1 //===- MCAssembler.h - Object File Generation -------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #ifndef LLVM_MC_MCASSEMBLER_H
11 #define LLVM_MC_MCASSEMBLER_H
12 
13 #include "llvm/MC/MCFixup.h"
14 #include "llvm/MC/MCInst.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/ilist.h"
19 #include "llvm/ADT/ilist_node.h"
20 #include "llvm/Support/Casting.h"
21 #include "llvm/Support/DataTypes.h"
22 #include <vector> // FIXME: Shouldn't be needed.
23 
24 namespace llvm {
25 class raw_ostream;
26 class MCAsmLayout;
27 class MCAssembler;
28 class MCBinaryExpr;
29 class MCContext;
30 class MCCodeEmitter;
31 class MCExpr;
32 class MCFragment;
33 class MCObjectWriter;
34 class MCSection;
35 class MCSectionData;
36 class MCSymbol;
37 class MCSymbolData;
38 class MCValue;
39 class MCAsmBackend;
40 
41 class MCFragment : public ilist_node<MCFragment> {
42   friend class MCAsmLayout;
43 
44   MCFragment(const MCFragment&);     // DO NOT IMPLEMENT
45   void operator=(const MCFragment&); // DO NOT IMPLEMENT
46 
47 public:
48   enum FragmentType {
49     FT_Align,
50     FT_Data,
51     FT_Fill,
52     FT_Inst,
53     FT_Org,
54     FT_Dwarf,
55     FT_DwarfFrame,
56     FT_LEB
57   };
58 
59 private:
60   FragmentType Kind;
61 
62   /// Parent - The data for the section this fragment is in.
63   MCSectionData *Parent;
64 
65   /// Atom - The atom this fragment is in, as represented by it's defining
66   /// symbol. Atom's are only used by backends which set
67   /// \see MCAsmBackend::hasReliableSymbolDifference().
68   MCSymbolData *Atom;
69 
70   /// @name Assembler Backend Data
71   /// @{
72   //
73   // FIXME: This could all be kept private to the assembler implementation.
74 
75   /// Offset - The offset of this fragment in its section. This is ~0 until
76   /// initialized.
77   uint64_t Offset;
78 
79   /// LayoutOrder - The layout order of this fragment.
80   unsigned LayoutOrder;
81 
82   /// @}
83 
84 protected:
85   MCFragment(FragmentType _Kind, MCSectionData *_Parent = 0);
86 
87 public:
88   // Only for sentinel.
89   MCFragment();
90   virtual ~MCFragment();
91 
getKind()92   FragmentType getKind() const { return Kind; }
93 
getParent()94   MCSectionData *getParent() const { return Parent; }
setParent(MCSectionData * Value)95   void setParent(MCSectionData *Value) { Parent = Value; }
96 
getAtom()97   MCSymbolData *getAtom() const { return Atom; }
setAtom(MCSymbolData * Value)98   void setAtom(MCSymbolData *Value) { Atom = Value; }
99 
getLayoutOrder()100   unsigned getLayoutOrder() const { return LayoutOrder; }
setLayoutOrder(unsigned Value)101   void setLayoutOrder(unsigned Value) { LayoutOrder = Value; }
102 
classof(const MCFragment * O)103   static bool classof(const MCFragment *O) { return true; }
104 
105   void dump();
106 };
107 
108 class MCDataFragment : public MCFragment {
109   SmallString<32> Contents;
110 
111   /// Fixups - The list of fixups in this fragment.
112   std::vector<MCFixup> Fixups;
113 
114 public:
115   typedef std::vector<MCFixup>::const_iterator const_fixup_iterator;
116   typedef std::vector<MCFixup>::iterator fixup_iterator;
117 
118 public:
MCFragment(FT_Data,SD)119   MCDataFragment(MCSectionData *SD = 0) : MCFragment(FT_Data, SD) {}
120 
121   /// @name Accessors
122   /// @{
123 
getContents()124   SmallString<32> &getContents() { return Contents; }
getContents()125   const SmallString<32> &getContents() const { return Contents; }
126 
127   /// @}
128   /// @name Fixup Access
129   /// @{
130 
addFixup(MCFixup Fixup)131   void addFixup(MCFixup Fixup) {
132     // Enforce invariant that fixups are in offset order.
133     assert((Fixups.empty() || Fixup.getOffset() > Fixups.back().getOffset()) &&
134            "Fixups must be added in order!");
135     Fixups.push_back(Fixup);
136   }
137 
getFixups()138   std::vector<MCFixup> &getFixups() { return Fixups; }
getFixups()139   const std::vector<MCFixup> &getFixups() const { return Fixups; }
140 
fixup_begin()141   fixup_iterator fixup_begin() { return Fixups.begin(); }
fixup_begin()142   const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
143 
fixup_end()144   fixup_iterator fixup_end() {return Fixups.end();}
fixup_end()145   const_fixup_iterator fixup_end() const {return Fixups.end();}
146 
fixup_size()147   size_t fixup_size() const { return Fixups.size(); }
148 
149   /// @}
150 
classof(const MCFragment * F)151   static bool classof(const MCFragment *F) {
152     return F->getKind() == MCFragment::FT_Data;
153   }
classof(const MCDataFragment *)154   static bool classof(const MCDataFragment *) { return true; }
155 };
156 
157 // FIXME: This current incarnation of MCInstFragment doesn't make much sense, as
158 // it is almost entirely a duplicate of MCDataFragment. If we decide to stick
159 // with this approach (as opposed to making MCInstFragment a very light weight
160 // object with just the MCInst and a code size, then we should just change
161 // MCDataFragment to have an optional MCInst at its end.
162 class MCInstFragment : public MCFragment {
163   /// Inst - The instruction this is a fragment for.
164   MCInst Inst;
165 
166   /// Code - Binary data for the currently encoded instruction.
167   SmallString<8> Code;
168 
169   /// Fixups - The list of fixups in this fragment.
170   SmallVector<MCFixup, 1> Fixups;
171 
172 public:
173   typedef SmallVectorImpl<MCFixup>::const_iterator const_fixup_iterator;
174   typedef SmallVectorImpl<MCFixup>::iterator fixup_iterator;
175 
176 public:
177   MCInstFragment(MCInst _Inst, MCSectionData *SD = 0)
MCFragment(FT_Inst,SD)178     : MCFragment(FT_Inst, SD), Inst(_Inst) {
179   }
180 
181   /// @name Accessors
182   /// @{
183 
getCode()184   SmallVectorImpl<char> &getCode() { return Code; }
getCode()185   const SmallVectorImpl<char> &getCode() const { return Code; }
186 
getInstSize()187   unsigned getInstSize() const { return Code.size(); }
188 
getInst()189   MCInst &getInst() { return Inst; }
getInst()190   const MCInst &getInst() const { return Inst; }
191 
setInst(MCInst Value)192   void setInst(MCInst Value) { Inst = Value; }
193 
194   /// @}
195   /// @name Fixup Access
196   /// @{
197 
getFixups()198   SmallVectorImpl<MCFixup> &getFixups() { return Fixups; }
getFixups()199   const SmallVectorImpl<MCFixup> &getFixups() const { return Fixups; }
200 
fixup_begin()201   fixup_iterator fixup_begin() { return Fixups.begin(); }
fixup_begin()202   const_fixup_iterator fixup_begin() const { return Fixups.begin(); }
203 
fixup_end()204   fixup_iterator fixup_end() {return Fixups.end();}
fixup_end()205   const_fixup_iterator fixup_end() const {return Fixups.end();}
206 
fixup_size()207   size_t fixup_size() const { return Fixups.size(); }
208 
209   /// @}
210 
classof(const MCFragment * F)211   static bool classof(const MCFragment *F) {
212     return F->getKind() == MCFragment::FT_Inst;
213   }
classof(const MCInstFragment *)214   static bool classof(const MCInstFragment *) { return true; }
215 };
216 
217 class MCAlignFragment : public MCFragment {
218   /// Alignment - The alignment to ensure, in bytes.
219   unsigned Alignment;
220 
221   /// Value - Value to use for filling padding bytes.
222   int64_t Value;
223 
224   /// ValueSize - The size of the integer (in bytes) of \arg Value.
225   unsigned ValueSize;
226 
227   /// MaxBytesToEmit - The maximum number of bytes to emit; if the alignment
228   /// cannot be satisfied in this width then this fragment is ignored.
229   unsigned MaxBytesToEmit;
230 
231   /// EmitNops - Flag to indicate that (optimal) NOPs should be emitted instead
232   /// of using the provided value. The exact interpretation of this flag is
233   /// target dependent.
234   bool EmitNops : 1;
235 
236 public:
237   MCAlignFragment(unsigned _Alignment, int64_t _Value, unsigned _ValueSize,
238                   unsigned _MaxBytesToEmit, MCSectionData *SD = 0)
MCFragment(FT_Align,SD)239     : MCFragment(FT_Align, SD), Alignment(_Alignment),
240       Value(_Value),ValueSize(_ValueSize),
241       MaxBytesToEmit(_MaxBytesToEmit), EmitNops(false) {}
242 
243   /// @name Accessors
244   /// @{
245 
getAlignment()246   unsigned getAlignment() const { return Alignment; }
247 
getValue()248   int64_t getValue() const { return Value; }
249 
getValueSize()250   unsigned getValueSize() const { return ValueSize; }
251 
getMaxBytesToEmit()252   unsigned getMaxBytesToEmit() const { return MaxBytesToEmit; }
253 
hasEmitNops()254   bool hasEmitNops() const { return EmitNops; }
setEmitNops(bool Value)255   void setEmitNops(bool Value) { EmitNops = Value; }
256 
257   /// @}
258 
classof(const MCFragment * F)259   static bool classof(const MCFragment *F) {
260     return F->getKind() == MCFragment::FT_Align;
261   }
classof(const MCAlignFragment *)262   static bool classof(const MCAlignFragment *) { return true; }
263 };
264 
265 class MCFillFragment : public MCFragment {
266   /// Value - Value to use for filling bytes.
267   int64_t Value;
268 
269   /// ValueSize - The size (in bytes) of \arg Value to use when filling, or 0 if
270   /// this is a virtual fill fragment.
271   unsigned ValueSize;
272 
273   /// Size - The number of bytes to insert.
274   uint64_t Size;
275 
276 public:
277   MCFillFragment(int64_t _Value, unsigned _ValueSize, uint64_t _Size,
278                  MCSectionData *SD = 0)
MCFragment(FT_Fill,SD)279     : MCFragment(FT_Fill, SD),
280       Value(_Value), ValueSize(_ValueSize), Size(_Size) {
281     assert((!ValueSize || (Size % ValueSize) == 0) &&
282            "Fill size must be a multiple of the value size!");
283   }
284 
285   /// @name Accessors
286   /// @{
287 
getValue()288   int64_t getValue() const { return Value; }
289 
getValueSize()290   unsigned getValueSize() const { return ValueSize; }
291 
getSize()292   uint64_t getSize() const { return Size; }
293 
294   /// @}
295 
classof(const MCFragment * F)296   static bool classof(const MCFragment *F) {
297     return F->getKind() == MCFragment::FT_Fill;
298   }
classof(const MCFillFragment *)299   static bool classof(const MCFillFragment *) { return true; }
300 };
301 
302 class MCOrgFragment : public MCFragment {
303   /// Offset - The offset this fragment should start at.
304   const MCExpr *Offset;
305 
306   /// Value - Value to use for filling bytes.
307   int8_t Value;
308 
309 public:
310   MCOrgFragment(const MCExpr &_Offset, int8_t _Value, MCSectionData *SD = 0)
MCFragment(FT_Org,SD)311     : MCFragment(FT_Org, SD),
312       Offset(&_Offset), Value(_Value) {}
313 
314   /// @name Accessors
315   /// @{
316 
getOffset()317   const MCExpr &getOffset() const { return *Offset; }
318 
getValue()319   uint8_t getValue() const { return Value; }
320 
321   /// @}
322 
classof(const MCFragment * F)323   static bool classof(const MCFragment *F) {
324     return F->getKind() == MCFragment::FT_Org;
325   }
classof(const MCOrgFragment *)326   static bool classof(const MCOrgFragment *) { return true; }
327 };
328 
329 class MCLEBFragment : public MCFragment {
330   /// Value - The value this fragment should contain.
331   const MCExpr *Value;
332 
333   /// IsSigned - True if this is a sleb128, false if uleb128.
334   bool IsSigned;
335 
336   SmallString<8> Contents;
337 public:
MCLEBFragment(const MCExpr & Value_,bool IsSigned_,MCSectionData * SD)338   MCLEBFragment(const MCExpr &Value_, bool IsSigned_, MCSectionData *SD)
339     : MCFragment(FT_LEB, SD),
340       Value(&Value_), IsSigned(IsSigned_) { Contents.push_back(0); }
341 
342   /// @name Accessors
343   /// @{
344 
getValue()345   const MCExpr &getValue() const { return *Value; }
346 
isSigned()347   bool isSigned() const { return IsSigned; }
348 
getContents()349   SmallString<8> &getContents() { return Contents; }
getContents()350   const SmallString<8> &getContents() const { return Contents; }
351 
352   /// @}
353 
classof(const MCFragment * F)354   static bool classof(const MCFragment *F) {
355     return F->getKind() == MCFragment::FT_LEB;
356   }
classof(const MCLEBFragment *)357   static bool classof(const MCLEBFragment *) { return true; }
358 };
359 
360 class MCDwarfLineAddrFragment : public MCFragment {
361   /// LineDelta - the value of the difference between the two line numbers
362   /// between two .loc dwarf directives.
363   int64_t LineDelta;
364 
365   /// AddrDelta - The expression for the difference of the two symbols that
366   /// make up the address delta between two .loc dwarf directives.
367   const MCExpr *AddrDelta;
368 
369   SmallString<8> Contents;
370 
371 public:
MCDwarfLineAddrFragment(int64_t _LineDelta,const MCExpr & _AddrDelta,MCSectionData * SD)372   MCDwarfLineAddrFragment(int64_t _LineDelta, const MCExpr &_AddrDelta,
373                       MCSectionData *SD)
374     : MCFragment(FT_Dwarf, SD),
375       LineDelta(_LineDelta), AddrDelta(&_AddrDelta) { Contents.push_back(0); }
376 
377   /// @name Accessors
378   /// @{
379 
getLineDelta()380   int64_t getLineDelta() const { return LineDelta; }
381 
getAddrDelta()382   const MCExpr &getAddrDelta() const { return *AddrDelta; }
383 
getContents()384   SmallString<8> &getContents() { return Contents; }
getContents()385   const SmallString<8> &getContents() const { return Contents; }
386 
387   /// @}
388 
classof(const MCFragment * F)389   static bool classof(const MCFragment *F) {
390     return F->getKind() == MCFragment::FT_Dwarf;
391   }
classof(const MCDwarfLineAddrFragment *)392   static bool classof(const MCDwarfLineAddrFragment *) { return true; }
393 };
394 
395 class MCDwarfCallFrameFragment : public MCFragment {
396   /// AddrDelta - The expression for the difference of the two symbols that
397   /// make up the address delta between two .cfi_* dwarf directives.
398   const MCExpr *AddrDelta;
399 
400   SmallString<8> Contents;
401 
402 public:
MCDwarfCallFrameFragment(const MCExpr & _AddrDelta,MCSectionData * SD)403   MCDwarfCallFrameFragment(const MCExpr &_AddrDelta,  MCSectionData *SD)
404     : MCFragment(FT_DwarfFrame, SD),
405       AddrDelta(&_AddrDelta) { Contents.push_back(0); }
406 
407   /// @name Accessors
408   /// @{
409 
getAddrDelta()410   const MCExpr &getAddrDelta() const { return *AddrDelta; }
411 
getContents()412   SmallString<8> &getContents() { return Contents; }
getContents()413   const SmallString<8> &getContents() const { return Contents; }
414 
415   /// @}
416 
classof(const MCFragment * F)417   static bool classof(const MCFragment *F) {
418     return F->getKind() == MCFragment::FT_DwarfFrame;
419   }
classof(const MCDwarfCallFrameFragment *)420   static bool classof(const MCDwarfCallFrameFragment *) { return true; }
421 };
422 
423 // FIXME: Should this be a separate class, or just merged into MCSection? Since
424 // we anticipate the fast path being through an MCAssembler, the only reason to
425 // keep it out is for API abstraction.
426 class MCSectionData : public ilist_node<MCSectionData> {
427   friend class MCAsmLayout;
428 
429   MCSectionData(const MCSectionData&);  // DO NOT IMPLEMENT
430   void operator=(const MCSectionData&); // DO NOT IMPLEMENT
431 
432 public:
433   typedef iplist<MCFragment> FragmentListType;
434 
435   typedef FragmentListType::const_iterator const_iterator;
436   typedef FragmentListType::iterator iterator;
437 
438   typedef FragmentListType::const_reverse_iterator const_reverse_iterator;
439   typedef FragmentListType::reverse_iterator reverse_iterator;
440 
441 private:
442   FragmentListType Fragments;
443   const MCSection *Section;
444 
445   /// Ordinal - The section index in the assemblers section list.
446   unsigned Ordinal;
447 
448   /// LayoutOrder - The index of this section in the layout order.
449   unsigned LayoutOrder;
450 
451   /// Alignment - The maximum alignment seen in this section.
452   unsigned Alignment;
453 
454   /// @name Assembler Backend Data
455   /// @{
456   //
457   // FIXME: This could all be kept private to the assembler implementation.
458 
459   /// HasInstructions - Whether this section has had instructions emitted into
460   /// it.
461   unsigned HasInstructions : 1;
462 
463   /// @}
464 
465 public:
466   // Only for use as sentinel.
467   MCSectionData();
468   MCSectionData(const MCSection &Section, MCAssembler *A = 0);
469 
getSection()470   const MCSection &getSection() const { return *Section; }
471 
getAlignment()472   unsigned getAlignment() const { return Alignment; }
setAlignment(unsigned Value)473   void setAlignment(unsigned Value) { Alignment = Value; }
474 
hasInstructions()475   bool hasInstructions() const { return HasInstructions; }
setHasInstructions(bool Value)476   void setHasInstructions(bool Value) { HasInstructions = Value; }
477 
getOrdinal()478   unsigned getOrdinal() const { return Ordinal; }
setOrdinal(unsigned Value)479   void setOrdinal(unsigned Value) { Ordinal = Value; }
480 
getLayoutOrder()481   unsigned getLayoutOrder() const { return LayoutOrder; }
setLayoutOrder(unsigned Value)482   void setLayoutOrder(unsigned Value) { LayoutOrder = Value; }
483 
484   /// @name Fragment Access
485   /// @{
486 
getFragmentList()487   const FragmentListType &getFragmentList() const { return Fragments; }
getFragmentList()488   FragmentListType &getFragmentList() { return Fragments; }
489 
begin()490   iterator begin() { return Fragments.begin(); }
begin()491   const_iterator begin() const { return Fragments.begin(); }
492 
end()493   iterator end() { return Fragments.end(); }
end()494   const_iterator end() const { return Fragments.end(); }
495 
rbegin()496   reverse_iterator rbegin() { return Fragments.rbegin(); }
rbegin()497   const_reverse_iterator rbegin() const { return Fragments.rbegin(); }
498 
rend()499   reverse_iterator rend() { return Fragments.rend(); }
rend()500   const_reverse_iterator rend() const { return Fragments.rend(); }
501 
size()502   size_t size() const { return Fragments.size(); }
503 
empty()504   bool empty() const { return Fragments.empty(); }
505 
506   void dump();
507 
508   /// @}
509 };
510 
511 // FIXME: Same concerns as with SectionData.
512 class MCSymbolData : public ilist_node<MCSymbolData> {
513 public:
514   const MCSymbol *Symbol;
515 
516   /// Fragment - The fragment this symbol's value is relative to, if any.
517   MCFragment *Fragment;
518 
519   /// Offset - The offset to apply to the fragment address to form this symbol's
520   /// value.
521   uint64_t Offset;
522 
523   /// IsExternal - True if this symbol is visible outside this translation
524   /// unit.
525   unsigned IsExternal : 1;
526 
527   /// IsPrivateExtern - True if this symbol is private extern.
528   unsigned IsPrivateExtern : 1;
529 
530   /// CommonSize - The size of the symbol, if it is 'common', or 0.
531   //
532   // FIXME: Pack this in with other fields? We could put it in offset, since a
533   // common symbol can never get a definition.
534   uint64_t CommonSize;
535 
536   /// SymbolSize - An expression describing how to calculate the size of
537   /// a symbol. If a symbol has no size this field will be NULL.
538   const MCExpr *SymbolSize;
539 
540   /// CommonAlign - The alignment of the symbol, if it is 'common'.
541   //
542   // FIXME: Pack this in with other fields?
543   unsigned CommonAlign;
544 
545   /// Flags - The Flags field is used by object file implementations to store
546   /// additional per symbol information which is not easily classified.
547   uint32_t Flags;
548 
549   /// Index - Index field, for use by the object file implementation.
550   uint64_t Index;
551 
552 public:
553   // Only for use as sentinel.
554   MCSymbolData();
555   MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment, uint64_t _Offset,
556                MCAssembler *A = 0);
557 
558   /// @name Accessors
559   /// @{
560 
getSymbol()561   const MCSymbol &getSymbol() const { return *Symbol; }
562 
getFragment()563   MCFragment *getFragment() const { return Fragment; }
setFragment(MCFragment * Value)564   void setFragment(MCFragment *Value) { Fragment = Value; }
565 
getOffset()566   uint64_t getOffset() const { return Offset; }
setOffset(uint64_t Value)567   void setOffset(uint64_t Value) { Offset = Value; }
568 
569   /// @}
570   /// @name Symbol Attributes
571   /// @{
572 
isExternal()573   bool isExternal() const { return IsExternal; }
setExternal(bool Value)574   void setExternal(bool Value) { IsExternal = Value; }
575 
isPrivateExtern()576   bool isPrivateExtern() const { return IsPrivateExtern; }
setPrivateExtern(bool Value)577   void setPrivateExtern(bool Value) { IsPrivateExtern = Value; }
578 
579   /// isCommon - Is this a 'common' symbol.
isCommon()580   bool isCommon() const { return CommonSize != 0; }
581 
582   /// setCommon - Mark this symbol as being 'common'.
583   ///
584   /// \param Size - The size of the symbol.
585   /// \param Align - The alignment of the symbol.
setCommon(uint64_t Size,unsigned Align)586   void setCommon(uint64_t Size, unsigned Align) {
587     CommonSize = Size;
588     CommonAlign = Align;
589   }
590 
591   /// getCommonSize - Return the size of a 'common' symbol.
getCommonSize()592   uint64_t getCommonSize() const {
593     assert(isCommon() && "Not a 'common' symbol!");
594     return CommonSize;
595   }
596 
setSize(const MCExpr * SS)597   void setSize(const MCExpr *SS) {
598     SymbolSize = SS;
599   }
600 
getSize()601   const MCExpr *getSize() const {
602     return SymbolSize;
603   }
604 
605 
606   /// getCommonAlignment - Return the alignment of a 'common' symbol.
getCommonAlignment()607   unsigned getCommonAlignment() const {
608     assert(isCommon() && "Not a 'common' symbol!");
609     return CommonAlign;
610   }
611 
612   /// getFlags - Get the (implementation defined) symbol flags.
getFlags()613   uint32_t getFlags() const { return Flags; }
614 
615   /// setFlags - Set the (implementation defined) symbol flags.
setFlags(uint32_t Value)616   void setFlags(uint32_t Value) { Flags = Value; }
617 
618   /// modifyFlags - Modify the flags via a mask
modifyFlags(uint32_t Value,uint32_t Mask)619   void modifyFlags(uint32_t Value, uint32_t Mask) {
620     Flags = (Flags & ~Mask) | Value;
621   }
622 
623   /// getIndex - Get the (implementation defined) index.
getIndex()624   uint64_t getIndex() const { return Index; }
625 
626   /// setIndex - Set the (implementation defined) index.
setIndex(uint64_t Value)627   void setIndex(uint64_t Value) { Index = Value; }
628 
629   /// @}
630 
631   void dump();
632 };
633 
634 // FIXME: This really doesn't belong here. See comments below.
635 struct IndirectSymbolData {
636   MCSymbol *Symbol;
637   MCSectionData *SectionData;
638 };
639 
640 class MCAssembler {
641   friend class MCAsmLayout;
642 
643 public:
644   typedef iplist<MCSectionData> SectionDataListType;
645   typedef iplist<MCSymbolData> SymbolDataListType;
646 
647   typedef SectionDataListType::const_iterator const_iterator;
648   typedef SectionDataListType::iterator iterator;
649 
650   typedef SymbolDataListType::const_iterator const_symbol_iterator;
651   typedef SymbolDataListType::iterator symbol_iterator;
652 
653   typedef std::vector<IndirectSymbolData>::const_iterator
654     const_indirect_symbol_iterator;
655   typedef std::vector<IndirectSymbolData>::iterator indirect_symbol_iterator;
656 
657 private:
658   MCAssembler(const MCAssembler&);    // DO NOT IMPLEMENT
659   void operator=(const MCAssembler&); // DO NOT IMPLEMENT
660 
661   MCContext &Context;
662 
663   MCAsmBackend &Backend;
664 
665   MCCodeEmitter &Emitter;
666 
667   MCObjectWriter &Writer;
668 
669   raw_ostream &OS;
670 
671   iplist<MCSectionData> Sections;
672 
673   iplist<MCSymbolData> Symbols;
674 
675   /// The map of sections to their associated assembler backend data.
676   //
677   // FIXME: Avoid this indirection?
678   DenseMap<const MCSection*, MCSectionData*> SectionMap;
679 
680   /// The map of symbols to their associated assembler backend data.
681   //
682   // FIXME: Avoid this indirection?
683   DenseMap<const MCSymbol*, MCSymbolData*> SymbolMap;
684 
685   std::vector<IndirectSymbolData> IndirectSymbols;
686 
687   /// The set of function symbols for which a .thumb_func directive has
688   /// been seen.
689   //
690   // FIXME: We really would like this in target specific code rather than
691   // here. Maybe when the relocation stuff moves to target specific,
692   // this can go with it? The streamer would need some target specific
693   // refactoring too.
694   SmallPtrSet<const MCSymbol*, 64> ThumbFuncs;
695 
696   unsigned RelaxAll : 1;
697   unsigned NoExecStack : 1;
698   unsigned SubsectionsViaSymbols : 1;
699 
700 private:
701   /// Evaluate a fixup to a relocatable expression and the value which should be
702   /// placed into the fixup.
703   ///
704   /// \param Layout The layout to use for evaluation.
705   /// \param Fixup The fixup to evaluate.
706   /// \param DF The fragment the fixup is inside.
707   /// \param Target [out] On return, the relocatable expression the fixup
708   /// evaluates to.
709   /// \param Value [out] On return, the value of the fixup as currently laid
710   /// out.
711   /// \return Whether the fixup value was fully resolved. This is true if the
712   /// \arg Value result is fixed, otherwise the value may change due to
713   /// relocation.
714   bool EvaluateFixup(const MCAsmLayout &Layout,
715                      const MCFixup &Fixup, const MCFragment *DF,
716                      MCValue &Target, uint64_t &Value) const;
717 
718   /// Check whether a fixup can be satisfied, or whether it needs to be relaxed
719   /// (increased in size, in order to hold its value correctly).
720   bool FixupNeedsRelaxation(const MCFixup &Fixup, const MCFragment *DF,
721                             const MCAsmLayout &Layout) const;
722 
723   /// Check whether the given fragment needs relaxation.
724   bool FragmentNeedsRelaxation(const MCInstFragment *IF,
725                                const MCAsmLayout &Layout) const;
726 
727   /// LayoutOnce - Perform one layout iteration and return true if any offsets
728   /// were adjusted.
729   bool LayoutOnce(MCAsmLayout &Layout);
730 
731   bool LayoutSectionOnce(MCAsmLayout &Layout, MCSectionData &SD);
732 
733   bool RelaxInstruction(MCAsmLayout &Layout, MCInstFragment &IF);
734 
735   bool RelaxLEB(MCAsmLayout &Layout, MCLEBFragment &IF);
736 
737   bool RelaxDwarfLineAddr(MCAsmLayout &Layout, MCDwarfLineAddrFragment &DF);
738   bool RelaxDwarfCallFrameFragment(MCAsmLayout &Layout,
739                                    MCDwarfCallFrameFragment &DF);
740 
741   /// FinishLayout - Finalize a layout, including fragment lowering.
742   void FinishLayout(MCAsmLayout &Layout);
743 
744   uint64_t HandleFixup(const MCAsmLayout &Layout,
745                        MCFragment &F, const MCFixup &Fixup);
746 
747 public:
748   /// Compute the effective fragment size assuming it is laid out at the given
749   /// \arg SectionAddress and \arg FragmentOffset.
750   uint64_t ComputeFragmentSize(const MCAsmLayout &Layout, const MCFragment &F) const;
751 
752   /// Find the symbol which defines the atom containing the given symbol, or
753   /// null if there is no such symbol.
754   const MCSymbolData *getAtom(const MCSymbolData *Symbol) const;
755 
756   /// Check whether a particular symbol is visible to the linker and is required
757   /// in the symbol table, or whether it can be discarded by the assembler. This
758   /// also effects whether the assembler treats the label as potentially
759   /// defining a separate atom.
760   bool isSymbolLinkerVisible(const MCSymbol &SD) const;
761 
762   /// Emit the section contents using the given object writer.
763   void WriteSectionData(const MCSectionData *Section,
764                         const MCAsmLayout &Layout) const;
765 
766   /// Check whether a given symbol has been flagged with .thumb_func.
isThumbFunc(const MCSymbol * Func)767   bool isThumbFunc(const MCSymbol *Func) const {
768     return ThumbFuncs.count(Func);
769   }
770 
771   /// Flag a function symbol as the target of a .thumb_func directive.
setIsThumbFunc(const MCSymbol * Func)772   void setIsThumbFunc(const MCSymbol *Func) { ThumbFuncs.insert(Func); }
773 
774 public:
775   /// Construct a new assembler instance.
776   ///
777   /// \arg OS - The stream to output to.
778   //
779   // FIXME: How are we going to parameterize this? Two obvious options are stay
780   // concrete and require clients to pass in a target like object. The other
781   // option is to make this abstract, and have targets provide concrete
782   // implementations as we do with AsmParser.
783   MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
784               MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
785               raw_ostream &OS);
786   ~MCAssembler();
787 
getContext()788   MCContext &getContext() const { return Context; }
789 
getBackend()790   MCAsmBackend &getBackend() const { return Backend; }
791 
getEmitter()792   MCCodeEmitter &getEmitter() const { return Emitter; }
793 
getWriter()794   MCObjectWriter &getWriter() const { return Writer; }
795 
796   /// Finish - Do final processing and write the object to the output stream.
797   /// \arg Writer is used for custom object writer (as the MCJIT does),
798   /// if not specified it is automatically created from backend.
799   void Finish();
800 
801   // FIXME: This does not belong here.
getSubsectionsViaSymbols()802   bool getSubsectionsViaSymbols() const {
803     return SubsectionsViaSymbols;
804   }
setSubsectionsViaSymbols(bool Value)805   void setSubsectionsViaSymbols(bool Value) {
806     SubsectionsViaSymbols = Value;
807   }
808 
getRelaxAll()809   bool getRelaxAll() const { return RelaxAll; }
setRelaxAll(bool Value)810   void setRelaxAll(bool Value) { RelaxAll = Value; }
811 
getNoExecStack()812   bool getNoExecStack() const { return NoExecStack; }
setNoExecStack(bool Value)813   void setNoExecStack(bool Value) { NoExecStack = Value; }
814 
815   /// @name Section List Access
816   /// @{
817 
getSectionList()818   const SectionDataListType &getSectionList() const { return Sections; }
getSectionList()819   SectionDataListType &getSectionList() { return Sections; }
820 
begin()821   iterator begin() { return Sections.begin(); }
begin()822   const_iterator begin() const { return Sections.begin(); }
823 
end()824   iterator end() { return Sections.end(); }
end()825   const_iterator end() const { return Sections.end(); }
826 
size()827   size_t size() const { return Sections.size(); }
828 
829   /// @}
830   /// @name Symbol List Access
831   /// @{
832 
getSymbolList()833   const SymbolDataListType &getSymbolList() const { return Symbols; }
getSymbolList()834   SymbolDataListType &getSymbolList() { return Symbols; }
835 
symbol_begin()836   symbol_iterator symbol_begin() { return Symbols.begin(); }
symbol_begin()837   const_symbol_iterator symbol_begin() const { return Symbols.begin(); }
838 
symbol_end()839   symbol_iterator symbol_end() { return Symbols.end(); }
symbol_end()840   const_symbol_iterator symbol_end() const { return Symbols.end(); }
841 
symbol_size()842   size_t symbol_size() const { return Symbols.size(); }
843 
844   /// @}
845   /// @name Indirect Symbol List Access
846   /// @{
847 
848   // FIXME: This is a total hack, this should not be here. Once things are
849   // factored so that the streamer has direct access to the .o writer, it can
850   // disappear.
getIndirectSymbols()851   std::vector<IndirectSymbolData> &getIndirectSymbols() {
852     return IndirectSymbols;
853   }
854 
indirect_symbol_begin()855   indirect_symbol_iterator indirect_symbol_begin() {
856     return IndirectSymbols.begin();
857   }
indirect_symbol_begin()858   const_indirect_symbol_iterator indirect_symbol_begin() const {
859     return IndirectSymbols.begin();
860   }
861 
indirect_symbol_end()862   indirect_symbol_iterator indirect_symbol_end() {
863     return IndirectSymbols.end();
864   }
indirect_symbol_end()865   const_indirect_symbol_iterator indirect_symbol_end() const {
866     return IndirectSymbols.end();
867   }
868 
indirect_symbol_size()869   size_t indirect_symbol_size() const { return IndirectSymbols.size(); }
870 
871   /// @}
872   /// @name Backend Data Access
873   /// @{
874 
getSectionData(const MCSection & Section)875   MCSectionData &getSectionData(const MCSection &Section) const {
876     MCSectionData *Entry = SectionMap.lookup(&Section);
877     assert(Entry && "Missing section data!");
878     return *Entry;
879   }
880 
881   MCSectionData &getOrCreateSectionData(const MCSection &Section,
882                                         bool *Created = 0) {
883     MCSectionData *&Entry = SectionMap[&Section];
884 
885     if (Created) *Created = !Entry;
886     if (!Entry)
887       Entry = new MCSectionData(Section, this);
888 
889     return *Entry;
890   }
891 
getSymbolData(const MCSymbol & Symbol)892   MCSymbolData &getSymbolData(const MCSymbol &Symbol) const {
893     MCSymbolData *Entry = SymbolMap.lookup(&Symbol);
894     assert(Entry && "Missing symbol data!");
895     return *Entry;
896   }
897 
898   MCSymbolData &getOrCreateSymbolData(const MCSymbol &Symbol,
899                                       bool *Created = 0) {
900     MCSymbolData *&Entry = SymbolMap[&Symbol];
901 
902     if (Created) *Created = !Entry;
903     if (!Entry)
904       Entry = new MCSymbolData(Symbol, 0, 0, this);
905 
906     return *Entry;
907   }
908 
909   /// @}
910 
911   void dump();
912 };
913 
914 } // end namespace llvm
915 
916 #endif
917