1 //===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AArch64TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "AArch64ISelLowering.h"
15 #include "AArch64CallingConvention.h"
16 #include "AArch64MachineFunctionInfo.h"
17 #include "AArch64PerfectShuffle.h"
18 #include "AArch64RegisterInfo.h"
19 #include "AArch64Subtarget.h"
20 #include "MCTargetDesc/AArch64AddressingModes.h"
21 #include "Utils/AArch64BaseInfo.h"
22 #include "llvm/ADT/APFloat.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/StringSwitch.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/Analysis/VectorUtils.h"
33 #include "llvm/CodeGen/CallingConvLower.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineMemOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/RuntimeLibcalls.h"
42 #include "llvm/CodeGen/SelectionDAG.h"
43 #include "llvm/CodeGen/SelectionDAGNodes.h"
44 #include "llvm/CodeGen/TargetCallingConv.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Attributes.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GetElementPtrTypeIterator.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/Instruction.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/OperandTraits.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Use.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/MC/MCRegisterInfo.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CodeGen.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Compiler.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/MachineValueType.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Target/TargetMachine.h"
76 #include "llvm/Target/TargetOptions.h"
77 #include <algorithm>
78 #include <bitset>
79 #include <cassert>
80 #include <cctype>
81 #include <cstdint>
82 #include <cstdlib>
83 #include <iterator>
84 #include <limits>
85 #include <tuple>
86 #include <utility>
87 #include <vector>
88
89 using namespace llvm;
90
91 #define DEBUG_TYPE "aarch64-lower"
92
93 STATISTIC(NumTailCalls, "Number of tail calls");
94 STATISTIC(NumShiftInserts, "Number of vector shift inserts");
95 STATISTIC(NumOptimizedImms, "Number of times immediates were optimized");
96
97 static cl::opt<bool>
98 EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
99 cl::desc("Allow AArch64 SLI/SRI formation"),
100 cl::init(false));
101
102 // FIXME: The necessary dtprel relocations don't seem to be supported
103 // well in the GNU bfd and gold linkers at the moment. Therefore, by
104 // default, for now, fall back to GeneralDynamic code generation.
105 cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
106 "aarch64-elf-ldtls-generation", cl::Hidden,
107 cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
108 cl::init(false));
109
110 static cl::opt<bool>
111 EnableOptimizeLogicalImm("aarch64-enable-logical-imm", cl::Hidden,
112 cl::desc("Enable AArch64 logical imm instruction "
113 "optimization"),
114 cl::init(true));
115
116 /// Value type used for condition codes.
117 static const MVT MVT_CC = MVT::i32;
118
AArch64TargetLowering(const TargetMachine & TM,const AArch64Subtarget & STI)119 AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
120 const AArch64Subtarget &STI)
121 : TargetLowering(TM), Subtarget(&STI) {
122 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
123 // we have to make something up. Arbitrarily, choose ZeroOrOne.
124 setBooleanContents(ZeroOrOneBooleanContent);
125 // When comparing vectors the result sets the different elements in the
126 // vector to all-one or all-zero.
127 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
128
129 // Set up the register classes.
130 addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
131 addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
132
133 if (Subtarget->hasFPARMv8()) {
134 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
135 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
136 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
137 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
138 }
139
140 if (Subtarget->hasNEON()) {
141 addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
142 addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
143 // Someone set us up the NEON.
144 addDRTypeForNEON(MVT::v2f32);
145 addDRTypeForNEON(MVT::v8i8);
146 addDRTypeForNEON(MVT::v4i16);
147 addDRTypeForNEON(MVT::v2i32);
148 addDRTypeForNEON(MVT::v1i64);
149 addDRTypeForNEON(MVT::v1f64);
150 addDRTypeForNEON(MVT::v4f16);
151
152 addQRTypeForNEON(MVT::v4f32);
153 addQRTypeForNEON(MVT::v2f64);
154 addQRTypeForNEON(MVT::v16i8);
155 addQRTypeForNEON(MVT::v8i16);
156 addQRTypeForNEON(MVT::v4i32);
157 addQRTypeForNEON(MVT::v2i64);
158 addQRTypeForNEON(MVT::v8f16);
159 }
160
161 // Compute derived properties from the register classes
162 computeRegisterProperties(Subtarget->getRegisterInfo());
163
164 // Provide all sorts of operation actions
165 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
166 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
167 setOperationAction(ISD::SETCC, MVT::i32, Custom);
168 setOperationAction(ISD::SETCC, MVT::i64, Custom);
169 setOperationAction(ISD::SETCC, MVT::f16, Custom);
170 setOperationAction(ISD::SETCC, MVT::f32, Custom);
171 setOperationAction(ISD::SETCC, MVT::f64, Custom);
172 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
173 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
174 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
175 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
176 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
177 setOperationAction(ISD::BR_CC, MVT::f16, Custom);
178 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
179 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
180 setOperationAction(ISD::SELECT, MVT::i32, Custom);
181 setOperationAction(ISD::SELECT, MVT::i64, Custom);
182 setOperationAction(ISD::SELECT, MVT::f16, Custom);
183 setOperationAction(ISD::SELECT, MVT::f32, Custom);
184 setOperationAction(ISD::SELECT, MVT::f64, Custom);
185 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
186 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
187 setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
188 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
189 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
190 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
191 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
192
193 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
194 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
195 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
196
197 setOperationAction(ISD::FREM, MVT::f32, Expand);
198 setOperationAction(ISD::FREM, MVT::f64, Expand);
199 setOperationAction(ISD::FREM, MVT::f80, Expand);
200
201 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
202
203 // Custom lowering hooks are needed for XOR
204 // to fold it into CSINC/CSINV.
205 setOperationAction(ISD::XOR, MVT::i32, Custom);
206 setOperationAction(ISD::XOR, MVT::i64, Custom);
207
208 // Virtually no operation on f128 is legal, but LLVM can't expand them when
209 // there's a valid register class, so we need custom operations in most cases.
210 setOperationAction(ISD::FABS, MVT::f128, Expand);
211 setOperationAction(ISD::FADD, MVT::f128, Custom);
212 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
213 setOperationAction(ISD::FCOS, MVT::f128, Expand);
214 setOperationAction(ISD::FDIV, MVT::f128, Custom);
215 setOperationAction(ISD::FMA, MVT::f128, Expand);
216 setOperationAction(ISD::FMUL, MVT::f128, Custom);
217 setOperationAction(ISD::FNEG, MVT::f128, Expand);
218 setOperationAction(ISD::FPOW, MVT::f128, Expand);
219 setOperationAction(ISD::FREM, MVT::f128, Expand);
220 setOperationAction(ISD::FRINT, MVT::f128, Expand);
221 setOperationAction(ISD::FSIN, MVT::f128, Expand);
222 setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
223 setOperationAction(ISD::FSQRT, MVT::f128, Expand);
224 setOperationAction(ISD::FSUB, MVT::f128, Custom);
225 setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
226 setOperationAction(ISD::SETCC, MVT::f128, Custom);
227 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
228 setOperationAction(ISD::SELECT, MVT::f128, Custom);
229 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
230 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
231
232 // Lowering for many of the conversions is actually specified by the non-f128
233 // type. The LowerXXX function will be trivial when f128 isn't involved.
234 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
235 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
236 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
237 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
238 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
239 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
240 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
241 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
242 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
243 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
244 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
245 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
246 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
247 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
248
249 // Variable arguments.
250 setOperationAction(ISD::VASTART, MVT::Other, Custom);
251 setOperationAction(ISD::VAARG, MVT::Other, Custom);
252 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
253 setOperationAction(ISD::VAEND, MVT::Other, Expand);
254
255 // Variable-sized objects.
256 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
257 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
258
259 if (Subtarget->isTargetWindows())
260 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
261 else
262 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
263
264 // Constant pool entries
265 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
266
267 // BlockAddress
268 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
269
270 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
271 setOperationAction(ISD::ADDC, MVT::i32, Custom);
272 setOperationAction(ISD::ADDE, MVT::i32, Custom);
273 setOperationAction(ISD::SUBC, MVT::i32, Custom);
274 setOperationAction(ISD::SUBE, MVT::i32, Custom);
275 setOperationAction(ISD::ADDC, MVT::i64, Custom);
276 setOperationAction(ISD::ADDE, MVT::i64, Custom);
277 setOperationAction(ISD::SUBC, MVT::i64, Custom);
278 setOperationAction(ISD::SUBE, MVT::i64, Custom);
279
280 // AArch64 lacks both left-rotate and popcount instructions.
281 setOperationAction(ISD::ROTL, MVT::i32, Expand);
282 setOperationAction(ISD::ROTL, MVT::i64, Expand);
283 for (MVT VT : MVT::vector_valuetypes()) {
284 setOperationAction(ISD::ROTL, VT, Expand);
285 setOperationAction(ISD::ROTR, VT, Expand);
286 }
287
288 // AArch64 doesn't have {U|S}MUL_LOHI.
289 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
290 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
291
292 setOperationAction(ISD::CTPOP, MVT::i32, Custom);
293 setOperationAction(ISD::CTPOP, MVT::i64, Custom);
294
295 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
296 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
297 for (MVT VT : MVT::vector_valuetypes()) {
298 setOperationAction(ISD::SDIVREM, VT, Expand);
299 setOperationAction(ISD::UDIVREM, VT, Expand);
300 }
301 setOperationAction(ISD::SREM, MVT::i32, Expand);
302 setOperationAction(ISD::SREM, MVT::i64, Expand);
303 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
304 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
305 setOperationAction(ISD::UREM, MVT::i32, Expand);
306 setOperationAction(ISD::UREM, MVT::i64, Expand);
307
308 // Custom lower Add/Sub/Mul with overflow.
309 setOperationAction(ISD::SADDO, MVT::i32, Custom);
310 setOperationAction(ISD::SADDO, MVT::i64, Custom);
311 setOperationAction(ISD::UADDO, MVT::i32, Custom);
312 setOperationAction(ISD::UADDO, MVT::i64, Custom);
313 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
314 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
315 setOperationAction(ISD::USUBO, MVT::i32, Custom);
316 setOperationAction(ISD::USUBO, MVT::i64, Custom);
317 setOperationAction(ISD::SMULO, MVT::i32, Custom);
318 setOperationAction(ISD::SMULO, MVT::i64, Custom);
319 setOperationAction(ISD::UMULO, MVT::i32, Custom);
320 setOperationAction(ISD::UMULO, MVT::i64, Custom);
321
322 setOperationAction(ISD::FSIN, MVT::f32, Expand);
323 setOperationAction(ISD::FSIN, MVT::f64, Expand);
324 setOperationAction(ISD::FCOS, MVT::f32, Expand);
325 setOperationAction(ISD::FCOS, MVT::f64, Expand);
326 setOperationAction(ISD::FPOW, MVT::f32, Expand);
327 setOperationAction(ISD::FPOW, MVT::f64, Expand);
328 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
329 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
330 if (Subtarget->hasFullFP16())
331 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Custom);
332 else
333 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
334
335 setOperationAction(ISD::FREM, MVT::f16, Promote);
336 setOperationAction(ISD::FREM, MVT::v4f16, Promote);
337 setOperationAction(ISD::FREM, MVT::v8f16, Promote);
338 setOperationAction(ISD::FPOW, MVT::f16, Promote);
339 setOperationAction(ISD::FPOW, MVT::v4f16, Promote);
340 setOperationAction(ISD::FPOW, MVT::v8f16, Promote);
341 setOperationAction(ISD::FPOWI, MVT::f16, Promote);
342 setOperationAction(ISD::FCOS, MVT::f16, Promote);
343 setOperationAction(ISD::FCOS, MVT::v4f16, Promote);
344 setOperationAction(ISD::FCOS, MVT::v8f16, Promote);
345 setOperationAction(ISD::FSIN, MVT::f16, Promote);
346 setOperationAction(ISD::FSIN, MVT::v4f16, Promote);
347 setOperationAction(ISD::FSIN, MVT::v8f16, Promote);
348 setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
349 setOperationAction(ISD::FSINCOS, MVT::v4f16, Promote);
350 setOperationAction(ISD::FSINCOS, MVT::v8f16, Promote);
351 setOperationAction(ISD::FEXP, MVT::f16, Promote);
352 setOperationAction(ISD::FEXP, MVT::v4f16, Promote);
353 setOperationAction(ISD::FEXP, MVT::v8f16, Promote);
354 setOperationAction(ISD::FEXP2, MVT::f16, Promote);
355 setOperationAction(ISD::FEXP2, MVT::v4f16, Promote);
356 setOperationAction(ISD::FEXP2, MVT::v8f16, Promote);
357 setOperationAction(ISD::FLOG, MVT::f16, Promote);
358 setOperationAction(ISD::FLOG, MVT::v4f16, Promote);
359 setOperationAction(ISD::FLOG, MVT::v8f16, Promote);
360 setOperationAction(ISD::FLOG2, MVT::f16, Promote);
361 setOperationAction(ISD::FLOG2, MVT::v4f16, Promote);
362 setOperationAction(ISD::FLOG2, MVT::v8f16, Promote);
363 setOperationAction(ISD::FLOG10, MVT::f16, Promote);
364 setOperationAction(ISD::FLOG10, MVT::v4f16, Promote);
365 setOperationAction(ISD::FLOG10, MVT::v8f16, Promote);
366
367 if (!Subtarget->hasFullFP16()) {
368 setOperationAction(ISD::SELECT, MVT::f16, Promote);
369 setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
370 setOperationAction(ISD::SETCC, MVT::f16, Promote);
371 setOperationAction(ISD::BR_CC, MVT::f16, Promote);
372 setOperationAction(ISD::FADD, MVT::f16, Promote);
373 setOperationAction(ISD::FSUB, MVT::f16, Promote);
374 setOperationAction(ISD::FMUL, MVT::f16, Promote);
375 setOperationAction(ISD::FDIV, MVT::f16, Promote);
376 setOperationAction(ISD::FMA, MVT::f16, Promote);
377 setOperationAction(ISD::FNEG, MVT::f16, Promote);
378 setOperationAction(ISD::FABS, MVT::f16, Promote);
379 setOperationAction(ISD::FCEIL, MVT::f16, Promote);
380 setOperationAction(ISD::FSQRT, MVT::f16, Promote);
381 setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
382 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
383 setOperationAction(ISD::FRINT, MVT::f16, Promote);
384 setOperationAction(ISD::FROUND, MVT::f16, Promote);
385 setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
386 setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
387 setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
388 setOperationAction(ISD::FMINNAN, MVT::f16, Promote);
389 setOperationAction(ISD::FMAXNAN, MVT::f16, Promote);
390
391 // promote v4f16 to v4f32 when that is known to be safe.
392 setOperationAction(ISD::FADD, MVT::v4f16, Promote);
393 setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
394 setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
395 setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
396 setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote);
397 setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote);
398 AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
399 AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
400 AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
401 AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
402 AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32);
403 AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32);
404
405 setOperationAction(ISD::FABS, MVT::v4f16, Expand);
406 setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
407 setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
408 setOperationAction(ISD::FMA, MVT::v4f16, Expand);
409 setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
410 setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
411 setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
412 setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
413 setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
414 setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
415 setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
416 setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
417 setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
418 setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
419 setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
420
421 setOperationAction(ISD::FABS, MVT::v8f16, Expand);
422 setOperationAction(ISD::FADD, MVT::v8f16, Expand);
423 setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
424 setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
425 setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
426 setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
427 setOperationAction(ISD::FMA, MVT::v8f16, Expand);
428 setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
429 setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
430 setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
431 setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
432 setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
433 setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
434 setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
435 setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
436 setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
437 setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
438 setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
439 setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
440 setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
441 }
442
443 // AArch64 has implementations of a lot of rounding-like FP operations.
444 for (MVT Ty : {MVT::f32, MVT::f64}) {
445 setOperationAction(ISD::FFLOOR, Ty, Legal);
446 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
447 setOperationAction(ISD::FCEIL, Ty, Legal);
448 setOperationAction(ISD::FRINT, Ty, Legal);
449 setOperationAction(ISD::FTRUNC, Ty, Legal);
450 setOperationAction(ISD::FROUND, Ty, Legal);
451 setOperationAction(ISD::FMINNUM, Ty, Legal);
452 setOperationAction(ISD::FMAXNUM, Ty, Legal);
453 setOperationAction(ISD::FMINNAN, Ty, Legal);
454 setOperationAction(ISD::FMAXNAN, Ty, Legal);
455 }
456
457 if (Subtarget->hasFullFP16()) {
458 setOperationAction(ISD::FNEARBYINT, MVT::f16, Legal);
459 setOperationAction(ISD::FFLOOR, MVT::f16, Legal);
460 setOperationAction(ISD::FCEIL, MVT::f16, Legal);
461 setOperationAction(ISD::FRINT, MVT::f16, Legal);
462 setOperationAction(ISD::FTRUNC, MVT::f16, Legal);
463 setOperationAction(ISD::FROUND, MVT::f16, Legal);
464 setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
465 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
466 setOperationAction(ISD::FMINNAN, MVT::f16, Legal);
467 setOperationAction(ISD::FMAXNAN, MVT::f16, Legal);
468 }
469
470 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
471
472 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
473
474 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
475 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
476 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
477 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
478 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
479
480 // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0.
481 // This requires the Performance Monitors extension.
482 if (Subtarget->hasPerfMon())
483 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
484
485 if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
486 getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
487 // Issue __sincos_stret if available.
488 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
489 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
490 } else {
491 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
492 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
493 }
494
495 // Make floating-point constants legal for the large code model, so they don't
496 // become loads from the constant pool.
497 if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
498 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
499 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
500 }
501
502 // AArch64 does not have floating-point extending loads, i1 sign-extending
503 // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
504 for (MVT VT : MVT::fp_valuetypes()) {
505 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
506 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
507 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
508 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
509 }
510 for (MVT VT : MVT::integer_valuetypes())
511 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
512
513 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
514 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
515 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
516 setTruncStoreAction(MVT::f128, MVT::f80, Expand);
517 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
518 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
519 setTruncStoreAction(MVT::f128, MVT::f16, Expand);
520
521 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
522 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
523
524 // Indexed loads and stores are supported.
525 for (unsigned im = (unsigned)ISD::PRE_INC;
526 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
527 setIndexedLoadAction(im, MVT::i8, Legal);
528 setIndexedLoadAction(im, MVT::i16, Legal);
529 setIndexedLoadAction(im, MVT::i32, Legal);
530 setIndexedLoadAction(im, MVT::i64, Legal);
531 setIndexedLoadAction(im, MVT::f64, Legal);
532 setIndexedLoadAction(im, MVT::f32, Legal);
533 setIndexedLoadAction(im, MVT::f16, Legal);
534 setIndexedStoreAction(im, MVT::i8, Legal);
535 setIndexedStoreAction(im, MVT::i16, Legal);
536 setIndexedStoreAction(im, MVT::i32, Legal);
537 setIndexedStoreAction(im, MVT::i64, Legal);
538 setIndexedStoreAction(im, MVT::f64, Legal);
539 setIndexedStoreAction(im, MVT::f32, Legal);
540 setIndexedStoreAction(im, MVT::f16, Legal);
541 }
542
543 // Trap.
544 setOperationAction(ISD::TRAP, MVT::Other, Legal);
545
546 // We combine OR nodes for bitfield operations.
547 setTargetDAGCombine(ISD::OR);
548
549 // Vector add and sub nodes may conceal a high-half opportunity.
550 // Also, try to fold ADD into CSINC/CSINV..
551 setTargetDAGCombine(ISD::ADD);
552 setTargetDAGCombine(ISD::SUB);
553 setTargetDAGCombine(ISD::SRL);
554 setTargetDAGCombine(ISD::XOR);
555 setTargetDAGCombine(ISD::SINT_TO_FP);
556 setTargetDAGCombine(ISD::UINT_TO_FP);
557
558 setTargetDAGCombine(ISD::FP_TO_SINT);
559 setTargetDAGCombine(ISD::FP_TO_UINT);
560 setTargetDAGCombine(ISD::FDIV);
561
562 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
563
564 setTargetDAGCombine(ISD::ANY_EXTEND);
565 setTargetDAGCombine(ISD::ZERO_EXTEND);
566 setTargetDAGCombine(ISD::SIGN_EXTEND);
567 setTargetDAGCombine(ISD::BITCAST);
568 setTargetDAGCombine(ISD::CONCAT_VECTORS);
569 setTargetDAGCombine(ISD::STORE);
570 if (Subtarget->supportsAddressTopByteIgnored())
571 setTargetDAGCombine(ISD::LOAD);
572
573 setTargetDAGCombine(ISD::MUL);
574
575 setTargetDAGCombine(ISD::SELECT);
576 setTargetDAGCombine(ISD::VSELECT);
577
578 setTargetDAGCombine(ISD::INTRINSIC_VOID);
579 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
580 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
581
582 setTargetDAGCombine(ISD::GlobalAddress);
583
584 // In case of strict alignment, avoid an excessive number of byte wide stores.
585 MaxStoresPerMemsetOptSize = 8;
586 MaxStoresPerMemset = Subtarget->requiresStrictAlign()
587 ? MaxStoresPerMemsetOptSize : 32;
588
589 MaxGluedStoresPerMemcpy = 4;
590 MaxStoresPerMemcpyOptSize = 4;
591 MaxStoresPerMemcpy = Subtarget->requiresStrictAlign()
592 ? MaxStoresPerMemcpyOptSize : 16;
593
594 MaxStoresPerMemmoveOptSize = MaxStoresPerMemmove = 4;
595
596 setStackPointerRegisterToSaveRestore(AArch64::SP);
597
598 setSchedulingPreference(Sched::Hybrid);
599
600 EnableExtLdPromotion = true;
601
602 // Set required alignment.
603 setMinFunctionAlignment(2);
604 // Set preferred alignments.
605 setPrefFunctionAlignment(STI.getPrefFunctionAlignment());
606 setPrefLoopAlignment(STI.getPrefLoopAlignment());
607
608 // Only change the limit for entries in a jump table if specified by
609 // the subtarget, but not at the command line.
610 unsigned MaxJT = STI.getMaximumJumpTableSize();
611 if (MaxJT && getMaximumJumpTableSize() == 0)
612 setMaximumJumpTableSize(MaxJT);
613
614 setHasExtractBitsInsn(true);
615
616 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
617
618 if (Subtarget->hasNEON()) {
619 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
620 // silliness like this:
621 setOperationAction(ISD::FABS, MVT::v1f64, Expand);
622 setOperationAction(ISD::FADD, MVT::v1f64, Expand);
623 setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
624 setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
625 setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
626 setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
627 setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
628 setOperationAction(ISD::FMA, MVT::v1f64, Expand);
629 setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
630 setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
631 setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
632 setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
633 setOperationAction(ISD::FREM, MVT::v1f64, Expand);
634 setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
635 setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
636 setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
637 setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
638 setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
639 setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
640 setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
641 setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
642 setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
643 setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
644 setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
645 setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
646
647 setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
648 setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
649 setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
650 setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
651 setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
652
653 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
654
655 // AArch64 doesn't have a direct vector ->f32 conversion instructions for
656 // elements smaller than i32, so promote the input to i32 first.
657 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i8, MVT::v4i32);
658 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i8, MVT::v4i32);
659 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i16, MVT::v4i32);
660 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i16, MVT::v4i32);
661 // i8 and i16 vector elements also need promotion to i32 for v8i8 or v8i16
662 // -> v8f16 conversions.
663 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i8, MVT::v8i32);
664 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i8, MVT::v8i32);
665 setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i16, MVT::v8i32);
666 setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i16, MVT::v8i32);
667 // Similarly, there is no direct i32 -> f64 vector conversion instruction.
668 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
669 setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
670 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
671 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
672 // Or, direct i32 -> f16 vector conversion. Set it so custom, so the
673 // conversion happens in two steps: v4i32 -> v4f32 -> v4f16
674 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom);
675 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
676
677 setOperationAction(ISD::CTLZ, MVT::v1i64, Expand);
678 setOperationAction(ISD::CTLZ, MVT::v2i64, Expand);
679
680 setOperationAction(ISD::CTTZ, MVT::v2i8, Expand);
681 setOperationAction(ISD::CTTZ, MVT::v4i16, Expand);
682 setOperationAction(ISD::CTTZ, MVT::v2i32, Expand);
683 setOperationAction(ISD::CTTZ, MVT::v1i64, Expand);
684 setOperationAction(ISD::CTTZ, MVT::v16i8, Expand);
685 setOperationAction(ISD::CTTZ, MVT::v8i16, Expand);
686 setOperationAction(ISD::CTTZ, MVT::v4i32, Expand);
687 setOperationAction(ISD::CTTZ, MVT::v2i64, Expand);
688
689 // AArch64 doesn't have MUL.2d:
690 setOperationAction(ISD::MUL, MVT::v2i64, Expand);
691 // Custom handling for some quad-vector types to detect MULL.
692 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
693 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
694 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
695
696 // Vector reductions
697 for (MVT VT : MVT::integer_valuetypes()) {
698 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
699 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
700 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
701 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
702 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
703 }
704 for (MVT VT : MVT::fp_valuetypes()) {
705 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
706 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
707 }
708
709 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
710 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
711 // Likewise, narrowing and extending vector loads/stores aren't handled
712 // directly.
713 for (MVT VT : MVT::vector_valuetypes()) {
714 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
715
716 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32) {
717 setOperationAction(ISD::MULHS, VT, Custom);
718 setOperationAction(ISD::MULHU, VT, Custom);
719 } else {
720 setOperationAction(ISD::MULHS, VT, Expand);
721 setOperationAction(ISD::MULHU, VT, Expand);
722 }
723 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
724 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
725
726 setOperationAction(ISD::BSWAP, VT, Expand);
727
728 for (MVT InnerVT : MVT::vector_valuetypes()) {
729 setTruncStoreAction(VT, InnerVT, Expand);
730 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
731 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
732 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
733 }
734 }
735
736 // AArch64 has implementations of a lot of rounding-like FP operations.
737 for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) {
738 setOperationAction(ISD::FFLOOR, Ty, Legal);
739 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
740 setOperationAction(ISD::FCEIL, Ty, Legal);
741 setOperationAction(ISD::FRINT, Ty, Legal);
742 setOperationAction(ISD::FTRUNC, Ty, Legal);
743 setOperationAction(ISD::FROUND, Ty, Legal);
744 }
745
746 setTruncStoreAction(MVT::v4i16, MVT::v4i8, Custom);
747 }
748
749 PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive();
750 }
751
addTypeForNEON(MVT VT,MVT PromotedBitwiseVT)752 void AArch64TargetLowering::addTypeForNEON(MVT VT, MVT PromotedBitwiseVT) {
753 assert(VT.isVector() && "VT should be a vector type");
754
755 if (VT.isFloatingPoint()) {
756 MVT PromoteTo = EVT(VT).changeVectorElementTypeToInteger().getSimpleVT();
757 setOperationPromotedToType(ISD::LOAD, VT, PromoteTo);
758 setOperationPromotedToType(ISD::STORE, VT, PromoteTo);
759 }
760
761 // Mark vector float intrinsics as expand.
762 if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
763 setOperationAction(ISD::FSIN, VT, Expand);
764 setOperationAction(ISD::FCOS, VT, Expand);
765 setOperationAction(ISD::FPOW, VT, Expand);
766 setOperationAction(ISD::FLOG, VT, Expand);
767 setOperationAction(ISD::FLOG2, VT, Expand);
768 setOperationAction(ISD::FLOG10, VT, Expand);
769 setOperationAction(ISD::FEXP, VT, Expand);
770 setOperationAction(ISD::FEXP2, VT, Expand);
771
772 // But we do support custom-lowering for FCOPYSIGN.
773 setOperationAction(ISD::FCOPYSIGN, VT, Custom);
774 }
775
776 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
777 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
778 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
779 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
780 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
781 setOperationAction(ISD::SRA, VT, Custom);
782 setOperationAction(ISD::SRL, VT, Custom);
783 setOperationAction(ISD::SHL, VT, Custom);
784 setOperationAction(ISD::AND, VT, Custom);
785 setOperationAction(ISD::OR, VT, Custom);
786 setOperationAction(ISD::SETCC, VT, Custom);
787 setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
788
789 setOperationAction(ISD::SELECT, VT, Expand);
790 setOperationAction(ISD::SELECT_CC, VT, Expand);
791 setOperationAction(ISD::VSELECT, VT, Expand);
792 for (MVT InnerVT : MVT::all_valuetypes())
793 setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
794
795 // CNT supports only B element sizes.
796 if (VT != MVT::v8i8 && VT != MVT::v16i8)
797 setOperationAction(ISD::CTPOP, VT, Expand);
798
799 setOperationAction(ISD::UDIV, VT, Expand);
800 setOperationAction(ISD::SDIV, VT, Expand);
801 setOperationAction(ISD::UREM, VT, Expand);
802 setOperationAction(ISD::SREM, VT, Expand);
803 setOperationAction(ISD::FREM, VT, Expand);
804
805 setOperationAction(ISD::FP_TO_SINT, VT, Custom);
806 setOperationAction(ISD::FP_TO_UINT, VT, Custom);
807
808 if (!VT.isFloatingPoint())
809 setOperationAction(ISD::ABS, VT, Legal);
810
811 // [SU][MIN|MAX] are available for all NEON types apart from i64.
812 if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64)
813 for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
814 setOperationAction(Opcode, VT, Legal);
815
816 // F[MIN|MAX][NUM|NAN] are available for all FP NEON types.
817 if (VT.isFloatingPoint() &&
818 (VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16()))
819 for (unsigned Opcode : {ISD::FMINNAN, ISD::FMAXNAN,
820 ISD::FMINNUM, ISD::FMAXNUM})
821 setOperationAction(Opcode, VT, Legal);
822
823 if (Subtarget->isLittleEndian()) {
824 for (unsigned im = (unsigned)ISD::PRE_INC;
825 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
826 setIndexedLoadAction(im, VT, Legal);
827 setIndexedStoreAction(im, VT, Legal);
828 }
829 }
830 }
831
addDRTypeForNEON(MVT VT)832 void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
833 addRegisterClass(VT, &AArch64::FPR64RegClass);
834 addTypeForNEON(VT, MVT::v2i32);
835 }
836
addQRTypeForNEON(MVT VT)837 void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
838 addRegisterClass(VT, &AArch64::FPR128RegClass);
839 addTypeForNEON(VT, MVT::v4i32);
840 }
841
getSetCCResultType(const DataLayout &,LLVMContext &,EVT VT) const842 EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
843 EVT VT) const {
844 if (!VT.isVector())
845 return MVT::i32;
846 return VT.changeVectorElementTypeToInteger();
847 }
848
optimizeLogicalImm(SDValue Op,unsigned Size,uint64_t Imm,const APInt & Demanded,TargetLowering::TargetLoweringOpt & TLO,unsigned NewOpc)849 static bool optimizeLogicalImm(SDValue Op, unsigned Size, uint64_t Imm,
850 const APInt &Demanded,
851 TargetLowering::TargetLoweringOpt &TLO,
852 unsigned NewOpc) {
853 uint64_t OldImm = Imm, NewImm, Enc;
854 uint64_t Mask = ((uint64_t)(-1LL) >> (64 - Size)), OrigMask = Mask;
855
856 // Return if the immediate is already all zeros, all ones, a bimm32 or a
857 // bimm64.
858 if (Imm == 0 || Imm == Mask ||
859 AArch64_AM::isLogicalImmediate(Imm & Mask, Size))
860 return false;
861
862 unsigned EltSize = Size;
863 uint64_t DemandedBits = Demanded.getZExtValue();
864
865 // Clear bits that are not demanded.
866 Imm &= DemandedBits;
867
868 while (true) {
869 // The goal here is to set the non-demanded bits in a way that minimizes
870 // the number of switching between 0 and 1. In order to achieve this goal,
871 // we set the non-demanded bits to the value of the preceding demanded bits.
872 // For example, if we have an immediate 0bx10xx0x1 ('x' indicates a
873 // non-demanded bit), we copy bit0 (1) to the least significant 'x',
874 // bit2 (0) to 'xx', and bit6 (1) to the most significant 'x'.
875 // The final result is 0b11000011.
876 uint64_t NonDemandedBits = ~DemandedBits;
877 uint64_t InvertedImm = ~Imm & DemandedBits;
878 uint64_t RotatedImm =
879 ((InvertedImm << 1) | (InvertedImm >> (EltSize - 1) & 1)) &
880 NonDemandedBits;
881 uint64_t Sum = RotatedImm + NonDemandedBits;
882 bool Carry = NonDemandedBits & ~Sum & (1ULL << (EltSize - 1));
883 uint64_t Ones = (Sum + Carry) & NonDemandedBits;
884 NewImm = (Imm | Ones) & Mask;
885
886 // If NewImm or its bitwise NOT is a shifted mask, it is a bitmask immediate
887 // or all-ones or all-zeros, in which case we can stop searching. Otherwise,
888 // we halve the element size and continue the search.
889 if (isShiftedMask_64(NewImm) || isShiftedMask_64(~(NewImm | ~Mask)))
890 break;
891
892 // We cannot shrink the element size any further if it is 2-bits.
893 if (EltSize == 2)
894 return false;
895
896 EltSize /= 2;
897 Mask >>= EltSize;
898 uint64_t Hi = Imm >> EltSize, DemandedBitsHi = DemandedBits >> EltSize;
899
900 // Return if there is mismatch in any of the demanded bits of Imm and Hi.
901 if (((Imm ^ Hi) & (DemandedBits & DemandedBitsHi) & Mask) != 0)
902 return false;
903
904 // Merge the upper and lower halves of Imm and DemandedBits.
905 Imm |= Hi;
906 DemandedBits |= DemandedBitsHi;
907 }
908
909 ++NumOptimizedImms;
910
911 // Replicate the element across the register width.
912 while (EltSize < Size) {
913 NewImm |= NewImm << EltSize;
914 EltSize *= 2;
915 }
916
917 (void)OldImm;
918 assert(((OldImm ^ NewImm) & Demanded.getZExtValue()) == 0 &&
919 "demanded bits should never be altered");
920 assert(OldImm != NewImm && "the new imm shouldn't be equal to the old imm");
921
922 // Create the new constant immediate node.
923 EVT VT = Op.getValueType();
924 SDLoc DL(Op);
925 SDValue New;
926
927 // If the new constant immediate is all-zeros or all-ones, let the target
928 // independent DAG combine optimize this node.
929 if (NewImm == 0 || NewImm == OrigMask) {
930 New = TLO.DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0),
931 TLO.DAG.getConstant(NewImm, DL, VT));
932 // Otherwise, create a machine node so that target independent DAG combine
933 // doesn't undo this optimization.
934 } else {
935 Enc = AArch64_AM::encodeLogicalImmediate(NewImm, Size);
936 SDValue EncConst = TLO.DAG.getTargetConstant(Enc, DL, VT);
937 New = SDValue(
938 TLO.DAG.getMachineNode(NewOpc, DL, VT, Op.getOperand(0), EncConst), 0);
939 }
940
941 return TLO.CombineTo(Op, New);
942 }
943
targetShrinkDemandedConstant(SDValue Op,const APInt & Demanded,TargetLoweringOpt & TLO) const944 bool AArch64TargetLowering::targetShrinkDemandedConstant(
945 SDValue Op, const APInt &Demanded, TargetLoweringOpt &TLO) const {
946 // Delay this optimization to as late as possible.
947 if (!TLO.LegalOps)
948 return false;
949
950 if (!EnableOptimizeLogicalImm)
951 return false;
952
953 EVT VT = Op.getValueType();
954 if (VT.isVector())
955 return false;
956
957 unsigned Size = VT.getSizeInBits();
958 assert((Size == 32 || Size == 64) &&
959 "i32 or i64 is expected after legalization.");
960
961 // Exit early if we demand all bits.
962 if (Demanded.countPopulation() == Size)
963 return false;
964
965 unsigned NewOpc;
966 switch (Op.getOpcode()) {
967 default:
968 return false;
969 case ISD::AND:
970 NewOpc = Size == 32 ? AArch64::ANDWri : AArch64::ANDXri;
971 break;
972 case ISD::OR:
973 NewOpc = Size == 32 ? AArch64::ORRWri : AArch64::ORRXri;
974 break;
975 case ISD::XOR:
976 NewOpc = Size == 32 ? AArch64::EORWri : AArch64::EORXri;
977 break;
978 }
979 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
980 if (!C)
981 return false;
982 uint64_t Imm = C->getZExtValue();
983 return optimizeLogicalImm(Op, Size, Imm, Demanded, TLO, NewOpc);
984 }
985
986 /// computeKnownBitsForTargetNode - Determine which of the bits specified in
987 /// Mask are known to be either zero or one and return them Known.
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const988 void AArch64TargetLowering::computeKnownBitsForTargetNode(
989 const SDValue Op, KnownBits &Known,
990 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
991 switch (Op.getOpcode()) {
992 default:
993 break;
994 case AArch64ISD::CSEL: {
995 KnownBits Known2;
996 DAG.computeKnownBits(Op->getOperand(0), Known, Depth + 1);
997 DAG.computeKnownBits(Op->getOperand(1), Known2, Depth + 1);
998 Known.Zero &= Known2.Zero;
999 Known.One &= Known2.One;
1000 break;
1001 }
1002 case ISD::INTRINSIC_W_CHAIN: {
1003 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
1004 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
1005 switch (IntID) {
1006 default: return;
1007 case Intrinsic::aarch64_ldaxr:
1008 case Intrinsic::aarch64_ldxr: {
1009 unsigned BitWidth = Known.getBitWidth();
1010 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
1011 unsigned MemBits = VT.getScalarSizeInBits();
1012 Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
1013 return;
1014 }
1015 }
1016 break;
1017 }
1018 case ISD::INTRINSIC_WO_CHAIN:
1019 case ISD::INTRINSIC_VOID: {
1020 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1021 switch (IntNo) {
1022 default:
1023 break;
1024 case Intrinsic::aarch64_neon_umaxv:
1025 case Intrinsic::aarch64_neon_uminv: {
1026 // Figure out the datatype of the vector operand. The UMINV instruction
1027 // will zero extend the result, so we can mark as known zero all the
1028 // bits larger than the element datatype. 32-bit or larget doesn't need
1029 // this as those are legal types and will be handled by isel directly.
1030 MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
1031 unsigned BitWidth = Known.getBitWidth();
1032 if (VT == MVT::v8i8 || VT == MVT::v16i8) {
1033 assert(BitWidth >= 8 && "Unexpected width!");
1034 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
1035 Known.Zero |= Mask;
1036 } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
1037 assert(BitWidth >= 16 && "Unexpected width!");
1038 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
1039 Known.Zero |= Mask;
1040 }
1041 break;
1042 } break;
1043 }
1044 }
1045 }
1046 }
1047
getScalarShiftAmountTy(const DataLayout & DL,EVT) const1048 MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
1049 EVT) const {
1050 return MVT::i64;
1051 }
1052
allowsMisalignedMemoryAccesses(EVT VT,unsigned AddrSpace,unsigned Align,bool * Fast) const1053 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
1054 unsigned AddrSpace,
1055 unsigned Align,
1056 bool *Fast) const {
1057 if (Subtarget->requiresStrictAlign())
1058 return false;
1059
1060 if (Fast) {
1061 // Some CPUs are fine with unaligned stores except for 128-bit ones.
1062 *Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 ||
1063 // See comments in performSTORECombine() for more details about
1064 // these conditions.
1065
1066 // Code that uses clang vector extensions can mark that it
1067 // wants unaligned accesses to be treated as fast by
1068 // underspecifying alignment to be 1 or 2.
1069 Align <= 2 ||
1070
1071 // Disregard v2i64. Memcpy lowering produces those and splitting
1072 // them regresses performance on micro-benchmarks and olden/bh.
1073 VT == MVT::v2i64;
1074 }
1075 return true;
1076 }
1077
1078 FastISel *
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo) const1079 AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1080 const TargetLibraryInfo *libInfo) const {
1081 return AArch64::createFastISel(funcInfo, libInfo);
1082 }
1083
getTargetNodeName(unsigned Opcode) const1084 const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
1085 switch ((AArch64ISD::NodeType)Opcode) {
1086 case AArch64ISD::FIRST_NUMBER: break;
1087 case AArch64ISD::CALL: return "AArch64ISD::CALL";
1088 case AArch64ISD::ADRP: return "AArch64ISD::ADRP";
1089 case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow";
1090 case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot";
1091 case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG";
1092 case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND";
1093 case AArch64ISD::CSEL: return "AArch64ISD::CSEL";
1094 case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL";
1095 case AArch64ISD::CSINV: return "AArch64ISD::CSINV";
1096 case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG";
1097 case AArch64ISD::CSINC: return "AArch64ISD::CSINC";
1098 case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
1099 case AArch64ISD::TLSDESC_CALLSEQ: return "AArch64ISD::TLSDESC_CALLSEQ";
1100 case AArch64ISD::ADC: return "AArch64ISD::ADC";
1101 case AArch64ISD::SBC: return "AArch64ISD::SBC";
1102 case AArch64ISD::ADDS: return "AArch64ISD::ADDS";
1103 case AArch64ISD::SUBS: return "AArch64ISD::SUBS";
1104 case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
1105 case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
1106 case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
1107 case AArch64ISD::CCMP: return "AArch64ISD::CCMP";
1108 case AArch64ISD::CCMN: return "AArch64ISD::CCMN";
1109 case AArch64ISD::FCCMP: return "AArch64ISD::FCCMP";
1110 case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
1111 case AArch64ISD::DUP: return "AArch64ISD::DUP";
1112 case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8";
1113 case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16";
1114 case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32";
1115 case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64";
1116 case AArch64ISD::MOVI: return "AArch64ISD::MOVI";
1117 case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift";
1118 case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit";
1119 case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl";
1120 case AArch64ISD::FMOV: return "AArch64ISD::FMOV";
1121 case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift";
1122 case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl";
1123 case AArch64ISD::BICi: return "AArch64ISD::BICi";
1124 case AArch64ISD::ORRi: return "AArch64ISD::ORRi";
1125 case AArch64ISD::BSL: return "AArch64ISD::BSL";
1126 case AArch64ISD::NEG: return "AArch64ISD::NEG";
1127 case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
1128 case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1";
1129 case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2";
1130 case AArch64ISD::UZP1: return "AArch64ISD::UZP1";
1131 case AArch64ISD::UZP2: return "AArch64ISD::UZP2";
1132 case AArch64ISD::TRN1: return "AArch64ISD::TRN1";
1133 case AArch64ISD::TRN2: return "AArch64ISD::TRN2";
1134 case AArch64ISD::REV16: return "AArch64ISD::REV16";
1135 case AArch64ISD::REV32: return "AArch64ISD::REV32";
1136 case AArch64ISD::REV64: return "AArch64ISD::REV64";
1137 case AArch64ISD::EXT: return "AArch64ISD::EXT";
1138 case AArch64ISD::VSHL: return "AArch64ISD::VSHL";
1139 case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR";
1140 case AArch64ISD::VASHR: return "AArch64ISD::VASHR";
1141 case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ";
1142 case AArch64ISD::CMGE: return "AArch64ISD::CMGE";
1143 case AArch64ISD::CMGT: return "AArch64ISD::CMGT";
1144 case AArch64ISD::CMHI: return "AArch64ISD::CMHI";
1145 case AArch64ISD::CMHS: return "AArch64ISD::CMHS";
1146 case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ";
1147 case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE";
1148 case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT";
1149 case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz";
1150 case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz";
1151 case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz";
1152 case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz";
1153 case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz";
1154 case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz";
1155 case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz";
1156 case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz";
1157 case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz";
1158 case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz";
1159 case AArch64ISD::SADDV: return "AArch64ISD::SADDV";
1160 case AArch64ISD::UADDV: return "AArch64ISD::UADDV";
1161 case AArch64ISD::SMINV: return "AArch64ISD::SMINV";
1162 case AArch64ISD::UMINV: return "AArch64ISD::UMINV";
1163 case AArch64ISD::SMAXV: return "AArch64ISD::SMAXV";
1164 case AArch64ISD::UMAXV: return "AArch64ISD::UMAXV";
1165 case AArch64ISD::NOT: return "AArch64ISD::NOT";
1166 case AArch64ISD::BIT: return "AArch64ISD::BIT";
1167 case AArch64ISD::CBZ: return "AArch64ISD::CBZ";
1168 case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ";
1169 case AArch64ISD::TBZ: return "AArch64ISD::TBZ";
1170 case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ";
1171 case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
1172 case AArch64ISD::PREFETCH: return "AArch64ISD::PREFETCH";
1173 case AArch64ISD::SITOF: return "AArch64ISD::SITOF";
1174 case AArch64ISD::UITOF: return "AArch64ISD::UITOF";
1175 case AArch64ISD::NVCAST: return "AArch64ISD::NVCAST";
1176 case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I";
1177 case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I";
1178 case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I";
1179 case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I";
1180 case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I";
1181 case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
1182 case AArch64ISD::LD2post: return "AArch64ISD::LD2post";
1183 case AArch64ISD::LD3post: return "AArch64ISD::LD3post";
1184 case AArch64ISD::LD4post: return "AArch64ISD::LD4post";
1185 case AArch64ISD::ST2post: return "AArch64ISD::ST2post";
1186 case AArch64ISD::ST3post: return "AArch64ISD::ST3post";
1187 case AArch64ISD::ST4post: return "AArch64ISD::ST4post";
1188 case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post";
1189 case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post";
1190 case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post";
1191 case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post";
1192 case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post";
1193 case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post";
1194 case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost";
1195 case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost";
1196 case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost";
1197 case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost";
1198 case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost";
1199 case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost";
1200 case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost";
1201 case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost";
1202 case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost";
1203 case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost";
1204 case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost";
1205 case AArch64ISD::SMULL: return "AArch64ISD::SMULL";
1206 case AArch64ISD::UMULL: return "AArch64ISD::UMULL";
1207 case AArch64ISD::FRECPE: return "AArch64ISD::FRECPE";
1208 case AArch64ISD::FRECPS: return "AArch64ISD::FRECPS";
1209 case AArch64ISD::FRSQRTE: return "AArch64ISD::FRSQRTE";
1210 case AArch64ISD::FRSQRTS: return "AArch64ISD::FRSQRTS";
1211 }
1212 return nullptr;
1213 }
1214
1215 MachineBasicBlock *
EmitF128CSEL(MachineInstr & MI,MachineBasicBlock * MBB) const1216 AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI,
1217 MachineBasicBlock *MBB) const {
1218 // We materialise the F128CSEL pseudo-instruction as some control flow and a
1219 // phi node:
1220
1221 // OrigBB:
1222 // [... previous instrs leading to comparison ...]
1223 // b.ne TrueBB
1224 // b EndBB
1225 // TrueBB:
1226 // ; Fallthrough
1227 // EndBB:
1228 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
1229
1230 MachineFunction *MF = MBB->getParent();
1231 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1232 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
1233 DebugLoc DL = MI.getDebugLoc();
1234 MachineFunction::iterator It = ++MBB->getIterator();
1235
1236 unsigned DestReg = MI.getOperand(0).getReg();
1237 unsigned IfTrueReg = MI.getOperand(1).getReg();
1238 unsigned IfFalseReg = MI.getOperand(2).getReg();
1239 unsigned CondCode = MI.getOperand(3).getImm();
1240 bool NZCVKilled = MI.getOperand(4).isKill();
1241
1242 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
1243 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
1244 MF->insert(It, TrueBB);
1245 MF->insert(It, EndBB);
1246
1247 // Transfer rest of current basic-block to EndBB
1248 EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
1249 MBB->end());
1250 EndBB->transferSuccessorsAndUpdatePHIs(MBB);
1251
1252 BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
1253 BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
1254 MBB->addSuccessor(TrueBB);
1255 MBB->addSuccessor(EndBB);
1256
1257 // TrueBB falls through to the end.
1258 TrueBB->addSuccessor(EndBB);
1259
1260 if (!NZCVKilled) {
1261 TrueBB->addLiveIn(AArch64::NZCV);
1262 EndBB->addLiveIn(AArch64::NZCV);
1263 }
1264
1265 BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
1266 .addReg(IfTrueReg)
1267 .addMBB(TrueBB)
1268 .addReg(IfFalseReg)
1269 .addMBB(MBB);
1270
1271 MI.eraseFromParent();
1272 return EndBB;
1273 }
1274
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const1275 MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter(
1276 MachineInstr &MI, MachineBasicBlock *BB) const {
1277 switch (MI.getOpcode()) {
1278 default:
1279 #ifndef NDEBUG
1280 MI.dump();
1281 #endif
1282 llvm_unreachable("Unexpected instruction for custom inserter!");
1283
1284 case AArch64::F128CSEL:
1285 return EmitF128CSEL(MI, BB);
1286
1287 case TargetOpcode::STACKMAP:
1288 case TargetOpcode::PATCHPOINT:
1289 return emitPatchPoint(MI, BB);
1290 }
1291 }
1292
1293 //===----------------------------------------------------------------------===//
1294 // AArch64 Lowering private implementation.
1295 //===----------------------------------------------------------------------===//
1296
1297 //===----------------------------------------------------------------------===//
1298 // Lowering Code
1299 //===----------------------------------------------------------------------===//
1300
1301 /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
1302 /// CC
changeIntCCToAArch64CC(ISD::CondCode CC)1303 static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
1304 switch (CC) {
1305 default:
1306 llvm_unreachable("Unknown condition code!");
1307 case ISD::SETNE:
1308 return AArch64CC::NE;
1309 case ISD::SETEQ:
1310 return AArch64CC::EQ;
1311 case ISD::SETGT:
1312 return AArch64CC::GT;
1313 case ISD::SETGE:
1314 return AArch64CC::GE;
1315 case ISD::SETLT:
1316 return AArch64CC::LT;
1317 case ISD::SETLE:
1318 return AArch64CC::LE;
1319 case ISD::SETUGT:
1320 return AArch64CC::HI;
1321 case ISD::SETUGE:
1322 return AArch64CC::HS;
1323 case ISD::SETULT:
1324 return AArch64CC::LO;
1325 case ISD::SETULE:
1326 return AArch64CC::LS;
1327 }
1328 }
1329
1330 /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
changeFPCCToAArch64CC(ISD::CondCode CC,AArch64CC::CondCode & CondCode,AArch64CC::CondCode & CondCode2)1331 static void changeFPCCToAArch64CC(ISD::CondCode CC,
1332 AArch64CC::CondCode &CondCode,
1333 AArch64CC::CondCode &CondCode2) {
1334 CondCode2 = AArch64CC::AL;
1335 switch (CC) {
1336 default:
1337 llvm_unreachable("Unknown FP condition!");
1338 case ISD::SETEQ:
1339 case ISD::SETOEQ:
1340 CondCode = AArch64CC::EQ;
1341 break;
1342 case ISD::SETGT:
1343 case ISD::SETOGT:
1344 CondCode = AArch64CC::GT;
1345 break;
1346 case ISD::SETGE:
1347 case ISD::SETOGE:
1348 CondCode = AArch64CC::GE;
1349 break;
1350 case ISD::SETOLT:
1351 CondCode = AArch64CC::MI;
1352 break;
1353 case ISD::SETOLE:
1354 CondCode = AArch64CC::LS;
1355 break;
1356 case ISD::SETONE:
1357 CondCode = AArch64CC::MI;
1358 CondCode2 = AArch64CC::GT;
1359 break;
1360 case ISD::SETO:
1361 CondCode = AArch64CC::VC;
1362 break;
1363 case ISD::SETUO:
1364 CondCode = AArch64CC::VS;
1365 break;
1366 case ISD::SETUEQ:
1367 CondCode = AArch64CC::EQ;
1368 CondCode2 = AArch64CC::VS;
1369 break;
1370 case ISD::SETUGT:
1371 CondCode = AArch64CC::HI;
1372 break;
1373 case ISD::SETUGE:
1374 CondCode = AArch64CC::PL;
1375 break;
1376 case ISD::SETLT:
1377 case ISD::SETULT:
1378 CondCode = AArch64CC::LT;
1379 break;
1380 case ISD::SETLE:
1381 case ISD::SETULE:
1382 CondCode = AArch64CC::LE;
1383 break;
1384 case ISD::SETNE:
1385 case ISD::SETUNE:
1386 CondCode = AArch64CC::NE;
1387 break;
1388 }
1389 }
1390
1391 /// Convert a DAG fp condition code to an AArch64 CC.
1392 /// This differs from changeFPCCToAArch64CC in that it returns cond codes that
1393 /// should be AND'ed instead of OR'ed.
changeFPCCToANDAArch64CC(ISD::CondCode CC,AArch64CC::CondCode & CondCode,AArch64CC::CondCode & CondCode2)1394 static void changeFPCCToANDAArch64CC(ISD::CondCode CC,
1395 AArch64CC::CondCode &CondCode,
1396 AArch64CC::CondCode &CondCode2) {
1397 CondCode2 = AArch64CC::AL;
1398 switch (CC) {
1399 default:
1400 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1401 assert(CondCode2 == AArch64CC::AL);
1402 break;
1403 case ISD::SETONE:
1404 // (a one b)
1405 // == ((a olt b) || (a ogt b))
1406 // == ((a ord b) && (a une b))
1407 CondCode = AArch64CC::VC;
1408 CondCode2 = AArch64CC::NE;
1409 break;
1410 case ISD::SETUEQ:
1411 // (a ueq b)
1412 // == ((a uno b) || (a oeq b))
1413 // == ((a ule b) && (a uge b))
1414 CondCode = AArch64CC::PL;
1415 CondCode2 = AArch64CC::LE;
1416 break;
1417 }
1418 }
1419
1420 /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1421 /// CC usable with the vector instructions. Fewer operations are available
1422 /// without a real NZCV register, so we have to use less efficient combinations
1423 /// to get the same effect.
changeVectorFPCCToAArch64CC(ISD::CondCode CC,AArch64CC::CondCode & CondCode,AArch64CC::CondCode & CondCode2,bool & Invert)1424 static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
1425 AArch64CC::CondCode &CondCode,
1426 AArch64CC::CondCode &CondCode2,
1427 bool &Invert) {
1428 Invert = false;
1429 switch (CC) {
1430 default:
1431 // Mostly the scalar mappings work fine.
1432 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1433 break;
1434 case ISD::SETUO:
1435 Invert = true;
1436 LLVM_FALLTHROUGH;
1437 case ISD::SETO:
1438 CondCode = AArch64CC::MI;
1439 CondCode2 = AArch64CC::GE;
1440 break;
1441 case ISD::SETUEQ:
1442 case ISD::SETULT:
1443 case ISD::SETULE:
1444 case ISD::SETUGT:
1445 case ISD::SETUGE:
1446 // All of the compare-mask comparisons are ordered, but we can switch
1447 // between the two by a double inversion. E.g. ULE == !OGT.
1448 Invert = true;
1449 changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
1450 break;
1451 }
1452 }
1453
isLegalArithImmed(uint64_t C)1454 static bool isLegalArithImmed(uint64_t C) {
1455 // Matches AArch64DAGToDAGISel::SelectArithImmed().
1456 bool IsLegal = (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
1457 LLVM_DEBUG(dbgs() << "Is imm " << C
1458 << " legal: " << (IsLegal ? "yes\n" : "no\n"));
1459 return IsLegal;
1460 }
1461
emitComparison(SDValue LHS,SDValue RHS,ISD::CondCode CC,const SDLoc & dl,SelectionDAG & DAG)1462 static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1463 const SDLoc &dl, SelectionDAG &DAG) {
1464 EVT VT = LHS.getValueType();
1465 const bool FullFP16 =
1466 static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
1467
1468 if (VT.isFloatingPoint()) {
1469 assert(VT != MVT::f128);
1470 if (VT == MVT::f16 && !FullFP16) {
1471 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
1472 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
1473 VT = MVT::f32;
1474 }
1475 return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
1476 }
1477
1478 // The CMP instruction is just an alias for SUBS, and representing it as
1479 // SUBS means that it's possible to get CSE with subtract operations.
1480 // A later phase can perform the optimization of setting the destination
1481 // register to WZR/XZR if it ends up being unused.
1482 unsigned Opcode = AArch64ISD::SUBS;
1483
1484 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
1485 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1486 // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
1487 // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
1488 // can be set differently by this operation. It comes down to whether
1489 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1490 // everything is fine. If not then the optimization is wrong. Thus general
1491 // comparisons are only valid if op2 != 0.
1492
1493 // So, finally, the only LLVM-native comparisons that don't mention C and V
1494 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1495 // the absence of information about op2.
1496 Opcode = AArch64ISD::ADDS;
1497 RHS = RHS.getOperand(1);
1498 } else if (LHS.getOpcode() == ISD::AND && isNullConstant(RHS) &&
1499 !isUnsignedIntSetCC(CC)) {
1500 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1501 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1502 // of the signed comparisons.
1503 Opcode = AArch64ISD::ANDS;
1504 RHS = LHS.getOperand(1);
1505 LHS = LHS.getOperand(0);
1506 }
1507
1508 return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS)
1509 .getValue(1);
1510 }
1511
1512 /// \defgroup AArch64CCMP CMP;CCMP matching
1513 ///
1514 /// These functions deal with the formation of CMP;CCMP;... sequences.
1515 /// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of
1516 /// a comparison. They set the NZCV flags to a predefined value if their
1517 /// predicate is false. This allows to express arbitrary conjunctions, for
1518 /// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B)))"
1519 /// expressed as:
1520 /// cmp A
1521 /// ccmp B, inv(CB), CA
1522 /// check for CB flags
1523 ///
1524 /// This naturally lets us implement chains of AND operations with SETCC
1525 /// operands. And we can even implement some other situations by transforming
1526 /// them:
1527 /// - We can implement (NEG SETCC) i.e. negating a single comparison by
1528 /// negating the flags used in a CCMP/FCCMP operations.
1529 /// - We can negate the result of a whole chain of CMP/CCMP/FCCMP operations
1530 /// by negating the flags we test for afterwards. i.e.
1531 /// NEG (CMP CCMP CCCMP ...) can be implemented.
1532 /// - Note that we can only ever negate all previously processed results.
1533 /// What we can not implement by flipping the flags to test is a negation
1534 /// of two sub-trees (because the negation affects all sub-trees emitted so
1535 /// far, so the 2nd sub-tree we emit would also affect the first).
1536 /// With those tools we can implement some OR operations:
1537 /// - (OR (SETCC A) (SETCC B)) can be implemented via:
1538 /// NEG (AND (NEG (SETCC A)) (NEG (SETCC B)))
1539 /// - After transforming OR to NEG/AND combinations we may be able to use NEG
1540 /// elimination rules from earlier to implement the whole thing as a
1541 /// CCMP/FCCMP chain.
1542 ///
1543 /// As complete example:
1544 /// or (or (setCA (cmp A)) (setCB (cmp B)))
1545 /// (and (setCC (cmp C)) (setCD (cmp D)))"
1546 /// can be reassociated to:
1547 /// or (and (setCC (cmp C)) setCD (cmp D))
1548 // (or (setCA (cmp A)) (setCB (cmp B)))
1549 /// can be transformed to:
1550 /// not (and (not (and (setCC (cmp C)) (setCD (cmp D))))
1551 /// (and (not (setCA (cmp A)) (not (setCB (cmp B))))))"
1552 /// which can be implemented as:
1553 /// cmp C
1554 /// ccmp D, inv(CD), CC
1555 /// ccmp A, CA, inv(CD)
1556 /// ccmp B, CB, inv(CA)
1557 /// check for CB flags
1558 ///
1559 /// A counterexample is "or (and A B) (and C D)" which translates to
1560 /// not (and (not (and (not A) (not B))) (not (and (not C) (not D)))), we
1561 /// can only implement 1 of the inner (not) operations, but not both!
1562 /// @{
1563
1564 /// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate.
emitConditionalComparison(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDValue CCOp,AArch64CC::CondCode Predicate,AArch64CC::CondCode OutCC,const SDLoc & DL,SelectionDAG & DAG)1565 static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS,
1566 ISD::CondCode CC, SDValue CCOp,
1567 AArch64CC::CondCode Predicate,
1568 AArch64CC::CondCode OutCC,
1569 const SDLoc &DL, SelectionDAG &DAG) {
1570 unsigned Opcode = 0;
1571 const bool FullFP16 =
1572 static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
1573
1574 if (LHS.getValueType().isFloatingPoint()) {
1575 assert(LHS.getValueType() != MVT::f128);
1576 if (LHS.getValueType() == MVT::f16 && !FullFP16) {
1577 LHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, LHS);
1578 RHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, RHS);
1579 }
1580 Opcode = AArch64ISD::FCCMP;
1581 } else if (RHS.getOpcode() == ISD::SUB) {
1582 SDValue SubOp0 = RHS.getOperand(0);
1583 if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1584 // See emitComparison() on why we can only do this for SETEQ and SETNE.
1585 Opcode = AArch64ISD::CCMN;
1586 RHS = RHS.getOperand(1);
1587 }
1588 }
1589 if (Opcode == 0)
1590 Opcode = AArch64ISD::CCMP;
1591
1592 SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC);
1593 AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
1594 unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
1595 SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
1596 return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp);
1597 }
1598
1599 /// Returns true if @p Val is a tree of AND/OR/SETCC operations that can be
1600 /// expressed as a conjunction. See \ref AArch64CCMP.
1601 /// \param CanNegate Set to true if we can negate the whole sub-tree just by
1602 /// changing the conditions on the SETCC tests.
1603 /// (this means we can call emitConjunctionRec() with
1604 /// Negate==true on this sub-tree)
1605 /// \param MustBeFirst Set to true if this subtree needs to be negated and we
1606 /// cannot do the negation naturally. We are required to
1607 /// emit the subtree first in this case.
1608 /// \param WillNegate Is true if are called when the result of this
1609 /// subexpression must be negated. This happens when the
1610 /// outer expression is an OR. We can use this fact to know
1611 /// that we have a double negation (or (or ...) ...) that
1612 /// can be implemented for free.
canEmitConjunction(const SDValue Val,bool & CanNegate,bool & MustBeFirst,bool WillNegate,unsigned Depth=0)1613 static bool canEmitConjunction(const SDValue Val, bool &CanNegate,
1614 bool &MustBeFirst, bool WillNegate,
1615 unsigned Depth = 0) {
1616 if (!Val.hasOneUse())
1617 return false;
1618 unsigned Opcode = Val->getOpcode();
1619 if (Opcode == ISD::SETCC) {
1620 if (Val->getOperand(0).getValueType() == MVT::f128)
1621 return false;
1622 CanNegate = true;
1623 MustBeFirst = false;
1624 return true;
1625 }
1626 // Protect against exponential runtime and stack overflow.
1627 if (Depth > 6)
1628 return false;
1629 if (Opcode == ISD::AND || Opcode == ISD::OR) {
1630 bool IsOR = Opcode == ISD::OR;
1631 SDValue O0 = Val->getOperand(0);
1632 SDValue O1 = Val->getOperand(1);
1633 bool CanNegateL;
1634 bool MustBeFirstL;
1635 if (!canEmitConjunction(O0, CanNegateL, MustBeFirstL, IsOR, Depth+1))
1636 return false;
1637 bool CanNegateR;
1638 bool MustBeFirstR;
1639 if (!canEmitConjunction(O1, CanNegateR, MustBeFirstR, IsOR, Depth+1))
1640 return false;
1641
1642 if (MustBeFirstL && MustBeFirstR)
1643 return false;
1644
1645 if (IsOR) {
1646 // For an OR expression we need to be able to naturally negate at least
1647 // one side or we cannot do the transformation at all.
1648 if (!CanNegateL && !CanNegateR)
1649 return false;
1650 // If we the result of the OR will be negated and we can naturally negate
1651 // the leafs, then this sub-tree as a whole negates naturally.
1652 CanNegate = WillNegate && CanNegateL && CanNegateR;
1653 // If we cannot naturally negate the whole sub-tree, then this must be
1654 // emitted first.
1655 MustBeFirst = !CanNegate;
1656 } else {
1657 assert(Opcode == ISD::AND && "Must be OR or AND");
1658 // We cannot naturally negate an AND operation.
1659 CanNegate = false;
1660 MustBeFirst = MustBeFirstL || MustBeFirstR;
1661 }
1662 return true;
1663 }
1664 return false;
1665 }
1666
1667 /// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
1668 /// of CCMP/CFCMP ops. See @ref AArch64CCMP.
1669 /// Tries to transform the given i1 producing node @p Val to a series compare
1670 /// and conditional compare operations. @returns an NZCV flags producing node
1671 /// and sets @p OutCC to the flags that should be tested or returns SDValue() if
1672 /// transformation was not possible.
1673 /// \p Negate is true if we want this sub-tree being negated just by changing
1674 /// SETCC conditions.
emitConjunctionRec(SelectionDAG & DAG,SDValue Val,AArch64CC::CondCode & OutCC,bool Negate,SDValue CCOp,AArch64CC::CondCode Predicate)1675 static SDValue emitConjunctionRec(SelectionDAG &DAG, SDValue Val,
1676 AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp,
1677 AArch64CC::CondCode Predicate) {
1678 // We're at a tree leaf, produce a conditional comparison operation.
1679 unsigned Opcode = Val->getOpcode();
1680 if (Opcode == ISD::SETCC) {
1681 SDValue LHS = Val->getOperand(0);
1682 SDValue RHS = Val->getOperand(1);
1683 ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get();
1684 bool isInteger = LHS.getValueType().isInteger();
1685 if (Negate)
1686 CC = getSetCCInverse(CC, isInteger);
1687 SDLoc DL(Val);
1688 // Determine OutCC and handle FP special case.
1689 if (isInteger) {
1690 OutCC = changeIntCCToAArch64CC(CC);
1691 } else {
1692 assert(LHS.getValueType().isFloatingPoint());
1693 AArch64CC::CondCode ExtraCC;
1694 changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC);
1695 // Some floating point conditions can't be tested with a single condition
1696 // code. Construct an additional comparison in this case.
1697 if (ExtraCC != AArch64CC::AL) {
1698 SDValue ExtraCmp;
1699 if (!CCOp.getNode())
1700 ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG);
1701 else
1702 ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate,
1703 ExtraCC, DL, DAG);
1704 CCOp = ExtraCmp;
1705 Predicate = ExtraCC;
1706 }
1707 }
1708
1709 // Produce a normal comparison if we are first in the chain
1710 if (!CCOp)
1711 return emitComparison(LHS, RHS, CC, DL, DAG);
1712 // Otherwise produce a ccmp.
1713 return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL,
1714 DAG);
1715 }
1716 assert(Val->hasOneUse() && "Valid conjunction/disjunction tree");
1717
1718 bool IsOR = Opcode == ISD::OR;
1719
1720 SDValue LHS = Val->getOperand(0);
1721 bool CanNegateL;
1722 bool MustBeFirstL;
1723 bool ValidL = canEmitConjunction(LHS, CanNegateL, MustBeFirstL, IsOR);
1724 assert(ValidL && "Valid conjunction/disjunction tree");
1725 (void)ValidL;
1726
1727 SDValue RHS = Val->getOperand(1);
1728 bool CanNegateR;
1729 bool MustBeFirstR;
1730 bool ValidR = canEmitConjunction(RHS, CanNegateR, MustBeFirstR, IsOR);
1731 assert(ValidR && "Valid conjunction/disjunction tree");
1732 (void)ValidR;
1733
1734 // Swap sub-tree that must come first to the right side.
1735 if (MustBeFirstL) {
1736 assert(!MustBeFirstR && "Valid conjunction/disjunction tree");
1737 std::swap(LHS, RHS);
1738 std::swap(CanNegateL, CanNegateR);
1739 std::swap(MustBeFirstL, MustBeFirstR);
1740 }
1741
1742 bool NegateR;
1743 bool NegateAfterR;
1744 bool NegateL;
1745 bool NegateAfterAll;
1746 if (Opcode == ISD::OR) {
1747 // Swap the sub-tree that we can negate naturally to the left.
1748 if (!CanNegateL) {
1749 assert(CanNegateR && "at least one side must be negatable");
1750 assert(!MustBeFirstR && "invalid conjunction/disjunction tree");
1751 assert(!Negate);
1752 std::swap(LHS, RHS);
1753 NegateR = false;
1754 NegateAfterR = true;
1755 } else {
1756 // Negate the left sub-tree if possible, otherwise negate the result.
1757 NegateR = CanNegateR;
1758 NegateAfterR = !CanNegateR;
1759 }
1760 NegateL = true;
1761 NegateAfterAll = !Negate;
1762 } else {
1763 assert(Opcode == ISD::AND && "Valid conjunction/disjunction tree");
1764 assert(!Negate && "Valid conjunction/disjunction tree");
1765
1766 NegateL = false;
1767 NegateR = false;
1768 NegateAfterR = false;
1769 NegateAfterAll = false;
1770 }
1771
1772 // Emit sub-trees.
1773 AArch64CC::CondCode RHSCC;
1774 SDValue CmpR = emitConjunctionRec(DAG, RHS, RHSCC, NegateR, CCOp, Predicate);
1775 if (NegateAfterR)
1776 RHSCC = AArch64CC::getInvertedCondCode(RHSCC);
1777 SDValue CmpL = emitConjunctionRec(DAG, LHS, OutCC, NegateL, CmpR, RHSCC);
1778 if (NegateAfterAll)
1779 OutCC = AArch64CC::getInvertedCondCode(OutCC);
1780 return CmpL;
1781 }
1782
1783 /// Emit expression as a conjunction (a series of CCMP/CFCMP ops).
1784 /// In some cases this is even possible with OR operations in the expression.
1785 /// See \ref AArch64CCMP.
1786 /// \see emitConjunctionRec().
emitConjunction(SelectionDAG & DAG,SDValue Val,AArch64CC::CondCode & OutCC)1787 static SDValue emitConjunction(SelectionDAG &DAG, SDValue Val,
1788 AArch64CC::CondCode &OutCC) {
1789 bool DummyCanNegate;
1790 bool DummyMustBeFirst;
1791 if (!canEmitConjunction(Val, DummyCanNegate, DummyMustBeFirst, false))
1792 return SDValue();
1793
1794 return emitConjunctionRec(DAG, Val, OutCC, false, SDValue(), AArch64CC::AL);
1795 }
1796
1797 /// @}
1798
getAArch64Cmp(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDValue & AArch64cc,SelectionDAG & DAG,const SDLoc & dl)1799 static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1800 SDValue &AArch64cc, SelectionDAG &DAG,
1801 const SDLoc &dl) {
1802 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1803 EVT VT = RHS.getValueType();
1804 uint64_t C = RHSC->getZExtValue();
1805 if (!isLegalArithImmed(C)) {
1806 // Constant does not fit, try adjusting it by one?
1807 switch (CC) {
1808 default:
1809 break;
1810 case ISD::SETLT:
1811 case ISD::SETGE:
1812 if ((VT == MVT::i32 && C != 0x80000000 &&
1813 isLegalArithImmed((uint32_t)(C - 1))) ||
1814 (VT == MVT::i64 && C != 0x80000000ULL &&
1815 isLegalArithImmed(C - 1ULL))) {
1816 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1817 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1818 RHS = DAG.getConstant(C, dl, VT);
1819 }
1820 break;
1821 case ISD::SETULT:
1822 case ISD::SETUGE:
1823 if ((VT == MVT::i32 && C != 0 &&
1824 isLegalArithImmed((uint32_t)(C - 1))) ||
1825 (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1826 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1827 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1828 RHS = DAG.getConstant(C, dl, VT);
1829 }
1830 break;
1831 case ISD::SETLE:
1832 case ISD::SETGT:
1833 if ((VT == MVT::i32 && C != INT32_MAX &&
1834 isLegalArithImmed((uint32_t)(C + 1))) ||
1835 (VT == MVT::i64 && C != INT64_MAX &&
1836 isLegalArithImmed(C + 1ULL))) {
1837 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1838 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1839 RHS = DAG.getConstant(C, dl, VT);
1840 }
1841 break;
1842 case ISD::SETULE:
1843 case ISD::SETUGT:
1844 if ((VT == MVT::i32 && C != UINT32_MAX &&
1845 isLegalArithImmed((uint32_t)(C + 1))) ||
1846 (VT == MVT::i64 && C != UINT64_MAX &&
1847 isLegalArithImmed(C + 1ULL))) {
1848 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1849 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1850 RHS = DAG.getConstant(C, dl, VT);
1851 }
1852 break;
1853 }
1854 }
1855 }
1856 SDValue Cmp;
1857 AArch64CC::CondCode AArch64CC;
1858 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
1859 const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS);
1860
1861 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
1862 // For the i8 operand, the largest immediate is 255, so this can be easily
1863 // encoded in the compare instruction. For the i16 operand, however, the
1864 // largest immediate cannot be encoded in the compare.
1865 // Therefore, use a sign extending load and cmn to avoid materializing the
1866 // -1 constant. For example,
1867 // movz w1, #65535
1868 // ldrh w0, [x0, #0]
1869 // cmp w0, w1
1870 // >
1871 // ldrsh w0, [x0, #0]
1872 // cmn w0, #1
1873 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
1874 // if and only if (sext LHS) == (sext RHS). The checks are in place to
1875 // ensure both the LHS and RHS are truly zero extended and to make sure the
1876 // transformation is profitable.
1877 if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) &&
1878 cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
1879 cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
1880 LHS.getNode()->hasNUsesOfValue(1, 0)) {
1881 int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
1882 if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
1883 SDValue SExt =
1884 DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
1885 DAG.getValueType(MVT::i16));
1886 Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl,
1887 RHS.getValueType()),
1888 CC, dl, DAG);
1889 AArch64CC = changeIntCCToAArch64CC(CC);
1890 }
1891 }
1892
1893 if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) {
1894 if ((Cmp = emitConjunction(DAG, LHS, AArch64CC))) {
1895 if ((CC == ISD::SETNE) ^ RHSC->isNullValue())
1896 AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
1897 }
1898 }
1899 }
1900
1901 if (!Cmp) {
1902 Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
1903 AArch64CC = changeIntCCToAArch64CC(CC);
1904 }
1905 AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC);
1906 return Cmp;
1907 }
1908
1909 static std::pair<SDValue, SDValue>
getAArch64XALUOOp(AArch64CC::CondCode & CC,SDValue Op,SelectionDAG & DAG)1910 getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
1911 assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
1912 "Unsupported value type");
1913 SDValue Value, Overflow;
1914 SDLoc DL(Op);
1915 SDValue LHS = Op.getOperand(0);
1916 SDValue RHS = Op.getOperand(1);
1917 unsigned Opc = 0;
1918 switch (Op.getOpcode()) {
1919 default:
1920 llvm_unreachable("Unknown overflow instruction!");
1921 case ISD::SADDO:
1922 Opc = AArch64ISD::ADDS;
1923 CC = AArch64CC::VS;
1924 break;
1925 case ISD::UADDO:
1926 Opc = AArch64ISD::ADDS;
1927 CC = AArch64CC::HS;
1928 break;
1929 case ISD::SSUBO:
1930 Opc = AArch64ISD::SUBS;
1931 CC = AArch64CC::VS;
1932 break;
1933 case ISD::USUBO:
1934 Opc = AArch64ISD::SUBS;
1935 CC = AArch64CC::LO;
1936 break;
1937 // Multiply needs a little bit extra work.
1938 case ISD::SMULO:
1939 case ISD::UMULO: {
1940 CC = AArch64CC::NE;
1941 bool IsSigned = Op.getOpcode() == ISD::SMULO;
1942 if (Op.getValueType() == MVT::i32) {
1943 unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1944 // For a 32 bit multiply with overflow check we want the instruction
1945 // selector to generate a widening multiply (SMADDL/UMADDL). For that we
1946 // need to generate the following pattern:
1947 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
1948 LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
1949 RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
1950 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1951 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
1952 DAG.getConstant(0, DL, MVT::i64));
1953 // On AArch64 the upper 32 bits are always zero extended for a 32 bit
1954 // operation. We need to clear out the upper 32 bits, because we used a
1955 // widening multiply that wrote all 64 bits. In the end this should be a
1956 // noop.
1957 Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
1958 if (IsSigned) {
1959 // The signed overflow check requires more than just a simple check for
1960 // any bit set in the upper 32 bits of the result. These bits could be
1961 // just the sign bits of a negative number. To perform the overflow
1962 // check we have to arithmetic shift right the 32nd bit of the result by
1963 // 31 bits. Then we compare the result to the upper 32 bits.
1964 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
1965 DAG.getConstant(32, DL, MVT::i64));
1966 UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
1967 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
1968 DAG.getConstant(31, DL, MVT::i64));
1969 // It is important that LowerBits is last, otherwise the arithmetic
1970 // shift will not be folded into the compare (SUBS).
1971 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
1972 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1973 .getValue(1);
1974 } else {
1975 // The overflow check for unsigned multiply is easy. We only need to
1976 // check if any of the upper 32 bits are set. This can be done with a
1977 // CMP (shifted register). For that we need to generate the following
1978 // pattern:
1979 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
1980 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
1981 DAG.getConstant(32, DL, MVT::i64));
1982 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1983 Overflow =
1984 DAG.getNode(AArch64ISD::SUBS, DL, VTs,
1985 DAG.getConstant(0, DL, MVT::i64),
1986 UpperBits).getValue(1);
1987 }
1988 break;
1989 }
1990 assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
1991 // For the 64 bit multiply
1992 Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1993 if (IsSigned) {
1994 SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
1995 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
1996 DAG.getConstant(63, DL, MVT::i64));
1997 // It is important that LowerBits is last, otherwise the arithmetic
1998 // shift will not be folded into the compare (SUBS).
1999 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
2000 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
2001 .getValue(1);
2002 } else {
2003 SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
2004 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
2005 Overflow =
2006 DAG.getNode(AArch64ISD::SUBS, DL, VTs,
2007 DAG.getConstant(0, DL, MVT::i64),
2008 UpperBits).getValue(1);
2009 }
2010 break;
2011 }
2012 } // switch (...)
2013
2014 if (Opc) {
2015 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
2016
2017 // Emit the AArch64 operation with overflow check.
2018 Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
2019 Overflow = Value.getValue(1);
2020 }
2021 return std::make_pair(Value, Overflow);
2022 }
2023
LowerF128Call(SDValue Op,SelectionDAG & DAG,RTLIB::Libcall Call) const2024 SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
2025 RTLIB::Libcall Call) const {
2026 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
2027 return makeLibCall(DAG, Call, MVT::f128, Ops, false, SDLoc(Op)).first;
2028 }
2029
2030 // Returns true if the given Op is the overflow flag result of an overflow
2031 // intrinsic operation.
isOverflowIntrOpRes(SDValue Op)2032 static bool isOverflowIntrOpRes(SDValue Op) {
2033 unsigned Opc = Op.getOpcode();
2034 return (Op.getResNo() == 1 &&
2035 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
2036 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
2037 }
2038
LowerXOR(SDValue Op,SelectionDAG & DAG)2039 static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
2040 SDValue Sel = Op.getOperand(0);
2041 SDValue Other = Op.getOperand(1);
2042 SDLoc dl(Sel);
2043
2044 // If the operand is an overflow checking operation, invert the condition
2045 // code and kill the Not operation. I.e., transform:
2046 // (xor (overflow_op_bool, 1))
2047 // -->
2048 // (csel 1, 0, invert(cc), overflow_op_bool)
2049 // ... which later gets transformed to just a cset instruction with an
2050 // inverted condition code, rather than a cset + eor sequence.
2051 if (isOneConstant(Other) && isOverflowIntrOpRes(Sel)) {
2052 // Only lower legal XALUO ops.
2053 if (!DAG.getTargetLoweringInfo().isTypeLegal(Sel->getValueType(0)))
2054 return SDValue();
2055
2056 SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
2057 SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
2058 AArch64CC::CondCode CC;
2059 SDValue Value, Overflow;
2060 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Sel.getValue(0), DAG);
2061 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
2062 return DAG.getNode(AArch64ISD::CSEL, dl, Op.getValueType(), TVal, FVal,
2063 CCVal, Overflow);
2064 }
2065 // If neither operand is a SELECT_CC, give up.
2066 if (Sel.getOpcode() != ISD::SELECT_CC)
2067 std::swap(Sel, Other);
2068 if (Sel.getOpcode() != ISD::SELECT_CC)
2069 return Op;
2070
2071 // The folding we want to perform is:
2072 // (xor x, (select_cc a, b, cc, 0, -1) )
2073 // -->
2074 // (csel x, (xor x, -1), cc ...)
2075 //
2076 // The latter will get matched to a CSINV instruction.
2077
2078 ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
2079 SDValue LHS = Sel.getOperand(0);
2080 SDValue RHS = Sel.getOperand(1);
2081 SDValue TVal = Sel.getOperand(2);
2082 SDValue FVal = Sel.getOperand(3);
2083
2084 // FIXME: This could be generalized to non-integer comparisons.
2085 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
2086 return Op;
2087
2088 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
2089 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
2090
2091 // The values aren't constants, this isn't the pattern we're looking for.
2092 if (!CFVal || !CTVal)
2093 return Op;
2094
2095 // We can commute the SELECT_CC by inverting the condition. This
2096 // might be needed to make this fit into a CSINV pattern.
2097 if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
2098 std::swap(TVal, FVal);
2099 std::swap(CTVal, CFVal);
2100 CC = ISD::getSetCCInverse(CC, true);
2101 }
2102
2103 // If the constants line up, perform the transform!
2104 if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
2105 SDValue CCVal;
2106 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
2107
2108 FVal = Other;
2109 TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
2110 DAG.getConstant(-1ULL, dl, Other.getValueType()));
2111
2112 return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
2113 CCVal, Cmp);
2114 }
2115
2116 return Op;
2117 }
2118
LowerADDC_ADDE_SUBC_SUBE(SDValue Op,SelectionDAG & DAG)2119 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
2120 EVT VT = Op.getValueType();
2121
2122 // Let legalize expand this if it isn't a legal type yet.
2123 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
2124 return SDValue();
2125
2126 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
2127
2128 unsigned Opc;
2129 bool ExtraOp = false;
2130 switch (Op.getOpcode()) {
2131 default:
2132 llvm_unreachable("Invalid code");
2133 case ISD::ADDC:
2134 Opc = AArch64ISD::ADDS;
2135 break;
2136 case ISD::SUBC:
2137 Opc = AArch64ISD::SUBS;
2138 break;
2139 case ISD::ADDE:
2140 Opc = AArch64ISD::ADCS;
2141 ExtraOp = true;
2142 break;
2143 case ISD::SUBE:
2144 Opc = AArch64ISD::SBCS;
2145 ExtraOp = true;
2146 break;
2147 }
2148
2149 if (!ExtraOp)
2150 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
2151 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
2152 Op.getOperand(2));
2153 }
2154
LowerXALUO(SDValue Op,SelectionDAG & DAG)2155 static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
2156 // Let legalize expand this if it isn't a legal type yet.
2157 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
2158 return SDValue();
2159
2160 SDLoc dl(Op);
2161 AArch64CC::CondCode CC;
2162 // The actual operation that sets the overflow or carry flag.
2163 SDValue Value, Overflow;
2164 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
2165
2166 // We use 0 and 1 as false and true values.
2167 SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
2168 SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
2169
2170 // We use an inverted condition, because the conditional select is inverted
2171 // too. This will allow it to be selected to a single instruction:
2172 // CSINC Wd, WZR, WZR, invert(cond).
2173 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
2174 Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal,
2175 CCVal, Overflow);
2176
2177 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
2178 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
2179 }
2180
2181 // Prefetch operands are:
2182 // 1: Address to prefetch
2183 // 2: bool isWrite
2184 // 3: int locality (0 = no locality ... 3 = extreme locality)
2185 // 4: bool isDataCache
LowerPREFETCH(SDValue Op,SelectionDAG & DAG)2186 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
2187 SDLoc DL(Op);
2188 unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2189 unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
2190 unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2191
2192 bool IsStream = !Locality;
2193 // When the locality number is set
2194 if (Locality) {
2195 // The front-end should have filtered out the out-of-range values
2196 assert(Locality <= 3 && "Prefetch locality out-of-range");
2197 // The locality degree is the opposite of the cache speed.
2198 // Put the number the other way around.
2199 // The encoding starts at 0 for level 1
2200 Locality = 3 - Locality;
2201 }
2202
2203 // built the mask value encoding the expected behavior.
2204 unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
2205 (!IsData << 3) | // IsDataCache bit
2206 (Locality << 1) | // Cache level bits
2207 (unsigned)IsStream; // Stream bit
2208 return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
2209 DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1));
2210 }
2211
LowerFP_EXTEND(SDValue Op,SelectionDAG & DAG) const2212 SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
2213 SelectionDAG &DAG) const {
2214 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
2215
2216 RTLIB::Libcall LC;
2217 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
2218
2219 return LowerF128Call(Op, DAG, LC);
2220 }
2221
LowerFP_ROUND(SDValue Op,SelectionDAG & DAG) const2222 SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
2223 SelectionDAG &DAG) const {
2224 if (Op.getOperand(0).getValueType() != MVT::f128) {
2225 // It's legal except when f128 is involved
2226 return Op;
2227 }
2228
2229 RTLIB::Libcall LC;
2230 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
2231
2232 // FP_ROUND node has a second operand indicating whether it is known to be
2233 // precise. That doesn't take part in the LibCall so we can't directly use
2234 // LowerF128Call.
2235 SDValue SrcVal = Op.getOperand(0);
2236 return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
2237 SDLoc(Op)).first;
2238 }
2239
LowerVectorFP_TO_INT(SDValue Op,SelectionDAG & DAG)2240 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
2241 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
2242 // Any additional optimization in this function should be recorded
2243 // in the cost tables.
2244 EVT InVT = Op.getOperand(0).getValueType();
2245 EVT VT = Op.getValueType();
2246 unsigned NumElts = InVT.getVectorNumElements();
2247
2248 // f16 vectors are promoted to f32 before a conversion.
2249 if (InVT.getVectorElementType() == MVT::f16) {
2250 MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts);
2251 SDLoc dl(Op);
2252 return DAG.getNode(
2253 Op.getOpcode(), dl, Op.getValueType(),
2254 DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0)));
2255 }
2256
2257 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
2258 SDLoc dl(Op);
2259 SDValue Cv =
2260 DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
2261 Op.getOperand(0));
2262 return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
2263 }
2264
2265 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
2266 SDLoc dl(Op);
2267 MVT ExtVT =
2268 MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
2269 VT.getVectorNumElements());
2270 SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
2271 return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
2272 }
2273
2274 // Type changing conversions are illegal.
2275 return Op;
2276 }
2277
LowerFP_TO_INT(SDValue Op,SelectionDAG & DAG) const2278 SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
2279 SelectionDAG &DAG) const {
2280 if (Op.getOperand(0).getValueType().isVector())
2281 return LowerVectorFP_TO_INT(Op, DAG);
2282
2283 // f16 conversions are promoted to f32 when full fp16 is not supported.
2284 if (Op.getOperand(0).getValueType() == MVT::f16 &&
2285 !Subtarget->hasFullFP16()) {
2286 SDLoc dl(Op);
2287 return DAG.getNode(
2288 Op.getOpcode(), dl, Op.getValueType(),
2289 DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Op.getOperand(0)));
2290 }
2291
2292 if (Op.getOperand(0).getValueType() != MVT::f128) {
2293 // It's legal except when f128 is involved
2294 return Op;
2295 }
2296
2297 RTLIB::Libcall LC;
2298 if (Op.getOpcode() == ISD::FP_TO_SINT)
2299 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
2300 else
2301 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
2302
2303 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
2304 return makeLibCall(DAG, LC, Op.getValueType(), Ops, false, SDLoc(Op)).first;
2305 }
2306
LowerVectorINT_TO_FP(SDValue Op,SelectionDAG & DAG)2307 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2308 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
2309 // Any additional optimization in this function should be recorded
2310 // in the cost tables.
2311 EVT VT = Op.getValueType();
2312 SDLoc dl(Op);
2313 SDValue In = Op.getOperand(0);
2314 EVT InVT = In.getValueType();
2315
2316 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
2317 MVT CastVT =
2318 MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
2319 InVT.getVectorNumElements());
2320 In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
2321 return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl));
2322 }
2323
2324 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
2325 unsigned CastOpc =
2326 Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2327 EVT CastVT = VT.changeVectorElementTypeToInteger();
2328 In = DAG.getNode(CastOpc, dl, CastVT, In);
2329 return DAG.getNode(Op.getOpcode(), dl, VT, In);
2330 }
2331
2332 return Op;
2333 }
2334
LowerINT_TO_FP(SDValue Op,SelectionDAG & DAG) const2335 SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
2336 SelectionDAG &DAG) const {
2337 if (Op.getValueType().isVector())
2338 return LowerVectorINT_TO_FP(Op, DAG);
2339
2340 // f16 conversions are promoted to f32 when full fp16 is not supported.
2341 if (Op.getValueType() == MVT::f16 &&
2342 !Subtarget->hasFullFP16()) {
2343 SDLoc dl(Op);
2344 return DAG.getNode(
2345 ISD::FP_ROUND, dl, MVT::f16,
2346 DAG.getNode(Op.getOpcode(), dl, MVT::f32, Op.getOperand(0)),
2347 DAG.getIntPtrConstant(0, dl));
2348 }
2349
2350 // i128 conversions are libcalls.
2351 if (Op.getOperand(0).getValueType() == MVT::i128)
2352 return SDValue();
2353
2354 // Other conversions are legal, unless it's to the completely software-based
2355 // fp128.
2356 if (Op.getValueType() != MVT::f128)
2357 return Op;
2358
2359 RTLIB::Libcall LC;
2360 if (Op.getOpcode() == ISD::SINT_TO_FP)
2361 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2362 else
2363 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2364
2365 return LowerF128Call(Op, DAG, LC);
2366 }
2367
LowerFSINCOS(SDValue Op,SelectionDAG & DAG) const2368 SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
2369 SelectionDAG &DAG) const {
2370 // For iOS, we want to call an alternative entry point: __sincos_stret,
2371 // which returns the values in two S / D registers.
2372 SDLoc dl(Op);
2373 SDValue Arg = Op.getOperand(0);
2374 EVT ArgVT = Arg.getValueType();
2375 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2376
2377 ArgListTy Args;
2378 ArgListEntry Entry;
2379
2380 Entry.Node = Arg;
2381 Entry.Ty = ArgTy;
2382 Entry.IsSExt = false;
2383 Entry.IsZExt = false;
2384 Args.push_back(Entry);
2385
2386 RTLIB::Libcall LC = ArgVT == MVT::f64 ? RTLIB::SINCOS_STRET_F64
2387 : RTLIB::SINCOS_STRET_F32;
2388 const char *LibcallName = getLibcallName(LC);
2389 SDValue Callee =
2390 DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout()));
2391
2392 StructType *RetTy = StructType::get(ArgTy, ArgTy);
2393 TargetLowering::CallLoweringInfo CLI(DAG);
2394 CLI.setDebugLoc(dl)
2395 .setChain(DAG.getEntryNode())
2396 .setLibCallee(CallingConv::Fast, RetTy, Callee, std::move(Args));
2397
2398 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2399 return CallResult.first;
2400 }
2401
LowerBITCAST(SDValue Op,SelectionDAG & DAG)2402 static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
2403 if (Op.getValueType() != MVT::f16)
2404 return SDValue();
2405
2406 assert(Op.getOperand(0).getValueType() == MVT::i16);
2407 SDLoc DL(Op);
2408
2409 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
2410 Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
2411 return SDValue(
2412 DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
2413 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
2414 0);
2415 }
2416
getExtensionTo64Bits(const EVT & OrigVT)2417 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
2418 if (OrigVT.getSizeInBits() >= 64)
2419 return OrigVT;
2420
2421 assert(OrigVT.isSimple() && "Expecting a simple value type");
2422
2423 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
2424 switch (OrigSimpleTy) {
2425 default: llvm_unreachable("Unexpected Vector Type");
2426 case MVT::v2i8:
2427 case MVT::v2i16:
2428 return MVT::v2i32;
2429 case MVT::v4i8:
2430 return MVT::v4i16;
2431 }
2432 }
2433
addRequiredExtensionForVectorMULL(SDValue N,SelectionDAG & DAG,const EVT & OrigTy,const EVT & ExtTy,unsigned ExtOpcode)2434 static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
2435 const EVT &OrigTy,
2436 const EVT &ExtTy,
2437 unsigned ExtOpcode) {
2438 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
2439 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
2440 // 64-bits we need to insert a new extension so that it will be 64-bits.
2441 assert(ExtTy.is128BitVector() && "Unexpected extension size");
2442 if (OrigTy.getSizeInBits() >= 64)
2443 return N;
2444
2445 // Must extend size to at least 64 bits to be used as an operand for VMULL.
2446 EVT NewVT = getExtensionTo64Bits(OrigTy);
2447
2448 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
2449 }
2450
isExtendedBUILD_VECTOR(SDNode * N,SelectionDAG & DAG,bool isSigned)2451 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
2452 bool isSigned) {
2453 EVT VT = N->getValueType(0);
2454
2455 if (N->getOpcode() != ISD::BUILD_VECTOR)
2456 return false;
2457
2458 for (const SDValue &Elt : N->op_values()) {
2459 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
2460 unsigned EltSize = VT.getScalarSizeInBits();
2461 unsigned HalfSize = EltSize / 2;
2462 if (isSigned) {
2463 if (!isIntN(HalfSize, C->getSExtValue()))
2464 return false;
2465 } else {
2466 if (!isUIntN(HalfSize, C->getZExtValue()))
2467 return false;
2468 }
2469 continue;
2470 }
2471 return false;
2472 }
2473
2474 return true;
2475 }
2476
skipExtensionForVectorMULL(SDNode * N,SelectionDAG & DAG)2477 static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
2478 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
2479 return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
2480 N->getOperand(0)->getValueType(0),
2481 N->getValueType(0),
2482 N->getOpcode());
2483
2484 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
2485 EVT VT = N->getValueType(0);
2486 SDLoc dl(N);
2487 unsigned EltSize = VT.getScalarSizeInBits() / 2;
2488 unsigned NumElts = VT.getVectorNumElements();
2489 MVT TruncVT = MVT::getIntegerVT(EltSize);
2490 SmallVector<SDValue, 8> Ops;
2491 for (unsigned i = 0; i != NumElts; ++i) {
2492 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
2493 const APInt &CInt = C->getAPIntValue();
2494 // Element types smaller than 32 bits are not legal, so use i32 elements.
2495 // The values are implicitly truncated so sext vs. zext doesn't matter.
2496 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
2497 }
2498 return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
2499 }
2500
isSignExtended(SDNode * N,SelectionDAG & DAG)2501 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
2502 return N->getOpcode() == ISD::SIGN_EXTEND ||
2503 isExtendedBUILD_VECTOR(N, DAG, true);
2504 }
2505
isZeroExtended(SDNode * N,SelectionDAG & DAG)2506 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
2507 return N->getOpcode() == ISD::ZERO_EXTEND ||
2508 isExtendedBUILD_VECTOR(N, DAG, false);
2509 }
2510
isAddSubSExt(SDNode * N,SelectionDAG & DAG)2511 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
2512 unsigned Opcode = N->getOpcode();
2513 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2514 SDNode *N0 = N->getOperand(0).getNode();
2515 SDNode *N1 = N->getOperand(1).getNode();
2516 return N0->hasOneUse() && N1->hasOneUse() &&
2517 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
2518 }
2519 return false;
2520 }
2521
isAddSubZExt(SDNode * N,SelectionDAG & DAG)2522 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
2523 unsigned Opcode = N->getOpcode();
2524 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2525 SDNode *N0 = N->getOperand(0).getNode();
2526 SDNode *N1 = N->getOperand(1).getNode();
2527 return N0->hasOneUse() && N1->hasOneUse() &&
2528 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
2529 }
2530 return false;
2531 }
2532
LowerFLT_ROUNDS_(SDValue Op,SelectionDAG & DAG) const2533 SDValue AArch64TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
2534 SelectionDAG &DAG) const {
2535 // The rounding mode is in bits 23:22 of the FPSCR.
2536 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
2537 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
2538 // so that the shift + and get folded into a bitfield extract.
2539 SDLoc dl(Op);
2540
2541 SDValue FPCR_64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i64,
2542 DAG.getConstant(Intrinsic::aarch64_get_fpcr, dl,
2543 MVT::i64));
2544 SDValue FPCR_32 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, FPCR_64);
2545 SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPCR_32,
2546 DAG.getConstant(1U << 22, dl, MVT::i32));
2547 SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
2548 DAG.getConstant(22, dl, MVT::i32));
2549 return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
2550 DAG.getConstant(3, dl, MVT::i32));
2551 }
2552
LowerMUL(SDValue Op,SelectionDAG & DAG)2553 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
2554 // Multiplications are only custom-lowered for 128-bit vectors so that
2555 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
2556 EVT VT = Op.getValueType();
2557 assert(VT.is128BitVector() && VT.isInteger() &&
2558 "unexpected type for custom-lowering ISD::MUL");
2559 SDNode *N0 = Op.getOperand(0).getNode();
2560 SDNode *N1 = Op.getOperand(1).getNode();
2561 unsigned NewOpc = 0;
2562 bool isMLA = false;
2563 bool isN0SExt = isSignExtended(N0, DAG);
2564 bool isN1SExt = isSignExtended(N1, DAG);
2565 if (isN0SExt && isN1SExt)
2566 NewOpc = AArch64ISD::SMULL;
2567 else {
2568 bool isN0ZExt = isZeroExtended(N0, DAG);
2569 bool isN1ZExt = isZeroExtended(N1, DAG);
2570 if (isN0ZExt && isN1ZExt)
2571 NewOpc = AArch64ISD::UMULL;
2572 else if (isN1SExt || isN1ZExt) {
2573 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
2574 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
2575 if (isN1SExt && isAddSubSExt(N0, DAG)) {
2576 NewOpc = AArch64ISD::SMULL;
2577 isMLA = true;
2578 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
2579 NewOpc = AArch64ISD::UMULL;
2580 isMLA = true;
2581 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
2582 std::swap(N0, N1);
2583 NewOpc = AArch64ISD::UMULL;
2584 isMLA = true;
2585 }
2586 }
2587
2588 if (!NewOpc) {
2589 if (VT == MVT::v2i64)
2590 // Fall through to expand this. It is not legal.
2591 return SDValue();
2592 else
2593 // Other vector multiplications are legal.
2594 return Op;
2595 }
2596 }
2597
2598 // Legalize to a S/UMULL instruction
2599 SDLoc DL(Op);
2600 SDValue Op0;
2601 SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
2602 if (!isMLA) {
2603 Op0 = skipExtensionForVectorMULL(N0, DAG);
2604 assert(Op0.getValueType().is64BitVector() &&
2605 Op1.getValueType().is64BitVector() &&
2606 "unexpected types for extended operands to VMULL");
2607 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
2608 }
2609 // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
2610 // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
2611 // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
2612 SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
2613 SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
2614 EVT Op1VT = Op1.getValueType();
2615 return DAG.getNode(N0->getOpcode(), DL, VT,
2616 DAG.getNode(NewOpc, DL, VT,
2617 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
2618 DAG.getNode(NewOpc, DL, VT,
2619 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
2620 }
2621
2622 // Lower vector multiply high (ISD::MULHS and ISD::MULHU).
LowerMULH(SDValue Op,SelectionDAG & DAG)2623 static SDValue LowerMULH(SDValue Op, SelectionDAG &DAG) {
2624 // Multiplications are only custom-lowered for 128-bit vectors so that
2625 // {S,U}MULL{2} can be detected. Otherwise v2i64 multiplications are not
2626 // legal.
2627 EVT VT = Op.getValueType();
2628 assert(VT.is128BitVector() && VT.isInteger() &&
2629 "unexpected type for custom-lowering ISD::MULH{U,S}");
2630
2631 SDValue V0 = Op.getOperand(0);
2632 SDValue V1 = Op.getOperand(1);
2633
2634 SDLoc DL(Op);
2635
2636 EVT ExtractVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
2637
2638 // We turn (V0 mulhs/mulhu V1) to:
2639 //
2640 // (uzp2 (smull (extract_subvector (ExtractVT V128:V0, (i64 0)),
2641 // (extract_subvector (ExtractVT V128:V1, (i64 0))))),
2642 // (smull (extract_subvector (ExtractVT V128:V0, (i64 VMull2Idx)),
2643 // (extract_subvector (ExtractVT V128:V2, (i64 VMull2Idx))))))
2644 //
2645 // Where ExtractVT is a subvector with half number of elements, and
2646 // VMullIdx2 is the index of the middle element (the high part).
2647 //
2648 // The vector hight part extract and multiply will be matched against
2649 // {S,U}MULL{v16i8_v8i16,v8i16_v4i32,v4i32_v2i64} which in turn will
2650 // issue a {s}mull2 instruction.
2651 //
2652 // This basically multiply the lower subvector with '{s,u}mull', the high
2653 // subvector with '{s,u}mull2', and shuffle both results high part in
2654 // resulting vector.
2655 unsigned Mull2VectorIdx = VT.getVectorNumElements () / 2;
2656 SDValue VMullIdx = DAG.getConstant(0, DL, MVT::i64);
2657 SDValue VMull2Idx = DAG.getConstant(Mull2VectorIdx, DL, MVT::i64);
2658
2659 SDValue VMullV0 =
2660 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtractVT, V0, VMullIdx);
2661 SDValue VMullV1 =
2662 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtractVT, V1, VMullIdx);
2663
2664 SDValue VMull2V0 =
2665 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtractVT, V0, VMull2Idx);
2666 SDValue VMull2V1 =
2667 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtractVT, V1, VMull2Idx);
2668
2669 unsigned MullOpc = Op.getOpcode() == ISD::MULHS ? AArch64ISD::SMULL
2670 : AArch64ISD::UMULL;
2671
2672 EVT MullVT = ExtractVT.widenIntegerVectorElementType(*DAG.getContext());
2673 SDValue Mull = DAG.getNode(MullOpc, DL, MullVT, VMullV0, VMullV1);
2674 SDValue Mull2 = DAG.getNode(MullOpc, DL, MullVT, VMull2V0, VMull2V1);
2675
2676 Mull = DAG.getNode(ISD::BITCAST, DL, VT, Mull);
2677 Mull2 = DAG.getNode(ISD::BITCAST, DL, VT, Mull2);
2678
2679 return DAG.getNode(AArch64ISD::UZP2, DL, VT, Mull, Mull2);
2680 }
2681
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const2682 SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2683 SelectionDAG &DAG) const {
2684 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2685 SDLoc dl(Op);
2686 switch (IntNo) {
2687 default: return SDValue(); // Don't custom lower most intrinsics.
2688 case Intrinsic::thread_pointer: {
2689 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2690 return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT);
2691 }
2692 case Intrinsic::aarch64_neon_abs:
2693 return DAG.getNode(ISD::ABS, dl, Op.getValueType(),
2694 Op.getOperand(1));
2695 case Intrinsic::aarch64_neon_smax:
2696 return DAG.getNode(ISD::SMAX, dl, Op.getValueType(),
2697 Op.getOperand(1), Op.getOperand(2));
2698 case Intrinsic::aarch64_neon_umax:
2699 return DAG.getNode(ISD::UMAX, dl, Op.getValueType(),
2700 Op.getOperand(1), Op.getOperand(2));
2701 case Intrinsic::aarch64_neon_smin:
2702 return DAG.getNode(ISD::SMIN, dl, Op.getValueType(),
2703 Op.getOperand(1), Op.getOperand(2));
2704 case Intrinsic::aarch64_neon_umin:
2705 return DAG.getNode(ISD::UMIN, dl, Op.getValueType(),
2706 Op.getOperand(1), Op.getOperand(2));
2707 }
2708 }
2709
2710 // Custom lower trunc store for v4i8 vectors, since it is promoted to v4i16.
LowerTruncateVectorStore(SDLoc DL,StoreSDNode * ST,EVT VT,EVT MemVT,SelectionDAG & DAG)2711 static SDValue LowerTruncateVectorStore(SDLoc DL, StoreSDNode *ST,
2712 EVT VT, EVT MemVT,
2713 SelectionDAG &DAG) {
2714 assert(VT.isVector() && "VT should be a vector type");
2715 assert(MemVT == MVT::v4i8 && VT == MVT::v4i16);
2716
2717 SDValue Value = ST->getValue();
2718
2719 // It first extend the promoted v4i16 to v8i16, truncate to v8i8, and extract
2720 // the word lane which represent the v4i8 subvector. It optimizes the store
2721 // to:
2722 //
2723 // xtn v0.8b, v0.8h
2724 // str s0, [x0]
2725
2726 SDValue Undef = DAG.getUNDEF(MVT::i16);
2727 SDValue UndefVec = DAG.getBuildVector(MVT::v4i16, DL,
2728 {Undef, Undef, Undef, Undef});
2729
2730 SDValue TruncExt = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16,
2731 Value, UndefVec);
2732 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, TruncExt);
2733
2734 Trunc = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Trunc);
2735 SDValue ExtractTrunc = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
2736 Trunc, DAG.getConstant(0, DL, MVT::i64));
2737
2738 return DAG.getStore(ST->getChain(), DL, ExtractTrunc,
2739 ST->getBasePtr(), ST->getMemOperand());
2740 }
2741
2742 // Custom lowering for any store, vector or scalar and/or default or with
2743 // a truncate operations. Currently only custom lower truncate operation
2744 // from vector v4i16 to v4i8.
LowerSTORE(SDValue Op,SelectionDAG & DAG) const2745 SDValue AArch64TargetLowering::LowerSTORE(SDValue Op,
2746 SelectionDAG &DAG) const {
2747 SDLoc Dl(Op);
2748 StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
2749 assert (StoreNode && "Can only custom lower store nodes");
2750
2751 SDValue Value = StoreNode->getValue();
2752
2753 EVT VT = Value.getValueType();
2754 EVT MemVT = StoreNode->getMemoryVT();
2755
2756 assert (VT.isVector() && "Can only custom lower vector store types");
2757
2758 unsigned AS = StoreNode->getAddressSpace();
2759 unsigned Align = StoreNode->getAlignment();
2760 if (Align < MemVT.getStoreSize() &&
2761 !allowsMisalignedMemoryAccesses(MemVT, AS, Align, nullptr)) {
2762 return scalarizeVectorStore(StoreNode, DAG);
2763 }
2764
2765 if (StoreNode->isTruncatingStore()) {
2766 return LowerTruncateVectorStore(Dl, StoreNode, VT, MemVT, DAG);
2767 }
2768
2769 return SDValue();
2770 }
2771
LowerOperation(SDValue Op,SelectionDAG & DAG) const2772 SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
2773 SelectionDAG &DAG) const {
2774 LLVM_DEBUG(dbgs() << "Custom lowering: ");
2775 LLVM_DEBUG(Op.dump());
2776
2777 switch (Op.getOpcode()) {
2778 default:
2779 llvm_unreachable("unimplemented operand");
2780 return SDValue();
2781 case ISD::BITCAST:
2782 return LowerBITCAST(Op, DAG);
2783 case ISD::GlobalAddress:
2784 return LowerGlobalAddress(Op, DAG);
2785 case ISD::GlobalTLSAddress:
2786 return LowerGlobalTLSAddress(Op, DAG);
2787 case ISD::SETCC:
2788 return LowerSETCC(Op, DAG);
2789 case ISD::BR_CC:
2790 return LowerBR_CC(Op, DAG);
2791 case ISD::SELECT:
2792 return LowerSELECT(Op, DAG);
2793 case ISD::SELECT_CC:
2794 return LowerSELECT_CC(Op, DAG);
2795 case ISD::JumpTable:
2796 return LowerJumpTable(Op, DAG);
2797 case ISD::ConstantPool:
2798 return LowerConstantPool(Op, DAG);
2799 case ISD::BlockAddress:
2800 return LowerBlockAddress(Op, DAG);
2801 case ISD::VASTART:
2802 return LowerVASTART(Op, DAG);
2803 case ISD::VACOPY:
2804 return LowerVACOPY(Op, DAG);
2805 case ISD::VAARG:
2806 return LowerVAARG(Op, DAG);
2807 case ISD::ADDC:
2808 case ISD::ADDE:
2809 case ISD::SUBC:
2810 case ISD::SUBE:
2811 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
2812 case ISD::SADDO:
2813 case ISD::UADDO:
2814 case ISD::SSUBO:
2815 case ISD::USUBO:
2816 case ISD::SMULO:
2817 case ISD::UMULO:
2818 return LowerXALUO(Op, DAG);
2819 case ISD::FADD:
2820 return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
2821 case ISD::FSUB:
2822 return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
2823 case ISD::FMUL:
2824 return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
2825 case ISD::FDIV:
2826 return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
2827 case ISD::FP_ROUND:
2828 return LowerFP_ROUND(Op, DAG);
2829 case ISD::FP_EXTEND:
2830 return LowerFP_EXTEND(Op, DAG);
2831 case ISD::FRAMEADDR:
2832 return LowerFRAMEADDR(Op, DAG);
2833 case ISD::RETURNADDR:
2834 return LowerRETURNADDR(Op, DAG);
2835 case ISD::INSERT_VECTOR_ELT:
2836 return LowerINSERT_VECTOR_ELT(Op, DAG);
2837 case ISD::EXTRACT_VECTOR_ELT:
2838 return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2839 case ISD::BUILD_VECTOR:
2840 return LowerBUILD_VECTOR(Op, DAG);
2841 case ISD::VECTOR_SHUFFLE:
2842 return LowerVECTOR_SHUFFLE(Op, DAG);
2843 case ISD::EXTRACT_SUBVECTOR:
2844 return LowerEXTRACT_SUBVECTOR(Op, DAG);
2845 case ISD::SRA:
2846 case ISD::SRL:
2847 case ISD::SHL:
2848 return LowerVectorSRA_SRL_SHL(Op, DAG);
2849 case ISD::SHL_PARTS:
2850 return LowerShiftLeftParts(Op, DAG);
2851 case ISD::SRL_PARTS:
2852 case ISD::SRA_PARTS:
2853 return LowerShiftRightParts(Op, DAG);
2854 case ISD::CTPOP:
2855 return LowerCTPOP(Op, DAG);
2856 case ISD::FCOPYSIGN:
2857 return LowerFCOPYSIGN(Op, DAG);
2858 case ISD::AND:
2859 return LowerVectorAND(Op, DAG);
2860 case ISD::OR:
2861 return LowerVectorOR(Op, DAG);
2862 case ISD::XOR:
2863 return LowerXOR(Op, DAG);
2864 case ISD::PREFETCH:
2865 return LowerPREFETCH(Op, DAG);
2866 case ISD::SINT_TO_FP:
2867 case ISD::UINT_TO_FP:
2868 return LowerINT_TO_FP(Op, DAG);
2869 case ISD::FP_TO_SINT:
2870 case ISD::FP_TO_UINT:
2871 return LowerFP_TO_INT(Op, DAG);
2872 case ISD::FSINCOS:
2873 return LowerFSINCOS(Op, DAG);
2874 case ISD::FLT_ROUNDS_:
2875 return LowerFLT_ROUNDS_(Op, DAG);
2876 case ISD::MUL:
2877 return LowerMUL(Op, DAG);
2878 case ISD::MULHS:
2879 case ISD::MULHU:
2880 return LowerMULH(Op, DAG);
2881 case ISD::INTRINSIC_WO_CHAIN:
2882 return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2883 case ISD::STORE:
2884 return LowerSTORE(Op, DAG);
2885 case ISD::VECREDUCE_ADD:
2886 case ISD::VECREDUCE_SMAX:
2887 case ISD::VECREDUCE_SMIN:
2888 case ISD::VECREDUCE_UMAX:
2889 case ISD::VECREDUCE_UMIN:
2890 case ISD::VECREDUCE_FMAX:
2891 case ISD::VECREDUCE_FMIN:
2892 return LowerVECREDUCE(Op, DAG);
2893 case ISD::ATOMIC_LOAD_SUB:
2894 return LowerATOMIC_LOAD_SUB(Op, DAG);
2895 case ISD::ATOMIC_LOAD_AND:
2896 return LowerATOMIC_LOAD_AND(Op, DAG);
2897 case ISD::DYNAMIC_STACKALLOC:
2898 return LowerDYNAMIC_STACKALLOC(Op, DAG);
2899 }
2900 }
2901
2902 //===----------------------------------------------------------------------===//
2903 // Calling Convention Implementation
2904 //===----------------------------------------------------------------------===//
2905
2906 #include "AArch64GenCallingConv.inc"
2907
2908 /// Selects the correct CCAssignFn for a given CallingConvention value.
CCAssignFnForCall(CallingConv::ID CC,bool IsVarArg) const2909 CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
2910 bool IsVarArg) const {
2911 switch (CC) {
2912 default:
2913 report_fatal_error("Unsupported calling convention.");
2914 case CallingConv::WebKit_JS:
2915 return CC_AArch64_WebKit_JS;
2916 case CallingConv::GHC:
2917 return CC_AArch64_GHC;
2918 case CallingConv::C:
2919 case CallingConv::Fast:
2920 case CallingConv::PreserveMost:
2921 case CallingConv::CXX_FAST_TLS:
2922 case CallingConv::Swift:
2923 if (Subtarget->isTargetWindows() && IsVarArg)
2924 return CC_AArch64_Win64_VarArg;
2925 if (!Subtarget->isTargetDarwin())
2926 return CC_AArch64_AAPCS;
2927 return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
2928 case CallingConv::Win64:
2929 return IsVarArg ? CC_AArch64_Win64_VarArg : CC_AArch64_AAPCS;
2930 }
2931 }
2932
2933 CCAssignFn *
CCAssignFnForReturn(CallingConv::ID CC) const2934 AArch64TargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const {
2935 return CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS
2936 : RetCC_AArch64_AAPCS;
2937 }
2938
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const2939 SDValue AArch64TargetLowering::LowerFormalArguments(
2940 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2941 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2942 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2943 MachineFunction &MF = DAG.getMachineFunction();
2944 MachineFrameInfo &MFI = MF.getFrameInfo();
2945 bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv());
2946
2947 // Assign locations to all of the incoming arguments.
2948 SmallVector<CCValAssign, 16> ArgLocs;
2949 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2950 *DAG.getContext());
2951
2952 // At this point, Ins[].VT may already be promoted to i32. To correctly
2953 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2954 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2955 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
2956 // we use a special version of AnalyzeFormalArguments to pass in ValVT and
2957 // LocVT.
2958 unsigned NumArgs = Ins.size();
2959 Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
2960 unsigned CurArgIdx = 0;
2961 for (unsigned i = 0; i != NumArgs; ++i) {
2962 MVT ValVT = Ins[i].VT;
2963 if (Ins[i].isOrigArg()) {
2964 std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
2965 CurArgIdx = Ins[i].getOrigArgIndex();
2966
2967 // Get type of the original argument.
2968 EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(),
2969 /*AllowUnknown*/ true);
2970 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
2971 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
2972 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
2973 ValVT = MVT::i8;
2974 else if (ActualMVT == MVT::i16)
2975 ValVT = MVT::i16;
2976 }
2977 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2978 bool Res =
2979 AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
2980 assert(!Res && "Call operand has unhandled type");
2981 (void)Res;
2982 }
2983 assert(ArgLocs.size() == Ins.size());
2984 SmallVector<SDValue, 16> ArgValues;
2985 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2986 CCValAssign &VA = ArgLocs[i];
2987
2988 if (Ins[i].Flags.isByVal()) {
2989 // Byval is used for HFAs in the PCS, but the system should work in a
2990 // non-compliant manner for larger structs.
2991 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2992 int Size = Ins[i].Flags.getByValSize();
2993 unsigned NumRegs = (Size + 7) / 8;
2994
2995 // FIXME: This works on big-endian for composite byvals, which are the common
2996 // case. It should also work for fundamental types too.
2997 unsigned FrameIdx =
2998 MFI.CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
2999 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT);
3000 InVals.push_back(FrameIdxN);
3001
3002 continue;
3003 }
3004
3005 if (VA.isRegLoc()) {
3006 // Arguments stored in registers.
3007 EVT RegVT = VA.getLocVT();
3008
3009 SDValue ArgValue;
3010 const TargetRegisterClass *RC;
3011
3012 if (RegVT == MVT::i32)
3013 RC = &AArch64::GPR32RegClass;
3014 else if (RegVT == MVT::i64)
3015 RC = &AArch64::GPR64RegClass;
3016 else if (RegVT == MVT::f16)
3017 RC = &AArch64::FPR16RegClass;
3018 else if (RegVT == MVT::f32)
3019 RC = &AArch64::FPR32RegClass;
3020 else if (RegVT == MVT::f64 || RegVT.is64BitVector())
3021 RC = &AArch64::FPR64RegClass;
3022 else if (RegVT == MVT::f128 || RegVT.is128BitVector())
3023 RC = &AArch64::FPR128RegClass;
3024 else
3025 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3026
3027 // Transform the arguments in physical registers into virtual ones.
3028 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3029 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
3030
3031 // If this is an 8, 16 or 32-bit value, it is really passed promoted
3032 // to 64 bits. Insert an assert[sz]ext to capture this, then
3033 // truncate to the right size.
3034 switch (VA.getLocInfo()) {
3035 default:
3036 llvm_unreachable("Unknown loc info!");
3037 case CCValAssign::Full:
3038 break;
3039 case CCValAssign::BCvt:
3040 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
3041 break;
3042 case CCValAssign::AExt:
3043 case CCValAssign::SExt:
3044 case CCValAssign::ZExt:
3045 // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
3046 // nodes after our lowering.
3047 assert(RegVT == Ins[i].VT && "incorrect register location selected");
3048 break;
3049 }
3050
3051 InVals.push_back(ArgValue);
3052
3053 } else { // VA.isRegLoc()
3054 assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
3055 unsigned ArgOffset = VA.getLocMemOffset();
3056 unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
3057
3058 uint32_t BEAlign = 0;
3059 if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
3060 !Ins[i].Flags.isInConsecutiveRegs())
3061 BEAlign = 8 - ArgSize;
3062
3063 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
3064
3065 // Create load nodes to retrieve arguments from the stack.
3066 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3067 SDValue ArgValue;
3068
3069 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
3070 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
3071 MVT MemVT = VA.getValVT();
3072
3073 switch (VA.getLocInfo()) {
3074 default:
3075 break;
3076 case CCValAssign::BCvt:
3077 MemVT = VA.getLocVT();
3078 break;
3079 case CCValAssign::SExt:
3080 ExtType = ISD::SEXTLOAD;
3081 break;
3082 case CCValAssign::ZExt:
3083 ExtType = ISD::ZEXTLOAD;
3084 break;
3085 case CCValAssign::AExt:
3086 ExtType = ISD::EXTLOAD;
3087 break;
3088 }
3089
3090 ArgValue = DAG.getExtLoad(
3091 ExtType, DL, VA.getLocVT(), Chain, FIN,
3092 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
3093 MemVT);
3094
3095 InVals.push_back(ArgValue);
3096 }
3097 }
3098
3099 // varargs
3100 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3101 if (isVarArg) {
3102 if (!Subtarget->isTargetDarwin() || IsWin64) {
3103 // The AAPCS variadic function ABI is identical to the non-variadic
3104 // one. As a result there may be more arguments in registers and we should
3105 // save them for future reference.
3106 // Win64 variadic functions also pass arguments in registers, but all float
3107 // arguments are passed in integer registers.
3108 saveVarArgRegisters(CCInfo, DAG, DL, Chain);
3109 }
3110
3111 // This will point to the next argument passed via stack.
3112 unsigned StackOffset = CCInfo.getNextStackOffset();
3113 // We currently pass all varargs at 8-byte alignment.
3114 StackOffset = ((StackOffset + 7) & ~7);
3115 FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));
3116 }
3117
3118 unsigned StackArgSize = CCInfo.getNextStackOffset();
3119 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3120 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
3121 // This is a non-standard ABI so by fiat I say we're allowed to make full
3122 // use of the stack area to be popped, which must be aligned to 16 bytes in
3123 // any case:
3124 StackArgSize = alignTo(StackArgSize, 16);
3125
3126 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
3127 // a multiple of 16.
3128 FuncInfo->setArgumentStackToRestore(StackArgSize);
3129
3130 // This realignment carries over to the available bytes below. Our own
3131 // callers will guarantee the space is free by giving an aligned value to
3132 // CALLSEQ_START.
3133 }
3134 // Even if we're not expected to free up the space, it's useful to know how
3135 // much is there while considering tail calls (because we can reuse it).
3136 FuncInfo->setBytesInStackArgArea(StackArgSize);
3137
3138 return Chain;
3139 }
3140
saveVarArgRegisters(CCState & CCInfo,SelectionDAG & DAG,const SDLoc & DL,SDValue & Chain) const3141 void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
3142 SelectionDAG &DAG,
3143 const SDLoc &DL,
3144 SDValue &Chain) const {
3145 MachineFunction &MF = DAG.getMachineFunction();
3146 MachineFrameInfo &MFI = MF.getFrameInfo();
3147 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3148 auto PtrVT = getPointerTy(DAG.getDataLayout());
3149 bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv());
3150
3151 SmallVector<SDValue, 8> MemOps;
3152
3153 static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
3154 AArch64::X3, AArch64::X4, AArch64::X5,
3155 AArch64::X6, AArch64::X7 };
3156 static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
3157 unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
3158
3159 unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
3160 int GPRIdx = 0;
3161 if (GPRSaveSize != 0) {
3162 if (IsWin64) {
3163 GPRIdx = MFI.CreateFixedObject(GPRSaveSize, -(int)GPRSaveSize, false);
3164 if (GPRSaveSize & 15)
3165 // The extra size here, if triggered, will always be 8.
3166 MFI.CreateFixedObject(16 - (GPRSaveSize & 15), -(int)alignTo(GPRSaveSize, 16), false);
3167 } else
3168 GPRIdx = MFI.CreateStackObject(GPRSaveSize, 8, false);
3169
3170 SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT);
3171
3172 for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
3173 unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
3174 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
3175 SDValue Store = DAG.getStore(
3176 Val.getValue(1), DL, Val, FIN,
3177 IsWin64
3178 ? MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
3179 GPRIdx,
3180 (i - FirstVariadicGPR) * 8)
3181 : MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8));
3182 MemOps.push_back(Store);
3183 FIN =
3184 DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT));
3185 }
3186 }
3187 FuncInfo->setVarArgsGPRIndex(GPRIdx);
3188 FuncInfo->setVarArgsGPRSize(GPRSaveSize);
3189
3190 if (Subtarget->hasFPARMv8() && !IsWin64) {
3191 static const MCPhysReg FPRArgRegs[] = {
3192 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
3193 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
3194 static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
3195 unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
3196
3197 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
3198 int FPRIdx = 0;
3199 if (FPRSaveSize != 0) {
3200 FPRIdx = MFI.CreateStackObject(FPRSaveSize, 16, false);
3201
3202 SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT);
3203
3204 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
3205 unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
3206 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
3207
3208 SDValue Store = DAG.getStore(
3209 Val.getValue(1), DL, Val, FIN,
3210 MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16));
3211 MemOps.push_back(Store);
3212 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
3213 DAG.getConstant(16, DL, PtrVT));
3214 }
3215 }
3216 FuncInfo->setVarArgsFPRIndex(FPRIdx);
3217 FuncInfo->setVarArgsFPRSize(FPRSaveSize);
3218 }
3219
3220 if (!MemOps.empty()) {
3221 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3222 }
3223 }
3224
3225 /// LowerCallResult - Lower the result values of a call into the
3226 /// appropriate copies out of appropriate physical registers.
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,bool isThisReturn,SDValue ThisVal) const3227 SDValue AArch64TargetLowering::LowerCallResult(
3228 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
3229 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3230 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
3231 SDValue ThisVal) const {
3232 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3233 ? RetCC_AArch64_WebKit_JS
3234 : RetCC_AArch64_AAPCS;
3235 // Assign locations to each value returned by this call.
3236 SmallVector<CCValAssign, 16> RVLocs;
3237 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3238 *DAG.getContext());
3239 CCInfo.AnalyzeCallResult(Ins, RetCC);
3240
3241 // Copy all of the result registers out of their specified physreg.
3242 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3243 CCValAssign VA = RVLocs[i];
3244
3245 // Pass 'this' value directly from the argument to return value, to avoid
3246 // reg unit interference
3247 if (i == 0 && isThisReturn) {
3248 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
3249 "unexpected return calling convention register assignment");
3250 InVals.push_back(ThisVal);
3251 continue;
3252 }
3253
3254 SDValue Val =
3255 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
3256 Chain = Val.getValue(1);
3257 InFlag = Val.getValue(2);
3258
3259 switch (VA.getLocInfo()) {
3260 default:
3261 llvm_unreachable("Unknown loc info!");
3262 case CCValAssign::Full:
3263 break;
3264 case CCValAssign::BCvt:
3265 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
3266 break;
3267 }
3268
3269 InVals.push_back(Val);
3270 }
3271
3272 return Chain;
3273 }
3274
3275 /// Return true if the calling convention is one that we can guarantee TCO for.
canGuaranteeTCO(CallingConv::ID CC)3276 static bool canGuaranteeTCO(CallingConv::ID CC) {
3277 return CC == CallingConv::Fast;
3278 }
3279
3280 /// Return true if we might ever do TCO for calls with this calling convention.
mayTailCallThisCC(CallingConv::ID CC)3281 static bool mayTailCallThisCC(CallingConv::ID CC) {
3282 switch (CC) {
3283 case CallingConv::C:
3284 case CallingConv::PreserveMost:
3285 case CallingConv::Swift:
3286 return true;
3287 default:
3288 return canGuaranteeTCO(CC);
3289 }
3290 }
3291
isEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const3292 bool AArch64TargetLowering::isEligibleForTailCallOptimization(
3293 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
3294 const SmallVectorImpl<ISD::OutputArg> &Outs,
3295 const SmallVectorImpl<SDValue> &OutVals,
3296 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
3297 if (!mayTailCallThisCC(CalleeCC))
3298 return false;
3299
3300 MachineFunction &MF = DAG.getMachineFunction();
3301 const Function &CallerF = MF.getFunction();
3302 CallingConv::ID CallerCC = CallerF.getCallingConv();
3303 bool CCMatch = CallerCC == CalleeCC;
3304
3305 // Byval parameters hand the function a pointer directly into the stack area
3306 // we want to reuse during a tail call. Working around this *is* possible (see
3307 // X86) but less efficient and uglier in LowerCall.
3308 for (Function::const_arg_iterator i = CallerF.arg_begin(),
3309 e = CallerF.arg_end();
3310 i != e; ++i)
3311 if (i->hasByValAttr())
3312 return false;
3313
3314 if (getTargetMachine().Options.GuaranteedTailCallOpt)
3315 return canGuaranteeTCO(CalleeCC) && CCMatch;
3316
3317 // Externally-defined functions with weak linkage should not be
3318 // tail-called on AArch64 when the OS does not support dynamic
3319 // pre-emption of symbols, as the AAELF spec requires normal calls
3320 // to undefined weak functions to be replaced with a NOP or jump to the
3321 // next instruction. The behaviour of branch instructions in this
3322 // situation (as used for tail calls) is implementation-defined, so we
3323 // cannot rely on the linker replacing the tail call with a return.
3324 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3325 const GlobalValue *GV = G->getGlobal();
3326 const Triple &TT = getTargetMachine().getTargetTriple();
3327 if (GV->hasExternalWeakLinkage() &&
3328 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
3329 return false;
3330 }
3331
3332 // Now we search for cases where we can use a tail call without changing the
3333 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
3334 // concept.
3335
3336 // I want anyone implementing a new calling convention to think long and hard
3337 // about this assert.
3338 assert((!isVarArg || CalleeCC == CallingConv::C) &&
3339 "Unexpected variadic calling convention");
3340
3341 LLVMContext &C = *DAG.getContext();
3342 if (isVarArg && !Outs.empty()) {
3343 // At least two cases here: if caller is fastcc then we can't have any
3344 // memory arguments (we'd be expected to clean up the stack afterwards). If
3345 // caller is C then we could potentially use its argument area.
3346
3347 // FIXME: for now we take the most conservative of these in both cases:
3348 // disallow all variadic memory operands.
3349 SmallVector<CCValAssign, 16> ArgLocs;
3350 CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
3351
3352 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
3353 for (const CCValAssign &ArgLoc : ArgLocs)
3354 if (!ArgLoc.isRegLoc())
3355 return false;
3356 }
3357
3358 // Check that the call results are passed in the same way.
3359 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
3360 CCAssignFnForCall(CalleeCC, isVarArg),
3361 CCAssignFnForCall(CallerCC, isVarArg)))
3362 return false;
3363 // The callee has to preserve all registers the caller needs to preserve.
3364 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
3365 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
3366 if (!CCMatch) {
3367 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
3368 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
3369 return false;
3370 }
3371
3372 // Nothing more to check if the callee is taking no arguments
3373 if (Outs.empty())
3374 return true;
3375
3376 SmallVector<CCValAssign, 16> ArgLocs;
3377 CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
3378
3379 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
3380
3381 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3382
3383 // If the stack arguments for this call do not fit into our own save area then
3384 // the call cannot be made tail.
3385 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
3386 return false;
3387
3388 const MachineRegisterInfo &MRI = MF.getRegInfo();
3389 if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
3390 return false;
3391
3392 return true;
3393 }
3394
addTokenForArgument(SDValue Chain,SelectionDAG & DAG,MachineFrameInfo & MFI,int ClobberedFI) const3395 SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
3396 SelectionDAG &DAG,
3397 MachineFrameInfo &MFI,
3398 int ClobberedFI) const {
3399 SmallVector<SDValue, 8> ArgChains;
3400 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
3401 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
3402
3403 // Include the original chain at the beginning of the list. When this is
3404 // used by target LowerCall hooks, this helps legalize find the
3405 // CALLSEQ_BEGIN node.
3406 ArgChains.push_back(Chain);
3407
3408 // Add a chain value for each stack argument corresponding
3409 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
3410 UE = DAG.getEntryNode().getNode()->use_end();
3411 U != UE; ++U)
3412 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3413 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3414 if (FI->getIndex() < 0) {
3415 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
3416 int64_t InLastByte = InFirstByte;
3417 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
3418
3419 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
3420 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
3421 ArgChains.push_back(SDValue(L, 1));
3422 }
3423
3424 // Build a tokenfactor for all the chains.
3425 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
3426 }
3427
DoesCalleeRestoreStack(CallingConv::ID CallCC,bool TailCallOpt) const3428 bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
3429 bool TailCallOpt) const {
3430 return CallCC == CallingConv::Fast && TailCallOpt;
3431 }
3432
3433 /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
3434 /// and add input and output parameter nodes.
3435 SDValue
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const3436 AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
3437 SmallVectorImpl<SDValue> &InVals) const {
3438 SelectionDAG &DAG = CLI.DAG;
3439 SDLoc &DL = CLI.DL;
3440 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3441 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
3442 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
3443 SDValue Chain = CLI.Chain;
3444 SDValue Callee = CLI.Callee;
3445 bool &IsTailCall = CLI.IsTailCall;
3446 CallingConv::ID CallConv = CLI.CallConv;
3447 bool IsVarArg = CLI.IsVarArg;
3448
3449 MachineFunction &MF = DAG.getMachineFunction();
3450 bool IsThisReturn = false;
3451
3452 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3453 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3454 bool IsSibCall = false;
3455
3456 if (IsTailCall) {
3457 // Check if it's really possible to do a tail call.
3458 IsTailCall = isEligibleForTailCallOptimization(
3459 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
3460 if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall())
3461 report_fatal_error("failed to perform tail call elimination on a call "
3462 "site marked musttail");
3463
3464 // A sibling call is one where we're under the usual C ABI and not planning
3465 // to change that but can still do a tail call:
3466 if (!TailCallOpt && IsTailCall)
3467 IsSibCall = true;
3468
3469 if (IsTailCall)
3470 ++NumTailCalls;
3471 }
3472
3473 // Analyze operands of the call, assigning locations to each operand.
3474 SmallVector<CCValAssign, 16> ArgLocs;
3475 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
3476 *DAG.getContext());
3477
3478 if (IsVarArg) {
3479 // Handle fixed and variable vector arguments differently.
3480 // Variable vector arguments always go into memory.
3481 unsigned NumArgs = Outs.size();
3482
3483 for (unsigned i = 0; i != NumArgs; ++i) {
3484 MVT ArgVT = Outs[i].VT;
3485 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3486 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
3487 /*IsVarArg=*/ !Outs[i].IsFixed);
3488 bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3489 assert(!Res && "Call operand has unhandled type");
3490 (void)Res;
3491 }
3492 } else {
3493 // At this point, Outs[].VT may already be promoted to i32. To correctly
3494 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
3495 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
3496 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
3497 // we use a special version of AnalyzeCallOperands to pass in ValVT and
3498 // LocVT.
3499 unsigned NumArgs = Outs.size();
3500 for (unsigned i = 0; i != NumArgs; ++i) {
3501 MVT ValVT = Outs[i].VT;
3502 // Get type of the original argument.
3503 EVT ActualVT = getValueType(DAG.getDataLayout(),
3504 CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
3505 /*AllowUnknown*/ true);
3506 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
3507 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3508 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
3509 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
3510 ValVT = MVT::i8;
3511 else if (ActualMVT == MVT::i16)
3512 ValVT = MVT::i16;
3513
3514 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
3515 bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
3516 assert(!Res && "Call operand has unhandled type");
3517 (void)Res;
3518 }
3519 }
3520
3521 // Get a count of how many bytes are to be pushed on the stack.
3522 unsigned NumBytes = CCInfo.getNextStackOffset();
3523
3524 if (IsSibCall) {
3525 // Since we're not changing the ABI to make this a tail call, the memory
3526 // operands are already available in the caller's incoming argument space.
3527 NumBytes = 0;
3528 }
3529
3530 // FPDiff is the byte offset of the call's argument area from the callee's.
3531 // Stores to callee stack arguments will be placed in FixedStackSlots offset
3532 // by this amount for a tail call. In a sibling call it must be 0 because the
3533 // caller will deallocate the entire stack and the callee still expects its
3534 // arguments to begin at SP+0. Completely unused for non-tail calls.
3535 int FPDiff = 0;
3536
3537 if (IsTailCall && !IsSibCall) {
3538 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
3539
3540 // Since callee will pop argument stack as a tail call, we must keep the
3541 // popped size 16-byte aligned.
3542 NumBytes = alignTo(NumBytes, 16);
3543
3544 // FPDiff will be negative if this tail call requires more space than we
3545 // would automatically have in our incoming argument space. Positive if we
3546 // can actually shrink the stack.
3547 FPDiff = NumReusableBytes - NumBytes;
3548
3549 // The stack pointer must be 16-byte aligned at all times it's used for a
3550 // memory operation, which in practice means at *all* times and in
3551 // particular across call boundaries. Therefore our own arguments started at
3552 // a 16-byte aligned SP and the delta applied for the tail call should
3553 // satisfy the same constraint.
3554 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
3555 }
3556
3557 // Adjust the stack pointer for the new arguments...
3558 // These operations are automatically eliminated by the prolog/epilog pass
3559 if (!IsSibCall)
3560 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
3561
3562 SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP,
3563 getPointerTy(DAG.getDataLayout()));
3564
3565 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3566 SmallVector<SDValue, 8> MemOpChains;
3567 auto PtrVT = getPointerTy(DAG.getDataLayout());
3568
3569 // Walk the register/memloc assignments, inserting copies/loads.
3570 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
3571 ++i, ++realArgIdx) {
3572 CCValAssign &VA = ArgLocs[i];
3573 SDValue Arg = OutVals[realArgIdx];
3574 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
3575
3576 // Promote the value if needed.
3577 switch (VA.getLocInfo()) {
3578 default:
3579 llvm_unreachable("Unknown loc info!");
3580 case CCValAssign::Full:
3581 break;
3582 case CCValAssign::SExt:
3583 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3584 break;
3585 case CCValAssign::ZExt:
3586 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3587 break;
3588 case CCValAssign::AExt:
3589 if (Outs[realArgIdx].ArgVT == MVT::i1) {
3590 // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
3591 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
3592 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
3593 }
3594 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3595 break;
3596 case CCValAssign::BCvt:
3597 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3598 break;
3599 case CCValAssign::FPExt:
3600 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3601 break;
3602 }
3603
3604 if (VA.isRegLoc()) {
3605 if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
3606 Outs[0].VT == MVT::i64) {
3607 assert(VA.getLocVT() == MVT::i64 &&
3608 "unexpected calling convention register assignment");
3609 assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
3610 "unexpected use of 'returned'");
3611 IsThisReturn = true;
3612 }
3613 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3614 } else {
3615 assert(VA.isMemLoc());
3616
3617 SDValue DstAddr;
3618 MachinePointerInfo DstInfo;
3619
3620 // FIXME: This works on big-endian for composite byvals, which are the
3621 // common case. It should also work for fundamental types too.
3622 uint32_t BEAlign = 0;
3623 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
3624 : VA.getValVT().getSizeInBits();
3625 OpSize = (OpSize + 7) / 8;
3626 if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
3627 !Flags.isInConsecutiveRegs()) {
3628 if (OpSize < 8)
3629 BEAlign = 8 - OpSize;
3630 }
3631 unsigned LocMemOffset = VA.getLocMemOffset();
3632 int32_t Offset = LocMemOffset + BEAlign;
3633 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
3634 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
3635
3636 if (IsTailCall) {
3637 Offset = Offset + FPDiff;
3638 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
3639
3640 DstAddr = DAG.getFrameIndex(FI, PtrVT);
3641 DstInfo =
3642 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
3643
3644 // Make sure any stack arguments overlapping with where we're storing
3645 // are loaded before this eventual operation. Otherwise they'll be
3646 // clobbered.
3647 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
3648 } else {
3649 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
3650
3651 DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
3652 DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(),
3653 LocMemOffset);
3654 }
3655
3656 if (Outs[i].Flags.isByVal()) {
3657 SDValue SizeNode =
3658 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64);
3659 SDValue Cpy = DAG.getMemcpy(
3660 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
3661 /*isVol = */ false, /*AlwaysInline = */ false,
3662 /*isTailCall = */ false,
3663 DstInfo, MachinePointerInfo());
3664
3665 MemOpChains.push_back(Cpy);
3666 } else {
3667 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
3668 // promoted to a legal register type i32, we should truncate Arg back to
3669 // i1/i8/i16.
3670 if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
3671 VA.getValVT() == MVT::i16)
3672 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
3673
3674 SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo);
3675 MemOpChains.push_back(Store);
3676 }
3677 }
3678 }
3679
3680 if (!MemOpChains.empty())
3681 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3682
3683 // Build a sequence of copy-to-reg nodes chained together with token chain
3684 // and flag operands which copy the outgoing args into the appropriate regs.
3685 SDValue InFlag;
3686 for (auto &RegToPass : RegsToPass) {
3687 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3688 RegToPass.second, InFlag);
3689 InFlag = Chain.getValue(1);
3690 }
3691
3692 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3693 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3694 // node so that legalize doesn't hack it.
3695 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3696 auto GV = G->getGlobal();
3697 if (Subtarget->classifyGlobalFunctionReference(GV, getTargetMachine()) ==
3698 AArch64II::MO_GOT) {
3699 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_GOT);
3700 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
3701 } else if (Subtarget->isTargetCOFF() && GV->hasDLLImportStorageClass()) {
3702 assert(Subtarget->isTargetWindows() &&
3703 "Windows is the only supported COFF target");
3704 Callee = getGOT(G, DAG, AArch64II::MO_DLLIMPORT);
3705 } else {
3706 const GlobalValue *GV = G->getGlobal();
3707 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
3708 }
3709 } else if (auto *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3710 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3711 Subtarget->isTargetMachO()) {
3712 const char *Sym = S->getSymbol();
3713 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT);
3714 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
3715 } else {
3716 const char *Sym = S->getSymbol();
3717 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0);
3718 }
3719 }
3720
3721 // We don't usually want to end the call-sequence here because we would tidy
3722 // the frame up *after* the call, however in the ABI-changing tail-call case
3723 // we've carefully laid out the parameters so that when sp is reset they'll be
3724 // in the correct location.
3725 if (IsTailCall && !IsSibCall) {
3726 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
3727 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
3728 InFlag = Chain.getValue(1);
3729 }
3730
3731 std::vector<SDValue> Ops;
3732 Ops.push_back(Chain);
3733 Ops.push_back(Callee);
3734
3735 if (IsTailCall) {
3736 // Each tail call may have to adjust the stack by a different amount, so
3737 // this information must travel along with the operation for eventual
3738 // consumption by emitEpilogue.
3739 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3740 }
3741
3742 // Add argument registers to the end of the list so that they are known live
3743 // into the call.
3744 for (auto &RegToPass : RegsToPass)
3745 Ops.push_back(DAG.getRegister(RegToPass.first,
3746 RegToPass.second.getValueType()));
3747
3748 // Add a register mask operand representing the call-preserved registers.
3749 const uint32_t *Mask;
3750 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
3751 if (IsThisReturn) {
3752 // For 'this' returns, use the X0-preserving mask if applicable
3753 Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
3754 if (!Mask) {
3755 IsThisReturn = false;
3756 Mask = TRI->getCallPreservedMask(MF, CallConv);
3757 }
3758 } else
3759 Mask = TRI->getCallPreservedMask(MF, CallConv);
3760
3761 assert(Mask && "Missing call preserved mask for calling convention");
3762 Ops.push_back(DAG.getRegisterMask(Mask));
3763
3764 if (InFlag.getNode())
3765 Ops.push_back(InFlag);
3766
3767 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3768
3769 // If we're doing a tall call, use a TC_RETURN here rather than an
3770 // actual call instruction.
3771 if (IsTailCall) {
3772 MF.getFrameInfo().setHasTailCall();
3773 return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
3774 }
3775
3776 // Returns a chain and a flag for retval copy to use.
3777 Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
3778 InFlag = Chain.getValue(1);
3779
3780 uint64_t CalleePopBytes =
3781 DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0;
3782
3783 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
3784 DAG.getIntPtrConstant(CalleePopBytes, DL, true),
3785 InFlag, DL);
3786 if (!Ins.empty())
3787 InFlag = Chain.getValue(1);
3788
3789 // Handle result values, copying them out of physregs into vregs that we
3790 // return.
3791 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3792 InVals, IsThisReturn,
3793 IsThisReturn ? OutVals[0] : SDValue());
3794 }
3795
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const3796 bool AArch64TargetLowering::CanLowerReturn(
3797 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
3798 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
3799 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3800 ? RetCC_AArch64_WebKit_JS
3801 : RetCC_AArch64_AAPCS;
3802 SmallVector<CCValAssign, 16> RVLocs;
3803 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
3804 return CCInfo.CheckReturn(Outs, RetCC);
3805 }
3806
3807 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const3808 AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3809 bool isVarArg,
3810 const SmallVectorImpl<ISD::OutputArg> &Outs,
3811 const SmallVectorImpl<SDValue> &OutVals,
3812 const SDLoc &DL, SelectionDAG &DAG) const {
3813 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3814 ? RetCC_AArch64_WebKit_JS
3815 : RetCC_AArch64_AAPCS;
3816 SmallVector<CCValAssign, 16> RVLocs;
3817 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3818 *DAG.getContext());
3819 CCInfo.AnalyzeReturn(Outs, RetCC);
3820
3821 // Copy the result values into the output registers.
3822 SDValue Flag;
3823 SmallVector<SDValue, 4> RetOps(1, Chain);
3824 for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
3825 ++i, ++realRVLocIdx) {
3826 CCValAssign &VA = RVLocs[i];
3827 assert(VA.isRegLoc() && "Can only return in registers!");
3828 SDValue Arg = OutVals[realRVLocIdx];
3829
3830 switch (VA.getLocInfo()) {
3831 default:
3832 llvm_unreachable("Unknown loc info!");
3833 case CCValAssign::Full:
3834 if (Outs[i].ArgVT == MVT::i1) {
3835 // AAPCS requires i1 to be zero-extended to i8 by the producer of the
3836 // value. This is strictly redundant on Darwin (which uses "zeroext
3837 // i1"), but will be optimised out before ISel.
3838 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
3839 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3840 }
3841 break;
3842 case CCValAssign::BCvt:
3843 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3844 break;
3845 }
3846
3847 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
3848 Flag = Chain.getValue(1);
3849 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3850 }
3851 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
3852 const MCPhysReg *I =
3853 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
3854 if (I) {
3855 for (; *I; ++I) {
3856 if (AArch64::GPR64RegClass.contains(*I))
3857 RetOps.push_back(DAG.getRegister(*I, MVT::i64));
3858 else if (AArch64::FPR64RegClass.contains(*I))
3859 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
3860 else
3861 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
3862 }
3863 }
3864
3865 RetOps[0] = Chain; // Update chain.
3866
3867 // Add the flag if we have it.
3868 if (Flag.getNode())
3869 RetOps.push_back(Flag);
3870
3871 return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
3872 }
3873
3874 //===----------------------------------------------------------------------===//
3875 // Other Lowering Code
3876 //===----------------------------------------------------------------------===//
3877
getTargetNode(GlobalAddressSDNode * N,EVT Ty,SelectionDAG & DAG,unsigned Flag) const3878 SDValue AArch64TargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
3879 SelectionDAG &DAG,
3880 unsigned Flag) const {
3881 return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty,
3882 N->getOffset(), Flag);
3883 }
3884
getTargetNode(JumpTableSDNode * N,EVT Ty,SelectionDAG & DAG,unsigned Flag) const3885 SDValue AArch64TargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
3886 SelectionDAG &DAG,
3887 unsigned Flag) const {
3888 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
3889 }
3890
getTargetNode(ConstantPoolSDNode * N,EVT Ty,SelectionDAG & DAG,unsigned Flag) const3891 SDValue AArch64TargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
3892 SelectionDAG &DAG,
3893 unsigned Flag) const {
3894 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
3895 N->getOffset(), Flag);
3896 }
3897
getTargetNode(BlockAddressSDNode * N,EVT Ty,SelectionDAG & DAG,unsigned Flag) const3898 SDValue AArch64TargetLowering::getTargetNode(BlockAddressSDNode* N, EVT Ty,
3899 SelectionDAG &DAG,
3900 unsigned Flag) const {
3901 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
3902 }
3903
3904 // (loadGOT sym)
3905 template <class NodeTy>
getGOT(NodeTy * N,SelectionDAG & DAG,unsigned Flags) const3906 SDValue AArch64TargetLowering::getGOT(NodeTy *N, SelectionDAG &DAG,
3907 unsigned Flags) const {
3908 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getGOT\n");
3909 SDLoc DL(N);
3910 EVT Ty = getPointerTy(DAG.getDataLayout());
3911 SDValue GotAddr = getTargetNode(N, Ty, DAG, AArch64II::MO_GOT | Flags);
3912 // FIXME: Once remat is capable of dealing with instructions with register
3913 // operands, expand this into two nodes instead of using a wrapper node.
3914 return DAG.getNode(AArch64ISD::LOADgot, DL, Ty, GotAddr);
3915 }
3916
3917 // (wrapper %highest(sym), %higher(sym), %hi(sym), %lo(sym))
3918 template <class NodeTy>
getAddrLarge(NodeTy * N,SelectionDAG & DAG,unsigned Flags) const3919 SDValue AArch64TargetLowering::getAddrLarge(NodeTy *N, SelectionDAG &DAG,
3920 unsigned Flags) const {
3921 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrLarge\n");
3922 SDLoc DL(N);
3923 EVT Ty = getPointerTy(DAG.getDataLayout());
3924 const unsigned char MO_NC = AArch64II::MO_NC;
3925 return DAG.getNode(
3926 AArch64ISD::WrapperLarge, DL, Ty,
3927 getTargetNode(N, Ty, DAG, AArch64II::MO_G3 | Flags),
3928 getTargetNode(N, Ty, DAG, AArch64II::MO_G2 | MO_NC | Flags),
3929 getTargetNode(N, Ty, DAG, AArch64II::MO_G1 | MO_NC | Flags),
3930 getTargetNode(N, Ty, DAG, AArch64II::MO_G0 | MO_NC | Flags));
3931 }
3932
3933 // (addlow (adrp %hi(sym)) %lo(sym))
3934 template <class NodeTy>
getAddr(NodeTy * N,SelectionDAG & DAG,unsigned Flags) const3935 SDValue AArch64TargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3936 unsigned Flags) const {
3937 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddr\n");
3938 SDLoc DL(N);
3939 EVT Ty = getPointerTy(DAG.getDataLayout());
3940 SDValue Hi = getTargetNode(N, Ty, DAG, AArch64II::MO_PAGE | Flags);
3941 SDValue Lo = getTargetNode(N, Ty, DAG,
3942 AArch64II::MO_PAGEOFF | AArch64II::MO_NC | Flags);
3943 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, Ty, Hi);
3944 return DAG.getNode(AArch64ISD::ADDlow, DL, Ty, ADRP, Lo);
3945 }
3946
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const3947 SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
3948 SelectionDAG &DAG) const {
3949 GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
3950 const GlobalValue *GV = GN->getGlobal();
3951 const AArch64II::TOF TargetFlags =
3952 (GV->hasDLLImportStorageClass() ? AArch64II::MO_DLLIMPORT
3953 : AArch64II::MO_NO_FLAG);
3954 unsigned char OpFlags =
3955 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
3956
3957 if (OpFlags != AArch64II::MO_NO_FLAG)
3958 assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
3959 "unexpected offset in global node");
3960
3961 // This also catches the large code model case for Darwin.
3962 if ((OpFlags & AArch64II::MO_GOT) != 0) {
3963 return getGOT(GN, DAG, TargetFlags);
3964 }
3965
3966 SDValue Result;
3967 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3968 Result = getAddrLarge(GN, DAG, TargetFlags);
3969 } else {
3970 Result = getAddr(GN, DAG, TargetFlags);
3971 }
3972 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3973 SDLoc DL(GN);
3974 if (GV->hasDLLImportStorageClass())
3975 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3976 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3977 return Result;
3978 }
3979
3980 /// Convert a TLS address reference into the correct sequence of loads
3981 /// and calls to compute the variable's address (for Darwin, currently) and
3982 /// return an SDValue containing the final node.
3983
3984 /// Darwin only has one TLS scheme which must be capable of dealing with the
3985 /// fully general situation, in the worst case. This means:
3986 /// + "extern __thread" declaration.
3987 /// + Defined in a possibly unknown dynamic library.
3988 ///
3989 /// The general system is that each __thread variable has a [3 x i64] descriptor
3990 /// which contains information used by the runtime to calculate the address. The
3991 /// only part of this the compiler needs to know about is the first xword, which
3992 /// contains a function pointer that must be called with the address of the
3993 /// entire descriptor in "x0".
3994 ///
3995 /// Since this descriptor may be in a different unit, in general even the
3996 /// descriptor must be accessed via an indirect load. The "ideal" code sequence
3997 /// is:
3998 /// adrp x0, _var@TLVPPAGE
3999 /// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
4000 /// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
4001 /// ; the function pointer
4002 /// blr x1 ; Uses descriptor address in x0
4003 /// ; Address of _var is now in x0.
4004 ///
4005 /// If the address of _var's descriptor *is* known to the linker, then it can
4006 /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
4007 /// a slight efficiency gain.
4008 SDValue
LowerDarwinGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const4009 AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
4010 SelectionDAG &DAG) const {
4011 assert(Subtarget->isTargetDarwin() &&
4012 "This function expects a Darwin target");
4013
4014 SDLoc DL(Op);
4015 MVT PtrVT = getPointerTy(DAG.getDataLayout());
4016 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4017
4018 SDValue TLVPAddr =
4019 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
4020 SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
4021
4022 // The first entry in the descriptor is a function pointer that we must call
4023 // to obtain the address of the variable.
4024 SDValue Chain = DAG.getEntryNode();
4025 SDValue FuncTLVGet = DAG.getLoad(
4026 MVT::i64, DL, Chain, DescAddr,
4027 MachinePointerInfo::getGOT(DAG.getMachineFunction()),
4028 /* Alignment = */ 8,
4029 MachineMemOperand::MONonTemporal | MachineMemOperand::MOInvariant |
4030 MachineMemOperand::MODereferenceable);
4031 Chain = FuncTLVGet.getValue(1);
4032
4033 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
4034 MFI.setAdjustsStack(true);
4035
4036 // TLS calls preserve all registers except those that absolutely must be
4037 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
4038 // silly).
4039 const uint32_t *Mask =
4040 Subtarget->getRegisterInfo()->getTLSCallPreservedMask();
4041
4042 // Finally, we can make the call. This is just a degenerate version of a
4043 // normal AArch64 call node: x0 takes the address of the descriptor, and
4044 // returns the address of the variable in this thread.
4045 Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
4046 Chain =
4047 DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
4048 Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
4049 DAG.getRegisterMask(Mask), Chain.getValue(1));
4050 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
4051 }
4052
4053 /// When accessing thread-local variables under either the general-dynamic or
4054 /// local-dynamic system, we make a "TLS-descriptor" call. The variable will
4055 /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
4056 /// is a function pointer to carry out the resolution.
4057 ///
4058 /// The sequence is:
4059 /// adrp x0, :tlsdesc:var
4060 /// ldr x1, [x0, #:tlsdesc_lo12:var]
4061 /// add x0, x0, #:tlsdesc_lo12:var
4062 /// .tlsdesccall var
4063 /// blr x1
4064 /// (TPIDR_EL0 offset now in x0)
4065 ///
4066 /// The above sequence must be produced unscheduled, to enable the linker to
4067 /// optimize/relax this sequence.
4068 /// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
4069 /// above sequence, and expanded really late in the compilation flow, to ensure
4070 /// the sequence is produced as per above.
LowerELFTLSDescCallSeq(SDValue SymAddr,const SDLoc & DL,SelectionDAG & DAG) const4071 SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr,
4072 const SDLoc &DL,
4073 SelectionDAG &DAG) const {
4074 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4075
4076 SDValue Chain = DAG.getEntryNode();
4077 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
4078
4079 Chain =
4080 DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, {Chain, SymAddr});
4081 SDValue Glue = Chain.getValue(1);
4082
4083 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
4084 }
4085
4086 SDValue
LowerELFGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const4087 AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
4088 SelectionDAG &DAG) const {
4089 assert(Subtarget->isTargetELF() && "This function expects an ELF target");
4090 assert(Subtarget->useSmallAddressing() &&
4091 "ELF TLS only supported in small memory model");
4092 // Different choices can be made for the maximum size of the TLS area for a
4093 // module. For the small address model, the default TLS size is 16MiB and the
4094 // maximum TLS size is 4GiB.
4095 // FIXME: add -mtls-size command line option and make it control the 16MiB
4096 // vs. 4GiB code sequence generation.
4097 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4098
4099 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
4100
4101 if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
4102 if (Model == TLSModel::LocalDynamic)
4103 Model = TLSModel::GeneralDynamic;
4104 }
4105
4106 SDValue TPOff;
4107 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4108 SDLoc DL(Op);
4109 const GlobalValue *GV = GA->getGlobal();
4110
4111 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
4112
4113 if (Model == TLSModel::LocalExec) {
4114 SDValue HiVar = DAG.getTargetGlobalAddress(
4115 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
4116 SDValue LoVar = DAG.getTargetGlobalAddress(
4117 GV, DL, PtrVT, 0,
4118 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4119
4120 SDValue TPWithOff_lo =
4121 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
4122 HiVar,
4123 DAG.getTargetConstant(0, DL, MVT::i32)),
4124 0);
4125 SDValue TPWithOff =
4126 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPWithOff_lo,
4127 LoVar,
4128 DAG.getTargetConstant(0, DL, MVT::i32)),
4129 0);
4130 return TPWithOff;
4131 } else if (Model == TLSModel::InitialExec) {
4132 TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
4133 TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
4134 } else if (Model == TLSModel::LocalDynamic) {
4135 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
4136 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
4137 // the beginning of the module's TLS region, followed by a DTPREL offset
4138 // calculation.
4139
4140 // These accesses will need deduplicating if there's more than one.
4141 AArch64FunctionInfo *MFI =
4142 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
4143 MFI->incNumLocalDynamicTLSAccesses();
4144
4145 // The call needs a relocation too for linker relaxation. It doesn't make
4146 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
4147 // the address.
4148 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
4149 AArch64II::MO_TLS);
4150
4151 // Now we can calculate the offset from TPIDR_EL0 to this module's
4152 // thread-local area.
4153 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
4154
4155 // Now use :dtprel_whatever: operations to calculate this variable's offset
4156 // in its thread-storage area.
4157 SDValue HiVar = DAG.getTargetGlobalAddress(
4158 GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
4159 SDValue LoVar = DAG.getTargetGlobalAddress(
4160 GV, DL, MVT::i64, 0,
4161 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4162
4163 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
4164 DAG.getTargetConstant(0, DL, MVT::i32)),
4165 0);
4166 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
4167 DAG.getTargetConstant(0, DL, MVT::i32)),
4168 0);
4169 } else if (Model == TLSModel::GeneralDynamic) {
4170 // The call needs a relocation too for linker relaxation. It doesn't make
4171 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
4172 // the address.
4173 SDValue SymAddr =
4174 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
4175
4176 // Finally we can make a call to calculate the offset from tpidr_el0.
4177 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
4178 } else
4179 llvm_unreachable("Unsupported ELF TLS access model");
4180
4181 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
4182 }
4183
4184 SDValue
LowerWindowsGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const4185 AArch64TargetLowering::LowerWindowsGlobalTLSAddress(SDValue Op,
4186 SelectionDAG &DAG) const {
4187 assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
4188
4189 SDValue Chain = DAG.getEntryNode();
4190 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4191 SDLoc DL(Op);
4192
4193 SDValue TEB = DAG.getRegister(AArch64::X18, MVT::i64);
4194
4195 // Load the ThreadLocalStoragePointer from the TEB
4196 // A pointer to the TLS array is located at offset 0x58 from the TEB.
4197 SDValue TLSArray =
4198 DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x58, DL));
4199 TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
4200 Chain = TLSArray.getValue(1);
4201
4202 // Load the TLS index from the C runtime;
4203 // This does the same as getAddr(), but without having a GlobalAddressSDNode.
4204 // This also does the same as LOADgot, but using a generic i32 load,
4205 // while LOADgot only loads i64.
4206 SDValue TLSIndexHi =
4207 DAG.getTargetExternalSymbol("_tls_index", PtrVT, AArch64II::MO_PAGE);
4208 SDValue TLSIndexLo = DAG.getTargetExternalSymbol(
4209 "_tls_index", PtrVT, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4210 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, TLSIndexHi);
4211 SDValue TLSIndex =
4212 DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, TLSIndexLo);
4213 TLSIndex = DAG.getLoad(MVT::i32, DL, Chain, TLSIndex, MachinePointerInfo());
4214 Chain = TLSIndex.getValue(1);
4215
4216 // The pointer to the thread's TLS data area is at the TLS Index scaled by 8
4217 // offset into the TLSArray.
4218 TLSIndex = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TLSIndex);
4219 SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
4220 DAG.getConstant(3, DL, PtrVT));
4221 SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
4222 DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
4223 MachinePointerInfo());
4224 Chain = TLS.getValue(1);
4225
4226 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4227 const GlobalValue *GV = GA->getGlobal();
4228 SDValue TGAHi = DAG.getTargetGlobalAddress(
4229 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
4230 SDValue TGALo = DAG.getTargetGlobalAddress(
4231 GV, DL, PtrVT, 0,
4232 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4233
4234 // Add the offset from the start of the .tls section (section base).
4235 SDValue Addr =
4236 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TLS, TGAHi,
4237 DAG.getTargetConstant(0, DL, MVT::i32)),
4238 0);
4239 Addr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, Addr, TGALo);
4240 return Addr;
4241 }
4242
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const4243 SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
4244 SelectionDAG &DAG) const {
4245 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4246 if (DAG.getTarget().useEmulatedTLS())
4247 return LowerToTLSEmulatedModel(GA, DAG);
4248
4249 if (Subtarget->isTargetDarwin())
4250 return LowerDarwinGlobalTLSAddress(Op, DAG);
4251 if (Subtarget->isTargetELF())
4252 return LowerELFGlobalTLSAddress(Op, DAG);
4253 if (Subtarget->isTargetWindows())
4254 return LowerWindowsGlobalTLSAddress(Op, DAG);
4255
4256 llvm_unreachable("Unexpected platform trying to use TLS");
4257 }
4258
LowerBR_CC(SDValue Op,SelectionDAG & DAG) const4259 SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
4260 SDValue Chain = Op.getOperand(0);
4261 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4262 SDValue LHS = Op.getOperand(2);
4263 SDValue RHS = Op.getOperand(3);
4264 SDValue Dest = Op.getOperand(4);
4265 SDLoc dl(Op);
4266
4267 // Handle f128 first, since lowering it will result in comparing the return
4268 // value of a libcall against zero, which is just what the rest of LowerBR_CC
4269 // is expecting to deal with.
4270 if (LHS.getValueType() == MVT::f128) {
4271 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
4272
4273 // If softenSetCCOperands returned a scalar, we need to compare the result
4274 // against zero to select between true and false values.
4275 if (!RHS.getNode()) {
4276 RHS = DAG.getConstant(0, dl, LHS.getValueType());
4277 CC = ISD::SETNE;
4278 }
4279 }
4280
4281 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4282 // instruction.
4283 if (isOverflowIntrOpRes(LHS) && isOneConstant(RHS) &&
4284 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
4285 // Only lower legal XALUO ops.
4286 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
4287 return SDValue();
4288
4289 // The actual operation with overflow check.
4290 AArch64CC::CondCode OFCC;
4291 SDValue Value, Overflow;
4292 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
4293
4294 if (CC == ISD::SETNE)
4295 OFCC = getInvertedCondCode(OFCC);
4296 SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32);
4297
4298 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
4299 Overflow);
4300 }
4301
4302 if (LHS.getValueType().isInteger()) {
4303 assert((LHS.getValueType() == RHS.getValueType()) &&
4304 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
4305
4306 // If the RHS of the comparison is zero, we can potentially fold this
4307 // to a specialized branch.
4308 const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
4309 if (RHSC && RHSC->getZExtValue() == 0) {
4310 if (CC == ISD::SETEQ) {
4311 // See if we can use a TBZ to fold in an AND as well.
4312 // TBZ has a smaller branch displacement than CBZ. If the offset is
4313 // out of bounds, a late MI-layer pass rewrites branches.
4314 // 403.gcc is an example that hits this case.
4315 if (LHS.getOpcode() == ISD::AND &&
4316 isa<ConstantSDNode>(LHS.getOperand(1)) &&
4317 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
4318 SDValue Test = LHS.getOperand(0);
4319 uint64_t Mask = LHS.getConstantOperandVal(1);
4320 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
4321 DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
4322 Dest);
4323 }
4324
4325 return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
4326 } else if (CC == ISD::SETNE) {
4327 // See if we can use a TBZ to fold in an AND as well.
4328 // TBZ has a smaller branch displacement than CBZ. If the offset is
4329 // out of bounds, a late MI-layer pass rewrites branches.
4330 // 403.gcc is an example that hits this case.
4331 if (LHS.getOpcode() == ISD::AND &&
4332 isa<ConstantSDNode>(LHS.getOperand(1)) &&
4333 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
4334 SDValue Test = LHS.getOperand(0);
4335 uint64_t Mask = LHS.getConstantOperandVal(1);
4336 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
4337 DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
4338 Dest);
4339 }
4340
4341 return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
4342 } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
4343 // Don't combine AND since emitComparison converts the AND to an ANDS
4344 // (a.k.a. TST) and the test in the test bit and branch instruction
4345 // becomes redundant. This would also increase register pressure.
4346 uint64_t Mask = LHS.getValueSizeInBits() - 1;
4347 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
4348 DAG.getConstant(Mask, dl, MVT::i64), Dest);
4349 }
4350 }
4351 if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
4352 LHS.getOpcode() != ISD::AND) {
4353 // Don't combine AND since emitComparison converts the AND to an ANDS
4354 // (a.k.a. TST) and the test in the test bit and branch instruction
4355 // becomes redundant. This would also increase register pressure.
4356 uint64_t Mask = LHS.getValueSizeInBits() - 1;
4357 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
4358 DAG.getConstant(Mask, dl, MVT::i64), Dest);
4359 }
4360
4361 SDValue CCVal;
4362 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
4363 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
4364 Cmp);
4365 }
4366
4367 assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
4368 LHS.getValueType() == MVT::f64);
4369
4370 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
4371 // clean. Some of them require two branches to implement.
4372 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
4373 AArch64CC::CondCode CC1, CC2;
4374 changeFPCCToAArch64CC(CC, CC1, CC2);
4375 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
4376 SDValue BR1 =
4377 DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
4378 if (CC2 != AArch64CC::AL) {
4379 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
4380 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
4381 Cmp);
4382 }
4383
4384 return BR1;
4385 }
4386
LowerFCOPYSIGN(SDValue Op,SelectionDAG & DAG) const4387 SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
4388 SelectionDAG &DAG) const {
4389 EVT VT = Op.getValueType();
4390 SDLoc DL(Op);
4391
4392 SDValue In1 = Op.getOperand(0);
4393 SDValue In2 = Op.getOperand(1);
4394 EVT SrcVT = In2.getValueType();
4395
4396 if (SrcVT.bitsLT(VT))
4397 In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
4398 else if (SrcVT.bitsGT(VT))
4399 In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL));
4400
4401 EVT VecVT;
4402 uint64_t EltMask;
4403 SDValue VecVal1, VecVal2;
4404
4405 auto setVecVal = [&] (int Idx) {
4406 if (!VT.isVector()) {
4407 VecVal1 = DAG.getTargetInsertSubreg(Idx, DL, VecVT,
4408 DAG.getUNDEF(VecVT), In1);
4409 VecVal2 = DAG.getTargetInsertSubreg(Idx, DL, VecVT,
4410 DAG.getUNDEF(VecVT), In2);
4411 } else {
4412 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
4413 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
4414 }
4415 };
4416
4417 if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
4418 VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32);
4419 EltMask = 0x80000000ULL;
4420 setVecVal(AArch64::ssub);
4421 } else if (VT == MVT::f64 || VT == MVT::v2f64) {
4422 VecVT = MVT::v2i64;
4423
4424 // We want to materialize a mask with the high bit set, but the AdvSIMD
4425 // immediate moves cannot materialize that in a single instruction for
4426 // 64-bit elements. Instead, materialize zero and then negate it.
4427 EltMask = 0;
4428
4429 setVecVal(AArch64::dsub);
4430 } else if (VT == MVT::f16 || VT == MVT::v4f16 || VT == MVT::v8f16) {
4431 VecVT = (VT == MVT::v4f16 ? MVT::v4i16 : MVT::v8i16);
4432 EltMask = 0x8000ULL;
4433 setVecVal(AArch64::hsub);
4434 } else {
4435 llvm_unreachable("Invalid type for copysign!");
4436 }
4437
4438 SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT);
4439
4440 // If we couldn't materialize the mask above, then the mask vector will be
4441 // the zero vector, and we need to negate it here.
4442 if (VT == MVT::f64 || VT == MVT::v2f64) {
4443 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
4444 BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
4445 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
4446 }
4447
4448 SDValue Sel =
4449 DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
4450
4451 if (VT == MVT::f16)
4452 return DAG.getTargetExtractSubreg(AArch64::hsub, DL, VT, Sel);
4453 if (VT == MVT::f32)
4454 return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
4455 else if (VT == MVT::f64)
4456 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
4457 else
4458 return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
4459 }
4460
LowerCTPOP(SDValue Op,SelectionDAG & DAG) const4461 SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
4462 if (DAG.getMachineFunction().getFunction().hasFnAttribute(
4463 Attribute::NoImplicitFloat))
4464 return SDValue();
4465
4466 if (!Subtarget->hasNEON())
4467 return SDValue();
4468
4469 // While there is no integer popcount instruction, it can
4470 // be more efficiently lowered to the following sequence that uses
4471 // AdvSIMD registers/instructions as long as the copies to/from
4472 // the AdvSIMD registers are cheap.
4473 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
4474 // CNT V0.8B, V0.8B // 8xbyte pop-counts
4475 // ADDV B0, V0.8B // sum 8xbyte pop-counts
4476 // UMOV X0, V0.B[0] // copy byte result back to integer reg
4477 SDValue Val = Op.getOperand(0);
4478 SDLoc DL(Op);
4479 EVT VT = Op.getValueType();
4480
4481 if (VT == MVT::i32)
4482 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
4483 Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
4484
4485 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
4486 SDValue UaddLV = DAG.getNode(
4487 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
4488 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop);
4489
4490 if (VT == MVT::i64)
4491 UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
4492 return UaddLV;
4493 }
4494
LowerSETCC(SDValue Op,SelectionDAG & DAG) const4495 SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
4496
4497 if (Op.getValueType().isVector())
4498 return LowerVSETCC(Op, DAG);
4499
4500 SDValue LHS = Op.getOperand(0);
4501 SDValue RHS = Op.getOperand(1);
4502 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
4503 SDLoc dl(Op);
4504
4505 // We chose ZeroOrOneBooleanContents, so use zero and one.
4506 EVT VT = Op.getValueType();
4507 SDValue TVal = DAG.getConstant(1, dl, VT);
4508 SDValue FVal = DAG.getConstant(0, dl, VT);
4509
4510 // Handle f128 first, since one possible outcome is a normal integer
4511 // comparison which gets picked up by the next if statement.
4512 if (LHS.getValueType() == MVT::f128) {
4513 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
4514
4515 // If softenSetCCOperands returned a scalar, use it.
4516 if (!RHS.getNode()) {
4517 assert(LHS.getValueType() == Op.getValueType() &&
4518 "Unexpected setcc expansion!");
4519 return LHS;
4520 }
4521 }
4522
4523 if (LHS.getValueType().isInteger()) {
4524 SDValue CCVal;
4525 SDValue Cmp =
4526 getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
4527
4528 // Note that we inverted the condition above, so we reverse the order of
4529 // the true and false operands here. This will allow the setcc to be
4530 // matched to a single CSINC instruction.
4531 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
4532 }
4533
4534 // Now we know we're dealing with FP values.
4535 assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
4536 LHS.getValueType() == MVT::f64);
4537
4538 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
4539 // and do the comparison.
4540 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
4541
4542 AArch64CC::CondCode CC1, CC2;
4543 changeFPCCToAArch64CC(CC, CC1, CC2);
4544 if (CC2 == AArch64CC::AL) {
4545 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
4546 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
4547
4548 // Note that we inverted the condition above, so we reverse the order of
4549 // the true and false operands here. This will allow the setcc to be
4550 // matched to a single CSINC instruction.
4551 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
4552 } else {
4553 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
4554 // totally clean. Some of them require two CSELs to implement. As is in
4555 // this case, we emit the first CSEL and then emit a second using the output
4556 // of the first as the RHS. We're effectively OR'ing the two CC's together.
4557
4558 // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
4559 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
4560 SDValue CS1 =
4561 DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
4562
4563 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
4564 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
4565 }
4566 }
4567
LowerSELECT_CC(ISD::CondCode CC,SDValue LHS,SDValue RHS,SDValue TVal,SDValue FVal,const SDLoc & dl,SelectionDAG & DAG) const4568 SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS,
4569 SDValue RHS, SDValue TVal,
4570 SDValue FVal, const SDLoc &dl,
4571 SelectionDAG &DAG) const {
4572 // Handle f128 first, because it will result in a comparison of some RTLIB
4573 // call result against zero.
4574 if (LHS.getValueType() == MVT::f128) {
4575 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
4576
4577 // If softenSetCCOperands returned a scalar, we need to compare the result
4578 // against zero to select between true and false values.
4579 if (!RHS.getNode()) {
4580 RHS = DAG.getConstant(0, dl, LHS.getValueType());
4581 CC = ISD::SETNE;
4582 }
4583 }
4584
4585 // Also handle f16, for which we need to do a f32 comparison.
4586 if (LHS.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) {
4587 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
4588 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
4589 }
4590
4591 // Next, handle integers.
4592 if (LHS.getValueType().isInteger()) {
4593 assert((LHS.getValueType() == RHS.getValueType()) &&
4594 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
4595
4596 unsigned Opcode = AArch64ISD::CSEL;
4597
4598 // If both the TVal and the FVal are constants, see if we can swap them in
4599 // order to for a CSINV or CSINC out of them.
4600 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
4601 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
4602
4603 if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
4604 std::swap(TVal, FVal);
4605 std::swap(CTVal, CFVal);
4606 CC = ISD::getSetCCInverse(CC, true);
4607 } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
4608 std::swap(TVal, FVal);
4609 std::swap(CTVal, CFVal);
4610 CC = ISD::getSetCCInverse(CC, true);
4611 } else if (TVal.getOpcode() == ISD::XOR) {
4612 // If TVal is a NOT we want to swap TVal and FVal so that we can match
4613 // with a CSINV rather than a CSEL.
4614 if (isAllOnesConstant(TVal.getOperand(1))) {
4615 std::swap(TVal, FVal);
4616 std::swap(CTVal, CFVal);
4617 CC = ISD::getSetCCInverse(CC, true);
4618 }
4619 } else if (TVal.getOpcode() == ISD::SUB) {
4620 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
4621 // that we can match with a CSNEG rather than a CSEL.
4622 if (isNullConstant(TVal.getOperand(0))) {
4623 std::swap(TVal, FVal);
4624 std::swap(CTVal, CFVal);
4625 CC = ISD::getSetCCInverse(CC, true);
4626 }
4627 } else if (CTVal && CFVal) {
4628 const int64_t TrueVal = CTVal->getSExtValue();
4629 const int64_t FalseVal = CFVal->getSExtValue();
4630 bool Swap = false;
4631
4632 // If both TVal and FVal are constants, see if FVal is the
4633 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
4634 // instead of a CSEL in that case.
4635 if (TrueVal == ~FalseVal) {
4636 Opcode = AArch64ISD::CSINV;
4637 } else if (TrueVal == -FalseVal) {
4638 Opcode = AArch64ISD::CSNEG;
4639 } else if (TVal.getValueType() == MVT::i32) {
4640 // If our operands are only 32-bit wide, make sure we use 32-bit
4641 // arithmetic for the check whether we can use CSINC. This ensures that
4642 // the addition in the check will wrap around properly in case there is
4643 // an overflow (which would not be the case if we do the check with
4644 // 64-bit arithmetic).
4645 const uint32_t TrueVal32 = CTVal->getZExtValue();
4646 const uint32_t FalseVal32 = CFVal->getZExtValue();
4647
4648 if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
4649 Opcode = AArch64ISD::CSINC;
4650
4651 if (TrueVal32 > FalseVal32) {
4652 Swap = true;
4653 }
4654 }
4655 // 64-bit check whether we can use CSINC.
4656 } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
4657 Opcode = AArch64ISD::CSINC;
4658
4659 if (TrueVal > FalseVal) {
4660 Swap = true;
4661 }
4662 }
4663
4664 // Swap TVal and FVal if necessary.
4665 if (Swap) {
4666 std::swap(TVal, FVal);
4667 std::swap(CTVal, CFVal);
4668 CC = ISD::getSetCCInverse(CC, true);
4669 }
4670
4671 if (Opcode != AArch64ISD::CSEL) {
4672 // Drop FVal since we can get its value by simply inverting/negating
4673 // TVal.
4674 FVal = TVal;
4675 }
4676 }
4677
4678 // Avoid materializing a constant when possible by reusing a known value in
4679 // a register. However, don't perform this optimization if the known value
4680 // is one, zero or negative one in the case of a CSEL. We can always
4681 // materialize these values using CSINC, CSEL and CSINV with wzr/xzr as the
4682 // FVal, respectively.
4683 ConstantSDNode *RHSVal = dyn_cast<ConstantSDNode>(RHS);
4684 if (Opcode == AArch64ISD::CSEL && RHSVal && !RHSVal->isOne() &&
4685 !RHSVal->isNullValue() && !RHSVal->isAllOnesValue()) {
4686 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
4687 // Transform "a == C ? C : x" to "a == C ? a : x" and "a != C ? x : C" to
4688 // "a != C ? x : a" to avoid materializing C.
4689 if (CTVal && CTVal == RHSVal && AArch64CC == AArch64CC::EQ)
4690 TVal = LHS;
4691 else if (CFVal && CFVal == RHSVal && AArch64CC == AArch64CC::NE)
4692 FVal = LHS;
4693 } else if (Opcode == AArch64ISD::CSNEG && RHSVal && RHSVal->isOne()) {
4694 assert (CTVal && CFVal && "Expected constant operands for CSNEG.");
4695 // Use a CSINV to transform "a == C ? 1 : -1" to "a == C ? a : -1" to
4696 // avoid materializing C.
4697 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
4698 if (CTVal == RHSVal && AArch64CC == AArch64CC::EQ) {
4699 Opcode = AArch64ISD::CSINV;
4700 TVal = LHS;
4701 FVal = DAG.getConstant(0, dl, FVal.getValueType());
4702 }
4703 }
4704
4705 SDValue CCVal;
4706 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
4707 EVT VT = TVal.getValueType();
4708 return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
4709 }
4710
4711 // Now we know we're dealing with FP values.
4712 assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
4713 LHS.getValueType() == MVT::f64);
4714 assert(LHS.getValueType() == RHS.getValueType());
4715 EVT VT = TVal.getValueType();
4716 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
4717
4718 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
4719 // clean. Some of them require two CSELs to implement.
4720 AArch64CC::CondCode CC1, CC2;
4721 changeFPCCToAArch64CC(CC, CC1, CC2);
4722
4723 if (DAG.getTarget().Options.UnsafeFPMath) {
4724 // Transform "a == 0.0 ? 0.0 : x" to "a == 0.0 ? a : x" and
4725 // "a != 0.0 ? x : 0.0" to "a != 0.0 ? x : a" to avoid materializing 0.0.
4726 ConstantFPSDNode *RHSVal = dyn_cast<ConstantFPSDNode>(RHS);
4727 if (RHSVal && RHSVal->isZero()) {
4728 ConstantFPSDNode *CFVal = dyn_cast<ConstantFPSDNode>(FVal);
4729 ConstantFPSDNode *CTVal = dyn_cast<ConstantFPSDNode>(TVal);
4730
4731 if ((CC == ISD::SETEQ || CC == ISD::SETOEQ || CC == ISD::SETUEQ) &&
4732 CTVal && CTVal->isZero() && TVal.getValueType() == LHS.getValueType())
4733 TVal = LHS;
4734 else if ((CC == ISD::SETNE || CC == ISD::SETONE || CC == ISD::SETUNE) &&
4735 CFVal && CFVal->isZero() &&
4736 FVal.getValueType() == LHS.getValueType())
4737 FVal = LHS;
4738 }
4739 }
4740
4741 // Emit first, and possibly only, CSEL.
4742 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
4743 SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
4744
4745 // If we need a second CSEL, emit it, using the output of the first as the
4746 // RHS. We're effectively OR'ing the two CC's together.
4747 if (CC2 != AArch64CC::AL) {
4748 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
4749 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
4750 }
4751
4752 // Otherwise, return the output of the first CSEL.
4753 return CS1;
4754 }
4755
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const4756 SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
4757 SelectionDAG &DAG) const {
4758 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4759 SDValue LHS = Op.getOperand(0);
4760 SDValue RHS = Op.getOperand(1);
4761 SDValue TVal = Op.getOperand(2);
4762 SDValue FVal = Op.getOperand(3);
4763 SDLoc DL(Op);
4764 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
4765 }
4766
LowerSELECT(SDValue Op,SelectionDAG & DAG) const4767 SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
4768 SelectionDAG &DAG) const {
4769 SDValue CCVal = Op->getOperand(0);
4770 SDValue TVal = Op->getOperand(1);
4771 SDValue FVal = Op->getOperand(2);
4772 SDLoc DL(Op);
4773
4774 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
4775 // instruction.
4776 if (isOverflowIntrOpRes(CCVal)) {
4777 // Only lower legal XALUO ops.
4778 if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0)))
4779 return SDValue();
4780
4781 AArch64CC::CondCode OFCC;
4782 SDValue Value, Overflow;
4783 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG);
4784 SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32);
4785
4786 return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
4787 CCVal, Overflow);
4788 }
4789
4790 // Lower it the same way as we would lower a SELECT_CC node.
4791 ISD::CondCode CC;
4792 SDValue LHS, RHS;
4793 if (CCVal.getOpcode() == ISD::SETCC) {
4794 LHS = CCVal.getOperand(0);
4795 RHS = CCVal.getOperand(1);
4796 CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get();
4797 } else {
4798 LHS = CCVal;
4799 RHS = DAG.getConstant(0, DL, CCVal.getValueType());
4800 CC = ISD::SETNE;
4801 }
4802 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
4803 }
4804
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const4805 SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
4806 SelectionDAG &DAG) const {
4807 // Jump table entries as PC relative offsets. No additional tweaking
4808 // is necessary here. Just get the address of the jump table.
4809 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4810
4811 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
4812 !Subtarget->isTargetMachO()) {
4813 return getAddrLarge(JT, DAG);
4814 }
4815 return getAddr(JT, DAG);
4816 }
4817
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const4818 SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
4819 SelectionDAG &DAG) const {
4820 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4821
4822 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
4823 // Use the GOT for the large code model on iOS.
4824 if (Subtarget->isTargetMachO()) {
4825 return getGOT(CP, DAG);
4826 }
4827 return getAddrLarge(CP, DAG);
4828 } else {
4829 return getAddr(CP, DAG);
4830 }
4831 }
4832
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const4833 SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
4834 SelectionDAG &DAG) const {
4835 BlockAddressSDNode *BA = cast<BlockAddressSDNode>(Op);
4836 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
4837 !Subtarget->isTargetMachO()) {
4838 return getAddrLarge(BA, DAG);
4839 } else {
4840 return getAddr(BA, DAG);
4841 }
4842 }
4843
LowerDarwin_VASTART(SDValue Op,SelectionDAG & DAG) const4844 SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
4845 SelectionDAG &DAG) const {
4846 AArch64FunctionInfo *FuncInfo =
4847 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
4848
4849 SDLoc DL(Op);
4850 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(),
4851 getPointerTy(DAG.getDataLayout()));
4852 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4853 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
4854 MachinePointerInfo(SV));
4855 }
4856
LowerWin64_VASTART(SDValue Op,SelectionDAG & DAG) const4857 SDValue AArch64TargetLowering::LowerWin64_VASTART(SDValue Op,
4858 SelectionDAG &DAG) const {
4859 AArch64FunctionInfo *FuncInfo =
4860 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
4861
4862 SDLoc DL(Op);
4863 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsGPRSize() > 0
4864 ? FuncInfo->getVarArgsGPRIndex()
4865 : FuncInfo->getVarArgsStackIndex(),
4866 getPointerTy(DAG.getDataLayout()));
4867 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4868 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
4869 MachinePointerInfo(SV));
4870 }
4871
LowerAAPCS_VASTART(SDValue Op,SelectionDAG & DAG) const4872 SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
4873 SelectionDAG &DAG) const {
4874 // The layout of the va_list struct is specified in the AArch64 Procedure Call
4875 // Standard, section B.3.
4876 MachineFunction &MF = DAG.getMachineFunction();
4877 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
4878 auto PtrVT = getPointerTy(DAG.getDataLayout());
4879 SDLoc DL(Op);
4880
4881 SDValue Chain = Op.getOperand(0);
4882 SDValue VAList = Op.getOperand(1);
4883 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4884 SmallVector<SDValue, 4> MemOps;
4885
4886 // void *__stack at offset 0
4887 SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT);
4888 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
4889 MachinePointerInfo(SV), /* Alignment = */ 8));
4890
4891 // void *__gr_top at offset 8
4892 int GPRSize = FuncInfo->getVarArgsGPRSize();
4893 if (GPRSize > 0) {
4894 SDValue GRTop, GRTopAddr;
4895
4896 GRTopAddr =
4897 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT));
4898
4899 GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT);
4900 GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop,
4901 DAG.getConstant(GPRSize, DL, PtrVT));
4902
4903 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
4904 MachinePointerInfo(SV, 8),
4905 /* Alignment = */ 8));
4906 }
4907
4908 // void *__vr_top at offset 16
4909 int FPRSize = FuncInfo->getVarArgsFPRSize();
4910 if (FPRSize > 0) {
4911 SDValue VRTop, VRTopAddr;
4912 VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4913 DAG.getConstant(16, DL, PtrVT));
4914
4915 VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT);
4916 VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop,
4917 DAG.getConstant(FPRSize, DL, PtrVT));
4918
4919 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
4920 MachinePointerInfo(SV, 16),
4921 /* Alignment = */ 8));
4922 }
4923
4924 // int __gr_offs at offset 24
4925 SDValue GROffsAddr =
4926 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT));
4927 MemOps.push_back(DAG.getStore(
4928 Chain, DL, DAG.getConstant(-GPRSize, DL, MVT::i32), GROffsAddr,
4929 MachinePointerInfo(SV, 24), /* Alignment = */ 4));
4930
4931 // int __vr_offs at offset 28
4932 SDValue VROffsAddr =
4933 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT));
4934 MemOps.push_back(DAG.getStore(
4935 Chain, DL, DAG.getConstant(-FPRSize, DL, MVT::i32), VROffsAddr,
4936 MachinePointerInfo(SV, 28), /* Alignment = */ 4));
4937
4938 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
4939 }
4940
LowerVASTART(SDValue Op,SelectionDAG & DAG) const4941 SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
4942 SelectionDAG &DAG) const {
4943 MachineFunction &MF = DAG.getMachineFunction();
4944
4945 if (Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv()))
4946 return LowerWin64_VASTART(Op, DAG);
4947 else if (Subtarget->isTargetDarwin())
4948 return LowerDarwin_VASTART(Op, DAG);
4949 else
4950 return LowerAAPCS_VASTART(Op, DAG);
4951 }
4952
LowerVACOPY(SDValue Op,SelectionDAG & DAG) const4953 SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
4954 SelectionDAG &DAG) const {
4955 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
4956 // pointer.
4957 SDLoc DL(Op);
4958 unsigned VaListSize =
4959 Subtarget->isTargetDarwin() || Subtarget->isTargetWindows() ? 8 : 32;
4960 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
4961 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
4962
4963 return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1),
4964 Op.getOperand(2),
4965 DAG.getConstant(VaListSize, DL, MVT::i32),
4966 8, false, false, false, MachinePointerInfo(DestSV),
4967 MachinePointerInfo(SrcSV));
4968 }
4969
LowerVAARG(SDValue Op,SelectionDAG & DAG) const4970 SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
4971 assert(Subtarget->isTargetDarwin() &&
4972 "automatic va_arg instruction only works on Darwin");
4973
4974 const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4975 EVT VT = Op.getValueType();
4976 SDLoc DL(Op);
4977 SDValue Chain = Op.getOperand(0);
4978 SDValue Addr = Op.getOperand(1);
4979 unsigned Align = Op.getConstantOperandVal(3);
4980 auto PtrVT = getPointerTy(DAG.getDataLayout());
4981
4982 SDValue VAList = DAG.getLoad(PtrVT, DL, Chain, Addr, MachinePointerInfo(V));
4983 Chain = VAList.getValue(1);
4984
4985 if (Align > 8) {
4986 assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
4987 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4988 DAG.getConstant(Align - 1, DL, PtrVT));
4989 VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList,
4990 DAG.getConstant(-(int64_t)Align, DL, PtrVT));
4991 }
4992
4993 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
4994 uint64_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
4995
4996 // Scalar integer and FP values smaller than 64 bits are implicitly extended
4997 // up to 64 bits. At the very least, we have to increase the striding of the
4998 // vaargs list to match this, and for FP values we need to introduce
4999 // FP_ROUND nodes as well.
5000 if (VT.isInteger() && !VT.isVector())
5001 ArgSize = 8;
5002 bool NeedFPTrunc = false;
5003 if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
5004 ArgSize = 8;
5005 NeedFPTrunc = true;
5006 }
5007
5008 // Increment the pointer, VAList, to the next vaarg
5009 SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
5010 DAG.getConstant(ArgSize, DL, PtrVT));
5011 // Store the incremented VAList to the legalized pointer
5012 SDValue APStore =
5013 DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V));
5014
5015 // Load the actual argument out of the pointer VAList
5016 if (NeedFPTrunc) {
5017 // Load the value as an f64.
5018 SDValue WideFP =
5019 DAG.getLoad(MVT::f64, DL, APStore, VAList, MachinePointerInfo());
5020 // Round the value down to an f32.
5021 SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
5022 DAG.getIntPtrConstant(1, DL));
5023 SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
5024 // Merge the rounded value with the chain output of the load.
5025 return DAG.getMergeValues(Ops, DL);
5026 }
5027
5028 return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo());
5029 }
5030
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const5031 SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
5032 SelectionDAG &DAG) const {
5033 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5034 MFI.setFrameAddressIsTaken(true);
5035
5036 EVT VT = Op.getValueType();
5037 SDLoc DL(Op);
5038 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5039 SDValue FrameAddr =
5040 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
5041 while (Depth--)
5042 FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
5043 MachinePointerInfo());
5044 return FrameAddr;
5045 }
5046
5047 // FIXME? Maybe this could be a TableGen attribute on some registers and
5048 // this table could be generated automatically from RegInfo.
getRegisterByName(const char * RegName,EVT VT,SelectionDAG & DAG) const5049 unsigned AArch64TargetLowering::getRegisterByName(const char* RegName, EVT VT,
5050 SelectionDAG &DAG) const {
5051 unsigned Reg = StringSwitch<unsigned>(RegName)
5052 .Case("sp", AArch64::SP)
5053 .Case("x18", AArch64::X18)
5054 .Case("w18", AArch64::W18)
5055 .Case("x20", AArch64::X20)
5056 .Case("w20", AArch64::W20)
5057 .Default(0);
5058 if (((Reg == AArch64::X18 || Reg == AArch64::W18) &&
5059 !Subtarget->isX18Reserved()) ||
5060 ((Reg == AArch64::X20 || Reg == AArch64::W20) &&
5061 !Subtarget->isX20Reserved()))
5062 Reg = 0;
5063 if (Reg)
5064 return Reg;
5065 report_fatal_error(Twine("Invalid register name \""
5066 + StringRef(RegName) + "\"."));
5067 }
5068
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const5069 SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
5070 SelectionDAG &DAG) const {
5071 MachineFunction &MF = DAG.getMachineFunction();
5072 MachineFrameInfo &MFI = MF.getFrameInfo();
5073 MFI.setReturnAddressIsTaken(true);
5074
5075 EVT VT = Op.getValueType();
5076 SDLoc DL(Op);
5077 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5078 if (Depth) {
5079 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5080 SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
5081 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
5082 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
5083 MachinePointerInfo());
5084 }
5085
5086 // Return LR, which contains the return address. Mark it an implicit live-in.
5087 unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
5088 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
5089 }
5090
5091 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5092 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
LowerShiftRightParts(SDValue Op,SelectionDAG & DAG) const5093 SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
5094 SelectionDAG &DAG) const {
5095 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5096 EVT VT = Op.getValueType();
5097 unsigned VTBits = VT.getSizeInBits();
5098 SDLoc dl(Op);
5099 SDValue ShOpLo = Op.getOperand(0);
5100 SDValue ShOpHi = Op.getOperand(1);
5101 SDValue ShAmt = Op.getOperand(2);
5102 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
5103
5104 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
5105
5106 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
5107 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
5108 SDValue HiBitsForLo = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
5109
5110 // Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which
5111 // is "undef". We wanted 0, so CSEL it directly.
5112 SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
5113 ISD::SETEQ, dl, DAG);
5114 SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
5115 HiBitsForLo =
5116 DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
5117 HiBitsForLo, CCVal, Cmp);
5118
5119 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
5120 DAG.getConstant(VTBits, dl, MVT::i64));
5121
5122 SDValue LoBitsForLo = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
5123 SDValue LoForNormalShift =
5124 DAG.getNode(ISD::OR, dl, VT, LoBitsForLo, HiBitsForLo);
5125
5126 Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
5127 dl, DAG);
5128 CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
5129 SDValue LoForBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
5130 SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
5131 LoForNormalShift, CCVal, Cmp);
5132
5133 // AArch64 shifts larger than the register width are wrapped rather than
5134 // clamped, so we can't just emit "hi >> x".
5135 SDValue HiForNormalShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
5136 SDValue HiForBigShift =
5137 Opc == ISD::SRA
5138 ? DAG.getNode(Opc, dl, VT, ShOpHi,
5139 DAG.getConstant(VTBits - 1, dl, MVT::i64))
5140 : DAG.getConstant(0, dl, VT);
5141 SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
5142 HiForNormalShift, CCVal, Cmp);
5143
5144 SDValue Ops[2] = { Lo, Hi };
5145 return DAG.getMergeValues(Ops, dl);
5146 }
5147
5148 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5149 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
LowerShiftLeftParts(SDValue Op,SelectionDAG & DAG) const5150 SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
5151 SelectionDAG &DAG) const {
5152 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5153 EVT VT = Op.getValueType();
5154 unsigned VTBits = VT.getSizeInBits();
5155 SDLoc dl(Op);
5156 SDValue ShOpLo = Op.getOperand(0);
5157 SDValue ShOpHi = Op.getOperand(1);
5158 SDValue ShAmt = Op.getOperand(2);
5159
5160 assert(Op.getOpcode() == ISD::SHL_PARTS);
5161 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
5162 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
5163 SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
5164
5165 // Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which
5166 // is "undef". We wanted 0, so CSEL it directly.
5167 SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
5168 ISD::SETEQ, dl, DAG);
5169 SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
5170 LoBitsForHi =
5171 DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
5172 LoBitsForHi, CCVal, Cmp);
5173
5174 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
5175 DAG.getConstant(VTBits, dl, MVT::i64));
5176 SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
5177 SDValue HiForNormalShift =
5178 DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi);
5179
5180 SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
5181
5182 Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
5183 dl, DAG);
5184 CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
5185 SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
5186 HiForNormalShift, CCVal, Cmp);
5187
5188 // AArch64 shifts of larger than register sizes are wrapped rather than
5189 // clamped, so we can't just emit "lo << a" if a is too big.
5190 SDValue LoForBigShift = DAG.getConstant(0, dl, VT);
5191 SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5192 SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
5193 LoForNormalShift, CCVal, Cmp);
5194
5195 SDValue Ops[2] = { Lo, Hi };
5196 return DAG.getMergeValues(Ops, dl);
5197 }
5198
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const5199 bool AArch64TargetLowering::isOffsetFoldingLegal(
5200 const GlobalAddressSDNode *GA) const {
5201 // Offsets are folded in the DAG combine rather than here so that we can
5202 // intelligently choose an offset based on the uses.
5203 return false;
5204 }
5205
isFPImmLegal(const APFloat & Imm,EVT VT) const5206 bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
5207 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
5208 // FIXME: We should be able to handle f128 as well with a clever lowering.
5209 if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32 ||
5210 (VT == MVT::f16 && Subtarget->hasFullFP16()))) {
5211 LLVM_DEBUG(
5212 dbgs() << "Legal fp imm: materialize 0 using the zero register\n");
5213 return true;
5214 }
5215
5216 StringRef FPType;
5217 bool IsLegal = false;
5218 SmallString<128> ImmStrVal;
5219 Imm.toString(ImmStrVal);
5220
5221 if (VT == MVT::f64) {
5222 FPType = "f64";
5223 IsLegal = AArch64_AM::getFP64Imm(Imm) != -1;
5224 } else if (VT == MVT::f32) {
5225 FPType = "f32";
5226 IsLegal = AArch64_AM::getFP32Imm(Imm) != -1;
5227 } else if (VT == MVT::f16 && Subtarget->hasFullFP16()) {
5228 FPType = "f16";
5229 IsLegal = AArch64_AM::getFP16Imm(Imm) != -1;
5230 }
5231
5232 if (IsLegal) {
5233 LLVM_DEBUG(dbgs() << "Legal " << FPType << " imm value: " << ImmStrVal
5234 << "\n");
5235 return true;
5236 }
5237
5238 if (!FPType.empty())
5239 LLVM_DEBUG(dbgs() << "Illegal " << FPType << " imm value: " << ImmStrVal
5240 << "\n");
5241 else
5242 LLVM_DEBUG(dbgs() << "Illegal fp imm " << ImmStrVal
5243 << ": unsupported fp type\n");
5244
5245 return false;
5246 }
5247
5248 //===----------------------------------------------------------------------===//
5249 // AArch64 Optimization Hooks
5250 //===----------------------------------------------------------------------===//
5251
getEstimate(const AArch64Subtarget * ST,unsigned Opcode,SDValue Operand,SelectionDAG & DAG,int & ExtraSteps)5252 static SDValue getEstimate(const AArch64Subtarget *ST, unsigned Opcode,
5253 SDValue Operand, SelectionDAG &DAG,
5254 int &ExtraSteps) {
5255 EVT VT = Operand.getValueType();
5256 if (ST->hasNEON() &&
5257 (VT == MVT::f64 || VT == MVT::v1f64 || VT == MVT::v2f64 ||
5258 VT == MVT::f32 || VT == MVT::v1f32 ||
5259 VT == MVT::v2f32 || VT == MVT::v4f32)) {
5260 if (ExtraSteps == TargetLoweringBase::ReciprocalEstimate::Unspecified)
5261 // For the reciprocal estimates, convergence is quadratic, so the number
5262 // of digits is doubled after each iteration. In ARMv8, the accuracy of
5263 // the initial estimate is 2^-8. Thus the number of extra steps to refine
5264 // the result for float (23 mantissa bits) is 2 and for double (52
5265 // mantissa bits) is 3.
5266 ExtraSteps = VT.getScalarType() == MVT::f64 ? 3 : 2;
5267
5268 return DAG.getNode(Opcode, SDLoc(Operand), VT, Operand);
5269 }
5270
5271 return SDValue();
5272 }
5273
getSqrtEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & ExtraSteps,bool & UseOneConst,bool Reciprocal) const5274 SDValue AArch64TargetLowering::getSqrtEstimate(SDValue Operand,
5275 SelectionDAG &DAG, int Enabled,
5276 int &ExtraSteps,
5277 bool &UseOneConst,
5278 bool Reciprocal) const {
5279 if (Enabled == ReciprocalEstimate::Enabled ||
5280 (Enabled == ReciprocalEstimate::Unspecified && Subtarget->useRSqrt()))
5281 if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRSQRTE, Operand,
5282 DAG, ExtraSteps)) {
5283 SDLoc DL(Operand);
5284 EVT VT = Operand.getValueType();
5285
5286 SDNodeFlags Flags;
5287 Flags.setAllowReassociation(true);
5288
5289 // Newton reciprocal square root iteration: E * 0.5 * (3 - X * E^2)
5290 // AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N)
5291 for (int i = ExtraSteps; i > 0; --i) {
5292 SDValue Step = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Estimate,
5293 Flags);
5294 Step = DAG.getNode(AArch64ISD::FRSQRTS, DL, VT, Operand, Step, Flags);
5295 Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
5296 }
5297 if (!Reciprocal) {
5298 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
5299 VT);
5300 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
5301 SDValue Eq = DAG.getSetCC(DL, CCVT, Operand, FPZero, ISD::SETEQ);
5302
5303 Estimate = DAG.getNode(ISD::FMUL, DL, VT, Operand, Estimate, Flags);
5304 // Correct the result if the operand is 0.0.
5305 Estimate = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL,
5306 VT, Eq, Operand, Estimate);
5307 }
5308
5309 ExtraSteps = 0;
5310 return Estimate;
5311 }
5312
5313 return SDValue();
5314 }
5315
getRecipEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & ExtraSteps) const5316 SDValue AArch64TargetLowering::getRecipEstimate(SDValue Operand,
5317 SelectionDAG &DAG, int Enabled,
5318 int &ExtraSteps) const {
5319 if (Enabled == ReciprocalEstimate::Enabled)
5320 if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRECPE, Operand,
5321 DAG, ExtraSteps)) {
5322 SDLoc DL(Operand);
5323 EVT VT = Operand.getValueType();
5324
5325 SDNodeFlags Flags;
5326 Flags.setAllowReassociation(true);
5327
5328 // Newton reciprocal iteration: E * (2 - X * E)
5329 // AArch64 reciprocal iteration instruction: (2 - M * N)
5330 for (int i = ExtraSteps; i > 0; --i) {
5331 SDValue Step = DAG.getNode(AArch64ISD::FRECPS, DL, VT, Operand,
5332 Estimate, Flags);
5333 Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
5334 }
5335
5336 ExtraSteps = 0;
5337 return Estimate;
5338 }
5339
5340 return SDValue();
5341 }
5342
5343 //===----------------------------------------------------------------------===//
5344 // AArch64 Inline Assembly Support
5345 //===----------------------------------------------------------------------===//
5346
5347 // Table of Constraints
5348 // TODO: This is the current set of constraints supported by ARM for the
5349 // compiler, not all of them may make sense.
5350 //
5351 // r - A general register
5352 // w - An FP/SIMD register of some size in the range v0-v31
5353 // x - An FP/SIMD register of some size in the range v0-v15
5354 // I - Constant that can be used with an ADD instruction
5355 // J - Constant that can be used with a SUB instruction
5356 // K - Constant that can be used with a 32-bit logical instruction
5357 // L - Constant that can be used with a 64-bit logical instruction
5358 // M - Constant that can be used as a 32-bit MOV immediate
5359 // N - Constant that can be used as a 64-bit MOV immediate
5360 // Q - A memory reference with base register and no offset
5361 // S - A symbolic address
5362 // Y - Floating point constant zero
5363 // Z - Integer constant zero
5364 //
5365 // Note that general register operands will be output using their 64-bit x
5366 // register name, whatever the size of the variable, unless the asm operand
5367 // is prefixed by the %w modifier. Floating-point and SIMD register operands
5368 // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
5369 // %q modifier.
LowerXConstraint(EVT ConstraintVT) const5370 const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
5371 // At this point, we have to lower this constraint to something else, so we
5372 // lower it to an "r" or "w". However, by doing this we will force the result
5373 // to be in register, while the X constraint is much more permissive.
5374 //
5375 // Although we are correct (we are free to emit anything, without
5376 // constraints), we might break use cases that would expect us to be more
5377 // efficient and emit something else.
5378 if (!Subtarget->hasFPARMv8())
5379 return "r";
5380
5381 if (ConstraintVT.isFloatingPoint())
5382 return "w";
5383
5384 if (ConstraintVT.isVector() &&
5385 (ConstraintVT.getSizeInBits() == 64 ||
5386 ConstraintVT.getSizeInBits() == 128))
5387 return "w";
5388
5389 return "r";
5390 }
5391
5392 /// getConstraintType - Given a constraint letter, return the type of
5393 /// constraint it is for this target.
5394 AArch64TargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const5395 AArch64TargetLowering::getConstraintType(StringRef Constraint) const {
5396 if (Constraint.size() == 1) {
5397 switch (Constraint[0]) {
5398 default:
5399 break;
5400 case 'z':
5401 return C_Other;
5402 case 'x':
5403 case 'w':
5404 return C_RegisterClass;
5405 // An address with a single base register. Due to the way we
5406 // currently handle addresses it is the same as 'r'.
5407 case 'Q':
5408 return C_Memory;
5409 case 'S': // A symbolic address
5410 return C_Other;
5411 }
5412 }
5413 return TargetLowering::getConstraintType(Constraint);
5414 }
5415
5416 /// Examine constraint type and operand type and determine a weight value.
5417 /// This object must already have been set up with the operand type
5418 /// and the current alternative constraint selected.
5419 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const5420 AArch64TargetLowering::getSingleConstraintMatchWeight(
5421 AsmOperandInfo &info, const char *constraint) const {
5422 ConstraintWeight weight = CW_Invalid;
5423 Value *CallOperandVal = info.CallOperandVal;
5424 // If we don't have a value, we can't do a match,
5425 // but allow it at the lowest weight.
5426 if (!CallOperandVal)
5427 return CW_Default;
5428 Type *type = CallOperandVal->getType();
5429 // Look at the constraint type.
5430 switch (*constraint) {
5431 default:
5432 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
5433 break;
5434 case 'x':
5435 case 'w':
5436 if (type->isFloatingPointTy() || type->isVectorTy())
5437 weight = CW_Register;
5438 break;
5439 case 'z':
5440 weight = CW_Constant;
5441 break;
5442 }
5443 return weight;
5444 }
5445
5446 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const5447 AArch64TargetLowering::getRegForInlineAsmConstraint(
5448 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
5449 if (Constraint.size() == 1) {
5450 switch (Constraint[0]) {
5451 case 'r':
5452 if (VT.getSizeInBits() == 64)
5453 return std::make_pair(0U, &AArch64::GPR64commonRegClass);
5454 return std::make_pair(0U, &AArch64::GPR32commonRegClass);
5455 case 'w':
5456 if (VT.getSizeInBits() == 16)
5457 return std::make_pair(0U, &AArch64::FPR16RegClass);
5458 if (VT.getSizeInBits() == 32)
5459 return std::make_pair(0U, &AArch64::FPR32RegClass);
5460 if (VT.getSizeInBits() == 64)
5461 return std::make_pair(0U, &AArch64::FPR64RegClass);
5462 if (VT.getSizeInBits() == 128)
5463 return std::make_pair(0U, &AArch64::FPR128RegClass);
5464 break;
5465 // The instructions that this constraint is designed for can
5466 // only take 128-bit registers so just use that regclass.
5467 case 'x':
5468 if (VT.getSizeInBits() == 128)
5469 return std::make_pair(0U, &AArch64::FPR128_loRegClass);
5470 break;
5471 }
5472 }
5473 if (StringRef("{cc}").equals_lower(Constraint))
5474 return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
5475
5476 // Use the default implementation in TargetLowering to convert the register
5477 // constraint into a member of a register class.
5478 std::pair<unsigned, const TargetRegisterClass *> Res;
5479 Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
5480
5481 // Not found as a standard register?
5482 if (!Res.second) {
5483 unsigned Size = Constraint.size();
5484 if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
5485 tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
5486 int RegNo;
5487 bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo);
5488 if (!Failed && RegNo >= 0 && RegNo <= 31) {
5489 // v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size.
5490 // By default we'll emit v0-v31 for this unless there's a modifier where
5491 // we'll emit the correct register as well.
5492 if (VT != MVT::Other && VT.getSizeInBits() == 64) {
5493 Res.first = AArch64::FPR64RegClass.getRegister(RegNo);
5494 Res.second = &AArch64::FPR64RegClass;
5495 } else {
5496 Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
5497 Res.second = &AArch64::FPR128RegClass;
5498 }
5499 }
5500 }
5501 }
5502
5503 return Res;
5504 }
5505
5506 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5507 /// vector. If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const5508 void AArch64TargetLowering::LowerAsmOperandForConstraint(
5509 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
5510 SelectionDAG &DAG) const {
5511 SDValue Result;
5512
5513 // Currently only support length 1 constraints.
5514 if (Constraint.length() != 1)
5515 return;
5516
5517 char ConstraintLetter = Constraint[0];
5518 switch (ConstraintLetter) {
5519 default:
5520 break;
5521
5522 // This set of constraints deal with valid constants for various instructions.
5523 // Validate and return a target constant for them if we can.
5524 case 'z': {
5525 // 'z' maps to xzr or wzr so it needs an input of 0.
5526 if (!isNullConstant(Op))
5527 return;
5528
5529 if (Op.getValueType() == MVT::i64)
5530 Result = DAG.getRegister(AArch64::XZR, MVT::i64);
5531 else
5532 Result = DAG.getRegister(AArch64::WZR, MVT::i32);
5533 break;
5534 }
5535 case 'S': {
5536 // An absolute symbolic address or label reference.
5537 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5538 Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5539 GA->getValueType(0));
5540 } else if (const BlockAddressSDNode *BA =
5541 dyn_cast<BlockAddressSDNode>(Op)) {
5542 Result =
5543 DAG.getTargetBlockAddress(BA->getBlockAddress(), BA->getValueType(0));
5544 } else if (const ExternalSymbolSDNode *ES =
5545 dyn_cast<ExternalSymbolSDNode>(Op)) {
5546 Result =
5547 DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0));
5548 } else
5549 return;
5550 break;
5551 }
5552
5553 case 'I':
5554 case 'J':
5555 case 'K':
5556 case 'L':
5557 case 'M':
5558 case 'N':
5559 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
5560 if (!C)
5561 return;
5562
5563 // Grab the value and do some validation.
5564 uint64_t CVal = C->getZExtValue();
5565 switch (ConstraintLetter) {
5566 // The I constraint applies only to simple ADD or SUB immediate operands:
5567 // i.e. 0 to 4095 with optional shift by 12
5568 // The J constraint applies only to ADD or SUB immediates that would be
5569 // valid when negated, i.e. if [an add pattern] were to be output as a SUB
5570 // instruction [or vice versa], in other words -1 to -4095 with optional
5571 // left shift by 12.
5572 case 'I':
5573 if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
5574 break;
5575 return;
5576 case 'J': {
5577 uint64_t NVal = -C->getSExtValue();
5578 if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
5579 CVal = C->getSExtValue();
5580 break;
5581 }
5582 return;
5583 }
5584 // The K and L constraints apply *only* to logical immediates, including
5585 // what used to be the MOVI alias for ORR (though the MOVI alias has now
5586 // been removed and MOV should be used). So these constraints have to
5587 // distinguish between bit patterns that are valid 32-bit or 64-bit
5588 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
5589 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
5590 // versa.
5591 case 'K':
5592 if (AArch64_AM::isLogicalImmediate(CVal, 32))
5593 break;
5594 return;
5595 case 'L':
5596 if (AArch64_AM::isLogicalImmediate(CVal, 64))
5597 break;
5598 return;
5599 // The M and N constraints are a superset of K and L respectively, for use
5600 // with the MOV (immediate) alias. As well as the logical immediates they
5601 // also match 32 or 64-bit immediates that can be loaded either using a
5602 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
5603 // (M) or 64-bit 0x1234000000000000 (N) etc.
5604 // As a note some of this code is liberally stolen from the asm parser.
5605 case 'M': {
5606 if (!isUInt<32>(CVal))
5607 return;
5608 if (AArch64_AM::isLogicalImmediate(CVal, 32))
5609 break;
5610 if ((CVal & 0xFFFF) == CVal)
5611 break;
5612 if ((CVal & 0xFFFF0000ULL) == CVal)
5613 break;
5614 uint64_t NCVal = ~(uint32_t)CVal;
5615 if ((NCVal & 0xFFFFULL) == NCVal)
5616 break;
5617 if ((NCVal & 0xFFFF0000ULL) == NCVal)
5618 break;
5619 return;
5620 }
5621 case 'N': {
5622 if (AArch64_AM::isLogicalImmediate(CVal, 64))
5623 break;
5624 if ((CVal & 0xFFFFULL) == CVal)
5625 break;
5626 if ((CVal & 0xFFFF0000ULL) == CVal)
5627 break;
5628 if ((CVal & 0xFFFF00000000ULL) == CVal)
5629 break;
5630 if ((CVal & 0xFFFF000000000000ULL) == CVal)
5631 break;
5632 uint64_t NCVal = ~CVal;
5633 if ((NCVal & 0xFFFFULL) == NCVal)
5634 break;
5635 if ((NCVal & 0xFFFF0000ULL) == NCVal)
5636 break;
5637 if ((NCVal & 0xFFFF00000000ULL) == NCVal)
5638 break;
5639 if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
5640 break;
5641 return;
5642 }
5643 default:
5644 return;
5645 }
5646
5647 // All assembler immediates are 64-bit integers.
5648 Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64);
5649 break;
5650 }
5651
5652 if (Result.getNode()) {
5653 Ops.push_back(Result);
5654 return;
5655 }
5656
5657 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5658 }
5659
5660 //===----------------------------------------------------------------------===//
5661 // AArch64 Advanced SIMD Support
5662 //===----------------------------------------------------------------------===//
5663
5664 /// WidenVector - Given a value in the V64 register class, produce the
5665 /// equivalent value in the V128 register class.
WidenVector(SDValue V64Reg,SelectionDAG & DAG)5666 static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
5667 EVT VT = V64Reg.getValueType();
5668 unsigned NarrowSize = VT.getVectorNumElements();
5669 MVT EltTy = VT.getVectorElementType().getSimpleVT();
5670 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
5671 SDLoc DL(V64Reg);
5672
5673 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
5674 V64Reg, DAG.getConstant(0, DL, MVT::i32));
5675 }
5676
5677 /// getExtFactor - Determine the adjustment factor for the position when
5678 /// generating an "extract from vector registers" instruction.
getExtFactor(SDValue & V)5679 static unsigned getExtFactor(SDValue &V) {
5680 EVT EltType = V.getValueType().getVectorElementType();
5681 return EltType.getSizeInBits() / 8;
5682 }
5683
5684 /// NarrowVector - Given a value in the V128 register class, produce the
5685 /// equivalent value in the V64 register class.
NarrowVector(SDValue V128Reg,SelectionDAG & DAG)5686 static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
5687 EVT VT = V128Reg.getValueType();
5688 unsigned WideSize = VT.getVectorNumElements();
5689 MVT EltTy = VT.getVectorElementType().getSimpleVT();
5690 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
5691 SDLoc DL(V128Reg);
5692
5693 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
5694 }
5695
5696 // Gather data to see if the operation can be modelled as a
5697 // shuffle in combination with VEXTs.
ReconstructShuffle(SDValue Op,SelectionDAG & DAG) const5698 SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
5699 SelectionDAG &DAG) const {
5700 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
5701 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::ReconstructShuffle\n");
5702 SDLoc dl(Op);
5703 EVT VT = Op.getValueType();
5704 unsigned NumElts = VT.getVectorNumElements();
5705
5706 struct ShuffleSourceInfo {
5707 SDValue Vec;
5708 unsigned MinElt;
5709 unsigned MaxElt;
5710
5711 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
5712 // be compatible with the shuffle we intend to construct. As a result
5713 // ShuffleVec will be some sliding window into the original Vec.
5714 SDValue ShuffleVec;
5715
5716 // Code should guarantee that element i in Vec starts at element "WindowBase
5717 // + i * WindowScale in ShuffleVec".
5718 int WindowBase;
5719 int WindowScale;
5720
5721 ShuffleSourceInfo(SDValue Vec)
5722 : Vec(Vec), MinElt(std::numeric_limits<unsigned>::max()), MaxElt(0),
5723 ShuffleVec(Vec), WindowBase(0), WindowScale(1) {}
5724
5725 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
5726 };
5727
5728 // First gather all vectors used as an immediate source for this BUILD_VECTOR
5729 // node.
5730 SmallVector<ShuffleSourceInfo, 2> Sources;
5731 for (unsigned i = 0; i < NumElts; ++i) {
5732 SDValue V = Op.getOperand(i);
5733 if (V.isUndef())
5734 continue;
5735 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5736 !isa<ConstantSDNode>(V.getOperand(1))) {
5737 LLVM_DEBUG(
5738 dbgs() << "Reshuffle failed: "
5739 "a shuffle can only come from building a vector from "
5740 "various elements of other vectors, provided their "
5741 "indices are constant\n");
5742 return SDValue();
5743 }
5744
5745 // Add this element source to the list if it's not already there.
5746 SDValue SourceVec = V.getOperand(0);
5747 auto Source = find(Sources, SourceVec);
5748 if (Source == Sources.end())
5749 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
5750
5751 // Update the minimum and maximum lane number seen.
5752 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
5753 Source->MinElt = std::min(Source->MinElt, EltNo);
5754 Source->MaxElt = std::max(Source->MaxElt, EltNo);
5755 }
5756
5757 if (Sources.size() > 2) {
5758 LLVM_DEBUG(
5759 dbgs() << "Reshuffle failed: currently only do something sane when at "
5760 "most two source vectors are involved\n");
5761 return SDValue();
5762 }
5763
5764 // Find out the smallest element size among result and two sources, and use
5765 // it as element size to build the shuffle_vector.
5766 EVT SmallestEltTy = VT.getVectorElementType();
5767 for (auto &Source : Sources) {
5768 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
5769 if (SrcEltTy.bitsLT(SmallestEltTy)) {
5770 SmallestEltTy = SrcEltTy;
5771 }
5772 }
5773 unsigned ResMultiplier =
5774 VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
5775 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
5776 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
5777
5778 // If the source vector is too wide or too narrow, we may nevertheless be able
5779 // to construct a compatible shuffle either by concatenating it with UNDEF or
5780 // extracting a suitable range of elements.
5781 for (auto &Src : Sources) {
5782 EVT SrcVT = Src.ShuffleVec.getValueType();
5783
5784 if (SrcVT.getSizeInBits() == VT.getSizeInBits())
5785 continue;
5786
5787 // This stage of the search produces a source with the same element type as
5788 // the original, but with a total width matching the BUILD_VECTOR output.
5789 EVT EltVT = SrcVT.getVectorElementType();
5790 unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
5791 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
5792
5793 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
5794 assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
5795 // We can pad out the smaller vector for free, so if it's part of a
5796 // shuffle...
5797 Src.ShuffleVec =
5798 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
5799 DAG.getUNDEF(Src.ShuffleVec.getValueType()));
5800 continue;
5801 }
5802
5803 assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
5804
5805 if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
5806 LLVM_DEBUG(
5807 dbgs() << "Reshuffle failed: span too large for a VEXT to cope\n");
5808 return SDValue();
5809 }
5810
5811 if (Src.MinElt >= NumSrcElts) {
5812 // The extraction can just take the second half
5813 Src.ShuffleVec =
5814 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5815 DAG.getConstant(NumSrcElts, dl, MVT::i64));
5816 Src.WindowBase = -NumSrcElts;
5817 } else if (Src.MaxElt < NumSrcElts) {
5818 // The extraction can just take the first half
5819 Src.ShuffleVec =
5820 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5821 DAG.getConstant(0, dl, MVT::i64));
5822 } else {
5823 // An actual VEXT is needed
5824 SDValue VEXTSrc1 =
5825 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5826 DAG.getConstant(0, dl, MVT::i64));
5827 SDValue VEXTSrc2 =
5828 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5829 DAG.getConstant(NumSrcElts, dl, MVT::i64));
5830 unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
5831
5832 Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
5833 VEXTSrc2,
5834 DAG.getConstant(Imm, dl, MVT::i32));
5835 Src.WindowBase = -Src.MinElt;
5836 }
5837 }
5838
5839 // Another possible incompatibility occurs from the vector element types. We
5840 // can fix this by bitcasting the source vectors to the same type we intend
5841 // for the shuffle.
5842 for (auto &Src : Sources) {
5843 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
5844 if (SrcEltTy == SmallestEltTy)
5845 continue;
5846 assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
5847 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
5848 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
5849 Src.WindowBase *= Src.WindowScale;
5850 }
5851
5852 // Final sanity check before we try to actually produce a shuffle.
5853 LLVM_DEBUG(for (auto Src
5854 : Sources)
5855 assert(Src.ShuffleVec.getValueType() == ShuffleVT););
5856
5857 // The stars all align, our next step is to produce the mask for the shuffle.
5858 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
5859 int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
5860 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
5861 SDValue Entry = Op.getOperand(i);
5862 if (Entry.isUndef())
5863 continue;
5864
5865 auto Src = find(Sources, Entry.getOperand(0));
5866 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
5867
5868 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
5869 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
5870 // segment.
5871 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
5872 int BitsDefined =
5873 std::min(OrigEltTy.getSizeInBits(), VT.getScalarSizeInBits());
5874 int LanesDefined = BitsDefined / BitsPerShuffleLane;
5875
5876 // This source is expected to fill ResMultiplier lanes of the final shuffle,
5877 // starting at the appropriate offset.
5878 int *LaneMask = &Mask[i * ResMultiplier];
5879
5880 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
5881 ExtractBase += NumElts * (Src - Sources.begin());
5882 for (int j = 0; j < LanesDefined; ++j)
5883 LaneMask[j] = ExtractBase + j;
5884 }
5885
5886 // Final check before we try to produce nonsense...
5887 if (!isShuffleMaskLegal(Mask, ShuffleVT)) {
5888 LLVM_DEBUG(dbgs() << "Reshuffle failed: illegal shuffle mask\n");
5889 return SDValue();
5890 }
5891
5892 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
5893 for (unsigned i = 0; i < Sources.size(); ++i)
5894 ShuffleOps[i] = Sources[i].ShuffleVec;
5895
5896 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
5897 ShuffleOps[1], Mask);
5898 SDValue V = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
5899
5900 LLVM_DEBUG(dbgs() << "Reshuffle, creating node: "; Shuffle.dump();
5901 dbgs() << "Reshuffle, creating node: "; V.dump(););
5902
5903 return V;
5904 }
5905
5906 // check if an EXT instruction can handle the shuffle mask when the
5907 // vector sources of the shuffle are the same.
isSingletonEXTMask(ArrayRef<int> M,EVT VT,unsigned & Imm)5908 static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
5909 unsigned NumElts = VT.getVectorNumElements();
5910
5911 // Assume that the first shuffle index is not UNDEF. Fail if it is.
5912 if (M[0] < 0)
5913 return false;
5914
5915 Imm = M[0];
5916
5917 // If this is a VEXT shuffle, the immediate value is the index of the first
5918 // element. The other shuffle indices must be the successive elements after
5919 // the first one.
5920 unsigned ExpectedElt = Imm;
5921 for (unsigned i = 1; i < NumElts; ++i) {
5922 // Increment the expected index. If it wraps around, just follow it
5923 // back to index zero and keep going.
5924 ++ExpectedElt;
5925 if (ExpectedElt == NumElts)
5926 ExpectedElt = 0;
5927
5928 if (M[i] < 0)
5929 continue; // ignore UNDEF indices
5930 if (ExpectedElt != static_cast<unsigned>(M[i]))
5931 return false;
5932 }
5933
5934 return true;
5935 }
5936
5937 // check if an EXT instruction can handle the shuffle mask when the
5938 // vector sources of the shuffle are different.
isEXTMask(ArrayRef<int> M,EVT VT,bool & ReverseEXT,unsigned & Imm)5939 static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
5940 unsigned &Imm) {
5941 // Look for the first non-undef element.
5942 const int *FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; });
5943
5944 // Benefit form APInt to handle overflow when calculating expected element.
5945 unsigned NumElts = VT.getVectorNumElements();
5946 unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
5947 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
5948 // The following shuffle indices must be the successive elements after the
5949 // first real element.
5950 const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
5951 [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
5952 if (FirstWrongElt != M.end())
5953 return false;
5954
5955 // The index of an EXT is the first element if it is not UNDEF.
5956 // Watch out for the beginning UNDEFs. The EXT index should be the expected
5957 // value of the first element. E.g.
5958 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
5959 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
5960 // ExpectedElt is the last mask index plus 1.
5961 Imm = ExpectedElt.getZExtValue();
5962
5963 // There are two difference cases requiring to reverse input vectors.
5964 // For example, for vector <4 x i32> we have the following cases,
5965 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
5966 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
5967 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
5968 // to reverse two input vectors.
5969 if (Imm < NumElts)
5970 ReverseEXT = true;
5971 else
5972 Imm -= NumElts;
5973
5974 return true;
5975 }
5976
5977 /// isREVMask - Check if a vector shuffle corresponds to a REV
5978 /// instruction with the specified blocksize. (The order of the elements
5979 /// within each block of the vector is reversed.)
isREVMask(ArrayRef<int> M,EVT VT,unsigned BlockSize)5980 static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
5981 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
5982 "Only possible block sizes for REV are: 16, 32, 64");
5983
5984 unsigned EltSz = VT.getScalarSizeInBits();
5985 if (EltSz == 64)
5986 return false;
5987
5988 unsigned NumElts = VT.getVectorNumElements();
5989 unsigned BlockElts = M[0] + 1;
5990 // If the first shuffle index is UNDEF, be optimistic.
5991 if (M[0] < 0)
5992 BlockElts = BlockSize / EltSz;
5993
5994 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
5995 return false;
5996
5997 for (unsigned i = 0; i < NumElts; ++i) {
5998 if (M[i] < 0)
5999 continue; // ignore UNDEF indices
6000 if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
6001 return false;
6002 }
6003
6004 return true;
6005 }
6006
isZIPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6007 static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6008 unsigned NumElts = VT.getVectorNumElements();
6009 WhichResult = (M[0] == 0 ? 0 : 1);
6010 unsigned Idx = WhichResult * NumElts / 2;
6011 for (unsigned i = 0; i != NumElts; i += 2) {
6012 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
6013 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
6014 return false;
6015 Idx += 1;
6016 }
6017
6018 return true;
6019 }
6020
isUZPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6021 static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6022 unsigned NumElts = VT.getVectorNumElements();
6023 WhichResult = (M[0] == 0 ? 0 : 1);
6024 for (unsigned i = 0; i != NumElts; ++i) {
6025 if (M[i] < 0)
6026 continue; // ignore UNDEF indices
6027 if ((unsigned)M[i] != 2 * i + WhichResult)
6028 return false;
6029 }
6030
6031 return true;
6032 }
6033
isTRNMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6034 static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6035 unsigned NumElts = VT.getVectorNumElements();
6036 WhichResult = (M[0] == 0 ? 0 : 1);
6037 for (unsigned i = 0; i < NumElts; i += 2) {
6038 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
6039 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
6040 return false;
6041 }
6042 return true;
6043 }
6044
6045 /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
6046 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6047 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
isZIP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6048 static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6049 unsigned NumElts = VT.getVectorNumElements();
6050 WhichResult = (M[0] == 0 ? 0 : 1);
6051 unsigned Idx = WhichResult * NumElts / 2;
6052 for (unsigned i = 0; i != NumElts; i += 2) {
6053 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
6054 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
6055 return false;
6056 Idx += 1;
6057 }
6058
6059 return true;
6060 }
6061
6062 /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
6063 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6064 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
isUZP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6065 static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6066 unsigned Half = VT.getVectorNumElements() / 2;
6067 WhichResult = (M[0] == 0 ? 0 : 1);
6068 for (unsigned j = 0; j != 2; ++j) {
6069 unsigned Idx = WhichResult;
6070 for (unsigned i = 0; i != Half; ++i) {
6071 int MIdx = M[i + j * Half];
6072 if (MIdx >= 0 && (unsigned)MIdx != Idx)
6073 return false;
6074 Idx += 2;
6075 }
6076 }
6077
6078 return true;
6079 }
6080
6081 /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
6082 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6083 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
isTRN_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6084 static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6085 unsigned NumElts = VT.getVectorNumElements();
6086 WhichResult = (M[0] == 0 ? 0 : 1);
6087 for (unsigned i = 0; i < NumElts; i += 2) {
6088 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
6089 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
6090 return false;
6091 }
6092 return true;
6093 }
6094
isINSMask(ArrayRef<int> M,int NumInputElements,bool & DstIsLeft,int & Anomaly)6095 static bool isINSMask(ArrayRef<int> M, int NumInputElements,
6096 bool &DstIsLeft, int &Anomaly) {
6097 if (M.size() != static_cast<size_t>(NumInputElements))
6098 return false;
6099
6100 int NumLHSMatch = 0, NumRHSMatch = 0;
6101 int LastLHSMismatch = -1, LastRHSMismatch = -1;
6102
6103 for (int i = 0; i < NumInputElements; ++i) {
6104 if (M[i] == -1) {
6105 ++NumLHSMatch;
6106 ++NumRHSMatch;
6107 continue;
6108 }
6109
6110 if (M[i] == i)
6111 ++NumLHSMatch;
6112 else
6113 LastLHSMismatch = i;
6114
6115 if (M[i] == i + NumInputElements)
6116 ++NumRHSMatch;
6117 else
6118 LastRHSMismatch = i;
6119 }
6120
6121 if (NumLHSMatch == NumInputElements - 1) {
6122 DstIsLeft = true;
6123 Anomaly = LastLHSMismatch;
6124 return true;
6125 } else if (NumRHSMatch == NumInputElements - 1) {
6126 DstIsLeft = false;
6127 Anomaly = LastRHSMismatch;
6128 return true;
6129 }
6130
6131 return false;
6132 }
6133
isConcatMask(ArrayRef<int> Mask,EVT VT,bool SplitLHS)6134 static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
6135 if (VT.getSizeInBits() != 128)
6136 return false;
6137
6138 unsigned NumElts = VT.getVectorNumElements();
6139
6140 for (int I = 0, E = NumElts / 2; I != E; I++) {
6141 if (Mask[I] != I)
6142 return false;
6143 }
6144
6145 int Offset = NumElts / 2;
6146 for (int I = NumElts / 2, E = NumElts; I != E; I++) {
6147 if (Mask[I] != I + SplitLHS * Offset)
6148 return false;
6149 }
6150
6151 return true;
6152 }
6153
tryFormConcatFromShuffle(SDValue Op,SelectionDAG & DAG)6154 static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
6155 SDLoc DL(Op);
6156 EVT VT = Op.getValueType();
6157 SDValue V0 = Op.getOperand(0);
6158 SDValue V1 = Op.getOperand(1);
6159 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
6160
6161 if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
6162 VT.getVectorElementType() != V1.getValueType().getVectorElementType())
6163 return SDValue();
6164
6165 bool SplitV0 = V0.getValueSizeInBits() == 128;
6166
6167 if (!isConcatMask(Mask, VT, SplitV0))
6168 return SDValue();
6169
6170 EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
6171 VT.getVectorNumElements() / 2);
6172 if (SplitV0) {
6173 V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
6174 DAG.getConstant(0, DL, MVT::i64));
6175 }
6176 if (V1.getValueSizeInBits() == 128) {
6177 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
6178 DAG.getConstant(0, DL, MVT::i64));
6179 }
6180 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
6181 }
6182
6183 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
6184 /// the specified operations to build the shuffle.
GeneratePerfectShuffle(unsigned PFEntry,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl)6185 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
6186 SDValue RHS, SelectionDAG &DAG,
6187 const SDLoc &dl) {
6188 unsigned OpNum = (PFEntry >> 26) & 0x0F;
6189 unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
6190 unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
6191
6192 enum {
6193 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
6194 OP_VREV,
6195 OP_VDUP0,
6196 OP_VDUP1,
6197 OP_VDUP2,
6198 OP_VDUP3,
6199 OP_VEXT1,
6200 OP_VEXT2,
6201 OP_VEXT3,
6202 OP_VUZPL, // VUZP, left result
6203 OP_VUZPR, // VUZP, right result
6204 OP_VZIPL, // VZIP, left result
6205 OP_VZIPR, // VZIP, right result
6206 OP_VTRNL, // VTRN, left result
6207 OP_VTRNR // VTRN, right result
6208 };
6209
6210 if (OpNum == OP_COPY) {
6211 if (LHSID == (1 * 9 + 2) * 9 + 3)
6212 return LHS;
6213 assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
6214 return RHS;
6215 }
6216
6217 SDValue OpLHS, OpRHS;
6218 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
6219 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
6220 EVT VT = OpLHS.getValueType();
6221
6222 switch (OpNum) {
6223 default:
6224 llvm_unreachable("Unknown shuffle opcode!");
6225 case OP_VREV:
6226 // VREV divides the vector in half and swaps within the half.
6227 if (VT.getVectorElementType() == MVT::i32 ||
6228 VT.getVectorElementType() == MVT::f32)
6229 return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
6230 // vrev <4 x i16> -> REV32
6231 if (VT.getVectorElementType() == MVT::i16 ||
6232 VT.getVectorElementType() == MVT::f16)
6233 return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
6234 // vrev <4 x i8> -> REV16
6235 assert(VT.getVectorElementType() == MVT::i8);
6236 return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
6237 case OP_VDUP0:
6238 case OP_VDUP1:
6239 case OP_VDUP2:
6240 case OP_VDUP3: {
6241 EVT EltTy = VT.getVectorElementType();
6242 unsigned Opcode;
6243 if (EltTy == MVT::i8)
6244 Opcode = AArch64ISD::DUPLANE8;
6245 else if (EltTy == MVT::i16 || EltTy == MVT::f16)
6246 Opcode = AArch64ISD::DUPLANE16;
6247 else if (EltTy == MVT::i32 || EltTy == MVT::f32)
6248 Opcode = AArch64ISD::DUPLANE32;
6249 else if (EltTy == MVT::i64 || EltTy == MVT::f64)
6250 Opcode = AArch64ISD::DUPLANE64;
6251 else
6252 llvm_unreachable("Invalid vector element type?");
6253
6254 if (VT.getSizeInBits() == 64)
6255 OpLHS = WidenVector(OpLHS, DAG);
6256 SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64);
6257 return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
6258 }
6259 case OP_VEXT1:
6260 case OP_VEXT2:
6261 case OP_VEXT3: {
6262 unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
6263 return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
6264 DAG.getConstant(Imm, dl, MVT::i32));
6265 }
6266 case OP_VUZPL:
6267 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
6268 OpRHS);
6269 case OP_VUZPR:
6270 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
6271 OpRHS);
6272 case OP_VZIPL:
6273 return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
6274 OpRHS);
6275 case OP_VZIPR:
6276 return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
6277 OpRHS);
6278 case OP_VTRNL:
6279 return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
6280 OpRHS);
6281 case OP_VTRNR:
6282 return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
6283 OpRHS);
6284 }
6285 }
6286
GenerateTBL(SDValue Op,ArrayRef<int> ShuffleMask,SelectionDAG & DAG)6287 static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
6288 SelectionDAG &DAG) {
6289 // Check to see if we can use the TBL instruction.
6290 SDValue V1 = Op.getOperand(0);
6291 SDValue V2 = Op.getOperand(1);
6292 SDLoc DL(Op);
6293
6294 EVT EltVT = Op.getValueType().getVectorElementType();
6295 unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
6296
6297 SmallVector<SDValue, 8> TBLMask;
6298 for (int Val : ShuffleMask) {
6299 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
6300 unsigned Offset = Byte + Val * BytesPerElt;
6301 TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32));
6302 }
6303 }
6304
6305 MVT IndexVT = MVT::v8i8;
6306 unsigned IndexLen = 8;
6307 if (Op.getValueSizeInBits() == 128) {
6308 IndexVT = MVT::v16i8;
6309 IndexLen = 16;
6310 }
6311
6312 SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
6313 SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
6314
6315 SDValue Shuffle;
6316 if (V2.getNode()->isUndef()) {
6317 if (IndexLen == 8)
6318 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
6319 Shuffle = DAG.getNode(
6320 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
6321 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
6322 DAG.getBuildVector(IndexVT, DL,
6323 makeArrayRef(TBLMask.data(), IndexLen)));
6324 } else {
6325 if (IndexLen == 8) {
6326 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
6327 Shuffle = DAG.getNode(
6328 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
6329 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
6330 DAG.getBuildVector(IndexVT, DL,
6331 makeArrayRef(TBLMask.data(), IndexLen)));
6332 } else {
6333 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
6334 // cannot currently represent the register constraints on the input
6335 // table registers.
6336 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
6337 // DAG.getBuildVector(IndexVT, DL, &TBLMask[0],
6338 // IndexLen));
6339 Shuffle = DAG.getNode(
6340 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
6341 DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), V1Cst,
6342 V2Cst, DAG.getBuildVector(IndexVT, DL,
6343 makeArrayRef(TBLMask.data(), IndexLen)));
6344 }
6345 }
6346 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
6347 }
6348
getDUPLANEOp(EVT EltType)6349 static unsigned getDUPLANEOp(EVT EltType) {
6350 if (EltType == MVT::i8)
6351 return AArch64ISD::DUPLANE8;
6352 if (EltType == MVT::i16 || EltType == MVT::f16)
6353 return AArch64ISD::DUPLANE16;
6354 if (EltType == MVT::i32 || EltType == MVT::f32)
6355 return AArch64ISD::DUPLANE32;
6356 if (EltType == MVT::i64 || EltType == MVT::f64)
6357 return AArch64ISD::DUPLANE64;
6358
6359 llvm_unreachable("Invalid vector element type?");
6360 }
6361
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const6362 SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
6363 SelectionDAG &DAG) const {
6364 SDLoc dl(Op);
6365 EVT VT = Op.getValueType();
6366
6367 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
6368
6369 // Convert shuffles that are directly supported on NEON to target-specific
6370 // DAG nodes, instead of keeping them as shuffles and matching them again
6371 // during code selection. This is more efficient and avoids the possibility
6372 // of inconsistencies between legalization and selection.
6373 ArrayRef<int> ShuffleMask = SVN->getMask();
6374
6375 SDValue V1 = Op.getOperand(0);
6376 SDValue V2 = Op.getOperand(1);
6377
6378 if (SVN->isSplat()) {
6379 int Lane = SVN->getSplatIndex();
6380 // If this is undef splat, generate it via "just" vdup, if possible.
6381 if (Lane == -1)
6382 Lane = 0;
6383
6384 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
6385 return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
6386 V1.getOperand(0));
6387 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
6388 // constant. If so, we can just reference the lane's definition directly.
6389 if (V1.getOpcode() == ISD::BUILD_VECTOR &&
6390 !isa<ConstantSDNode>(V1.getOperand(Lane)))
6391 return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
6392
6393 // Otherwise, duplicate from the lane of the input vector.
6394 unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
6395
6396 // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
6397 // to make a vector of the same size as this SHUFFLE. We can ignore the
6398 // extract entirely, and canonicalise the concat using WidenVector.
6399 if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
6400 Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
6401 V1 = V1.getOperand(0);
6402 } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
6403 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
6404 Lane -= Idx * VT.getVectorNumElements() / 2;
6405 V1 = WidenVector(V1.getOperand(Idx), DAG);
6406 } else if (VT.getSizeInBits() == 64)
6407 V1 = WidenVector(V1, DAG);
6408
6409 return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64));
6410 }
6411
6412 if (isREVMask(ShuffleMask, VT, 64))
6413 return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
6414 if (isREVMask(ShuffleMask, VT, 32))
6415 return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
6416 if (isREVMask(ShuffleMask, VT, 16))
6417 return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
6418
6419 bool ReverseEXT = false;
6420 unsigned Imm;
6421 if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
6422 if (ReverseEXT)
6423 std::swap(V1, V2);
6424 Imm *= getExtFactor(V1);
6425 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
6426 DAG.getConstant(Imm, dl, MVT::i32));
6427 } else if (V2->isUndef() && isSingletonEXTMask(ShuffleMask, VT, Imm)) {
6428 Imm *= getExtFactor(V1);
6429 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
6430 DAG.getConstant(Imm, dl, MVT::i32));
6431 }
6432
6433 unsigned WhichResult;
6434 if (isZIPMask(ShuffleMask, VT, WhichResult)) {
6435 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
6436 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
6437 }
6438 if (isUZPMask(ShuffleMask, VT, WhichResult)) {
6439 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
6440 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
6441 }
6442 if (isTRNMask(ShuffleMask, VT, WhichResult)) {
6443 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
6444 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
6445 }
6446
6447 if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
6448 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
6449 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
6450 }
6451 if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
6452 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
6453 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
6454 }
6455 if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
6456 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
6457 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
6458 }
6459
6460 if (SDValue Concat = tryFormConcatFromShuffle(Op, DAG))
6461 return Concat;
6462
6463 bool DstIsLeft;
6464 int Anomaly;
6465 int NumInputElements = V1.getValueType().getVectorNumElements();
6466 if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
6467 SDValue DstVec = DstIsLeft ? V1 : V2;
6468 SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64);
6469
6470 SDValue SrcVec = V1;
6471 int SrcLane = ShuffleMask[Anomaly];
6472 if (SrcLane >= NumInputElements) {
6473 SrcVec = V2;
6474 SrcLane -= VT.getVectorNumElements();
6475 }
6476 SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64);
6477
6478 EVT ScalarVT = VT.getVectorElementType();
6479
6480 if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
6481 ScalarVT = MVT::i32;
6482
6483 return DAG.getNode(
6484 ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
6485 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
6486 DstLaneV);
6487 }
6488
6489 // If the shuffle is not directly supported and it has 4 elements, use
6490 // the PerfectShuffle-generated table to synthesize it from other shuffles.
6491 unsigned NumElts = VT.getVectorNumElements();
6492 if (NumElts == 4) {
6493 unsigned PFIndexes[4];
6494 for (unsigned i = 0; i != 4; ++i) {
6495 if (ShuffleMask[i] < 0)
6496 PFIndexes[i] = 8;
6497 else
6498 PFIndexes[i] = ShuffleMask[i];
6499 }
6500
6501 // Compute the index in the perfect shuffle table.
6502 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
6503 PFIndexes[2] * 9 + PFIndexes[3];
6504 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6505 unsigned Cost = (PFEntry >> 30);
6506
6507 if (Cost <= 4)
6508 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
6509 }
6510
6511 return GenerateTBL(Op, ShuffleMask, DAG);
6512 }
6513
resolveBuildVector(BuildVectorSDNode * BVN,APInt & CnstBits,APInt & UndefBits)6514 static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
6515 APInt &UndefBits) {
6516 EVT VT = BVN->getValueType(0);
6517 APInt SplatBits, SplatUndef;
6518 unsigned SplatBitSize;
6519 bool HasAnyUndefs;
6520 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6521 unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
6522
6523 for (unsigned i = 0; i < NumSplats; ++i) {
6524 CnstBits <<= SplatBitSize;
6525 UndefBits <<= SplatBitSize;
6526 CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
6527 UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
6528 }
6529
6530 return true;
6531 }
6532
6533 return false;
6534 }
6535
6536 // Try 64-bit splatted SIMD immediate.
tryAdvSIMDModImm64(unsigned NewOp,SDValue Op,SelectionDAG & DAG,const APInt & Bits)6537 static SDValue tryAdvSIMDModImm64(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
6538 const APInt &Bits) {
6539 if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
6540 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
6541 EVT VT = Op.getValueType();
6542 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v2i64 : MVT::f64;
6543
6544 if (AArch64_AM::isAdvSIMDModImmType10(Value)) {
6545 Value = AArch64_AM::encodeAdvSIMDModImmType10(Value);
6546
6547 SDLoc dl(Op);
6548 SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
6549 DAG.getConstant(Value, dl, MVT::i32));
6550 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6551 }
6552 }
6553
6554 return SDValue();
6555 }
6556
6557 // Try 32-bit splatted SIMD immediate.
tryAdvSIMDModImm32(unsigned NewOp,SDValue Op,SelectionDAG & DAG,const APInt & Bits,const SDValue * LHS=nullptr)6558 static SDValue tryAdvSIMDModImm32(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
6559 const APInt &Bits,
6560 const SDValue *LHS = nullptr) {
6561 if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
6562 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
6563 EVT VT = Op.getValueType();
6564 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6565 bool isAdvSIMDModImm = false;
6566 uint64_t Shift;
6567
6568 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType1(Value))) {
6569 Value = AArch64_AM::encodeAdvSIMDModImmType1(Value);
6570 Shift = 0;
6571 }
6572 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType2(Value))) {
6573 Value = AArch64_AM::encodeAdvSIMDModImmType2(Value);
6574 Shift = 8;
6575 }
6576 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType3(Value))) {
6577 Value = AArch64_AM::encodeAdvSIMDModImmType3(Value);
6578 Shift = 16;
6579 }
6580 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType4(Value))) {
6581 Value = AArch64_AM::encodeAdvSIMDModImmType4(Value);
6582 Shift = 24;
6583 }
6584
6585 if (isAdvSIMDModImm) {
6586 SDLoc dl(Op);
6587 SDValue Mov;
6588
6589 if (LHS)
6590 Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
6591 DAG.getConstant(Value, dl, MVT::i32),
6592 DAG.getConstant(Shift, dl, MVT::i32));
6593 else
6594 Mov = DAG.getNode(NewOp, dl, MovTy,
6595 DAG.getConstant(Value, dl, MVT::i32),
6596 DAG.getConstant(Shift, dl, MVT::i32));
6597
6598 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6599 }
6600 }
6601
6602 return SDValue();
6603 }
6604
6605 // Try 16-bit splatted SIMD immediate.
tryAdvSIMDModImm16(unsigned NewOp,SDValue Op,SelectionDAG & DAG,const APInt & Bits,const SDValue * LHS=nullptr)6606 static SDValue tryAdvSIMDModImm16(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
6607 const APInt &Bits,
6608 const SDValue *LHS = nullptr) {
6609 if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
6610 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
6611 EVT VT = Op.getValueType();
6612 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6613 bool isAdvSIMDModImm = false;
6614 uint64_t Shift;
6615
6616 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType5(Value))) {
6617 Value = AArch64_AM::encodeAdvSIMDModImmType5(Value);
6618 Shift = 0;
6619 }
6620 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType6(Value))) {
6621 Value = AArch64_AM::encodeAdvSIMDModImmType6(Value);
6622 Shift = 8;
6623 }
6624
6625 if (isAdvSIMDModImm) {
6626 SDLoc dl(Op);
6627 SDValue Mov;
6628
6629 if (LHS)
6630 Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
6631 DAG.getConstant(Value, dl, MVT::i32),
6632 DAG.getConstant(Shift, dl, MVT::i32));
6633 else
6634 Mov = DAG.getNode(NewOp, dl, MovTy,
6635 DAG.getConstant(Value, dl, MVT::i32),
6636 DAG.getConstant(Shift, dl, MVT::i32));
6637
6638 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6639 }
6640 }
6641
6642 return SDValue();
6643 }
6644
6645 // Try 32-bit splatted SIMD immediate with shifted ones.
tryAdvSIMDModImm321s(unsigned NewOp,SDValue Op,SelectionDAG & DAG,const APInt & Bits)6646 static SDValue tryAdvSIMDModImm321s(unsigned NewOp, SDValue Op,
6647 SelectionDAG &DAG, const APInt &Bits) {
6648 if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
6649 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
6650 EVT VT = Op.getValueType();
6651 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6652 bool isAdvSIMDModImm = false;
6653 uint64_t Shift;
6654
6655 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType7(Value))) {
6656 Value = AArch64_AM::encodeAdvSIMDModImmType7(Value);
6657 Shift = 264;
6658 }
6659 else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType8(Value))) {
6660 Value = AArch64_AM::encodeAdvSIMDModImmType8(Value);
6661 Shift = 272;
6662 }
6663
6664 if (isAdvSIMDModImm) {
6665 SDLoc dl(Op);
6666 SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
6667 DAG.getConstant(Value, dl, MVT::i32),
6668 DAG.getConstant(Shift, dl, MVT::i32));
6669 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6670 }
6671 }
6672
6673 return SDValue();
6674 }
6675
6676 // Try 8-bit splatted SIMD immediate.
tryAdvSIMDModImm8(unsigned NewOp,SDValue Op,SelectionDAG & DAG,const APInt & Bits)6677 static SDValue tryAdvSIMDModImm8(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
6678 const APInt &Bits) {
6679 if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
6680 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
6681 EVT VT = Op.getValueType();
6682 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
6683
6684 if (AArch64_AM::isAdvSIMDModImmType9(Value)) {
6685 Value = AArch64_AM::encodeAdvSIMDModImmType9(Value);
6686
6687 SDLoc dl(Op);
6688 SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
6689 DAG.getConstant(Value, dl, MVT::i32));
6690 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6691 }
6692 }
6693
6694 return SDValue();
6695 }
6696
6697 // Try FP splatted SIMD immediate.
tryAdvSIMDModImmFP(unsigned NewOp,SDValue Op,SelectionDAG & DAG,const APInt & Bits)6698 static SDValue tryAdvSIMDModImmFP(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
6699 const APInt &Bits) {
6700 if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
6701 uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
6702 EVT VT = Op.getValueType();
6703 bool isWide = (VT.getSizeInBits() == 128);
6704 MVT MovTy;
6705 bool isAdvSIMDModImm = false;
6706
6707 if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType11(Value))) {
6708 Value = AArch64_AM::encodeAdvSIMDModImmType11(Value);
6709 MovTy = isWide ? MVT::v4f32 : MVT::v2f32;
6710 }
6711 else if (isWide &&
6712 (isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType12(Value))) {
6713 Value = AArch64_AM::encodeAdvSIMDModImmType12(Value);
6714 MovTy = MVT::v2f64;
6715 }
6716
6717 if (isAdvSIMDModImm) {
6718 SDLoc dl(Op);
6719 SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
6720 DAG.getConstant(Value, dl, MVT::i32));
6721 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6722 }
6723 }
6724
6725 return SDValue();
6726 }
6727
LowerVectorAND(SDValue Op,SelectionDAG & DAG) const6728 SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
6729 SelectionDAG &DAG) const {
6730 SDValue LHS = Op.getOperand(0);
6731 EVT VT = Op.getValueType();
6732
6733 BuildVectorSDNode *BVN =
6734 dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
6735 if (!BVN) {
6736 // AND commutes, so try swapping the operands.
6737 LHS = Op.getOperand(1);
6738 BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
6739 }
6740 if (!BVN)
6741 return Op;
6742
6743 APInt DefBits(VT.getSizeInBits(), 0);
6744 APInt UndefBits(VT.getSizeInBits(), 0);
6745 if (resolveBuildVector(BVN, DefBits, UndefBits)) {
6746 SDValue NewOp;
6747
6748 // We only have BIC vector immediate instruction, which is and-not.
6749 DefBits = ~DefBits;
6750 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, Op, DAG,
6751 DefBits, &LHS)) ||
6752 (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, Op, DAG,
6753 DefBits, &LHS)))
6754 return NewOp;
6755
6756 UndefBits = ~UndefBits;
6757 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, Op, DAG,
6758 UndefBits, &LHS)) ||
6759 (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, Op, DAG,
6760 UndefBits, &LHS)))
6761 return NewOp;
6762 }
6763
6764 // We can always fall back to a non-immediate AND.
6765 return Op;
6766 }
6767
6768 // Specialized code to quickly find if PotentialBVec is a BuildVector that
6769 // consists of only the same constant int value, returned in reference arg
6770 // ConstVal
isAllConstantBuildVector(const SDValue & PotentialBVec,uint64_t & ConstVal)6771 static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
6772 uint64_t &ConstVal) {
6773 BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
6774 if (!Bvec)
6775 return false;
6776 ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
6777 if (!FirstElt)
6778 return false;
6779 EVT VT = Bvec->getValueType(0);
6780 unsigned NumElts = VT.getVectorNumElements();
6781 for (unsigned i = 1; i < NumElts; ++i)
6782 if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
6783 return false;
6784 ConstVal = FirstElt->getZExtValue();
6785 return true;
6786 }
6787
getIntrinsicID(const SDNode * N)6788 static unsigned getIntrinsicID(const SDNode *N) {
6789 unsigned Opcode = N->getOpcode();
6790 switch (Opcode) {
6791 default:
6792 return Intrinsic::not_intrinsic;
6793 case ISD::INTRINSIC_WO_CHAIN: {
6794 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
6795 if (IID < Intrinsic::num_intrinsics)
6796 return IID;
6797 return Intrinsic::not_intrinsic;
6798 }
6799 }
6800 }
6801
6802 // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
6803 // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
6804 // BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
6805 // Also, logical shift right -> sri, with the same structure.
tryLowerToSLI(SDNode * N,SelectionDAG & DAG)6806 static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
6807 EVT VT = N->getValueType(0);
6808
6809 if (!VT.isVector())
6810 return SDValue();
6811
6812 SDLoc DL(N);
6813
6814 // Is the first op an AND?
6815 const SDValue And = N->getOperand(0);
6816 if (And.getOpcode() != ISD::AND)
6817 return SDValue();
6818
6819 // Is the second op an shl or lshr?
6820 SDValue Shift = N->getOperand(1);
6821 // This will have been turned into: AArch64ISD::VSHL vector, #shift
6822 // or AArch64ISD::VLSHR vector, #shift
6823 unsigned ShiftOpc = Shift.getOpcode();
6824 if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
6825 return SDValue();
6826 bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
6827
6828 // Is the shift amount constant?
6829 ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
6830 if (!C2node)
6831 return SDValue();
6832
6833 // Is the and mask vector all constant?
6834 uint64_t C1;
6835 if (!isAllConstantBuildVector(And.getOperand(1), C1))
6836 return SDValue();
6837
6838 // Is C1 == ~C2, taking into account how much one can shift elements of a
6839 // particular size?
6840 uint64_t C2 = C2node->getZExtValue();
6841 unsigned ElemSizeInBits = VT.getScalarSizeInBits();
6842 if (C2 > ElemSizeInBits)
6843 return SDValue();
6844 unsigned ElemMask = (1 << ElemSizeInBits) - 1;
6845 if ((C1 & ElemMask) != (~C2 & ElemMask))
6846 return SDValue();
6847
6848 SDValue X = And.getOperand(0);
6849 SDValue Y = Shift.getOperand(0);
6850
6851 unsigned Intrin =
6852 IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
6853 SDValue ResultSLI =
6854 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6855 DAG.getConstant(Intrin, DL, MVT::i32), X, Y,
6856 Shift.getOperand(1));
6857
6858 LLVM_DEBUG(dbgs() << "aarch64-lower: transformed: \n");
6859 LLVM_DEBUG(N->dump(&DAG));
6860 LLVM_DEBUG(dbgs() << "into: \n");
6861 LLVM_DEBUG(ResultSLI->dump(&DAG));
6862
6863 ++NumShiftInserts;
6864 return ResultSLI;
6865 }
6866
LowerVectorOR(SDValue Op,SelectionDAG & DAG) const6867 SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
6868 SelectionDAG &DAG) const {
6869 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
6870 if (EnableAArch64SlrGeneration) {
6871 if (SDValue Res = tryLowerToSLI(Op.getNode(), DAG))
6872 return Res;
6873 }
6874
6875 EVT VT = Op.getValueType();
6876
6877 SDValue LHS = Op.getOperand(0);
6878 BuildVectorSDNode *BVN =
6879 dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
6880 if (!BVN) {
6881 // OR commutes, so try swapping the operands.
6882 LHS = Op.getOperand(1);
6883 BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
6884 }
6885 if (!BVN)
6886 return Op;
6887
6888 APInt DefBits(VT.getSizeInBits(), 0);
6889 APInt UndefBits(VT.getSizeInBits(), 0);
6890 if (resolveBuildVector(BVN, DefBits, UndefBits)) {
6891 SDValue NewOp;
6892
6893 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
6894 DefBits, &LHS)) ||
6895 (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
6896 DefBits, &LHS)))
6897 return NewOp;
6898
6899 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
6900 UndefBits, &LHS)) ||
6901 (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
6902 UndefBits, &LHS)))
6903 return NewOp;
6904 }
6905
6906 // We can always fall back to a non-immediate OR.
6907 return Op;
6908 }
6909
6910 // Normalize the operands of BUILD_VECTOR. The value of constant operands will
6911 // be truncated to fit element width.
NormalizeBuildVector(SDValue Op,SelectionDAG & DAG)6912 static SDValue NormalizeBuildVector(SDValue Op,
6913 SelectionDAG &DAG) {
6914 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
6915 SDLoc dl(Op);
6916 EVT VT = Op.getValueType();
6917 EVT EltTy= VT.getVectorElementType();
6918
6919 if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
6920 return Op;
6921
6922 SmallVector<SDValue, 16> Ops;
6923 for (SDValue Lane : Op->ops()) {
6924 if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) {
6925 APInt LowBits(EltTy.getSizeInBits(),
6926 CstLane->getZExtValue());
6927 Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32);
6928 }
6929 Ops.push_back(Lane);
6930 }
6931 return DAG.getBuildVector(VT, dl, Ops);
6932 }
6933
ConstantBuildVector(SDValue Op,SelectionDAG & DAG)6934 static SDValue ConstantBuildVector(SDValue Op, SelectionDAG &DAG) {
6935 EVT VT = Op.getValueType();
6936
6937 APInt DefBits(VT.getSizeInBits(), 0);
6938 APInt UndefBits(VT.getSizeInBits(), 0);
6939 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
6940 if (resolveBuildVector(BVN, DefBits, UndefBits)) {
6941 SDValue NewOp;
6942 if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
6943 (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
6944 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
6945 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
6946 (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
6947 (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
6948 return NewOp;
6949
6950 DefBits = ~DefBits;
6951 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
6952 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
6953 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
6954 return NewOp;
6955
6956 DefBits = UndefBits;
6957 if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
6958 (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
6959 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
6960 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
6961 (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
6962 (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
6963 return NewOp;
6964
6965 DefBits = ~UndefBits;
6966 if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
6967 (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
6968 (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
6969 return NewOp;
6970 }
6971
6972 return SDValue();
6973 }
6974
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const6975 SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
6976 SelectionDAG &DAG) const {
6977 EVT VT = Op.getValueType();
6978
6979 // Try to build a simple constant vector.
6980 Op = NormalizeBuildVector(Op, DAG);
6981 if (VT.isInteger()) {
6982 // Certain vector constants, used to express things like logical NOT and
6983 // arithmetic NEG, are passed through unmodified. This allows special
6984 // patterns for these operations to match, which will lower these constants
6985 // to whatever is proven necessary.
6986 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
6987 if (BVN->isConstant())
6988 if (ConstantSDNode *Const = BVN->getConstantSplatNode()) {
6989 unsigned BitSize = VT.getVectorElementType().getSizeInBits();
6990 APInt Val(BitSize,
6991 Const->getAPIntValue().zextOrTrunc(BitSize).getZExtValue());
6992 if (Val.isNullValue() || Val.isAllOnesValue())
6993 return Op;
6994 }
6995 }
6996
6997 if (SDValue V = ConstantBuildVector(Op, DAG))
6998 return V;
6999
7000 // Scan through the operands to find some interesting properties we can
7001 // exploit:
7002 // 1) If only one value is used, we can use a DUP, or
7003 // 2) if only the low element is not undef, we can just insert that, or
7004 // 3) if only one constant value is used (w/ some non-constant lanes),
7005 // we can splat the constant value into the whole vector then fill
7006 // in the non-constant lanes.
7007 // 4) FIXME: If different constant values are used, but we can intelligently
7008 // select the values we'll be overwriting for the non-constant
7009 // lanes such that we can directly materialize the vector
7010 // some other way (MOVI, e.g.), we can be sneaky.
7011 // 5) if all operands are EXTRACT_VECTOR_ELT, check for VUZP.
7012 SDLoc dl(Op);
7013 unsigned NumElts = VT.getVectorNumElements();
7014 bool isOnlyLowElement = true;
7015 bool usesOnlyOneValue = true;
7016 bool usesOnlyOneConstantValue = true;
7017 bool isConstant = true;
7018 bool AllLanesExtractElt = true;
7019 unsigned NumConstantLanes = 0;
7020 SDValue Value;
7021 SDValue ConstantValue;
7022 for (unsigned i = 0; i < NumElts; ++i) {
7023 SDValue V = Op.getOperand(i);
7024 if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7025 AllLanesExtractElt = false;
7026 if (V.isUndef())
7027 continue;
7028 if (i > 0)
7029 isOnlyLowElement = false;
7030 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
7031 isConstant = false;
7032
7033 if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
7034 ++NumConstantLanes;
7035 if (!ConstantValue.getNode())
7036 ConstantValue = V;
7037 else if (ConstantValue != V)
7038 usesOnlyOneConstantValue = false;
7039 }
7040
7041 if (!Value.getNode())
7042 Value = V;
7043 else if (V != Value)
7044 usesOnlyOneValue = false;
7045 }
7046
7047 if (!Value.getNode()) {
7048 LLVM_DEBUG(
7049 dbgs() << "LowerBUILD_VECTOR: value undefined, creating undef node\n");
7050 return DAG.getUNDEF(VT);
7051 }
7052
7053 if (isOnlyLowElement) {
7054 LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: only low element used, creating 1 "
7055 "SCALAR_TO_VECTOR node\n");
7056 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
7057 }
7058
7059 if (AllLanesExtractElt) {
7060 SDNode *Vector = nullptr;
7061 bool Even = false;
7062 bool Odd = false;
7063 // Check whether the extract elements match the Even pattern <0,2,4,...> or
7064 // the Odd pattern <1,3,5,...>.
7065 for (unsigned i = 0; i < NumElts; ++i) {
7066 SDValue V = Op.getOperand(i);
7067 const SDNode *N = V.getNode();
7068 if (!isa<ConstantSDNode>(N->getOperand(1)))
7069 break;
7070 SDValue N0 = N->getOperand(0);
7071
7072 // All elements are extracted from the same vector.
7073 if (!Vector) {
7074 Vector = N0.getNode();
7075 // Check that the type of EXTRACT_VECTOR_ELT matches the type of
7076 // BUILD_VECTOR.
7077 if (VT.getVectorElementType() !=
7078 N0.getValueType().getVectorElementType())
7079 break;
7080 } else if (Vector != N0.getNode()) {
7081 Odd = false;
7082 Even = false;
7083 break;
7084 }
7085
7086 // Extracted values are either at Even indices <0,2,4,...> or at Odd
7087 // indices <1,3,5,...>.
7088 uint64_t Val = N->getConstantOperandVal(1);
7089 if (Val == 2 * i) {
7090 Even = true;
7091 continue;
7092 }
7093 if (Val - 1 == 2 * i) {
7094 Odd = true;
7095 continue;
7096 }
7097
7098 // Something does not match: abort.
7099 Odd = false;
7100 Even = false;
7101 break;
7102 }
7103 if (Even || Odd) {
7104 SDValue LHS =
7105 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
7106 DAG.getConstant(0, dl, MVT::i64));
7107 SDValue RHS =
7108 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
7109 DAG.getConstant(NumElts, dl, MVT::i64));
7110
7111 if (Even && !Odd)
7112 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), LHS,
7113 RHS);
7114 if (Odd && !Even)
7115 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), LHS,
7116 RHS);
7117 }
7118 }
7119
7120 // Use DUP for non-constant splats. For f32 constant splats, reduce to
7121 // i32 and try again.
7122 if (usesOnlyOneValue) {
7123 if (!isConstant) {
7124 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
7125 Value.getValueType() != VT) {
7126 LLVM_DEBUG(
7127 dbgs() << "LowerBUILD_VECTOR: use DUP for non-constant splats\n");
7128 return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
7129 }
7130
7131 // This is actually a DUPLANExx operation, which keeps everything vectory.
7132
7133 SDValue Lane = Value.getOperand(1);
7134 Value = Value.getOperand(0);
7135 if (Value.getValueSizeInBits() == 64) {
7136 LLVM_DEBUG(
7137 dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, "
7138 "widening it\n");
7139 Value = WidenVector(Value, DAG);
7140 }
7141
7142 unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
7143 return DAG.getNode(Opcode, dl, VT, Value, Lane);
7144 }
7145
7146 if (VT.getVectorElementType().isFloatingPoint()) {
7147 SmallVector<SDValue, 8> Ops;
7148 EVT EltTy = VT.getVectorElementType();
7149 assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) &&
7150 "Unsupported floating-point vector type");
7151 LLVM_DEBUG(
7152 dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int "
7153 "BITCASTS, and try again\n");
7154 MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
7155 for (unsigned i = 0; i < NumElts; ++i)
7156 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
7157 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
7158 SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
7159 LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: trying to lower new vector: ";
7160 Val.dump(););
7161 Val = LowerBUILD_VECTOR(Val, DAG);
7162 if (Val.getNode())
7163 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7164 }
7165 }
7166
7167 // If there was only one constant value used and for more than one lane,
7168 // start by splatting that value, then replace the non-constant lanes. This
7169 // is better than the default, which will perform a separate initialization
7170 // for each lane.
7171 if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
7172 // Firstly, try to materialize the splat constant.
7173 SDValue Vec = DAG.getSplatBuildVector(VT, dl, ConstantValue),
7174 Val = ConstantBuildVector(Vec, DAG);
7175 if (!Val) {
7176 // Otherwise, materialize the constant and splat it.
7177 Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
7178 DAG.ReplaceAllUsesWith(Vec.getNode(), &Val);
7179 }
7180
7181 // Now insert the non-constant lanes.
7182 for (unsigned i = 0; i < NumElts; ++i) {
7183 SDValue V = Op.getOperand(i);
7184 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
7185 if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V))
7186 // Note that type legalization likely mucked about with the VT of the
7187 // source operand, so we may have to convert it here before inserting.
7188 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
7189 }
7190 return Val;
7191 }
7192
7193 // This will generate a load from the constant pool.
7194 if (isConstant) {
7195 LLVM_DEBUG(
7196 dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default "
7197 "expansion\n");
7198 return SDValue();
7199 }
7200
7201 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
7202 if (NumElts >= 4) {
7203 if (SDValue shuffle = ReconstructShuffle(Op, DAG))
7204 return shuffle;
7205 }
7206
7207 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
7208 // know the default expansion would otherwise fall back on something even
7209 // worse. For a vector with one or two non-undef values, that's
7210 // scalar_to_vector for the elements followed by a shuffle (provided the
7211 // shuffle is valid for the target) and materialization element by element
7212 // on the stack followed by a load for everything else.
7213 if (!isConstant && !usesOnlyOneValue) {
7214 LLVM_DEBUG(
7215 dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence "
7216 "of INSERT_VECTOR_ELT\n");
7217
7218 SDValue Vec = DAG.getUNDEF(VT);
7219 SDValue Op0 = Op.getOperand(0);
7220 unsigned i = 0;
7221
7222 // Use SCALAR_TO_VECTOR for lane zero to
7223 // a) Avoid a RMW dependency on the full vector register, and
7224 // b) Allow the register coalescer to fold away the copy if the
7225 // value is already in an S or D register, and we're forced to emit an
7226 // INSERT_SUBREG that we can't fold anywhere.
7227 //
7228 // We also allow types like i8 and i16 which are illegal scalar but legal
7229 // vector element types. After type-legalization the inserted value is
7230 // extended (i32) and it is safe to cast them to the vector type by ignoring
7231 // the upper bits of the lowest lane (e.g. v8i8, v4i16).
7232 if (!Op0.isUndef()) {
7233 LLVM_DEBUG(dbgs() << "Creating node for op0, it is not undefined:\n");
7234 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op0);
7235 ++i;
7236 }
7237 LLVM_DEBUG(if (i < NumElts) dbgs()
7238 << "Creating nodes for the other vector elements:\n";);
7239 for (; i < NumElts; ++i) {
7240 SDValue V = Op.getOperand(i);
7241 if (V.isUndef())
7242 continue;
7243 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
7244 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
7245 }
7246 return Vec;
7247 }
7248
7249 LLVM_DEBUG(
7250 dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find "
7251 "better alternative\n");
7252 return SDValue();
7253 }
7254
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const7255 SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
7256 SelectionDAG &DAG) const {
7257 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
7258
7259 // Check for non-constant or out of range lane.
7260 EVT VT = Op.getOperand(0).getValueType();
7261 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
7262 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
7263 return SDValue();
7264
7265
7266 // Insertion/extraction are legal for V128 types.
7267 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
7268 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
7269 VT == MVT::v8f16)
7270 return Op;
7271
7272 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
7273 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
7274 return SDValue();
7275
7276 // For V64 types, we perform insertion by expanding the value
7277 // to a V128 type and perform the insertion on that.
7278 SDLoc DL(Op);
7279 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
7280 EVT WideTy = WideVec.getValueType();
7281
7282 SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
7283 Op.getOperand(1), Op.getOperand(2));
7284 // Re-narrow the resultant vector.
7285 return NarrowVector(Node, DAG);
7286 }
7287
7288 SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const7289 AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7290 SelectionDAG &DAG) const {
7291 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
7292
7293 // Check for non-constant or out of range lane.
7294 EVT VT = Op.getOperand(0).getValueType();
7295 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7296 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
7297 return SDValue();
7298
7299
7300 // Insertion/extraction are legal for V128 types.
7301 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
7302 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
7303 VT == MVT::v8f16)
7304 return Op;
7305
7306 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
7307 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
7308 return SDValue();
7309
7310 // For V64 types, we perform extraction by expanding the value
7311 // to a V128 type and perform the extraction on that.
7312 SDLoc DL(Op);
7313 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
7314 EVT WideTy = WideVec.getValueType();
7315
7316 EVT ExtrTy = WideTy.getVectorElementType();
7317 if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
7318 ExtrTy = MVT::i32;
7319
7320 // For extractions, we just return the result directly.
7321 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
7322 Op.getOperand(1));
7323 }
7324
LowerEXTRACT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const7325 SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
7326 SelectionDAG &DAG) const {
7327 EVT VT = Op.getOperand(0).getValueType();
7328 SDLoc dl(Op);
7329 // Just in case...
7330 if (!VT.isVector())
7331 return SDValue();
7332
7333 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7334 if (!Cst)
7335 return SDValue();
7336 unsigned Val = Cst->getZExtValue();
7337
7338 unsigned Size = Op.getValueSizeInBits();
7339
7340 // This will get lowered to an appropriate EXTRACT_SUBREG in ISel.
7341 if (Val == 0)
7342 return Op;
7343
7344 // If this is extracting the upper 64-bits of a 128-bit vector, we match
7345 // that directly.
7346 if (Size == 64 && Val * VT.getScalarSizeInBits() == 64)
7347 return Op;
7348
7349 return SDValue();
7350 }
7351
isShuffleMaskLegal(ArrayRef<int> M,EVT VT) const7352 bool AArch64TargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
7353 if (VT.getVectorNumElements() == 4 &&
7354 (VT.is128BitVector() || VT.is64BitVector())) {
7355 unsigned PFIndexes[4];
7356 for (unsigned i = 0; i != 4; ++i) {
7357 if (M[i] < 0)
7358 PFIndexes[i] = 8;
7359 else
7360 PFIndexes[i] = M[i];
7361 }
7362
7363 // Compute the index in the perfect shuffle table.
7364 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
7365 PFIndexes[2] * 9 + PFIndexes[3];
7366 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7367 unsigned Cost = (PFEntry >> 30);
7368
7369 if (Cost <= 4)
7370 return true;
7371 }
7372
7373 bool DummyBool;
7374 int DummyInt;
7375 unsigned DummyUnsigned;
7376
7377 return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
7378 isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
7379 isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
7380 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
7381 isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
7382 isZIPMask(M, VT, DummyUnsigned) ||
7383 isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
7384 isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
7385 isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
7386 isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
7387 isConcatMask(M, VT, VT.getSizeInBits() == 128));
7388 }
7389
7390 /// getVShiftImm - Check if this is a valid build_vector for the immediate
7391 /// operand of a vector shift operation, where all the elements of the
7392 /// build_vector must have the same constant integer value.
getVShiftImm(SDValue Op,unsigned ElementBits,int64_t & Cnt)7393 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
7394 // Ignore bit_converts.
7395 while (Op.getOpcode() == ISD::BITCAST)
7396 Op = Op.getOperand(0);
7397 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7398 APInt SplatBits, SplatUndef;
7399 unsigned SplatBitSize;
7400 bool HasAnyUndefs;
7401 if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
7402 HasAnyUndefs, ElementBits) ||
7403 SplatBitSize > ElementBits)
7404 return false;
7405 Cnt = SplatBits.getSExtValue();
7406 return true;
7407 }
7408
7409 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
7410 /// operand of a vector shift left operation. That value must be in the range:
7411 /// 0 <= Value < ElementBits for a left shift; or
7412 /// 0 <= Value <= ElementBits for a long left shift.
isVShiftLImm(SDValue Op,EVT VT,bool isLong,int64_t & Cnt)7413 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
7414 assert(VT.isVector() && "vector shift count is not a vector type");
7415 int64_t ElementBits = VT.getScalarSizeInBits();
7416 if (!getVShiftImm(Op, ElementBits, Cnt))
7417 return false;
7418 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
7419 }
7420
7421 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
7422 /// operand of a vector shift right operation. The value must be in the range:
7423 /// 1 <= Value <= ElementBits for a right shift; or
isVShiftRImm(SDValue Op,EVT VT,bool isNarrow,int64_t & Cnt)7424 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) {
7425 assert(VT.isVector() && "vector shift count is not a vector type");
7426 int64_t ElementBits = VT.getScalarSizeInBits();
7427 if (!getVShiftImm(Op, ElementBits, Cnt))
7428 return false;
7429 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
7430 }
7431
LowerVectorSRA_SRL_SHL(SDValue Op,SelectionDAG & DAG) const7432 SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
7433 SelectionDAG &DAG) const {
7434 EVT VT = Op.getValueType();
7435 SDLoc DL(Op);
7436 int64_t Cnt;
7437
7438 if (!Op.getOperand(1).getValueType().isVector())
7439 return Op;
7440 unsigned EltSize = VT.getScalarSizeInBits();
7441
7442 switch (Op.getOpcode()) {
7443 default:
7444 llvm_unreachable("unexpected shift opcode");
7445
7446 case ISD::SHL:
7447 if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
7448 return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0),
7449 DAG.getConstant(Cnt, DL, MVT::i32));
7450 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
7451 DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL,
7452 MVT::i32),
7453 Op.getOperand(0), Op.getOperand(1));
7454 case ISD::SRA:
7455 case ISD::SRL:
7456 // Right shift immediate
7457 if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) {
7458 unsigned Opc =
7459 (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
7460 return DAG.getNode(Opc, DL, VT, Op.getOperand(0),
7461 DAG.getConstant(Cnt, DL, MVT::i32));
7462 }
7463
7464 // Right shift register. Note, there is not a shift right register
7465 // instruction, but the shift left register instruction takes a signed
7466 // value, where negative numbers specify a right shift.
7467 unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
7468 : Intrinsic::aarch64_neon_ushl;
7469 // negate the shift amount
7470 SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
7471 SDValue NegShiftLeft =
7472 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
7473 DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0),
7474 NegShift);
7475 return NegShiftLeft;
7476 }
7477
7478 return SDValue();
7479 }
7480
EmitVectorComparison(SDValue LHS,SDValue RHS,AArch64CC::CondCode CC,bool NoNans,EVT VT,const SDLoc & dl,SelectionDAG & DAG)7481 static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
7482 AArch64CC::CondCode CC, bool NoNans, EVT VT,
7483 const SDLoc &dl, SelectionDAG &DAG) {
7484 EVT SrcVT = LHS.getValueType();
7485 assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
7486 "function only supposed to emit natural comparisons");
7487
7488 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
7489 APInt CnstBits(VT.getSizeInBits(), 0);
7490 APInt UndefBits(VT.getSizeInBits(), 0);
7491 bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
7492 bool IsZero = IsCnst && (CnstBits == 0);
7493
7494 if (SrcVT.getVectorElementType().isFloatingPoint()) {
7495 switch (CC) {
7496 default:
7497 return SDValue();
7498 case AArch64CC::NE: {
7499 SDValue Fcmeq;
7500 if (IsZero)
7501 Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
7502 else
7503 Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
7504 return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
7505 }
7506 case AArch64CC::EQ:
7507 if (IsZero)
7508 return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
7509 return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
7510 case AArch64CC::GE:
7511 if (IsZero)
7512 return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
7513 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
7514 case AArch64CC::GT:
7515 if (IsZero)
7516 return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
7517 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
7518 case AArch64CC::LS:
7519 if (IsZero)
7520 return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
7521 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
7522 case AArch64CC::LT:
7523 if (!NoNans)
7524 return SDValue();
7525 // If we ignore NaNs then we can use to the MI implementation.
7526 LLVM_FALLTHROUGH;
7527 case AArch64CC::MI:
7528 if (IsZero)
7529 return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
7530 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
7531 }
7532 }
7533
7534 switch (CC) {
7535 default:
7536 return SDValue();
7537 case AArch64CC::NE: {
7538 SDValue Cmeq;
7539 if (IsZero)
7540 Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
7541 else
7542 Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
7543 return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
7544 }
7545 case AArch64CC::EQ:
7546 if (IsZero)
7547 return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
7548 return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
7549 case AArch64CC::GE:
7550 if (IsZero)
7551 return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
7552 return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
7553 case AArch64CC::GT:
7554 if (IsZero)
7555 return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
7556 return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
7557 case AArch64CC::LE:
7558 if (IsZero)
7559 return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
7560 return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
7561 case AArch64CC::LS:
7562 return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
7563 case AArch64CC::LO:
7564 return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
7565 case AArch64CC::LT:
7566 if (IsZero)
7567 return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
7568 return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
7569 case AArch64CC::HI:
7570 return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
7571 case AArch64CC::HS:
7572 return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
7573 }
7574 }
7575
LowerVSETCC(SDValue Op,SelectionDAG & DAG) const7576 SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
7577 SelectionDAG &DAG) const {
7578 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7579 SDValue LHS = Op.getOperand(0);
7580 SDValue RHS = Op.getOperand(1);
7581 EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
7582 SDLoc dl(Op);
7583
7584 if (LHS.getValueType().getVectorElementType().isInteger()) {
7585 assert(LHS.getValueType() == RHS.getValueType());
7586 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
7587 SDValue Cmp =
7588 EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
7589 return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
7590 }
7591
7592 const bool FullFP16 =
7593 static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
7594
7595 // Make v4f16 (only) fcmp operations utilise vector instructions
7596 // v8f16 support will be a litle more complicated
7597 if (LHS.getValueType().getVectorElementType() == MVT::f16) {
7598 if (!FullFP16 && LHS.getValueType().getVectorNumElements() == 4) {
7599 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, LHS);
7600 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, RHS);
7601 SDValue NewSetcc = DAG.getSetCC(dl, MVT::v4i16, LHS, RHS, CC);
7602 DAG.ReplaceAllUsesWith(Op, NewSetcc);
7603 CmpVT = MVT::v4i32;
7604 } else
7605 return SDValue();
7606 }
7607
7608 assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
7609 LHS.getValueType().getVectorElementType() == MVT::f64);
7610
7611 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
7612 // clean. Some of them require two branches to implement.
7613 AArch64CC::CondCode CC1, CC2;
7614 bool ShouldInvert;
7615 changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
7616
7617 bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
7618 SDValue Cmp =
7619 EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
7620 if (!Cmp.getNode())
7621 return SDValue();
7622
7623 if (CC2 != AArch64CC::AL) {
7624 SDValue Cmp2 =
7625 EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
7626 if (!Cmp2.getNode())
7627 return SDValue();
7628
7629 Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
7630 }
7631
7632 Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
7633
7634 if (ShouldInvert)
7635 return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
7636
7637 return Cmp;
7638 }
7639
getReductionSDNode(unsigned Op,SDLoc DL,SDValue ScalarOp,SelectionDAG & DAG)7640 static SDValue getReductionSDNode(unsigned Op, SDLoc DL, SDValue ScalarOp,
7641 SelectionDAG &DAG) {
7642 SDValue VecOp = ScalarOp.getOperand(0);
7643 auto Rdx = DAG.getNode(Op, DL, VecOp.getSimpleValueType(), VecOp);
7644 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarOp.getValueType(), Rdx,
7645 DAG.getConstant(0, DL, MVT::i64));
7646 }
7647
LowerVECREDUCE(SDValue Op,SelectionDAG & DAG) const7648 SDValue AArch64TargetLowering::LowerVECREDUCE(SDValue Op,
7649 SelectionDAG &DAG) const {
7650 SDLoc dl(Op);
7651 switch (Op.getOpcode()) {
7652 case ISD::VECREDUCE_ADD:
7653 return getReductionSDNode(AArch64ISD::UADDV, dl, Op, DAG);
7654 case ISD::VECREDUCE_SMAX:
7655 return getReductionSDNode(AArch64ISD::SMAXV, dl, Op, DAG);
7656 case ISD::VECREDUCE_SMIN:
7657 return getReductionSDNode(AArch64ISD::SMINV, dl, Op, DAG);
7658 case ISD::VECREDUCE_UMAX:
7659 return getReductionSDNode(AArch64ISD::UMAXV, dl, Op, DAG);
7660 case ISD::VECREDUCE_UMIN:
7661 return getReductionSDNode(AArch64ISD::UMINV, dl, Op, DAG);
7662 case ISD::VECREDUCE_FMAX: {
7663 assert(Op->getFlags().hasNoNaNs() && "fmax vector reduction needs NoNaN flag");
7664 return DAG.getNode(
7665 ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
7666 DAG.getConstant(Intrinsic::aarch64_neon_fmaxnmv, dl, MVT::i32),
7667 Op.getOperand(0));
7668 }
7669 case ISD::VECREDUCE_FMIN: {
7670 assert(Op->getFlags().hasNoNaNs() && "fmin vector reduction needs NoNaN flag");
7671 return DAG.getNode(
7672 ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
7673 DAG.getConstant(Intrinsic::aarch64_neon_fminnmv, dl, MVT::i32),
7674 Op.getOperand(0));
7675 }
7676 default:
7677 llvm_unreachable("Unhandled reduction");
7678 }
7679 }
7680
LowerATOMIC_LOAD_SUB(SDValue Op,SelectionDAG & DAG) const7681 SDValue AArch64TargetLowering::LowerATOMIC_LOAD_SUB(SDValue Op,
7682 SelectionDAG &DAG) const {
7683 auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget());
7684 if (!Subtarget.hasLSE())
7685 return SDValue();
7686
7687 // LSE has an atomic load-add instruction, but not a load-sub.
7688 SDLoc dl(Op);
7689 MVT VT = Op.getSimpleValueType();
7690 SDValue RHS = Op.getOperand(2);
7691 AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
7692 RHS = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), RHS);
7693 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, AN->getMemoryVT(),
7694 Op.getOperand(0), Op.getOperand(1), RHS,
7695 AN->getMemOperand());
7696 }
7697
LowerATOMIC_LOAD_AND(SDValue Op,SelectionDAG & DAG) const7698 SDValue AArch64TargetLowering::LowerATOMIC_LOAD_AND(SDValue Op,
7699 SelectionDAG &DAG) const {
7700 auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget());
7701 if (!Subtarget.hasLSE())
7702 return SDValue();
7703
7704 // LSE has an atomic load-clear instruction, but not a load-and.
7705 SDLoc dl(Op);
7706 MVT VT = Op.getSimpleValueType();
7707 SDValue RHS = Op.getOperand(2);
7708 AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
7709 RHS = DAG.getNode(ISD::XOR, dl, VT, DAG.getConstant(-1ULL, dl, VT), RHS);
7710 return DAG.getAtomic(ISD::ATOMIC_LOAD_CLR, dl, AN->getMemoryVT(),
7711 Op.getOperand(0), Op.getOperand(1), RHS,
7712 AN->getMemOperand());
7713 }
7714
LowerWindowsDYNAMIC_STACKALLOC(SDValue Op,SDValue Chain,SDValue & Size,SelectionDAG & DAG) const7715 SDValue AArch64TargetLowering::LowerWindowsDYNAMIC_STACKALLOC(
7716 SDValue Op, SDValue Chain, SDValue &Size, SelectionDAG &DAG) const {
7717 SDLoc dl(Op);
7718 EVT PtrVT = getPointerTy(DAG.getDataLayout());
7719 SDValue Callee = DAG.getTargetExternalSymbol("__chkstk", PtrVT, 0);
7720
7721 const uint32_t *Mask =
7722 Subtarget->getRegisterInfo()->getWindowsStackProbePreservedMask();
7723
7724 Size = DAG.getNode(ISD::SRL, dl, MVT::i64, Size,
7725 DAG.getConstant(4, dl, MVT::i64));
7726 Chain = DAG.getCopyToReg(Chain, dl, AArch64::X15, Size, SDValue());
7727 Chain =
7728 DAG.getNode(AArch64ISD::CALL, dl, DAG.getVTList(MVT::Other, MVT::Glue),
7729 Chain, Callee, DAG.getRegister(AArch64::X15, MVT::i64),
7730 DAG.getRegisterMask(Mask), Chain.getValue(1));
7731 // To match the actual intent better, we should read the output from X15 here
7732 // again (instead of potentially spilling it to the stack), but rereading Size
7733 // from X15 here doesn't work at -O0, since it thinks that X15 is undefined
7734 // here.
7735
7736 Size = DAG.getNode(ISD::SHL, dl, MVT::i64, Size,
7737 DAG.getConstant(4, dl, MVT::i64));
7738 return Chain;
7739 }
7740
7741 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const7742 AArch64TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7743 SelectionDAG &DAG) const {
7744 assert(Subtarget->isTargetWindows() &&
7745 "Only Windows alloca probing supported");
7746 SDLoc dl(Op);
7747 // Get the inputs.
7748 SDNode *Node = Op.getNode();
7749 SDValue Chain = Op.getOperand(0);
7750 SDValue Size = Op.getOperand(1);
7751 unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
7752 EVT VT = Node->getValueType(0);
7753
7754 if (DAG.getMachineFunction().getFunction().hasFnAttribute(
7755 "no-stack-arg-probe")) {
7756 SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
7757 Chain = SP.getValue(1);
7758 SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
7759 if (Align)
7760 SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
7761 DAG.getConstant(-(uint64_t)Align, dl, VT));
7762 Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
7763 SDValue Ops[2] = {SP, Chain};
7764 return DAG.getMergeValues(Ops, dl);
7765 }
7766
7767 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
7768
7769 Chain = LowerWindowsDYNAMIC_STACKALLOC(Op, Chain, Size, DAG);
7770
7771 SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
7772 Chain = SP.getValue(1);
7773 SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
7774 if (Align)
7775 SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
7776 DAG.getConstant(-(uint64_t)Align, dl, VT));
7777 Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
7778
7779 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
7780 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
7781
7782 SDValue Ops[2] = {SP, Chain};
7783 return DAG.getMergeValues(Ops, dl);
7784 }
7785
7786 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
7787 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
7788 /// specified in the intrinsic calls.
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const7789 bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
7790 const CallInst &I,
7791 MachineFunction &MF,
7792 unsigned Intrinsic) const {
7793 auto &DL = I.getModule()->getDataLayout();
7794 switch (Intrinsic) {
7795 case Intrinsic::aarch64_neon_ld2:
7796 case Intrinsic::aarch64_neon_ld3:
7797 case Intrinsic::aarch64_neon_ld4:
7798 case Intrinsic::aarch64_neon_ld1x2:
7799 case Intrinsic::aarch64_neon_ld1x3:
7800 case Intrinsic::aarch64_neon_ld1x4:
7801 case Intrinsic::aarch64_neon_ld2lane:
7802 case Intrinsic::aarch64_neon_ld3lane:
7803 case Intrinsic::aarch64_neon_ld4lane:
7804 case Intrinsic::aarch64_neon_ld2r:
7805 case Intrinsic::aarch64_neon_ld3r:
7806 case Intrinsic::aarch64_neon_ld4r: {
7807 Info.opc = ISD::INTRINSIC_W_CHAIN;
7808 // Conservatively set memVT to the entire set of vectors loaded.
7809 uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
7810 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
7811 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
7812 Info.offset = 0;
7813 Info.align = 0;
7814 // volatile loads with NEON intrinsics not supported
7815 Info.flags = MachineMemOperand::MOLoad;
7816 return true;
7817 }
7818 case Intrinsic::aarch64_neon_st2:
7819 case Intrinsic::aarch64_neon_st3:
7820 case Intrinsic::aarch64_neon_st4:
7821 case Intrinsic::aarch64_neon_st1x2:
7822 case Intrinsic::aarch64_neon_st1x3:
7823 case Intrinsic::aarch64_neon_st1x4:
7824 case Intrinsic::aarch64_neon_st2lane:
7825 case Intrinsic::aarch64_neon_st3lane:
7826 case Intrinsic::aarch64_neon_st4lane: {
7827 Info.opc = ISD::INTRINSIC_VOID;
7828 // Conservatively set memVT to the entire set of vectors stored.
7829 unsigned NumElts = 0;
7830 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
7831 Type *ArgTy = I.getArgOperand(ArgI)->getType();
7832 if (!ArgTy->isVectorTy())
7833 break;
7834 NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
7835 }
7836 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
7837 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
7838 Info.offset = 0;
7839 Info.align = 0;
7840 // volatile stores with NEON intrinsics not supported
7841 Info.flags = MachineMemOperand::MOStore;
7842 return true;
7843 }
7844 case Intrinsic::aarch64_ldaxr:
7845 case Intrinsic::aarch64_ldxr: {
7846 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
7847 Info.opc = ISD::INTRINSIC_W_CHAIN;
7848 Info.memVT = MVT::getVT(PtrTy->getElementType());
7849 Info.ptrVal = I.getArgOperand(0);
7850 Info.offset = 0;
7851 Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
7852 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
7853 return true;
7854 }
7855 case Intrinsic::aarch64_stlxr:
7856 case Intrinsic::aarch64_stxr: {
7857 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
7858 Info.opc = ISD::INTRINSIC_W_CHAIN;
7859 Info.memVT = MVT::getVT(PtrTy->getElementType());
7860 Info.ptrVal = I.getArgOperand(1);
7861 Info.offset = 0;
7862 Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
7863 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
7864 return true;
7865 }
7866 case Intrinsic::aarch64_ldaxp:
7867 case Intrinsic::aarch64_ldxp:
7868 Info.opc = ISD::INTRINSIC_W_CHAIN;
7869 Info.memVT = MVT::i128;
7870 Info.ptrVal = I.getArgOperand(0);
7871 Info.offset = 0;
7872 Info.align = 16;
7873 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
7874 return true;
7875 case Intrinsic::aarch64_stlxp:
7876 case Intrinsic::aarch64_stxp:
7877 Info.opc = ISD::INTRINSIC_W_CHAIN;
7878 Info.memVT = MVT::i128;
7879 Info.ptrVal = I.getArgOperand(2);
7880 Info.offset = 0;
7881 Info.align = 16;
7882 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
7883 return true;
7884 default:
7885 break;
7886 }
7887
7888 return false;
7889 }
7890
shouldReduceLoadWidth(SDNode * Load,ISD::LoadExtType ExtTy,EVT NewVT) const7891 bool AArch64TargetLowering::shouldReduceLoadWidth(SDNode *Load,
7892 ISD::LoadExtType ExtTy,
7893 EVT NewVT) const {
7894 // If we're reducing the load width in order to avoid having to use an extra
7895 // instruction to do extension then it's probably a good idea.
7896 if (ExtTy != ISD::NON_EXTLOAD)
7897 return true;
7898 // Don't reduce load width if it would prevent us from combining a shift into
7899 // the offset.
7900 MemSDNode *Mem = dyn_cast<MemSDNode>(Load);
7901 assert(Mem);
7902 const SDValue &Base = Mem->getBasePtr();
7903 if (Base.getOpcode() == ISD::ADD &&
7904 Base.getOperand(1).getOpcode() == ISD::SHL &&
7905 Base.getOperand(1).hasOneUse() &&
7906 Base.getOperand(1).getOperand(1).getOpcode() == ISD::Constant) {
7907 // The shift can be combined if it matches the size of the value being
7908 // loaded (and so reducing the width would make it not match).
7909 uint64_t ShiftAmount = Base.getOperand(1).getConstantOperandVal(1);
7910 uint64_t LoadBytes = Mem->getMemoryVT().getSizeInBits()/8;
7911 if (ShiftAmount == Log2_32(LoadBytes))
7912 return false;
7913 }
7914 // We have no reason to disallow reducing the load width, so allow it.
7915 return true;
7916 }
7917
7918 // Truncations from 64-bit GPR to 32-bit GPR is free.
isTruncateFree(Type * Ty1,Type * Ty2) const7919 bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
7920 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
7921 return false;
7922 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7923 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7924 return NumBits1 > NumBits2;
7925 }
isTruncateFree(EVT VT1,EVT VT2) const7926 bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
7927 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
7928 return false;
7929 unsigned NumBits1 = VT1.getSizeInBits();
7930 unsigned NumBits2 = VT2.getSizeInBits();
7931 return NumBits1 > NumBits2;
7932 }
7933
7934 /// Check if it is profitable to hoist instruction in then/else to if.
7935 /// Not profitable if I and it's user can form a FMA instruction
7936 /// because we prefer FMSUB/FMADD.
isProfitableToHoist(Instruction * I) const7937 bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
7938 if (I->getOpcode() != Instruction::FMul)
7939 return true;
7940
7941 if (!I->hasOneUse())
7942 return true;
7943
7944 Instruction *User = I->user_back();
7945
7946 if (User &&
7947 !(User->getOpcode() == Instruction::FSub ||
7948 User->getOpcode() == Instruction::FAdd))
7949 return true;
7950
7951 const TargetOptions &Options = getTargetMachine().Options;
7952 const DataLayout &DL = I->getModule()->getDataLayout();
7953 EVT VT = getValueType(DL, User->getOperand(0)->getType());
7954
7955 return !(isFMAFasterThanFMulAndFAdd(VT) &&
7956 isOperationLegalOrCustom(ISD::FMA, VT) &&
7957 (Options.AllowFPOpFusion == FPOpFusion::Fast ||
7958 Options.UnsafeFPMath));
7959 }
7960
7961 // All 32-bit GPR operations implicitly zero the high-half of the corresponding
7962 // 64-bit GPR.
isZExtFree(Type * Ty1,Type * Ty2) const7963 bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
7964 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
7965 return false;
7966 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7967 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7968 return NumBits1 == 32 && NumBits2 == 64;
7969 }
isZExtFree(EVT VT1,EVT VT2) const7970 bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
7971 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
7972 return false;
7973 unsigned NumBits1 = VT1.getSizeInBits();
7974 unsigned NumBits2 = VT2.getSizeInBits();
7975 return NumBits1 == 32 && NumBits2 == 64;
7976 }
7977
isZExtFree(SDValue Val,EVT VT2) const7978 bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
7979 EVT VT1 = Val.getValueType();
7980 if (isZExtFree(VT1, VT2)) {
7981 return true;
7982 }
7983
7984 if (Val.getOpcode() != ISD::LOAD)
7985 return false;
7986
7987 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
7988 return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
7989 VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
7990 VT1.getSizeInBits() <= 32);
7991 }
7992
isExtFreeImpl(const Instruction * Ext) const7993 bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const {
7994 if (isa<FPExtInst>(Ext))
7995 return false;
7996
7997 // Vector types are not free.
7998 if (Ext->getType()->isVectorTy())
7999 return false;
8000
8001 for (const Use &U : Ext->uses()) {
8002 // The extension is free if we can fold it with a left shift in an
8003 // addressing mode or an arithmetic operation: add, sub, and cmp.
8004
8005 // Is there a shift?
8006 const Instruction *Instr = cast<Instruction>(U.getUser());
8007
8008 // Is this a constant shift?
8009 switch (Instr->getOpcode()) {
8010 case Instruction::Shl:
8011 if (!isa<ConstantInt>(Instr->getOperand(1)))
8012 return false;
8013 break;
8014 case Instruction::GetElementPtr: {
8015 gep_type_iterator GTI = gep_type_begin(Instr);
8016 auto &DL = Ext->getModule()->getDataLayout();
8017 std::advance(GTI, U.getOperandNo()-1);
8018 Type *IdxTy = GTI.getIndexedType();
8019 // This extension will end up with a shift because of the scaling factor.
8020 // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
8021 // Get the shift amount based on the scaling factor:
8022 // log2(sizeof(IdxTy)) - log2(8).
8023 uint64_t ShiftAmt =
8024 countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy)) - 3;
8025 // Is the constant foldable in the shift of the addressing mode?
8026 // I.e., shift amount is between 1 and 4 inclusive.
8027 if (ShiftAmt == 0 || ShiftAmt > 4)
8028 return false;
8029 break;
8030 }
8031 case Instruction::Trunc:
8032 // Check if this is a noop.
8033 // trunc(sext ty1 to ty2) to ty1.
8034 if (Instr->getType() == Ext->getOperand(0)->getType())
8035 continue;
8036 LLVM_FALLTHROUGH;
8037 default:
8038 return false;
8039 }
8040
8041 // At this point we can use the bfm family, so this extension is free
8042 // for that use.
8043 }
8044 return true;
8045 }
8046
hasPairedLoad(EVT LoadedType,unsigned & RequiredAligment) const8047 bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
8048 unsigned &RequiredAligment) const {
8049 if (!LoadedType.isSimple() ||
8050 (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
8051 return false;
8052 // Cyclone supports unaligned accesses.
8053 RequiredAligment = 0;
8054 unsigned NumBits = LoadedType.getSizeInBits();
8055 return NumBits == 32 || NumBits == 64;
8056 }
8057
8058 /// A helper function for determining the number of interleaved accesses we
8059 /// will generate when lowering accesses of the given type.
8060 unsigned
getNumInterleavedAccesses(VectorType * VecTy,const DataLayout & DL) const8061 AArch64TargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
8062 const DataLayout &DL) const {
8063 return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
8064 }
8065
8066 MachineMemOperand::Flags
getMMOFlags(const Instruction & I) const8067 AArch64TargetLowering::getMMOFlags(const Instruction &I) const {
8068 if (Subtarget->getProcFamily() == AArch64Subtarget::Falkor &&
8069 I.getMetadata(FALKOR_STRIDED_ACCESS_MD) != nullptr)
8070 return MOStridedAccess;
8071 return MachineMemOperand::MONone;
8072 }
8073
isLegalInterleavedAccessType(VectorType * VecTy,const DataLayout & DL) const8074 bool AArch64TargetLowering::isLegalInterleavedAccessType(
8075 VectorType *VecTy, const DataLayout &DL) const {
8076
8077 unsigned VecSize = DL.getTypeSizeInBits(VecTy);
8078 unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
8079
8080 // Ensure the number of vector elements is greater than 1.
8081 if (VecTy->getNumElements() < 2)
8082 return false;
8083
8084 // Ensure the element type is legal.
8085 if (ElSize != 8 && ElSize != 16 && ElSize != 32 && ElSize != 64)
8086 return false;
8087
8088 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
8089 // 128 will be split into multiple interleaved accesses.
8090 return VecSize == 64 || VecSize % 128 == 0;
8091 }
8092
8093 /// Lower an interleaved load into a ldN intrinsic.
8094 ///
8095 /// E.g. Lower an interleaved load (Factor = 2):
8096 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
8097 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
8098 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
8099 ///
8100 /// Into:
8101 /// %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
8102 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
8103 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
lowerInterleavedLoad(LoadInst * LI,ArrayRef<ShuffleVectorInst * > Shuffles,ArrayRef<unsigned> Indices,unsigned Factor) const8104 bool AArch64TargetLowering::lowerInterleavedLoad(
8105 LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
8106 ArrayRef<unsigned> Indices, unsigned Factor) const {
8107 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
8108 "Invalid interleave factor");
8109 assert(!Shuffles.empty() && "Empty shufflevector input");
8110 assert(Shuffles.size() == Indices.size() &&
8111 "Unmatched number of shufflevectors and indices");
8112
8113 const DataLayout &DL = LI->getModule()->getDataLayout();
8114
8115 VectorType *VecTy = Shuffles[0]->getType();
8116
8117 // Skip if we do not have NEON and skip illegal vector types. We can
8118 // "legalize" wide vector types into multiple interleaved accesses as long as
8119 // the vector types are divisible by 128.
8120 if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL))
8121 return false;
8122
8123 unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
8124
8125 // A pointer vector can not be the return type of the ldN intrinsics. Need to
8126 // load integer vectors first and then convert to pointer vectors.
8127 Type *EltTy = VecTy->getVectorElementType();
8128 if (EltTy->isPointerTy())
8129 VecTy =
8130 VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
8131
8132 IRBuilder<> Builder(LI);
8133
8134 // The base address of the load.
8135 Value *BaseAddr = LI->getPointerOperand();
8136
8137 if (NumLoads > 1) {
8138 // If we're going to generate more than one load, reset the sub-vector type
8139 // to something legal.
8140 VecTy = VectorType::get(VecTy->getVectorElementType(),
8141 VecTy->getVectorNumElements() / NumLoads);
8142
8143 // We will compute the pointer operand of each load from the original base
8144 // address using GEPs. Cast the base address to a pointer to the scalar
8145 // element type.
8146 BaseAddr = Builder.CreateBitCast(
8147 BaseAddr, VecTy->getVectorElementType()->getPointerTo(
8148 LI->getPointerAddressSpace()));
8149 }
8150
8151 Type *PtrTy = VecTy->getPointerTo(LI->getPointerAddressSpace());
8152 Type *Tys[2] = {VecTy, PtrTy};
8153 static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2,
8154 Intrinsic::aarch64_neon_ld3,
8155 Intrinsic::aarch64_neon_ld4};
8156 Function *LdNFunc =
8157 Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
8158
8159 // Holds sub-vectors extracted from the load intrinsic return values. The
8160 // sub-vectors are associated with the shufflevector instructions they will
8161 // replace.
8162 DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
8163
8164 for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
8165
8166 // If we're generating more than one load, compute the base address of
8167 // subsequent loads as an offset from the previous.
8168 if (LoadCount > 0)
8169 BaseAddr = Builder.CreateConstGEP1_32(
8170 BaseAddr, VecTy->getVectorNumElements() * Factor);
8171
8172 CallInst *LdN = Builder.CreateCall(
8173 LdNFunc, Builder.CreateBitCast(BaseAddr, PtrTy), "ldN");
8174
8175 // Extract and store the sub-vectors returned by the load intrinsic.
8176 for (unsigned i = 0; i < Shuffles.size(); i++) {
8177 ShuffleVectorInst *SVI = Shuffles[i];
8178 unsigned Index = Indices[i];
8179
8180 Value *SubVec = Builder.CreateExtractValue(LdN, Index);
8181
8182 // Convert the integer vector to pointer vector if the element is pointer.
8183 if (EltTy->isPointerTy())
8184 SubVec = Builder.CreateIntToPtr(
8185 SubVec, VectorType::get(SVI->getType()->getVectorElementType(),
8186 VecTy->getVectorNumElements()));
8187 SubVecs[SVI].push_back(SubVec);
8188 }
8189 }
8190
8191 // Replace uses of the shufflevector instructions with the sub-vectors
8192 // returned by the load intrinsic. If a shufflevector instruction is
8193 // associated with more than one sub-vector, those sub-vectors will be
8194 // concatenated into a single wide vector.
8195 for (ShuffleVectorInst *SVI : Shuffles) {
8196 auto &SubVec = SubVecs[SVI];
8197 auto *WideVec =
8198 SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
8199 SVI->replaceAllUsesWith(WideVec);
8200 }
8201
8202 return true;
8203 }
8204
8205 /// Lower an interleaved store into a stN intrinsic.
8206 ///
8207 /// E.g. Lower an interleaved store (Factor = 3):
8208 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
8209 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
8210 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
8211 ///
8212 /// Into:
8213 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
8214 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
8215 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
8216 /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
8217 ///
8218 /// Note that the new shufflevectors will be removed and we'll only generate one
8219 /// st3 instruction in CodeGen.
8220 ///
8221 /// Example for a more general valid mask (Factor 3). Lower:
8222 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
8223 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
8224 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
8225 ///
8226 /// Into:
8227 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
8228 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
8229 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
8230 /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
lowerInterleavedStore(StoreInst * SI,ShuffleVectorInst * SVI,unsigned Factor) const8231 bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI,
8232 ShuffleVectorInst *SVI,
8233 unsigned Factor) const {
8234 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
8235 "Invalid interleave factor");
8236
8237 VectorType *VecTy = SVI->getType();
8238 assert(VecTy->getVectorNumElements() % Factor == 0 &&
8239 "Invalid interleaved store");
8240
8241 unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
8242 Type *EltTy = VecTy->getVectorElementType();
8243 VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
8244
8245 const DataLayout &DL = SI->getModule()->getDataLayout();
8246
8247 // Skip if we do not have NEON and skip illegal vector types. We can
8248 // "legalize" wide vector types into multiple interleaved accesses as long as
8249 // the vector types are divisible by 128.
8250 if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
8251 return false;
8252
8253 unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
8254
8255 Value *Op0 = SVI->getOperand(0);
8256 Value *Op1 = SVI->getOperand(1);
8257 IRBuilder<> Builder(SI);
8258
8259 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
8260 // vectors to integer vectors.
8261 if (EltTy->isPointerTy()) {
8262 Type *IntTy = DL.getIntPtrType(EltTy);
8263 unsigned NumOpElts = Op0->getType()->getVectorNumElements();
8264
8265 // Convert to the corresponding integer vector.
8266 Type *IntVecTy = VectorType::get(IntTy, NumOpElts);
8267 Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
8268 Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
8269
8270 SubVecTy = VectorType::get(IntTy, LaneLen);
8271 }
8272
8273 // The base address of the store.
8274 Value *BaseAddr = SI->getPointerOperand();
8275
8276 if (NumStores > 1) {
8277 // If we're going to generate more than one store, reset the lane length
8278 // and sub-vector type to something legal.
8279 LaneLen /= NumStores;
8280 SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
8281
8282 // We will compute the pointer operand of each store from the original base
8283 // address using GEPs. Cast the base address to a pointer to the scalar
8284 // element type.
8285 BaseAddr = Builder.CreateBitCast(
8286 BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
8287 SI->getPointerAddressSpace()));
8288 }
8289
8290 auto Mask = SVI->getShuffleMask();
8291
8292 Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace());
8293 Type *Tys[2] = {SubVecTy, PtrTy};
8294 static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2,
8295 Intrinsic::aarch64_neon_st3,
8296 Intrinsic::aarch64_neon_st4};
8297 Function *StNFunc =
8298 Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
8299
8300 for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
8301
8302 SmallVector<Value *, 5> Ops;
8303
8304 // Split the shufflevector operands into sub vectors for the new stN call.
8305 for (unsigned i = 0; i < Factor; i++) {
8306 unsigned IdxI = StoreCount * LaneLen * Factor + i;
8307 if (Mask[IdxI] >= 0) {
8308 Ops.push_back(Builder.CreateShuffleVector(
8309 Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
8310 } else {
8311 unsigned StartMask = 0;
8312 for (unsigned j = 1; j < LaneLen; j++) {
8313 unsigned IdxJ = StoreCount * LaneLen * Factor + j;
8314 if (Mask[IdxJ * Factor + IdxI] >= 0) {
8315 StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
8316 break;
8317 }
8318 }
8319 // Note: Filling undef gaps with random elements is ok, since
8320 // those elements were being written anyway (with undefs).
8321 // In the case of all undefs we're defaulting to using elems from 0
8322 // Note: StartMask cannot be negative, it's checked in
8323 // isReInterleaveMask
8324 Ops.push_back(Builder.CreateShuffleVector(
8325 Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
8326 }
8327 }
8328
8329 // If we generating more than one store, we compute the base address of
8330 // subsequent stores as an offset from the previous.
8331 if (StoreCount > 0)
8332 BaseAddr = Builder.CreateConstGEP1_32(BaseAddr, LaneLen * Factor);
8333
8334 Ops.push_back(Builder.CreateBitCast(BaseAddr, PtrTy));
8335 Builder.CreateCall(StNFunc, Ops);
8336 }
8337 return true;
8338 }
8339
memOpAlign(unsigned DstAlign,unsigned SrcAlign,unsigned AlignCheck)8340 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
8341 unsigned AlignCheck) {
8342 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
8343 (DstAlign == 0 || DstAlign % AlignCheck == 0));
8344 }
8345
getOptimalMemOpType(uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool IsMemset,bool ZeroMemset,bool MemcpyStrSrc,MachineFunction & MF) const8346 EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
8347 unsigned SrcAlign, bool IsMemset,
8348 bool ZeroMemset,
8349 bool MemcpyStrSrc,
8350 MachineFunction &MF) const {
8351 // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
8352 // instruction to materialize the v2i64 zero and one store (with restrictive
8353 // addressing mode). Just do two i64 store of zero-registers.
8354 bool Fast;
8355 const Function &F = MF.getFunction();
8356 if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
8357 !F.hasFnAttribute(Attribute::NoImplicitFloat) &&
8358 (memOpAlign(SrcAlign, DstAlign, 16) ||
8359 (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast)))
8360 return MVT::f128;
8361
8362 if (Size >= 8 &&
8363 (memOpAlign(SrcAlign, DstAlign, 8) ||
8364 (allowsMisalignedMemoryAccesses(MVT::i64, 0, 1, &Fast) && Fast)))
8365 return MVT::i64;
8366
8367 if (Size >= 4 &&
8368 (memOpAlign(SrcAlign, DstAlign, 4) ||
8369 (allowsMisalignedMemoryAccesses(MVT::i32, 0, 1, &Fast) && Fast)))
8370 return MVT::i32;
8371
8372 return MVT::Other;
8373 }
8374
8375 // 12-bit optionally shifted immediates are legal for adds.
isLegalAddImmediate(int64_t Immed) const8376 bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
8377 if (Immed == std::numeric_limits<int64_t>::min()) {
8378 LLVM_DEBUG(dbgs() << "Illegal add imm " << Immed
8379 << ": avoid UB for INT64_MIN\n");
8380 return false;
8381 }
8382 // Same encoding for add/sub, just flip the sign.
8383 Immed = std::abs(Immed);
8384 bool IsLegal = ((Immed >> 12) == 0 ||
8385 ((Immed & 0xfff) == 0 && Immed >> 24 == 0));
8386 LLVM_DEBUG(dbgs() << "Is " << Immed
8387 << " legal add imm: " << (IsLegal ? "yes" : "no") << "\n");
8388 return IsLegal;
8389 }
8390
8391 // Integer comparisons are implemented with ADDS/SUBS, so the range of valid
8392 // immediates is the same as for an add or a sub.
isLegalICmpImmediate(int64_t Immed) const8393 bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
8394 return isLegalAddImmediate(Immed);
8395 }
8396
8397 /// isLegalAddressingMode - Return true if the addressing mode represented
8398 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const8399 bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL,
8400 const AddrMode &AM, Type *Ty,
8401 unsigned AS, Instruction *I) const {
8402 // AArch64 has five basic addressing modes:
8403 // reg
8404 // reg + 9-bit signed offset
8405 // reg + SIZE_IN_BYTES * 12-bit unsigned offset
8406 // reg1 + reg2
8407 // reg + SIZE_IN_BYTES * reg
8408
8409 // No global is ever allowed as a base.
8410 if (AM.BaseGV)
8411 return false;
8412
8413 // No reg+reg+imm addressing.
8414 if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
8415 return false;
8416
8417 // check reg + imm case:
8418 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
8419 uint64_t NumBytes = 0;
8420 if (Ty->isSized()) {
8421 uint64_t NumBits = DL.getTypeSizeInBits(Ty);
8422 NumBytes = NumBits / 8;
8423 if (!isPowerOf2_64(NumBits))
8424 NumBytes = 0;
8425 }
8426
8427 if (!AM.Scale) {
8428 int64_t Offset = AM.BaseOffs;
8429
8430 // 9-bit signed offset
8431 if (isInt<9>(Offset))
8432 return true;
8433
8434 // 12-bit unsigned offset
8435 unsigned shift = Log2_64(NumBytes);
8436 if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
8437 // Must be a multiple of NumBytes (NumBytes is a power of 2)
8438 (Offset >> shift) << shift == Offset)
8439 return true;
8440 return false;
8441 }
8442
8443 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
8444
8445 return AM.Scale == 1 || (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes);
8446 }
8447
shouldConsiderGEPOffsetSplit() const8448 bool AArch64TargetLowering::shouldConsiderGEPOffsetSplit() const {
8449 // Consider splitting large offset of struct or array.
8450 return true;
8451 }
8452
getScalingFactorCost(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const8453 int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL,
8454 const AddrMode &AM, Type *Ty,
8455 unsigned AS) const {
8456 // Scaling factors are not free at all.
8457 // Operands | Rt Latency
8458 // -------------------------------------------
8459 // Rt, [Xn, Xm] | 4
8460 // -------------------------------------------
8461 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
8462 // Rt, [Xn, Wm, <extend> #imm] |
8463 if (isLegalAddressingMode(DL, AM, Ty, AS))
8464 // Scale represents reg2 * scale, thus account for 1 if
8465 // it is not equal to 0 or 1.
8466 return AM.Scale != 0 && AM.Scale != 1;
8467 return -1;
8468 }
8469
isFMAFasterThanFMulAndFAdd(EVT VT) const8470 bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
8471 VT = VT.getScalarType();
8472
8473 if (!VT.isSimple())
8474 return false;
8475
8476 switch (VT.getSimpleVT().SimpleTy) {
8477 case MVT::f32:
8478 case MVT::f64:
8479 return true;
8480 default:
8481 break;
8482 }
8483
8484 return false;
8485 }
8486
8487 const MCPhysReg *
getScratchRegisters(CallingConv::ID) const8488 AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
8489 // LR is a callee-save register, but we must treat it as clobbered by any call
8490 // site. Hence we include LR in the scratch registers, which are in turn added
8491 // as implicit-defs for stackmaps and patchpoints.
8492 static const MCPhysReg ScratchRegs[] = {
8493 AArch64::X16, AArch64::X17, AArch64::LR, 0
8494 };
8495 return ScratchRegs;
8496 }
8497
8498 bool
isDesirableToCommuteWithShift(const SDNode * N) const8499 AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
8500 EVT VT = N->getValueType(0);
8501 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
8502 // it with shift to let it be lowered to UBFX.
8503 if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
8504 isa<ConstantSDNode>(N->getOperand(1))) {
8505 uint64_t TruncMask = N->getConstantOperandVal(1);
8506 if (isMask_64(TruncMask) &&
8507 N->getOperand(0).getOpcode() == ISD::SRL &&
8508 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
8509 return false;
8510 }
8511 return true;
8512 }
8513
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty) const8514 bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
8515 Type *Ty) const {
8516 assert(Ty->isIntegerTy());
8517
8518 unsigned BitSize = Ty->getPrimitiveSizeInBits();
8519 if (BitSize == 0)
8520 return false;
8521
8522 int64_t Val = Imm.getSExtValue();
8523 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
8524 return true;
8525
8526 if ((int64_t)Val < 0)
8527 Val = ~Val;
8528 if (BitSize == 32)
8529 Val &= (1LL << 32) - 1;
8530
8531 unsigned LZ = countLeadingZeros((uint64_t)Val);
8532 unsigned Shift = (63 - LZ) / 16;
8533 // MOVZ is free so return true for one or fewer MOVK.
8534 return Shift < 3;
8535 }
8536
isExtractSubvectorCheap(EVT ResVT,EVT SrcVT,unsigned Index) const8537 bool AArch64TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
8538 unsigned Index) const {
8539 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
8540 return false;
8541
8542 return (Index == 0 || Index == ResVT.getVectorNumElements());
8543 }
8544
8545 /// Turn vector tests of the signbit in the form of:
8546 /// xor (sra X, elt_size(X)-1), -1
8547 /// into:
8548 /// cmge X, X, #0
foldVectorXorShiftIntoCmp(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)8549 static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG,
8550 const AArch64Subtarget *Subtarget) {
8551 EVT VT = N->getValueType(0);
8552 if (!Subtarget->hasNEON() || !VT.isVector())
8553 return SDValue();
8554
8555 // There must be a shift right algebraic before the xor, and the xor must be a
8556 // 'not' operation.
8557 SDValue Shift = N->getOperand(0);
8558 SDValue Ones = N->getOperand(1);
8559 if (Shift.getOpcode() != AArch64ISD::VASHR || !Shift.hasOneUse() ||
8560 !ISD::isBuildVectorAllOnes(Ones.getNode()))
8561 return SDValue();
8562
8563 // The shift should be smearing the sign bit across each vector element.
8564 auto *ShiftAmt = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
8565 EVT ShiftEltTy = Shift.getValueType().getVectorElementType();
8566 if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1)
8567 return SDValue();
8568
8569 return DAG.getNode(AArch64ISD::CMGEz, SDLoc(N), VT, Shift.getOperand(0));
8570 }
8571
8572 // Generate SUBS and CSEL for integer abs.
performIntegerAbsCombine(SDNode * N,SelectionDAG & DAG)8573 static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
8574 EVT VT = N->getValueType(0);
8575
8576 SDValue N0 = N->getOperand(0);
8577 SDValue N1 = N->getOperand(1);
8578 SDLoc DL(N);
8579
8580 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
8581 // and change it to SUB and CSEL.
8582 if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
8583 N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
8584 N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
8585 if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
8586 if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
8587 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
8588 N0.getOperand(0));
8589 // Generate SUBS & CSEL.
8590 SDValue Cmp =
8591 DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
8592 N0.getOperand(0), DAG.getConstant(0, DL, VT));
8593 return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
8594 DAG.getConstant(AArch64CC::PL, DL, MVT::i32),
8595 SDValue(Cmp.getNode(), 1));
8596 }
8597 return SDValue();
8598 }
8599
performXorCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)8600 static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
8601 TargetLowering::DAGCombinerInfo &DCI,
8602 const AArch64Subtarget *Subtarget) {
8603 if (DCI.isBeforeLegalizeOps())
8604 return SDValue();
8605
8606 if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget))
8607 return Cmp;
8608
8609 return performIntegerAbsCombine(N, DAG);
8610 }
8611
8612 SDValue
BuildSDIVPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created) const8613 AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
8614 SelectionDAG &DAG,
8615 SmallVectorImpl<SDNode *> &Created) const {
8616 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
8617 if (isIntDivCheap(N->getValueType(0), Attr))
8618 return SDValue(N,0); // Lower SDIV as SDIV
8619
8620 // fold (sdiv X, pow2)
8621 EVT VT = N->getValueType(0);
8622 if ((VT != MVT::i32 && VT != MVT::i64) ||
8623 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
8624 return SDValue();
8625
8626 SDLoc DL(N);
8627 SDValue N0 = N->getOperand(0);
8628 unsigned Lg2 = Divisor.countTrailingZeros();
8629 SDValue Zero = DAG.getConstant(0, DL, VT);
8630 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
8631
8632 // Add (N0 < 0) ? Pow2 - 1 : 0;
8633 SDValue CCVal;
8634 SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
8635 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
8636 SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
8637
8638 Created.push_back(Cmp.getNode());
8639 Created.push_back(Add.getNode());
8640 Created.push_back(CSel.getNode());
8641
8642 // Divide by pow2.
8643 SDValue SRA =
8644 DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64));
8645
8646 // If we're dividing by a positive value, we're done. Otherwise, we must
8647 // negate the result.
8648 if (Divisor.isNonNegative())
8649 return SRA;
8650
8651 Created.push_back(SRA.getNode());
8652 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
8653 }
8654
performMulCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)8655 static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
8656 TargetLowering::DAGCombinerInfo &DCI,
8657 const AArch64Subtarget *Subtarget) {
8658 if (DCI.isBeforeLegalizeOps())
8659 return SDValue();
8660
8661 // The below optimizations require a constant RHS.
8662 if (!isa<ConstantSDNode>(N->getOperand(1)))
8663 return SDValue();
8664
8665 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1));
8666 const APInt &ConstValue = C->getAPIntValue();
8667
8668 // Multiplication of a power of two plus/minus one can be done more
8669 // cheaply as as shift+add/sub. For now, this is true unilaterally. If
8670 // future CPUs have a cheaper MADD instruction, this may need to be
8671 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
8672 // 64-bit is 5 cycles, so this is always a win.
8673 // More aggressively, some multiplications N0 * C can be lowered to
8674 // shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M,
8675 // e.g. 6=3*2=(2+1)*2.
8676 // TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45
8677 // which equals to (1+2)*16-(1+2).
8678 SDValue N0 = N->getOperand(0);
8679 // TrailingZeroes is used to test if the mul can be lowered to
8680 // shift+add+shift.
8681 unsigned TrailingZeroes = ConstValue.countTrailingZeros();
8682 if (TrailingZeroes) {
8683 // Conservatively do not lower to shift+add+shift if the mul might be
8684 // folded into smul or umul.
8685 if (N0->hasOneUse() && (isSignExtended(N0.getNode(), DAG) ||
8686 isZeroExtended(N0.getNode(), DAG)))
8687 return SDValue();
8688 // Conservatively do not lower to shift+add+shift if the mul might be
8689 // folded into madd or msub.
8690 if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ADD ||
8691 N->use_begin()->getOpcode() == ISD::SUB))
8692 return SDValue();
8693 }
8694 // Use ShiftedConstValue instead of ConstValue to support both shift+add/sub
8695 // and shift+add+shift.
8696 APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes);
8697
8698 unsigned ShiftAmt, AddSubOpc;
8699 // Is the shifted value the LHS operand of the add/sub?
8700 bool ShiftValUseIsN0 = true;
8701 // Do we need to negate the result?
8702 bool NegateResult = false;
8703
8704 if (ConstValue.isNonNegative()) {
8705 // (mul x, 2^N + 1) => (add (shl x, N), x)
8706 // (mul x, 2^N - 1) => (sub (shl x, N), x)
8707 // (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M)
8708 APInt SCVMinus1 = ShiftedConstValue - 1;
8709 APInt CVPlus1 = ConstValue + 1;
8710 if (SCVMinus1.isPowerOf2()) {
8711 ShiftAmt = SCVMinus1.logBase2();
8712 AddSubOpc = ISD::ADD;
8713 } else if (CVPlus1.isPowerOf2()) {
8714 ShiftAmt = CVPlus1.logBase2();
8715 AddSubOpc = ISD::SUB;
8716 } else
8717 return SDValue();
8718 } else {
8719 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
8720 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
8721 APInt CVNegPlus1 = -ConstValue + 1;
8722 APInt CVNegMinus1 = -ConstValue - 1;
8723 if (CVNegPlus1.isPowerOf2()) {
8724 ShiftAmt = CVNegPlus1.logBase2();
8725 AddSubOpc = ISD::SUB;
8726 ShiftValUseIsN0 = false;
8727 } else if (CVNegMinus1.isPowerOf2()) {
8728 ShiftAmt = CVNegMinus1.logBase2();
8729 AddSubOpc = ISD::ADD;
8730 NegateResult = true;
8731 } else
8732 return SDValue();
8733 }
8734
8735 SDLoc DL(N);
8736 EVT VT = N->getValueType(0);
8737 SDValue ShiftedVal = DAG.getNode(ISD::SHL, DL, VT, N0,
8738 DAG.getConstant(ShiftAmt, DL, MVT::i64));
8739
8740 SDValue AddSubN0 = ShiftValUseIsN0 ? ShiftedVal : N0;
8741 SDValue AddSubN1 = ShiftValUseIsN0 ? N0 : ShiftedVal;
8742 SDValue Res = DAG.getNode(AddSubOpc, DL, VT, AddSubN0, AddSubN1);
8743 assert(!(NegateResult && TrailingZeroes) &&
8744 "NegateResult and TrailingZeroes cannot both be true for now.");
8745 // Negate the result.
8746 if (NegateResult)
8747 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
8748 // Shift the result.
8749 if (TrailingZeroes)
8750 return DAG.getNode(ISD::SHL, DL, VT, Res,
8751 DAG.getConstant(TrailingZeroes, DL, MVT::i64));
8752 return Res;
8753 }
8754
performVectorCompareAndMaskUnaryOpCombine(SDNode * N,SelectionDAG & DAG)8755 static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
8756 SelectionDAG &DAG) {
8757 // Take advantage of vector comparisons producing 0 or -1 in each lane to
8758 // optimize away operation when it's from a constant.
8759 //
8760 // The general transformation is:
8761 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
8762 // AND(VECTOR_CMP(x,y), constant2)
8763 // constant2 = UNARYOP(constant)
8764
8765 // Early exit if this isn't a vector operation, the operand of the
8766 // unary operation isn't a bitwise AND, or if the sizes of the operations
8767 // aren't the same.
8768 EVT VT = N->getValueType(0);
8769 if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
8770 N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
8771 VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
8772 return SDValue();
8773
8774 // Now check that the other operand of the AND is a constant. We could
8775 // make the transformation for non-constant splats as well, but it's unclear
8776 // that would be a benefit as it would not eliminate any operations, just
8777 // perform one more step in scalar code before moving to the vector unit.
8778 if (BuildVectorSDNode *BV =
8779 dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
8780 // Bail out if the vector isn't a constant.
8781 if (!BV->isConstant())
8782 return SDValue();
8783
8784 // Everything checks out. Build up the new and improved node.
8785 SDLoc DL(N);
8786 EVT IntVT = BV->getValueType(0);
8787 // Create a new constant of the appropriate type for the transformed
8788 // DAG.
8789 SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
8790 // The AND node needs bitcasts to/from an integer vector type around it.
8791 SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
8792 SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
8793 N->getOperand(0)->getOperand(0), MaskConst);
8794 SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
8795 return Res;
8796 }
8797
8798 return SDValue();
8799 }
8800
performIntToFpCombine(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)8801 static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
8802 const AArch64Subtarget *Subtarget) {
8803 // First try to optimize away the conversion when it's conditionally from
8804 // a constant. Vectors only.
8805 if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG))
8806 return Res;
8807
8808 EVT VT = N->getValueType(0);
8809 if (VT != MVT::f32 && VT != MVT::f64)
8810 return SDValue();
8811
8812 // Only optimize when the source and destination types have the same width.
8813 if (VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits())
8814 return SDValue();
8815
8816 // If the result of an integer load is only used by an integer-to-float
8817 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
8818 // This eliminates an "integer-to-vector-move" UOP and improves throughput.
8819 SDValue N0 = N->getOperand(0);
8820 if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
8821 // Do not change the width of a volatile load.
8822 !cast<LoadSDNode>(N0)->isVolatile()) {
8823 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
8824 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
8825 LN0->getPointerInfo(), LN0->getAlignment(),
8826 LN0->getMemOperand()->getFlags());
8827
8828 // Make sure successors of the original load stay after it by updating them
8829 // to use the new Chain.
8830 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
8831
8832 unsigned Opcode =
8833 (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
8834 return DAG.getNode(Opcode, SDLoc(N), VT, Load);
8835 }
8836
8837 return SDValue();
8838 }
8839
8840 /// Fold a floating-point multiply by power of two into floating-point to
8841 /// fixed-point conversion.
performFpToIntCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)8842 static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG,
8843 TargetLowering::DAGCombinerInfo &DCI,
8844 const AArch64Subtarget *Subtarget) {
8845 if (!Subtarget->hasNEON())
8846 return SDValue();
8847
8848 SDValue Op = N->getOperand(0);
8849 if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
8850 Op.getOpcode() != ISD::FMUL)
8851 return SDValue();
8852
8853 SDValue ConstVec = Op->getOperand(1);
8854 if (!isa<BuildVectorSDNode>(ConstVec))
8855 return SDValue();
8856
8857 MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
8858 uint32_t FloatBits = FloatTy.getSizeInBits();
8859 if (FloatBits != 32 && FloatBits != 64)
8860 return SDValue();
8861
8862 MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
8863 uint32_t IntBits = IntTy.getSizeInBits();
8864 if (IntBits != 16 && IntBits != 32 && IntBits != 64)
8865 return SDValue();
8866
8867 // Avoid conversions where iN is larger than the float (e.g., float -> i64).
8868 if (IntBits > FloatBits)
8869 return SDValue();
8870
8871 BitVector UndefElements;
8872 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
8873 int32_t Bits = IntBits == 64 ? 64 : 32;
8874 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1);
8875 if (C == -1 || C == 0 || C > Bits)
8876 return SDValue();
8877
8878 MVT ResTy;
8879 unsigned NumLanes = Op.getValueType().getVectorNumElements();
8880 switch (NumLanes) {
8881 default:
8882 return SDValue();
8883 case 2:
8884 ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
8885 break;
8886 case 4:
8887 ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
8888 break;
8889 }
8890
8891 if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
8892 return SDValue();
8893
8894 assert((ResTy != MVT::v4i64 || DCI.isBeforeLegalizeOps()) &&
8895 "Illegal vector type after legalization");
8896
8897 SDLoc DL(N);
8898 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
8899 unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs
8900 : Intrinsic::aarch64_neon_vcvtfp2fxu;
8901 SDValue FixConv =
8902 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy,
8903 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32),
8904 Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32));
8905 // We can handle smaller integers by generating an extra trunc.
8906 if (IntBits < FloatBits)
8907 FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv);
8908
8909 return FixConv;
8910 }
8911
8912 /// Fold a floating-point divide by power of two into fixed-point to
8913 /// floating-point conversion.
performFDivCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)8914 static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG,
8915 TargetLowering::DAGCombinerInfo &DCI,
8916 const AArch64Subtarget *Subtarget) {
8917 if (!Subtarget->hasNEON())
8918 return SDValue();
8919
8920 SDValue Op = N->getOperand(0);
8921 unsigned Opc = Op->getOpcode();
8922 if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
8923 !Op.getOperand(0).getValueType().isSimple() ||
8924 (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP))
8925 return SDValue();
8926
8927 SDValue ConstVec = N->getOperand(1);
8928 if (!isa<BuildVectorSDNode>(ConstVec))
8929 return SDValue();
8930
8931 MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
8932 int32_t IntBits = IntTy.getSizeInBits();
8933 if (IntBits != 16 && IntBits != 32 && IntBits != 64)
8934 return SDValue();
8935
8936 MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
8937 int32_t FloatBits = FloatTy.getSizeInBits();
8938 if (FloatBits != 32 && FloatBits != 64)
8939 return SDValue();
8940
8941 // Avoid conversions where iN is larger than the float (e.g., i64 -> float).
8942 if (IntBits > FloatBits)
8943 return SDValue();
8944
8945 BitVector UndefElements;
8946 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
8947 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1);
8948 if (C == -1 || C == 0 || C > FloatBits)
8949 return SDValue();
8950
8951 MVT ResTy;
8952 unsigned NumLanes = Op.getValueType().getVectorNumElements();
8953 switch (NumLanes) {
8954 default:
8955 return SDValue();
8956 case 2:
8957 ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
8958 break;
8959 case 4:
8960 ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
8961 break;
8962 }
8963
8964 if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
8965 return SDValue();
8966
8967 SDLoc DL(N);
8968 SDValue ConvInput = Op.getOperand(0);
8969 bool IsSigned = Opc == ISD::SINT_TO_FP;
8970 if (IntBits < FloatBits)
8971 ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
8972 ResTy, ConvInput);
8973
8974 unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp
8975 : Intrinsic::aarch64_neon_vcvtfxu2fp;
8976 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
8977 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput,
8978 DAG.getConstant(C, DL, MVT::i32));
8979 }
8980
8981 /// An EXTR instruction is made up of two shifts, ORed together. This helper
8982 /// searches for and classifies those shifts.
findEXTRHalf(SDValue N,SDValue & Src,uint32_t & ShiftAmount,bool & FromHi)8983 static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
8984 bool &FromHi) {
8985 if (N.getOpcode() == ISD::SHL)
8986 FromHi = false;
8987 else if (N.getOpcode() == ISD::SRL)
8988 FromHi = true;
8989 else
8990 return false;
8991
8992 if (!isa<ConstantSDNode>(N.getOperand(1)))
8993 return false;
8994
8995 ShiftAmount = N->getConstantOperandVal(1);
8996 Src = N->getOperand(0);
8997 return true;
8998 }
8999
9000 /// EXTR instruction extracts a contiguous chunk of bits from two existing
9001 /// registers viewed as a high/low pair. This function looks for the pattern:
9002 /// <tt>(or (shl VAL1, \#N), (srl VAL2, \#RegWidth-N))</tt> and replaces it
9003 /// with an EXTR. Can't quite be done in TableGen because the two immediates
9004 /// aren't independent.
tryCombineToEXTR(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)9005 static SDValue tryCombineToEXTR(SDNode *N,
9006 TargetLowering::DAGCombinerInfo &DCI) {
9007 SelectionDAG &DAG = DCI.DAG;
9008 SDLoc DL(N);
9009 EVT VT = N->getValueType(0);
9010
9011 assert(N->getOpcode() == ISD::OR && "Unexpected root");
9012
9013 if (VT != MVT::i32 && VT != MVT::i64)
9014 return SDValue();
9015
9016 SDValue LHS;
9017 uint32_t ShiftLHS = 0;
9018 bool LHSFromHi = false;
9019 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
9020 return SDValue();
9021
9022 SDValue RHS;
9023 uint32_t ShiftRHS = 0;
9024 bool RHSFromHi = false;
9025 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
9026 return SDValue();
9027
9028 // If they're both trying to come from the high part of the register, they're
9029 // not really an EXTR.
9030 if (LHSFromHi == RHSFromHi)
9031 return SDValue();
9032
9033 if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
9034 return SDValue();
9035
9036 if (LHSFromHi) {
9037 std::swap(LHS, RHS);
9038 std::swap(ShiftLHS, ShiftRHS);
9039 }
9040
9041 return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
9042 DAG.getConstant(ShiftRHS, DL, MVT::i64));
9043 }
9044
tryCombineToBSL(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)9045 static SDValue tryCombineToBSL(SDNode *N,
9046 TargetLowering::DAGCombinerInfo &DCI) {
9047 EVT VT = N->getValueType(0);
9048 SelectionDAG &DAG = DCI.DAG;
9049 SDLoc DL(N);
9050
9051 if (!VT.isVector())
9052 return SDValue();
9053
9054 SDValue N0 = N->getOperand(0);
9055 if (N0.getOpcode() != ISD::AND)
9056 return SDValue();
9057
9058 SDValue N1 = N->getOperand(1);
9059 if (N1.getOpcode() != ISD::AND)
9060 return SDValue();
9061
9062 // We only have to look for constant vectors here since the general, variable
9063 // case can be handled in TableGen.
9064 unsigned Bits = VT.getScalarSizeInBits();
9065 uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
9066 for (int i = 1; i >= 0; --i)
9067 for (int j = 1; j >= 0; --j) {
9068 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
9069 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
9070 if (!BVN0 || !BVN1)
9071 continue;
9072
9073 bool FoundMatch = true;
9074 for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
9075 ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
9076 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
9077 if (!CN0 || !CN1 ||
9078 CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
9079 FoundMatch = false;
9080 break;
9081 }
9082 }
9083
9084 if (FoundMatch)
9085 return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
9086 N0->getOperand(1 - i), N1->getOperand(1 - j));
9087 }
9088
9089 return SDValue();
9090 }
9091
performORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)9092 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
9093 const AArch64Subtarget *Subtarget) {
9094 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
9095 SelectionDAG &DAG = DCI.DAG;
9096 EVT VT = N->getValueType(0);
9097
9098 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9099 return SDValue();
9100
9101 if (SDValue Res = tryCombineToEXTR(N, DCI))
9102 return Res;
9103
9104 if (SDValue Res = tryCombineToBSL(N, DCI))
9105 return Res;
9106
9107 return SDValue();
9108 }
9109
performSRLCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)9110 static SDValue performSRLCombine(SDNode *N,
9111 TargetLowering::DAGCombinerInfo &DCI) {
9112 SelectionDAG &DAG = DCI.DAG;
9113 EVT VT = N->getValueType(0);
9114 if (VT != MVT::i32 && VT != MVT::i64)
9115 return SDValue();
9116
9117 // Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the
9118 // high 16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32)
9119 // to (rotr (bswap i64 x), 32), if the high 32-bits of x are zero.
9120 SDValue N0 = N->getOperand(0);
9121 if (N0.getOpcode() == ISD::BSWAP) {
9122 SDLoc DL(N);
9123 SDValue N1 = N->getOperand(1);
9124 SDValue N00 = N0.getOperand(0);
9125 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
9126 uint64_t ShiftAmt = C->getZExtValue();
9127 if (VT == MVT::i32 && ShiftAmt == 16 &&
9128 DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(32, 16)))
9129 return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
9130 if (VT == MVT::i64 && ShiftAmt == 32 &&
9131 DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(64, 32)))
9132 return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
9133 }
9134 }
9135 return SDValue();
9136 }
9137
performBitcastCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)9138 static SDValue performBitcastCombine(SDNode *N,
9139 TargetLowering::DAGCombinerInfo &DCI,
9140 SelectionDAG &DAG) {
9141 // Wait 'til after everything is legalized to try this. That way we have
9142 // legal vector types and such.
9143 if (DCI.isBeforeLegalizeOps())
9144 return SDValue();
9145
9146 // Remove extraneous bitcasts around an extract_subvector.
9147 // For example,
9148 // (v4i16 (bitconvert
9149 // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
9150 // becomes
9151 // (extract_subvector ((v8i16 ...), (i64 4)))
9152
9153 // Only interested in 64-bit vectors as the ultimate result.
9154 EVT VT = N->getValueType(0);
9155 if (!VT.isVector())
9156 return SDValue();
9157 if (VT.getSimpleVT().getSizeInBits() != 64)
9158 return SDValue();
9159 // Is the operand an extract_subvector starting at the beginning or halfway
9160 // point of the vector? A low half may also come through as an
9161 // EXTRACT_SUBREG, so look for that, too.
9162 SDValue Op0 = N->getOperand(0);
9163 if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
9164 !(Op0->isMachineOpcode() &&
9165 Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
9166 return SDValue();
9167 uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
9168 if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
9169 if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
9170 return SDValue();
9171 } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
9172 if (idx != AArch64::dsub)
9173 return SDValue();
9174 // The dsub reference is equivalent to a lane zero subvector reference.
9175 idx = 0;
9176 }
9177 // Look through the bitcast of the input to the extract.
9178 if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
9179 return SDValue();
9180 SDValue Source = Op0->getOperand(0)->getOperand(0);
9181 // If the source type has twice the number of elements as our destination
9182 // type, we know this is an extract of the high or low half of the vector.
9183 EVT SVT = Source->getValueType(0);
9184 if (!SVT.isVector() ||
9185 SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
9186 return SDValue();
9187
9188 LLVM_DEBUG(
9189 dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
9190
9191 // Create the simplified form to just extract the low or high half of the
9192 // vector directly rather than bothering with the bitcasts.
9193 SDLoc dl(N);
9194 unsigned NumElements = VT.getVectorNumElements();
9195 if (idx) {
9196 SDValue HalfIdx = DAG.getConstant(NumElements, dl, MVT::i64);
9197 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
9198 } else {
9199 SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, dl, MVT::i32);
9200 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
9201 Source, SubReg),
9202 0);
9203 }
9204 }
9205
performConcatVectorsCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)9206 static SDValue performConcatVectorsCombine(SDNode *N,
9207 TargetLowering::DAGCombinerInfo &DCI,
9208 SelectionDAG &DAG) {
9209 SDLoc dl(N);
9210 EVT VT = N->getValueType(0);
9211 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
9212
9213 // Optimize concat_vectors of truncated vectors, where the intermediate
9214 // type is illegal, to avoid said illegality, e.g.,
9215 // (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
9216 // (v2i16 (truncate (v2i64)))))
9217 // ->
9218 // (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
9219 // (v4i32 (bitcast (v2i64))),
9220 // <0, 2, 4, 6>)))
9221 // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
9222 // on both input and result type, so we might generate worse code.
9223 // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
9224 if (N->getNumOperands() == 2 &&
9225 N0->getOpcode() == ISD::TRUNCATE &&
9226 N1->getOpcode() == ISD::TRUNCATE) {
9227 SDValue N00 = N0->getOperand(0);
9228 SDValue N10 = N1->getOperand(0);
9229 EVT N00VT = N00.getValueType();
9230
9231 if (N00VT == N10.getValueType() &&
9232 (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
9233 N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
9234 MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
9235 SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
9236 for (size_t i = 0; i < Mask.size(); ++i)
9237 Mask[i] = i * 2;
9238 return DAG.getNode(ISD::TRUNCATE, dl, VT,
9239 DAG.getVectorShuffle(
9240 MidVT, dl,
9241 DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
9242 DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
9243 }
9244 }
9245
9246 // Wait 'til after everything is legalized to try this. That way we have
9247 // legal vector types and such.
9248 if (DCI.isBeforeLegalizeOps())
9249 return SDValue();
9250
9251 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
9252 // splat. The indexed instructions are going to be expecting a DUPLANE64, so
9253 // canonicalise to that.
9254 if (N0 == N1 && VT.getVectorNumElements() == 2) {
9255 assert(VT.getScalarSizeInBits() == 64);
9256 return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
9257 DAG.getConstant(0, dl, MVT::i64));
9258 }
9259
9260 // Canonicalise concat_vectors so that the right-hand vector has as few
9261 // bit-casts as possible before its real operation. The primary matching
9262 // destination for these operations will be the narrowing "2" instructions,
9263 // which depend on the operation being performed on this right-hand vector.
9264 // For example,
9265 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
9266 // becomes
9267 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
9268
9269 if (N1->getOpcode() != ISD::BITCAST)
9270 return SDValue();
9271 SDValue RHS = N1->getOperand(0);
9272 MVT RHSTy = RHS.getValueType().getSimpleVT();
9273 // If the RHS is not a vector, this is not the pattern we're looking for.
9274 if (!RHSTy.isVector())
9275 return SDValue();
9276
9277 LLVM_DEBUG(
9278 dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
9279
9280 MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
9281 RHSTy.getVectorNumElements() * 2);
9282 return DAG.getNode(ISD::BITCAST, dl, VT,
9283 DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
9284 DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
9285 RHS));
9286 }
9287
tryCombineFixedPointConvert(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)9288 static SDValue tryCombineFixedPointConvert(SDNode *N,
9289 TargetLowering::DAGCombinerInfo &DCI,
9290 SelectionDAG &DAG) {
9291 // Wait until after everything is legalized to try this. That way we have
9292 // legal vector types and such.
9293 if (DCI.isBeforeLegalizeOps())
9294 return SDValue();
9295 // Transform a scalar conversion of a value from a lane extract into a
9296 // lane extract of a vector conversion. E.g., from foo1 to foo2:
9297 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
9298 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
9299 //
9300 // The second form interacts better with instruction selection and the
9301 // register allocator to avoid cross-class register copies that aren't
9302 // coalescable due to a lane reference.
9303
9304 // Check the operand and see if it originates from a lane extract.
9305 SDValue Op1 = N->getOperand(1);
9306 if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
9307 // Yep, no additional predication needed. Perform the transform.
9308 SDValue IID = N->getOperand(0);
9309 SDValue Shift = N->getOperand(2);
9310 SDValue Vec = Op1.getOperand(0);
9311 SDValue Lane = Op1.getOperand(1);
9312 EVT ResTy = N->getValueType(0);
9313 EVT VecResTy;
9314 SDLoc DL(N);
9315
9316 // The vector width should be 128 bits by the time we get here, even
9317 // if it started as 64 bits (the extract_vector handling will have
9318 // done so).
9319 assert(Vec.getValueSizeInBits() == 128 &&
9320 "unexpected vector size on extract_vector_elt!");
9321 if (Vec.getValueType() == MVT::v4i32)
9322 VecResTy = MVT::v4f32;
9323 else if (Vec.getValueType() == MVT::v2i64)
9324 VecResTy = MVT::v2f64;
9325 else
9326 llvm_unreachable("unexpected vector type!");
9327
9328 SDValue Convert =
9329 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
9330 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
9331 }
9332 return SDValue();
9333 }
9334
9335 // AArch64 high-vector "long" operations are formed by performing the non-high
9336 // version on an extract_subvector of each operand which gets the high half:
9337 //
9338 // (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
9339 //
9340 // However, there are cases which don't have an extract_high explicitly, but
9341 // have another operation that can be made compatible with one for free. For
9342 // example:
9343 //
9344 // (dupv64 scalar) --> (extract_high (dup128 scalar))
9345 //
9346 // This routine does the actual conversion of such DUPs, once outer routines
9347 // have determined that everything else is in order.
9348 // It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
9349 // similarly here.
tryExtendDUPToExtractHigh(SDValue N,SelectionDAG & DAG)9350 static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
9351 switch (N.getOpcode()) {
9352 case AArch64ISD::DUP:
9353 case AArch64ISD::DUPLANE8:
9354 case AArch64ISD::DUPLANE16:
9355 case AArch64ISD::DUPLANE32:
9356 case AArch64ISD::DUPLANE64:
9357 case AArch64ISD::MOVI:
9358 case AArch64ISD::MOVIshift:
9359 case AArch64ISD::MOVIedit:
9360 case AArch64ISD::MOVImsl:
9361 case AArch64ISD::MVNIshift:
9362 case AArch64ISD::MVNImsl:
9363 break;
9364 default:
9365 // FMOV could be supported, but isn't very useful, as it would only occur
9366 // if you passed a bitcast' floating point immediate to an eligible long
9367 // integer op (addl, smull, ...).
9368 return SDValue();
9369 }
9370
9371 MVT NarrowTy = N.getSimpleValueType();
9372 if (!NarrowTy.is64BitVector())
9373 return SDValue();
9374
9375 MVT ElementTy = NarrowTy.getVectorElementType();
9376 unsigned NumElems = NarrowTy.getVectorNumElements();
9377 MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2);
9378
9379 SDLoc dl(N);
9380 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy,
9381 DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()),
9382 DAG.getConstant(NumElems, dl, MVT::i64));
9383 }
9384
isEssentiallyExtractSubvector(SDValue N)9385 static bool isEssentiallyExtractSubvector(SDValue N) {
9386 if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9387 return true;
9388
9389 return N.getOpcode() == ISD::BITCAST &&
9390 N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
9391 }
9392
9393 /// Helper structure to keep track of ISD::SET_CC operands.
9394 struct GenericSetCCInfo {
9395 const SDValue *Opnd0;
9396 const SDValue *Opnd1;
9397 ISD::CondCode CC;
9398 };
9399
9400 /// Helper structure to keep track of a SET_CC lowered into AArch64 code.
9401 struct AArch64SetCCInfo {
9402 const SDValue *Cmp;
9403 AArch64CC::CondCode CC;
9404 };
9405
9406 /// Helper structure to keep track of SetCC information.
9407 union SetCCInfo {
9408 GenericSetCCInfo Generic;
9409 AArch64SetCCInfo AArch64;
9410 };
9411
9412 /// Helper structure to be able to read SetCC information. If set to
9413 /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
9414 /// GenericSetCCInfo.
9415 struct SetCCInfoAndKind {
9416 SetCCInfo Info;
9417 bool IsAArch64;
9418 };
9419
9420 /// Check whether or not \p Op is a SET_CC operation, either a generic or
9421 /// an
9422 /// AArch64 lowered one.
9423 /// \p SetCCInfo is filled accordingly.
9424 /// \post SetCCInfo is meanginfull only when this function returns true.
9425 /// \return True when Op is a kind of SET_CC operation.
isSetCC(SDValue Op,SetCCInfoAndKind & SetCCInfo)9426 static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
9427 // If this is a setcc, this is straight forward.
9428 if (Op.getOpcode() == ISD::SETCC) {
9429 SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
9430 SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
9431 SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
9432 SetCCInfo.IsAArch64 = false;
9433 return true;
9434 }
9435 // Otherwise, check if this is a matching csel instruction.
9436 // In other words:
9437 // - csel 1, 0, cc
9438 // - csel 0, 1, !cc
9439 if (Op.getOpcode() != AArch64ISD::CSEL)
9440 return false;
9441 // Set the information about the operands.
9442 // TODO: we want the operands of the Cmp not the csel
9443 SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
9444 SetCCInfo.IsAArch64 = true;
9445 SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
9446 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
9447
9448 // Check that the operands matches the constraints:
9449 // (1) Both operands must be constants.
9450 // (2) One must be 1 and the other must be 0.
9451 ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
9452 ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9453
9454 // Check (1).
9455 if (!TValue || !FValue)
9456 return false;
9457
9458 // Check (2).
9459 if (!TValue->isOne()) {
9460 // Update the comparison when we are interested in !cc.
9461 std::swap(TValue, FValue);
9462 SetCCInfo.Info.AArch64.CC =
9463 AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
9464 }
9465 return TValue->isOne() && FValue->isNullValue();
9466 }
9467
9468 // Returns true if Op is setcc or zext of setcc.
isSetCCOrZExtSetCC(const SDValue & Op,SetCCInfoAndKind & Info)9469 static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
9470 if (isSetCC(Op, Info))
9471 return true;
9472 return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
9473 isSetCC(Op->getOperand(0), Info));
9474 }
9475
9476 // The folding we want to perform is:
9477 // (add x, [zext] (setcc cc ...) )
9478 // -->
9479 // (csel x, (add x, 1), !cc ...)
9480 //
9481 // The latter will get matched to a CSINC instruction.
performSetccAddFolding(SDNode * Op,SelectionDAG & DAG)9482 static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
9483 assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
9484 SDValue LHS = Op->getOperand(0);
9485 SDValue RHS = Op->getOperand(1);
9486 SetCCInfoAndKind InfoAndKind;
9487
9488 // If neither operand is a SET_CC, give up.
9489 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
9490 std::swap(LHS, RHS);
9491 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
9492 return SDValue();
9493 }
9494
9495 // FIXME: This could be generatized to work for FP comparisons.
9496 EVT CmpVT = InfoAndKind.IsAArch64
9497 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
9498 : InfoAndKind.Info.Generic.Opnd0->getValueType();
9499 if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
9500 return SDValue();
9501
9502 SDValue CCVal;
9503 SDValue Cmp;
9504 SDLoc dl(Op);
9505 if (InfoAndKind.IsAArch64) {
9506 CCVal = DAG.getConstant(
9507 AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl,
9508 MVT::i32);
9509 Cmp = *InfoAndKind.Info.AArch64.Cmp;
9510 } else
9511 Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
9512 *InfoAndKind.Info.Generic.Opnd1,
9513 ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
9514 CCVal, DAG, dl);
9515
9516 EVT VT = Op->getValueType(0);
9517 LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT));
9518 return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
9519 }
9520
9521 // The basic add/sub long vector instructions have variants with "2" on the end
9522 // which act on the high-half of their inputs. They are normally matched by
9523 // patterns like:
9524 //
9525 // (add (zeroext (extract_high LHS)),
9526 // (zeroext (extract_high RHS)))
9527 // -> uaddl2 vD, vN, vM
9528 //
9529 // However, if one of the extracts is something like a duplicate, this
9530 // instruction can still be used profitably. This function puts the DAG into a
9531 // more appropriate form for those patterns to trigger.
performAddSubLongCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)9532 static SDValue performAddSubLongCombine(SDNode *N,
9533 TargetLowering::DAGCombinerInfo &DCI,
9534 SelectionDAG &DAG) {
9535 if (DCI.isBeforeLegalizeOps())
9536 return SDValue();
9537
9538 MVT VT = N->getSimpleValueType(0);
9539 if (!VT.is128BitVector()) {
9540 if (N->getOpcode() == ISD::ADD)
9541 return performSetccAddFolding(N, DAG);
9542 return SDValue();
9543 }
9544
9545 // Make sure both branches are extended in the same way.
9546 SDValue LHS = N->getOperand(0);
9547 SDValue RHS = N->getOperand(1);
9548 if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
9549 LHS.getOpcode() != ISD::SIGN_EXTEND) ||
9550 LHS.getOpcode() != RHS.getOpcode())
9551 return SDValue();
9552
9553 unsigned ExtType = LHS.getOpcode();
9554
9555 // It's not worth doing if at least one of the inputs isn't already an
9556 // extract, but we don't know which it'll be so we have to try both.
9557 if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
9558 RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
9559 if (!RHS.getNode())
9560 return SDValue();
9561
9562 RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
9563 } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
9564 LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
9565 if (!LHS.getNode())
9566 return SDValue();
9567
9568 LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
9569 }
9570
9571 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
9572 }
9573
9574 // Massage DAGs which we can use the high-half "long" operations on into
9575 // something isel will recognize better. E.g.
9576 //
9577 // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
9578 // (aarch64_neon_umull (extract_high (v2i64 vec)))
9579 // (extract_high (v2i64 (dup128 scalar)))))
9580 //
tryCombineLongOpWithDup(unsigned IID,SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)9581 static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
9582 TargetLowering::DAGCombinerInfo &DCI,
9583 SelectionDAG &DAG) {
9584 if (DCI.isBeforeLegalizeOps())
9585 return SDValue();
9586
9587 SDValue LHS = N->getOperand(1);
9588 SDValue RHS = N->getOperand(2);
9589 assert(LHS.getValueType().is64BitVector() &&
9590 RHS.getValueType().is64BitVector() &&
9591 "unexpected shape for long operation");
9592
9593 // Either node could be a DUP, but it's not worth doing both of them (you'd
9594 // just as well use the non-high version) so look for a corresponding extract
9595 // operation on the other "wing".
9596 if (isEssentiallyExtractSubvector(LHS)) {
9597 RHS = tryExtendDUPToExtractHigh(RHS, DAG);
9598 if (!RHS.getNode())
9599 return SDValue();
9600 } else if (isEssentiallyExtractSubvector(RHS)) {
9601 LHS = tryExtendDUPToExtractHigh(LHS, DAG);
9602 if (!LHS.getNode())
9603 return SDValue();
9604 }
9605
9606 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
9607 N->getOperand(0), LHS, RHS);
9608 }
9609
tryCombineShiftImm(unsigned IID,SDNode * N,SelectionDAG & DAG)9610 static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
9611 MVT ElemTy = N->getSimpleValueType(0).getScalarType();
9612 unsigned ElemBits = ElemTy.getSizeInBits();
9613
9614 int64_t ShiftAmount;
9615 if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
9616 APInt SplatValue, SplatUndef;
9617 unsigned SplatBitSize;
9618 bool HasAnyUndefs;
9619 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
9620 HasAnyUndefs, ElemBits) ||
9621 SplatBitSize != ElemBits)
9622 return SDValue();
9623
9624 ShiftAmount = SplatValue.getSExtValue();
9625 } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
9626 ShiftAmount = CVN->getSExtValue();
9627 } else
9628 return SDValue();
9629
9630 unsigned Opcode;
9631 bool IsRightShift;
9632 switch (IID) {
9633 default:
9634 llvm_unreachable("Unknown shift intrinsic");
9635 case Intrinsic::aarch64_neon_sqshl:
9636 Opcode = AArch64ISD::SQSHL_I;
9637 IsRightShift = false;
9638 break;
9639 case Intrinsic::aarch64_neon_uqshl:
9640 Opcode = AArch64ISD::UQSHL_I;
9641 IsRightShift = false;
9642 break;
9643 case Intrinsic::aarch64_neon_srshl:
9644 Opcode = AArch64ISD::SRSHR_I;
9645 IsRightShift = true;
9646 break;
9647 case Intrinsic::aarch64_neon_urshl:
9648 Opcode = AArch64ISD::URSHR_I;
9649 IsRightShift = true;
9650 break;
9651 case Intrinsic::aarch64_neon_sqshlu:
9652 Opcode = AArch64ISD::SQSHLU_I;
9653 IsRightShift = false;
9654 break;
9655 }
9656
9657 if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) {
9658 SDLoc dl(N);
9659 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
9660 DAG.getConstant(-ShiftAmount, dl, MVT::i32));
9661 } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) {
9662 SDLoc dl(N);
9663 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
9664 DAG.getConstant(ShiftAmount, dl, MVT::i32));
9665 }
9666
9667 return SDValue();
9668 }
9669
9670 // The CRC32[BH] instructions ignore the high bits of their data operand. Since
9671 // the intrinsics must be legal and take an i32, this means there's almost
9672 // certainly going to be a zext in the DAG which we can eliminate.
tryCombineCRC32(unsigned Mask,SDNode * N,SelectionDAG & DAG)9673 static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
9674 SDValue AndN = N->getOperand(2);
9675 if (AndN.getOpcode() != ISD::AND)
9676 return SDValue();
9677
9678 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
9679 if (!CMask || CMask->getZExtValue() != Mask)
9680 return SDValue();
9681
9682 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
9683 N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
9684 }
9685
combineAcrossLanesIntrinsic(unsigned Opc,SDNode * N,SelectionDAG & DAG)9686 static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
9687 SelectionDAG &DAG) {
9688 SDLoc dl(N);
9689 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0),
9690 DAG.getNode(Opc, dl,
9691 N->getOperand(1).getSimpleValueType(),
9692 N->getOperand(1)),
9693 DAG.getConstant(0, dl, MVT::i64));
9694 }
9695
performIntrinsicCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)9696 static SDValue performIntrinsicCombine(SDNode *N,
9697 TargetLowering::DAGCombinerInfo &DCI,
9698 const AArch64Subtarget *Subtarget) {
9699 SelectionDAG &DAG = DCI.DAG;
9700 unsigned IID = getIntrinsicID(N);
9701 switch (IID) {
9702 default:
9703 break;
9704 case Intrinsic::aarch64_neon_vcvtfxs2fp:
9705 case Intrinsic::aarch64_neon_vcvtfxu2fp:
9706 return tryCombineFixedPointConvert(N, DCI, DAG);
9707 case Intrinsic::aarch64_neon_saddv:
9708 return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
9709 case Intrinsic::aarch64_neon_uaddv:
9710 return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
9711 case Intrinsic::aarch64_neon_sminv:
9712 return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
9713 case Intrinsic::aarch64_neon_uminv:
9714 return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
9715 case Intrinsic::aarch64_neon_smaxv:
9716 return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
9717 case Intrinsic::aarch64_neon_umaxv:
9718 return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
9719 case Intrinsic::aarch64_neon_fmax:
9720 return DAG.getNode(ISD::FMAXNAN, SDLoc(N), N->getValueType(0),
9721 N->getOperand(1), N->getOperand(2));
9722 case Intrinsic::aarch64_neon_fmin:
9723 return DAG.getNode(ISD::FMINNAN, SDLoc(N), N->getValueType(0),
9724 N->getOperand(1), N->getOperand(2));
9725 case Intrinsic::aarch64_neon_fmaxnm:
9726 return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0),
9727 N->getOperand(1), N->getOperand(2));
9728 case Intrinsic::aarch64_neon_fminnm:
9729 return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0),
9730 N->getOperand(1), N->getOperand(2));
9731 case Intrinsic::aarch64_neon_smull:
9732 case Intrinsic::aarch64_neon_umull:
9733 case Intrinsic::aarch64_neon_pmull:
9734 case Intrinsic::aarch64_neon_sqdmull:
9735 return tryCombineLongOpWithDup(IID, N, DCI, DAG);
9736 case Intrinsic::aarch64_neon_sqshl:
9737 case Intrinsic::aarch64_neon_uqshl:
9738 case Intrinsic::aarch64_neon_sqshlu:
9739 case Intrinsic::aarch64_neon_srshl:
9740 case Intrinsic::aarch64_neon_urshl:
9741 return tryCombineShiftImm(IID, N, DAG);
9742 case Intrinsic::aarch64_crc32b:
9743 case Intrinsic::aarch64_crc32cb:
9744 return tryCombineCRC32(0xff, N, DAG);
9745 case Intrinsic::aarch64_crc32h:
9746 case Intrinsic::aarch64_crc32ch:
9747 return tryCombineCRC32(0xffff, N, DAG);
9748 }
9749 return SDValue();
9750 }
9751
performExtendCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)9752 static SDValue performExtendCombine(SDNode *N,
9753 TargetLowering::DAGCombinerInfo &DCI,
9754 SelectionDAG &DAG) {
9755 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
9756 // we can convert that DUP into another extract_high (of a bigger DUP), which
9757 // helps the backend to decide that an sabdl2 would be useful, saving a real
9758 // extract_high operation.
9759 if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
9760 N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
9761 SDNode *ABDNode = N->getOperand(0).getNode();
9762 unsigned IID = getIntrinsicID(ABDNode);
9763 if (IID == Intrinsic::aarch64_neon_sabd ||
9764 IID == Intrinsic::aarch64_neon_uabd) {
9765 SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
9766 if (!NewABD.getNode())
9767 return SDValue();
9768
9769 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
9770 NewABD);
9771 }
9772 }
9773
9774 // This is effectively a custom type legalization for AArch64.
9775 //
9776 // Type legalization will split an extend of a small, legal, type to a larger
9777 // illegal type by first splitting the destination type, often creating
9778 // illegal source types, which then get legalized in isel-confusing ways,
9779 // leading to really terrible codegen. E.g.,
9780 // %result = v8i32 sext v8i8 %value
9781 // becomes
9782 // %losrc = extract_subreg %value, ...
9783 // %hisrc = extract_subreg %value, ...
9784 // %lo = v4i32 sext v4i8 %losrc
9785 // %hi = v4i32 sext v4i8 %hisrc
9786 // Things go rapidly downhill from there.
9787 //
9788 // For AArch64, the [sz]ext vector instructions can only go up one element
9789 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
9790 // take two instructions.
9791 //
9792 // This implies that the most efficient way to do the extend from v8i8
9793 // to two v4i32 values is to first extend the v8i8 to v8i16, then do
9794 // the normal splitting to happen for the v8i16->v8i32.
9795
9796 // This is pre-legalization to catch some cases where the default
9797 // type legalization will create ill-tempered code.
9798 if (!DCI.isBeforeLegalizeOps())
9799 return SDValue();
9800
9801 // We're only interested in cleaning things up for non-legal vector types
9802 // here. If both the source and destination are legal, things will just
9803 // work naturally without any fiddling.
9804 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9805 EVT ResVT = N->getValueType(0);
9806 if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
9807 return SDValue();
9808 // If the vector type isn't a simple VT, it's beyond the scope of what
9809 // we're worried about here. Let legalization do its thing and hope for
9810 // the best.
9811 SDValue Src = N->getOperand(0);
9812 EVT SrcVT = Src->getValueType(0);
9813 if (!ResVT.isSimple() || !SrcVT.isSimple())
9814 return SDValue();
9815
9816 // If the source VT is a 64-bit vector, we can play games and get the
9817 // better results we want.
9818 if (SrcVT.getSizeInBits() != 64)
9819 return SDValue();
9820
9821 unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
9822 unsigned ElementCount = SrcVT.getVectorNumElements();
9823 SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
9824 SDLoc DL(N);
9825 Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
9826
9827 // Now split the rest of the operation into two halves, each with a 64
9828 // bit source.
9829 EVT LoVT, HiVT;
9830 SDValue Lo, Hi;
9831 unsigned NumElements = ResVT.getVectorNumElements();
9832 assert(!(NumElements & 1) && "Splitting vector, but not in half!");
9833 LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
9834 ResVT.getVectorElementType(), NumElements / 2);
9835
9836 EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
9837 LoVT.getVectorNumElements());
9838 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
9839 DAG.getConstant(0, DL, MVT::i64));
9840 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
9841 DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64));
9842 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
9843 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
9844
9845 // Now combine the parts back together so we still have a single result
9846 // like the combiner expects.
9847 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
9848 }
9849
splitStoreSplat(SelectionDAG & DAG,StoreSDNode & St,SDValue SplatVal,unsigned NumVecElts)9850 static SDValue splitStoreSplat(SelectionDAG &DAG, StoreSDNode &St,
9851 SDValue SplatVal, unsigned NumVecElts) {
9852 unsigned OrigAlignment = St.getAlignment();
9853 unsigned EltOffset = SplatVal.getValueType().getSizeInBits() / 8;
9854
9855 // Create scalar stores. This is at least as good as the code sequence for a
9856 // split unaligned store which is a dup.s, ext.b, and two stores.
9857 // Most of the time the three stores should be replaced by store pair
9858 // instructions (stp).
9859 SDLoc DL(&St);
9860 SDValue BasePtr = St.getBasePtr();
9861 uint64_t BaseOffset = 0;
9862
9863 const MachinePointerInfo &PtrInfo = St.getPointerInfo();
9864 SDValue NewST1 =
9865 DAG.getStore(St.getChain(), DL, SplatVal, BasePtr, PtrInfo,
9866 OrigAlignment, St.getMemOperand()->getFlags());
9867
9868 // As this in ISel, we will not merge this add which may degrade results.
9869 if (BasePtr->getOpcode() == ISD::ADD &&
9870 isa<ConstantSDNode>(BasePtr->getOperand(1))) {
9871 BaseOffset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
9872 BasePtr = BasePtr->getOperand(0);
9873 }
9874
9875 unsigned Offset = EltOffset;
9876 while (--NumVecElts) {
9877 unsigned Alignment = MinAlign(OrigAlignment, Offset);
9878 SDValue OffsetPtr =
9879 DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
9880 DAG.getConstant(BaseOffset + Offset, DL, MVT::i64));
9881 NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
9882 PtrInfo.getWithOffset(Offset), Alignment,
9883 St.getMemOperand()->getFlags());
9884 Offset += EltOffset;
9885 }
9886 return NewST1;
9887 }
9888
9889 /// Replace a splat of zeros to a vector store by scalar stores of WZR/XZR. The
9890 /// load store optimizer pass will merge them to store pair stores. This should
9891 /// be better than a movi to create the vector zero followed by a vector store
9892 /// if the zero constant is not re-used, since one instructions and one register
9893 /// live range will be removed.
9894 ///
9895 /// For example, the final generated code should be:
9896 ///
9897 /// stp xzr, xzr, [x0]
9898 ///
9899 /// instead of:
9900 ///
9901 /// movi v0.2d, #0
9902 /// str q0, [x0]
9903 ///
replaceZeroVectorStore(SelectionDAG & DAG,StoreSDNode & St)9904 static SDValue replaceZeroVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
9905 SDValue StVal = St.getValue();
9906 EVT VT = StVal.getValueType();
9907
9908 // It is beneficial to scalarize a zero splat store for 2 or 3 i64 elements or
9909 // 2, 3 or 4 i32 elements.
9910 int NumVecElts = VT.getVectorNumElements();
9911 if (!(((NumVecElts == 2 || NumVecElts == 3) &&
9912 VT.getVectorElementType().getSizeInBits() == 64) ||
9913 ((NumVecElts == 2 || NumVecElts == 3 || NumVecElts == 4) &&
9914 VT.getVectorElementType().getSizeInBits() == 32)))
9915 return SDValue();
9916
9917 if (StVal.getOpcode() != ISD::BUILD_VECTOR)
9918 return SDValue();
9919
9920 // If the zero constant has more than one use then the vector store could be
9921 // better since the constant mov will be amortized and stp q instructions
9922 // should be able to be formed.
9923 if (!StVal.hasOneUse())
9924 return SDValue();
9925
9926 // If the immediate offset of the address operand is too large for the stp
9927 // instruction, then bail out.
9928 if (DAG.isBaseWithConstantOffset(St.getBasePtr())) {
9929 int64_t Offset = St.getBasePtr()->getConstantOperandVal(1);
9930 if (Offset < -512 || Offset > 504)
9931 return SDValue();
9932 }
9933
9934 for (int I = 0; I < NumVecElts; ++I) {
9935 SDValue EltVal = StVal.getOperand(I);
9936 if (!isNullConstant(EltVal) && !isNullFPConstant(EltVal))
9937 return SDValue();
9938 }
9939
9940 // Use a CopyFromReg WZR/XZR here to prevent
9941 // DAGCombiner::MergeConsecutiveStores from undoing this transformation.
9942 SDLoc DL(&St);
9943 unsigned ZeroReg;
9944 EVT ZeroVT;
9945 if (VT.getVectorElementType().getSizeInBits() == 32) {
9946 ZeroReg = AArch64::WZR;
9947 ZeroVT = MVT::i32;
9948 } else {
9949 ZeroReg = AArch64::XZR;
9950 ZeroVT = MVT::i64;
9951 }
9952 SDValue SplatVal =
9953 DAG.getCopyFromReg(DAG.getEntryNode(), DL, ZeroReg, ZeroVT);
9954 return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
9955 }
9956
9957 /// Replace a splat of a scalar to a vector store by scalar stores of the scalar
9958 /// value. The load store optimizer pass will merge them to store pair stores.
9959 /// This has better performance than a splat of the scalar followed by a split
9960 /// vector store. Even if the stores are not merged it is four stores vs a dup,
9961 /// followed by an ext.b and two stores.
replaceSplatVectorStore(SelectionDAG & DAG,StoreSDNode & St)9962 static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
9963 SDValue StVal = St.getValue();
9964 EVT VT = StVal.getValueType();
9965
9966 // Don't replace floating point stores, they possibly won't be transformed to
9967 // stp because of the store pair suppress pass.
9968 if (VT.isFloatingPoint())
9969 return SDValue();
9970
9971 // We can express a splat as store pair(s) for 2 or 4 elements.
9972 unsigned NumVecElts = VT.getVectorNumElements();
9973 if (NumVecElts != 4 && NumVecElts != 2)
9974 return SDValue();
9975
9976 // Check that this is a splat.
9977 // Make sure that each of the relevant vector element locations are inserted
9978 // to, i.e. 0 and 1 for v2i64 and 0, 1, 2, 3 for v4i32.
9979 std::bitset<4> IndexNotInserted((1 << NumVecElts) - 1);
9980 SDValue SplatVal;
9981 for (unsigned I = 0; I < NumVecElts; ++I) {
9982 // Check for insert vector elements.
9983 if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
9984 return SDValue();
9985
9986 // Check that same value is inserted at each vector element.
9987 if (I == 0)
9988 SplatVal = StVal.getOperand(1);
9989 else if (StVal.getOperand(1) != SplatVal)
9990 return SDValue();
9991
9992 // Check insert element index.
9993 ConstantSDNode *CIndex = dyn_cast<ConstantSDNode>(StVal.getOperand(2));
9994 if (!CIndex)
9995 return SDValue();
9996 uint64_t IndexVal = CIndex->getZExtValue();
9997 if (IndexVal >= NumVecElts)
9998 return SDValue();
9999 IndexNotInserted.reset(IndexVal);
10000
10001 StVal = StVal.getOperand(0);
10002 }
10003 // Check that all vector element locations were inserted to.
10004 if (IndexNotInserted.any())
10005 return SDValue();
10006
10007 return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
10008 }
10009
splitStores(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)10010 static SDValue splitStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
10011 SelectionDAG &DAG,
10012 const AArch64Subtarget *Subtarget) {
10013
10014 StoreSDNode *S = cast<StoreSDNode>(N);
10015 if (S->isVolatile() || S->isIndexed())
10016 return SDValue();
10017
10018 SDValue StVal = S->getValue();
10019 EVT VT = StVal.getValueType();
10020 if (!VT.isVector())
10021 return SDValue();
10022
10023 // If we get a splat of zeros, convert this vector store to a store of
10024 // scalars. They will be merged into store pairs of xzr thereby removing one
10025 // instruction and one register.
10026 if (SDValue ReplacedZeroSplat = replaceZeroVectorStore(DAG, *S))
10027 return ReplacedZeroSplat;
10028
10029 // FIXME: The logic for deciding if an unaligned store should be split should
10030 // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be
10031 // a call to that function here.
10032
10033 if (!Subtarget->isMisaligned128StoreSlow())
10034 return SDValue();
10035
10036 // Don't split at -Oz.
10037 if (DAG.getMachineFunction().getFunction().optForMinSize())
10038 return SDValue();
10039
10040 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
10041 // those up regresses performance on micro-benchmarks and olden/bh.
10042 if (VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
10043 return SDValue();
10044
10045 // Split unaligned 16B stores. They are terrible for performance.
10046 // Don't split stores with alignment of 1 or 2. Code that uses clang vector
10047 // extensions can use this to mark that it does not want splitting to happen
10048 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
10049 // eliminating alignment hazards is only 1 in 8 for alignment of 2.
10050 if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
10051 S->getAlignment() <= 2)
10052 return SDValue();
10053
10054 // If we get a splat of a scalar convert this vector store to a store of
10055 // scalars. They will be merged into store pairs thereby removing two
10056 // instructions.
10057 if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, *S))
10058 return ReplacedSplat;
10059
10060 SDLoc DL(S);
10061 unsigned NumElts = VT.getVectorNumElements() / 2;
10062 // Split VT into two.
10063 EVT HalfVT =
10064 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
10065 SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
10066 DAG.getConstant(0, DL, MVT::i64));
10067 SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
10068 DAG.getConstant(NumElts, DL, MVT::i64));
10069 SDValue BasePtr = S->getBasePtr();
10070 SDValue NewST1 =
10071 DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
10072 S->getAlignment(), S->getMemOperand()->getFlags());
10073 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
10074 DAG.getConstant(8, DL, MVT::i64));
10075 return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
10076 S->getPointerInfo(), S->getAlignment(),
10077 S->getMemOperand()->getFlags());
10078 }
10079
10080 /// Target-specific DAG combine function for post-increment LD1 (lane) and
10081 /// post-increment LD1R.
performPostLD1Combine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,bool IsLaneOp)10082 static SDValue performPostLD1Combine(SDNode *N,
10083 TargetLowering::DAGCombinerInfo &DCI,
10084 bool IsLaneOp) {
10085 if (DCI.isBeforeLegalizeOps())
10086 return SDValue();
10087
10088 SelectionDAG &DAG = DCI.DAG;
10089 EVT VT = N->getValueType(0);
10090
10091 unsigned LoadIdx = IsLaneOp ? 1 : 0;
10092 SDNode *LD = N->getOperand(LoadIdx).getNode();
10093 // If it is not LOAD, can not do such combine.
10094 if (LD->getOpcode() != ISD::LOAD)
10095 return SDValue();
10096
10097 // The vector lane must be a constant in the LD1LANE opcode.
10098 SDValue Lane;
10099 if (IsLaneOp) {
10100 Lane = N->getOperand(2);
10101 auto *LaneC = dyn_cast<ConstantSDNode>(Lane);
10102 if (!LaneC || LaneC->getZExtValue() >= VT.getVectorNumElements())
10103 return SDValue();
10104 }
10105
10106 LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
10107 EVT MemVT = LoadSDN->getMemoryVT();
10108 // Check if memory operand is the same type as the vector element.
10109 if (MemVT != VT.getVectorElementType())
10110 return SDValue();
10111
10112 // Check if there are other uses. If so, do not combine as it will introduce
10113 // an extra load.
10114 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
10115 ++UI) {
10116 if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
10117 continue;
10118 if (*UI != N)
10119 return SDValue();
10120 }
10121
10122 SDValue Addr = LD->getOperand(1);
10123 SDValue Vector = N->getOperand(0);
10124 // Search for a use of the address operand that is an increment.
10125 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
10126 Addr.getNode()->use_end(); UI != UE; ++UI) {
10127 SDNode *User = *UI;
10128 if (User->getOpcode() != ISD::ADD
10129 || UI.getUse().getResNo() != Addr.getResNo())
10130 continue;
10131
10132 // Check that the add is independent of the load. Otherwise, folding it
10133 // would create a cycle.
10134 if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
10135 continue;
10136 // Also check that add is not used in the vector operand. This would also
10137 // create a cycle.
10138 if (User->isPredecessorOf(Vector.getNode()))
10139 continue;
10140
10141 // If the increment is a constant, it must match the memory ref size.
10142 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
10143 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
10144 uint32_t IncVal = CInc->getZExtValue();
10145 unsigned NumBytes = VT.getScalarSizeInBits() / 8;
10146 if (IncVal != NumBytes)
10147 continue;
10148 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
10149 }
10150
10151 // Finally, check that the vector doesn't depend on the load.
10152 // Again, this would create a cycle.
10153 // The load depending on the vector is fine, as that's the case for the
10154 // LD1*post we'll eventually generate anyway.
10155 if (LoadSDN->isPredecessorOf(Vector.getNode()))
10156 continue;
10157
10158 SmallVector<SDValue, 8> Ops;
10159 Ops.push_back(LD->getOperand(0)); // Chain
10160 if (IsLaneOp) {
10161 Ops.push_back(Vector); // The vector to be inserted
10162 Ops.push_back(Lane); // The lane to be inserted in the vector
10163 }
10164 Ops.push_back(Addr);
10165 Ops.push_back(Inc);
10166
10167 EVT Tys[3] = { VT, MVT::i64, MVT::Other };
10168 SDVTList SDTys = DAG.getVTList(Tys);
10169 unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
10170 SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
10171 MemVT,
10172 LoadSDN->getMemOperand());
10173
10174 // Update the uses.
10175 SDValue NewResults[] = {
10176 SDValue(LD, 0), // The result of load
10177 SDValue(UpdN.getNode(), 2) // Chain
10178 };
10179 DCI.CombineTo(LD, NewResults);
10180 DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
10181 DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
10182
10183 break;
10184 }
10185 return SDValue();
10186 }
10187
10188 /// Simplify ``Addr`` given that the top byte of it is ignored by HW during
10189 /// address translation.
performTBISimplification(SDValue Addr,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)10190 static bool performTBISimplification(SDValue Addr,
10191 TargetLowering::DAGCombinerInfo &DCI,
10192 SelectionDAG &DAG) {
10193 APInt DemandedMask = APInt::getLowBitsSet(64, 56);
10194 KnownBits Known;
10195 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
10196 !DCI.isBeforeLegalizeOps());
10197 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10198 if (TLI.SimplifyDemandedBits(Addr, DemandedMask, Known, TLO)) {
10199 DCI.CommitTargetLoweringOpt(TLO);
10200 return true;
10201 }
10202 return false;
10203 }
10204
performSTORECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)10205 static SDValue performSTORECombine(SDNode *N,
10206 TargetLowering::DAGCombinerInfo &DCI,
10207 SelectionDAG &DAG,
10208 const AArch64Subtarget *Subtarget) {
10209 if (SDValue Split = splitStores(N, DCI, DAG, Subtarget))
10210 return Split;
10211
10212 if (Subtarget->supportsAddressTopByteIgnored() &&
10213 performTBISimplification(N->getOperand(2), DCI, DAG))
10214 return SDValue(N, 0);
10215
10216 return SDValue();
10217 }
10218
10219
10220 /// Target-specific DAG combine function for NEON load/store intrinsics
10221 /// to merge base address updates.
performNEONPostLDSTCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)10222 static SDValue performNEONPostLDSTCombine(SDNode *N,
10223 TargetLowering::DAGCombinerInfo &DCI,
10224 SelectionDAG &DAG) {
10225 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10226 return SDValue();
10227
10228 unsigned AddrOpIdx = N->getNumOperands() - 1;
10229 SDValue Addr = N->getOperand(AddrOpIdx);
10230
10231 // Search for a use of the address operand that is an increment.
10232 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
10233 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
10234 SDNode *User = *UI;
10235 if (User->getOpcode() != ISD::ADD ||
10236 UI.getUse().getResNo() != Addr.getResNo())
10237 continue;
10238
10239 // Check that the add is independent of the load/store. Otherwise, folding
10240 // it would create a cycle.
10241 if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
10242 continue;
10243
10244 // Find the new opcode for the updating load/store.
10245 bool IsStore = false;
10246 bool IsLaneOp = false;
10247 bool IsDupOp = false;
10248 unsigned NewOpc = 0;
10249 unsigned NumVecs = 0;
10250 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
10251 switch (IntNo) {
10252 default: llvm_unreachable("unexpected intrinsic for Neon base update");
10253 case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
10254 NumVecs = 2; break;
10255 case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
10256 NumVecs = 3; break;
10257 case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
10258 NumVecs = 4; break;
10259 case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
10260 NumVecs = 2; IsStore = true; break;
10261 case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
10262 NumVecs = 3; IsStore = true; break;
10263 case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
10264 NumVecs = 4; IsStore = true; break;
10265 case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
10266 NumVecs = 2; break;
10267 case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
10268 NumVecs = 3; break;
10269 case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
10270 NumVecs = 4; break;
10271 case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
10272 NumVecs = 2; IsStore = true; break;
10273 case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
10274 NumVecs = 3; IsStore = true; break;
10275 case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
10276 NumVecs = 4; IsStore = true; break;
10277 case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
10278 NumVecs = 2; IsDupOp = true; break;
10279 case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
10280 NumVecs = 3; IsDupOp = true; break;
10281 case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
10282 NumVecs = 4; IsDupOp = true; break;
10283 case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
10284 NumVecs = 2; IsLaneOp = true; break;
10285 case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
10286 NumVecs = 3; IsLaneOp = true; break;
10287 case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
10288 NumVecs = 4; IsLaneOp = true; break;
10289 case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
10290 NumVecs = 2; IsStore = true; IsLaneOp = true; break;
10291 case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
10292 NumVecs = 3; IsStore = true; IsLaneOp = true; break;
10293 case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
10294 NumVecs = 4; IsStore = true; IsLaneOp = true; break;
10295 }
10296
10297 EVT VecTy;
10298 if (IsStore)
10299 VecTy = N->getOperand(2).getValueType();
10300 else
10301 VecTy = N->getValueType(0);
10302
10303 // If the increment is a constant, it must match the memory ref size.
10304 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
10305 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
10306 uint32_t IncVal = CInc->getZExtValue();
10307 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
10308 if (IsLaneOp || IsDupOp)
10309 NumBytes /= VecTy.getVectorNumElements();
10310 if (IncVal != NumBytes)
10311 continue;
10312 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
10313 }
10314 SmallVector<SDValue, 8> Ops;
10315 Ops.push_back(N->getOperand(0)); // Incoming chain
10316 // Load lane and store have vector list as input.
10317 if (IsLaneOp || IsStore)
10318 for (unsigned i = 2; i < AddrOpIdx; ++i)
10319 Ops.push_back(N->getOperand(i));
10320 Ops.push_back(Addr); // Base register
10321 Ops.push_back(Inc);
10322
10323 // Return Types.
10324 EVT Tys[6];
10325 unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
10326 unsigned n;
10327 for (n = 0; n < NumResultVecs; ++n)
10328 Tys[n] = VecTy;
10329 Tys[n++] = MVT::i64; // Type of write back register
10330 Tys[n] = MVT::Other; // Type of the chain
10331 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
10332
10333 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
10334 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
10335 MemInt->getMemoryVT(),
10336 MemInt->getMemOperand());
10337
10338 // Update the uses.
10339 std::vector<SDValue> NewResults;
10340 for (unsigned i = 0; i < NumResultVecs; ++i) {
10341 NewResults.push_back(SDValue(UpdN.getNode(), i));
10342 }
10343 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
10344 DCI.CombineTo(N, NewResults);
10345 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
10346
10347 break;
10348 }
10349 return SDValue();
10350 }
10351
10352 // Checks to see if the value is the prescribed width and returns information
10353 // about its extension mode.
10354 static
checkValueWidth(SDValue V,unsigned width,ISD::LoadExtType & ExtType)10355 bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
10356 ExtType = ISD::NON_EXTLOAD;
10357 switch(V.getNode()->getOpcode()) {
10358 default:
10359 return false;
10360 case ISD::LOAD: {
10361 LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
10362 if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
10363 || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
10364 ExtType = LoadNode->getExtensionType();
10365 return true;
10366 }
10367 return false;
10368 }
10369 case ISD::AssertSext: {
10370 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
10371 if ((TypeNode->getVT() == MVT::i8 && width == 8)
10372 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
10373 ExtType = ISD::SEXTLOAD;
10374 return true;
10375 }
10376 return false;
10377 }
10378 case ISD::AssertZext: {
10379 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
10380 if ((TypeNode->getVT() == MVT::i8 && width == 8)
10381 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
10382 ExtType = ISD::ZEXTLOAD;
10383 return true;
10384 }
10385 return false;
10386 }
10387 case ISD::Constant:
10388 case ISD::TargetConstant: {
10389 return std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
10390 1LL << (width - 1);
10391 }
10392 }
10393
10394 return true;
10395 }
10396
10397 // This function does a whole lot of voodoo to determine if the tests are
10398 // equivalent without and with a mask. Essentially what happens is that given a
10399 // DAG resembling:
10400 //
10401 // +-------------+ +-------------+ +-------------+ +-------------+
10402 // | Input | | AddConstant | | CompConstant| | CC |
10403 // +-------------+ +-------------+ +-------------+ +-------------+
10404 // | | | |
10405 // V V | +----------+
10406 // +-------------+ +----+ | |
10407 // | ADD | |0xff| | |
10408 // +-------------+ +----+ | |
10409 // | | | |
10410 // V V | |
10411 // +-------------+ | |
10412 // | AND | | |
10413 // +-------------+ | |
10414 // | | |
10415 // +-----+ | |
10416 // | | |
10417 // V V V
10418 // +-------------+
10419 // | CMP |
10420 // +-------------+
10421 //
10422 // The AND node may be safely removed for some combinations of inputs. In
10423 // particular we need to take into account the extension type of the Input,
10424 // the exact values of AddConstant, CompConstant, and CC, along with the nominal
10425 // width of the input (this can work for any width inputs, the above graph is
10426 // specific to 8 bits.
10427 //
10428 // The specific equations were worked out by generating output tables for each
10429 // AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
10430 // problem was simplified by working with 4 bit inputs, which means we only
10431 // needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
10432 // extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
10433 // patterns present in both extensions (0,7). For every distinct set of
10434 // AddConstant and CompConstants bit patterns we can consider the masked and
10435 // unmasked versions to be equivalent if the result of this function is true for
10436 // all 16 distinct bit patterns of for the current extension type of Input (w0).
10437 //
10438 // sub w8, w0, w1
10439 // and w10, w8, #0x0f
10440 // cmp w8, w2
10441 // cset w9, AArch64CC
10442 // cmp w10, w2
10443 // cset w11, AArch64CC
10444 // cmp w9, w11
10445 // cset w0, eq
10446 // ret
10447 //
10448 // Since the above function shows when the outputs are equivalent it defines
10449 // when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
10450 // would be expensive to run during compiles. The equations below were written
10451 // in a test harness that confirmed they gave equivalent outputs to the above
10452 // for all inputs function, so they can be used determine if the removal is
10453 // legal instead.
10454 //
10455 // isEquivalentMaskless() is the code for testing if the AND can be removed
10456 // factored out of the DAG recognition as the DAG can take several forms.
10457
isEquivalentMaskless(unsigned CC,unsigned width,ISD::LoadExtType ExtType,int AddConstant,int CompConstant)10458 static bool isEquivalentMaskless(unsigned CC, unsigned width,
10459 ISD::LoadExtType ExtType, int AddConstant,
10460 int CompConstant) {
10461 // By being careful about our equations and only writing the in term
10462 // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
10463 // make them generally applicable to all bit widths.
10464 int MaxUInt = (1 << width);
10465
10466 // For the purposes of these comparisons sign extending the type is
10467 // equivalent to zero extending the add and displacing it by half the integer
10468 // width. Provided we are careful and make sure our equations are valid over
10469 // the whole range we can just adjust the input and avoid writing equations
10470 // for sign extended inputs.
10471 if (ExtType == ISD::SEXTLOAD)
10472 AddConstant -= (1 << (width-1));
10473
10474 switch(CC) {
10475 case AArch64CC::LE:
10476 case AArch64CC::GT:
10477 if ((AddConstant == 0) ||
10478 (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
10479 (AddConstant >= 0 && CompConstant < 0) ||
10480 (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
10481 return true;
10482 break;
10483 case AArch64CC::LT:
10484 case AArch64CC::GE:
10485 if ((AddConstant == 0) ||
10486 (AddConstant >= 0 && CompConstant <= 0) ||
10487 (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
10488 return true;
10489 break;
10490 case AArch64CC::HI:
10491 case AArch64CC::LS:
10492 if ((AddConstant >= 0 && CompConstant < 0) ||
10493 (AddConstant <= 0 && CompConstant >= -1 &&
10494 CompConstant < AddConstant + MaxUInt))
10495 return true;
10496 break;
10497 case AArch64CC::PL:
10498 case AArch64CC::MI:
10499 if ((AddConstant == 0) ||
10500 (AddConstant > 0 && CompConstant <= 0) ||
10501 (AddConstant < 0 && CompConstant <= AddConstant))
10502 return true;
10503 break;
10504 case AArch64CC::LO:
10505 case AArch64CC::HS:
10506 if ((AddConstant >= 0 && CompConstant <= 0) ||
10507 (AddConstant <= 0 && CompConstant >= 0 &&
10508 CompConstant <= AddConstant + MaxUInt))
10509 return true;
10510 break;
10511 case AArch64CC::EQ:
10512 case AArch64CC::NE:
10513 if ((AddConstant > 0 && CompConstant < 0) ||
10514 (AddConstant < 0 && CompConstant >= 0 &&
10515 CompConstant < AddConstant + MaxUInt) ||
10516 (AddConstant >= 0 && CompConstant >= 0 &&
10517 CompConstant >= AddConstant) ||
10518 (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
10519 return true;
10520 break;
10521 case AArch64CC::VS:
10522 case AArch64CC::VC:
10523 case AArch64CC::AL:
10524 case AArch64CC::NV:
10525 return true;
10526 case AArch64CC::Invalid:
10527 break;
10528 }
10529
10530 return false;
10531 }
10532
10533 static
performCONDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG,unsigned CCIndex,unsigned CmpIndex)10534 SDValue performCONDCombine(SDNode *N,
10535 TargetLowering::DAGCombinerInfo &DCI,
10536 SelectionDAG &DAG, unsigned CCIndex,
10537 unsigned CmpIndex) {
10538 unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
10539 SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
10540 unsigned CondOpcode = SubsNode->getOpcode();
10541
10542 if (CondOpcode != AArch64ISD::SUBS)
10543 return SDValue();
10544
10545 // There is a SUBS feeding this condition. Is it fed by a mask we can
10546 // use?
10547
10548 SDNode *AndNode = SubsNode->getOperand(0).getNode();
10549 unsigned MaskBits = 0;
10550
10551 if (AndNode->getOpcode() != ISD::AND)
10552 return SDValue();
10553
10554 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
10555 uint32_t CNV = CN->getZExtValue();
10556 if (CNV == 255)
10557 MaskBits = 8;
10558 else if (CNV == 65535)
10559 MaskBits = 16;
10560 }
10561
10562 if (!MaskBits)
10563 return SDValue();
10564
10565 SDValue AddValue = AndNode->getOperand(0);
10566
10567 if (AddValue.getOpcode() != ISD::ADD)
10568 return SDValue();
10569
10570 // The basic dag structure is correct, grab the inputs and validate them.
10571
10572 SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
10573 SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
10574 SDValue SubsInputValue = SubsNode->getOperand(1);
10575
10576 // The mask is present and the provenance of all the values is a smaller type,
10577 // lets see if the mask is superfluous.
10578
10579 if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
10580 !isa<ConstantSDNode>(SubsInputValue.getNode()))
10581 return SDValue();
10582
10583 ISD::LoadExtType ExtType;
10584
10585 if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
10586 !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
10587 !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
10588 return SDValue();
10589
10590 if(!isEquivalentMaskless(CC, MaskBits, ExtType,
10591 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
10592 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
10593 return SDValue();
10594
10595 // The AND is not necessary, remove it.
10596
10597 SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
10598 SubsNode->getValueType(1));
10599 SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
10600
10601 SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
10602 DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
10603
10604 return SDValue(N, 0);
10605 }
10606
10607 // Optimize compare with zero and branch.
performBRCONDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)10608 static SDValue performBRCONDCombine(SDNode *N,
10609 TargetLowering::DAGCombinerInfo &DCI,
10610 SelectionDAG &DAG) {
10611 if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3))
10612 N = NV.getNode();
10613 SDValue Chain = N->getOperand(0);
10614 SDValue Dest = N->getOperand(1);
10615 SDValue CCVal = N->getOperand(2);
10616 SDValue Cmp = N->getOperand(3);
10617
10618 assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
10619 unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
10620 if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
10621 return SDValue();
10622
10623 unsigned CmpOpc = Cmp.getOpcode();
10624 if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
10625 return SDValue();
10626
10627 // Only attempt folding if there is only one use of the flag and no use of the
10628 // value.
10629 if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
10630 return SDValue();
10631
10632 SDValue LHS = Cmp.getOperand(0);
10633 SDValue RHS = Cmp.getOperand(1);
10634
10635 assert(LHS.getValueType() == RHS.getValueType() &&
10636 "Expected the value type to be the same for both operands!");
10637 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
10638 return SDValue();
10639
10640 if (isNullConstant(LHS))
10641 std::swap(LHS, RHS);
10642
10643 if (!isNullConstant(RHS))
10644 return SDValue();
10645
10646 if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
10647 LHS.getOpcode() == ISD::SRL)
10648 return SDValue();
10649
10650 // Fold the compare into the branch instruction.
10651 SDValue BR;
10652 if (CC == AArch64CC::EQ)
10653 BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
10654 else
10655 BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
10656
10657 // Do not add new nodes to DAG combiner worklist.
10658 DCI.CombineTo(N, BR, false);
10659
10660 return SDValue();
10661 }
10662
10663 // Optimize some simple tbz/tbnz cases. Returns the new operand and bit to test
10664 // as well as whether the test should be inverted. This code is required to
10665 // catch these cases (as opposed to standard dag combines) because
10666 // AArch64ISD::TBZ is matched during legalization.
getTestBitOperand(SDValue Op,unsigned & Bit,bool & Invert,SelectionDAG & DAG)10667 static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert,
10668 SelectionDAG &DAG) {
10669
10670 if (!Op->hasOneUse())
10671 return Op;
10672
10673 // We don't handle undef/constant-fold cases below, as they should have
10674 // already been taken care of (e.g. and of 0, test of undefined shifted bits,
10675 // etc.)
10676
10677 // (tbz (trunc x), b) -> (tbz x, b)
10678 // This case is just here to enable more of the below cases to be caught.
10679 if (Op->getOpcode() == ISD::TRUNCATE &&
10680 Bit < Op->getValueType(0).getSizeInBits()) {
10681 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
10682 }
10683
10684 if (Op->getNumOperands() != 2)
10685 return Op;
10686
10687 auto *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
10688 if (!C)
10689 return Op;
10690
10691 switch (Op->getOpcode()) {
10692 default:
10693 return Op;
10694
10695 // (tbz (and x, m), b) -> (tbz x, b)
10696 case ISD::AND:
10697 if ((C->getZExtValue() >> Bit) & 1)
10698 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
10699 return Op;
10700
10701 // (tbz (shl x, c), b) -> (tbz x, b-c)
10702 case ISD::SHL:
10703 if (C->getZExtValue() <= Bit &&
10704 (Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
10705 Bit = Bit - C->getZExtValue();
10706 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
10707 }
10708 return Op;
10709
10710 // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x
10711 case ISD::SRA:
10712 Bit = Bit + C->getZExtValue();
10713 if (Bit >= Op->getValueType(0).getSizeInBits())
10714 Bit = Op->getValueType(0).getSizeInBits() - 1;
10715 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
10716
10717 // (tbz (srl x, c), b) -> (tbz x, b+c)
10718 case ISD::SRL:
10719 if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
10720 Bit = Bit + C->getZExtValue();
10721 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
10722 }
10723 return Op;
10724
10725 // (tbz (xor x, -1), b) -> (tbnz x, b)
10726 case ISD::XOR:
10727 if ((C->getZExtValue() >> Bit) & 1)
10728 Invert = !Invert;
10729 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
10730 }
10731 }
10732
10733 // Optimize test single bit zero/non-zero and branch.
performTBZCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)10734 static SDValue performTBZCombine(SDNode *N,
10735 TargetLowering::DAGCombinerInfo &DCI,
10736 SelectionDAG &DAG) {
10737 unsigned Bit = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
10738 bool Invert = false;
10739 SDValue TestSrc = N->getOperand(1);
10740 SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG);
10741
10742 if (TestSrc == NewTestSrc)
10743 return SDValue();
10744
10745 unsigned NewOpc = N->getOpcode();
10746 if (Invert) {
10747 if (NewOpc == AArch64ISD::TBZ)
10748 NewOpc = AArch64ISD::TBNZ;
10749 else {
10750 assert(NewOpc == AArch64ISD::TBNZ);
10751 NewOpc = AArch64ISD::TBZ;
10752 }
10753 }
10754
10755 SDLoc DL(N);
10756 return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc,
10757 DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3));
10758 }
10759
10760 // vselect (v1i1 setcc) ->
10761 // vselect (v1iXX setcc) (XX is the size of the compared operand type)
10762 // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
10763 // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
10764 // such VSELECT.
performVSelectCombine(SDNode * N,SelectionDAG & DAG)10765 static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
10766 SDValue N0 = N->getOperand(0);
10767 EVT CCVT = N0.getValueType();
10768
10769 if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
10770 CCVT.getVectorElementType() != MVT::i1)
10771 return SDValue();
10772
10773 EVT ResVT = N->getValueType(0);
10774 EVT CmpVT = N0.getOperand(0).getValueType();
10775 // Only combine when the result type is of the same size as the compared
10776 // operands.
10777 if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
10778 return SDValue();
10779
10780 SDValue IfTrue = N->getOperand(1);
10781 SDValue IfFalse = N->getOperand(2);
10782 SDValue SetCC =
10783 DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
10784 N0.getOperand(0), N0.getOperand(1),
10785 cast<CondCodeSDNode>(N0.getOperand(2))->get());
10786 return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
10787 IfTrue, IfFalse);
10788 }
10789
10790 /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
10791 /// the compare-mask instructions rather than going via NZCV, even if LHS and
10792 /// RHS are really scalar. This replaces any scalar setcc in the above pattern
10793 /// with a vector one followed by a DUP shuffle on the result.
performSelectCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)10794 static SDValue performSelectCombine(SDNode *N,
10795 TargetLowering::DAGCombinerInfo &DCI) {
10796 SelectionDAG &DAG = DCI.DAG;
10797 SDValue N0 = N->getOperand(0);
10798 EVT ResVT = N->getValueType(0);
10799
10800 if (N0.getOpcode() != ISD::SETCC)
10801 return SDValue();
10802
10803 // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
10804 // scalar SetCCResultType. We also don't expect vectors, because we assume
10805 // that selects fed by vector SETCCs are canonicalized to VSELECT.
10806 assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&
10807 "Scalar-SETCC feeding SELECT has unexpected result type!");
10808
10809 // If NumMaskElts == 0, the comparison is larger than select result. The
10810 // largest real NEON comparison is 64-bits per lane, which means the result is
10811 // at most 32-bits and an illegal vector. Just bail out for now.
10812 EVT SrcVT = N0.getOperand(0).getValueType();
10813
10814 // Don't try to do this optimization when the setcc itself has i1 operands.
10815 // There are no legal vectors of i1, so this would be pointless.
10816 if (SrcVT == MVT::i1)
10817 return SDValue();
10818
10819 int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
10820 if (!ResVT.isVector() || NumMaskElts == 0)
10821 return SDValue();
10822
10823 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
10824 EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
10825
10826 // Also bail out if the vector CCVT isn't the same size as ResVT.
10827 // This can happen if the SETCC operand size doesn't divide the ResVT size
10828 // (e.g., f64 vs v3f32).
10829 if (CCVT.getSizeInBits() != ResVT.getSizeInBits())
10830 return SDValue();
10831
10832 // Make sure we didn't create illegal types, if we're not supposed to.
10833 assert(DCI.isBeforeLegalize() ||
10834 DAG.getTargetLoweringInfo().isTypeLegal(SrcVT));
10835
10836 // First perform a vector comparison, where lane 0 is the one we're interested
10837 // in.
10838 SDLoc DL(N0);
10839 SDValue LHS =
10840 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
10841 SDValue RHS =
10842 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
10843 SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
10844
10845 // Now duplicate the comparison mask we want across all other lanes.
10846 SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
10847 SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask);
10848 Mask = DAG.getNode(ISD::BITCAST, DL,
10849 ResVT.changeVectorElementTypeToInteger(), Mask);
10850
10851 return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
10852 }
10853
10854 /// Get rid of unnecessary NVCASTs (that don't change the type).
performNVCASTCombine(SDNode * N)10855 static SDValue performNVCASTCombine(SDNode *N) {
10856 if (N->getValueType(0) == N->getOperand(0).getValueType())
10857 return N->getOperand(0);
10858
10859 return SDValue();
10860 }
10861
10862 // If all users of the globaladdr are of the form (globaladdr + constant), find
10863 // the smallest constant, fold it into the globaladdr's offset and rewrite the
10864 // globaladdr as (globaladdr + constant) - constant.
performGlobalAddressCombine(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * Subtarget,const TargetMachine & TM)10865 static SDValue performGlobalAddressCombine(SDNode *N, SelectionDAG &DAG,
10866 const AArch64Subtarget *Subtarget,
10867 const TargetMachine &TM) {
10868 auto *GN = dyn_cast<GlobalAddressSDNode>(N);
10869 if (!GN || Subtarget->ClassifyGlobalReference(GN->getGlobal(), TM) !=
10870 AArch64II::MO_NO_FLAG)
10871 return SDValue();
10872
10873 uint64_t MinOffset = -1ull;
10874 for (SDNode *N : GN->uses()) {
10875 if (N->getOpcode() != ISD::ADD)
10876 return SDValue();
10877 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(0));
10878 if (!C)
10879 C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10880 if (!C)
10881 return SDValue();
10882 MinOffset = std::min(MinOffset, C->getZExtValue());
10883 }
10884 uint64_t Offset = MinOffset + GN->getOffset();
10885
10886 // Require that the new offset is larger than the existing one. Otherwise, we
10887 // can end up oscillating between two possible DAGs, for example,
10888 // (add (add globaladdr + 10, -1), 1) and (add globaladdr + 9, 1).
10889 if (Offset <= uint64_t(GN->getOffset()))
10890 return SDValue();
10891
10892 // Check whether folding this offset is legal. It must not go out of bounds of
10893 // the referenced object to avoid violating the code model, and must be
10894 // smaller than 2^21 because this is the largest offset expressible in all
10895 // object formats.
10896 //
10897 // This check also prevents us from folding negative offsets, which will end
10898 // up being treated in the same way as large positive ones. They could also
10899 // cause code model violations, and aren't really common enough to matter.
10900 if (Offset >= (1 << 21))
10901 return SDValue();
10902
10903 const GlobalValue *GV = GN->getGlobal();
10904 Type *T = GV->getValueType();
10905 if (!T->isSized() ||
10906 Offset > GV->getParent()->getDataLayout().getTypeAllocSize(T))
10907 return SDValue();
10908
10909 SDLoc DL(GN);
10910 SDValue Result = DAG.getGlobalAddress(GV, DL, MVT::i64, Offset);
10911 return DAG.getNode(ISD::SUB, DL, MVT::i64, Result,
10912 DAG.getConstant(MinOffset, DL, MVT::i64));
10913 }
10914
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const10915 SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
10916 DAGCombinerInfo &DCI) const {
10917 SelectionDAG &DAG = DCI.DAG;
10918 switch (N->getOpcode()) {
10919 default:
10920 LLVM_DEBUG(dbgs() << "Custom combining: skipping\n");
10921 break;
10922 case ISD::ADD:
10923 case ISD::SUB:
10924 return performAddSubLongCombine(N, DCI, DAG);
10925 case ISD::XOR:
10926 return performXorCombine(N, DAG, DCI, Subtarget);
10927 case ISD::MUL:
10928 return performMulCombine(N, DAG, DCI, Subtarget);
10929 case ISD::SINT_TO_FP:
10930 case ISD::UINT_TO_FP:
10931 return performIntToFpCombine(N, DAG, Subtarget);
10932 case ISD::FP_TO_SINT:
10933 case ISD::FP_TO_UINT:
10934 return performFpToIntCombine(N, DAG, DCI, Subtarget);
10935 case ISD::FDIV:
10936 return performFDivCombine(N, DAG, DCI, Subtarget);
10937 case ISD::OR:
10938 return performORCombine(N, DCI, Subtarget);
10939 case ISD::SRL:
10940 return performSRLCombine(N, DCI);
10941 case ISD::INTRINSIC_WO_CHAIN:
10942 return performIntrinsicCombine(N, DCI, Subtarget);
10943 case ISD::ANY_EXTEND:
10944 case ISD::ZERO_EXTEND:
10945 case ISD::SIGN_EXTEND:
10946 return performExtendCombine(N, DCI, DAG);
10947 case ISD::BITCAST:
10948 return performBitcastCombine(N, DCI, DAG);
10949 case ISD::CONCAT_VECTORS:
10950 return performConcatVectorsCombine(N, DCI, DAG);
10951 case ISD::SELECT:
10952 return performSelectCombine(N, DCI);
10953 case ISD::VSELECT:
10954 return performVSelectCombine(N, DCI.DAG);
10955 case ISD::LOAD:
10956 if (performTBISimplification(N->getOperand(1), DCI, DAG))
10957 return SDValue(N, 0);
10958 break;
10959 case ISD::STORE:
10960 return performSTORECombine(N, DCI, DAG, Subtarget);
10961 case AArch64ISD::BRCOND:
10962 return performBRCONDCombine(N, DCI, DAG);
10963 case AArch64ISD::TBNZ:
10964 case AArch64ISD::TBZ:
10965 return performTBZCombine(N, DCI, DAG);
10966 case AArch64ISD::CSEL:
10967 return performCONDCombine(N, DCI, DAG, 2, 3);
10968 case AArch64ISD::DUP:
10969 return performPostLD1Combine(N, DCI, false);
10970 case AArch64ISD::NVCAST:
10971 return performNVCASTCombine(N);
10972 case ISD::INSERT_VECTOR_ELT:
10973 return performPostLD1Combine(N, DCI, true);
10974 case ISD::INTRINSIC_VOID:
10975 case ISD::INTRINSIC_W_CHAIN:
10976 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10977 case Intrinsic::aarch64_neon_ld2:
10978 case Intrinsic::aarch64_neon_ld3:
10979 case Intrinsic::aarch64_neon_ld4:
10980 case Intrinsic::aarch64_neon_ld1x2:
10981 case Intrinsic::aarch64_neon_ld1x3:
10982 case Intrinsic::aarch64_neon_ld1x4:
10983 case Intrinsic::aarch64_neon_ld2lane:
10984 case Intrinsic::aarch64_neon_ld3lane:
10985 case Intrinsic::aarch64_neon_ld4lane:
10986 case Intrinsic::aarch64_neon_ld2r:
10987 case Intrinsic::aarch64_neon_ld3r:
10988 case Intrinsic::aarch64_neon_ld4r:
10989 case Intrinsic::aarch64_neon_st2:
10990 case Intrinsic::aarch64_neon_st3:
10991 case Intrinsic::aarch64_neon_st4:
10992 case Intrinsic::aarch64_neon_st1x2:
10993 case Intrinsic::aarch64_neon_st1x3:
10994 case Intrinsic::aarch64_neon_st1x4:
10995 case Intrinsic::aarch64_neon_st2lane:
10996 case Intrinsic::aarch64_neon_st3lane:
10997 case Intrinsic::aarch64_neon_st4lane:
10998 return performNEONPostLDSTCombine(N, DCI, DAG);
10999 default:
11000 break;
11001 }
11002 break;
11003 case ISD::GlobalAddress:
11004 return performGlobalAddressCombine(N, DAG, Subtarget, getTargetMachine());
11005 }
11006 return SDValue();
11007 }
11008
11009 // Check if the return value is used as only a return value, as otherwise
11010 // we can't perform a tail-call. In particular, we need to check for
11011 // target ISD nodes that are returns and any other "odd" constructs
11012 // that the generic analysis code won't necessarily catch.
isUsedByReturnOnly(SDNode * N,SDValue & Chain) const11013 bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
11014 SDValue &Chain) const {
11015 if (N->getNumValues() != 1)
11016 return false;
11017 if (!N->hasNUsesOfValue(1, 0))
11018 return false;
11019
11020 SDValue TCChain = Chain;
11021 SDNode *Copy = *N->use_begin();
11022 if (Copy->getOpcode() == ISD::CopyToReg) {
11023 // If the copy has a glue operand, we conservatively assume it isn't safe to
11024 // perform a tail call.
11025 if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
11026 MVT::Glue)
11027 return false;
11028 TCChain = Copy->getOperand(0);
11029 } else if (Copy->getOpcode() != ISD::FP_EXTEND)
11030 return false;
11031
11032 bool HasRet = false;
11033 for (SDNode *Node : Copy->uses()) {
11034 if (Node->getOpcode() != AArch64ISD::RET_FLAG)
11035 return false;
11036 HasRet = true;
11037 }
11038
11039 if (!HasRet)
11040 return false;
11041
11042 Chain = TCChain;
11043 return true;
11044 }
11045
11046 // Return whether the an instruction can potentially be optimized to a tail
11047 // call. This will cause the optimizers to attempt to move, or duplicate,
11048 // return instructions to help enable tail call optimizations for this
11049 // instruction.
mayBeEmittedAsTailCall(const CallInst * CI) const11050 bool AArch64TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
11051 return CI->isTailCall();
11052 }
11053
getIndexedAddressParts(SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,bool & IsInc,SelectionDAG & DAG) const11054 bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
11055 SDValue &Offset,
11056 ISD::MemIndexedMode &AM,
11057 bool &IsInc,
11058 SelectionDAG &DAG) const {
11059 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
11060 return false;
11061
11062 Base = Op->getOperand(0);
11063 // All of the indexed addressing mode instructions take a signed
11064 // 9 bit immediate offset.
11065 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
11066 int64_t RHSC = RHS->getSExtValue();
11067 if (Op->getOpcode() == ISD::SUB)
11068 RHSC = -(uint64_t)RHSC;
11069 if (!isInt<9>(RHSC))
11070 return false;
11071 IsInc = (Op->getOpcode() == ISD::ADD);
11072 Offset = Op->getOperand(1);
11073 return true;
11074 }
11075 return false;
11076 }
11077
getPreIndexedAddressParts(SDNode * N,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const11078 bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
11079 SDValue &Offset,
11080 ISD::MemIndexedMode &AM,
11081 SelectionDAG &DAG) const {
11082 EVT VT;
11083 SDValue Ptr;
11084 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
11085 VT = LD->getMemoryVT();
11086 Ptr = LD->getBasePtr();
11087 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
11088 VT = ST->getMemoryVT();
11089 Ptr = ST->getBasePtr();
11090 } else
11091 return false;
11092
11093 bool IsInc;
11094 if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
11095 return false;
11096 AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
11097 return true;
11098 }
11099
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const11100 bool AArch64TargetLowering::getPostIndexedAddressParts(
11101 SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
11102 ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
11103 EVT VT;
11104 SDValue Ptr;
11105 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
11106 VT = LD->getMemoryVT();
11107 Ptr = LD->getBasePtr();
11108 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
11109 VT = ST->getMemoryVT();
11110 Ptr = ST->getBasePtr();
11111 } else
11112 return false;
11113
11114 bool IsInc;
11115 if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
11116 return false;
11117 // Post-indexing updates the base, so it's not a valid transform
11118 // if that's not the same as the load's pointer.
11119 if (Ptr != Base)
11120 return false;
11121 AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
11122 return true;
11123 }
11124
ReplaceBITCASTResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)11125 static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
11126 SelectionDAG &DAG) {
11127 SDLoc DL(N);
11128 SDValue Op = N->getOperand(0);
11129
11130 if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
11131 return;
11132
11133 Op = SDValue(
11134 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
11135 DAG.getUNDEF(MVT::i32), Op,
11136 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
11137 0);
11138 Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
11139 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
11140 }
11141
ReplaceReductionResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG,unsigned InterOp,unsigned AcrossOp)11142 static void ReplaceReductionResults(SDNode *N,
11143 SmallVectorImpl<SDValue> &Results,
11144 SelectionDAG &DAG, unsigned InterOp,
11145 unsigned AcrossOp) {
11146 EVT LoVT, HiVT;
11147 SDValue Lo, Hi;
11148 SDLoc dl(N);
11149 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
11150 std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
11151 SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi);
11152 SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal);
11153 Results.push_back(SplitVal);
11154 }
11155
splitInt128(SDValue N,SelectionDAG & DAG)11156 static std::pair<SDValue, SDValue> splitInt128(SDValue N, SelectionDAG &DAG) {
11157 SDLoc DL(N);
11158 SDValue Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, N);
11159 SDValue Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64,
11160 DAG.getNode(ISD::SRL, DL, MVT::i128, N,
11161 DAG.getConstant(64, DL, MVT::i64)));
11162 return std::make_pair(Lo, Hi);
11163 }
11164
11165 // Create an even/odd pair of X registers holding integer value V.
createGPRPairNode(SelectionDAG & DAG,SDValue V)11166 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
11167 SDLoc dl(V.getNode());
11168 SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i64);
11169 SDValue VHi = DAG.getAnyExtOrTrunc(
11170 DAG.getNode(ISD::SRL, dl, MVT::i128, V, DAG.getConstant(64, dl, MVT::i64)),
11171 dl, MVT::i64);
11172 if (DAG.getDataLayout().isBigEndian())
11173 std::swap (VLo, VHi);
11174 SDValue RegClass =
11175 DAG.getTargetConstant(AArch64::XSeqPairsClassRegClassID, dl, MVT::i32);
11176 SDValue SubReg0 = DAG.getTargetConstant(AArch64::sube64, dl, MVT::i32);
11177 SDValue SubReg1 = DAG.getTargetConstant(AArch64::subo64, dl, MVT::i32);
11178 const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
11179 return SDValue(
11180 DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
11181 }
11182
ReplaceCMP_SWAP_128Results(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)11183 static void ReplaceCMP_SWAP_128Results(SDNode *N,
11184 SmallVectorImpl<SDValue> &Results,
11185 SelectionDAG &DAG,
11186 const AArch64Subtarget *Subtarget) {
11187 assert(N->getValueType(0) == MVT::i128 &&
11188 "AtomicCmpSwap on types less than 128 should be legal");
11189
11190 if (Subtarget->hasLSE()) {
11191 // LSE has a 128-bit compare and swap (CASP), but i128 is not a legal type,
11192 // so lower it here, wrapped in REG_SEQUENCE and EXTRACT_SUBREG.
11193 SDValue Ops[] = {
11194 createGPRPairNode(DAG, N->getOperand(2)), // Compare value
11195 createGPRPairNode(DAG, N->getOperand(3)), // Store value
11196 N->getOperand(1), // Ptr
11197 N->getOperand(0), // Chain in
11198 };
11199
11200 MachineFunction &MF = DAG.getMachineFunction();
11201 MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1);
11202 MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
11203
11204 unsigned Opcode;
11205 switch (MemOp[0]->getOrdering()) {
11206 case AtomicOrdering::Monotonic:
11207 Opcode = AArch64::CASPX;
11208 break;
11209 case AtomicOrdering::Acquire:
11210 Opcode = AArch64::CASPAX;
11211 break;
11212 case AtomicOrdering::Release:
11213 Opcode = AArch64::CASPLX;
11214 break;
11215 case AtomicOrdering::AcquireRelease:
11216 case AtomicOrdering::SequentiallyConsistent:
11217 Opcode = AArch64::CASPALX;
11218 break;
11219 default:
11220 llvm_unreachable("Unexpected ordering!");
11221 }
11222
11223 MachineSDNode *CmpSwap = DAG.getMachineNode(
11224 Opcode, SDLoc(N), DAG.getVTList(MVT::Untyped, MVT::Other), Ops);
11225 CmpSwap->setMemRefs(MemOp, MemOp + 1);
11226
11227 unsigned SubReg1 = AArch64::sube64, SubReg2 = AArch64::subo64;
11228 if (DAG.getDataLayout().isBigEndian())
11229 std::swap(SubReg1, SubReg2);
11230 Results.push_back(DAG.getTargetExtractSubreg(SubReg1, SDLoc(N), MVT::i64,
11231 SDValue(CmpSwap, 0)));
11232 Results.push_back(DAG.getTargetExtractSubreg(SubReg2, SDLoc(N), MVT::i64,
11233 SDValue(CmpSwap, 0)));
11234 Results.push_back(SDValue(CmpSwap, 1)); // Chain out
11235 return;
11236 }
11237
11238 auto Desired = splitInt128(N->getOperand(2), DAG);
11239 auto New = splitInt128(N->getOperand(3), DAG);
11240 SDValue Ops[] = {N->getOperand(1), Desired.first, Desired.second,
11241 New.first, New.second, N->getOperand(0)};
11242 SDNode *CmpSwap = DAG.getMachineNode(
11243 AArch64::CMP_SWAP_128, SDLoc(N),
11244 DAG.getVTList(MVT::i64, MVT::i64, MVT::i32, MVT::Other), Ops);
11245
11246 MachineFunction &MF = DAG.getMachineFunction();
11247 MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1);
11248 MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
11249 cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1);
11250
11251 Results.push_back(SDValue(CmpSwap, 0));
11252 Results.push_back(SDValue(CmpSwap, 1));
11253 Results.push_back(SDValue(CmpSwap, 3));
11254 }
11255
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const11256 void AArch64TargetLowering::ReplaceNodeResults(
11257 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
11258 switch (N->getOpcode()) {
11259 default:
11260 llvm_unreachable("Don't know how to custom expand this");
11261 case ISD::BITCAST:
11262 ReplaceBITCASTResults(N, Results, DAG);
11263 return;
11264 case ISD::VECREDUCE_ADD:
11265 case ISD::VECREDUCE_SMAX:
11266 case ISD::VECREDUCE_SMIN:
11267 case ISD::VECREDUCE_UMAX:
11268 case ISD::VECREDUCE_UMIN:
11269 Results.push_back(LowerVECREDUCE(SDValue(N, 0), DAG));
11270 return;
11271
11272 case AArch64ISD::SADDV:
11273 ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV);
11274 return;
11275 case AArch64ISD::UADDV:
11276 ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV);
11277 return;
11278 case AArch64ISD::SMINV:
11279 ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV);
11280 return;
11281 case AArch64ISD::UMINV:
11282 ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV);
11283 return;
11284 case AArch64ISD::SMAXV:
11285 ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV);
11286 return;
11287 case AArch64ISD::UMAXV:
11288 ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV);
11289 return;
11290 case ISD::FP_TO_UINT:
11291 case ISD::FP_TO_SINT:
11292 assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
11293 // Let normal code take care of it by not adding anything to Results.
11294 return;
11295 case ISD::ATOMIC_CMP_SWAP:
11296 ReplaceCMP_SWAP_128Results(N, Results, DAG, Subtarget);
11297 return;
11298 }
11299 }
11300
useLoadStackGuardNode() const11301 bool AArch64TargetLowering::useLoadStackGuardNode() const {
11302 if (Subtarget->isTargetAndroid() || Subtarget->isTargetFuchsia())
11303 return TargetLowering::useLoadStackGuardNode();
11304 return true;
11305 }
11306
combineRepeatedFPDivisors() const11307 unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const {
11308 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
11309 // reciprocal if there are three or more FDIVs.
11310 return 3;
11311 }
11312
11313 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(EVT VT) const11314 AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
11315 MVT SVT = VT.getSimpleVT();
11316 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
11317 // v4i16, v2i32 instead of to promote.
11318 if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32
11319 || SVT == MVT::v1f32)
11320 return TypeWidenVector;
11321
11322 return TargetLoweringBase::getPreferredVectorAction(VT);
11323 }
11324
11325 // Loads and stores less than 128-bits are already atomic; ones above that
11326 // are doomed anyway, so defer to the default libcall and blame the OS when
11327 // things go wrong.
shouldExpandAtomicStoreInIR(StoreInst * SI) const11328 bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
11329 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
11330 return Size == 128;
11331 }
11332
11333 // Loads and stores less than 128-bits are already atomic; ones above that
11334 // are doomed anyway, so defer to the default libcall and blame the OS when
11335 // things go wrong.
11336 TargetLowering::AtomicExpansionKind
shouldExpandAtomicLoadInIR(LoadInst * LI) const11337 AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
11338 unsigned Size = LI->getType()->getPrimitiveSizeInBits();
11339 return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
11340 }
11341
11342 // For the real atomic operations, we have ldxr/stxr up to 128 bits,
11343 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * AI) const11344 AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
11345 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
11346 if (Size > 128) return AtomicExpansionKind::None;
11347 // Nand not supported in LSE.
11348 if (AI->getOperation() == AtomicRMWInst::Nand) return AtomicExpansionKind::LLSC;
11349 // Leave 128 bits to LLSC.
11350 return (Subtarget->hasLSE() && Size < 128) ? AtomicExpansionKind::None : AtomicExpansionKind::LLSC;
11351 }
11352
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * AI) const11353 bool AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR(
11354 AtomicCmpXchgInst *AI) const {
11355 // If subtarget has LSE, leave cmpxchg intact for codegen.
11356 if (Subtarget->hasLSE()) return false;
11357 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
11358 // implement cmpxchg without spilling. If the address being exchanged is also
11359 // on the stack and close enough to the spill slot, this can lead to a
11360 // situation where the monitor always gets cleared and the atomic operation
11361 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
11362 return getTargetMachine().getOptLevel() != 0;
11363 }
11364
emitLoadLinked(IRBuilder<> & Builder,Value * Addr,AtomicOrdering Ord) const11365 Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
11366 AtomicOrdering Ord) const {
11367 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11368 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
11369 bool IsAcquire = isAcquireOrStronger(Ord);
11370
11371 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
11372 // intrinsic must return {i64, i64} and we have to recombine them into a
11373 // single i128 here.
11374 if (ValTy->getPrimitiveSizeInBits() == 128) {
11375 Intrinsic::ID Int =
11376 IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
11377 Function *Ldxr = Intrinsic::getDeclaration(M, Int);
11378
11379 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
11380 Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
11381
11382 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
11383 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
11384 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
11385 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
11386 return Builder.CreateOr(
11387 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
11388 }
11389
11390 Type *Tys[] = { Addr->getType() };
11391 Intrinsic::ID Int =
11392 IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
11393 Function *Ldxr = Intrinsic::getDeclaration(M, Int, Tys);
11394
11395 return Builder.CreateTruncOrBitCast(
11396 Builder.CreateCall(Ldxr, Addr),
11397 cast<PointerType>(Addr->getType())->getElementType());
11398 }
11399
emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> & Builder) const11400 void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
11401 IRBuilder<> &Builder) const {
11402 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11403 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex));
11404 }
11405
emitStoreConditional(IRBuilder<> & Builder,Value * Val,Value * Addr,AtomicOrdering Ord) const11406 Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
11407 Value *Val, Value *Addr,
11408 AtomicOrdering Ord) const {
11409 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11410 bool IsRelease = isReleaseOrStronger(Ord);
11411
11412 // Since the intrinsics must have legal type, the i128 intrinsics take two
11413 // parameters: "i64, i64". We must marshal Val into the appropriate form
11414 // before the call.
11415 if (Val->getType()->getPrimitiveSizeInBits() == 128) {
11416 Intrinsic::ID Int =
11417 IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
11418 Function *Stxr = Intrinsic::getDeclaration(M, Int);
11419 Type *Int64Ty = Type::getInt64Ty(M->getContext());
11420
11421 Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
11422 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
11423 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
11424 return Builder.CreateCall(Stxr, {Lo, Hi, Addr});
11425 }
11426
11427 Intrinsic::ID Int =
11428 IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
11429 Type *Tys[] = { Addr->getType() };
11430 Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
11431
11432 return Builder.CreateCall(Stxr,
11433 {Builder.CreateZExtOrBitCast(
11434 Val, Stxr->getFunctionType()->getParamType(0)),
11435 Addr});
11436 }
11437
functionArgumentNeedsConsecutiveRegisters(Type * Ty,CallingConv::ID CallConv,bool isVarArg) const11438 bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
11439 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
11440 return Ty->isArrayTy();
11441 }
11442
shouldNormalizeToSelectSequence(LLVMContext &,EVT) const11443 bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &,
11444 EVT) const {
11445 return false;
11446 }
11447
UseTlsOffset(IRBuilder<> & IRB,unsigned Offset)11448 static Value *UseTlsOffset(IRBuilder<> &IRB, unsigned Offset) {
11449 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
11450 Function *ThreadPointerFunc =
11451 Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
11452 return IRB.CreatePointerCast(
11453 IRB.CreateConstGEP1_32(IRB.CreateCall(ThreadPointerFunc), Offset),
11454 Type::getInt8PtrTy(IRB.getContext())->getPointerTo(0));
11455 }
11456
getIRStackGuard(IRBuilder<> & IRB) const11457 Value *AArch64TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const {
11458 // Android provides a fixed TLS slot for the stack cookie. See the definition
11459 // of TLS_SLOT_STACK_GUARD in
11460 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
11461 if (Subtarget->isTargetAndroid())
11462 return UseTlsOffset(IRB, 0x28);
11463
11464 // Fuchsia is similar.
11465 // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
11466 if (Subtarget->isTargetFuchsia())
11467 return UseTlsOffset(IRB, -0x10);
11468
11469 return TargetLowering::getIRStackGuard(IRB);
11470 }
11471
getSafeStackPointerLocation(IRBuilder<> & IRB) const11472 Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
11473 // Android provides a fixed TLS slot for the SafeStack pointer. See the
11474 // definition of TLS_SLOT_SAFESTACK in
11475 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
11476 if (Subtarget->isTargetAndroid())
11477 return UseTlsOffset(IRB, 0x48);
11478
11479 // Fuchsia is similar.
11480 // <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value.
11481 if (Subtarget->isTargetFuchsia())
11482 return UseTlsOffset(IRB, -0x8);
11483
11484 return TargetLowering::getSafeStackPointerLocation(IRB);
11485 }
11486
isMaskAndCmp0FoldingBeneficial(const Instruction & AndI) const11487 bool AArch64TargetLowering::isMaskAndCmp0FoldingBeneficial(
11488 const Instruction &AndI) const {
11489 // Only sink 'and' mask to cmp use block if it is masking a single bit, since
11490 // this is likely to be fold the and/cmp/br into a single tbz instruction. It
11491 // may be beneficial to sink in other cases, but we would have to check that
11492 // the cmp would not get folded into the br to form a cbz for these to be
11493 // beneficial.
11494 ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
11495 if (!Mask)
11496 return false;
11497 return Mask->getValue().isPowerOf2();
11498 }
11499
initializeSplitCSR(MachineBasicBlock * Entry) const11500 void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
11501 // Update IsSplitCSR in AArch64unctionInfo.
11502 AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>();
11503 AFI->setIsSplitCSR(true);
11504 }
11505
insertCopiesSplitCSR(MachineBasicBlock * Entry,const SmallVectorImpl<MachineBasicBlock * > & Exits) const11506 void AArch64TargetLowering::insertCopiesSplitCSR(
11507 MachineBasicBlock *Entry,
11508 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
11509 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
11510 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
11511 if (!IStart)
11512 return;
11513
11514 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
11515 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
11516 MachineBasicBlock::iterator MBBI = Entry->begin();
11517 for (const MCPhysReg *I = IStart; *I; ++I) {
11518 const TargetRegisterClass *RC = nullptr;
11519 if (AArch64::GPR64RegClass.contains(*I))
11520 RC = &AArch64::GPR64RegClass;
11521 else if (AArch64::FPR64RegClass.contains(*I))
11522 RC = &AArch64::FPR64RegClass;
11523 else
11524 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
11525
11526 unsigned NewVR = MRI->createVirtualRegister(RC);
11527 // Create copy from CSR to a virtual register.
11528 // FIXME: this currently does not emit CFI pseudo-instructions, it works
11529 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
11530 // nounwind. If we want to generalize this later, we may need to emit
11531 // CFI pseudo-instructions.
11532 assert(Entry->getParent()->getFunction().hasFnAttribute(
11533 Attribute::NoUnwind) &&
11534 "Function should be nounwind in insertCopiesSplitCSR!");
11535 Entry->addLiveIn(*I);
11536 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
11537 .addReg(*I);
11538
11539 // Insert the copy-back instructions right before the terminator.
11540 for (auto *Exit : Exits)
11541 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
11542 TII->get(TargetOpcode::COPY), *I)
11543 .addReg(NewVR);
11544 }
11545 }
11546
isIntDivCheap(EVT VT,AttributeList Attr) const11547 bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const {
11548 // Integer division on AArch64 is expensive. However, when aggressively
11549 // optimizing for code size, we prefer to use a div instruction, as it is
11550 // usually smaller than the alternative sequence.
11551 // The exception to this is vector division. Since AArch64 doesn't have vector
11552 // integer division, leaving the division as-is is a loss even in terms of
11553 // size, because it will have to be scalarized, while the alternative code
11554 // sequence can be performed in vector form.
11555 bool OptSize =
11556 Attr.hasAttribute(AttributeList::FunctionIndex, Attribute::MinSize);
11557 return OptSize && !VT.isVector();
11558 }
11559
enableAggressiveFMAFusion(EVT VT) const11560 bool AArch64TargetLowering::enableAggressiveFMAFusion(EVT VT) const {
11561 return Subtarget->hasAggressiveFMA() && VT.isFloatingPoint();
11562 }
11563
11564 unsigned
getVaListSizeInBits(const DataLayout & DL) const11565 AArch64TargetLowering::getVaListSizeInBits(const DataLayout &DL) const {
11566 if (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows())
11567 return getPointerTy(DL).getSizeInBits();
11568
11569 return 3 * getPointerTy(DL).getSizeInBits() + 2 * 32;
11570 }
11571
finalizeLowering(MachineFunction & MF) const11572 void AArch64TargetLowering::finalizeLowering(MachineFunction &MF) const {
11573 MF.getFrameInfo().computeMaxCallFrameSize(MF);
11574 TargetLoweringBase::finalizeLowering(MF);
11575 }
11576