1 /*
2  *  Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  *
10  */
11 
12 //  Implementation of Network-Assisted Dynamic Adaptation's (NADA's) proposal.
13 //  Version according to Draft Document (mentioned in references)
14 //  http://tools.ietf.org/html/draft-zhu-rmcat-nada-06
15 //  From March 26, 2015.
16 
17 #include <math.h>
18 #include <algorithm>
19 #include <vector>
20 
21 #include "webrtc/base/arraysize.h"
22 #include "webrtc/base/common.h"
23 #include "webrtc/modules/remote_bitrate_estimator/test/estimators/nada.h"
24 #include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_logging.h"
25 #include "webrtc/modules/rtp_rtcp/include/receive_statistics.h"
26 
27 namespace webrtc {
28 namespace testing {
29 namespace bwe {
30 
31 const int64_t NadaBweReceiver::kReceivingRateTimeWindowMs = 500;
32 
NadaBweReceiver(int flow_id)33 NadaBweReceiver::NadaBweReceiver(int flow_id)
34     : BweReceiver(flow_id, kReceivingRateTimeWindowMs),
35       clock_(0),
36       last_feedback_ms_(0),
37       recv_stats_(ReceiveStatistics::Create(&clock_)),
38       baseline_delay_ms_(10000),  // Initialized as an upper bound.
39       delay_signal_ms_(0),
40       last_congestion_signal_ms_(0),
41       last_delays_index_(0),
42       exp_smoothed_delay_ms_(-1),
43       est_queuing_delay_signal_ms_(0) {
44 }
45 
~NadaBweReceiver()46 NadaBweReceiver::~NadaBweReceiver() {
47 }
48 
ReceivePacket(int64_t arrival_time_ms,const MediaPacket & media_packet)49 void NadaBweReceiver::ReceivePacket(int64_t arrival_time_ms,
50                                     const MediaPacket& media_packet) {
51   const float kAlpha = 0.1f;                 // Used for exponential smoothing.
52   const int64_t kDelayLowThresholdMs = 50;   // Referred as d_th.
53   const int64_t kDelayMaxThresholdMs = 400;  // Referred as d_max.
54 
55   clock_.AdvanceTimeMilliseconds(arrival_time_ms - clock_.TimeInMilliseconds());
56   recv_stats_->IncomingPacket(media_packet.header(),
57                               media_packet.payload_size(), false);
58   // Refered as x_n.
59   int64_t delay_ms = arrival_time_ms - media_packet.sender_timestamp_ms();
60 
61   // The min should be updated within the first 10 minutes.
62   if (clock_.TimeInMilliseconds() < 10 * 60 * 1000) {
63     baseline_delay_ms_ = std::min(baseline_delay_ms_, delay_ms);
64   }
65 
66   delay_signal_ms_ = delay_ms - baseline_delay_ms_;  // Refered as d_n.
67   const int kMedian = arraysize(last_delays_ms_);
68   last_delays_ms_[(last_delays_index_++) % kMedian] = delay_signal_ms_;
69   int size = std::min(last_delays_index_, kMedian);
70 
71   int64_t median_filtered_delay_ms_ = MedianFilter(last_delays_ms_, size);
72   exp_smoothed_delay_ms_ = ExponentialSmoothingFilter(
73       median_filtered_delay_ms_, exp_smoothed_delay_ms_, kAlpha);
74 
75   if (exp_smoothed_delay_ms_ < kDelayLowThresholdMs) {
76     est_queuing_delay_signal_ms_ = exp_smoothed_delay_ms_;
77   } else if (exp_smoothed_delay_ms_ < kDelayMaxThresholdMs) {
78     est_queuing_delay_signal_ms_ = static_cast<int64_t>(
79         pow((static_cast<double>(kDelayMaxThresholdMs -
80                                  exp_smoothed_delay_ms_)) /
81                 (kDelayMaxThresholdMs - kDelayLowThresholdMs),
82             4.0) *
83         kDelayLowThresholdMs);
84   } else {
85     est_queuing_delay_signal_ms_ = 0;
86   }
87 
88   // Log received packet information.
89   BweReceiver::ReceivePacket(arrival_time_ms, media_packet);
90 }
91 
GetFeedback(int64_t now_ms)92 FeedbackPacket* NadaBweReceiver::GetFeedback(int64_t now_ms) {
93   const int64_t kPacketLossPenaltyMs = 1000;  // Referred as d_L.
94 
95   if (now_ms - last_feedback_ms_ < 100) {
96     return NULL;
97   }
98 
99   float loss_fraction = RecentPacketLossRatio();
100 
101   int64_t loss_signal_ms =
102       static_cast<int64_t>(loss_fraction * kPacketLossPenaltyMs + 0.5f);
103   int64_t congestion_signal_ms = est_queuing_delay_signal_ms_ + loss_signal_ms;
104 
105   float derivative = 0.0f;
106   if (last_feedback_ms_ > 0) {
107     derivative = (congestion_signal_ms - last_congestion_signal_ms_) /
108                  static_cast<float>(now_ms - last_feedback_ms_);
109   }
110   last_feedback_ms_ = now_ms;
111   last_congestion_signal_ms_ = congestion_signal_ms;
112 
113   int64_t corrected_send_time_ms = 0L;
114 
115   if (!received_packets_.empty()) {
116     PacketIdentifierNode* latest = *(received_packets_.begin());
117     corrected_send_time_ms =
118         latest->send_time_ms + now_ms - latest->arrival_time_ms;
119   }
120 
121   // Sends a tuple containing latest values of <d_hat_n, d_tilde_n, x_n, x'_n,
122   // R_r> and additional information.
123   return new NadaFeedback(flow_id_, now_ms * 1000, exp_smoothed_delay_ms_,
124                           est_queuing_delay_signal_ms_, congestion_signal_ms,
125                           derivative, RecentKbps(), corrected_send_time_ms);
126 }
127 
128 // If size is even, the median is the average of the two middlemost numbers.
MedianFilter(int64_t * last_delays_ms,int size)129 int64_t NadaBweReceiver::MedianFilter(int64_t* last_delays_ms, int size) {
130   std::vector<int64_t> array_copy(last_delays_ms, last_delays_ms + size);
131   std::nth_element(array_copy.begin(), array_copy.begin() + size / 2,
132                    array_copy.end());
133   if (size % 2 == 1) {
134     // Typically, size = 5. For odd size values, right and left are equal.
135     return array_copy.at(size / 2);
136   }
137   int64_t right = array_copy.at(size / 2);
138   std::nth_element(array_copy.begin(), array_copy.begin() + (size - 1) / 2,
139                    array_copy.end());
140   int64_t left = array_copy.at((size - 1) / 2);
141   return (left + right + 1) / 2;
142 }
143 
ExponentialSmoothingFilter(int64_t new_value,int64_t last_smoothed_value,float alpha)144 int64_t NadaBweReceiver::ExponentialSmoothingFilter(int64_t new_value,
145                                                     int64_t last_smoothed_value,
146                                                     float alpha) {
147   if (last_smoothed_value < 0) {
148     return new_value;  // Handling initial case.
149   }
150   return static_cast<int64_t>(alpha * new_value +
151                               (1.0f - alpha) * last_smoothed_value + 0.5f);
152 }
153 
154 // Implementation according to Cisco's proposal by default.
NadaBweSender(int kbps,BitrateObserver * observer,Clock * clock)155 NadaBweSender::NadaBweSender(int kbps, BitrateObserver* observer, Clock* clock)
156     : BweSender(kbps),  // Referred as "Reference Rate" = R_n.,
157       clock_(clock),
158       observer_(observer),
159       original_operating_mode_(true) {
160 }
161 
NadaBweSender(BitrateObserver * observer,Clock * clock)162 NadaBweSender::NadaBweSender(BitrateObserver* observer, Clock* clock)
163     : BweSender(kMinBitrateKbps),  // Referred as "Reference Rate" = R_n.
164       clock_(clock),
165       observer_(observer),
166       original_operating_mode_(true) {
167 }
168 
~NadaBweSender()169 NadaBweSender::~NadaBweSender() {
170 }
171 
GetFeedbackIntervalMs() const172 int NadaBweSender::GetFeedbackIntervalMs() const {
173   return 100;
174 }
175 
GiveFeedback(const FeedbackPacket & feedback)176 void NadaBweSender::GiveFeedback(const FeedbackPacket& feedback) {
177   const NadaFeedback& fb = static_cast<const NadaFeedback&>(feedback);
178 
179   // Following parameters might be optimized.
180   const int64_t kQueuingDelayUpperBoundMs = 10;
181   const float kDerivativeUpperBound = 10.0f / min_feedback_delay_ms_;
182   // In the modified version, a higher kMinUpperBound allows a higher d_hat
183   // upper bound for calling AcceleratedRampUp.
184   const float kProportionalityDelayBits = 20.0f;
185 
186   int64_t now_ms = clock_->TimeInMilliseconds();
187   float delta_s = now_ms - last_feedback_ms_;
188   last_feedback_ms_ = now_ms;
189   // Update delta_0.
190   min_feedback_delay_ms_ =
191       std::min(min_feedback_delay_ms_, static_cast<int64_t>(delta_s));
192 
193   // Update RTT_0.
194   int64_t rtt_ms = now_ms - fb.latest_send_time_ms();
195   min_round_trip_time_ms_ = std::min(min_round_trip_time_ms_, rtt_ms);
196 
197   // Independent limits for AcceleratedRampUp conditions variables:
198   // x_n, d_tilde and x'_n in the original implementation, plus
199   // d_hat and receiving_rate in the modified one.
200   // There should be no packet losses/marking, hence x_n == d_tilde.
201   if (original_operating_mode_) {
202     // Original if conditions and rate update.
203     if (fb.congestion_signal() == fb.est_queuing_delay_signal_ms() &&
204         fb.est_queuing_delay_signal_ms() < kQueuingDelayUpperBoundMs &&
205         fb.derivative() < kDerivativeUpperBound) {
206       AcceleratedRampUp(fb);
207     } else {
208       GradualRateUpdate(fb, delta_s, 1.0);
209     }
210   } else {
211     // Modified if conditions and rate update; new ramp down mode.
212     if (fb.congestion_signal() == fb.est_queuing_delay_signal_ms() &&
213         fb.est_queuing_delay_signal_ms() < kQueuingDelayUpperBoundMs &&
214         fb.exp_smoothed_delay_ms() <
215             kMinBitrateKbps / kProportionalityDelayBits &&
216         fb.derivative() < kDerivativeUpperBound &&
217         fb.receiving_rate() > kMinBitrateKbps) {
218       AcceleratedRampUp(fb);
219     } else if (fb.congestion_signal() > kMaxCongestionSignalMs ||
220                fb.exp_smoothed_delay_ms() > kMaxCongestionSignalMs) {
221       AcceleratedRampDown(fb);
222     } else {
223       double bitrate_reference =
224           (2.0 * bitrate_kbps_) / (kMaxBitrateKbps + kMinBitrateKbps);
225       double smoothing_factor = pow(bitrate_reference, 0.75);
226       GradualRateUpdate(fb, delta_s, smoothing_factor);
227     }
228   }
229 
230   bitrate_kbps_ = std::min(bitrate_kbps_, kMaxBitrateKbps);
231   bitrate_kbps_ = std::max(bitrate_kbps_, kMinBitrateKbps);
232 
233   observer_->OnNetworkChanged(1000 * bitrate_kbps_, 0, rtt_ms);
234 }
235 
TimeUntilNextProcess()236 int64_t NadaBweSender::TimeUntilNextProcess() {
237   return 100;
238 }
239 
Process()240 int NadaBweSender::Process() {
241   return 0;
242 }
243 
AcceleratedRampUp(const NadaFeedback & fb)244 void NadaBweSender::AcceleratedRampUp(const NadaFeedback& fb) {
245   const int kMaxRampUpQueuingDelayMs = 50;  // Referred as T_th.
246   const float kGamma0 = 0.5f;               // Referred as gamma_0.
247 
248   float gamma =
249       std::min(kGamma0, static_cast<float>(kMaxRampUpQueuingDelayMs) /
250                             (min_round_trip_time_ms_ + min_feedback_delay_ms_));
251 
252   bitrate_kbps_ = static_cast<int>((1.0f + gamma) * fb.receiving_rate() + 0.5f);
253 }
254 
AcceleratedRampDown(const NadaFeedback & fb)255 void NadaBweSender::AcceleratedRampDown(const NadaFeedback& fb) {
256   const float kGamma0 = 0.9f;
257   float gamma = 3.0f * kMaxCongestionSignalMs /
258                 (fb.congestion_signal() + fb.exp_smoothed_delay_ms());
259   gamma = std::min(gamma, kGamma0);
260   bitrate_kbps_ = gamma * fb.receiving_rate() + 0.5f;
261 }
262 
GradualRateUpdate(const NadaFeedback & fb,float delta_s,double smoothing_factor)263 void NadaBweSender::GradualRateUpdate(const NadaFeedback& fb,
264                                       float delta_s,
265                                       double smoothing_factor) {
266   const float kTauOMs = 500.0f;           // Referred as tau_o.
267   const float kEta = 2.0f;                // Referred as eta.
268   const float kKappa = 1.0f;              // Referred as kappa.
269   const float kReferenceDelayMs = 10.0f;  // Referred as x_ref.
270   const float kPriorityWeight = 1.0f;     // Referred as w.
271 
272   float x_hat = fb.congestion_signal() + kEta * kTauOMs * fb.derivative();
273 
274   float kTheta =
275       kPriorityWeight * (kMaxBitrateKbps - kMinBitrateKbps) * kReferenceDelayMs;
276 
277   int original_increase =
278       static_cast<int>((kKappa * delta_s *
279                         (kTheta - (bitrate_kbps_ - kMinBitrateKbps) * x_hat)) /
280                            (kTauOMs * kTauOMs) +
281                        0.5f);
282 
283   bitrate_kbps_ = bitrate_kbps_ + smoothing_factor * original_increase;
284 }
285 
286 }  // namespace bwe
287 }  // namespace testing
288 }  // namespace webrtc
289