1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_BASE_MACROS_H_
6 #define V8_BASE_MACROS_H_
7 
8 #include <limits>
9 
10 #include "src/base/compiler-specific.h"
11 #include "src/base/format-macros.h"
12 #include "src/base/logging.h"
13 
14 // No-op macro which is used to work around MSVC's funky VA_ARGS support.
15 #define EXPAND(x) x
16 
17 // TODO(all) Replace all uses of this macro with C++'s offsetof. To do that, we
18 // have to make sure that only standard-layout types and simple field
19 // designators are used.
20 #define OFFSET_OF(type, field) \
21   (reinterpret_cast<intptr_t>(&(reinterpret_cast<type*>(16)->field)) - 16)
22 
23 
24 // The arraysize(arr) macro returns the # of elements in an array arr.
25 // The expression is a compile-time constant, and therefore can be
26 // used in defining new arrays, for example.  If you use arraysize on
27 // a pointer by mistake, you will get a compile-time error.
28 #define arraysize(array) (sizeof(ArraySizeHelper(array)))
29 
30 
31 // This template function declaration is used in defining arraysize.
32 // Note that the function doesn't need an implementation, as we only
33 // use its type.
34 template <typename T, size_t N>
35 char (&ArraySizeHelper(T (&array)[N]))[N];
36 
37 
38 #if !V8_CC_MSVC
39 // That gcc wants both of these prototypes seems mysterious. VC, for
40 // its part, can't decide which to use (another mystery). Matching of
41 // template overloads: the final frontier.
42 template <typename T, size_t N>
43 char (&ArraySizeHelper(const T (&array)[N]))[N];
44 #endif
45 
46 // bit_cast<Dest,Source> is a template function that implements the
47 // equivalent of "*reinterpret_cast<Dest*>(&source)".  We need this in
48 // very low-level functions like the protobuf library and fast math
49 // support.
50 //
51 //   float f = 3.14159265358979;
52 //   int i = bit_cast<int32>(f);
53 //   // i = 0x40490fdb
54 //
55 // The classical address-casting method is:
56 //
57 //   // WRONG
58 //   float f = 3.14159265358979;            // WRONG
59 //   int i = * reinterpret_cast<int*>(&f);  // WRONG
60 //
61 // The address-casting method actually produces undefined behavior
62 // according to ISO C++ specification section 3.10 -15 -.  Roughly, this
63 // section says: if an object in memory has one type, and a program
64 // accesses it with a different type, then the result is undefined
65 // behavior for most values of "different type".
66 //
67 // This is true for any cast syntax, either *(int*)&f or
68 // *reinterpret_cast<int*>(&f).  And it is particularly true for
69 // conversions between integral lvalues and floating-point lvalues.
70 //
71 // The purpose of 3.10 -15- is to allow optimizing compilers to assume
72 // that expressions with different types refer to different memory.  gcc
73 // 4.0.1 has an optimizer that takes advantage of this.  So a
74 // non-conforming program quietly produces wildly incorrect output.
75 //
76 // The problem is not the use of reinterpret_cast.  The problem is type
77 // punning: holding an object in memory of one type and reading its bits
78 // back using a different type.
79 //
80 // The C++ standard is more subtle and complex than this, but that
81 // is the basic idea.
82 //
83 // Anyways ...
84 //
85 // bit_cast<> calls memcpy() which is blessed by the standard,
86 // especially by the example in section 3.9 .  Also, of course,
87 // bit_cast<> wraps up the nasty logic in one place.
88 //
89 // Fortunately memcpy() is very fast.  In optimized mode, with a
90 // constant size, gcc 2.95.3, gcc 4.0.1, and msvc 7.1 produce inline
91 // code with the minimal amount of data movement.  On a 32-bit system,
92 // memcpy(d,s,4) compiles to one load and one store, and memcpy(d,s,8)
93 // compiles to two loads and two stores.
94 //
95 // I tested this code with gcc 2.95.3, gcc 4.0.1, icc 8.1, and msvc 7.1.
96 //
97 // WARNING: if Dest or Source is a non-POD type, the result of the memcpy
98 // is likely to surprise you.
99 template <class Dest, class Source>
bit_cast(Source const & source)100 V8_INLINE Dest bit_cast(Source const& source) {
101   static_assert(sizeof(Dest) == sizeof(Source),
102                 "source and dest must be same size");
103   Dest dest;
104   memcpy(&dest, &source, sizeof(dest));
105   return dest;
106 }
107 
108 // Explicitly declare the assignment operator as deleted.
109 #define DISALLOW_ASSIGN(TypeName) TypeName& operator=(const TypeName&) = delete;
110 
111 // Explicitly declare the copy constructor and assignment operator as deleted.
112 #define DISALLOW_COPY_AND_ASSIGN(TypeName) \
113   TypeName(const TypeName&) = delete;      \
114   DISALLOW_ASSIGN(TypeName)
115 
116 // Explicitly declare all copy/move constructors and assignments as deleted.
117 #define DISALLOW_COPY_AND_MOVE_AND_ASSIGN(TypeName) \
118   TypeName(TypeName&&) = delete;                    \
119   TypeName& operator=(TypeName&&) = delete;         \
120   DISALLOW_COPY_AND_ASSIGN(TypeName)
121 
122 // Explicitly declare all implicit constructors as deleted, namely the
123 // default constructor, copy constructor and operator= functions.
124 // This is especially useful for classes containing only static methods.
125 #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
126   TypeName() = delete;                           \
127   DISALLOW_COPY_AND_ASSIGN(TypeName)
128 
129 // Disallow copying a type, but provide default construction, move construction
130 // and move assignment. Especially useful for move-only structs.
131 #define MOVE_ONLY_WITH_DEFAULT_CONSTRUCTORS(TypeName) \
132   TypeName() = default;                               \
133   MOVE_ONLY_NO_DEFAULT_CONSTRUCTOR(TypeName)
134 
135 // Disallow copying a type, and only provide move construction and move
136 // assignment. Especially useful for move-only structs.
137 #define MOVE_ONLY_NO_DEFAULT_CONSTRUCTOR(TypeName)       \
138   TypeName(TypeName&&) V8_NOEXCEPT = default;            \
139   TypeName& operator=(TypeName&&) V8_NOEXCEPT = default; \
140   DISALLOW_COPY_AND_ASSIGN(TypeName)
141 
142 // A macro to disallow the dynamic allocation.
143 // This should be used in the private: declarations for a class
144 // Declaring operator new and delete as deleted is not spec compliant.
145 // Extract from 3.2.2 of C++11 spec:
146 //  [...] A non-placement deallocation function for a class is
147 //  odr-used by the definition of the destructor of that class, [...]
148 #define DISALLOW_NEW_AND_DELETE()                            \
149   void* operator new(size_t) { base::OS::Abort(); }          \
150   void* operator new[](size_t) { base::OS::Abort(); };       \
151   void operator delete(void*, size_t) { base::OS::Abort(); } \
152   void operator delete[](void*, size_t) { base::OS::Abort(); }
153 
154 // Define V8_USE_ADDRESS_SANITIZER macro.
155 #if defined(__has_feature)
156 #if __has_feature(address_sanitizer)
157 #define V8_USE_ADDRESS_SANITIZER 1
158 #endif
159 #endif
160 
161 // Define DISABLE_ASAN macro.
162 #ifdef V8_USE_ADDRESS_SANITIZER
163 #define DISABLE_ASAN __attribute__((no_sanitize_address))
164 #else
165 #define DISABLE_ASAN
166 #endif
167 
168 // Define V8_USE_MEMORY_SANITIZER macro.
169 #if defined(__has_feature)
170 #if __has_feature(memory_sanitizer)
171 #define V8_USE_MEMORY_SANITIZER 1
172 #endif
173 #endif
174 
175 // Helper macro to define no_sanitize attributes only with clang.
176 #if defined(__clang__) && defined(__has_attribute)
177 #if __has_attribute(no_sanitize)
178 #define CLANG_NO_SANITIZE(what) __attribute__((no_sanitize(what)))
179 #endif
180 #endif
181 #if !defined(CLANG_NO_SANITIZE)
182 #define CLANG_NO_SANITIZE(what)
183 #endif
184 
185 // DISABLE_CFI_PERF -- Disable Control Flow Integrity checks for Perf reasons.
186 #define DISABLE_CFI_PERF CLANG_NO_SANITIZE("cfi")
187 
188 // DISABLE_CFI_ICALL -- Disable Control Flow Integrity indirect call checks,
189 // useful because calls into JITed code can not be CFI verified.
190 #define DISABLE_CFI_ICALL CLANG_NO_SANITIZE("cfi-icall")
191 
192 #if V8_CC_GNU
193 #define V8_IMMEDIATE_CRASH() __builtin_trap()
194 #else
195 #define V8_IMMEDIATE_CRASH() ((void(*)())0)()
196 #endif
197 
198 
199 // TODO(all) Replace all uses of this macro with static_assert, remove macro.
200 #define STATIC_ASSERT(test) static_assert(test, #test)
201 
202 namespace v8 {
203 namespace base {
204 
205 // Note that some implementations of std::is_trivially_copyable mandate that at
206 // least one of the copy constructor, move constructor, copy assignment or move
207 // assignment is non-deleted, while others do not. Be aware that also
208 // base::is_trivially_copyable will differ for these cases.
209 template <typename T>
210 struct is_trivially_copyable {
211 #if V8_CC_MSVC
212   // Unfortunately, MSVC 2015 is broken in that std::is_trivially_copyable can
213   // be false even though it should be true according to the standard.
214   // (status at 2018-02-26, observed on the msvc waterfall bot).
215   // Interestingly, the lower-level primitives used below are working as
216   // intended, so we reimplement this according to the standard.
217   // See also https://developercommunity.visualstudio.com/content/problem/
218   //          170883/msvc-type-traits-stdis-trivial-is-bugged.html.
219   static constexpr bool value =
220       // Copy constructor is trivial or deleted.
221       (std::is_trivially_copy_constructible<T>::value ||
222        !std::is_copy_constructible<T>::value) &&
223       // Copy assignment operator is trivial or deleted.
224       (std::is_trivially_copy_assignable<T>::value ||
225        !std::is_copy_assignable<T>::value) &&
226       // Move constructor is trivial or deleted.
227       (std::is_trivially_move_constructible<T>::value ||
228        !std::is_move_constructible<T>::value) &&
229       // Move assignment operator is trivial or deleted.
230       (std::is_trivially_move_assignable<T>::value ||
231        !std::is_move_assignable<T>::value) &&
232       // (Some implementations mandate that one of the above is non-deleted, but
233       // the standard does not, so let's skip this check.)
234       // Trivial non-deleted destructor.
235       std::is_trivially_destructible<T>::value;
236 
237 #elif defined(__GNUC__) && __GNUC__ < 5
238   // WARNING:
239   // On older libstdc++ versions, there is no way to correctly implement
240   // is_trivially_copyable. The workaround below is an approximation (neither
241   // over- nor underapproximation). E.g. it wrongly returns true if the move
242   // constructor is non-trivial, and it wrongly returns false if the copy
243   // constructor is deleted, but copy assignment is trivial.
244   // TODO(rongjie) Remove this workaround once we require gcc >= 5.0
245   static constexpr bool value =
246       __has_trivial_copy(T) && __has_trivial_destructor(T);
247 
248 #else
249   static constexpr bool value = std::is_trivially_copyable<T>::value;
250 #endif
251 };
252 #if defined(__GNUC__) && __GNUC__ < 5
253 // On older libstdc++ versions, base::is_trivially_copyable<T>::value is only an
254 // approximation (see above), so make ASSERT_{NOT_,}TRIVIALLY_COPYABLE a noop.
255 #define ASSERT_TRIVIALLY_COPYABLE(T) static_assert(true, "check disabled")
256 #define ASSERT_NOT_TRIVIALLY_COPYABLE(T) static_assert(true, "check disabled")
257 #else
258 #define ASSERT_TRIVIALLY_COPYABLE(T)                         \
259   static_assert(::v8::base::is_trivially_copyable<T>::value, \
260                 #T " should be trivially copyable")
261 #define ASSERT_NOT_TRIVIALLY_COPYABLE(T)                      \
262   static_assert(!::v8::base::is_trivially_copyable<T>::value, \
263                 #T " should not be trivially copyable")
264 #endif
265 
266 // The USE(x, ...) template is used to silence C++ compiler warnings
267 // issued for (yet) unused variables (typically parameters).
268 // The arguments are guaranteed to be evaluated from left to right.
269 struct Use {
270   template <typename T>
UseUse271   Use(T&&) {}  // NOLINT(runtime/explicit)
272 };
273 #define USE(...)                                                   \
274   do {                                                             \
275     ::v8::base::Use unused_tmp_array_for_use_macro[]{__VA_ARGS__}; \
276     (void)unused_tmp_array_for_use_macro;                          \
277   } while (false)
278 
279 }  // namespace base
280 }  // namespace v8
281 
282 // implicit_cast<A>(x) triggers an implicit cast from {x} to type {A}. This is
283 // useful in situations where static_cast<A>(x) would do too much.
284 // Only use this for cheap-to-copy types, or use move semantics explicitly.
285 template <class A>
implicit_cast(A x)286 V8_INLINE A implicit_cast(A x) {
287   return x;
288 }
289 
290 // Define our own macros for writing 64-bit constants.  This is less fragile
291 // than defining __STDC_CONSTANT_MACROS before including <stdint.h>, and it
292 // works on compilers that don't have it (like MSVC).
293 #if V8_CC_MSVC
294 # if V8_HOST_ARCH_64_BIT
295 #  define V8_PTR_PREFIX   "ll"
296 # else
297 #  define V8_PTR_PREFIX   ""
298 # endif  // V8_HOST_ARCH_64_BIT
299 #elif V8_CC_MINGW64
300 # define V8_PTR_PREFIX    "I64"
301 #elif V8_HOST_ARCH_64_BIT
302 # define V8_PTR_PREFIX    "l"
303 #else
304 #if V8_OS_AIX
305 #define V8_PTR_PREFIX "l"
306 #else
307 # define V8_PTR_PREFIX    ""
308 #endif
309 #endif
310 
311 #define V8PRIxPTR V8_PTR_PREFIX "x"
312 #define V8PRIdPTR V8_PTR_PREFIX "d"
313 #define V8PRIuPTR V8_PTR_PREFIX "u"
314 
315 #ifdef V8_TARGET_ARCH_64_BIT
316 #define V8_PTR_HEX_DIGITS 12
317 #define V8PRIxPTR_FMT "0x%012" V8PRIxPTR
318 #else
319 #define V8_PTR_HEX_DIGITS 8
320 #define V8PRIxPTR_FMT "0x%08" V8PRIxPTR
321 #endif
322 
323 // ptrdiff_t is 't' according to the standard, but MSVC uses 'I'.
324 #if V8_CC_MSVC
325 #define V8PRIxPTRDIFF "Ix"
326 #define V8PRIdPTRDIFF "Id"
327 #define V8PRIuPTRDIFF "Iu"
328 #else
329 #define V8PRIxPTRDIFF "tx"
330 #define V8PRIdPTRDIFF "td"
331 #define V8PRIuPTRDIFF "tu"
332 #endif
333 
334 // Fix for Mac OS X defining uintptr_t as "unsigned long":
335 #if V8_OS_MACOSX
336 #undef V8PRIxPTR
337 #define V8PRIxPTR "lx"
338 #undef V8PRIdPTR
339 #define V8PRIdPTR "ld"
340 #undef V8PRIuPTR
341 #define V8PRIuPTR "lxu"
342 #endif
343 
344 // The following macro works on both 32 and 64-bit platforms.
345 // Usage: instead of writing 0x1234567890123456
346 //      write V8_2PART_UINT64_C(0x12345678,90123456);
347 #define V8_2PART_UINT64_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u))
348 
349 
350 // Compute the 0-relative offset of some absolute value x of type T.
351 // This allows conversion of Addresses and integral types into
352 // 0-relative int offsets.
353 template <typename T>
OffsetFrom(T x)354 constexpr inline intptr_t OffsetFrom(T x) {
355   return x - static_cast<T>(0);
356 }
357 
358 
359 // Compute the absolute value of type T for some 0-relative offset x.
360 // This allows conversion of 0-relative int offsets into Addresses and
361 // integral types.
362 template <typename T>
AddressFrom(intptr_t x)363 constexpr inline T AddressFrom(intptr_t x) {
364   return static_cast<T>(static_cast<T>(0) + x);
365 }
366 
367 
368 // Return the largest multiple of m which is <= x.
369 template <typename T>
RoundDown(T x,intptr_t m)370 inline T RoundDown(T x, intptr_t m) {
371   // m must be a power of two.
372   DCHECK(m != 0 && ((m & (m - 1)) == 0));
373   return AddressFrom<T>(OffsetFrom(x) & -m);
374 }
375 template <intptr_t m, typename T>
RoundDown(T x)376 constexpr inline T RoundDown(T x) {
377   // m must be a power of two.
378   STATIC_ASSERT(m != 0 && ((m & (m - 1)) == 0));
379   return AddressFrom<T>(OffsetFrom(x) & -m);
380 }
381 
382 // Return the smallest multiple of m which is >= x.
383 template <typename T>
RoundUp(T x,intptr_t m)384 inline T RoundUp(T x, intptr_t m) {
385   return RoundDown<T>(static_cast<T>(x + m - 1), m);
386 }
387 template <intptr_t m, typename T>
RoundUp(T x)388 constexpr inline T RoundUp(T x) {
389   return RoundDown<m, T>(static_cast<T>(x + m - 1));
390 }
391 
AlignedAddress(void * address,size_t alignment)392 inline void* AlignedAddress(void* address, size_t alignment) {
393   // The alignment must be a power of two.
394   DCHECK_EQ(alignment & (alignment - 1), 0u);
395   return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(address) &
396                                  ~static_cast<uintptr_t>(alignment - 1));
397 }
398 
399 // Bounds checks for float to integer conversions, which does truncation. Hence,
400 // the range of legal values is (min - 1, max + 1).
401 template <typename int_t, typename float_t, typename biggest_int_t = int64_t>
is_inbounds(float_t v)402 bool is_inbounds(float_t v) {
403   static_assert(sizeof(int_t) < sizeof(biggest_int_t),
404                 "int_t can't be bounds checked by the compiler");
405   constexpr float_t kLowerBound =
406       static_cast<float_t>(std::numeric_limits<int_t>::min()) - 1;
407   constexpr float_t kUpperBound =
408       static_cast<float_t>(std::numeric_limits<int_t>::max()) + 1;
409   constexpr bool kLowerBoundIsMin =
410       static_cast<biggest_int_t>(kLowerBound) ==
411       static_cast<biggest_int_t>(std::numeric_limits<int_t>::min());
412   constexpr bool kUpperBoundIsMax =
413       static_cast<biggest_int_t>(kUpperBound) ==
414       static_cast<biggest_int_t>(std::numeric_limits<int_t>::max());
415   return (kLowerBoundIsMin ? (kLowerBound <= v) : (kLowerBound < v)) &&
416          (kUpperBoundIsMax ? (v <= kUpperBound) : (v < kUpperBound));
417 }
418 
419 #ifdef V8_OS_WIN
420 
421 // Setup for Windows shared library export.
422 #ifdef BUILDING_V8_SHARED
423 #define V8_EXPORT_PRIVATE __declspec(dllexport)
424 #elif USING_V8_SHARED
425 #define V8_EXPORT_PRIVATE __declspec(dllimport)
426 #else
427 #define V8_EXPORT_PRIVATE
428 #endif  // BUILDING_V8_SHARED
429 
430 #else  // V8_OS_WIN
431 
432 // Setup for Linux shared library export.
433 #if V8_HAS_ATTRIBUTE_VISIBILITY
434 #ifdef BUILDING_V8_SHARED
435 #define V8_EXPORT_PRIVATE __attribute__((visibility("default")))
436 #else
437 #define V8_EXPORT_PRIVATE
438 #endif
439 #else
440 #define V8_EXPORT_PRIVATE
441 #endif
442 
443 #endif  // V8_OS_WIN
444 
445 #endif  // V8_BASE_MACROS_H_
446