1 //===-- Module.cpp - Implement the Module class ---------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Module class for the VMCore library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Module.h"
15 #include "llvm/InstrTypes.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/GVMaterializer.h"
19 #include "llvm/LLVMContext.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/Support/LeakDetector.h"
25 #include "SymbolTableListTraitsImpl.h"
26 #include <algorithm>
27 #include <cstdarg>
28 #include <cstdlib>
29 using namespace llvm;
30 
31 //===----------------------------------------------------------------------===//
32 // Methods to implement the globals and functions lists.
33 //
34 
35 // Explicit instantiations of SymbolTableListTraits since some of the methods
36 // are not in the public header file.
37 template class llvm::SymbolTableListTraits<Function, Module>;
38 template class llvm::SymbolTableListTraits<GlobalVariable, Module>;
39 template class llvm::SymbolTableListTraits<GlobalAlias, Module>;
40 
41 //===----------------------------------------------------------------------===//
42 // Primitive Module methods.
43 //
44 
Module(StringRef MID,LLVMContext & C)45 Module::Module(StringRef MID, LLVMContext& C)
46   : Context(C), Materializer(NULL), ModuleID(MID) {
47   ValSymTab = new ValueSymbolTable();
48   NamedMDSymTab = new StringMap<NamedMDNode *>();
49   Context.addModule(this);
50 }
51 
~Module()52 Module::~Module() {
53   Context.removeModule(this);
54   dropAllReferences();
55   GlobalList.clear();
56   FunctionList.clear();
57   AliasList.clear();
58   LibraryList.clear();
59   NamedMDList.clear();
60   delete ValSymTab;
61   delete static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab);
62 }
63 
64 /// Target endian information.
getEndianness() const65 Module::Endianness Module::getEndianness() const {
66   StringRef temp = DataLayout;
67   Module::Endianness ret = AnyEndianness;
68 
69   while (!temp.empty()) {
70     std::pair<StringRef, StringRef> P = getToken(temp, "-");
71 
72     StringRef token = P.first;
73     temp = P.second;
74 
75     if (token[0] == 'e') {
76       ret = LittleEndian;
77     } else if (token[0] == 'E') {
78       ret = BigEndian;
79     }
80   }
81 
82   return ret;
83 }
84 
85 /// Target Pointer Size information.
getPointerSize() const86 Module::PointerSize Module::getPointerSize() const {
87   StringRef temp = DataLayout;
88   Module::PointerSize ret = AnyPointerSize;
89 
90   while (!temp.empty()) {
91     std::pair<StringRef, StringRef> TmpP = getToken(temp, "-");
92     temp = TmpP.second;
93     TmpP = getToken(TmpP.first, ":");
94     StringRef token = TmpP.second, signalToken = TmpP.first;
95 
96     if (signalToken[0] == 'p') {
97       int size = 0;
98       getToken(token, ":").first.getAsInteger(10, size);
99       if (size == 32)
100         ret = Pointer32;
101       else if (size == 64)
102         ret = Pointer64;
103     }
104   }
105 
106   return ret;
107 }
108 
109 /// getNamedValue - Return the first global value in the module with
110 /// the specified name, of arbitrary type.  This method returns null
111 /// if a global with the specified name is not found.
getNamedValue(StringRef Name) const112 GlobalValue *Module::getNamedValue(StringRef Name) const {
113   return cast_or_null<GlobalValue>(getValueSymbolTable().lookup(Name));
114 }
115 
116 /// getMDKindID - Return a unique non-zero ID for the specified metadata kind.
117 /// This ID is uniqued across modules in the current LLVMContext.
getMDKindID(StringRef Name) const118 unsigned Module::getMDKindID(StringRef Name) const {
119   return Context.getMDKindID(Name);
120 }
121 
122 /// getMDKindNames - Populate client supplied SmallVector with the name for
123 /// custom metadata IDs registered in this LLVMContext.   ID #0 is not used,
124 /// so it is filled in as an empty string.
getMDKindNames(SmallVectorImpl<StringRef> & Result) const125 void Module::getMDKindNames(SmallVectorImpl<StringRef> &Result) const {
126   return Context.getMDKindNames(Result);
127 }
128 
129 
130 //===----------------------------------------------------------------------===//
131 // Methods for easy access to the functions in the module.
132 //
133 
134 // getOrInsertFunction - Look up the specified function in the module symbol
135 // table.  If it does not exist, add a prototype for the function and return
136 // it.  This is nice because it allows most passes to get away with not handling
137 // the symbol table directly for this common task.
138 //
getOrInsertFunction(StringRef Name,FunctionType * Ty,AttrListPtr AttributeList)139 Constant *Module::getOrInsertFunction(StringRef Name,
140                                       FunctionType *Ty,
141                                       AttrListPtr AttributeList) {
142   // See if we have a definition for the specified function already.
143   GlobalValue *F = getNamedValue(Name);
144   if (F == 0) {
145     // Nope, add it
146     Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage, Name);
147     if (!New->isIntrinsic())       // Intrinsics get attrs set on construction
148       New->setAttributes(AttributeList);
149     FunctionList.push_back(New);
150     return New;                    // Return the new prototype.
151   }
152 
153   // Okay, the function exists.  Does it have externally visible linkage?
154   if (F->hasLocalLinkage()) {
155     // Clear the function's name.
156     F->setName("");
157     // Retry, now there won't be a conflict.
158     Constant *NewF = getOrInsertFunction(Name, Ty);
159     F->setName(Name);
160     return NewF;
161   }
162 
163   // If the function exists but has the wrong type, return a bitcast to the
164   // right type.
165   if (F->getType() != PointerType::getUnqual(Ty))
166     return ConstantExpr::getBitCast(F, PointerType::getUnqual(Ty));
167 
168   // Otherwise, we just found the existing function or a prototype.
169   return F;
170 }
171 
getOrInsertTargetIntrinsic(StringRef Name,FunctionType * Ty,AttrListPtr AttributeList)172 Constant *Module::getOrInsertTargetIntrinsic(StringRef Name,
173                                              FunctionType *Ty,
174                                              AttrListPtr AttributeList) {
175   // See if we have a definition for the specified function already.
176   GlobalValue *F = getNamedValue(Name);
177   if (F == 0) {
178     // Nope, add it
179     Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage, Name);
180     New->setAttributes(AttributeList);
181     FunctionList.push_back(New);
182     return New; // Return the new prototype.
183   }
184 
185   // Otherwise, we just found the existing function or a prototype.
186   return F;
187 }
188 
getOrInsertFunction(StringRef Name,FunctionType * Ty)189 Constant *Module::getOrInsertFunction(StringRef Name,
190                                       FunctionType *Ty) {
191   AttrListPtr AttributeList = AttrListPtr::get((AttributeWithIndex *)0, 0);
192   return getOrInsertFunction(Name, Ty, AttributeList);
193 }
194 
195 // getOrInsertFunction - Look up the specified function in the module symbol
196 // table.  If it does not exist, add a prototype for the function and return it.
197 // This version of the method takes a null terminated list of function
198 // arguments, which makes it easier for clients to use.
199 //
getOrInsertFunction(StringRef Name,AttrListPtr AttributeList,Type * RetTy,...)200 Constant *Module::getOrInsertFunction(StringRef Name,
201                                       AttrListPtr AttributeList,
202                                       Type *RetTy, ...) {
203   va_list Args;
204   va_start(Args, RetTy);
205 
206   // Build the list of argument types...
207   std::vector<Type*> ArgTys;
208   while (Type *ArgTy = va_arg(Args, Type*))
209     ArgTys.push_back(ArgTy);
210 
211   va_end(Args);
212 
213   // Build the function type and chain to the other getOrInsertFunction...
214   return getOrInsertFunction(Name,
215                              FunctionType::get(RetTy, ArgTys, false),
216                              AttributeList);
217 }
218 
getOrInsertFunction(StringRef Name,Type * RetTy,...)219 Constant *Module::getOrInsertFunction(StringRef Name,
220                                       Type *RetTy, ...) {
221   va_list Args;
222   va_start(Args, RetTy);
223 
224   // Build the list of argument types...
225   std::vector<Type*> ArgTys;
226   while (Type *ArgTy = va_arg(Args, Type*))
227     ArgTys.push_back(ArgTy);
228 
229   va_end(Args);
230 
231   // Build the function type and chain to the other getOrInsertFunction...
232   return getOrInsertFunction(Name,
233                              FunctionType::get(RetTy, ArgTys, false),
234                              AttrListPtr::get((AttributeWithIndex *)0, 0));
235 }
236 
237 // getFunction - Look up the specified function in the module symbol table.
238 // If it does not exist, return null.
239 //
getFunction(StringRef Name) const240 Function *Module::getFunction(StringRef Name) const {
241   return dyn_cast_or_null<Function>(getNamedValue(Name));
242 }
243 
244 //===----------------------------------------------------------------------===//
245 // Methods for easy access to the global variables in the module.
246 //
247 
248 /// getGlobalVariable - Look up the specified global variable in the module
249 /// symbol table.  If it does not exist, return null.  The type argument
250 /// should be the underlying type of the global, i.e., it should not have
251 /// the top-level PointerType, which represents the address of the global.
252 /// If AllowLocal is set to true, this function will return types that
253 /// have an local. By default, these types are not returned.
254 ///
getGlobalVariable(StringRef Name,bool AllowLocal) const255 GlobalVariable *Module::getGlobalVariable(StringRef Name,
256                                           bool AllowLocal) const {
257   if (GlobalVariable *Result =
258       dyn_cast_or_null<GlobalVariable>(getNamedValue(Name)))
259     if (AllowLocal || !Result->hasLocalLinkage())
260       return Result;
261   return 0;
262 }
263 
264 /// getOrInsertGlobal - Look up the specified global in the module symbol table.
265 ///   1. If it does not exist, add a declaration of the global and return it.
266 ///   2. Else, the global exists but has the wrong type: return the function
267 ///      with a constantexpr cast to the right type.
268 ///   3. Finally, if the existing global is the correct delclaration, return the
269 ///      existing global.
getOrInsertGlobal(StringRef Name,Type * Ty)270 Constant *Module::getOrInsertGlobal(StringRef Name, Type *Ty) {
271   // See if we have a definition for the specified global already.
272   GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(getNamedValue(Name));
273   if (GV == 0) {
274     // Nope, add it
275     GlobalVariable *New =
276       new GlobalVariable(*this, Ty, false, GlobalVariable::ExternalLinkage,
277                          0, Name);
278      return New;                    // Return the new declaration.
279   }
280 
281   // If the variable exists but has the wrong type, return a bitcast to the
282   // right type.
283   if (GV->getType() != PointerType::getUnqual(Ty))
284     return ConstantExpr::getBitCast(GV, PointerType::getUnqual(Ty));
285 
286   // Otherwise, we just found the existing function or a prototype.
287   return GV;
288 }
289 
290 //===----------------------------------------------------------------------===//
291 // Methods for easy access to the global variables in the module.
292 //
293 
294 // getNamedAlias - Look up the specified global in the module symbol table.
295 // If it does not exist, return null.
296 //
getNamedAlias(StringRef Name) const297 GlobalAlias *Module::getNamedAlias(StringRef Name) const {
298   return dyn_cast_or_null<GlobalAlias>(getNamedValue(Name));
299 }
300 
301 /// getNamedMetadata - Return the first NamedMDNode in the module with the
302 /// specified name. This method returns null if a NamedMDNode with the
303 /// specified name is not found.
getNamedMetadata(const Twine & Name) const304 NamedMDNode *Module::getNamedMetadata(const Twine &Name) const {
305   SmallString<256> NameData;
306   StringRef NameRef = Name.toStringRef(NameData);
307   return static_cast<StringMap<NamedMDNode*> *>(NamedMDSymTab)->lookup(NameRef);
308 }
309 
310 /// getOrInsertNamedMetadata - Return the first named MDNode in the module
311 /// with the specified name. This method returns a new NamedMDNode if a
312 /// NamedMDNode with the specified name is not found.
getOrInsertNamedMetadata(StringRef Name)313 NamedMDNode *Module::getOrInsertNamedMetadata(StringRef Name) {
314   NamedMDNode *&NMD =
315     (*static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab))[Name];
316   if (!NMD) {
317     NMD = new NamedMDNode(Name);
318     NMD->setParent(this);
319     NamedMDList.push_back(NMD);
320   }
321   return NMD;
322 }
323 
eraseNamedMetadata(NamedMDNode * NMD)324 void Module::eraseNamedMetadata(NamedMDNode *NMD) {
325   static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab)->erase(NMD->getName());
326   NamedMDList.erase(NMD);
327 }
328 
329 
330 //===----------------------------------------------------------------------===//
331 // Methods to control the materialization of GlobalValues in the Module.
332 //
setMaterializer(GVMaterializer * GVM)333 void Module::setMaterializer(GVMaterializer *GVM) {
334   assert(!Materializer &&
335          "Module already has a GVMaterializer.  Call MaterializeAllPermanently"
336          " to clear it out before setting another one.");
337   Materializer.reset(GVM);
338 }
339 
isMaterializable(const GlobalValue * GV) const340 bool Module::isMaterializable(const GlobalValue *GV) const {
341   if (Materializer)
342     return Materializer->isMaterializable(GV);
343   return false;
344 }
345 
isDematerializable(const GlobalValue * GV) const346 bool Module::isDematerializable(const GlobalValue *GV) const {
347   if (Materializer)
348     return Materializer->isDematerializable(GV);
349   return false;
350 }
351 
Materialize(GlobalValue * GV,std::string * ErrInfo)352 bool Module::Materialize(GlobalValue *GV, std::string *ErrInfo) {
353   if (Materializer)
354     return Materializer->Materialize(GV, ErrInfo);
355   return false;
356 }
357 
Dematerialize(GlobalValue * GV)358 void Module::Dematerialize(GlobalValue *GV) {
359   if (Materializer)
360     return Materializer->Dematerialize(GV);
361 }
362 
MaterializeAll(std::string * ErrInfo)363 bool Module::MaterializeAll(std::string *ErrInfo) {
364   if (!Materializer)
365     return false;
366   return Materializer->MaterializeModule(this, ErrInfo);
367 }
368 
MaterializeAllPermanently(std::string * ErrInfo)369 bool Module::MaterializeAllPermanently(std::string *ErrInfo) {
370   if (MaterializeAll(ErrInfo))
371     return true;
372   Materializer.reset();
373   return false;
374 }
375 
376 //===----------------------------------------------------------------------===//
377 // Other module related stuff.
378 //
379 
380 
381 // dropAllReferences() - This function causes all the subelementss to "let go"
382 // of all references that they are maintaining.  This allows one to 'delete' a
383 // whole module at a time, even though there may be circular references... first
384 // all references are dropped, and all use counts go to zero.  Then everything
385 // is deleted for real.  Note that no operations are valid on an object that
386 // has "dropped all references", except operator delete.
387 //
dropAllReferences()388 void Module::dropAllReferences() {
389   for(Module::iterator I = begin(), E = end(); I != E; ++I)
390     I->dropAllReferences();
391 
392   for(Module::global_iterator I = global_begin(), E = global_end(); I != E; ++I)
393     I->dropAllReferences();
394 
395   for(Module::alias_iterator I = alias_begin(), E = alias_end(); I != E; ++I)
396     I->dropAllReferences();
397 }
398 
addLibrary(StringRef Lib)399 void Module::addLibrary(StringRef Lib) {
400   for (Module::lib_iterator I = lib_begin(), E = lib_end(); I != E; ++I)
401     if (*I == Lib)
402       return;
403   LibraryList.push_back(Lib);
404 }
405 
removeLibrary(StringRef Lib)406 void Module::removeLibrary(StringRef Lib) {
407   LibraryListType::iterator I = LibraryList.begin();
408   LibraryListType::iterator E = LibraryList.end();
409   for (;I != E; ++I)
410     if (*I == Lib) {
411       LibraryList.erase(I);
412       return;
413     }
414 }
415 
416 //===----------------------------------------------------------------------===//
417 // Type finding functionality.
418 //===----------------------------------------------------------------------===//
419 
420 namespace {
421   /// TypeFinder - Walk over a module, identifying all of the types that are
422   /// used by the module.
423   class TypeFinder {
424     // To avoid walking constant expressions multiple times and other IR
425     // objects, we keep several helper maps.
426     DenseSet<const Value*> VisitedConstants;
427     DenseSet<Type*> VisitedTypes;
428 
429     std::vector<StructType*> &StructTypes;
430   public:
TypeFinder(std::vector<StructType * > & structTypes)431     TypeFinder(std::vector<StructType*> &structTypes)
432       : StructTypes(structTypes) {}
433 
run(const Module & M)434     void run(const Module &M) {
435       // Get types from global variables.
436       for (Module::const_global_iterator I = M.global_begin(),
437            E = M.global_end(); I != E; ++I) {
438         incorporateType(I->getType());
439         if (I->hasInitializer())
440           incorporateValue(I->getInitializer());
441       }
442 
443       // Get types from aliases.
444       for (Module::const_alias_iterator I = M.alias_begin(),
445            E = M.alias_end(); I != E; ++I) {
446         incorporateType(I->getType());
447         if (const Value *Aliasee = I->getAliasee())
448           incorporateValue(Aliasee);
449       }
450 
451       SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
452 
453       // Get types from functions.
454       for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) {
455         incorporateType(FI->getType());
456 
457         for (Function::const_iterator BB = FI->begin(), E = FI->end();
458              BB != E;++BB)
459           for (BasicBlock::const_iterator II = BB->begin(),
460                E = BB->end(); II != E; ++II) {
461             const Instruction &I = *II;
462             // Incorporate the type of the instruction and all its operands.
463             incorporateType(I.getType());
464             for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end();
465                  OI != OE; ++OI)
466               incorporateValue(*OI);
467 
468             // Incorporate types hiding in metadata.
469             I.getAllMetadataOtherThanDebugLoc(MDForInst);
470             for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
471               incorporateMDNode(MDForInst[i].second);
472             MDForInst.clear();
473           }
474       }
475 
476       for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
477            E = M.named_metadata_end(); I != E; ++I) {
478         const NamedMDNode *NMD = I;
479         for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
480           incorporateMDNode(NMD->getOperand(i));
481       }
482     }
483 
484   private:
incorporateType(Type * Ty)485     void incorporateType(Type *Ty) {
486       // Check to see if we're already visited this type.
487       if (!VisitedTypes.insert(Ty).second)
488         return;
489 
490       // If this is a structure or opaque type, add a name for the type.
491       if (StructType *STy = dyn_cast<StructType>(Ty))
492         StructTypes.push_back(STy);
493 
494       // Recursively walk all contained types.
495       for (Type::subtype_iterator I = Ty->subtype_begin(),
496            E = Ty->subtype_end(); I != E; ++I)
497         incorporateType(*I);
498     }
499 
500     /// incorporateValue - This method is used to walk operand lists finding
501     /// types hiding in constant expressions and other operands that won't be
502     /// walked in other ways.  GlobalValues, basic blocks, instructions, and
503     /// inst operands are all explicitly enumerated.
incorporateValue(const Value * V)504     void incorporateValue(const Value *V) {
505       if (const MDNode *M = dyn_cast<MDNode>(V))
506         return incorporateMDNode(M);
507       if (!isa<Constant>(V) || isa<GlobalValue>(V)) return;
508 
509       // Already visited?
510       if (!VisitedConstants.insert(V).second)
511         return;
512 
513       // Check this type.
514       incorporateType(V->getType());
515 
516       // Look in operands for types.
517       const User *U = cast<User>(V);
518       for (Constant::const_op_iterator I = U->op_begin(),
519            E = U->op_end(); I != E;++I)
520         incorporateValue(*I);
521     }
522 
incorporateMDNode(const MDNode * V)523     void incorporateMDNode(const MDNode *V) {
524 
525       // Already visited?
526       if (!VisitedConstants.insert(V).second)
527         return;
528 
529       // Look in operands for types.
530       for (unsigned i = 0, e = V->getNumOperands(); i != e; ++i)
531         if (Value *Op = V->getOperand(i))
532           incorporateValue(Op);
533     }
534   };
535 } // end anonymous namespace
536 
findUsedStructTypes(std::vector<StructType * > & StructTypes) const537 void Module::findUsedStructTypes(std::vector<StructType*> &StructTypes) const {
538   TypeFinder(StructTypes).run(*this);
539 }
540