1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/message_loop/message_pump_glib.h"
6 
7 #include <fcntl.h>
8 #include <math.h>
9 
10 #include <glib.h>
11 
12 #include "base/lazy_instance.h"
13 #include "base/logging.h"
14 #include "base/posix/eintr_wrapper.h"
15 #include "base/synchronization/lock.h"
16 #include "base/threading/platform_thread.h"
17 
18 namespace base {
19 
20 namespace {
21 
22 // Return a timeout suitable for the glib loop, -1 to block forever,
23 // 0 to return right away, or a timeout in milliseconds from now.
GetTimeIntervalMilliseconds(const TimeTicks & from)24 int GetTimeIntervalMilliseconds(const TimeTicks& from) {
25   if (from.is_null())
26     return -1;
27 
28   // Be careful here.  TimeDelta has a precision of microseconds, but we want a
29   // value in milliseconds.  If there are 5.5ms left, should the delay be 5 or
30   // 6?  It should be 6 to avoid executing delayed work too early.
31   int delay = static_cast<int>(
32       ceil((from - TimeTicks::Now()).InMillisecondsF()));
33 
34   // If this value is negative, then we need to run delayed work soon.
35   return delay < 0 ? 0 : delay;
36 }
37 
38 // A brief refresher on GLib:
39 //     GLib sources have four callbacks: Prepare, Check, Dispatch and Finalize.
40 // On each iteration of the GLib pump, it calls each source's Prepare function.
41 // This function should return TRUE if it wants GLib to call its Dispatch, and
42 // FALSE otherwise.  It can also set a timeout in this case for the next time
43 // Prepare should be called again (it may be called sooner).
44 //     After the Prepare calls, GLib does a poll to check for events from the
45 // system.  File descriptors can be attached to the sources.  The poll may block
46 // if none of the Prepare calls returned TRUE.  It will block indefinitely, or
47 // by the minimum time returned by a source in Prepare.
48 //     After the poll, GLib calls Check for each source that returned FALSE
49 // from Prepare.  The return value of Check has the same meaning as for Prepare,
50 // making Check a second chance to tell GLib we are ready for Dispatch.
51 //     Finally, GLib calls Dispatch for each source that is ready.  If Dispatch
52 // returns FALSE, GLib will destroy the source.  Dispatch calls may be recursive
53 // (i.e., you can call Run from them), but Prepare and Check cannot.
54 //     Finalize is called when the source is destroyed.
55 // NOTE: It is common for subsystems to want to process pending events while
56 // doing intensive work, for example the flash plugin. They usually use the
57 // following pattern (recommended by the GTK docs):
58 // while (gtk_events_pending()) {
59 //   gtk_main_iteration();
60 // }
61 //
62 // gtk_events_pending just calls g_main_context_pending, which does the
63 // following:
64 // - Call prepare on all the sources.
65 // - Do the poll with a timeout of 0 (not blocking).
66 // - Call check on all the sources.
67 // - *Does not* call dispatch on the sources.
68 // - Return true if any of prepare() or check() returned true.
69 //
70 // gtk_main_iteration just calls g_main_context_iteration, which does the whole
71 // thing, respecting the timeout for the poll (and block, although it is
72 // expected not to if gtk_events_pending returned true), and call dispatch.
73 //
74 // Thus it is important to only return true from prepare or check if we
75 // actually have events or work to do. We also need to make sure we keep
76 // internal state consistent so that if prepare/check return true when called
77 // from gtk_events_pending, they will still return true when called right
78 // after, from gtk_main_iteration.
79 //
80 // For the GLib pump we try to follow the Windows UI pump model:
81 // - Whenever we receive a wakeup event or the timer for delayed work expires,
82 // we run DoWork and/or DoDelayedWork. That part will also run in the other
83 // event pumps.
84 // - We also run DoWork, DoDelayedWork, and possibly DoIdleWork in the main
85 // loop, around event handling.
86 
87 struct WorkSource : public GSource {
88   MessagePumpGlib* pump;
89 };
90 
WorkSourcePrepare(GSource * source,gint * timeout_ms)91 gboolean WorkSourcePrepare(GSource* source,
92                            gint* timeout_ms) {
93   *timeout_ms = static_cast<WorkSource*>(source)->pump->HandlePrepare();
94   // We always return FALSE, so that our timeout is honored.  If we were
95   // to return TRUE, the timeout would be considered to be 0 and the poll
96   // would never block.  Once the poll is finished, Check will be called.
97   return FALSE;
98 }
99 
WorkSourceCheck(GSource * source)100 gboolean WorkSourceCheck(GSource* source) {
101   // Only return TRUE if Dispatch should be called.
102   return static_cast<WorkSource*>(source)->pump->HandleCheck();
103 }
104 
WorkSourceDispatch(GSource * source,GSourceFunc unused_func,gpointer unused_data)105 gboolean WorkSourceDispatch(GSource* source,
106                             GSourceFunc unused_func,
107                             gpointer unused_data) {
108 
109   static_cast<WorkSource*>(source)->pump->HandleDispatch();
110   // Always return TRUE so our source stays registered.
111   return TRUE;
112 }
113 
114 // I wish these could be const, but g_source_new wants non-const.
115 GSourceFuncs WorkSourceFuncs = {WorkSourcePrepare, WorkSourceCheck,
116                                 WorkSourceDispatch, nullptr};
117 
118 // The following is used to make sure we only run the MessagePumpGlib on one
119 // thread. X only has one message pump so we can only have one UI loop per
120 // process.
121 #ifndef NDEBUG
122 
123 // Tracks the pump the most recent pump that has been run.
124 struct ThreadInfo {
125   // The pump.
126   MessagePumpGlib* pump;
127 
128   // ID of the thread the pump was run on.
129   PlatformThreadId thread_id;
130 };
131 
132 // Used for accesing |thread_info|.
133 static LazyInstance<Lock>::Leaky thread_info_lock = LAZY_INSTANCE_INITIALIZER;
134 
135 // If non-NULL it means a MessagePumpGlib exists and has been Run. This is
136 // destroyed when the MessagePump is destroyed.
137 ThreadInfo* thread_info = NULL;
138 
CheckThread(MessagePumpGlib * pump)139 void CheckThread(MessagePumpGlib* pump) {
140   AutoLock auto_lock(thread_info_lock.Get());
141   if (!thread_info) {
142     thread_info = new ThreadInfo;
143     thread_info->pump = pump;
144     thread_info->thread_id = PlatformThread::CurrentId();
145   }
146   DCHECK(thread_info->thread_id == PlatformThread::CurrentId()) <<
147       "Running MessagePumpGlib on two different threads; "
148       "this is unsupported by GLib!";
149 }
150 
PumpDestroyed(MessagePumpGlib * pump)151 void PumpDestroyed(MessagePumpGlib* pump) {
152   AutoLock auto_lock(thread_info_lock.Get());
153   if (thread_info && thread_info->pump == pump) {
154     delete thread_info;
155     thread_info = NULL;
156   }
157 }
158 
159 #endif
160 
161 }  // namespace
162 
163 struct MessagePumpGlib::RunState {
164   Delegate* delegate;
165 
166   // Used to flag that the current Run() invocation should return ASAP.
167   bool should_quit;
168 
169   // Used to count how many Run() invocations are on the stack.
170   int run_depth;
171 
172   // This keeps the state of whether the pump got signaled that there was new
173   // work to be done. Since we eat the message on the wake up pipe as soon as
174   // we get it, we keep that state here to stay consistent.
175   bool has_work;
176 };
177 
MessagePumpGlib()178 MessagePumpGlib::MessagePumpGlib()
179     : state_(nullptr),
180       context_(g_main_context_default()),
181       wakeup_gpollfd_(new GPollFD) {
182   // Create our wakeup pipe, which is used to flag when work was scheduled.
183   int fds[2];
184   int ret = pipe(fds);
185   DCHECK_EQ(ret, 0);
186   (void)ret;  // Prevent warning in release mode.
187 
188   wakeup_pipe_read_  = fds[0];
189   wakeup_pipe_write_ = fds[1];
190   wakeup_gpollfd_->fd = wakeup_pipe_read_;
191   wakeup_gpollfd_->events = G_IO_IN;
192 
193   work_source_ = g_source_new(&WorkSourceFuncs, sizeof(WorkSource));
194   static_cast<WorkSource*>(work_source_)->pump = this;
195   g_source_add_poll(work_source_, wakeup_gpollfd_.get());
196   // Use a low priority so that we let other events in the queue go first.
197   g_source_set_priority(work_source_, G_PRIORITY_DEFAULT_IDLE);
198   // This is needed to allow Run calls inside Dispatch.
199   g_source_set_can_recurse(work_source_, TRUE);
200   g_source_attach(work_source_, context_);
201 }
202 
~MessagePumpGlib()203 MessagePumpGlib::~MessagePumpGlib() {
204 #ifndef NDEBUG
205   PumpDestroyed(this);
206 #endif
207   g_source_destroy(work_source_);
208   g_source_unref(work_source_);
209   close(wakeup_pipe_read_);
210   close(wakeup_pipe_write_);
211 }
212 
213 // Return the timeout we want passed to poll.
HandlePrepare()214 int MessagePumpGlib::HandlePrepare() {
215   // We know we have work, but we haven't called HandleDispatch yet. Don't let
216   // the pump block so that we can do some processing.
217   if (state_ &&  // state_ may be null during tests.
218       state_->has_work)
219     return 0;
220 
221   // We don't think we have work to do, but make sure not to block
222   // longer than the next time we need to run delayed work.
223   return GetTimeIntervalMilliseconds(delayed_work_time_);
224 }
225 
HandleCheck()226 bool MessagePumpGlib::HandleCheck() {
227   if (!state_)  // state_ may be null during tests.
228     return false;
229 
230   // We usually have a single message on the wakeup pipe, since we are only
231   // signaled when the queue went from empty to non-empty, but there can be
232   // two messages if a task posted a task, hence we read at most two bytes.
233   // The glib poll will tell us whether there was data, so this read
234   // shouldn't block.
235   if (wakeup_gpollfd_->revents & G_IO_IN) {
236     char msg[2];
237     const int num_bytes = HANDLE_EINTR(read(wakeup_pipe_read_, msg, 2));
238     if (num_bytes < 1) {
239       NOTREACHED() << "Error reading from the wakeup pipe.";
240     }
241     DCHECK((num_bytes == 1 && msg[0] == '!') ||
242            (num_bytes == 2 && msg[0] == '!' && msg[1] == '!'));
243     // Since we ate the message, we need to record that we have more work,
244     // because HandleCheck() may be called without HandleDispatch being called
245     // afterwards.
246     state_->has_work = true;
247   }
248 
249   if (state_->has_work)
250     return true;
251 
252   if (GetTimeIntervalMilliseconds(delayed_work_time_) == 0) {
253     // The timer has expired. That condition will stay true until we process
254     // that delayed work, so we don't need to record this differently.
255     return true;
256   }
257 
258   return false;
259 }
260 
HandleDispatch()261 void MessagePumpGlib::HandleDispatch() {
262   state_->has_work = false;
263   if (state_->delegate->DoWork()) {
264     // NOTE: on Windows at this point we would call ScheduleWork (see
265     // MessagePumpGlib::HandleWorkMessage in message_pump_win.cc). But here,
266     // instead of posting a message on the wakeup pipe, we can avoid the
267     // syscalls and just signal that we have more work.
268     state_->has_work = true;
269   }
270 
271   if (state_->should_quit)
272     return;
273 
274   state_->delegate->DoDelayedWork(&delayed_work_time_);
275 }
276 
Run(Delegate * delegate)277 void MessagePumpGlib::Run(Delegate* delegate) {
278 #ifndef NDEBUG
279   CheckThread(this);
280 #endif
281 
282   RunState state;
283   state.delegate = delegate;
284   state.should_quit = false;
285   state.run_depth = state_ ? state_->run_depth + 1 : 1;
286   state.has_work = false;
287 
288   RunState* previous_state = state_;
289   state_ = &state;
290 
291   // We really only do a single task for each iteration of the loop.  If we
292   // have done something, assume there is likely something more to do.  This
293   // will mean that we don't block on the message pump until there was nothing
294   // more to do.  We also set this to true to make sure not to block on the
295   // first iteration of the loop, so RunUntilIdle() works correctly.
296   bool more_work_is_plausible = true;
297 
298   // We run our own loop instead of using g_main_loop_quit in one of the
299   // callbacks.  This is so we only quit our own loops, and we don't quit
300   // nested loops run by others.  TODO(deanm): Is this what we want?
301   for (;;) {
302     // Don't block if we think we have more work to do.
303     bool block = !more_work_is_plausible;
304 
305     more_work_is_plausible = g_main_context_iteration(context_, block);
306     if (state_->should_quit)
307       break;
308 
309     more_work_is_plausible |= state_->delegate->DoWork();
310     if (state_->should_quit)
311       break;
312 
313     more_work_is_plausible |=
314         state_->delegate->DoDelayedWork(&delayed_work_time_);
315     if (state_->should_quit)
316       break;
317 
318     if (more_work_is_plausible)
319       continue;
320 
321     more_work_is_plausible = state_->delegate->DoIdleWork();
322     if (state_->should_quit)
323       break;
324   }
325 
326   state_ = previous_state;
327 }
328 
Quit()329 void MessagePumpGlib::Quit() {
330   if (state_) {
331     state_->should_quit = true;
332   } else {
333     NOTREACHED() << "Quit called outside Run!";
334   }
335 }
336 
ScheduleWork()337 void MessagePumpGlib::ScheduleWork() {
338   // This can be called on any thread, so we don't want to touch any state
339   // variables as we would then need locks all over.  This ensures that if
340   // we are sleeping in a poll that we will wake up.
341   char msg = '!';
342   if (HANDLE_EINTR(write(wakeup_pipe_write_, &msg, 1)) != 1) {
343     NOTREACHED() << "Could not write to the UI message loop wakeup pipe!";
344   }
345 }
346 
ScheduleDelayedWork(const TimeTicks & delayed_work_time)347 void MessagePumpGlib::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
348   // We need to wake up the loop in case the poll timeout needs to be
349   // adjusted.  This will cause us to try to do work, but that's OK.
350   delayed_work_time_ = delayed_work_time;
351   ScheduleWork();
352 }
353 
ShouldQuit() const354 bool MessagePumpGlib::ShouldQuit() const {
355   CHECK(state_);
356   return state_->should_quit;
357 }
358 
359 }  // namespace base
360