962 static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
9963   SDValue StVal = St.getValue();
9964   EVT VT = StVal.getValueType();
9965 
9966   // Don't replace floating point stores, they possibly won't be transformed to
9967   // stp because of the store pair suppress pass.
9968   if (VT.isFloatingPoint())
9969     return SDValue();
9970 
9971   // We can express a splat as store pair(s) for 2 or 4 elements.
9972   unsigned NumVecElts = VT.getVectorNumElements();
9973   if (NumVecElts != 4 && NumVecElts != 2)
9974     return SDValue();
9975 
9976   // Check that this is a splat.
9977   // Make sure that each of the relevant vector element locations are inserted
9978   // to, i.e. 0 and 1 for v2i64 and 0, 1, 2, 3 for v4i32.
9979   std::bitset<4> IndexNotInserted((1 << NumVecElts) - 1);
9980   SDValue SplatVal;
9981   for (unsigned I = 0; I < NumVecElts; ++I) {
9982     // Check for insert vector elements.
9983     if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
9984       return SDValue();
9985 
9986     // Check that same value is inserted at each vector element.
9987     if (I == 0)
9988       SplatVal = StVal.getOperand(1);
9989     else if (StVal.getOperand(1) != SplatVal)
9990       return SDValue();
9991 
9992     // Check insert element index.
9993     ConstantSDNode *CIndex = dyn_cast<ConstantSDNode>(StVal.getOperand(2));
9994     if (!CIndex)
9995       return SDValue();
9996     uint64_t IndexVal = CIndex->getZExtValue();
9997     if (IndexVal >= NumVecElts)
9998       return SDValue();
9999     IndexNotInserted.reset(IndexVal);
10000 
10001     StVal = StVal.getOperand(0);
10002   }
10003   // Check that all vector element locations were inserted to.
10004   if (IndexNotInserted.any())
10005       return SDValue();
10006 
10007   return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
10008 }
10009 
splitStores(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)10010 static SDValue splitStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
10011                            SelectionDAG &DAG,
10012                            const AArch64Subtarget *Subtarget) {
10013 
10014   StoreSDNode *S = cast<StoreSDNode>(N);
10015   if (S->isVolatile() || S->isIndexed())
10016     return SDValue();
10017 
10018   SDValue StVal = S->getValue();
10019   EVT VT = StVal.getValueType();
10020   if (!VT.isVector())
10021     return SDValue();
10022 
10023   // If we get a splat of zeros, convert this vector store to a store of
10024   // scalars. They will be merged into store pairs of xzr thereby removing one
10025   // instruction and one register.
10026   if (SDValue ReplacedZeroSplat = replaceZeroVectorStore(DAG, *S))
10027     return ReplacedZeroSplat;
10028 
10029   // FIXME: The logic for deciding if an unaligned store should be split should
10030   // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be
10031   // a call to that function here.
10032 
10033   if (!Subtarget->isMisaligned128StoreSlow())
10034     return SDValue();
10035 
10036   // Don't split at -Oz.
10037   if (DAG.getMachineFunction().getFunction().optForMinSize())
10038     return SDValue();
10039 
10040   // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
10041   // those up regresses performance on micro-benchmarks and olden/bh.
10042   if (VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
10043     return SDValue();
10044 
10045   // Split unaligned 16B stores. They are terrible for performance.
10046   // Don't split stores with alignment of 1 or 2. Code that uses clang vector
10047   // extensions can use this to mark that it does not want splitting to happen
10048   // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
10049   // eliminating alignment hazards is only 1 in 8 for alignment of 2.
10050   if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
10051       S->getAlignment() <= 2)
10052     return SDValue();
10053 
10054   // If we get a splat of a scalar convert this vector store to a store of
10055   // scalars. They will be merged into store pairs thereby removing two
10056   // instructions.
10057   if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, *S))
10058     return ReplacedSplat;
10059 
10060   SDLoc DL(S);
10061   unsigned NumElts = VT.getVectorNumElements() / 2;
10062   // Split VT into two.
10063   EVT HalfVT =
10064       EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
10065   SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
10066                                    DAG.getConstant(0, DL, MVT::i64));
10067   SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
10068                                    DAG.getConstant(NumElts, DL, MVT::i64));
10069   SDValue BasePtr = S->getBasePtr();
10070   SDValue NewST1 =
10071       DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
10072                    S->getAlignment(), S->getMemOperand()->getFlags());
10073   SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
10074                                   DAG.getConstant(8, DL, MVT::i64));
10075   return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
10076                       S->getPointerInfo(), S->getAlignment(),
10077                       S->getMemOperand()->getFlags());
10078 }
10079 
10080 /// Target-specific DAG combine function for post-increment LD1 (lane) and
10081 /// post-increment LD1R.
performPostLD1Combine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,bool IsLaneOp)10082 static SDValue performPostLD1Combine(SDNode *N,
10083                                      TargetLowering::DAGCombinerInfo &DCI,
10084                                      bool IsLaneOp) {
10085   if (DCI.isBeforeLegalizeOps())
10086     return SDValue();
10087 
10088   SelectionDAG &DAG = DCI.DAG;
10089   EVT VT = N->getValueType(0);
10090 
10091   unsigned LoadIdx = IsLaneOp ? 1 : 0;
10092   SDNode *LD = N->getOperand(LoadIdx).getNode();
10093   // If it is not LOAD, can not do such combine.
10094   if (LD->getOpcode() != ISD::LOAD)
10095     return SDValue();
10096 
10097   // The vector lane must be a constant in the LD1LANE opcode.
10098   SDValue Lane;
10099   if (IsLaneOp) {
10100     Lane = N->getOperand(2);
10101     auto *LaneC = dyn_cast<ConstantSDNode>(Lane);
10102     if (!LaneC || LaneC->getZExtValue() >= VT.getVectorNumElements())
10103       return SDValue();
10104   }
10105 
10106   LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
10107   EVT MemVT = LoadSDN->getMemoryVT();
10108   // Check if memory operand is the same type as the vector element.
10109   if (MemVT != VT.getVectorElementType())
10110     return SDValue();
10111 
10112   // Check if there are other uses. If so, do not combine as it will introduce
10113   // an extra load.
10114   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
10115        ++UI) {
10116     if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
10117       continue;
10118     if (*UI != N)
10119       return SDValue();
10120   }
10121 
10122   SDValue Addr = LD->getOperand(1);
10123   SDValue Vector = N->getOperand(0);
10124   // Search for a use of the address operand that is an increment.
10125   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
10126        Addr.getNode()->use_end(); UI != UE; ++UI) {
10127     SDNode *User = *UI;
10128     if (User->getOpcode() != ISD::ADD
10129         || UI.getUse().getResNo() != Addr.getResNo())
10130       continue;
10131 
10132     // Check that the add is independent of the load.  Otherwise, folding it
10133     // would create a cycle.
10134     if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
10135       continue;
10136     // Also check that add is not used in the vector operand.  This would also
10137     // create a cycle.
10138     if (User->isPredecessorOf(Vector.getNode()))
10139       continue;
10140 
10141     // If the increment is a constant, it must match the memory ref size.
10142     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
10143     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
10144       uint32_t IncVal = CInc->getZExtValue();
10145       unsigned NumBytes = VT.getScalarSizeInBits() / 8;
10146       if (IncVal != NumBytes)
10147         continue;
10148       Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
10149     }
10150 
10151     // Finally, check that the vector doesn't depend on the load.
10152     // Again, this would create a cycle.
10153     // The load depending on the vector is fine, as that's the case for the
10154     // LD1*post we'll eventually generate anyway.
10155     if (LoadSDN->isPredecessorOf(Vector.getNode()))
10156       continue;
10157 
10158     SmallVector<SDValue, 8> Ops;
10159     Ops.push_back(LD->getOperand(0));  // Chain
10160     if (IsLaneOp) {
10161       Ops.push_back(Vector);           // The vector to be inserted
10162       Ops.push_back(Lane);             // The lane to be inserted in the vector
10163     }
10164     Ops.push_back(Addr);
10165     Ops.push_back(Inc);
10166 
10167     EVT Tys[3] = { VT, MVT::i64, MVT::Other };
10168     SDVTList SDTys = DAG.getVTList(Tys);
10169     unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
10170     SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
10171                                            MemVT,
10172                                            LoadSDN->getMemOperand());
10173 
10174     // Update the uses.
10175     SDValue NewResults[] = {
10176         SDValue(LD, 0),            // The result of load
10177         SDValue(UpdN.getNode(), 2) // Chain
10178     };
10179     DCI.CombineTo(LD, NewResults);
10180     DCI.CombineTo(N, SDValue(UpdN.getNode(), 0));     // Dup/Inserted Result
10181     DCI.CombineTo(User, SDValue(UpdN.getNode(), 1));  // Write back register
10182 
10183     break;
10184   }
10185   return SDValue();
10186 }
10187 
10188 /// Simplify ``Addr`` given that the top byte of it is ignored by HW during
10189 /// address translation.
performTBISimplification(SDValue Addr,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)10190 static bool performTBISimplification(SDValue Addr,
10191                                      TargetLowering::DAGCombinerInfo &DCI,
10192                                      SelectionDAG &DAG) {
10193   APInt DemandedMask = APInt::getLowBitsSet(64, 56);
10194   KnownBits Known;
10195   TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
10196                                         !DCI.isBeforeLegalizeOps());
10197   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10198   if (TLI.SimplifyDemandedBits(Addr, DemandedMask, Known, TLO)) {
10199     DCI.CommitTargetLoweringOpt(TLO);
10200     return true;
10201   }
10202   return false;
10203 }
10204 
performSTORECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)10205 static SDValue performSTORECombine(SDNode *N,
10206                                    TargetLowering::DAGCombinerInfo &DCI,
10207                                    SelectionDAG &DAG,
10208                                    const AArch64Subtarget *Subtarget) {
10209   if (SDValue Split = splitStores(N, DCI, DAG, Subtarget))
10210     return Split;
10211 
10212   if (Subtarget->supportsAddressTopByteIgnored() &&
10213       performTBISimplification(N->getOperand(2), DCI, DAG))
10214     return SDValue(N, 0);
10215 
10216   return SDValue();
10217 }
10218 
10219 
10220 /// Target-specific DAG combine function for NEON load/store intrinsics
10221 /// to merge base address updates.
performNEONPostLDSTCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)10222 static SDValue performNEONPostLDSTCombine(SDNode *N,
10223                                           TargetLowering::DAGCombinerInfo &DCI,
10224                                           SelectionDAG &DAG) {
10225   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10226     return SDValue();
10227 
10228   unsigned AddrOpIdx = N->getNumOperands() - 1;
10229   SDValue Addr = N->getOperand(AddrOpIdx);
10230 
10231   // Search for a use of the address operand that is an increment.
10232   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
10233        UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
10234     SDNode *User = *UI;
10235     if (User->getOpcode() != ISD::ADD ||
10236         UI.getUse().getResNo() != Addr.getResNo())
10237       continue;
10238 
10239     // Check that the add is independent of the load/store.  Otherwise, folding
10240     // it would create a cycle.
10241     if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
10242       continue;
10243 
10244     // Find the new opcode for the updating load/store.
10245     bool IsStore = false;
10246     bool IsLaneOp = false;
10247     bool IsDupOp = false;
10248     unsigned NewOpc = 0;
10249     unsigned NumVecs = 0;
10250     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
10251     switch (IntNo) {
10252     default: llvm_unreachable("unexpected intrinsic for Neon base update");
10253     case Intrinsic::aarch64_neon_ld2:       NewOpc = AArch64ISD::LD2post;
10254       NumVecs = 2; break;
10255     case Intrinsic::aarch64_neon_ld3:       NewOpc = AArch64ISD::LD3post;
10256       NumVecs = 3; break;
10257     case Intrinsic::aarch64_neon_ld4:       NewOpc = AArch64ISD::LD4post;
10258       NumVecs = 4; break;
10259     case Intrinsic::aarch64_neon_st2:       NewOpc = AArch64ISD::ST2post;
10260       NumVecs = 2; IsStore = true; break;
10261     case Intrinsic::aarch64_neon_st3:       NewOpc = AArch64ISD::ST3post;
10262       NumVecs = 3; IsStore = true; break;
10263     case Intrinsic::aarch64_neon_st4:       NewOpc = AArch64ISD::ST4post;
10264       NumVecs = 4; IsStore = true; break;
10265     case Intrinsic::aarch64_neon_ld1x2:     NewOpc = AArch64ISD::LD1x2post;
10266       NumVecs = 2; break;
10267     case Intrinsic::aarch64_neon_ld1x3:     NewOpc = AArch64ISD::LD1x3post;
10268       NumVecs = 3; break;
10269     case Intrinsic::aarch64_neon_ld1x4:     NewOpc = AArch64ISD::LD1x4post;
10270       NumVecs = 4; break;
10271     case Intrinsic::aarch64_neon_st1x2:     NewOpc = AArch64ISD::ST1x2post;
10272       NumVecs = 2; IsStore = true; break;
10273     case Intrinsic::aarch64_neon_st1x3:     NewOpc = AArch64ISD::ST1x3post;
10274       NumVecs = 3; IsStore = true; break;
10275     case Intrinsic::aarch64_neon_st1x4:     NewOpc = AArch64ISD::ST1x4post;
10276       NumVecs = 4; IsStore = true; break;
10277     case Intrinsic::aarch64_neon_ld2r:      NewOpc = AArch64ISD::LD2DUPpost;
10278       NumVecs = 2; IsDupOp = true; break;
10279     case Intrinsic::aarch64_neon_ld3r:      NewOpc = AArch64ISD::LD3DUPpost;
10280       NumVecs = 3; IsDupOp = true; break;
10281     case Intrinsic::aarch64_neon_ld4r:      NewOpc = AArch64ISD::LD4DUPpost;
10282       NumVecs = 4; IsDupOp = true; break;
10283     case Intrinsic::aarch64_neon_ld2lane:   NewOpc = AArch64ISD::LD2LANEpost;
10284       NumVecs = 2; IsLaneOp = true; break;
10285     case Intrinsic::aarch64_neon_ld3lane:   NewOpc = AArch64ISD::LD3LANEpost;
10286       NumVecs = 3; IsLaneOp = true; break;
10287     case Intrinsic::aarch64_neon_ld4lane:   NewOpc = AArch64ISD::LD4LANEpost;
10288       NumVecs = 4; IsLaneOp = true; break;
10289     case Intrinsic::aarch64_neon_st2lane:   NewOpc = AArch64ISD::ST2LANEpost;
10290       NumVecs = 2; IsStore = true; IsLaneOp = true; break;
10291     case Intrinsic::aarch64_neon_st3lane:   NewOpc = AArch64ISD::ST3LANEpost;
10292       NumVecs = 3; IsStore = true; IsLaneOp = true; break;
10293     case Intrinsic::aarch64_neon_st4lane:   NewOpc = AArch64ISD::ST4LANEpost;
10294       NumVecs = 4; IsStore = true; IsLaneOp = true; break;
10295     }
10296 
10297     EVT VecTy;
10298     if (IsStore)
10299       VecTy = N->getOperand(2).getValueType();
10300     else
10301       VecTy = N->getValueType(0);
10302 
10303     // If the increment is a constant, it must match the memory ref size.
10304     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
10305     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
10306       uint32_t IncVal = CInc->getZExtValue();
10307       unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
10308       if (IsLaneOp || IsDupOp)
10309         NumBytes /= VecTy.getVectorNumElements();
10310       if (IncVal != NumBytes)
10311         continue;
10312       Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
10313     }
10314     SmallVector<SDValue, 8> Ops;
10315     Ops.push_back(N->getOperand(0)); // Incoming chain
10316     // Load lane and store have vector list as input.
10317     if (IsLaneOp || IsStore)
10318       for (unsigned i = 2; i < AddrOpIdx; ++i)
10319         Ops.push_back(N->getOperand(i));
10320     Ops.push_back(Addr); // Base register
10321     Ops.push_back(Inc);
10322 
10323     // Return Types.
10324     EVT Tys[6];
10325     unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
10326     unsigned n;
10327     for (n = 0; n < NumResultVecs; ++n)
10328       Tys[n] = VecTy;
10329     Tys[n++] = MVT::i64;  // Type of write back register
10330     Tys[n] = MVT::Other;  // Type of the chain
10331     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
10332 
10333     MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
10334     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
10335                                            MemInt->getMemoryVT(),
10336                                            MemInt->getMemOperand());
10337 
10338     // Update the uses.
10339     std::vector<SDValue> NewResults;
10340     for (unsigned i = 0; i < NumResultVecs; ++i) {
10341       NewResults.push_back(SDValue(UpdN.getNode(), i));
10342     }
10343     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
10344     DCI.CombineTo(N, NewResults);
10345     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
10346 
10347     break;
10348   }
10349   return SDValue();
10350 }
10351 
10352 // Checks to see if the value is the prescribed width and returns information
10353 // about its extension mode.
10354 static
checkValueWidth(SDValue V,unsigned width,ISD::LoadExtType & ExtType)10355 bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
10356   ExtType = ISD::NON_EXTLOAD;
10357   switch(V.getNode()->getOpcode()) {
10358   default:
10359     return false;
10360   case ISD::LOAD: {
10361     LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
10362     if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
10363        || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
10364       ExtType = LoadNode->getExtensionType();
10365       return true;
10366     }
10367     return false;
10368   }
10369   case ISD::AssertSext: {
10370     VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
10371     if ((TypeNode->getVT() == MVT::i8 && width == 8)
10372        || (TypeNode->getVT() == MVT::i16 && width == 16)) {
10373       ExtType = ISD::SEXTLOAD;
10374       return true;
10375     }
10376     return false;
10377   }
10378   case ISD::AssertZext: {
10379     VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
10380     if ((TypeNode->getVT() == MVT::i8 && width == 8)
10381        || (TypeNode->getVT() == MVT::i16 && width == 16)) {
10382       ExtType = ISD::ZEXTLOAD;
10383       return true;
10384     }
10385     return false;
10386   }
10387   case ISD::Constant:
10388   case ISD::TargetConstant: {
10389     return std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
10390            1LL << (width - 1);
10391   }
10392   }
10393 
10394   return true;
10395 }
10396 
10397 // This function does a whole lot of voodoo to determine if the tests are
10398 // equivalent without and with a mask. Essentially what happens is that given a
10399 // DAG resembling:
10400 //
10401 //  +-------------+ +-------------+ +-------------+ +-------------+
10402 //  |    Input    | | AddConstant | | CompConstant| |     CC      |
10403 //  +-------------+ +-------------+ +-------------+ +-------------+
10404 //           |           |           |               |
10405 //           V           V           |    +----------+
10406 //          +-------------+  +----+  |    |
10407 //          |     ADD     |  |0xff|  |    |
10408 //          +-------------+  +----+  |    |
10409 //                  |           |    |    |
10410 //                  V           V    |    |
10411 //                 +-------------+   |    |
10412 //                 |     AND     |   |    |
10413 //                 +-------------+   |    |
10414 //                      |            |    |
10415 //                      +-----+      |    |
10416 //                            |      |    |
10417 //                            V      V    V
10418 //                           +-------------+
10419 //                           |     CMP     |
10420 //                           +-------------+
10421 //
10422 // The AND node may be safely removed for some combinations of inputs. In
10423 // particular we need to take into account the extension type of the Input,
10424 // the exact values of AddConstant, CompConstant, and CC, along with the nominal
10425 // width of the input (this can work for any width inputs, the above graph is
10426 // specific to 8 bits.
10427 //
10428 // The specific equations were worked out by generating output tables for each
10429 // AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
10430 // problem was simplified by working with 4 bit inputs, which means we only
10431 // needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
10432 // extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
10433 // patterns present in both extensions (0,7). For every distinct set of
10434 // AddConstant and CompConstants bit patterns we can consider the masked and
10435 // unmasked versions to be equivalent if the result of this function is true for
10436 // all 16 distinct bit patterns of for the current extension type of Input (w0).
10437 //
10438 //   sub      w8, w0, w1
10439 //   and      w10, w8, #0x0f
10440 //   cmp      w8, w2
10441 //   cset     w9, AArch64CC
10442 //   cmp      w10, w2
10443 //   cset     w11, AArch64CC
10444 //   cmp      w9, w11
10445 //   cset     w0, eq
10446 //   ret
10447 //
10448 // Since the above function shows when the outputs are equivalent it defines
10449 // when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
10450 // would be expensive to run during compiles. The equations below were written
10451 // in a test harness that confirmed they gave equivalent outputs to the above
10452 // for all inputs function, so they can be used determine if the removal is
10453 // legal instead.
10454 //
10455 // isEquivalentMaskless() is the code for testing if the AND can be removed
10456 // factored out of the DAG recognition as the DAG can take several forms.
10457 
isEquivalentMaskless(unsigned CC,unsigned width,ISD::LoadExtType ExtType,int AddConstant,int CompConstant)10458 static bool isEquivalentMaskless(unsigned CC, unsigned width,
10459                                  ISD::LoadExtType ExtType, int AddConstant,
10460                                  int CompConstant) {
10461   // By being careful about our equations and only writing the in term
10462   // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
10463   // make them generally applicable to all bit widths.
10464   int MaxUInt = (1 << width);
10465 
10466   // For the purposes of these comparisons sign extending the type is
10467   // equivalent to zero extending the add and displacing it by half the integer
10468   // width. Provided we are careful and make sure our equations are valid over
10469   // the whole range we can just adjust the input and avoid writing equations
10470   // for sign extended inputs.
10471   if (ExtType == ISD::SEXTLOAD)
10472     AddConstant -= (1 << (width-1));
10473 
10474   switch(CC) {
10475   case AArch64CC::LE:
10476   case AArch64CC::GT:
10477     if ((AddConstant == 0) ||
10478         (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
10479         (AddConstant >= 0 && CompConstant < 0) ||
10480         (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
10481       return true;
10482     break;
10483   case AArch64CC::LT:
10484   case AArch64CC::GE:
10485     if ((AddConstant == 0) ||
10486         (AddConstant >= 0 && CompConstant <= 0) ||
10487         (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
10488       return true;
10489     break;
10490   case AArch64CC::HI:
10491   case AArch64CC::LS:
10492     if ((AddConstant >= 0 && CompConstant < 0) ||
10493        (AddConstant <= 0 && CompConstant >= -1 &&
10494         CompConstant < AddConstant + MaxUInt))
10495       return true;
10496    break;
10497   case AArch64CC::PL:
10498   case AArch64CC::MI:
10499     if ((AddConstant == 0) ||
10500         (AddConstant > 0 && CompConstant <= 0) ||
10501         (AddConstant < 0 && CompConstant <= AddConstant))
10502       return true;
10503     break;
10504   case AArch64CC::LO:
10505   case AArch64CC::HS:
10506     if ((AddConstant >= 0 && CompConstant <= 0) ||
10507         (AddConstant <= 0 && CompConstant >= 0 &&
10508          CompConstant <= AddConstant + MaxUInt))
10509       return true;
10510     break;
10511   case AArch64CC::EQ:
10512   case AArch64CC::NE:
10513     if ((AddConstant > 0 && CompConstant < 0) ||
10514         (AddConstant < 0 && CompConstant >= 0 &&
10515          CompConstant < AddConstant + MaxUInt) ||
10516         (AddConstant >= 0 && CompConstant >= 0 &&
10517          CompConstant >= AddConstant) ||
10518         (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
10519       return true;
10520     break;
10521   case AArch64CC::VS:
10522   case AArch64CC::VC:
10523   case AArch64CC::AL:
10524   case AArch64CC::NV:
10525     return true;
10526   case AArch64CC::Invalid:
10527     break;
10528   }
10529 
10530   return false;
10531 }
10532 
10533 static
performCONDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG,unsigned CCIndex,unsigned CmpIndex)10534 SDValue performCONDCombine(SDNode *N,
10535                            TargetLowering::DAGCombinerInfo &DCI,
10536                            SelectionDAG &DAG, unsigned CCIndex,
10537                            unsigned CmpIndex) {
10538   unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
10539   SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
10540   unsigned CondOpcode = SubsNode->getOpcode();
10541 
10542   if (CondOpcode != AArch64ISD::SUBS)
10543     return SDValue();
10544 
10545   // There is a SUBS feeding this condition. Is it fed by a mask we can
10546   // use?
10547 
10548   SDNode *AndNode = SubsNode->getOperand(0).getNode();
10549   unsigned MaskBits = 0;
10550 
10551   if (AndNode->getOpcode() != ISD::AND)
10552     return SDValue();
10553 
10554   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
10555     uint32_t CNV = CN->getZExtValue();
10556     if (CNV == 255)
10557       MaskBits = 8;
10558     else if (CNV == 65535)
10559       MaskBits = 16;
10560   }
10561 
10562   if (!MaskBits)
10563     return SDValue();
10564 
10565   SDValue AddValue = AndNode->getOperand(0);
10566 
10567   if (AddValue.getOpcode() != ISD::ADD)
10568     return SDValue();
10569 
10570   // The basic dag structure is correct, grab the inputs and validate them.
10571 
10572   SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
10573   SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
10574   SDValue SubsInputValue = SubsNode->getOperand(1);
10575 
10576   // The mask is present and the provenance of all the values is a smaller type,
10577   // lets see if the mask is superfluous.
10578 
10579   if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
10580       !isa<ConstantSDNode>(SubsInputValue.getNode()))
10581     return SDValue();
10582 
10583   ISD::LoadExtType ExtType;
10584 
10585   if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
10586       !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
10587       !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
10588     return SDValue();
10589 
10590   if(!isEquivalentMaskless(CC, MaskBits, ExtType,
10591                 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
10592                 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
10593     return SDValue();
10594 
10595   // The AND is not necessary, remove it.
10596 
10597   SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
10598                                SubsNode->getValueType(1));
10599   SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
10600 
10601   SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
10602   DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
10603 
10604   return SDValue(N, 0);
10605 }
10606 
10607 // Optimize compare with zero and branch.
performBRCONDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)10608 static SDValue performBRCONDCombine(SDNode *N,
10609                                     TargetLowering::DAGCombinerInfo &DCI,
10610                                     SelectionDAG &DAG) {
10611   if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3))
10612     N = NV.getNode();
10613   SDValue Chain = N->getOperand(0);
10614   SDValue Dest = N->getOperand(1);
10615   SDValue CCVal = N->getOperand(2);
10616   SDValue Cmp = N->getOperand(3);
10617 
10618   assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
10619   unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
10620   if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
10621     return SDValue();
10622 
10623   unsigned CmpOpc = Cmp.getOpcode();
10624   if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
10625     return SDValue();
10626 
10627   // Only attempt folding if there is only one use of the flag and no use of the
10628   // value.
10629   if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
10630     return SDValue();
10631 
10632   SDValue LHS = Cmp.getOperand(0);
10633   SDValue RHS = Cmp.getOperand(1);
10634 
10635   assert(LHS.getValueType() == RHS.getValueType() &&
10636          "Expected the value type to be the same for both operands!");
10637   if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
10638     return SDValue();
10639 
10640   if (isNullConstant(LHS))
10641     std::swap(LHS, RHS);
10642 
10643   if (!isNullConstant(RHS))
10644     return SDValue();
10645 
10646   if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
10647       LHS.getOpcode() == ISD::SRL)
10648     return SDValue();
10649 
10650   // Fold the compare into the branch instruction.
10651   SDValue BR;
10652   if (CC == AArch64CC::EQ)
10653     BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
10654   else
10655     BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
10656 
10657   // Do not add new nodes to DAG combiner worklist.
10658   DCI.CombineTo(N, BR, false);
10659 
10660   return SDValue();
10661 }
10662 
10663 // Optimize some simple tbz/tbnz cases.  Returns the new operand and bit to test
10664 // as well as whether the test should be inverted.  This code is required to
10665 // catch these cases (as opposed to standard dag combines) because
10666 // AArch64ISD::TBZ is matched during legalization.
getTestBitOperand(SDValue Op,unsigned & Bit,bool & Invert,SelectionDAG & DAG)10667 static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert,
10668                                  SelectionDAG &DAG) {
10669 
10670   if (!Op->hasOneUse())
10671     return Op;
10672 
10673   // We don't handle undef/constant-fold cases below, as they should have
10674   // already been taken care of (e.g. and of 0, test of undefined shifted bits,
10675   // etc.)
10676 
10677   // (tbz (trunc x), b) -> (tbz x, b)
10678   // This case is just here to enable more of the below cases to be caught.
10679   if (Op->getOpcode() == ISD::TRUNCATE &&
10680       Bit < Op->getValueType(0).getSizeInBits()) {
10681     return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
10682   }
10683 
10684   if (Op->getNumOperands() != 2)
10685     return Op;
10686 
10687   auto *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
10688   if (!C)
10689     return Op;
10690 
10691   switch (Op->getOpcode()) {
10692   default:
10693     return Op;
10694 
10695   // (tbz (and x, m), b) -> (tbz x, b)
10696   case ISD::AND:
10697     if ((C->getZExtValue() >> Bit) & 1)
10698       return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
10699     return Op;
10700 
10701   // (tbz (shl x, c), b) -> (tbz x, b-c)
10702   case ISD::SHL:
10703     if (C->getZExtValue() <= Bit &&
10704         (Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
10705       Bit = Bit - C->getZExtValue();
10706       return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
10707     }
10708     return Op;
10709 
10710   // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x
10711   case ISD::SRA:
10712     Bit = Bit + C->getZExtValue();
10713     if (Bit >= Op->getValueType(0).getSizeInBits())
10714       Bit = Op->getValueType(0).getSizeInBits() - 1;
10715     return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
10716 
10717   // (tbz (srl x, c), b) -> (tbz x, b+c)
10718   case ISD::SRL:
10719     if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
10720       Bit = Bit + C->getZExtValue();
10721       return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
10722     }
10723     return Op;
10724 
10725   // (tbz (xor x, -1), b) -> (tbnz x, b)
10726   case ISD::XOR:
10727     if ((C->getZExtValue() >> Bit) & 1)
10728       Invert = !Invert;
10729     return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
10730   }
10731 }
10732 
10733 // Optimize test single bit zero/non-zero and branch.
performTBZCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)10734 static SDValue performTBZCombine(SDNode *N,
10735                                  TargetLowering::DAGCombinerInfo &DCI,
10736                                  SelectionDAG &DAG) {
10737   unsigned Bit = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
10738   bool Invert = false;
10739   SDValue TestSrc = N->getOperand(1);
10740   SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG);
10741 
10742   if (TestSrc == NewTestSrc)
10743     return SDValue();
10744 
10745   unsigned NewOpc = N->getOpcode();
10746   if (Invert) {
10747     if (NewOpc == AArch64ISD::TBZ)
10748       NewOpc = AArch64ISD::TBNZ;
10749     else {
10750       assert(NewOpc == AArch64ISD::TBNZ);
10751       NewOpc = AArch64ISD::TBZ;
10752     }
10753   }
10754 
10755   SDLoc DL(N);
10756   return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc,
10757                      DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3));
10758 }
10759 
10760 // vselect (v1i1 setcc) ->
10761 //     vselect (v1iXX setcc)  (XX is the size of the compared operand type)
10762 // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
10763 // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
10764 // such VSELECT.
performVSelectCombine(SDNode * N,SelectionDAG & DAG)10765 static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
10766   SDValue N0 = N->getOperand(0);
10767   EVT CCVT = N0.getValueType();
10768 
10769   if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
10770       CCVT.getVectorElementType() != MVT::i1)
10771     return SDValue();
10772 
10773   EVT ResVT = N->getValueType(0);
10774   EVT CmpVT = N0.getOperand(0).getValueType();
10775   // Only combine when the result type is of the same size as the compared
10776   // operands.
10777   if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
10778     return SDValue();
10779 
10780   SDValue IfTrue = N->getOperand(1);
10781   SDValue IfFalse = N->getOperand(2);
10782   SDValue SetCC =
10783       DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
10784                    N0.getOperand(0), N0.getOperand(1),
10785                    cast<CondCodeSDNode>(N0.getOperand(2))->get());
10786   return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
10787                      IfTrue, IfFalse);
10788 }
10789 
10790 /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
10791 /// the compare-mask instructions rather than going via NZCV, even if LHS and
10792 /// RHS are really scalar. This replaces any scalar setcc in the above pattern
10793 /// with a vector one followed by a DUP shuffle on the result.
performSelectCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)10794 static SDValue performSelectCombine(SDNode *N,
10795                                     TargetLowering::DAGCombinerInfo &DCI) {
10796   SelectionDAG &DAG = DCI.DAG;
10797   SDValue N0 = N->getOperand(0);
10798   EVT ResVT = N->getValueType(0);
10799 
10800   if (N0.getOpcode() != ISD::SETCC)
10801     return SDValue();
10802 
10803   // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
10804   // scalar SetCCResultType. We also don't expect vectors, because we assume
10805   // that selects fed by vector SETCCs are canonicalized to VSELECT.
10806   assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&
10807          "Scalar-SETCC feeding SELECT has unexpected result type!");
10808 
10809   // If NumMaskElts == 0, the comparison is larger than select result. The
10810   // largest real NEON comparison is 64-bits per lane, which means the result is
10811   // at most 32-bits and an illegal vector. Just bail out for now.
10812   EVT SrcVT = N0.getOperand(0).getValueType();
10813 
10814   // Don't try to do this optimization when the setcc itself has i1 operands.
10815   // There are no legal vectors of i1, so this would be pointless.
10816   if (SrcVT == MVT::i1)
10817     return SDValue();
10818 
10819   int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
10820   if (!ResVT.isVector() || NumMaskElts == 0)
10821     return SDValue();
10822 
10823   SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
10824   EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
10825 
10826   // Also bail out if the vector CCVT isn't the same size as ResVT.
10827   // This can happen if the SETCC operand size doesn't divide the ResVT size
10828   // (e.g., f64 vs v3f32).
10829   if (CCVT.getSizeInBits() != ResVT.getSizeInBits())
10830     return SDValue();
10831 
10832   // Make sure we didn't create illegal types, if we're not supposed to.
10833   assert(DCI.isBeforeLegalize() ||
10834          DAG.getTargetLoweringInfo().isTypeLegal(SrcVT));
10835 
10836   // First perform a vector comparison, where lane 0 is the one we're interested
10837   // in.
10838   SDLoc DL(N0);
10839   SDValue LHS =
10840       DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
10841   SDValue RHS =
10842       DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
10843   SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
10844 
10845   // Now duplicate the comparison mask we want across all other lanes.
10846   SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
10847   SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask);
10848   Mask = DAG.getNode(ISD::BITCAST, DL,
10849                      ResVT.changeVectorElementTypeToInteger(), Mask);
10850 
10851   return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
10852 }
10853 
10854 /// Get rid of unnecessary NVCASTs (that don't change the type).
performNVCASTCombine(SDNode * N)10855 static SDValue performNVCASTCombine(SDNode *N) {
10856   if (N->getValueType(0) == N->getOperand(0).getValueType())
10857     return N->getOperand(0);
10858 
10859   return SDValue();
10860 }
10861 
10862 // If all users of the globaladdr are of the form (globaladdr + constant), find
10863 // the smallest constant, fold it into the globaladdr's offset and rewrite the
10864 // globaladdr as (globaladdr + constant) - constant.
performGlobalAddressCombine(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * Subtarget,const TargetMachine & TM)10865 static SDValue performGlobalAddressCombine(SDNode *N, SelectionDAG &DAG,
10866                                            const AArch64Subtarget *Subtarget,
10867                                            const TargetMachine &TM) {
10868   auto *GN = dyn_cast<GlobalAddressSDNode>(N);
10869   if (!GN || Subtarget->ClassifyGlobalReference(GN->getGlobal(), TM) !=
10870                  AArch64II::MO_NO_FLAG)
10871     return SDValue();
10872 
10873   uint64_t MinOffset = -1ull;
10874   for (SDNode *N : GN->uses()) {
10875     if (N->getOpcode() != ISD::ADD)
10876       return SDValue();
10877     auto *C = dyn_cast<ConstantSDNode>(N->getOperand(0));
10878     if (!C)
10879       C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10880     if (!C)
10881       return SDValue();
10882     MinOffset = std::min(MinOffset, C->getZExtValue());
10883   }
10884   uint64_t Offset = MinOffset + GN->getOffset();
10885 
10886   // Require that the new offset is larger than the existing one. Otherwise, we
10887   // can end up oscillating between two possible DAGs, for example,
10888   // (add (add globaladdr + 10, -1), 1) and (add globaladdr + 9, 1).
10889   if (Offset <= uint64_t(GN->getOffset()))
10890     return SDValue();
10891 
10892   // Check whether folding this offset is legal. It must not go out of bounds of
10893   // the referenced object to avoid violating the code model, and must be
10894   // smaller than 2^21 because this is the largest offset expressible in all
10895   // object formats.
10896   //
10897   // This check also prevents us from folding negative offsets, which will end
10898   // up being treated in the same way as large positive ones. They could also
10899   // cause code model violations, and aren't really common enough to matter.
10900   if (Offset >= (1 << 21))
10901     return SDValue();
10902 
10903   const GlobalValue *GV = GN->getGlobal();
10904   Type *T = GV->getValueType();
10905   if (!T->isSized() ||
10906       Offset > GV->getParent()->getDataLayout().getTypeAllocSize(T))
10907     return SDValue();
10908 
10909   SDLoc DL(GN);
10910   SDValue Result = DAG.getGlobalAddress(GV, DL, MVT::i64, Offset);
10911   return DAG.getNode(ISD::SUB, DL, MVT::i64, Result,
10912                      DAG.getConstant(MinOffset, DL, MVT::i64));
10913 }
10914 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const10915 SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
10916                                                  DAGCombinerInfo &DCI) const {
10917   SelectionDAG &DAG = DCI.DAG;
10918   switch (N->getOpcode()) {
10919   default:
10920     LLVM_DEBUG(dbgs() << "Custom combining: skipping\n");
10921     break;
10922   case ISD::ADD:
10923   case ISD::SUB:
10924     return performAddSubLongCombine(N, DCI, DAG);
10925   case ISD::XOR:
10926     return performXorCombine(N, DAG, DCI, Subtarget);
10927   case ISD::MUL:
10928     return performMulCombine(N, DAG, DCI, Subtarget);
10929   case ISD::SINT_TO_FP:
10930   case ISD::UINT_TO_FP:
10931     return performIntToFpCombine(N, DAG, Subtarget);
10932   case ISD::FP_TO_SINT:
10933   case ISD::FP_TO_UINT:
10934     return performFpToIntCombine(N, DAG, DCI, Subtarget);
10935   case ISD::FDIV:
10936     return performFDivCombine(N, DAG, DCI, Subtarget);
10937   case ISD::OR:
10938     return performORCombine(N, DCI, Subtarget);
10939   case ISD::SRL:
10940     return performSRLCombine(N, DCI);
10941   case ISD::INTRINSIC_WO_CHAIN:
10942     return performIntrinsicCombine(N, DCI, Subtarget);
10943   case ISD::ANY_EXTEND:
10944   case ISD::ZERO_EXTEND:
10945   case ISD::SIGN_EXTEND:
10946     return performExtendCombine(N, DCI, DAG);
10947   case ISD::BITCAST:
10948     return performBitcastCombine(N, DCI, DAG);
10949   case ISD::CONCAT_VECTORS:
10950     return performConcatVectorsCombine(N, DCI, DAG);
10951   case ISD::SELECT:
10952     return performSelectCombine(N, DCI);
10953   case ISD::VSELECT:
10954     return performVSelectCombine(N, DCI.DAG);
10955   case ISD::LOAD:
10956     if (performTBISimplification(N->getOperand(1), DCI, DAG))
10957       return SDValue(N, 0);
10958     break;
10959   case ISD::STORE:
10960     return performSTORECombine(N, DCI, DAG, Subtarget);
10961   case AArch64ISD::BRCOND:
10962     return performBRCONDCombine(N, DCI, DAG);
10963   case AArch64ISD::TBNZ:
10964   case AArch64ISD::TBZ:
10965     return performTBZCombine(N, DCI, DAG);
10966   case AArch64ISD::CSEL:
10967     return performCONDCombine(N, DCI, DAG, 2, 3);
10968   case AArch64ISD::DUP:
10969     return performPostLD1Combine(N, DCI, false);
10970   case AArch64ISD::NVCAST:
10971     return performNVCASTCombine(N);
10972   case ISD::INSERT_VECTOR_ELT:
10973     return performPostLD1Combine(N, DCI, true);
10974   case ISD::INTRINSIC_VOID:
10975   case ISD::INTRINSIC_W_CHAIN:
10976     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10977     case Intrinsic::aarch64_neon_ld2:
10978     case Intrinsic::aarch64_neon_ld3:
10979     case Intrinsic::aarch64_neon_ld4:
10980     case Intrinsic::aarch64_neon_ld1x2:
10981     case Intrinsic::aarch64_neon_ld1x3:
10982     case Intrinsic::aarch64_neon_ld1x4:
10983     case Intrinsic::aarch64_neon_ld2lane:
10984     case Intrinsic::aarch64_neon_ld3lane:
10985     case Intrinsic::aarch64_neon_ld4lane:
10986     case Intrinsic::aarch64_neon_ld2r:
10987     case Intrinsic::aarch64_neon_ld3r:
10988     case Intrinsic::aarch64_neon_ld4r:
10989     case Intrinsic::aarch64_neon_st2:
10990     case Intrinsic::aarch64_neon_st3:
10991     case Intrinsic::aarch64_neon_st4:
10992     case Intrinsic::aarch64_neon_st1x2:
10993     case Intrinsic::aarch64_neon_st1x3:
10994     case Intrinsic::aarch64_neon_st1x4:
10995     case Intrinsic::aarch64_neon_st2lane:
10996     case Intrinsic::aarch64_neon_st3lane:
10997     case Intrinsic::aarch64_neon_st4lane:
10998       return performNEONPostLDSTCombine(N, DCI, DAG);
10999     default:
11000       break;
11001     }
11002     break;
11003   case ISD::GlobalAddress:
11004     return performGlobalAddressCombine(N, DAG, Subtarget, getTargetMachine());
11005   }
11006   return SDValue();
11007 }
11008 
11009 // Check if the return value is used as only a return value, as otherwise
11010 // we can't perform a tail-call. In particular, we need to check for
11011 // target ISD nodes that are returns and any other "odd" constructs
11012 // that the generic analysis code won't necessarily catch.
isUsedByReturnOnly(SDNode * N,SDValue & Chain) const11013 bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
11014                                                SDValue &Chain) const {
11015   if (N->getNumValues() != 1)
11016     return false;
11017   if (!N->hasNUsesOfValue(1, 0))
11018     return false;
11019 
11020   SDValue TCChain = Chain;
11021   SDNode *Copy = *N->use_begin();
11022   if (Copy->getOpcode() == ISD::CopyToReg) {
11023     // If the copy has a glue operand, we conservatively assume it isn't safe to
11024     // perform a tail call.
11025     if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
11026         MVT::Glue)
11027       return false;
11028     TCChain = Copy->getOperand(0);
11029   } else if (Copy->getOpcode() != ISD::FP_EXTEND)
11030     return false;
11031 
11032   bool HasRet = false;
11033   for (SDNode *Node : Copy->uses()) {
11034     if (Node->getOpcode() != AArch64ISD::RET_FLAG)
11035       return false;
11036     HasRet = true;
11037   }
11038 
11039   if (!HasRet)
11040     return false;
11041 
11042   Chain = TCChain;
11043   return true;
11044 }
11045 
11046 // Return whether the an instruction can potentially be optimized to a tail
11047 // call. This will cause the optimizers to attempt to move, or duplicate,
11048 // return instructions to help enable tail call optimizations for this
11049 // instruction.
mayBeEmittedAsTailCall(const CallInst * CI) const11050 bool AArch64TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
11051   return CI->isTailCall();
11052 }
11053 
getIndexedAddressParts(SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,bool & IsInc,SelectionDAG & DAG) const11054 bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
11055                                                    SDValue &Offset,
11056                                                    ISD::MemIndexedMode &AM,
11057                                                    bool &IsInc,
11058                                                    SelectionDAG &DAG) const {
11059   if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
11060     return false;
11061 
11062   Base = Op->getOperand(0);
11063   // All of the indexed addressing mode instructions take a signed
11064   // 9 bit immediate offset.
11065   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
11066     int64_t RHSC = RHS->getSExtValue();
11067     if (Op->getOpcode() == ISD::SUB)
11068       RHSC = -(uint64_t)RHSC;
11069     if (!isInt<9>(RHSC))
11070       return false;
11071     IsInc = (Op->getOpcode() == ISD::ADD);
11072     Offset = Op->getOperand(1);
11073     return true;
11074   }
11075   return false;
11076 }
11077 
getPreIndexedAddressParts(SDNode * N,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const11078 bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
11079                                                       SDValue &Offset,
11080                                                       ISD::MemIndexedMode &AM,
11081                                                       SelectionDAG &DAG) const {
11082   EVT VT;
11083   SDValue Ptr;
11084   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
11085     VT = LD->getMemoryVT();
11086     Ptr = LD->getBasePtr();
11087   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
11088     VT = ST->getMemoryVT();
11089     Ptr = ST->getBasePtr();
11090   } else
11091     return false;
11092 
11093   bool IsInc;
11094   if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
11095     return false;
11096   AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
11097   return true;
11098 }
11099 
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const11100 bool AArch64TargetLowering::getPostIndexedAddressParts(
11101     SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
11102     ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
11103   EVT VT;
11104   SDValue Ptr;
11105   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
11106     VT = LD->getMemoryVT();
11107     Ptr = LD->getBasePtr();
11108   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
11109     VT = ST->getMemoryVT();
11110     Ptr = ST->getBasePtr();
11111   } else
11112     return false;
11113 
11114   bool IsInc;
11115   if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
11116     return false;
11117   // Post-indexing updates the base, so it's not a valid transform
11118   // if that's not the same as the load's pointer.
11119   if (Ptr != Base)
11120     return false;
11121   AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
11122   return true;
11123 }
11124 
ReplaceBITCASTResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)11125 static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
11126                                   SelectionDAG &DAG) {
11127   SDLoc DL(N);
11128   SDValue Op = N->getOperand(0);
11129 
11130   if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
11131     return;
11132 
11133   Op = SDValue(
11134       DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
11135                          DAG.getUNDEF(MVT::i32), Op,
11136                          DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
11137       0);
11138   Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
11139   Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
11140 }
11141 
ReplaceReductionResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG,unsigned InterOp,unsigned AcrossOp)11142 static void ReplaceReductionResults(SDNode *N,
11143                                     SmallVectorImpl<SDValue> &Results,
11144                                     SelectionDAG &DAG, unsigned InterOp,
11145                                     unsigned AcrossOp) {
11146   EVT LoVT, HiVT;
11147   SDValue Lo, Hi;
11148   SDLoc dl(N);
11149   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
11150   std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
11151   SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi);
11152   SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal);
11153   Results.push_back(SplitVal);
11154 }
11155 
splitInt128(SDValue N,SelectionDAG & DAG)11156 static std::pair<SDValue, SDValue> splitInt128(SDValue N, SelectionDAG &DAG) {
11157   SDLoc DL(N);
11158   SDValue Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, N);
11159   SDValue Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64,
11160                            DAG.getNode(ISD::SRL, DL, MVT::i128, N,
11161                                        DAG.getConstant(64, DL, MVT::i64)));
11162   return std::make_pair(Lo, Hi);
11163 }
11164 
11165 // Create an even/odd pair of X registers holding integer value V.
createGPRPairNode(SelectionDAG & DAG,SDValue V)11166 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
11167   SDLoc dl(V.getNode());
11168   SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i64);
11169   SDValue VHi = DAG.getAnyExtOrTrunc(
11170       DAG.getNode(ISD::SRL, dl, MVT::i128, V, DAG.getConstant(64, dl, MVT::i64)),
11171       dl, MVT::i64);
11172   if (DAG.getDataLayout().isBigEndian())
11173     std::swap (VLo, VHi);
11174   SDValue RegClass =
11175       DAG.getTargetConstant(AArch64::XSeqPairsClassRegClassID, dl, MVT::i32);
11176   SDValue SubReg0 = DAG.getTargetConstant(AArch64::sube64, dl, MVT::i32);
11177   SDValue SubReg1 = DAG.getTargetConstant(AArch64::subo64, dl, MVT::i32);
11178   const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
11179   return SDValue(
11180       DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
11181 }
11182 
ReplaceCMP_SWAP_128Results(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)11183 static void ReplaceCMP_SWAP_128Results(SDNode *N,
11184                                        SmallVectorImpl<SDValue> &Results,
11185                                        SelectionDAG &DAG,
11186                                        const AArch64Subtarget *Subtarget) {
11187   assert(N->getValueType(0) == MVT::i128 &&
11188          "AtomicCmpSwap on types less than 128 should be legal");
11189 
11190   if (Subtarget->hasLSE()) {
11191     // LSE has a 128-bit compare and swap (CASP), but i128 is not a legal type,
11192     // so lower it here, wrapped in REG_SEQUENCE and EXTRACT_SUBREG.
11193     SDValue Ops[] = {
11194         createGPRPairNode(DAG, N->getOperand(2)), // Compare value
11195         createGPRPairNode(DAG, N->getOperand(3)), // Store value
11196         N->getOperand(1), // Ptr
11197         N->getOperand(0), // Chain in
11198     };
11199 
11200     MachineFunction &MF = DAG.getMachineFunction();
11201     MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1);
11202     MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
11203 
11204     unsigned Opcode;
11205     switch (MemOp[0]->getOrdering()) {
11206     case AtomicOrdering::Monotonic:
11207       Opcode = AArch64::CASPX;
11208       break;
11209     case AtomicOrdering::Acquire:
11210       Opcode = AArch64::CASPAX;
11211       break;
11212     case AtomicOrdering::Release:
11213       Opcode = AArch64::CASPLX;
11214       break;
11215     case AtomicOrdering::AcquireRelease:
11216     case AtomicOrdering::SequentiallyConsistent:
11217       Opcode = AArch64::CASPALX;
11218       break;
11219     default:
11220       llvm_unreachable("Unexpected ordering!");
11221     }
11222 
11223     MachineSDNode *CmpSwap = DAG.getMachineNode(
11224         Opcode, SDLoc(N), DAG.getVTList(MVT::Untyped, MVT::Other), Ops);
11225     CmpSwap->setMemRefs(MemOp, MemOp + 1);
11226 
11227     unsigned SubReg1 = AArch64::sube64, SubReg2 = AArch64::subo64;
11228     if (DAG.getDataLayout().isBigEndian())
11229       std::swap(SubReg1, SubReg2);
11230     Results.push_back(DAG.getTargetExtractSubreg(SubReg1, SDLoc(N), MVT::i64,
11231                                                  SDValue(CmpSwap, 0)));
11232     Results.push_back(DAG.getTargetExtractSubreg(SubReg2, SDLoc(N), MVT::i64,
11233                                                  SDValue(CmpSwap, 0)));
11234     Results.push_back(SDValue(CmpSwap, 1)); // Chain out
11235     return;
11236   }
11237 
11238   auto Desired = splitInt128(N->getOperand(2), DAG);
11239   auto New = splitInt128(N->getOperand(3), DAG);
11240   SDValue Ops[] = {N->getOperand(1), Desired.first, Desired.second,
11241                    New.first,        New.second,    N->getOperand(0)};
11242   SDNode *CmpSwap = DAG.getMachineNode(
11243       AArch64::CMP_SWAP_128, SDLoc(N),
11244       DAG.getVTList(MVT::i64, MVT::i64, MVT::i32, MVT::Other), Ops);
11245 
11246   MachineFunction &MF = DAG.getMachineFunction();
11247   MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1);
11248   MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
11249   cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1);
11250 
11251   Results.push_back(SDValue(CmpSwap, 0));
11252   Results.push_back(SDValue(CmpSwap, 1));
11253   Results.push_back(SDValue(CmpSwap, 3));
11254 }
11255 
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const11256 void AArch64TargetLowering::ReplaceNodeResults(
11257     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
11258   switch (N->getOpcode()) {
11259   default:
11260     llvm_unreachable("Don't know how to custom expand this");
11261   case ISD::BITCAST:
11262     ReplaceBITCASTResults(N, Results, DAG);
11263     return;
11264   case ISD::VECREDUCE_ADD:
11265   case ISD::VECREDUCE_SMAX:
11266   case ISD::VECREDUCE_SMIN:
11267   case ISD::VECREDUCE_UMAX:
11268   case ISD::VECREDUCE_UMIN:
11269     Results.push_back(LowerVECREDUCE(SDValue(N, 0), DAG));
11270     return;
11271 
11272   case AArch64ISD::SADDV:
11273     ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV);
11274     return;
11275   case AArch64ISD::UADDV:
11276     ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV);
11277     return;
11278   case AArch64ISD::SMINV:
11279     ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV);
11280     return;
11281   case AArch64ISD::UMINV:
11282     ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV);
11283     return;
11284   case AArch64ISD::SMAXV:
11285     ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV);
11286     return;
11287   case AArch64ISD::UMAXV:
11288     ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV);
11289     return;
11290   case ISD::FP_TO_UINT:
11291   case ISD::FP_TO_SINT:
11292     assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
11293     // Let normal code take care of it by not adding anything to Results.
11294     return;
11295   case ISD::ATOMIC_CMP_SWAP:
11296     ReplaceCMP_SWAP_128Results(N, Results, DAG, Subtarget);
11297     return;
11298   }
11299 }
11300 
useLoadStackGuardNode() const11301 bool AArch64TargetLowering::useLoadStackGuardNode() const {
11302   if (Subtarget->isTargetAndroid() || Subtarget->isTargetFuchsia())
11303     return TargetLowering::useLoadStackGuardNode();
11304   return true;
11305 }
11306 
combineRepeatedFPDivisors() const11307 unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const {
11308   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
11309   // reciprocal if there are three or more FDIVs.
11310   return 3;
11311 }
11312 
11313 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(EVT VT) const11314 AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
11315   MVT SVT = VT.getSimpleVT();
11316   // During type legalization, we prefer to widen v1i8, v1i16, v1i32  to v8i8,
11317   // v4i16, v2i32 instead of to promote.
11318   if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32
11319       || SVT == MVT::v1f32)
11320     return TypeWidenVector;
11321 
11322   return TargetLoweringBase::getPreferredVectorAction(VT);
11323 }
11324 
11325 // Loads and stores less than 128-bits are already atomic; ones above that
11326 // are doomed anyway, so defer to the default libcall and blame the OS when
11327 // things go wrong.
shouldExpandAtomicStoreInIR(StoreInst * SI) const11328 bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
11329   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
11330   return Size == 128;
11331 }
11332 
11333 // Loads and stores less than 128-bits are already atomic; ones above that
11334 // are doomed anyway, so defer to the default libcall and blame the OS when
11335 // things go wrong.
11336 TargetLowering::AtomicExpansionKind
shouldExpandAtomicLoadInIR(LoadInst * LI) const11337 AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
11338   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
11339   return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
11340 }
11341 
11342 // For the real atomic operations, we have ldxr/stxr up to 128 bits,
11343 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * AI) const11344 AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
11345   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
11346   if (Size > 128) return AtomicExpansionKind::None;
11347   // Nand not supported in LSE.
11348   if (AI->getOperation() == AtomicRMWInst::Nand) return AtomicExpansionKind::LLSC;
11349   // Leave 128 bits to LLSC.
11350   return (Subtarget->hasLSE() && Size < 128) ? AtomicExpansionKind::None : AtomicExpansionKind::LLSC;
11351 }
11352 
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * AI) const11353 bool AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR(
11354     AtomicCmpXchgInst *AI) const {
11355   // If subtarget has LSE, leave cmpxchg intact for codegen.
11356   if (Subtarget->hasLSE()) return false;
11357   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
11358   // implement cmpxchg without spilling. If the address being exchanged is also
11359   // on the stack and close enough to the spill slot, this can lead to a
11360   // situation where the monitor always gets cleared and the atomic operation
11361   // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
11362   return getTargetMachine().getOptLevel() != 0;
11363 }
11364 
emitLoadLinked(IRBuilder<> & Builder,Value * Addr,AtomicOrdering Ord) const11365 Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
11366                                              AtomicOrdering Ord) const {
11367   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11368   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
11369   bool IsAcquire = isAcquireOrStronger(Ord);
11370 
11371   // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
11372   // intrinsic must return {i64, i64} and we have to recombine them into a
11373   // single i128 here.
11374   if (ValTy->getPrimitiveSizeInBits() == 128) {
11375     Intrinsic::ID Int =
11376         IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
11377     Function *Ldxr = Intrinsic::getDeclaration(M, Int);
11378 
11379     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
11380     Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
11381 
11382     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
11383     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
11384     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
11385     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
11386     return Builder.CreateOr(
11387         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
11388   }
11389 
11390   Type *Tys[] = { Addr->getType() };
11391   Intrinsic::ID Int =
11392       IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
11393   Function *Ldxr = Intrinsic::getDeclaration(M, Int, Tys);
11394 
11395   return Builder.CreateTruncOrBitCast(
11396       Builder.CreateCall(Ldxr, Addr),
11397       cast<PointerType>(Addr->getType())->getElementType());
11398 }
11399 
emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> & Builder) const11400 void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
11401     IRBuilder<> &Builder) const {
11402   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11403   Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex));
11404 }
11405 
emitStoreConditional(IRBuilder<> & Builder,Value * Val,Value * Addr,AtomicOrdering Ord) const11406 Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
11407                                                    Value *Val, Value *Addr,
11408                                                    AtomicOrdering Ord) const {
11409   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11410   bool IsRelease = isReleaseOrStronger(Ord);
11411 
11412   // Since the intrinsics must have legal type, the i128 intrinsics take two
11413   // parameters: "i64, i64". We must marshal Val into the appropriate form
11414   // before the call.
11415   if (Val->getType()->getPrimitiveSizeInBits() == 128) {
11416     Intrinsic::ID Int =
11417         IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
11418     Function *Stxr = Intrinsic::getDeclaration(M, Int);
11419     Type *Int64Ty = Type::getInt64Ty(M->getContext());
11420 
11421     Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
11422     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
11423     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
11424     return Builder.CreateCall(Stxr, {Lo, Hi, Addr});
11425   }
11426 
11427   Intrinsic::ID Int =
11428       IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
11429   Type *Tys[] = { Addr->getType() };
11430   Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
11431 
11432   return Builder.CreateCall(Stxr,
11433                             {Builder.CreateZExtOrBitCast(
11434                                  Val, Stxr->getFunctionType()->getParamType(0)),
11435                              Addr});
11436 }
11437 
functionArgumentNeedsConsecutiveRegisters(Type * Ty,CallingConv::ID CallConv,bool isVarArg) const11438 bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
11439     Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
11440   return Ty->isArrayTy();
11441 }
11442 
shouldNormalizeToSelectSequence(LLVMContext &,EVT) const11443 bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &,
11444                                                             EVT) const {
11445   return false;
11446 }
11447 
UseTlsOffset(IRBuilder<> & IRB,unsigned Offset)11448 static Value *UseTlsOffset(IRBuilder<> &IRB, unsigned Offset) {
11449   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
11450   Function *ThreadPointerFunc =
11451       Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
11452   return IRB.CreatePointerCast(
11453       IRB.CreateConstGEP1_32(IRB.CreateCall(ThreadPointerFunc), Offset),
11454       Type::getInt8PtrTy(IRB.getContext())->getPointerTo(0));
11455 }
11456 
getIRStackGuard(IRBuilder<> & IRB) const11457 Value *AArch64TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const {
11458   // Android provides a fixed TLS slot for the stack cookie. See the definition
11459   // of TLS_SLOT_STACK_GUARD in
11460   // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
11461   if (Subtarget->isTargetAndroid())
11462     return UseTlsOffset(IRB, 0x28);
11463 
11464   // Fuchsia is similar.
11465   // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
11466   if (Subtarget->isTargetFuchsia())
11467     return UseTlsOffset(IRB, -0x10);
11468 
11469   return TargetLowering::getIRStackGuard(IRB);
11470 }
11471 
getSafeStackPointerLocation(IRBuilder<> & IRB) const11472 Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
11473   // Android provides a fixed TLS slot for the SafeStack pointer. See the
11474   // definition of TLS_SLOT_SAFESTACK in
11475   // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
11476   if (Subtarget->isTargetAndroid())
11477     return UseTlsOffset(IRB, 0x48);
11478 
11479   // Fuchsia is similar.
11480   // <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value.
11481   if (Subtarget->isTargetFuchsia())
11482     return UseTlsOffset(IRB, -0x8);
11483 
11484   return TargetLowering::getSafeStackPointerLocation(IRB);
11485 }
11486 
isMaskAndCmp0FoldingBeneficial(const Instruction & AndI) const11487 bool AArch64TargetLowering::isMaskAndCmp0FoldingBeneficial(
11488     const Instruction &AndI) const {
11489   // Only sink 'and' mask to cmp use block if it is masking a single bit, since
11490   // this is likely to be fold the and/cmp/br into a single tbz instruction.  It
11491   // may be beneficial to sink in other cases, but we would have to check that
11492   // the cmp would not get folded into the br to form a cbz for these to be
11493   // beneficial.
11494   ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
11495   if (!Mask)
11496     return false;
11497   return Mask->getValue().isPowerOf2();
11498 }
11499 
initializeSplitCSR(MachineBasicBlock * Entry) const11500 void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
11501   // Update IsSplitCSR in AArch64unctionInfo.
11502   AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>();
11503   AFI->setIsSplitCSR(true);
11504 }
11505 
insertCopiesSplitCSR(MachineBasicBlock * Entry,const SmallVectorImpl<MachineBasicBlock * > & Exits) const11506 void AArch64TargetLowering::insertCopiesSplitCSR(
11507     MachineBasicBlock *Entry,
11508     const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
11509   const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
11510   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
11511   if (!IStart)
11512     return;
11513 
11514   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
11515   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
11516   MachineBasicBlock::iterator MBBI = Entry->begin();
11517   for (const MCPhysReg *I = IStart; *I; ++I) {
11518     const TargetRegisterClass *RC = nullptr;
11519     if (AArch64::GPR64RegClass.contains(*I))
11520       RC = &AArch64::GPR64RegClass;
11521     else if (AArch64::FPR64RegClass.contains(*I))
11522       RC = &AArch64::FPR64RegClass;
11523     else
11524       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
11525 
11526     unsigned NewVR = MRI->createVirtualRegister(RC);
11527     // Create copy from CSR to a virtual register.
11528     // FIXME: this currently does not emit CFI pseudo-instructions, it works
11529     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
11530     // nounwind. If we want to generalize this later, we may need to emit
11531     // CFI pseudo-instructions.
11532     assert(Entry->getParent()->getFunction().hasFnAttribute(
11533                Attribute::NoUnwind) &&
11534            "Function should be nounwind in insertCopiesSplitCSR!");
11535     Entry->addLiveIn(*I);
11536     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
11537         .addReg(*I);
11538 
11539     // Insert the copy-back instructions right before the terminator.
11540     for (auto *Exit : Exits)
11541       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
11542               TII->get(TargetOpcode::COPY), *I)
11543           .addReg(NewVR);
11544   }
11545 }
11546 
isIntDivCheap(EVT VT,AttributeList Attr) const11547 bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const {
11548   // Integer division on AArch64 is expensive. However, when aggressively
11549   // optimizing for code size, we prefer to use a div instruction, as it is
11550   // usually smaller than the alternative sequence.
11551   // The exception to this is vector division. Since AArch64 doesn't have vector
11552   // integer division, leaving the division as-is is a loss even in terms of
11553   // size, because it will have to be scalarized, while the alternative code
11554   // sequence can be performed in vector form.
11555   bool OptSize =
11556       Attr.hasAttribute(AttributeList::FunctionIndex, Attribute::MinSize);
11557   return OptSize && !VT.isVector();
11558 }
11559 
enableAggressiveFMAFusion(EVT VT) const11560 bool AArch64TargetLowering::enableAggressiveFMAFusion(EVT VT) const {
11561   return Subtarget->hasAggressiveFMA() && VT.isFloatingPoint();
11562 }
11563 
11564 unsigned
getVaListSizeInBits(const DataLayout & DL) const11565 AArch64TargetLowering::getVaListSizeInBits(const DataLayout &DL) const {
11566   if (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows())
11567     return getPointerTy(DL).getSizeInBits();
11568 
11569   return 3 * getPointerTy(DL).getSizeInBits() + 2 * 32;
11570 }
11571 
finalizeLowering(MachineFunction & MF) const11572 void AArch64TargetLowering::finalizeLowering(MachineFunction &MF) const {
11573   MF.getFrameInfo().computeMaxCallFrameSize(MF);
11574   TargetLoweringBase::finalizeLowering(MF);
11575 }
11576