1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2014 Google Inc. All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 #include "protobuf.h"
32
33 // This function is equivalent to rb_str_cat(), but unlike the real
34 // rb_str_cat(), it doesn't leak memory in some versions of Ruby.
35 // For more information, see:
36 // https://bugs.ruby-lang.org/issues/11328
noleak_rb_str_cat(VALUE rb_str,const char * str,long len)37 VALUE noleak_rb_str_cat(VALUE rb_str, const char *str, long len) {
38 char *p;
39 size_t oldlen = RSTRING_LEN(rb_str);
40 rb_str_modify_expand(rb_str, len);
41 p = RSTRING_PTR(rb_str);
42 memcpy(p + oldlen, str, len);
43 rb_str_set_len(rb_str, oldlen + len);
44 return rb_str;
45 }
46
47 // -----------------------------------------------------------------------------
48 // Parsing.
49 // -----------------------------------------------------------------------------
50
51 #define DEREF(msg, ofs, type) *(type*)(((uint8_t *)msg) + ofs)
52
53 // Creates a handlerdata that simply contains the offset for this field.
newhandlerdata(upb_handlers * h,uint32_t ofs)54 static const void* newhandlerdata(upb_handlers* h, uint32_t ofs) {
55 size_t* hd_ofs = ALLOC(size_t);
56 *hd_ofs = ofs;
57 upb_handlers_addcleanup(h, hd_ofs, xfree);
58 return hd_ofs;
59 }
60
61 typedef struct {
62 size_t ofs;
63 const upb_msgdef *md;
64 } submsg_handlerdata_t;
65
66 // Creates a handlerdata that contains offset and submessage type information.
newsubmsghandlerdata(upb_handlers * h,uint32_t ofs,const upb_fielddef * f)67 static const void *newsubmsghandlerdata(upb_handlers* h, uint32_t ofs,
68 const upb_fielddef* f) {
69 submsg_handlerdata_t *hd = ALLOC(submsg_handlerdata_t);
70 hd->ofs = ofs;
71 hd->md = upb_fielddef_msgsubdef(f);
72 upb_handlers_addcleanup(h, hd, xfree);
73 return hd;
74 }
75
76 typedef struct {
77 size_t ofs; // union data slot
78 size_t case_ofs; // oneof_case field
79 uint32_t oneof_case_num; // oneof-case number to place in oneof_case field
80 const upb_msgdef *md; // msgdef, for oneof submessage handler
81 } oneof_handlerdata_t;
82
newoneofhandlerdata(upb_handlers * h,uint32_t ofs,uint32_t case_ofs,const upb_fielddef * f)83 static const void *newoneofhandlerdata(upb_handlers *h,
84 uint32_t ofs,
85 uint32_t case_ofs,
86 const upb_fielddef *f) {
87 oneof_handlerdata_t *hd = ALLOC(oneof_handlerdata_t);
88 hd->ofs = ofs;
89 hd->case_ofs = case_ofs;
90 // We reuse the field tag number as a oneof union discriminant tag. Note that
91 // we don't expose these numbers to the user, so the only requirement is that
92 // we have some unique ID for each union case/possibility. The field tag
93 // numbers are already present and are easy to use so there's no reason to
94 // create a separate ID space. In addition, using the field tag number here
95 // lets us easily look up the field in the oneof accessor.
96 hd->oneof_case_num = upb_fielddef_number(f);
97 if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE) {
98 hd->md = upb_fielddef_msgsubdef(f);
99 } else {
100 hd->md = NULL;
101 }
102 upb_handlers_addcleanup(h, hd, xfree);
103 return hd;
104 }
105
106 // A handler that starts a repeated field. Gets the Repeated*Field instance for
107 // this field (such an instance always exists even in an empty message).
startseq_handler(void * closure,const void * hd)108 static void *startseq_handler(void* closure, const void* hd) {
109 MessageHeader* msg = closure;
110 const size_t *ofs = hd;
111 return (void*)DEREF(msg, *ofs, VALUE);
112 }
113
114 // Handlers that append primitive values to a repeated field.
115 #define DEFINE_APPEND_HANDLER(type, ctype) \
116 static bool append##type##_handler(void *closure, const void *hd, \
117 ctype val) { \
118 VALUE ary = (VALUE)closure; \
119 RepeatedField_push_native(ary, &val); \
120 return true; \
121 }
122
DEFINE_APPEND_HANDLER(bool,bool)123 DEFINE_APPEND_HANDLER(bool, bool)
124 DEFINE_APPEND_HANDLER(int32, int32_t)
125 DEFINE_APPEND_HANDLER(uint32, uint32_t)
126 DEFINE_APPEND_HANDLER(float, float)
127 DEFINE_APPEND_HANDLER(int64, int64_t)
128 DEFINE_APPEND_HANDLER(uint64, uint64_t)
129 DEFINE_APPEND_HANDLER(double, double)
130
131 // Appends a string to a repeated field.
132 static void* appendstr_handler(void *closure,
133 const void *hd,
134 size_t size_hint) {
135 VALUE ary = (VALUE)closure;
136 VALUE str = rb_str_new2("");
137 rb_enc_associate(str, kRubyStringUtf8Encoding);
138 RepeatedField_push_native(ary, &str);
139 return (void*)str;
140 }
141
142 // Appends a 'bytes' string to a repeated field.
appendbytes_handler(void * closure,const void * hd,size_t size_hint)143 static void* appendbytes_handler(void *closure,
144 const void *hd,
145 size_t size_hint) {
146 VALUE ary = (VALUE)closure;
147 VALUE str = rb_str_new2("");
148 rb_enc_associate(str, kRubyString8bitEncoding);
149 RepeatedField_push_native(ary, &str);
150 return (void*)str;
151 }
152
153 // Sets a non-repeated string field in a message.
str_handler(void * closure,const void * hd,size_t size_hint)154 static void* str_handler(void *closure,
155 const void *hd,
156 size_t size_hint) {
157 MessageHeader* msg = closure;
158 const size_t *ofs = hd;
159 VALUE str = rb_str_new2("");
160 rb_enc_associate(str, kRubyStringUtf8Encoding);
161 DEREF(msg, *ofs, VALUE) = str;
162 return (void*)str;
163 }
164
165 // Sets a non-repeated 'bytes' field in a message.
bytes_handler(void * closure,const void * hd,size_t size_hint)166 static void* bytes_handler(void *closure,
167 const void *hd,
168 size_t size_hint) {
169 MessageHeader* msg = closure;
170 const size_t *ofs = hd;
171 VALUE str = rb_str_new2("");
172 rb_enc_associate(str, kRubyString8bitEncoding);
173 DEREF(msg, *ofs, VALUE) = str;
174 return (void*)str;
175 }
176
stringdata_handler(void * closure,const void * hd,const char * str,size_t len,const upb_bufhandle * handle)177 static size_t stringdata_handler(void* closure, const void* hd,
178 const char* str, size_t len,
179 const upb_bufhandle* handle) {
180 VALUE rb_str = (VALUE)closure;
181 noleak_rb_str_cat(rb_str, str, len);
182 return len;
183 }
184
stringdata_end_handler(void * closure,const void * hd)185 static bool stringdata_end_handler(void* closure, const void* hd) {
186 MessageHeader* msg = closure;
187 const size_t *ofs = hd;
188 VALUE rb_str = DEREF(msg, *ofs, VALUE);
189 rb_obj_freeze(rb_str);
190 return true;
191 }
192
appendstring_end_handler(void * closure,const void * hd)193 static bool appendstring_end_handler(void* closure, const void* hd) {
194 VALUE ary = (VALUE)closure;
195 int size = RepeatedField_size(ary);
196 VALUE* last = RepeatedField_index_native(ary, size - 1);
197 VALUE rb_str = *last;
198 rb_obj_freeze(rb_str);
199 return true;
200 }
201
202 // Appends a submessage to a repeated field (a regular Ruby array for now).
appendsubmsg_handler(void * closure,const void * hd)203 static void *appendsubmsg_handler(void *closure, const void *hd) {
204 VALUE ary = (VALUE)closure;
205 const submsg_handlerdata_t *submsgdata = hd;
206 VALUE subdesc =
207 get_def_obj((void*)submsgdata->md);
208 VALUE subklass = Descriptor_msgclass(subdesc);
209 MessageHeader* submsg;
210
211 VALUE submsg_rb = rb_class_new_instance(0, NULL, subklass);
212 RepeatedField_push(ary, submsg_rb);
213
214 TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
215 return submsg;
216 }
217
218 // Sets a non-repeated submessage field in a message.
submsg_handler(void * closure,const void * hd)219 static void *submsg_handler(void *closure, const void *hd) {
220 MessageHeader* msg = closure;
221 const submsg_handlerdata_t* submsgdata = hd;
222 VALUE subdesc =
223 get_def_obj((void*)submsgdata->md);
224 VALUE subklass = Descriptor_msgclass(subdesc);
225 VALUE submsg_rb;
226 MessageHeader* submsg;
227
228 if (DEREF(msg, submsgdata->ofs, VALUE) == Qnil) {
229 DEREF(msg, submsgdata->ofs, VALUE) =
230 rb_class_new_instance(0, NULL, subklass);
231 }
232
233 submsg_rb = DEREF(msg, submsgdata->ofs, VALUE);
234 TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
235 return submsg;
236 }
237
238 // Handler data for startmap/endmap handlers.
239 typedef struct {
240 size_t ofs;
241 upb_fieldtype_t key_field_type;
242 upb_fieldtype_t value_field_type;
243
244 // We know that we can hold this reference because the handlerdata has the
245 // same lifetime as the upb_handlers struct, and the upb_handlers struct holds
246 // a reference to the upb_msgdef, which in turn has references to its subdefs.
247 const upb_def* value_field_subdef;
248 } map_handlerdata_t;
249
250 // Temporary frame for map parsing: at the beginning of a map entry message, a
251 // submsg handler allocates a frame to hold (i) a reference to the Map object
252 // into which this message will be inserted and (ii) storage slots to
253 // temporarily hold the key and value for this map entry until the end of the
254 // submessage. When the submessage ends, another handler is called to insert the
255 // value into the map.
256 typedef struct {
257 VALUE map;
258 char key_storage[NATIVE_SLOT_MAX_SIZE];
259 char value_storage[NATIVE_SLOT_MAX_SIZE];
260 } map_parse_frame_t;
261
262 // Handler to begin a map entry: allocates a temporary frame. This is the
263 // 'startsubmsg' handler on the msgdef that contains the map field.
startmapentry_handler(void * closure,const void * hd)264 static void *startmapentry_handler(void *closure, const void *hd) {
265 MessageHeader* msg = closure;
266 const map_handlerdata_t* mapdata = hd;
267 VALUE map_rb = DEREF(msg, mapdata->ofs, VALUE);
268
269 map_parse_frame_t* frame = ALLOC(map_parse_frame_t);
270 frame->map = map_rb;
271
272 native_slot_init(mapdata->key_field_type, &frame->key_storage);
273 native_slot_init(mapdata->value_field_type, &frame->value_storage);
274
275 return frame;
276 }
277
278 // Handler to end a map entry: inserts the value defined during the message into
279 // the map. This is the 'endmsg' handler on the map entry msgdef.
endmap_handler(void * closure,const void * hd,upb_status * s)280 static bool endmap_handler(void *closure, const void *hd, upb_status* s) {
281 map_parse_frame_t* frame = closure;
282 const map_handlerdata_t* mapdata = hd;
283
284 VALUE key = native_slot_get(
285 mapdata->key_field_type, Qnil,
286 &frame->key_storage);
287
288 VALUE value_field_typeclass = Qnil;
289 VALUE value;
290
291 if (mapdata->value_field_type == UPB_TYPE_MESSAGE ||
292 mapdata->value_field_type == UPB_TYPE_ENUM) {
293 value_field_typeclass = get_def_obj(mapdata->value_field_subdef);
294 }
295
296 value = native_slot_get(
297 mapdata->value_field_type, value_field_typeclass,
298 &frame->value_storage);
299
300 Map_index_set(frame->map, key, value);
301 xfree(frame);
302
303 return true;
304 }
305
306 // Allocates a new map_handlerdata_t given the map entry message definition. If
307 // the offset of the field within the parent message is also given, that is
308 // added to the handler data as well. Note that this is called *twice* per map
309 // field: once in the parent message handler setup when setting the startsubmsg
310 // handler and once in the map entry message handler setup when setting the
311 // key/value and endmsg handlers. The reason is that there is no easy way to
312 // pass the handlerdata down to the sub-message handler setup.
new_map_handlerdata(size_t ofs,const upb_msgdef * mapentry_def,Descriptor * desc)313 static map_handlerdata_t* new_map_handlerdata(
314 size_t ofs,
315 const upb_msgdef* mapentry_def,
316 Descriptor* desc) {
317 const upb_fielddef* key_field;
318 const upb_fielddef* value_field;
319 map_handlerdata_t* hd = ALLOC(map_handlerdata_t);
320 hd->ofs = ofs;
321 key_field = upb_msgdef_itof(mapentry_def, MAP_KEY_FIELD);
322 assert(key_field != NULL);
323 hd->key_field_type = upb_fielddef_type(key_field);
324 value_field = upb_msgdef_itof(mapentry_def, MAP_VALUE_FIELD);
325 assert(value_field != NULL);
326 hd->value_field_type = upb_fielddef_type(value_field);
327 hd->value_field_subdef = upb_fielddef_subdef(value_field);
328
329 return hd;
330 }
331
332 // Handlers that set primitive values in oneofs.
333 #define DEFINE_ONEOF_HANDLER(type, ctype) \
334 static bool oneof##type##_handler(void *closure, const void *hd, \
335 ctype val) { \
336 const oneof_handlerdata_t *oneofdata = hd; \
337 DEREF(closure, oneofdata->case_ofs, uint32_t) = \
338 oneofdata->oneof_case_num; \
339 DEREF(closure, oneofdata->ofs, ctype) = val; \
340 return true; \
341 }
342
DEFINE_ONEOF_HANDLER(bool,bool)343 DEFINE_ONEOF_HANDLER(bool, bool)
344 DEFINE_ONEOF_HANDLER(int32, int32_t)
345 DEFINE_ONEOF_HANDLER(uint32, uint32_t)
346 DEFINE_ONEOF_HANDLER(float, float)
347 DEFINE_ONEOF_HANDLER(int64, int64_t)
348 DEFINE_ONEOF_HANDLER(uint64, uint64_t)
349 DEFINE_ONEOF_HANDLER(double, double)
350
351 #undef DEFINE_ONEOF_HANDLER
352
353 // Handlers for strings in a oneof.
354 static void *oneofstr_handler(void *closure,
355 const void *hd,
356 size_t size_hint) {
357 MessageHeader* msg = closure;
358 const oneof_handlerdata_t *oneofdata = hd;
359 VALUE str = rb_str_new2("");
360 rb_enc_associate(str, kRubyStringUtf8Encoding);
361 DEREF(msg, oneofdata->case_ofs, uint32_t) =
362 oneofdata->oneof_case_num;
363 DEREF(msg, oneofdata->ofs, VALUE) = str;
364 return (void*)str;
365 }
366
oneofbytes_handler(void * closure,const void * hd,size_t size_hint)367 static void *oneofbytes_handler(void *closure,
368 const void *hd,
369 size_t size_hint) {
370 MessageHeader* msg = closure;
371 const oneof_handlerdata_t *oneofdata = hd;
372 VALUE str = rb_str_new2("");
373 rb_enc_associate(str, kRubyString8bitEncoding);
374 DEREF(msg, oneofdata->case_ofs, uint32_t) =
375 oneofdata->oneof_case_num;
376 DEREF(msg, oneofdata->ofs, VALUE) = str;
377 return (void*)str;
378 }
379
oneofstring_end_handler(void * closure,const void * hd)380 static bool oneofstring_end_handler(void* closure, const void* hd) {
381 MessageHeader* msg = closure;
382 const oneof_handlerdata_t *oneofdata = hd;
383 rb_obj_freeze(DEREF(msg, oneofdata->ofs, VALUE));
384 return true;
385 }
386
387 // Handler for a submessage field in a oneof.
oneofsubmsg_handler(void * closure,const void * hd)388 static void *oneofsubmsg_handler(void *closure,
389 const void *hd) {
390 MessageHeader* msg = closure;
391 const oneof_handlerdata_t *oneofdata = hd;
392 uint32_t oldcase = DEREF(msg, oneofdata->case_ofs, uint32_t);
393
394 VALUE subdesc =
395 get_def_obj((void*)oneofdata->md);
396 VALUE subklass = Descriptor_msgclass(subdesc);
397 VALUE submsg_rb;
398 MessageHeader* submsg;
399
400 if (oldcase != oneofdata->oneof_case_num ||
401 DEREF(msg, oneofdata->ofs, VALUE) == Qnil) {
402 DEREF(msg, oneofdata->ofs, VALUE) =
403 rb_class_new_instance(0, NULL, subklass);
404 }
405 // Set the oneof case *after* allocating the new class instance -- otherwise,
406 // if the Ruby GC is invoked as part of a call into the VM, it might invoke
407 // our mark routines, and our mark routines might see the case value
408 // indicating a VALUE is present and expect a valid VALUE. See comment in
409 // layout_set() for more detail: basically, the change to the value and the
410 // case must be atomic w.r.t. the Ruby VM.
411 DEREF(msg, oneofdata->case_ofs, uint32_t) =
412 oneofdata->oneof_case_num;
413
414 submsg_rb = DEREF(msg, oneofdata->ofs, VALUE);
415 TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
416 return submsg;
417 }
418
419 // Set up handlers for a repeated field.
add_handlers_for_repeated_field(upb_handlers * h,const upb_fielddef * f,size_t offset)420 static void add_handlers_for_repeated_field(upb_handlers *h,
421 const upb_fielddef *f,
422 size_t offset) {
423 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
424 upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset));
425 upb_handlers_setstartseq(h, f, startseq_handler, &attr);
426 upb_handlerattr_uninit(&attr);
427
428 switch (upb_fielddef_type(f)) {
429
430 #define SET_HANDLER(utype, ltype) \
431 case utype: \
432 upb_handlers_set##ltype(h, f, append##ltype##_handler, NULL); \
433 break;
434
435 SET_HANDLER(UPB_TYPE_BOOL, bool);
436 SET_HANDLER(UPB_TYPE_INT32, int32);
437 SET_HANDLER(UPB_TYPE_UINT32, uint32);
438 SET_HANDLER(UPB_TYPE_ENUM, int32);
439 SET_HANDLER(UPB_TYPE_FLOAT, float);
440 SET_HANDLER(UPB_TYPE_INT64, int64);
441 SET_HANDLER(UPB_TYPE_UINT64, uint64);
442 SET_HANDLER(UPB_TYPE_DOUBLE, double);
443
444 #undef SET_HANDLER
445
446 case UPB_TYPE_STRING:
447 case UPB_TYPE_BYTES: {
448 bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
449 upb_handlers_setstartstr(h, f, is_bytes ?
450 appendbytes_handler : appendstr_handler,
451 NULL);
452 upb_handlers_setstring(h, f, stringdata_handler, NULL);
453 upb_handlers_setendstr(h, f, appendstring_end_handler, NULL);
454 break;
455 }
456 case UPB_TYPE_MESSAGE: {
457 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
458 upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, 0, f));
459 upb_handlers_setstartsubmsg(h, f, appendsubmsg_handler, &attr);
460 upb_handlerattr_uninit(&attr);
461 break;
462 }
463 }
464 }
465
466 // Set up handlers for a singular field.
add_handlers_for_singular_field(upb_handlers * h,const upb_fielddef * f,size_t offset)467 static void add_handlers_for_singular_field(upb_handlers *h,
468 const upb_fielddef *f,
469 size_t offset) {
470 switch (upb_fielddef_type(f)) {
471 case UPB_TYPE_BOOL:
472 case UPB_TYPE_INT32:
473 case UPB_TYPE_UINT32:
474 case UPB_TYPE_ENUM:
475 case UPB_TYPE_FLOAT:
476 case UPB_TYPE_INT64:
477 case UPB_TYPE_UINT64:
478 case UPB_TYPE_DOUBLE:
479 upb_shim_set(h, f, offset, -1);
480 break;
481 case UPB_TYPE_STRING:
482 case UPB_TYPE_BYTES: {
483 bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
484 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
485 upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset));
486 upb_handlers_setstartstr(h, f,
487 is_bytes ? bytes_handler : str_handler,
488 &attr);
489 upb_handlers_setstring(h, f, stringdata_handler, &attr);
490 upb_handlers_setendstr(h, f, stringdata_end_handler, &attr);
491 upb_handlerattr_uninit(&attr);
492 break;
493 }
494 case UPB_TYPE_MESSAGE: {
495 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
496 upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, offset, f));
497 upb_handlers_setstartsubmsg(h, f, submsg_handler, &attr);
498 upb_handlerattr_uninit(&attr);
499 break;
500 }
501 }
502 }
503
504 // Adds handlers to a map field.
add_handlers_for_mapfield(upb_handlers * h,const upb_fielddef * fielddef,size_t offset,Descriptor * desc)505 static void add_handlers_for_mapfield(upb_handlers* h,
506 const upb_fielddef* fielddef,
507 size_t offset,
508 Descriptor* desc) {
509 const upb_msgdef* map_msgdef = upb_fielddef_msgsubdef(fielddef);
510 map_handlerdata_t* hd = new_map_handlerdata(offset, map_msgdef, desc);
511 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
512
513 upb_handlers_addcleanup(h, hd, xfree);
514 upb_handlerattr_sethandlerdata(&attr, hd);
515 upb_handlers_setstartsubmsg(h, fielddef, startmapentry_handler, &attr);
516 upb_handlerattr_uninit(&attr);
517 }
518
519 // Adds handlers to a map-entry msgdef.
add_handlers_for_mapentry(const upb_msgdef * msgdef,upb_handlers * h,Descriptor * desc)520 static void add_handlers_for_mapentry(const upb_msgdef* msgdef,
521 upb_handlers* h,
522 Descriptor* desc) {
523 const upb_fielddef* key_field = map_entry_key(msgdef);
524 const upb_fielddef* value_field = map_entry_value(msgdef);
525 map_handlerdata_t* hd = new_map_handlerdata(0, msgdef, desc);
526 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
527
528 upb_handlers_addcleanup(h, hd, xfree);
529 upb_handlerattr_sethandlerdata(&attr, hd);
530 upb_handlers_setendmsg(h, endmap_handler, &attr);
531
532 add_handlers_for_singular_field(
533 h, key_field,
534 offsetof(map_parse_frame_t, key_storage));
535 add_handlers_for_singular_field(
536 h, value_field,
537 offsetof(map_parse_frame_t, value_storage));
538 }
539
540 // Set up handlers for a oneof field.
add_handlers_for_oneof_field(upb_handlers * h,const upb_fielddef * f,size_t offset,size_t oneof_case_offset)541 static void add_handlers_for_oneof_field(upb_handlers *h,
542 const upb_fielddef *f,
543 size_t offset,
544 size_t oneof_case_offset) {
545
546 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
547 upb_handlerattr_sethandlerdata(
548 &attr, newoneofhandlerdata(h, offset, oneof_case_offset, f));
549
550 switch (upb_fielddef_type(f)) {
551
552 #define SET_HANDLER(utype, ltype) \
553 case utype: \
554 upb_handlers_set##ltype(h, f, oneof##ltype##_handler, &attr); \
555 break;
556
557 SET_HANDLER(UPB_TYPE_BOOL, bool);
558 SET_HANDLER(UPB_TYPE_INT32, int32);
559 SET_HANDLER(UPB_TYPE_UINT32, uint32);
560 SET_HANDLER(UPB_TYPE_ENUM, int32);
561 SET_HANDLER(UPB_TYPE_FLOAT, float);
562 SET_HANDLER(UPB_TYPE_INT64, int64);
563 SET_HANDLER(UPB_TYPE_UINT64, uint64);
564 SET_HANDLER(UPB_TYPE_DOUBLE, double);
565
566 #undef SET_HANDLER
567
568 case UPB_TYPE_STRING:
569 case UPB_TYPE_BYTES: {
570 bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
571 upb_handlers_setstartstr(h, f, is_bytes ?
572 oneofbytes_handler : oneofstr_handler,
573 &attr);
574 upb_handlers_setstring(h, f, stringdata_handler, NULL);
575 upb_handlers_setendstr(h, f, oneofstring_end_handler, &attr);
576 break;
577 }
578 case UPB_TYPE_MESSAGE: {
579 upb_handlers_setstartsubmsg(h, f, oneofsubmsg_handler, &attr);
580 break;
581 }
582 }
583
584 upb_handlerattr_uninit(&attr);
585 }
586
587
add_handlers_for_message(const void * closure,upb_handlers * h)588 static void add_handlers_for_message(const void *closure, upb_handlers *h) {
589 const upb_msgdef* msgdef = upb_handlers_msgdef(h);
590 Descriptor* desc = ruby_to_Descriptor(get_def_obj((void*)msgdef));
591 upb_msg_field_iter i;
592
593 // If this is a mapentry message type, set up a special set of handlers and
594 // bail out of the normal (user-defined) message type handling.
595 if (upb_msgdef_mapentry(msgdef)) {
596 add_handlers_for_mapentry(msgdef, h, desc);
597 return;
598 }
599
600 // Ensure layout exists. We may be invoked to create handlers for a given
601 // message if we are included as a submsg of another message type before our
602 // class is actually built, so to work around this, we just create the layout
603 // (and handlers, in the class-building function) on-demand.
604 if (desc->layout == NULL) {
605 desc->layout = create_layout(desc->msgdef);
606 }
607
608 for (upb_msg_field_begin(&i, desc->msgdef);
609 !upb_msg_field_done(&i);
610 upb_msg_field_next(&i)) {
611 const upb_fielddef *f = upb_msg_iter_field(&i);
612 size_t offset = desc->layout->fields[upb_fielddef_index(f)].offset +
613 sizeof(MessageHeader);
614
615 if (upb_fielddef_containingoneof(f)) {
616 size_t oneof_case_offset =
617 desc->layout->fields[upb_fielddef_index(f)].case_offset +
618 sizeof(MessageHeader);
619 add_handlers_for_oneof_field(h, f, offset, oneof_case_offset);
620 } else if (is_map_field(f)) {
621 add_handlers_for_mapfield(h, f, offset, desc);
622 } else if (upb_fielddef_isseq(f)) {
623 add_handlers_for_repeated_field(h, f, offset);
624 } else {
625 add_handlers_for_singular_field(h, f, offset);
626 }
627 }
628 }
629
630 // Creates upb handlers for populating a message.
new_fill_handlers(Descriptor * desc,const void * owner)631 static const upb_handlers *new_fill_handlers(Descriptor* desc,
632 const void* owner) {
633 // TODO(cfallin, haberman): once upb gets a caching/memoization layer for
634 // handlers, reuse subdef handlers so that e.g. if we already parse
635 // B-with-field-of-type-C, we don't have to rebuild the whole hierarchy to
636 // parse A-with-field-of-type-B-with-field-of-type-C.
637 return upb_handlers_newfrozen(desc->msgdef, owner,
638 add_handlers_for_message, NULL);
639 }
640
641 // Constructs the handlers for filling a message's data into an in-memory
642 // object.
get_fill_handlers(Descriptor * desc)643 const upb_handlers* get_fill_handlers(Descriptor* desc) {
644 if (!desc->fill_handlers) {
645 desc->fill_handlers =
646 new_fill_handlers(desc, &desc->fill_handlers);
647 }
648 return desc->fill_handlers;
649 }
650
651 // Constructs the upb decoder method for parsing messages of this type.
652 // This is called from the message class creation code.
new_fillmsg_decodermethod(Descriptor * desc,const void * owner)653 const upb_pbdecodermethod *new_fillmsg_decodermethod(Descriptor* desc,
654 const void* owner) {
655 const upb_handlers* handlers = get_fill_handlers(desc);
656 upb_pbdecodermethodopts opts;
657 upb_pbdecodermethodopts_init(&opts, handlers);
658
659 return upb_pbdecodermethod_new(&opts, owner);
660 }
661
msgdef_decodermethod(Descriptor * desc)662 static const upb_pbdecodermethod *msgdef_decodermethod(Descriptor* desc) {
663 if (desc->fill_method == NULL) {
664 desc->fill_method = new_fillmsg_decodermethod(
665 desc, &desc->fill_method);
666 }
667 return desc->fill_method;
668 }
669
msgdef_jsonparsermethod(Descriptor * desc)670 static const upb_json_parsermethod *msgdef_jsonparsermethod(Descriptor* desc) {
671 if (desc->json_fill_method == NULL) {
672 desc->json_fill_method =
673 upb_json_parsermethod_new(desc->msgdef, &desc->json_fill_method);
674 }
675 return desc->json_fill_method;
676 }
677
678
679 // Stack-allocated context during an encode/decode operation. Contains the upb
680 // environment and its stack-based allocator, an initial buffer for allocations
681 // to avoid malloc() when possible, and a template for Ruby exception messages
682 // if any error occurs.
683 #define STACK_ENV_STACKBYTES 4096
684 typedef struct {
685 upb_env env;
686 const char* ruby_error_template;
687 char allocbuf[STACK_ENV_STACKBYTES];
688 } stackenv;
689
690 static void stackenv_init(stackenv* se, const char* errmsg);
691 static void stackenv_uninit(stackenv* se);
692
693 // Callback invoked by upb if any error occurs during parsing or serialization.
env_error_func(void * ud,const upb_status * status)694 static bool env_error_func(void* ud, const upb_status* status) {
695 stackenv* se = ud;
696 // Free the env -- rb_raise will longjmp up the stack past the encode/decode
697 // function so it would not otherwise have been freed.
698 stackenv_uninit(se);
699
700 // TODO(haberman): have a way to verify that this is actually a parse error,
701 // instead of just throwing "parse error" unconditionally.
702 rb_raise(cParseError, se->ruby_error_template, upb_status_errmsg(status));
703 // Never reached: rb_raise() always longjmp()s up the stack, past all of our
704 // code, back to Ruby.
705 return false;
706 }
707
stackenv_init(stackenv * se,const char * errmsg)708 static void stackenv_init(stackenv* se, const char* errmsg) {
709 se->ruby_error_template = errmsg;
710 upb_env_init2(&se->env, se->allocbuf, sizeof(se->allocbuf), NULL);
711 upb_env_seterrorfunc(&se->env, env_error_func, se);
712 }
713
stackenv_uninit(stackenv * se)714 static void stackenv_uninit(stackenv* se) {
715 upb_env_uninit(&se->env);
716 }
717
718 /*
719 * call-seq:
720 * MessageClass.decode(data) => message
721 *
722 * Decodes the given data (as a string containing bytes in protocol buffers wire
723 * format) under the interpretration given by this message class's definition
724 * and returns a message object with the corresponding field values.
725 */
Message_decode(VALUE klass,VALUE data)726 VALUE Message_decode(VALUE klass, VALUE data) {
727 VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
728 Descriptor* desc = ruby_to_Descriptor(descriptor);
729 VALUE msgklass = Descriptor_msgclass(descriptor);
730 VALUE msg_rb;
731 MessageHeader* msg;
732
733 if (TYPE(data) != T_STRING) {
734 rb_raise(rb_eArgError, "Expected string for binary protobuf data.");
735 }
736
737 msg_rb = rb_class_new_instance(0, NULL, msgklass);
738 TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
739
740 {
741 const upb_pbdecodermethod* method = msgdef_decodermethod(desc);
742 const upb_handlers* h = upb_pbdecodermethod_desthandlers(method);
743 stackenv se;
744 upb_sink sink;
745 upb_pbdecoder* decoder;
746 stackenv_init(&se, "Error occurred during parsing: %s");
747
748 upb_sink_reset(&sink, h, msg);
749 decoder = upb_pbdecoder_create(&se.env, method, &sink);
750 upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data),
751 upb_pbdecoder_input(decoder));
752
753 stackenv_uninit(&se);
754 }
755
756 return msg_rb;
757 }
758
759 /*
760 * call-seq:
761 * MessageClass.decode_json(data) => message
762 *
763 * Decodes the given data (as a string containing bytes in protocol buffers wire
764 * format) under the interpretration given by this message class's definition
765 * and returns a message object with the corresponding field values.
766 */
Message_decode_json(VALUE klass,VALUE data)767 VALUE Message_decode_json(VALUE klass, VALUE data) {
768 VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
769 Descriptor* desc = ruby_to_Descriptor(descriptor);
770 VALUE msgklass = Descriptor_msgclass(descriptor);
771 VALUE msg_rb;
772 MessageHeader* msg;
773
774 if (TYPE(data) != T_STRING) {
775 rb_raise(rb_eArgError, "Expected string for JSON data.");
776 }
777 // TODO(cfallin): Check and respect string encoding. If not UTF-8, we need to
778 // convert, because string handlers pass data directly to message string
779 // fields.
780
781 msg_rb = rb_class_new_instance(0, NULL, msgklass);
782 TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
783
784 {
785 const upb_json_parsermethod* method = msgdef_jsonparsermethod(desc);
786 stackenv se;
787 upb_sink sink;
788 upb_json_parser* parser;
789 stackenv_init(&se, "Error occurred during parsing: %s");
790
791 upb_sink_reset(&sink, get_fill_handlers(desc), msg);
792 parser = upb_json_parser_create(&se.env, method, &sink);
793 upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data),
794 upb_json_parser_input(parser));
795
796 stackenv_uninit(&se);
797 }
798
799 return msg_rb;
800 }
801
802 // -----------------------------------------------------------------------------
803 // Serializing.
804 // -----------------------------------------------------------------------------
805 //
806 // The code below also comes from upb's prototype Ruby binding, developed by
807 // haberman@.
808
809 /* stringsink *****************************************************************/
810
811 // This should probably be factored into a common upb component.
812
813 typedef struct {
814 upb_byteshandler handler;
815 upb_bytessink sink;
816 char *ptr;
817 size_t len, size;
818 } stringsink;
819
stringsink_start(void * _sink,const void * hd,size_t size_hint)820 static void *stringsink_start(void *_sink, const void *hd, size_t size_hint) {
821 stringsink *sink = _sink;
822 sink->len = 0;
823 return sink;
824 }
825
stringsink_string(void * _sink,const void * hd,const char * ptr,size_t len,const upb_bufhandle * handle)826 static size_t stringsink_string(void *_sink, const void *hd, const char *ptr,
827 size_t len, const upb_bufhandle *handle) {
828 stringsink *sink = _sink;
829 size_t new_size = sink->size;
830
831 UPB_UNUSED(hd);
832 UPB_UNUSED(handle);
833
834 while (sink->len + len > new_size) {
835 new_size *= 2;
836 }
837
838 if (new_size != sink->size) {
839 sink->ptr = realloc(sink->ptr, new_size);
840 sink->size = new_size;
841 }
842
843 memcpy(sink->ptr + sink->len, ptr, len);
844 sink->len += len;
845
846 return len;
847 }
848
stringsink_init(stringsink * sink)849 void stringsink_init(stringsink *sink) {
850 upb_byteshandler_init(&sink->handler);
851 upb_byteshandler_setstartstr(&sink->handler, stringsink_start, NULL);
852 upb_byteshandler_setstring(&sink->handler, stringsink_string, NULL);
853
854 upb_bytessink_reset(&sink->sink, &sink->handler, sink);
855
856 sink->size = 32;
857 sink->ptr = malloc(sink->size);
858 sink->len = 0;
859 }
860
stringsink_uninit(stringsink * sink)861 void stringsink_uninit(stringsink *sink) {
862 free(sink->ptr);
863 }
864
865 /* msgvisitor *****************************************************************/
866
867 // TODO: If/when we support proto2 semantics in addition to the current proto3
868 // semantics, which means that we have true field presence, we will want to
869 // modify msgvisitor so that it emits all present fields rather than all
870 // non-default-value fields.
871 //
872 // Likewise, when implementing JSON serialization, we may need to have a
873 // 'verbose' mode that outputs all fields and a 'concise' mode that outputs only
874 // those with non-default values.
875
876 static void putmsg(VALUE msg, const Descriptor* desc,
877 upb_sink *sink, int depth);
878
getsel(const upb_fielddef * f,upb_handlertype_t type)879 static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) {
880 upb_selector_t ret;
881 bool ok = upb_handlers_getselector(f, type, &ret);
882 UPB_ASSERT_VAR(ok, ok);
883 return ret;
884 }
885
putstr(VALUE str,const upb_fielddef * f,upb_sink * sink)886 static void putstr(VALUE str, const upb_fielddef *f, upb_sink *sink) {
887 upb_sink subsink;
888
889 if (str == Qnil) return;
890
891 assert(BUILTIN_TYPE(str) == RUBY_T_STRING);
892
893 // We should be guaranteed that the string has the correct encoding because
894 // we ensured this at assignment time and then froze the string.
895 if (upb_fielddef_type(f) == UPB_TYPE_STRING) {
896 assert(rb_enc_from_index(ENCODING_GET(value)) == kRubyStringUtf8Encoding);
897 } else {
898 assert(rb_enc_from_index(ENCODING_GET(value)) == kRubyString8bitEncoding);
899 }
900
901 upb_sink_startstr(sink, getsel(f, UPB_HANDLER_STARTSTR), RSTRING_LEN(str),
902 &subsink);
903 upb_sink_putstring(&subsink, getsel(f, UPB_HANDLER_STRING), RSTRING_PTR(str),
904 RSTRING_LEN(str), NULL);
905 upb_sink_endstr(sink, getsel(f, UPB_HANDLER_ENDSTR));
906 }
907
putsubmsg(VALUE submsg,const upb_fielddef * f,upb_sink * sink,int depth)908 static void putsubmsg(VALUE submsg, const upb_fielddef *f, upb_sink *sink,
909 int depth) {
910 upb_sink subsink;
911 VALUE descriptor;
912 Descriptor* subdesc;
913
914 if (submsg == Qnil) return;
915
916 descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
917 subdesc = ruby_to_Descriptor(descriptor);
918
919 upb_sink_startsubmsg(sink, getsel(f, UPB_HANDLER_STARTSUBMSG), &subsink);
920 putmsg(submsg, subdesc, &subsink, depth + 1);
921 upb_sink_endsubmsg(sink, getsel(f, UPB_HANDLER_ENDSUBMSG));
922 }
923
putary(VALUE ary,const upb_fielddef * f,upb_sink * sink,int depth)924 static void putary(VALUE ary, const upb_fielddef *f, upb_sink *sink,
925 int depth) {
926 upb_sink subsink;
927 upb_fieldtype_t type = upb_fielddef_type(f);
928 upb_selector_t sel = 0;
929 int size;
930
931 if (ary == Qnil) return;
932
933 upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
934
935 if (upb_fielddef_isprimitive(f)) {
936 sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
937 }
938
939 size = NUM2INT(RepeatedField_length(ary));
940 for (int i = 0; i < size; i++) {
941 void* memory = RepeatedField_index_native(ary, i);
942 switch (type) {
943 #define T(upbtypeconst, upbtype, ctype) \
944 case upbtypeconst: \
945 upb_sink_put##upbtype(&subsink, sel, *((ctype *)memory)); \
946 break;
947
948 T(UPB_TYPE_FLOAT, float, float)
949 T(UPB_TYPE_DOUBLE, double, double)
950 T(UPB_TYPE_BOOL, bool, int8_t)
951 case UPB_TYPE_ENUM:
952 T(UPB_TYPE_INT32, int32, int32_t)
953 T(UPB_TYPE_UINT32, uint32, uint32_t)
954 T(UPB_TYPE_INT64, int64, int64_t)
955 T(UPB_TYPE_UINT64, uint64, uint64_t)
956
957 case UPB_TYPE_STRING:
958 case UPB_TYPE_BYTES:
959 putstr(*((VALUE *)memory), f, &subsink);
960 break;
961 case UPB_TYPE_MESSAGE:
962 putsubmsg(*((VALUE *)memory), f, &subsink, depth);
963 break;
964
965 #undef T
966
967 }
968 }
969 upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
970 }
971
put_ruby_value(VALUE value,const upb_fielddef * f,VALUE type_class,int depth,upb_sink * sink)972 static void put_ruby_value(VALUE value,
973 const upb_fielddef *f,
974 VALUE type_class,
975 int depth,
976 upb_sink *sink) {
977 upb_selector_t sel = 0;
978 if (upb_fielddef_isprimitive(f)) {
979 sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
980 }
981
982 switch (upb_fielddef_type(f)) {
983 case UPB_TYPE_INT32:
984 upb_sink_putint32(sink, sel, NUM2INT(value));
985 break;
986 case UPB_TYPE_INT64:
987 upb_sink_putint64(sink, sel, NUM2LL(value));
988 break;
989 case UPB_TYPE_UINT32:
990 upb_sink_putuint32(sink, sel, NUM2UINT(value));
991 break;
992 case UPB_TYPE_UINT64:
993 upb_sink_putuint64(sink, sel, NUM2ULL(value));
994 break;
995 case UPB_TYPE_FLOAT:
996 upb_sink_putfloat(sink, sel, NUM2DBL(value));
997 break;
998 case UPB_TYPE_DOUBLE:
999 upb_sink_putdouble(sink, sel, NUM2DBL(value));
1000 break;
1001 case UPB_TYPE_ENUM: {
1002 if (TYPE(value) == T_SYMBOL) {
1003 value = rb_funcall(type_class, rb_intern("resolve"), 1, value);
1004 }
1005 upb_sink_putint32(sink, sel, NUM2INT(value));
1006 break;
1007 }
1008 case UPB_TYPE_BOOL:
1009 upb_sink_putbool(sink, sel, value == Qtrue);
1010 break;
1011 case UPB_TYPE_STRING:
1012 case UPB_TYPE_BYTES:
1013 putstr(value, f, sink);
1014 break;
1015 case UPB_TYPE_MESSAGE:
1016 putsubmsg(value, f, sink, depth);
1017 }
1018 }
1019
putmap(VALUE map,const upb_fielddef * f,upb_sink * sink,int depth)1020 static void putmap(VALUE map, const upb_fielddef *f, upb_sink *sink,
1021 int depth) {
1022 Map* self;
1023 upb_sink subsink;
1024 const upb_fielddef* key_field;
1025 const upb_fielddef* value_field;
1026 Map_iter it;
1027
1028 if (map == Qnil) return;
1029 self = ruby_to_Map(map);
1030
1031 upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
1032
1033 assert(upb_fielddef_type(f) == UPB_TYPE_MESSAGE);
1034 key_field = map_field_key(f);
1035 value_field = map_field_value(f);
1036
1037 for (Map_begin(map, &it); !Map_done(&it); Map_next(&it)) {
1038 VALUE key = Map_iter_key(&it);
1039 VALUE value = Map_iter_value(&it);
1040 upb_status status;
1041
1042 upb_sink entry_sink;
1043 upb_sink_startsubmsg(&subsink, getsel(f, UPB_HANDLER_STARTSUBMSG),
1044 &entry_sink);
1045 upb_sink_startmsg(&entry_sink);
1046
1047 put_ruby_value(key, key_field, Qnil, depth + 1, &entry_sink);
1048 put_ruby_value(value, value_field, self->value_type_class, depth + 1,
1049 &entry_sink);
1050
1051 upb_sink_endmsg(&entry_sink, &status);
1052 upb_sink_endsubmsg(&subsink, getsel(f, UPB_HANDLER_ENDSUBMSG));
1053 }
1054
1055 upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
1056 }
1057
putmsg(VALUE msg_rb,const Descriptor * desc,upb_sink * sink,int depth)1058 static void putmsg(VALUE msg_rb, const Descriptor* desc,
1059 upb_sink *sink, int depth) {
1060 MessageHeader* msg;
1061 upb_msg_field_iter i;
1062 upb_status status;
1063
1064 upb_sink_startmsg(sink);
1065
1066 // Protect against cycles (possible because users may freely reassign message
1067 // and repeated fields) by imposing a maximum recursion depth.
1068 if (depth > ENCODE_MAX_NESTING) {
1069 rb_raise(rb_eRuntimeError,
1070 "Maximum recursion depth exceeded during encoding.");
1071 }
1072
1073 TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
1074
1075 for (upb_msg_field_begin(&i, desc->msgdef);
1076 !upb_msg_field_done(&i);
1077 upb_msg_field_next(&i)) {
1078 upb_fielddef *f = upb_msg_iter_field(&i);
1079 bool is_matching_oneof = false;
1080 uint32_t offset =
1081 desc->layout->fields[upb_fielddef_index(f)].offset +
1082 sizeof(MessageHeader);
1083
1084 if (upb_fielddef_containingoneof(f)) {
1085 uint32_t oneof_case_offset =
1086 desc->layout->fields[upb_fielddef_index(f)].case_offset +
1087 sizeof(MessageHeader);
1088 // For a oneof, check that this field is actually present -- skip all the
1089 // below if not.
1090 if (DEREF(msg, oneof_case_offset, uint32_t) !=
1091 upb_fielddef_number(f)) {
1092 continue;
1093 }
1094 // Otherwise, fall through to the appropriate singular-field handler
1095 // below.
1096 is_matching_oneof = true;
1097 }
1098
1099 if (is_map_field(f)) {
1100 VALUE map = DEREF(msg, offset, VALUE);
1101 if (map != Qnil) {
1102 putmap(map, f, sink, depth);
1103 }
1104 } else if (upb_fielddef_isseq(f)) {
1105 VALUE ary = DEREF(msg, offset, VALUE);
1106 if (ary != Qnil) {
1107 putary(ary, f, sink, depth);
1108 }
1109 } else if (upb_fielddef_isstring(f)) {
1110 VALUE str = DEREF(msg, offset, VALUE);
1111 if (is_matching_oneof || RSTRING_LEN(str) > 0) {
1112 putstr(str, f, sink);
1113 }
1114 } else if (upb_fielddef_issubmsg(f)) {
1115 putsubmsg(DEREF(msg, offset, VALUE), f, sink, depth);
1116 } else {
1117 upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
1118
1119 #define T(upbtypeconst, upbtype, ctype, default_value) \
1120 case upbtypeconst: { \
1121 ctype value = DEREF(msg, offset, ctype); \
1122 if (is_matching_oneof || value != default_value) { \
1123 upb_sink_put##upbtype(sink, sel, value); \
1124 } \
1125 } \
1126 break;
1127
1128 switch (upb_fielddef_type(f)) {
1129 T(UPB_TYPE_FLOAT, float, float, 0.0)
1130 T(UPB_TYPE_DOUBLE, double, double, 0.0)
1131 T(UPB_TYPE_BOOL, bool, uint8_t, 0)
1132 case UPB_TYPE_ENUM:
1133 T(UPB_TYPE_INT32, int32, int32_t, 0)
1134 T(UPB_TYPE_UINT32, uint32, uint32_t, 0)
1135 T(UPB_TYPE_INT64, int64, int64_t, 0)
1136 T(UPB_TYPE_UINT64, uint64, uint64_t, 0)
1137
1138 case UPB_TYPE_STRING:
1139 case UPB_TYPE_BYTES:
1140 case UPB_TYPE_MESSAGE: rb_raise(rb_eRuntimeError, "Internal error.");
1141 }
1142
1143 #undef T
1144
1145 }
1146 }
1147
1148 upb_sink_endmsg(sink, &status);
1149 }
1150
msgdef_pb_serialize_handlers(Descriptor * desc)1151 static const upb_handlers* msgdef_pb_serialize_handlers(Descriptor* desc) {
1152 if (desc->pb_serialize_handlers == NULL) {
1153 desc->pb_serialize_handlers =
1154 upb_pb_encoder_newhandlers(desc->msgdef, &desc->pb_serialize_handlers);
1155 }
1156 return desc->pb_serialize_handlers;
1157 }
1158
msgdef_json_serialize_handlers(Descriptor * desc,bool preserve_proto_fieldnames)1159 static const upb_handlers* msgdef_json_serialize_handlers(
1160 Descriptor* desc, bool preserve_proto_fieldnames) {
1161 if (preserve_proto_fieldnames) {
1162 if (desc->json_serialize_handlers == NULL) {
1163 desc->json_serialize_handlers =
1164 upb_json_printer_newhandlers(
1165 desc->msgdef, true, &desc->json_serialize_handlers);
1166 }
1167 return desc->json_serialize_handlers;
1168 } else {
1169 if (desc->json_serialize_handlers_preserve == NULL) {
1170 desc->json_serialize_handlers_preserve =
1171 upb_json_printer_newhandlers(
1172 desc->msgdef, false, &desc->json_serialize_handlers_preserve);
1173 }
1174 return desc->json_serialize_handlers_preserve;
1175 }
1176 }
1177
1178 /*
1179 * call-seq:
1180 * MessageClass.encode(msg) => bytes
1181 *
1182 * Encodes the given message object to its serialized form in protocol buffers
1183 * wire format.
1184 */
Message_encode(VALUE klass,VALUE msg_rb)1185 VALUE Message_encode(VALUE klass, VALUE msg_rb) {
1186 VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
1187 Descriptor* desc = ruby_to_Descriptor(descriptor);
1188
1189 stringsink sink;
1190 stringsink_init(&sink);
1191
1192 {
1193 const upb_handlers* serialize_handlers =
1194 msgdef_pb_serialize_handlers(desc);
1195
1196 stackenv se;
1197 upb_pb_encoder* encoder;
1198 VALUE ret;
1199
1200 stackenv_init(&se, "Error occurred during encoding: %s");
1201 encoder = upb_pb_encoder_create(&se.env, serialize_handlers, &sink.sink);
1202
1203 putmsg(msg_rb, desc, upb_pb_encoder_input(encoder), 0);
1204
1205 ret = rb_str_new(sink.ptr, sink.len);
1206
1207 stackenv_uninit(&se);
1208 stringsink_uninit(&sink);
1209
1210 return ret;
1211 }
1212 }
1213
1214 /*
1215 * call-seq:
1216 * MessageClass.encode_json(msg) => json_string
1217 *
1218 * Encodes the given message object into its serialized JSON representation.
1219 */
Message_encode_json(int argc,VALUE * argv,VALUE klass)1220 VALUE Message_encode_json(int argc, VALUE* argv, VALUE klass) {
1221 VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
1222 Descriptor* desc = ruby_to_Descriptor(descriptor);
1223 VALUE msg_rb;
1224 VALUE preserve_proto_fieldnames = Qfalse;
1225 stringsink sink;
1226
1227 if (argc < 1 || argc > 2) {
1228 rb_raise(rb_eArgError, "Expected 1 or 2 arguments.");
1229 }
1230
1231 msg_rb = argv[0];
1232
1233 if (argc == 2) {
1234 VALUE hash_args = argv[1];
1235 if (TYPE(hash_args) != T_HASH) {
1236 rb_raise(rb_eArgError, "Expected hash arguments.");
1237 }
1238 preserve_proto_fieldnames = rb_hash_lookup2(
1239 hash_args, ID2SYM(rb_intern("preserve_proto_fieldnames")), Qfalse);
1240 }
1241
1242 stringsink_init(&sink);
1243
1244 {
1245 const upb_handlers* serialize_handlers =
1246 msgdef_json_serialize_handlers(desc, RTEST(preserve_proto_fieldnames));
1247 upb_json_printer* printer;
1248 stackenv se;
1249 VALUE ret;
1250
1251 stackenv_init(&se, "Error occurred during encoding: %s");
1252 printer = upb_json_printer_create(&se.env, serialize_handlers, &sink.sink);
1253
1254 putmsg(msg_rb, desc, upb_json_printer_input(printer), 0);
1255
1256 ret = rb_enc_str_new(sink.ptr, sink.len, rb_utf8_encoding());
1257
1258 stackenv_uninit(&se);
1259 stringsink_uninit(&sink);
1260
1261 return ret;
1262 }
1263 }
1264
1265