1// Copyright 2009 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5// Linux system calls. 6// This file is compiled as ordinary Go code, 7// but it is also input to mksyscall, 8// which parses the //sys lines and generates system call stubs. 9// Note that sometimes we use a lowercase //sys name and 10// wrap it in our own nicer implementation. 11 12package unix 13 14import ( 15 "syscall" 16 "unsafe" 17) 18 19/* 20 * Wrapped 21 */ 22 23func Access(path string, mode uint32) (err error) { 24 return Faccessat(AT_FDCWD, path, mode, 0) 25} 26 27func Chmod(path string, mode uint32) (err error) { 28 return Fchmodat(AT_FDCWD, path, mode, 0) 29} 30 31func Chown(path string, uid int, gid int) (err error) { 32 return Fchownat(AT_FDCWD, path, uid, gid, 0) 33} 34 35func Creat(path string, mode uint32) (fd int, err error) { 36 return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode) 37} 38 39//sys fchmodat(dirfd int, path string, mode uint32) (err error) 40 41func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) { 42 // Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior 43 // and check the flags. Otherwise the mode would be applied to the symlink 44 // destination which is not what the user expects. 45 if flags&^AT_SYMLINK_NOFOLLOW != 0 { 46 return EINVAL 47 } else if flags&AT_SYMLINK_NOFOLLOW != 0 { 48 return EOPNOTSUPP 49 } 50 return fchmodat(dirfd, path, mode) 51} 52 53//sys ioctl(fd int, req uint, arg uintptr) (err error) 54 55// ioctl itself should not be exposed directly, but additional get/set 56// functions for specific types are permissible. 57 58// IoctlSetInt performs an ioctl operation which sets an integer value 59// on fd, using the specified request number. 60func IoctlSetInt(fd int, req uint, value int) error { 61 return ioctl(fd, req, uintptr(value)) 62} 63 64func IoctlSetWinsize(fd int, req uint, value *Winsize) error { 65 return ioctl(fd, req, uintptr(unsafe.Pointer(value))) 66} 67 68func IoctlSetTermios(fd int, req uint, value *Termios) error { 69 return ioctl(fd, req, uintptr(unsafe.Pointer(value))) 70} 71 72// IoctlGetInt performs an ioctl operation which gets an integer value 73// from fd, using the specified request number. 74func IoctlGetInt(fd int, req uint) (int, error) { 75 var value int 76 err := ioctl(fd, req, uintptr(unsafe.Pointer(&value))) 77 return value, err 78} 79 80func IoctlGetWinsize(fd int, req uint) (*Winsize, error) { 81 var value Winsize 82 err := ioctl(fd, req, uintptr(unsafe.Pointer(&value))) 83 return &value, err 84} 85 86func IoctlGetTermios(fd int, req uint) (*Termios, error) { 87 var value Termios 88 err := ioctl(fd, req, uintptr(unsafe.Pointer(&value))) 89 return &value, err 90} 91 92//sys Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error) 93 94func Link(oldpath string, newpath string) (err error) { 95 return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0) 96} 97 98func Mkdir(path string, mode uint32) (err error) { 99 return Mkdirat(AT_FDCWD, path, mode) 100} 101 102func Mknod(path string, mode uint32, dev int) (err error) { 103 return Mknodat(AT_FDCWD, path, mode, dev) 104} 105 106func Open(path string, mode int, perm uint32) (fd int, err error) { 107 return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm) 108} 109 110//sys openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) 111 112func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) { 113 return openat(dirfd, path, flags|O_LARGEFILE, mode) 114} 115 116//sys ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error) 117 118func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) { 119 if len(fds) == 0 { 120 return ppoll(nil, 0, timeout, sigmask) 121 } 122 return ppoll(&fds[0], len(fds), timeout, sigmask) 123} 124 125//sys Readlinkat(dirfd int, path string, buf []byte) (n int, err error) 126 127func Readlink(path string, buf []byte) (n int, err error) { 128 return Readlinkat(AT_FDCWD, path, buf) 129} 130 131func Rename(oldpath string, newpath string) (err error) { 132 return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath) 133} 134 135func Rmdir(path string) error { 136 return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR) 137} 138 139//sys Symlinkat(oldpath string, newdirfd int, newpath string) (err error) 140 141func Symlink(oldpath string, newpath string) (err error) { 142 return Symlinkat(oldpath, AT_FDCWD, newpath) 143} 144 145func Unlink(path string) error { 146 return Unlinkat(AT_FDCWD, path, 0) 147} 148 149//sys Unlinkat(dirfd int, path string, flags int) (err error) 150 151func Utimes(path string, tv []Timeval) error { 152 if tv == nil { 153 err := utimensat(AT_FDCWD, path, nil, 0) 154 if err != ENOSYS { 155 return err 156 } 157 return utimes(path, nil) 158 } 159 if len(tv) != 2 { 160 return EINVAL 161 } 162 var ts [2]Timespec 163 ts[0] = NsecToTimespec(TimevalToNsec(tv[0])) 164 ts[1] = NsecToTimespec(TimevalToNsec(tv[1])) 165 err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0) 166 if err != ENOSYS { 167 return err 168 } 169 return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0]))) 170} 171 172//sys utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error) 173 174func UtimesNano(path string, ts []Timespec) error { 175 if ts == nil { 176 err := utimensat(AT_FDCWD, path, nil, 0) 177 if err != ENOSYS { 178 return err 179 } 180 return utimes(path, nil) 181 } 182 if len(ts) != 2 { 183 return EINVAL 184 } 185 err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0) 186 if err != ENOSYS { 187 return err 188 } 189 // If the utimensat syscall isn't available (utimensat was added to Linux 190 // in 2.6.22, Released, 8 July 2007) then fall back to utimes 191 var tv [2]Timeval 192 for i := 0; i < 2; i++ { 193 tv[i] = NsecToTimeval(TimespecToNsec(ts[i])) 194 } 195 return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0]))) 196} 197 198func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error { 199 if ts == nil { 200 return utimensat(dirfd, path, nil, flags) 201 } 202 if len(ts) != 2 { 203 return EINVAL 204 } 205 return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags) 206} 207 208func Futimesat(dirfd int, path string, tv []Timeval) error { 209 if tv == nil { 210 return futimesat(dirfd, path, nil) 211 } 212 if len(tv) != 2 { 213 return EINVAL 214 } 215 return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0]))) 216} 217 218func Futimes(fd int, tv []Timeval) (err error) { 219 // Believe it or not, this is the best we can do on Linux 220 // (and is what glibc does). 221 return Utimes("/proc/self/fd/"+itoa(fd), tv) 222} 223 224const ImplementsGetwd = true 225 226//sys Getcwd(buf []byte) (n int, err error) 227 228func Getwd() (wd string, err error) { 229 var buf [PathMax]byte 230 n, err := Getcwd(buf[0:]) 231 if err != nil { 232 return "", err 233 } 234 // Getcwd returns the number of bytes written to buf, including the NUL. 235 if n < 1 || n > len(buf) || buf[n-1] != 0 { 236 return "", EINVAL 237 } 238 return string(buf[0 : n-1]), nil 239} 240 241func Getgroups() (gids []int, err error) { 242 n, err := getgroups(0, nil) 243 if err != nil { 244 return nil, err 245 } 246 if n == 0 { 247 return nil, nil 248 } 249 250 // Sanity check group count. Max is 1<<16 on Linux. 251 if n < 0 || n > 1<<20 { 252 return nil, EINVAL 253 } 254 255 a := make([]_Gid_t, n) 256 n, err = getgroups(n, &a[0]) 257 if err != nil { 258 return nil, err 259 } 260 gids = make([]int, n) 261 for i, v := range a[0:n] { 262 gids[i] = int(v) 263 } 264 return 265} 266 267func Setgroups(gids []int) (err error) { 268 if len(gids) == 0 { 269 return setgroups(0, nil) 270 } 271 272 a := make([]_Gid_t, len(gids)) 273 for i, v := range gids { 274 a[i] = _Gid_t(v) 275 } 276 return setgroups(len(a), &a[0]) 277} 278 279type WaitStatus uint32 280 281// Wait status is 7 bits at bottom, either 0 (exited), 282// 0x7F (stopped), or a signal number that caused an exit. 283// The 0x80 bit is whether there was a core dump. 284// An extra number (exit code, signal causing a stop) 285// is in the high bits. At least that's the idea. 286// There are various irregularities. For example, the 287// "continued" status is 0xFFFF, distinguishing itself 288// from stopped via the core dump bit. 289 290const ( 291 mask = 0x7F 292 core = 0x80 293 exited = 0x00 294 stopped = 0x7F 295 shift = 8 296) 297 298func (w WaitStatus) Exited() bool { return w&mask == exited } 299 300func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited } 301 302func (w WaitStatus) Stopped() bool { return w&0xFF == stopped } 303 304func (w WaitStatus) Continued() bool { return w == 0xFFFF } 305 306func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 } 307 308func (w WaitStatus) ExitStatus() int { 309 if !w.Exited() { 310 return -1 311 } 312 return int(w>>shift) & 0xFF 313} 314 315func (w WaitStatus) Signal() syscall.Signal { 316 if !w.Signaled() { 317 return -1 318 } 319 return syscall.Signal(w & mask) 320} 321 322func (w WaitStatus) StopSignal() syscall.Signal { 323 if !w.Stopped() { 324 return -1 325 } 326 return syscall.Signal(w>>shift) & 0xFF 327} 328 329func (w WaitStatus) TrapCause() int { 330 if w.StopSignal() != SIGTRAP { 331 return -1 332 } 333 return int(w>>shift) >> 8 334} 335 336//sys wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error) 337 338func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) { 339 var status _C_int 340 wpid, err = wait4(pid, &status, options, rusage) 341 if wstatus != nil { 342 *wstatus = WaitStatus(status) 343 } 344 return 345} 346 347func Mkfifo(path string, mode uint32) error { 348 return Mknod(path, mode|S_IFIFO, 0) 349} 350 351func Mkfifoat(dirfd int, path string, mode uint32) error { 352 return Mknodat(dirfd, path, mode|S_IFIFO, 0) 353} 354 355func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) { 356 if sa.Port < 0 || sa.Port > 0xFFFF { 357 return nil, 0, EINVAL 358 } 359 sa.raw.Family = AF_INET 360 p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port)) 361 p[0] = byte(sa.Port >> 8) 362 p[1] = byte(sa.Port) 363 for i := 0; i < len(sa.Addr); i++ { 364 sa.raw.Addr[i] = sa.Addr[i] 365 } 366 return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil 367} 368 369func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) { 370 if sa.Port < 0 || sa.Port > 0xFFFF { 371 return nil, 0, EINVAL 372 } 373 sa.raw.Family = AF_INET6 374 p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port)) 375 p[0] = byte(sa.Port >> 8) 376 p[1] = byte(sa.Port) 377 sa.raw.Scope_id = sa.ZoneId 378 for i := 0; i < len(sa.Addr); i++ { 379 sa.raw.Addr[i] = sa.Addr[i] 380 } 381 return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil 382} 383 384func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) { 385 name := sa.Name 386 n := len(name) 387 if n >= len(sa.raw.Path) { 388 return nil, 0, EINVAL 389 } 390 sa.raw.Family = AF_UNIX 391 for i := 0; i < n; i++ { 392 sa.raw.Path[i] = int8(name[i]) 393 } 394 // length is family (uint16), name, NUL. 395 sl := _Socklen(2) 396 if n > 0 { 397 sl += _Socklen(n) + 1 398 } 399 if sa.raw.Path[0] == '@' { 400 sa.raw.Path[0] = 0 401 // Don't count trailing NUL for abstract address. 402 sl-- 403 } 404 405 return unsafe.Pointer(&sa.raw), sl, nil 406} 407 408// SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets. 409type SockaddrLinklayer struct { 410 Protocol uint16 411 Ifindex int 412 Hatype uint16 413 Pkttype uint8 414 Halen uint8 415 Addr [8]byte 416 raw RawSockaddrLinklayer 417} 418 419func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) { 420 if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff { 421 return nil, 0, EINVAL 422 } 423 sa.raw.Family = AF_PACKET 424 sa.raw.Protocol = sa.Protocol 425 sa.raw.Ifindex = int32(sa.Ifindex) 426 sa.raw.Hatype = sa.Hatype 427 sa.raw.Pkttype = sa.Pkttype 428 sa.raw.Halen = sa.Halen 429 for i := 0; i < len(sa.Addr); i++ { 430 sa.raw.Addr[i] = sa.Addr[i] 431 } 432 return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil 433} 434 435// SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets. 436type SockaddrNetlink struct { 437 Family uint16 438 Pad uint16 439 Pid uint32 440 Groups uint32 441 raw RawSockaddrNetlink 442} 443 444func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) { 445 sa.raw.Family = AF_NETLINK 446 sa.raw.Pad = sa.Pad 447 sa.raw.Pid = sa.Pid 448 sa.raw.Groups = sa.Groups 449 return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil 450} 451 452// SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets 453// using the HCI protocol. 454type SockaddrHCI struct { 455 Dev uint16 456 Channel uint16 457 raw RawSockaddrHCI 458} 459 460func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) { 461 sa.raw.Family = AF_BLUETOOTH 462 sa.raw.Dev = sa.Dev 463 sa.raw.Channel = sa.Channel 464 return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil 465} 466 467// SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets 468// using the L2CAP protocol. 469type SockaddrL2 struct { 470 PSM uint16 471 CID uint16 472 Addr [6]uint8 473 AddrType uint8 474 raw RawSockaddrL2 475} 476 477func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) { 478 sa.raw.Family = AF_BLUETOOTH 479 psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm)) 480 psm[0] = byte(sa.PSM) 481 psm[1] = byte(sa.PSM >> 8) 482 for i := 0; i < len(sa.Addr); i++ { 483 sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i] 484 } 485 cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid)) 486 cid[0] = byte(sa.CID) 487 cid[1] = byte(sa.CID >> 8) 488 sa.raw.Bdaddr_type = sa.AddrType 489 return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil 490} 491 492// SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets. 493// The RxID and TxID fields are used for transport protocol addressing in 494// (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with 495// zero values for CAN_RAW and CAN_BCM sockets as they have no meaning. 496// 497// The SockaddrCAN struct must be bound to the socket file descriptor 498// using Bind before the CAN socket can be used. 499// 500// // Read one raw CAN frame 501// fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW) 502// addr := &SockaddrCAN{Ifindex: index} 503// Bind(fd, addr) 504// frame := make([]byte, 16) 505// Read(fd, frame) 506// 507// The full SocketCAN documentation can be found in the linux kernel 508// archives at: https://www.kernel.org/doc/Documentation/networking/can.txt 509type SockaddrCAN struct { 510 Ifindex int 511 RxID uint32 512 TxID uint32 513 raw RawSockaddrCAN 514} 515 516func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) { 517 if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff { 518 return nil, 0, EINVAL 519 } 520 sa.raw.Family = AF_CAN 521 sa.raw.Ifindex = int32(sa.Ifindex) 522 rx := (*[4]byte)(unsafe.Pointer(&sa.RxID)) 523 for i := 0; i < 4; i++ { 524 sa.raw.Addr[i] = rx[i] 525 } 526 tx := (*[4]byte)(unsafe.Pointer(&sa.TxID)) 527 for i := 0; i < 4; i++ { 528 sa.raw.Addr[i+4] = tx[i] 529 } 530 return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil 531} 532 533// SockaddrALG implements the Sockaddr interface for AF_ALG type sockets. 534// SockaddrALG enables userspace access to the Linux kernel's cryptography 535// subsystem. The Type and Name fields specify which type of hash or cipher 536// should be used with a given socket. 537// 538// To create a file descriptor that provides access to a hash or cipher, both 539// Bind and Accept must be used. Once the setup process is complete, input 540// data can be written to the socket, processed by the kernel, and then read 541// back as hash output or ciphertext. 542// 543// Here is an example of using an AF_ALG socket with SHA1 hashing. 544// The initial socket setup process is as follows: 545// 546// // Open a socket to perform SHA1 hashing. 547// fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0) 548// addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"} 549// unix.Bind(fd, addr) 550// // Note: unix.Accept does not work at this time; must invoke accept() 551// // manually using unix.Syscall. 552// hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0) 553// 554// Once a file descriptor has been returned from Accept, it may be used to 555// perform SHA1 hashing. The descriptor is not safe for concurrent use, but 556// may be re-used repeatedly with subsequent Write and Read operations. 557// 558// When hashing a small byte slice or string, a single Write and Read may 559// be used: 560// 561// // Assume hashfd is already configured using the setup process. 562// hash := os.NewFile(hashfd, "sha1") 563// // Hash an input string and read the results. Each Write discards 564// // previous hash state. Read always reads the current state. 565// b := make([]byte, 20) 566// for i := 0; i < 2; i++ { 567// io.WriteString(hash, "Hello, world.") 568// hash.Read(b) 569// fmt.Println(hex.EncodeToString(b)) 570// } 571// // Output: 572// // 2ae01472317d1935a84797ec1983ae243fc6aa28 573// // 2ae01472317d1935a84797ec1983ae243fc6aa28 574// 575// For hashing larger byte slices, or byte streams such as those read from 576// a file or socket, use Sendto with MSG_MORE to instruct the kernel to update 577// the hash digest instead of creating a new one for a given chunk and finalizing it. 578// 579// // Assume hashfd and addr are already configured using the setup process. 580// hash := os.NewFile(hashfd, "sha1") 581// // Hash the contents of a file. 582// f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz") 583// b := make([]byte, 4096) 584// for { 585// n, err := f.Read(b) 586// if err == io.EOF { 587// break 588// } 589// unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr) 590// } 591// hash.Read(b) 592// fmt.Println(hex.EncodeToString(b)) 593// // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5 594// 595// For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html. 596type SockaddrALG struct { 597 Type string 598 Name string 599 Feature uint32 600 Mask uint32 601 raw RawSockaddrALG 602} 603 604func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) { 605 // Leave room for NUL byte terminator. 606 if len(sa.Type) > 13 { 607 return nil, 0, EINVAL 608 } 609 if len(sa.Name) > 63 { 610 return nil, 0, EINVAL 611 } 612 613 sa.raw.Family = AF_ALG 614 sa.raw.Feat = sa.Feature 615 sa.raw.Mask = sa.Mask 616 617 typ, err := ByteSliceFromString(sa.Type) 618 if err != nil { 619 return nil, 0, err 620 } 621 name, err := ByteSliceFromString(sa.Name) 622 if err != nil { 623 return nil, 0, err 624 } 625 626 copy(sa.raw.Type[:], typ) 627 copy(sa.raw.Name[:], name) 628 629 return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil 630} 631 632// SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets. 633// SockaddrVM provides access to Linux VM sockets: a mechanism that enables 634// bidirectional communication between a hypervisor and its guest virtual 635// machines. 636type SockaddrVM struct { 637 // CID and Port specify a context ID and port address for a VM socket. 638 // Guests have a unique CID, and hosts may have a well-known CID of: 639 // - VMADDR_CID_HYPERVISOR: refers to the hypervisor process. 640 // - VMADDR_CID_HOST: refers to other processes on the host. 641 CID uint32 642 Port uint32 643 raw RawSockaddrVM 644} 645 646func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) { 647 sa.raw.Family = AF_VSOCK 648 sa.raw.Port = sa.Port 649 sa.raw.Cid = sa.CID 650 651 return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil 652} 653 654func anyToSockaddr(rsa *RawSockaddrAny) (Sockaddr, error) { 655 switch rsa.Addr.Family { 656 case AF_NETLINK: 657 pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa)) 658 sa := new(SockaddrNetlink) 659 sa.Family = pp.Family 660 sa.Pad = pp.Pad 661 sa.Pid = pp.Pid 662 sa.Groups = pp.Groups 663 return sa, nil 664 665 case AF_PACKET: 666 pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa)) 667 sa := new(SockaddrLinklayer) 668 sa.Protocol = pp.Protocol 669 sa.Ifindex = int(pp.Ifindex) 670 sa.Hatype = pp.Hatype 671 sa.Pkttype = pp.Pkttype 672 sa.Halen = pp.Halen 673 for i := 0; i < len(sa.Addr); i++ { 674 sa.Addr[i] = pp.Addr[i] 675 } 676 return sa, nil 677 678 case AF_UNIX: 679 pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa)) 680 sa := new(SockaddrUnix) 681 if pp.Path[0] == 0 { 682 // "Abstract" Unix domain socket. 683 // Rewrite leading NUL as @ for textual display. 684 // (This is the standard convention.) 685 // Not friendly to overwrite in place, 686 // but the callers below don't care. 687 pp.Path[0] = '@' 688 } 689 690 // Assume path ends at NUL. 691 // This is not technically the Linux semantics for 692 // abstract Unix domain sockets--they are supposed 693 // to be uninterpreted fixed-size binary blobs--but 694 // everyone uses this convention. 695 n := 0 696 for n < len(pp.Path) && pp.Path[n] != 0 { 697 n++ 698 } 699 bytes := (*[10000]byte)(unsafe.Pointer(&pp.Path[0]))[0:n] 700 sa.Name = string(bytes) 701 return sa, nil 702 703 case AF_INET: 704 pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa)) 705 sa := new(SockaddrInet4) 706 p := (*[2]byte)(unsafe.Pointer(&pp.Port)) 707 sa.Port = int(p[0])<<8 + int(p[1]) 708 for i := 0; i < len(sa.Addr); i++ { 709 sa.Addr[i] = pp.Addr[i] 710 } 711 return sa, nil 712 713 case AF_INET6: 714 pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa)) 715 sa := new(SockaddrInet6) 716 p := (*[2]byte)(unsafe.Pointer(&pp.Port)) 717 sa.Port = int(p[0])<<8 + int(p[1]) 718 sa.ZoneId = pp.Scope_id 719 for i := 0; i < len(sa.Addr); i++ { 720 sa.Addr[i] = pp.Addr[i] 721 } 722 return sa, nil 723 724 case AF_VSOCK: 725 pp := (*RawSockaddrVM)(unsafe.Pointer(rsa)) 726 sa := &SockaddrVM{ 727 CID: pp.Cid, 728 Port: pp.Port, 729 } 730 return sa, nil 731 } 732 return nil, EAFNOSUPPORT 733} 734 735func Accept(fd int) (nfd int, sa Sockaddr, err error) { 736 var rsa RawSockaddrAny 737 var len _Socklen = SizeofSockaddrAny 738 nfd, err = accept(fd, &rsa, &len) 739 if err != nil { 740 return 741 } 742 sa, err = anyToSockaddr(&rsa) 743 if err != nil { 744 Close(nfd) 745 nfd = 0 746 } 747 return 748} 749 750func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) { 751 var rsa RawSockaddrAny 752 var len _Socklen = SizeofSockaddrAny 753 nfd, err = accept4(fd, &rsa, &len, flags) 754 if err != nil { 755 return 756 } 757 if len > SizeofSockaddrAny { 758 panic("RawSockaddrAny too small") 759 } 760 sa, err = anyToSockaddr(&rsa) 761 if err != nil { 762 Close(nfd) 763 nfd = 0 764 } 765 return 766} 767 768func Getsockname(fd int) (sa Sockaddr, err error) { 769 var rsa RawSockaddrAny 770 var len _Socklen = SizeofSockaddrAny 771 if err = getsockname(fd, &rsa, &len); err != nil { 772 return 773 } 774 return anyToSockaddr(&rsa) 775} 776 777func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) { 778 var value IPMreqn 779 vallen := _Socklen(SizeofIPMreqn) 780 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen) 781 return &value, err 782} 783 784func GetsockoptUcred(fd, level, opt int) (*Ucred, error) { 785 var value Ucred 786 vallen := _Socklen(SizeofUcred) 787 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen) 788 return &value, err 789} 790 791func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) { 792 var value TCPInfo 793 vallen := _Socklen(SizeofTCPInfo) 794 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen) 795 return &value, err 796} 797 798// GetsockoptString returns the string value of the socket option opt for the 799// socket associated with fd at the given socket level. 800func GetsockoptString(fd, level, opt int) (string, error) { 801 buf := make([]byte, 256) 802 vallen := _Socklen(len(buf)) 803 err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen) 804 if err != nil { 805 if err == ERANGE { 806 buf = make([]byte, vallen) 807 err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen) 808 } 809 if err != nil { 810 return "", err 811 } 812 } 813 return string(buf[:vallen-1]), nil 814} 815 816func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) { 817 return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq)) 818} 819 820// Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html) 821 822// KeyctlInt calls keyctl commands in which each argument is an int. 823// These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK, 824// KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT, 825// KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT, 826// KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT. 827//sys KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL 828 829// KeyctlBuffer calls keyctl commands in which the third and fourth 830// arguments are a buffer and its length, respectively. 831// These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE. 832//sys KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL 833 834// KeyctlString calls keyctl commands which return a string. 835// These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY. 836func KeyctlString(cmd int, id int) (string, error) { 837 // We must loop as the string data may change in between the syscalls. 838 // We could allocate a large buffer here to reduce the chance that the 839 // syscall needs to be called twice; however, this is unnecessary as 840 // the performance loss is negligible. 841 var buffer []byte 842 for { 843 // Try to fill the buffer with data 844 length, err := KeyctlBuffer(cmd, id, buffer, 0) 845 if err != nil { 846 return "", err 847 } 848 849 // Check if the data was written 850 if length <= len(buffer) { 851 // Exclude the null terminator 852 return string(buffer[:length-1]), nil 853 } 854 855 // Make a bigger buffer if needed 856 buffer = make([]byte, length) 857 } 858} 859 860// Keyctl commands with special signatures. 861 862// KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command. 863// See the full documentation at: 864// http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html 865func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) { 866 createInt := 0 867 if create { 868 createInt = 1 869 } 870 return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0) 871} 872 873// KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the 874// key handle permission mask as described in the "keyctl setperm" section of 875// http://man7.org/linux/man-pages/man1/keyctl.1.html. 876// See the full documentation at: 877// http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html 878func KeyctlSetperm(id int, perm uint32) error { 879 _, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0) 880 return err 881} 882 883//sys keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL 884 885// KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command. 886// See the full documentation at: 887// http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html 888func KeyctlJoinSessionKeyring(name string) (ringid int, err error) { 889 return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name) 890} 891 892//sys keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL 893 894// KeyctlSearch implements the KEYCTL_SEARCH command. 895// See the full documentation at: 896// http://man7.org/linux/man-pages/man3/keyctl_search.3.html 897func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) { 898 return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid) 899} 900 901//sys keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL 902 903// KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This 904// command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice 905// of Iovec (each of which represents a buffer) instead of a single buffer. 906// See the full documentation at: 907// http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html 908func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error { 909 return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid) 910} 911 912//sys keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL 913 914// KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command 915// computes a Diffie-Hellman shared secret based on the provide params. The 916// secret is written to the provided buffer and the returned size is the number 917// of bytes written (returning an error if there is insufficient space in the 918// buffer). If a nil buffer is passed in, this function returns the minimum 919// buffer length needed to store the appropriate data. Note that this differs 920// from KEYCTL_READ's behavior which always returns the requested payload size. 921// See the full documentation at: 922// http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html 923func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) { 924 return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer) 925} 926 927func Recvmsg(fd int, p, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) { 928 var msg Msghdr 929 var rsa RawSockaddrAny 930 msg.Name = (*byte)(unsafe.Pointer(&rsa)) 931 msg.Namelen = uint32(SizeofSockaddrAny) 932 var iov Iovec 933 if len(p) > 0 { 934 iov.Base = &p[0] 935 iov.SetLen(len(p)) 936 } 937 var dummy byte 938 if len(oob) > 0 { 939 if len(p) == 0 { 940 var sockType int 941 sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE) 942 if err != nil { 943 return 944 } 945 // receive at least one normal byte 946 if sockType != SOCK_DGRAM { 947 iov.Base = &dummy 948 iov.SetLen(1) 949 } 950 } 951 msg.Control = &oob[0] 952 msg.SetControllen(len(oob)) 953 } 954 msg.Iov = &iov 955 msg.Iovlen = 1 956 if n, err = recvmsg(fd, &msg, flags); err != nil { 957 return 958 } 959 oobn = int(msg.Controllen) 960 recvflags = int(msg.Flags) 961 // source address is only specified if the socket is unconnected 962 if rsa.Addr.Family != AF_UNSPEC { 963 from, err = anyToSockaddr(&rsa) 964 } 965 return 966} 967 968func Sendmsg(fd int, p, oob []byte, to Sockaddr, flags int) (err error) { 969 _, err = SendmsgN(fd, p, oob, to, flags) 970 return 971} 972 973func SendmsgN(fd int, p, oob []byte, to Sockaddr, flags int) (n int, err error) { 974 var ptr unsafe.Pointer 975 var salen _Socklen 976 if to != nil { 977 var err error 978 ptr, salen, err = to.sockaddr() 979 if err != nil { 980 return 0, err 981 } 982 } 983 var msg Msghdr 984 msg.Name = (*byte)(ptr) 985 msg.Namelen = uint32(salen) 986 var iov Iovec 987 if len(p) > 0 { 988 iov.Base = &p[0] 989 iov.SetLen(len(p)) 990 } 991 var dummy byte 992 if len(oob) > 0 { 993 if len(p) == 0 { 994 var sockType int 995 sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE) 996 if err != nil { 997 return 0, err 998 } 999 // send at least one normal byte 1000 if sockType != SOCK_DGRAM { 1001 iov.Base = &dummy 1002 iov.SetLen(1) 1003 } 1004 } 1005 msg.Control = &oob[0] 1006 msg.SetControllen(len(oob)) 1007 } 1008 msg.Iov = &iov 1009 msg.Iovlen = 1 1010 if n, err = sendmsg(fd, &msg, flags); err != nil { 1011 return 0, err 1012 } 1013 if len(oob) > 0 && len(p) == 0 { 1014 n = 0 1015 } 1016 return n, nil 1017} 1018 1019// BindToDevice binds the socket associated with fd to device. 1020func BindToDevice(fd int, device string) (err error) { 1021 return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device) 1022} 1023 1024//sys ptrace(request int, pid int, addr uintptr, data uintptr) (err error) 1025 1026func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) { 1027 // The peek requests are machine-size oriented, so we wrap it 1028 // to retrieve arbitrary-length data. 1029 1030 // The ptrace syscall differs from glibc's ptrace. 1031 // Peeks returns the word in *data, not as the return value. 1032 1033 var buf [sizeofPtr]byte 1034 1035 // Leading edge. PEEKTEXT/PEEKDATA don't require aligned 1036 // access (PEEKUSER warns that it might), but if we don't 1037 // align our reads, we might straddle an unmapped page 1038 // boundary and not get the bytes leading up to the page 1039 // boundary. 1040 n := 0 1041 if addr%sizeofPtr != 0 { 1042 err = ptrace(req, pid, addr-addr%sizeofPtr, uintptr(unsafe.Pointer(&buf[0]))) 1043 if err != nil { 1044 return 0, err 1045 } 1046 n += copy(out, buf[addr%sizeofPtr:]) 1047 out = out[n:] 1048 } 1049 1050 // Remainder. 1051 for len(out) > 0 { 1052 // We use an internal buffer to guarantee alignment. 1053 // It's not documented if this is necessary, but we're paranoid. 1054 err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0]))) 1055 if err != nil { 1056 return n, err 1057 } 1058 copied := copy(out, buf[0:]) 1059 n += copied 1060 out = out[copied:] 1061 } 1062 1063 return n, nil 1064} 1065 1066func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) { 1067 return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out) 1068} 1069 1070func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) { 1071 return ptracePeek(PTRACE_PEEKDATA, pid, addr, out) 1072} 1073 1074func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) { 1075 return ptracePeek(PTRACE_PEEKUSR, pid, addr, out) 1076} 1077 1078func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) { 1079 // As for ptracePeek, we need to align our accesses to deal 1080 // with the possibility of straddling an invalid page. 1081 1082 // Leading edge. 1083 n := 0 1084 if addr%sizeofPtr != 0 { 1085 var buf [sizeofPtr]byte 1086 err = ptrace(peekReq, pid, addr-addr%sizeofPtr, uintptr(unsafe.Pointer(&buf[0]))) 1087 if err != nil { 1088 return 0, err 1089 } 1090 n += copy(buf[addr%sizeofPtr:], data) 1091 word := *((*uintptr)(unsafe.Pointer(&buf[0]))) 1092 err = ptrace(pokeReq, pid, addr-addr%sizeofPtr, word) 1093 if err != nil { 1094 return 0, err 1095 } 1096 data = data[n:] 1097 } 1098 1099 // Interior. 1100 for len(data) > sizeofPtr { 1101 word := *((*uintptr)(unsafe.Pointer(&data[0]))) 1102 err = ptrace(pokeReq, pid, addr+uintptr(n), word) 1103 if err != nil { 1104 return n, err 1105 } 1106 n += sizeofPtr 1107 data = data[sizeofPtr:] 1108 } 1109 1110 // Trailing edge. 1111 if len(data) > 0 { 1112 var buf [sizeofPtr]byte 1113 err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0]))) 1114 if err != nil { 1115 return n, err 1116 } 1117 copy(buf[0:], data) 1118 word := *((*uintptr)(unsafe.Pointer(&buf[0]))) 1119 err = ptrace(pokeReq, pid, addr+uintptr(n), word) 1120 if err != nil { 1121 return n, err 1122 } 1123 n += len(data) 1124 } 1125 1126 return n, nil 1127} 1128 1129func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) { 1130 return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data) 1131} 1132 1133func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) { 1134 return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data) 1135} 1136 1137func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) { 1138 return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data) 1139} 1140 1141func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) { 1142 return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout))) 1143} 1144 1145func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) { 1146 return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs))) 1147} 1148 1149func PtraceSetOptions(pid int, options int) (err error) { 1150 return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options)) 1151} 1152 1153func PtraceGetEventMsg(pid int) (msg uint, err error) { 1154 var data _C_long 1155 err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data))) 1156 msg = uint(data) 1157 return 1158} 1159 1160func PtraceCont(pid int, signal int) (err error) { 1161 return ptrace(PTRACE_CONT, pid, 0, uintptr(signal)) 1162} 1163 1164func PtraceSyscall(pid int, signal int) (err error) { 1165 return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal)) 1166} 1167 1168func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) } 1169 1170func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) } 1171 1172func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) } 1173 1174//sys reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error) 1175 1176func Reboot(cmd int) (err error) { 1177 return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "") 1178} 1179 1180func ReadDirent(fd int, buf []byte) (n int, err error) { 1181 return Getdents(fd, buf) 1182} 1183 1184//sys mount(source string, target string, fstype string, flags uintptr, data *byte) (err error) 1185 1186func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) { 1187 // Certain file systems get rather angry and EINVAL if you give 1188 // them an empty string of data, rather than NULL. 1189 if data == "" { 1190 return mount(source, target, fstype, flags, nil) 1191 } 1192 datap, err := BytePtrFromString(data) 1193 if err != nil { 1194 return err 1195 } 1196 return mount(source, target, fstype, flags, datap) 1197} 1198 1199// Sendto 1200// Recvfrom 1201// Socketpair 1202 1203/* 1204 * Direct access 1205 */ 1206//sys Acct(path string) (err error) 1207//sys AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error) 1208//sys Adjtimex(buf *Timex) (state int, err error) 1209//sys Chdir(path string) (err error) 1210//sys Chroot(path string) (err error) 1211//sys ClockGettime(clockid int32, time *Timespec) (err error) 1212//sys Close(fd int) (err error) 1213//sys CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error) 1214//sys Dup(oldfd int) (fd int, err error) 1215//sys Dup3(oldfd int, newfd int, flags int) (err error) 1216//sysnb EpollCreate1(flag int) (fd int, err error) 1217//sysnb EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error) 1218//sys Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2 1219//sys Exit(code int) = SYS_EXIT_GROUP 1220//sys Fallocate(fd int, mode uint32, off int64, len int64) (err error) 1221//sys Fchdir(fd int) (err error) 1222//sys Fchmod(fd int, mode uint32) (err error) 1223//sys Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error) 1224//sys fcntl(fd int, cmd int, arg int) (val int, err error) 1225//sys Fdatasync(fd int) (err error) 1226//sys Flock(fd int, how int) (err error) 1227//sys Fsync(fd int) (err error) 1228//sys Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64 1229//sysnb Getpgid(pid int) (pgid int, err error) 1230 1231func Getpgrp() (pid int) { 1232 pid, _ = Getpgid(0) 1233 return 1234} 1235 1236//sysnb Getpid() (pid int) 1237//sysnb Getppid() (ppid int) 1238//sys Getpriority(which int, who int) (prio int, err error) 1239//sys Getrandom(buf []byte, flags int) (n int, err error) 1240//sysnb Getrusage(who int, rusage *Rusage) (err error) 1241//sysnb Getsid(pid int) (sid int, err error) 1242//sysnb Gettid() (tid int) 1243//sys Getxattr(path string, attr string, dest []byte) (sz int, err error) 1244//sys InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error) 1245//sysnb InotifyInit1(flags int) (fd int, err error) 1246//sysnb InotifyRmWatch(fd int, watchdesc uint32) (success int, err error) 1247//sysnb Kill(pid int, sig syscall.Signal) (err error) 1248//sys Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG 1249//sys Lgetxattr(path string, attr string, dest []byte) (sz int, err error) 1250//sys Listxattr(path string, dest []byte) (sz int, err error) 1251//sys Llistxattr(path string, dest []byte) (sz int, err error) 1252//sys Lremovexattr(path string, attr string) (err error) 1253//sys Lsetxattr(path string, attr string, data []byte, flags int) (err error) 1254//sys Mkdirat(dirfd int, path string, mode uint32) (err error) 1255//sys Mknodat(dirfd int, path string, mode uint32, dev int) (err error) 1256//sys Nanosleep(time *Timespec, leftover *Timespec) (err error) 1257//sys PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error) 1258//sys PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT 1259//sysnb prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64 1260//sys Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error) 1261//sys Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6 1262//sys read(fd int, p []byte) (n int, err error) 1263//sys Removexattr(path string, attr string) (err error) 1264//sys Renameat(olddirfd int, oldpath string, newdirfd int, newpath string) (err error) 1265//sys RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error) 1266//sys Setdomainname(p []byte) (err error) 1267//sys Sethostname(p []byte) (err error) 1268//sysnb Setpgid(pid int, pgid int) (err error) 1269//sysnb Setsid() (pid int, err error) 1270//sysnb Settimeofday(tv *Timeval) (err error) 1271//sys Setns(fd int, nstype int) (err error) 1272 1273// issue 1435. 1274// On linux Setuid and Setgid only affects the current thread, not the process. 1275// This does not match what most callers expect so we must return an error 1276// here rather than letting the caller think that the call succeeded. 1277 1278func Setuid(uid int) (err error) { 1279 return EOPNOTSUPP 1280} 1281 1282func Setgid(uid int) (err error) { 1283 return EOPNOTSUPP 1284} 1285 1286//sys Setpriority(which int, who int, prio int) (err error) 1287//sys Setxattr(path string, attr string, data []byte, flags int) (err error) 1288//sys Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error) 1289//sys Sync() 1290//sys Syncfs(fd int) (err error) 1291//sysnb Sysinfo(info *Sysinfo_t) (err error) 1292//sys Tee(rfd int, wfd int, len int, flags int) (n int64, err error) 1293//sysnb Tgkill(tgid int, tid int, sig syscall.Signal) (err error) 1294//sysnb Times(tms *Tms) (ticks uintptr, err error) 1295//sysnb Umask(mask int) (oldmask int) 1296//sysnb Uname(buf *Utsname) (err error) 1297//sys Unmount(target string, flags int) (err error) = SYS_UMOUNT2 1298//sys Unshare(flags int) (err error) 1299//sys write(fd int, p []byte) (n int, err error) 1300//sys exitThread(code int) (err error) = SYS_EXIT 1301//sys readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ 1302//sys writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE 1303 1304// mmap varies by architecture; see syscall_linux_*.go. 1305//sys munmap(addr uintptr, length uintptr) (err error) 1306 1307var mapper = &mmapper{ 1308 active: make(map[*byte][]byte), 1309 mmap: mmap, 1310 munmap: munmap, 1311} 1312 1313func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) { 1314 return mapper.Mmap(fd, offset, length, prot, flags) 1315} 1316 1317func Munmap(b []byte) (err error) { 1318 return mapper.Munmap(b) 1319} 1320 1321//sys Madvise(b []byte, advice int) (err error) 1322//sys Mprotect(b []byte, prot int) (err error) 1323//sys Mlock(b []byte) (err error) 1324//sys Mlockall(flags int) (err error) 1325//sys Msync(b []byte, flags int) (err error) 1326//sys Munlock(b []byte) (err error) 1327//sys Munlockall() (err error) 1328 1329// Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd, 1330// using the specified flags. 1331func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) { 1332 n, _, errno := Syscall6( 1333 SYS_VMSPLICE, 1334 uintptr(fd), 1335 uintptr(unsafe.Pointer(&iovs[0])), 1336 uintptr(len(iovs)), 1337 uintptr(flags), 1338 0, 1339 0, 1340 ) 1341 if errno != 0 { 1342 return 0, syscall.Errno(errno) 1343 } 1344 1345 return int(n), nil 1346} 1347 1348//sys faccessat(dirfd int, path string, mode uint32) (err error) 1349 1350func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) { 1351 if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 { 1352 return EINVAL 1353 } else if flags&(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 { 1354 return EOPNOTSUPP 1355 } 1356 return faccessat(dirfd, path, mode) 1357} 1358 1359/* 1360 * Unimplemented 1361 */ 1362// AfsSyscall 1363// Alarm 1364// ArchPrctl 1365// Brk 1366// Capget 1367// Capset 1368// ClockGetres 1369// ClockNanosleep 1370// ClockSettime 1371// Clone 1372// CreateModule 1373// DeleteModule 1374// EpollCtlOld 1375// EpollPwait 1376// EpollWaitOld 1377// Execve 1378// Fgetxattr 1379// Flistxattr 1380// Fork 1381// Fremovexattr 1382// Fsetxattr 1383// Futex 1384// GetKernelSyms 1385// GetMempolicy 1386// GetRobustList 1387// GetThreadArea 1388// Getitimer 1389// Getpmsg 1390// IoCancel 1391// IoDestroy 1392// IoGetevents 1393// IoSetup 1394// IoSubmit 1395// IoprioGet 1396// IoprioSet 1397// KexecLoad 1398// LookupDcookie 1399// Mbind 1400// MigratePages 1401// Mincore 1402// ModifyLdt 1403// Mount 1404// MovePages 1405// MqGetsetattr 1406// MqNotify 1407// MqOpen 1408// MqTimedreceive 1409// MqTimedsend 1410// MqUnlink 1411// Mremap 1412// Msgctl 1413// Msgget 1414// Msgrcv 1415// Msgsnd 1416// Nfsservctl 1417// Personality 1418// Pselect6 1419// Ptrace 1420// Putpmsg 1421// QueryModule 1422// Quotactl 1423// Readahead 1424// Readv 1425// RemapFilePages 1426// RestartSyscall 1427// RtSigaction 1428// RtSigpending 1429// RtSigprocmask 1430// RtSigqueueinfo 1431// RtSigreturn 1432// RtSigsuspend 1433// RtSigtimedwait 1434// SchedGetPriorityMax 1435// SchedGetPriorityMin 1436// SchedGetparam 1437// SchedGetscheduler 1438// SchedRrGetInterval 1439// SchedSetparam 1440// SchedYield 1441// Security 1442// Semctl 1443// Semget 1444// Semop 1445// Semtimedop 1446// SetMempolicy 1447// SetRobustList 1448// SetThreadArea 1449// SetTidAddress 1450// Shmat 1451// Shmctl 1452// Shmdt 1453// Shmget 1454// Sigaltstack 1455// Signalfd 1456// Swapoff 1457// Swapon 1458// Sysfs 1459// TimerCreate 1460// TimerDelete 1461// TimerGetoverrun 1462// TimerGettime 1463// TimerSettime 1464// Timerfd 1465// Tkill (obsolete) 1466// Tuxcall 1467// Umount2 1468// Uselib 1469// Utimensat 1470// Vfork 1471// Vhangup 1472// Vserver 1473// Waitid 1474// _Sysctl 1475