1 //===-- SIInstrInfo.cpp - SI Instruction Information  ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief SI Implementation of TargetInstrInfo.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "SIInstrInfo.h"
16 #include "AMDGPUTargetMachine.h"
17 #include "GCNHazardRecognizer.h"
18 #include "SIDefines.h"
19 #include "SIMachineFunctionInfo.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/ScheduleDAG.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/CodeGen/RegisterScavenging.h"
26 #include "llvm/MC/MCInstrDesc.h"
27 #include "llvm/Support/Debug.h"
28 
29 using namespace llvm;
30 
SIInstrInfo(const SISubtarget & ST)31 SIInstrInfo::SIInstrInfo(const SISubtarget &ST)
32   : AMDGPUInstrInfo(ST), RI(), ST(ST) {}
33 
34 //===----------------------------------------------------------------------===//
35 // TargetInstrInfo callbacks
36 //===----------------------------------------------------------------------===//
37 
getNumOperandsNoGlue(SDNode * Node)38 static unsigned getNumOperandsNoGlue(SDNode *Node) {
39   unsigned N = Node->getNumOperands();
40   while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
41     --N;
42   return N;
43 }
44 
findChainOperand(SDNode * Load)45 static SDValue findChainOperand(SDNode *Load) {
46   SDValue LastOp = Load->getOperand(getNumOperandsNoGlue(Load) - 1);
47   assert(LastOp.getValueType() == MVT::Other && "Chain missing from load node");
48   return LastOp;
49 }
50 
51 /// \brief Returns true if both nodes have the same value for the given
52 ///        operand \p Op, or if both nodes do not have this operand.
nodesHaveSameOperandValue(SDNode * N0,SDNode * N1,unsigned OpName)53 static bool nodesHaveSameOperandValue(SDNode *N0, SDNode* N1, unsigned OpName) {
54   unsigned Opc0 = N0->getMachineOpcode();
55   unsigned Opc1 = N1->getMachineOpcode();
56 
57   int Op0Idx = AMDGPU::getNamedOperandIdx(Opc0, OpName);
58   int Op1Idx = AMDGPU::getNamedOperandIdx(Opc1, OpName);
59 
60   if (Op0Idx == -1 && Op1Idx == -1)
61     return true;
62 
63 
64   if ((Op0Idx == -1 && Op1Idx != -1) ||
65       (Op1Idx == -1 && Op0Idx != -1))
66     return false;
67 
68   // getNamedOperandIdx returns the index for the MachineInstr's operands,
69   // which includes the result as the first operand. We are indexing into the
70   // MachineSDNode's operands, so we need to skip the result operand to get
71   // the real index.
72   --Op0Idx;
73   --Op1Idx;
74 
75   return N0->getOperand(Op0Idx) == N1->getOperand(Op1Idx);
76 }
77 
isReallyTriviallyReMaterializable(const MachineInstr & MI,AliasAnalysis * AA) const78 bool SIInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
79                                                     AliasAnalysis *AA) const {
80   // TODO: The generic check fails for VALU instructions that should be
81   // rematerializable due to implicit reads of exec. We really want all of the
82   // generic logic for this except for this.
83   switch (MI.getOpcode()) {
84   case AMDGPU::V_MOV_B32_e32:
85   case AMDGPU::V_MOV_B32_e64:
86   case AMDGPU::V_MOV_B64_PSEUDO:
87     return true;
88   default:
89     return false;
90   }
91 }
92 
areLoadsFromSameBasePtr(SDNode * Load0,SDNode * Load1,int64_t & Offset0,int64_t & Offset1) const93 bool SIInstrInfo::areLoadsFromSameBasePtr(SDNode *Load0, SDNode *Load1,
94                                           int64_t &Offset0,
95                                           int64_t &Offset1) const {
96   if (!Load0->isMachineOpcode() || !Load1->isMachineOpcode())
97     return false;
98 
99   unsigned Opc0 = Load0->getMachineOpcode();
100   unsigned Opc1 = Load1->getMachineOpcode();
101 
102   // Make sure both are actually loads.
103   if (!get(Opc0).mayLoad() || !get(Opc1).mayLoad())
104     return false;
105 
106   if (isDS(Opc0) && isDS(Opc1)) {
107 
108     // FIXME: Handle this case:
109     if (getNumOperandsNoGlue(Load0) != getNumOperandsNoGlue(Load1))
110       return false;
111 
112     // Check base reg.
113     if (Load0->getOperand(1) != Load1->getOperand(1))
114       return false;
115 
116     // Check chain.
117     if (findChainOperand(Load0) != findChainOperand(Load1))
118       return false;
119 
120     // Skip read2 / write2 variants for simplicity.
121     // TODO: We should report true if the used offsets are adjacent (excluded
122     // st64 versions).
123     if (AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::data1) != -1 ||
124         AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::data1) != -1)
125       return false;
126 
127     Offset0 = cast<ConstantSDNode>(Load0->getOperand(2))->getZExtValue();
128     Offset1 = cast<ConstantSDNode>(Load1->getOperand(2))->getZExtValue();
129     return true;
130   }
131 
132   if (isSMRD(Opc0) && isSMRD(Opc1)) {
133     assert(getNumOperandsNoGlue(Load0) == getNumOperandsNoGlue(Load1));
134 
135     // Check base reg.
136     if (Load0->getOperand(0) != Load1->getOperand(0))
137       return false;
138 
139     const ConstantSDNode *Load0Offset =
140         dyn_cast<ConstantSDNode>(Load0->getOperand(1));
141     const ConstantSDNode *Load1Offset =
142         dyn_cast<ConstantSDNode>(Load1->getOperand(1));
143 
144     if (!Load0Offset || !Load1Offset)
145       return false;
146 
147     // Check chain.
148     if (findChainOperand(Load0) != findChainOperand(Load1))
149       return false;
150 
151     Offset0 = Load0Offset->getZExtValue();
152     Offset1 = Load1Offset->getZExtValue();
153     return true;
154   }
155 
156   // MUBUF and MTBUF can access the same addresses.
157   if ((isMUBUF(Opc0) || isMTBUF(Opc0)) && (isMUBUF(Opc1) || isMTBUF(Opc1))) {
158 
159     // MUBUF and MTBUF have vaddr at different indices.
160     if (!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::soffset) ||
161         findChainOperand(Load0) != findChainOperand(Load1) ||
162         !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::vaddr) ||
163         !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::srsrc))
164       return false;
165 
166     int OffIdx0 = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset);
167     int OffIdx1 = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset);
168 
169     if (OffIdx0 == -1 || OffIdx1 == -1)
170       return false;
171 
172     // getNamedOperandIdx returns the index for MachineInstrs.  Since they
173     // inlcude the output in the operand list, but SDNodes don't, we need to
174     // subtract the index by one.
175     --OffIdx0;
176     --OffIdx1;
177 
178     SDValue Off0 = Load0->getOperand(OffIdx0);
179     SDValue Off1 = Load1->getOperand(OffIdx1);
180 
181     // The offset might be a FrameIndexSDNode.
182     if (!isa<ConstantSDNode>(Off0) || !isa<ConstantSDNode>(Off1))
183       return false;
184 
185     Offset0 = cast<ConstantSDNode>(Off0)->getZExtValue();
186     Offset1 = cast<ConstantSDNode>(Off1)->getZExtValue();
187     return true;
188   }
189 
190   return false;
191 }
192 
isStride64(unsigned Opc)193 static bool isStride64(unsigned Opc) {
194   switch (Opc) {
195   case AMDGPU::DS_READ2ST64_B32:
196   case AMDGPU::DS_READ2ST64_B64:
197   case AMDGPU::DS_WRITE2ST64_B32:
198   case AMDGPU::DS_WRITE2ST64_B64:
199     return true;
200   default:
201     return false;
202   }
203 }
204 
getMemOpBaseRegImmOfs(MachineInstr & LdSt,unsigned & BaseReg,int64_t & Offset,const TargetRegisterInfo * TRI) const205 bool SIInstrInfo::getMemOpBaseRegImmOfs(MachineInstr &LdSt, unsigned &BaseReg,
206                                         int64_t &Offset,
207                                         const TargetRegisterInfo *TRI) const {
208   unsigned Opc = LdSt.getOpcode();
209 
210   if (isDS(LdSt)) {
211     const MachineOperand *OffsetImm =
212         getNamedOperand(LdSt, AMDGPU::OpName::offset);
213     if (OffsetImm) {
214       // Normal, single offset LDS instruction.
215       const MachineOperand *AddrReg =
216           getNamedOperand(LdSt, AMDGPU::OpName::addr);
217 
218       BaseReg = AddrReg->getReg();
219       Offset = OffsetImm->getImm();
220       return true;
221     }
222 
223     // The 2 offset instructions use offset0 and offset1 instead. We can treat
224     // these as a load with a single offset if the 2 offsets are consecutive. We
225     // will use this for some partially aligned loads.
226     const MachineOperand *Offset0Imm =
227         getNamedOperand(LdSt, AMDGPU::OpName::offset0);
228     const MachineOperand *Offset1Imm =
229         getNamedOperand(LdSt, AMDGPU::OpName::offset1);
230 
231     uint8_t Offset0 = Offset0Imm->getImm();
232     uint8_t Offset1 = Offset1Imm->getImm();
233 
234     if (Offset1 > Offset0 && Offset1 - Offset0 == 1) {
235       // Each of these offsets is in element sized units, so we need to convert
236       // to bytes of the individual reads.
237 
238       unsigned EltSize;
239       if (LdSt.mayLoad())
240         EltSize = getOpRegClass(LdSt, 0)->getSize() / 2;
241       else {
242         assert(LdSt.mayStore());
243         int Data0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0);
244         EltSize = getOpRegClass(LdSt, Data0Idx)->getSize();
245       }
246 
247       if (isStride64(Opc))
248         EltSize *= 64;
249 
250       const MachineOperand *AddrReg =
251           getNamedOperand(LdSt, AMDGPU::OpName::addr);
252       BaseReg = AddrReg->getReg();
253       Offset = EltSize * Offset0;
254       return true;
255     }
256 
257     return false;
258   }
259 
260   if (isMUBUF(LdSt) || isMTBUF(LdSt)) {
261     if (AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::soffset) != -1)
262       return false;
263 
264     const MachineOperand *AddrReg =
265         getNamedOperand(LdSt, AMDGPU::OpName::vaddr);
266     if (!AddrReg)
267       return false;
268 
269     const MachineOperand *OffsetImm =
270         getNamedOperand(LdSt, AMDGPU::OpName::offset);
271     BaseReg = AddrReg->getReg();
272     Offset = OffsetImm->getImm();
273     return true;
274   }
275 
276   if (isSMRD(LdSt)) {
277     const MachineOperand *OffsetImm =
278         getNamedOperand(LdSt, AMDGPU::OpName::offset);
279     if (!OffsetImm)
280       return false;
281 
282     const MachineOperand *SBaseReg =
283         getNamedOperand(LdSt, AMDGPU::OpName::sbase);
284     BaseReg = SBaseReg->getReg();
285     Offset = OffsetImm->getImm();
286     return true;
287   }
288 
289   if (isFLAT(LdSt)) {
290     const MachineOperand *AddrReg = getNamedOperand(LdSt, AMDGPU::OpName::addr);
291     BaseReg = AddrReg->getReg();
292     Offset = 0;
293     return true;
294   }
295 
296   return false;
297 }
298 
shouldClusterMemOps(MachineInstr & FirstLdSt,MachineInstr & SecondLdSt,unsigned NumLoads) const299 bool SIInstrInfo::shouldClusterMemOps(MachineInstr &FirstLdSt,
300                                       MachineInstr &SecondLdSt,
301                                       unsigned NumLoads) const {
302   const MachineOperand *FirstDst = nullptr;
303   const MachineOperand *SecondDst = nullptr;
304 
305   if (isDS(FirstLdSt) && isDS(SecondLdSt)) {
306     FirstDst = getNamedOperand(FirstLdSt, AMDGPU::OpName::vdst);
307     SecondDst = getNamedOperand(SecondLdSt, AMDGPU::OpName::vdst);
308   }
309 
310   if (isSMRD(FirstLdSt) && isSMRD(SecondLdSt)) {
311     FirstDst = getNamedOperand(FirstLdSt, AMDGPU::OpName::sdst);
312     SecondDst = getNamedOperand(SecondLdSt, AMDGPU::OpName::sdst);
313   }
314 
315   if ((isMUBUF(FirstLdSt) && isMUBUF(SecondLdSt)) ||
316       (isMTBUF(FirstLdSt) && isMTBUF(SecondLdSt))) {
317     FirstDst = getNamedOperand(FirstLdSt, AMDGPU::OpName::vdata);
318     SecondDst = getNamedOperand(SecondLdSt, AMDGPU::OpName::vdata);
319   }
320 
321   if (!FirstDst || !SecondDst)
322     return false;
323 
324   // Try to limit clustering based on the total number of bytes loaded
325   // rather than the number of instructions.  This is done to help reduce
326   // register pressure.  The method used is somewhat inexact, though,
327   // because it assumes that all loads in the cluster will load the
328   // same number of bytes as FirstLdSt.
329 
330   // The unit of this value is bytes.
331   // FIXME: This needs finer tuning.
332   unsigned LoadClusterThreshold = 16;
333 
334   const MachineRegisterInfo &MRI =
335       FirstLdSt.getParent()->getParent()->getRegInfo();
336   const TargetRegisterClass *DstRC = MRI.getRegClass(FirstDst->getReg());
337 
338   return (NumLoads * DstRC->getSize()) <= LoadClusterThreshold;
339 }
340 
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const DebugLoc & DL,unsigned DestReg,unsigned SrcReg,bool KillSrc) const341 void SIInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
342                               MachineBasicBlock::iterator MI,
343                               const DebugLoc &DL, unsigned DestReg,
344                               unsigned SrcReg, bool KillSrc) const {
345 
346   // If we are trying to copy to or from SCC, there is a bug somewhere else in
347   // the backend.  While it may be theoretically possible to do this, it should
348   // never be necessary.
349   assert(DestReg != AMDGPU::SCC && SrcReg != AMDGPU::SCC);
350 
351   static const int16_t Sub0_15[] = {
352     AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
353     AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7,
354     AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11,
355     AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15,
356   };
357 
358   static const int16_t Sub0_15_64[] = {
359     AMDGPU::sub0_sub1, AMDGPU::sub2_sub3,
360     AMDGPU::sub4_sub5, AMDGPU::sub6_sub7,
361     AMDGPU::sub8_sub9, AMDGPU::sub10_sub11,
362     AMDGPU::sub12_sub13, AMDGPU::sub14_sub15,
363   };
364 
365   static const int16_t Sub0_7[] = {
366     AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
367     AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7,
368   };
369 
370   static const int16_t Sub0_7_64[] = {
371     AMDGPU::sub0_sub1, AMDGPU::sub2_sub3,
372     AMDGPU::sub4_sub5, AMDGPU::sub6_sub7,
373   };
374 
375   static const int16_t Sub0_3[] = {
376     AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
377   };
378 
379   static const int16_t Sub0_3_64[] = {
380     AMDGPU::sub0_sub1, AMDGPU::sub2_sub3,
381   };
382 
383   static const int16_t Sub0_2[] = {
384     AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2,
385   };
386 
387   static const int16_t Sub0_1[] = {
388     AMDGPU::sub0, AMDGPU::sub1,
389   };
390 
391   unsigned Opcode;
392   ArrayRef<int16_t> SubIndices;
393   bool Forward;
394 
395   if (AMDGPU::SReg_32RegClass.contains(DestReg)) {
396     assert(AMDGPU::SReg_32RegClass.contains(SrcReg));
397     BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg)
398             .addReg(SrcReg, getKillRegState(KillSrc));
399     return;
400 
401   } else if (AMDGPU::SReg_64RegClass.contains(DestReg)) {
402     if (DestReg == AMDGPU::VCC) {
403       if (AMDGPU::SReg_64RegClass.contains(SrcReg)) {
404         BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), AMDGPU::VCC)
405           .addReg(SrcReg, getKillRegState(KillSrc));
406       } else {
407         // FIXME: Hack until VReg_1 removed.
408         assert(AMDGPU::VGPR_32RegClass.contains(SrcReg));
409         BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_I32_e32))
410           .addImm(0)
411           .addReg(SrcReg, getKillRegState(KillSrc));
412       }
413 
414       return;
415     }
416 
417     assert(AMDGPU::SReg_64RegClass.contains(SrcReg));
418     BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg)
419             .addReg(SrcReg, getKillRegState(KillSrc));
420     return;
421 
422   } else if (AMDGPU::SReg_128RegClass.contains(DestReg)) {
423     assert(AMDGPU::SReg_128RegClass.contains(SrcReg));
424     Opcode = AMDGPU::S_MOV_B64;
425     SubIndices = Sub0_3_64;
426 
427   } else if (AMDGPU::SReg_256RegClass.contains(DestReg)) {
428     assert(AMDGPU::SReg_256RegClass.contains(SrcReg));
429     Opcode = AMDGPU::S_MOV_B64;
430     SubIndices = Sub0_7_64;
431 
432   } else if (AMDGPU::SReg_512RegClass.contains(DestReg)) {
433     assert(AMDGPU::SReg_512RegClass.contains(SrcReg));
434     Opcode = AMDGPU::S_MOV_B64;
435     SubIndices = Sub0_15_64;
436 
437   } else if (AMDGPU::VGPR_32RegClass.contains(DestReg)) {
438     assert(AMDGPU::VGPR_32RegClass.contains(SrcReg) ||
439            AMDGPU::SReg_32RegClass.contains(SrcReg));
440     BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg)
441             .addReg(SrcReg, getKillRegState(KillSrc));
442     return;
443 
444   } else if (AMDGPU::VReg_64RegClass.contains(DestReg)) {
445     assert(AMDGPU::VReg_64RegClass.contains(SrcReg) ||
446            AMDGPU::SReg_64RegClass.contains(SrcReg));
447     Opcode = AMDGPU::V_MOV_B32_e32;
448     SubIndices = Sub0_1;
449 
450   } else if (AMDGPU::VReg_96RegClass.contains(DestReg)) {
451     assert(AMDGPU::VReg_96RegClass.contains(SrcReg));
452     Opcode = AMDGPU::V_MOV_B32_e32;
453     SubIndices = Sub0_2;
454 
455   } else if (AMDGPU::VReg_128RegClass.contains(DestReg)) {
456     assert(AMDGPU::VReg_128RegClass.contains(SrcReg) ||
457            AMDGPU::SReg_128RegClass.contains(SrcReg));
458     Opcode = AMDGPU::V_MOV_B32_e32;
459     SubIndices = Sub0_3;
460 
461   } else if (AMDGPU::VReg_256RegClass.contains(DestReg)) {
462     assert(AMDGPU::VReg_256RegClass.contains(SrcReg) ||
463            AMDGPU::SReg_256RegClass.contains(SrcReg));
464     Opcode = AMDGPU::V_MOV_B32_e32;
465     SubIndices = Sub0_7;
466 
467   } else if (AMDGPU::VReg_512RegClass.contains(DestReg)) {
468     assert(AMDGPU::VReg_512RegClass.contains(SrcReg) ||
469            AMDGPU::SReg_512RegClass.contains(SrcReg));
470     Opcode = AMDGPU::V_MOV_B32_e32;
471     SubIndices = Sub0_15;
472 
473   } else {
474     llvm_unreachable("Can't copy register!");
475   }
476 
477   if (RI.getHWRegIndex(DestReg) <= RI.getHWRegIndex(SrcReg))
478     Forward = true;
479   else
480     Forward = false;
481 
482   for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) {
483     unsigned SubIdx;
484     if (Forward)
485       SubIdx = SubIndices[Idx];
486     else
487       SubIdx = SubIndices[SubIndices.size() - Idx - 1];
488 
489     MachineInstrBuilder Builder = BuildMI(MBB, MI, DL,
490       get(Opcode), RI.getSubReg(DestReg, SubIdx));
491 
492     Builder.addReg(RI.getSubReg(SrcReg, SubIdx));
493 
494     if (Idx == SubIndices.size() - 1)
495       Builder.addReg(SrcReg, getKillRegState(KillSrc) | RegState::Implicit);
496 
497     if (Idx == 0)
498       Builder.addReg(DestReg, RegState::Define | RegState::Implicit);
499   }
500 }
501 
commuteOpcode(const MachineInstr & MI) const502 int SIInstrInfo::commuteOpcode(const MachineInstr &MI) const {
503   const unsigned Opcode = MI.getOpcode();
504 
505   int NewOpc;
506 
507   // Try to map original to commuted opcode
508   NewOpc = AMDGPU::getCommuteRev(Opcode);
509   if (NewOpc != -1)
510     // Check if the commuted (REV) opcode exists on the target.
511     return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1;
512 
513   // Try to map commuted to original opcode
514   NewOpc = AMDGPU::getCommuteOrig(Opcode);
515   if (NewOpc != -1)
516     // Check if the original (non-REV) opcode exists on the target.
517     return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1;
518 
519   return Opcode;
520 }
521 
getMovOpcode(const TargetRegisterClass * DstRC) const522 unsigned SIInstrInfo::getMovOpcode(const TargetRegisterClass *DstRC) const {
523 
524   if (DstRC->getSize() == 4) {
525     return RI.isSGPRClass(DstRC) ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
526   } else if (DstRC->getSize() == 8 && RI.isSGPRClass(DstRC)) {
527     return AMDGPU::S_MOV_B64;
528   } else if (DstRC->getSize() == 8 && !RI.isSGPRClass(DstRC)) {
529     return  AMDGPU::V_MOV_B64_PSEUDO;
530   }
531   return AMDGPU::COPY;
532 }
533 
getSGPRSpillSaveOpcode(unsigned Size)534 static unsigned getSGPRSpillSaveOpcode(unsigned Size) {
535   switch (Size) {
536   case 4:
537     return AMDGPU::SI_SPILL_S32_SAVE;
538   case 8:
539     return AMDGPU::SI_SPILL_S64_SAVE;
540   case 16:
541     return AMDGPU::SI_SPILL_S128_SAVE;
542   case 32:
543     return AMDGPU::SI_SPILL_S256_SAVE;
544   case 64:
545     return AMDGPU::SI_SPILL_S512_SAVE;
546   default:
547     llvm_unreachable("unknown register size");
548   }
549 }
550 
getVGPRSpillSaveOpcode(unsigned Size)551 static unsigned getVGPRSpillSaveOpcode(unsigned Size) {
552   switch (Size) {
553   case 4:
554     return AMDGPU::SI_SPILL_V32_SAVE;
555   case 8:
556     return AMDGPU::SI_SPILL_V64_SAVE;
557   case 12:
558     return AMDGPU::SI_SPILL_V96_SAVE;
559   case 16:
560     return AMDGPU::SI_SPILL_V128_SAVE;
561   case 32:
562     return AMDGPU::SI_SPILL_V256_SAVE;
563   case 64:
564     return AMDGPU::SI_SPILL_V512_SAVE;
565   default:
566     llvm_unreachable("unknown register size");
567   }
568 }
569 
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned SrcReg,bool isKill,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const570 void SIInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
571                                       MachineBasicBlock::iterator MI,
572                                       unsigned SrcReg, bool isKill,
573                                       int FrameIndex,
574                                       const TargetRegisterClass *RC,
575                                       const TargetRegisterInfo *TRI) const {
576   MachineFunction *MF = MBB.getParent();
577   SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
578   MachineFrameInfo *FrameInfo = MF->getFrameInfo();
579   DebugLoc DL = MBB.findDebugLoc(MI);
580 
581   unsigned Size = FrameInfo->getObjectSize(FrameIndex);
582   unsigned Align = FrameInfo->getObjectAlignment(FrameIndex);
583   MachinePointerInfo PtrInfo
584     = MachinePointerInfo::getFixedStack(*MF, FrameIndex);
585   MachineMemOperand *MMO
586     = MF->getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
587                                Size, Align);
588 
589   if (RI.isSGPRClass(RC)) {
590     MFI->setHasSpilledSGPRs();
591 
592     if (TargetRegisterInfo::isVirtualRegister(SrcReg) && RC->getSize() == 4) {
593       // m0 may not be allowed for readlane.
594       MachineRegisterInfo &MRI = MF->getRegInfo();
595       MRI.constrainRegClass(SrcReg, &AMDGPU::SReg_32_XM0RegClass);
596     }
597 
598     // We are only allowed to create one new instruction when spilling
599     // registers, so we need to use pseudo instruction for spilling
600     // SGPRs.
601     unsigned Opcode = getSGPRSpillSaveOpcode(RC->getSize());
602     BuildMI(MBB, MI, DL, get(Opcode))
603       .addReg(SrcReg, getKillRegState(isKill)) // src
604       .addFrameIndex(FrameIndex) // frame_idx
605       .addMemOperand(MMO);
606 
607     return;
608   }
609 
610   if (!ST.isVGPRSpillingEnabled(*MF->getFunction())) {
611     LLVMContext &Ctx = MF->getFunction()->getContext();
612     Ctx.emitError("SIInstrInfo::storeRegToStackSlot - Do not know how to"
613                   " spill register");
614     BuildMI(MBB, MI, DL, get(AMDGPU::KILL))
615       .addReg(SrcReg);
616 
617     return;
618   }
619 
620   assert(RI.hasVGPRs(RC) && "Only VGPR spilling expected");
621 
622   unsigned Opcode = getVGPRSpillSaveOpcode(RC->getSize());
623   MFI->setHasSpilledVGPRs();
624   BuildMI(MBB, MI, DL, get(Opcode))
625     .addReg(SrcReg, getKillRegState(isKill)) // src
626     .addFrameIndex(FrameIndex)        // frame_idx
627     .addReg(MFI->getScratchRSrcReg())       // scratch_rsrc
628     .addReg(MFI->getScratchWaveOffsetReg()) // scratch_offset
629     .addImm(0)                              // offset
630     .addMemOperand(MMO);
631 }
632 
getSGPRSpillRestoreOpcode(unsigned Size)633 static unsigned getSGPRSpillRestoreOpcode(unsigned Size) {
634   switch (Size) {
635   case 4:
636     return AMDGPU::SI_SPILL_S32_RESTORE;
637   case 8:
638     return AMDGPU::SI_SPILL_S64_RESTORE;
639   case 16:
640     return AMDGPU::SI_SPILL_S128_RESTORE;
641   case 32:
642     return AMDGPU::SI_SPILL_S256_RESTORE;
643   case 64:
644     return AMDGPU::SI_SPILL_S512_RESTORE;
645   default:
646     llvm_unreachable("unknown register size");
647   }
648 }
649 
getVGPRSpillRestoreOpcode(unsigned Size)650 static unsigned getVGPRSpillRestoreOpcode(unsigned Size) {
651   switch (Size) {
652   case 4:
653     return AMDGPU::SI_SPILL_V32_RESTORE;
654   case 8:
655     return AMDGPU::SI_SPILL_V64_RESTORE;
656   case 12:
657     return AMDGPU::SI_SPILL_V96_RESTORE;
658   case 16:
659     return AMDGPU::SI_SPILL_V128_RESTORE;
660   case 32:
661     return AMDGPU::SI_SPILL_V256_RESTORE;
662   case 64:
663     return AMDGPU::SI_SPILL_V512_RESTORE;
664   default:
665     llvm_unreachable("unknown register size");
666   }
667 }
668 
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned DestReg,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const669 void SIInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
670                                        MachineBasicBlock::iterator MI,
671                                        unsigned DestReg, int FrameIndex,
672                                        const TargetRegisterClass *RC,
673                                        const TargetRegisterInfo *TRI) const {
674   MachineFunction *MF = MBB.getParent();
675   const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
676   MachineFrameInfo *FrameInfo = MF->getFrameInfo();
677   DebugLoc DL = MBB.findDebugLoc(MI);
678   unsigned Align = FrameInfo->getObjectAlignment(FrameIndex);
679   unsigned Size = FrameInfo->getObjectSize(FrameIndex);
680 
681   MachinePointerInfo PtrInfo
682     = MachinePointerInfo::getFixedStack(*MF, FrameIndex);
683 
684   MachineMemOperand *MMO = MF->getMachineMemOperand(
685     PtrInfo, MachineMemOperand::MOLoad, Size, Align);
686 
687   if (RI.isSGPRClass(RC)) {
688     // FIXME: Maybe this should not include a memoperand because it will be
689     // lowered to non-memory instructions.
690     unsigned Opcode = getSGPRSpillRestoreOpcode(RC->getSize());
691 
692     if (TargetRegisterInfo::isVirtualRegister(DestReg) && RC->getSize() == 4) {
693       // m0 may not be allowed for readlane.
694       MachineRegisterInfo &MRI = MF->getRegInfo();
695       MRI.constrainRegClass(DestReg, &AMDGPU::SReg_32_XM0RegClass);
696     }
697 
698     BuildMI(MBB, MI, DL, get(Opcode), DestReg)
699       .addFrameIndex(FrameIndex) // frame_idx
700       .addMemOperand(MMO);
701 
702     return;
703   }
704 
705   if (!ST.isVGPRSpillingEnabled(*MF->getFunction())) {
706     LLVMContext &Ctx = MF->getFunction()->getContext();
707     Ctx.emitError("SIInstrInfo::loadRegFromStackSlot - Do not know how to"
708                   " restore register");
709     BuildMI(MBB, MI, DL, get(AMDGPU::IMPLICIT_DEF), DestReg);
710 
711     return;
712   }
713 
714   assert(RI.hasVGPRs(RC) && "Only VGPR spilling expected");
715 
716   unsigned Opcode = getVGPRSpillRestoreOpcode(RC->getSize());
717   BuildMI(MBB, MI, DL, get(Opcode), DestReg)
718     .addFrameIndex(FrameIndex)        // frame_idx
719     .addReg(MFI->getScratchRSrcReg())       // scratch_rsrc
720     .addReg(MFI->getScratchWaveOffsetReg()) // scratch_offset
721     .addImm(0)                              // offset
722     .addMemOperand(MMO);
723 }
724 
725 /// \param @Offset Offset in bytes of the FrameIndex being spilled
calculateLDSSpillAddress(MachineBasicBlock & MBB,MachineInstr & MI,RegScavenger * RS,unsigned TmpReg,unsigned FrameOffset,unsigned Size) const726 unsigned SIInstrInfo::calculateLDSSpillAddress(
727     MachineBasicBlock &MBB, MachineInstr &MI, RegScavenger *RS, unsigned TmpReg,
728     unsigned FrameOffset, unsigned Size) const {
729   MachineFunction *MF = MBB.getParent();
730   SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
731   const SISubtarget &ST = MF->getSubtarget<SISubtarget>();
732   const SIRegisterInfo *TRI = ST.getRegisterInfo();
733   DebugLoc DL = MBB.findDebugLoc(MI);
734   unsigned WorkGroupSize = MFI->getMaximumWorkGroupSize(*MF);
735   unsigned WavefrontSize = ST.getWavefrontSize();
736 
737   unsigned TIDReg = MFI->getTIDReg();
738   if (!MFI->hasCalculatedTID()) {
739     MachineBasicBlock &Entry = MBB.getParent()->front();
740     MachineBasicBlock::iterator Insert = Entry.front();
741     DebugLoc DL = Insert->getDebugLoc();
742 
743     TIDReg = RI.findUnusedRegister(MF->getRegInfo(), &AMDGPU::VGPR_32RegClass);
744     if (TIDReg == AMDGPU::NoRegister)
745       return TIDReg;
746 
747     if (!AMDGPU::isShader(MF->getFunction()->getCallingConv()) &&
748         WorkGroupSize > WavefrontSize) {
749 
750       unsigned TIDIGXReg
751         = TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_X);
752       unsigned TIDIGYReg
753         = TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_Y);
754       unsigned TIDIGZReg
755         = TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_Z);
756       unsigned InputPtrReg =
757           TRI->getPreloadedValue(*MF, SIRegisterInfo::KERNARG_SEGMENT_PTR);
758       for (unsigned Reg : {TIDIGXReg, TIDIGYReg, TIDIGZReg}) {
759         if (!Entry.isLiveIn(Reg))
760           Entry.addLiveIn(Reg);
761       }
762 
763       RS->enterBasicBlock(Entry);
764       // FIXME: Can we scavenge an SReg_64 and access the subregs?
765       unsigned STmp0 = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, 0);
766       unsigned STmp1 = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, 0);
767       BuildMI(Entry, Insert, DL, get(AMDGPU::S_LOAD_DWORD_IMM), STmp0)
768               .addReg(InputPtrReg)
769               .addImm(SI::KernelInputOffsets::NGROUPS_Z);
770       BuildMI(Entry, Insert, DL, get(AMDGPU::S_LOAD_DWORD_IMM), STmp1)
771               .addReg(InputPtrReg)
772               .addImm(SI::KernelInputOffsets::NGROUPS_Y);
773 
774       // NGROUPS.X * NGROUPS.Y
775       BuildMI(Entry, Insert, DL, get(AMDGPU::S_MUL_I32), STmp1)
776               .addReg(STmp1)
777               .addReg(STmp0);
778       // (NGROUPS.X * NGROUPS.Y) * TIDIG.X
779       BuildMI(Entry, Insert, DL, get(AMDGPU::V_MUL_U32_U24_e32), TIDReg)
780               .addReg(STmp1)
781               .addReg(TIDIGXReg);
782       // NGROUPS.Z * TIDIG.Y + (NGROUPS.X * NGROPUS.Y * TIDIG.X)
783       BuildMI(Entry, Insert, DL, get(AMDGPU::V_MAD_U32_U24), TIDReg)
784               .addReg(STmp0)
785               .addReg(TIDIGYReg)
786               .addReg(TIDReg);
787       // (NGROUPS.Z * TIDIG.Y + (NGROUPS.X * NGROPUS.Y * TIDIG.X)) + TIDIG.Z
788       BuildMI(Entry, Insert, DL, get(AMDGPU::V_ADD_I32_e32), TIDReg)
789               .addReg(TIDReg)
790               .addReg(TIDIGZReg);
791     } else {
792       // Get the wave id
793       BuildMI(Entry, Insert, DL, get(AMDGPU::V_MBCNT_LO_U32_B32_e64),
794               TIDReg)
795               .addImm(-1)
796               .addImm(0);
797 
798       BuildMI(Entry, Insert, DL, get(AMDGPU::V_MBCNT_HI_U32_B32_e64),
799               TIDReg)
800               .addImm(-1)
801               .addReg(TIDReg);
802     }
803 
804     BuildMI(Entry, Insert, DL, get(AMDGPU::V_LSHLREV_B32_e32),
805             TIDReg)
806             .addImm(2)
807             .addReg(TIDReg);
808     MFI->setTIDReg(TIDReg);
809   }
810 
811   // Add FrameIndex to LDS offset
812   unsigned LDSOffset = MFI->LDSSize + (FrameOffset * WorkGroupSize);
813   BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_I32_e32), TmpReg)
814           .addImm(LDSOffset)
815           .addReg(TIDReg);
816 
817   return TmpReg;
818 }
819 
insertWaitStates(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,int Count) const820 void SIInstrInfo::insertWaitStates(MachineBasicBlock &MBB,
821                                    MachineBasicBlock::iterator MI,
822                                    int Count) const {
823   DebugLoc DL = MBB.findDebugLoc(MI);
824   while (Count > 0) {
825     int Arg;
826     if (Count >= 8)
827       Arg = 7;
828     else
829       Arg = Count - 1;
830     Count -= 8;
831     BuildMI(MBB, MI, DL, get(AMDGPU::S_NOP))
832             .addImm(Arg);
833   }
834 }
835 
insertNoop(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI) const836 void SIInstrInfo::insertNoop(MachineBasicBlock &MBB,
837                              MachineBasicBlock::iterator MI) const {
838   insertWaitStates(MBB, MI, 1);
839 }
840 
getNumWaitStates(const MachineInstr & MI) const841 unsigned SIInstrInfo::getNumWaitStates(const MachineInstr &MI) const {
842   switch (MI.getOpcode()) {
843   default: return 1; // FIXME: Do wait states equal cycles?
844 
845   case AMDGPU::S_NOP:
846     return MI.getOperand(0).getImm() + 1;
847   }
848 }
849 
expandPostRAPseudo(MachineInstr & MI) const850 bool SIInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
851   MachineBasicBlock &MBB = *MI.getParent();
852   DebugLoc DL = MBB.findDebugLoc(MI);
853   switch (MI.getOpcode()) {
854   default: return AMDGPUInstrInfo::expandPostRAPseudo(MI);
855 
856   case AMDGPU::V_MOV_B64_PSEUDO: {
857     unsigned Dst = MI.getOperand(0).getReg();
858     unsigned DstLo = RI.getSubReg(Dst, AMDGPU::sub0);
859     unsigned DstHi = RI.getSubReg(Dst, AMDGPU::sub1);
860 
861     const MachineOperand &SrcOp = MI.getOperand(1);
862     // FIXME: Will this work for 64-bit floating point immediates?
863     assert(!SrcOp.isFPImm());
864     if (SrcOp.isImm()) {
865       APInt Imm(64, SrcOp.getImm());
866       BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo)
867         .addImm(Imm.getLoBits(32).getZExtValue())
868         .addReg(Dst, RegState::Implicit | RegState::Define);
869       BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi)
870         .addImm(Imm.getHiBits(32).getZExtValue())
871         .addReg(Dst, RegState::Implicit | RegState::Define);
872     } else {
873       assert(SrcOp.isReg());
874       BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo)
875         .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub0))
876         .addReg(Dst, RegState::Implicit | RegState::Define);
877       BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi)
878         .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub1))
879         .addReg(Dst, RegState::Implicit | RegState::Define);
880     }
881     MI.eraseFromParent();
882     break;
883   }
884 
885   case AMDGPU::V_CNDMASK_B64_PSEUDO: {
886     unsigned Dst = MI.getOperand(0).getReg();
887     unsigned DstLo = RI.getSubReg(Dst, AMDGPU::sub0);
888     unsigned DstHi = RI.getSubReg(Dst, AMDGPU::sub1);
889     unsigned Src0 = MI.getOperand(1).getReg();
890     unsigned Src1 = MI.getOperand(2).getReg();
891     const MachineOperand &SrcCond = MI.getOperand(3);
892 
893     BuildMI(MBB, MI, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
894       .addReg(RI.getSubReg(Src0, AMDGPU::sub0))
895       .addReg(RI.getSubReg(Src1, AMDGPU::sub0))
896       .addReg(SrcCond.getReg())
897       .addReg(Dst, RegState::Implicit | RegState::Define);
898     BuildMI(MBB, MI, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
899       .addReg(RI.getSubReg(Src0, AMDGPU::sub1))
900       .addReg(RI.getSubReg(Src1, AMDGPU::sub1))
901       .addReg(SrcCond.getReg(), getKillRegState(SrcCond.isKill()))
902       .addReg(Dst, RegState::Implicit | RegState::Define);
903     MI.eraseFromParent();
904     break;
905   }
906 
907   case AMDGPU::SI_PC_ADD_REL_OFFSET: {
908     const SIRegisterInfo *TRI
909       = static_cast<const SIRegisterInfo *>(ST.getRegisterInfo());
910     MachineFunction &MF = *MBB.getParent();
911     unsigned Reg = MI.getOperand(0).getReg();
912     unsigned RegLo = TRI->getSubReg(Reg, AMDGPU::sub0);
913     unsigned RegHi = TRI->getSubReg(Reg, AMDGPU::sub1);
914 
915     // Create a bundle so these instructions won't be re-ordered by the
916     // post-RA scheduler.
917     MIBundleBuilder Bundler(MBB, MI);
918     Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_GETPC_B64), Reg));
919 
920     // Add 32-bit offset from this instruction to the start of the
921     // constant data.
922     Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADD_U32), RegLo)
923                        .addReg(RegLo)
924                        .addOperand(MI.getOperand(1)));
925     Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADDC_U32), RegHi)
926                            .addReg(RegHi)
927                            .addImm(0));
928 
929     llvm::finalizeBundle(MBB, Bundler.begin());
930 
931     MI.eraseFromParent();
932     break;
933   }
934   }
935   return true;
936 }
937 
938 /// Commutes the operands in the given instruction.
939 /// The commutable operands are specified by their indices OpIdx0 and OpIdx1.
940 ///
941 /// Do not call this method for a non-commutable instruction or for
942 /// non-commutable pair of operand indices OpIdx0 and OpIdx1.
943 /// Even though the instruction is commutable, the method may still
944 /// fail to commute the operands, null pointer is returned in such cases.
commuteInstructionImpl(MachineInstr & MI,bool NewMI,unsigned OpIdx0,unsigned OpIdx1) const945 MachineInstr *SIInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
946                                                   unsigned OpIdx0,
947                                                   unsigned OpIdx1) const {
948   int CommutedOpcode = commuteOpcode(MI);
949   if (CommutedOpcode == -1)
950     return nullptr;
951 
952   int Src0Idx =
953       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);
954   MachineOperand &Src0 = MI.getOperand(Src0Idx);
955   if (!Src0.isReg())
956     return nullptr;
957 
958   int Src1Idx =
959       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src1);
960 
961   if ((OpIdx0 != static_cast<unsigned>(Src0Idx) ||
962        OpIdx1 != static_cast<unsigned>(Src1Idx)) &&
963       (OpIdx0 != static_cast<unsigned>(Src1Idx) ||
964        OpIdx1 != static_cast<unsigned>(Src0Idx)))
965     return nullptr;
966 
967   MachineOperand &Src1 = MI.getOperand(Src1Idx);
968 
969   if (isVOP2(MI) || isVOPC(MI)) {
970     const MCInstrDesc &InstrDesc = MI.getDesc();
971     // For VOP2 and VOPC instructions, any operand type is valid to use for
972     // src0.  Make sure we can use the src0 as src1.
973     //
974     // We could be stricter here and only allow commuting if there is a reason
975     // to do so. i.e. if both operands are VGPRs there is no real benefit,
976     // although MachineCSE attempts to find matches by commuting.
977     const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
978     if (!isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src0))
979       return nullptr;
980   }
981 
982   MachineInstr *CommutedMI = &MI;
983   if (!Src1.isReg()) {
984     // Allow commuting instructions with Imm operands.
985     if (NewMI || !Src1.isImm() || (!isVOP2(MI) && !isVOP3(MI))) {
986       return nullptr;
987     }
988     // Be sure to copy the source modifiers to the right place.
989     if (MachineOperand *Src0Mods =
990             getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)) {
991       MachineOperand *Src1Mods =
992           getNamedOperand(MI, AMDGPU::OpName::src1_modifiers);
993 
994       int Src0ModsVal = Src0Mods->getImm();
995       if (!Src1Mods && Src0ModsVal != 0)
996         return nullptr;
997 
998       // XXX - This assert might be a lie. It might be useful to have a neg
999       // modifier with 0.0.
1000       int Src1ModsVal = Src1Mods->getImm();
1001       assert((Src1ModsVal == 0) && "Not expecting modifiers with immediates");
1002 
1003       Src1Mods->setImm(Src0ModsVal);
1004       Src0Mods->setImm(Src1ModsVal);
1005     }
1006 
1007     unsigned Reg = Src0.getReg();
1008     unsigned SubReg = Src0.getSubReg();
1009     if (Src1.isImm())
1010       Src0.ChangeToImmediate(Src1.getImm());
1011     else
1012       llvm_unreachable("Should only have immediates");
1013 
1014     Src1.ChangeToRegister(Reg, false);
1015     Src1.setSubReg(SubReg);
1016   } else {
1017     CommutedMI =
1018         TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx0, OpIdx1);
1019   }
1020 
1021   if (CommutedMI)
1022     CommutedMI->setDesc(get(CommutedOpcode));
1023 
1024   return CommutedMI;
1025 }
1026 
1027 // This needs to be implemented because the source modifiers may be inserted
1028 // between the true commutable operands, and the base
1029 // TargetInstrInfo::commuteInstruction uses it.
findCommutedOpIndices(MachineInstr & MI,unsigned & SrcOpIdx0,unsigned & SrcOpIdx1) const1030 bool SIInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx0,
1031                                         unsigned &SrcOpIdx1) const {
1032   const MCInstrDesc &MCID = MI.getDesc();
1033   if (!MCID.isCommutable())
1034     return false;
1035 
1036   unsigned Opc = MI.getOpcode();
1037   int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
1038   if (Src0Idx == -1)
1039     return false;
1040 
1041   // FIXME: Workaround TargetInstrInfo::commuteInstruction asserting on
1042   // immediate. Also, immediate src0 operand is not handled in
1043   // SIInstrInfo::commuteInstruction();
1044   if (!MI.getOperand(Src0Idx).isReg())
1045     return false;
1046 
1047   int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
1048   if (Src1Idx == -1)
1049     return false;
1050 
1051   MachineOperand &Src1 = MI.getOperand(Src1Idx);
1052   if (Src1.isImm()) {
1053     // SIInstrInfo::commuteInstruction() does support commuting the immediate
1054     // operand src1 in 2 and 3 operand instructions.
1055     if (!isVOP2(MI.getOpcode()) && !isVOP3(MI.getOpcode()))
1056       return false;
1057   } else if (Src1.isReg()) {
1058     // If any source modifiers are set, the generic instruction commuting won't
1059     // understand how to copy the source modifiers.
1060     if (hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
1061         hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers))
1062       return false;
1063   } else
1064     return false;
1065 
1066   return fixCommutedOpIndices(SrcOpIdx0, SrcOpIdx1, Src0Idx, Src1Idx);
1067 }
1068 
getBranchOpcode(SIInstrInfo::BranchPredicate Cond)1069 unsigned SIInstrInfo::getBranchOpcode(SIInstrInfo::BranchPredicate Cond) {
1070   switch (Cond) {
1071   case SIInstrInfo::SCC_TRUE:
1072     return AMDGPU::S_CBRANCH_SCC1;
1073   case SIInstrInfo::SCC_FALSE:
1074     return AMDGPU::S_CBRANCH_SCC0;
1075   case SIInstrInfo::VCCNZ:
1076     return AMDGPU::S_CBRANCH_VCCNZ;
1077   case SIInstrInfo::VCCZ:
1078     return AMDGPU::S_CBRANCH_VCCZ;
1079   case SIInstrInfo::EXECNZ:
1080     return AMDGPU::S_CBRANCH_EXECNZ;
1081   case SIInstrInfo::EXECZ:
1082     return AMDGPU::S_CBRANCH_EXECZ;
1083   default:
1084     llvm_unreachable("invalid branch predicate");
1085   }
1086 }
1087 
getBranchPredicate(unsigned Opcode)1088 SIInstrInfo::BranchPredicate SIInstrInfo::getBranchPredicate(unsigned Opcode) {
1089   switch (Opcode) {
1090   case AMDGPU::S_CBRANCH_SCC0:
1091     return SCC_FALSE;
1092   case AMDGPU::S_CBRANCH_SCC1:
1093     return SCC_TRUE;
1094   case AMDGPU::S_CBRANCH_VCCNZ:
1095     return VCCNZ;
1096   case AMDGPU::S_CBRANCH_VCCZ:
1097     return VCCZ;
1098   case AMDGPU::S_CBRANCH_EXECNZ:
1099     return EXECNZ;
1100   case AMDGPU::S_CBRANCH_EXECZ:
1101     return EXECZ;
1102   default:
1103     return INVALID_BR;
1104   }
1105 }
1106 
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const1107 bool SIInstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
1108                                 MachineBasicBlock *&FBB,
1109                                 SmallVectorImpl<MachineOperand> &Cond,
1110                                 bool AllowModify) const {
1111   MachineBasicBlock::iterator I = MBB.getFirstTerminator();
1112 
1113   if (I == MBB.end())
1114     return false;
1115 
1116   if (I->getOpcode() == AMDGPU::S_BRANCH) {
1117     // Unconditional Branch
1118     TBB = I->getOperand(0).getMBB();
1119     return false;
1120   }
1121 
1122   BranchPredicate Pred = getBranchPredicate(I->getOpcode());
1123   if (Pred == INVALID_BR)
1124     return true;
1125 
1126   MachineBasicBlock *CondBB = I->getOperand(0).getMBB();
1127   Cond.push_back(MachineOperand::CreateImm(Pred));
1128 
1129   ++I;
1130 
1131   if (I == MBB.end()) {
1132     // Conditional branch followed by fall-through.
1133     TBB = CondBB;
1134     return false;
1135   }
1136 
1137   if (I->getOpcode() == AMDGPU::S_BRANCH) {
1138     TBB = CondBB;
1139     FBB = I->getOperand(0).getMBB();
1140     return false;
1141   }
1142 
1143   return true;
1144 }
1145 
RemoveBranch(MachineBasicBlock & MBB) const1146 unsigned SIInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1147   MachineBasicBlock::iterator I = MBB.getFirstTerminator();
1148 
1149   unsigned Count = 0;
1150   while (I != MBB.end()) {
1151     MachineBasicBlock::iterator Next = std::next(I);
1152     I->eraseFromParent();
1153     ++Count;
1154     I = Next;
1155   }
1156 
1157   return Count;
1158 }
1159 
InsertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL) const1160 unsigned SIInstrInfo::InsertBranch(MachineBasicBlock &MBB,
1161                                    MachineBasicBlock *TBB,
1162                                    MachineBasicBlock *FBB,
1163                                    ArrayRef<MachineOperand> Cond,
1164                                    const DebugLoc &DL) const {
1165 
1166   if (!FBB && Cond.empty()) {
1167     BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH))
1168       .addMBB(TBB);
1169     return 1;
1170   }
1171 
1172   assert(TBB && Cond[0].isImm());
1173 
1174   unsigned Opcode
1175     = getBranchOpcode(static_cast<BranchPredicate>(Cond[0].getImm()));
1176 
1177   if (!FBB) {
1178     BuildMI(&MBB, DL, get(Opcode))
1179       .addMBB(TBB);
1180     return 1;
1181   }
1182 
1183   assert(TBB && FBB);
1184 
1185   BuildMI(&MBB, DL, get(Opcode))
1186     .addMBB(TBB);
1187   BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH))
1188     .addMBB(FBB);
1189 
1190   return 2;
1191 }
1192 
ReverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const1193 bool SIInstrInfo::ReverseBranchCondition(
1194   SmallVectorImpl<MachineOperand> &Cond) const {
1195   assert(Cond.size() == 1);
1196   Cond[0].setImm(-Cond[0].getImm());
1197   return false;
1198 }
1199 
removeModOperands(MachineInstr & MI)1200 static void removeModOperands(MachineInstr &MI) {
1201   unsigned Opc = MI.getOpcode();
1202   int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc,
1203                                               AMDGPU::OpName::src0_modifiers);
1204   int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc,
1205                                               AMDGPU::OpName::src1_modifiers);
1206   int Src2ModIdx = AMDGPU::getNamedOperandIdx(Opc,
1207                                               AMDGPU::OpName::src2_modifiers);
1208 
1209   MI.RemoveOperand(Src2ModIdx);
1210   MI.RemoveOperand(Src1ModIdx);
1211   MI.RemoveOperand(Src0ModIdx);
1212 }
1213 
1214 // TODO: Maybe this should be removed this and custom fold everything in
1215 // SIFoldOperands?
FoldImmediate(MachineInstr & UseMI,MachineInstr & DefMI,unsigned Reg,MachineRegisterInfo * MRI) const1216 bool SIInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1217                                 unsigned Reg, MachineRegisterInfo *MRI) const {
1218   if (!MRI->hasOneNonDBGUse(Reg))
1219     return false;
1220 
1221   unsigned Opc = UseMI.getOpcode();
1222   if (Opc == AMDGPU::V_MAD_F32 || Opc == AMDGPU::V_MAC_F32_e64) {
1223     // Don't fold if we are using source modifiers. The new VOP2 instructions
1224     // don't have them.
1225     if (hasModifiersSet(UseMI, AMDGPU::OpName::src0_modifiers) ||
1226         hasModifiersSet(UseMI, AMDGPU::OpName::src1_modifiers) ||
1227         hasModifiersSet(UseMI, AMDGPU::OpName::src2_modifiers)) {
1228       return false;
1229     }
1230 
1231     const MachineOperand &ImmOp = DefMI.getOperand(1);
1232 
1233     // If this is a free constant, there's no reason to do this.
1234     // TODO: We could fold this here instead of letting SIFoldOperands do it
1235     // later.
1236     if (isInlineConstant(ImmOp, 4))
1237       return false;
1238 
1239     MachineOperand *Src0 = getNamedOperand(UseMI, AMDGPU::OpName::src0);
1240     MachineOperand *Src1 = getNamedOperand(UseMI, AMDGPU::OpName::src1);
1241     MachineOperand *Src2 = getNamedOperand(UseMI, AMDGPU::OpName::src2);
1242 
1243     // Multiplied part is the constant: Use v_madmk_f32
1244     // We should only expect these to be on src0 due to canonicalizations.
1245     if (Src0->isReg() && Src0->getReg() == Reg) {
1246       if (!Src1->isReg() || RI.isSGPRClass(MRI->getRegClass(Src1->getReg())))
1247         return false;
1248 
1249       if (!Src2->isReg() || RI.isSGPRClass(MRI->getRegClass(Src2->getReg())))
1250         return false;
1251 
1252       // We need to swap operands 0 and 1 since madmk constant is at operand 1.
1253 
1254       const int64_t Imm = DefMI.getOperand(1).getImm();
1255 
1256       // FIXME: This would be a lot easier if we could return a new instruction
1257       // instead of having to modify in place.
1258 
1259       // Remove these first since they are at the end.
1260       UseMI.RemoveOperand(
1261           AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::omod));
1262       UseMI.RemoveOperand(
1263           AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::clamp));
1264 
1265       unsigned Src1Reg = Src1->getReg();
1266       unsigned Src1SubReg = Src1->getSubReg();
1267       Src0->setReg(Src1Reg);
1268       Src0->setSubReg(Src1SubReg);
1269       Src0->setIsKill(Src1->isKill());
1270 
1271       if (Opc == AMDGPU::V_MAC_F32_e64) {
1272         UseMI.untieRegOperand(
1273             AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2));
1274       }
1275 
1276       Src1->ChangeToImmediate(Imm);
1277 
1278       removeModOperands(UseMI);
1279       UseMI.setDesc(get(AMDGPU::V_MADMK_F32));
1280 
1281       bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1282       if (DeleteDef)
1283         DefMI.eraseFromParent();
1284 
1285       return true;
1286     }
1287 
1288     // Added part is the constant: Use v_madak_f32
1289     if (Src2->isReg() && Src2->getReg() == Reg) {
1290       // Not allowed to use constant bus for another operand.
1291       // We can however allow an inline immediate as src0.
1292       if (!Src0->isImm() &&
1293           (Src0->isReg() && RI.isSGPRClass(MRI->getRegClass(Src0->getReg()))))
1294         return false;
1295 
1296       if (!Src1->isReg() || RI.isSGPRClass(MRI->getRegClass(Src1->getReg())))
1297         return false;
1298 
1299       const int64_t Imm = DefMI.getOperand(1).getImm();
1300 
1301       // FIXME: This would be a lot easier if we could return a new instruction
1302       // instead of having to modify in place.
1303 
1304       // Remove these first since they are at the end.
1305       UseMI.RemoveOperand(
1306           AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::omod));
1307       UseMI.RemoveOperand(
1308           AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::clamp));
1309 
1310       if (Opc == AMDGPU::V_MAC_F32_e64) {
1311         UseMI.untieRegOperand(
1312             AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2));
1313       }
1314 
1315       // ChangingToImmediate adds Src2 back to the instruction.
1316       Src2->ChangeToImmediate(Imm);
1317 
1318       // These come before src2.
1319       removeModOperands(UseMI);
1320       UseMI.setDesc(get(AMDGPU::V_MADAK_F32));
1321 
1322       bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1323       if (DeleteDef)
1324         DefMI.eraseFromParent();
1325 
1326       return true;
1327     }
1328   }
1329 
1330   return false;
1331 }
1332 
offsetsDoNotOverlap(int WidthA,int OffsetA,int WidthB,int OffsetB)1333 static bool offsetsDoNotOverlap(int WidthA, int OffsetA,
1334                                 int WidthB, int OffsetB) {
1335   int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
1336   int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
1337   int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
1338   return LowOffset + LowWidth <= HighOffset;
1339 }
1340 
checkInstOffsetsDoNotOverlap(MachineInstr & MIa,MachineInstr & MIb) const1341 bool SIInstrInfo::checkInstOffsetsDoNotOverlap(MachineInstr &MIa,
1342                                                MachineInstr &MIb) const {
1343   unsigned BaseReg0, BaseReg1;
1344   int64_t Offset0, Offset1;
1345 
1346   if (getMemOpBaseRegImmOfs(MIa, BaseReg0, Offset0, &RI) &&
1347       getMemOpBaseRegImmOfs(MIb, BaseReg1, Offset1, &RI)) {
1348 
1349     if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand()) {
1350       // FIXME: Handle ds_read2 / ds_write2.
1351       return false;
1352     }
1353     unsigned Width0 = (*MIa.memoperands_begin())->getSize();
1354     unsigned Width1 = (*MIb.memoperands_begin())->getSize();
1355     if (BaseReg0 == BaseReg1 &&
1356         offsetsDoNotOverlap(Width0, Offset0, Width1, Offset1)) {
1357       return true;
1358     }
1359   }
1360 
1361   return false;
1362 }
1363 
areMemAccessesTriviallyDisjoint(MachineInstr & MIa,MachineInstr & MIb,AliasAnalysis * AA) const1364 bool SIInstrInfo::areMemAccessesTriviallyDisjoint(MachineInstr &MIa,
1365                                                   MachineInstr &MIb,
1366                                                   AliasAnalysis *AA) const {
1367   assert((MIa.mayLoad() || MIa.mayStore()) &&
1368          "MIa must load from or modify a memory location");
1369   assert((MIb.mayLoad() || MIb.mayStore()) &&
1370          "MIb must load from or modify a memory location");
1371 
1372   if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects())
1373     return false;
1374 
1375   // XXX - Can we relax this between address spaces?
1376   if (MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
1377     return false;
1378 
1379   // TODO: Should we check the address space from the MachineMemOperand? That
1380   // would allow us to distinguish objects we know don't alias based on the
1381   // underlying address space, even if it was lowered to a different one,
1382   // e.g. private accesses lowered to use MUBUF instructions on a scratch
1383   // buffer.
1384   if (isDS(MIa)) {
1385     if (isDS(MIb))
1386       return checkInstOffsetsDoNotOverlap(MIa, MIb);
1387 
1388     return !isFLAT(MIb);
1389   }
1390 
1391   if (isMUBUF(MIa) || isMTBUF(MIa)) {
1392     if (isMUBUF(MIb) || isMTBUF(MIb))
1393       return checkInstOffsetsDoNotOverlap(MIa, MIb);
1394 
1395     return !isFLAT(MIb) && !isSMRD(MIb);
1396   }
1397 
1398   if (isSMRD(MIa)) {
1399     if (isSMRD(MIb))
1400       return checkInstOffsetsDoNotOverlap(MIa, MIb);
1401 
1402     return !isFLAT(MIb) && !isMUBUF(MIa) && !isMTBUF(MIa);
1403   }
1404 
1405   if (isFLAT(MIa)) {
1406     if (isFLAT(MIb))
1407       return checkInstOffsetsDoNotOverlap(MIa, MIb);
1408 
1409     return false;
1410   }
1411 
1412   return false;
1413 }
1414 
convertToThreeAddress(MachineFunction::iterator & MBB,MachineInstr & MI,LiveVariables * LV) const1415 MachineInstr *SIInstrInfo::convertToThreeAddress(MachineFunction::iterator &MBB,
1416                                                  MachineInstr &MI,
1417                                                  LiveVariables *LV) const {
1418 
1419   switch (MI.getOpcode()) {
1420   default:
1421     return nullptr;
1422   case AMDGPU::V_MAC_F32_e64:
1423     break;
1424   case AMDGPU::V_MAC_F32_e32: {
1425     const MachineOperand *Src0 = getNamedOperand(MI, AMDGPU::OpName::src0);
1426     if (Src0->isImm() && !isInlineConstant(*Src0, 4))
1427       return nullptr;
1428     break;
1429   }
1430   }
1431 
1432   const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst);
1433   const MachineOperand *Src0 = getNamedOperand(MI, AMDGPU::OpName::src0);
1434   const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1);
1435   const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2);
1436 
1437   return BuildMI(*MBB, MI, MI.getDebugLoc(), get(AMDGPU::V_MAD_F32))
1438       .addOperand(*Dst)
1439       .addImm(0) // Src0 mods
1440       .addOperand(*Src0)
1441       .addImm(0) // Src1 mods
1442       .addOperand(*Src1)
1443       .addImm(0) // Src mods
1444       .addOperand(*Src2)
1445       .addImm(0)  // clamp
1446       .addImm(0); // omod
1447 }
1448 
isSchedulingBoundary(const MachineInstr & MI,const MachineBasicBlock * MBB,const MachineFunction & MF) const1449 bool SIInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1450                                        const MachineBasicBlock *MBB,
1451                                        const MachineFunction &MF) const {
1452   // XXX - Do we want the SP check in the base implementation?
1453 
1454   // Target-independent instructions do not have an implicit-use of EXEC, even
1455   // when they operate on VGPRs. Treating EXEC modifications as scheduling
1456   // boundaries prevents incorrect movements of such instructions.
1457   return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF) ||
1458          MI.modifiesRegister(AMDGPU::EXEC, &RI);
1459 }
1460 
isInlineConstant(const APInt & Imm) const1461 bool SIInstrInfo::isInlineConstant(const APInt &Imm) const {
1462   int64_t SVal = Imm.getSExtValue();
1463   if (SVal >= -16 && SVal <= 64)
1464     return true;
1465 
1466   if (Imm.getBitWidth() == 64) {
1467     uint64_t Val = Imm.getZExtValue();
1468     return (DoubleToBits(0.0) == Val) ||
1469            (DoubleToBits(1.0) == Val) ||
1470            (DoubleToBits(-1.0) == Val) ||
1471            (DoubleToBits(0.5) == Val) ||
1472            (DoubleToBits(-0.5) == Val) ||
1473            (DoubleToBits(2.0) == Val) ||
1474            (DoubleToBits(-2.0) == Val) ||
1475            (DoubleToBits(4.0) == Val) ||
1476            (DoubleToBits(-4.0) == Val);
1477   }
1478 
1479   // The actual type of the operand does not seem to matter as long
1480   // as the bits match one of the inline immediate values.  For example:
1481   //
1482   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
1483   // so it is a legal inline immediate.
1484   //
1485   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
1486   // floating-point, so it is a legal inline immediate.
1487   uint32_t Val = Imm.getZExtValue();
1488 
1489   return (FloatToBits(0.0f) == Val) ||
1490          (FloatToBits(1.0f) == Val) ||
1491          (FloatToBits(-1.0f) == Val) ||
1492          (FloatToBits(0.5f) == Val) ||
1493          (FloatToBits(-0.5f) == Val) ||
1494          (FloatToBits(2.0f) == Val) ||
1495          (FloatToBits(-2.0f) == Val) ||
1496          (FloatToBits(4.0f) == Val) ||
1497          (FloatToBits(-4.0f) == Val);
1498 }
1499 
isInlineConstant(const MachineOperand & MO,unsigned OpSize) const1500 bool SIInstrInfo::isInlineConstant(const MachineOperand &MO,
1501                                    unsigned OpSize) const {
1502   if (MO.isImm()) {
1503     // MachineOperand provides no way to tell the true operand size, since it
1504     // only records a 64-bit value. We need to know the size to determine if a
1505     // 32-bit floating point immediate bit pattern is legal for an integer
1506     // immediate. It would be for any 32-bit integer operand, but would not be
1507     // for a 64-bit one.
1508 
1509     unsigned BitSize = 8 * OpSize;
1510     return isInlineConstant(APInt(BitSize, MO.getImm(), true));
1511   }
1512 
1513   return false;
1514 }
1515 
isLiteralConstant(const MachineOperand & MO,unsigned OpSize) const1516 bool SIInstrInfo::isLiteralConstant(const MachineOperand &MO,
1517                                     unsigned OpSize) const {
1518   return MO.isImm() && !isInlineConstant(MO, OpSize);
1519 }
1520 
compareMachineOp(const MachineOperand & Op0,const MachineOperand & Op1)1521 static bool compareMachineOp(const MachineOperand &Op0,
1522                              const MachineOperand &Op1) {
1523   if (Op0.getType() != Op1.getType())
1524     return false;
1525 
1526   switch (Op0.getType()) {
1527   case MachineOperand::MO_Register:
1528     return Op0.getReg() == Op1.getReg();
1529   case MachineOperand::MO_Immediate:
1530     return Op0.getImm() == Op1.getImm();
1531   default:
1532     llvm_unreachable("Didn't expect to be comparing these operand types");
1533   }
1534 }
1535 
isImmOperandLegal(const MachineInstr & MI,unsigned OpNo,const MachineOperand & MO) const1536 bool SIInstrInfo::isImmOperandLegal(const MachineInstr &MI, unsigned OpNo,
1537                                     const MachineOperand &MO) const {
1538   const MCOperandInfo &OpInfo = get(MI.getOpcode()).OpInfo[OpNo];
1539 
1540   assert(MO.isImm() || MO.isTargetIndex() || MO.isFI());
1541 
1542   if (OpInfo.OperandType == MCOI::OPERAND_IMMEDIATE)
1543     return true;
1544 
1545   if (OpInfo.RegClass < 0)
1546     return false;
1547 
1548   unsigned OpSize = RI.getRegClass(OpInfo.RegClass)->getSize();
1549   if (isLiteralConstant(MO, OpSize))
1550     return RI.opCanUseLiteralConstant(OpInfo.OperandType);
1551 
1552   return RI.opCanUseInlineConstant(OpInfo.OperandType);
1553 }
1554 
hasVALU32BitEncoding(unsigned Opcode) const1555 bool SIInstrInfo::hasVALU32BitEncoding(unsigned Opcode) const {
1556   int Op32 = AMDGPU::getVOPe32(Opcode);
1557   if (Op32 == -1)
1558     return false;
1559 
1560   return pseudoToMCOpcode(Op32) != -1;
1561 }
1562 
hasModifiers(unsigned Opcode) const1563 bool SIInstrInfo::hasModifiers(unsigned Opcode) const {
1564   // The src0_modifier operand is present on all instructions
1565   // that have modifiers.
1566 
1567   return AMDGPU::getNamedOperandIdx(Opcode,
1568                                     AMDGPU::OpName::src0_modifiers) != -1;
1569 }
1570 
hasModifiersSet(const MachineInstr & MI,unsigned OpName) const1571 bool SIInstrInfo::hasModifiersSet(const MachineInstr &MI,
1572                                   unsigned OpName) const {
1573   const MachineOperand *Mods = getNamedOperand(MI, OpName);
1574   return Mods && Mods->getImm();
1575 }
1576 
usesConstantBus(const MachineRegisterInfo & MRI,const MachineOperand & MO,unsigned OpSize) const1577 bool SIInstrInfo::usesConstantBus(const MachineRegisterInfo &MRI,
1578                                   const MachineOperand &MO,
1579                                   unsigned OpSize) const {
1580   // Literal constants use the constant bus.
1581   if (isLiteralConstant(MO, OpSize))
1582     return true;
1583 
1584   if (!MO.isReg() || !MO.isUse())
1585     return false;
1586 
1587   if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1588     return RI.isSGPRClass(MRI.getRegClass(MO.getReg()));
1589 
1590   // FLAT_SCR is just an SGPR pair.
1591   if (!MO.isImplicit() && (MO.getReg() == AMDGPU::FLAT_SCR))
1592     return true;
1593 
1594   // EXEC register uses the constant bus.
1595   if (!MO.isImplicit() && MO.getReg() == AMDGPU::EXEC)
1596     return true;
1597 
1598   // SGPRs use the constant bus
1599   return (MO.getReg() == AMDGPU::VCC || MO.getReg() == AMDGPU::M0 ||
1600           (!MO.isImplicit() &&
1601            (AMDGPU::SGPR_32RegClass.contains(MO.getReg()) ||
1602             AMDGPU::SGPR_64RegClass.contains(MO.getReg()))));
1603 }
1604 
findImplicitSGPRRead(const MachineInstr & MI)1605 static unsigned findImplicitSGPRRead(const MachineInstr &MI) {
1606   for (const MachineOperand &MO : MI.implicit_operands()) {
1607     // We only care about reads.
1608     if (MO.isDef())
1609       continue;
1610 
1611     switch (MO.getReg()) {
1612     case AMDGPU::VCC:
1613     case AMDGPU::M0:
1614     case AMDGPU::FLAT_SCR:
1615       return MO.getReg();
1616 
1617     default:
1618       break;
1619     }
1620   }
1621 
1622   return AMDGPU::NoRegister;
1623 }
1624 
shouldReadExec(const MachineInstr & MI)1625 static bool shouldReadExec(const MachineInstr &MI) {
1626   if (SIInstrInfo::isVALU(MI)) {
1627     switch (MI.getOpcode()) {
1628     case AMDGPU::V_READLANE_B32:
1629     case AMDGPU::V_READLANE_B32_si:
1630     case AMDGPU::V_READLANE_B32_vi:
1631     case AMDGPU::V_WRITELANE_B32:
1632     case AMDGPU::V_WRITELANE_B32_si:
1633     case AMDGPU::V_WRITELANE_B32_vi:
1634       return false;
1635     }
1636 
1637     return true;
1638   }
1639 
1640   if (SIInstrInfo::isGenericOpcode(MI.getOpcode()) ||
1641       SIInstrInfo::isSALU(MI) ||
1642       SIInstrInfo::isSMRD(MI))
1643     return false;
1644 
1645   return true;
1646 }
1647 
verifyInstruction(const MachineInstr & MI,StringRef & ErrInfo) const1648 bool SIInstrInfo::verifyInstruction(const MachineInstr &MI,
1649                                     StringRef &ErrInfo) const {
1650   uint16_t Opcode = MI.getOpcode();
1651   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
1652   int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0);
1653   int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1);
1654   int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2);
1655 
1656   // Make sure the number of operands is correct.
1657   const MCInstrDesc &Desc = get(Opcode);
1658   if (!Desc.isVariadic() &&
1659       Desc.getNumOperands() != MI.getNumExplicitOperands()) {
1660     ErrInfo = "Instruction has wrong number of operands.";
1661     return false;
1662   }
1663 
1664   // Make sure the register classes are correct.
1665   for (int i = 0, e = Desc.getNumOperands(); i != e; ++i) {
1666     if (MI.getOperand(i).isFPImm()) {
1667       ErrInfo = "FPImm Machine Operands are not supported. ISel should bitcast "
1668                 "all fp values to integers.";
1669       return false;
1670     }
1671 
1672     int RegClass = Desc.OpInfo[i].RegClass;
1673 
1674     switch (Desc.OpInfo[i].OperandType) {
1675     case MCOI::OPERAND_REGISTER:
1676       if (MI.getOperand(i).isImm()) {
1677         ErrInfo = "Illegal immediate value for operand.";
1678         return false;
1679       }
1680       break;
1681     case AMDGPU::OPERAND_REG_IMM32:
1682       break;
1683     case AMDGPU::OPERAND_REG_INLINE_C:
1684       if (isLiteralConstant(MI.getOperand(i),
1685                             RI.getRegClass(RegClass)->getSize())) {
1686         ErrInfo = "Illegal immediate value for operand.";
1687         return false;
1688       }
1689       break;
1690     case MCOI::OPERAND_IMMEDIATE:
1691     case AMDGPU::OPERAND_KIMM32:
1692       // Check if this operand is an immediate.
1693       // FrameIndex operands will be replaced by immediates, so they are
1694       // allowed.
1695       if (!MI.getOperand(i).isImm() && !MI.getOperand(i).isFI()) {
1696         ErrInfo = "Expected immediate, but got non-immediate";
1697         return false;
1698       }
1699       // Fall-through
1700     default:
1701       continue;
1702     }
1703 
1704     if (!MI.getOperand(i).isReg())
1705       continue;
1706 
1707     if (RegClass != -1) {
1708       unsigned Reg = MI.getOperand(i).getReg();
1709       if (Reg == AMDGPU::NoRegister ||
1710           TargetRegisterInfo::isVirtualRegister(Reg))
1711         continue;
1712 
1713       const TargetRegisterClass *RC = RI.getRegClass(RegClass);
1714       if (!RC->contains(Reg)) {
1715         ErrInfo = "Operand has incorrect register class.";
1716         return false;
1717       }
1718     }
1719   }
1720 
1721   // Verify VOP*
1722   if (isVOP1(MI) || isVOP2(MI) || isVOP3(MI) || isVOPC(MI)) {
1723     // Only look at the true operands. Only a real operand can use the constant
1724     // bus, and we don't want to check pseudo-operands like the source modifier
1725     // flags.
1726     const int OpIndices[] = { Src0Idx, Src1Idx, Src2Idx };
1727 
1728     unsigned ConstantBusCount = 0;
1729 
1730     if (AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::imm) != -1)
1731       ++ConstantBusCount;
1732 
1733     unsigned SGPRUsed = findImplicitSGPRRead(MI);
1734     if (SGPRUsed != AMDGPU::NoRegister)
1735       ++ConstantBusCount;
1736 
1737     for (int OpIdx : OpIndices) {
1738       if (OpIdx == -1)
1739         break;
1740       const MachineOperand &MO = MI.getOperand(OpIdx);
1741       if (usesConstantBus(MRI, MO, getOpSize(Opcode, OpIdx))) {
1742         if (MO.isReg()) {
1743           if (MO.getReg() != SGPRUsed)
1744             ++ConstantBusCount;
1745           SGPRUsed = MO.getReg();
1746         } else {
1747           ++ConstantBusCount;
1748         }
1749       }
1750     }
1751     if (ConstantBusCount > 1) {
1752       ErrInfo = "VOP* instruction uses the constant bus more than once";
1753       return false;
1754     }
1755   }
1756 
1757   // Verify misc. restrictions on specific instructions.
1758   if (Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F32 ||
1759       Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F64) {
1760     const MachineOperand &Src0 = MI.getOperand(Src0Idx);
1761     const MachineOperand &Src1 = MI.getOperand(Src1Idx);
1762     const MachineOperand &Src2 = MI.getOperand(Src2Idx);
1763     if (Src0.isReg() && Src1.isReg() && Src2.isReg()) {
1764       if (!compareMachineOp(Src0, Src1) &&
1765           !compareMachineOp(Src0, Src2)) {
1766         ErrInfo = "v_div_scale_{f32|f64} require src0 = src1 or src2";
1767         return false;
1768       }
1769     }
1770   }
1771 
1772   // Make sure we aren't losing exec uses in the td files. This mostly requires
1773   // being careful when using let Uses to try to add other use registers.
1774   if (shouldReadExec(MI)) {
1775     if (!MI.hasRegisterImplicitUseOperand(AMDGPU::EXEC)) {
1776       ErrInfo = "VALU instruction does not implicitly read exec mask";
1777       return false;
1778     }
1779   }
1780 
1781   return true;
1782 }
1783 
getVALUOp(const MachineInstr & MI)1784 unsigned SIInstrInfo::getVALUOp(const MachineInstr &MI) {
1785   switch (MI.getOpcode()) {
1786   default: return AMDGPU::INSTRUCTION_LIST_END;
1787   case AMDGPU::REG_SEQUENCE: return AMDGPU::REG_SEQUENCE;
1788   case AMDGPU::COPY: return AMDGPU::COPY;
1789   case AMDGPU::PHI: return AMDGPU::PHI;
1790   case AMDGPU::INSERT_SUBREG: return AMDGPU::INSERT_SUBREG;
1791   case AMDGPU::S_MOV_B32:
1792     return MI.getOperand(1).isReg() ?
1793            AMDGPU::COPY : AMDGPU::V_MOV_B32_e32;
1794   case AMDGPU::S_ADD_I32:
1795   case AMDGPU::S_ADD_U32: return AMDGPU::V_ADD_I32_e32;
1796   case AMDGPU::S_ADDC_U32: return AMDGPU::V_ADDC_U32_e32;
1797   case AMDGPU::S_SUB_I32:
1798   case AMDGPU::S_SUB_U32: return AMDGPU::V_SUB_I32_e32;
1799   case AMDGPU::S_SUBB_U32: return AMDGPU::V_SUBB_U32_e32;
1800   case AMDGPU::S_MUL_I32: return AMDGPU::V_MUL_LO_I32;
1801   case AMDGPU::S_AND_B32: return AMDGPU::V_AND_B32_e32;
1802   case AMDGPU::S_OR_B32: return AMDGPU::V_OR_B32_e32;
1803   case AMDGPU::S_XOR_B32: return AMDGPU::V_XOR_B32_e32;
1804   case AMDGPU::S_MIN_I32: return AMDGPU::V_MIN_I32_e32;
1805   case AMDGPU::S_MIN_U32: return AMDGPU::V_MIN_U32_e32;
1806   case AMDGPU::S_MAX_I32: return AMDGPU::V_MAX_I32_e32;
1807   case AMDGPU::S_MAX_U32: return AMDGPU::V_MAX_U32_e32;
1808   case AMDGPU::S_ASHR_I32: return AMDGPU::V_ASHR_I32_e32;
1809   case AMDGPU::S_ASHR_I64: return AMDGPU::V_ASHR_I64;
1810   case AMDGPU::S_LSHL_B32: return AMDGPU::V_LSHL_B32_e32;
1811   case AMDGPU::S_LSHL_B64: return AMDGPU::V_LSHL_B64;
1812   case AMDGPU::S_LSHR_B32: return AMDGPU::V_LSHR_B32_e32;
1813   case AMDGPU::S_LSHR_B64: return AMDGPU::V_LSHR_B64;
1814   case AMDGPU::S_SEXT_I32_I8: return AMDGPU::V_BFE_I32;
1815   case AMDGPU::S_SEXT_I32_I16: return AMDGPU::V_BFE_I32;
1816   case AMDGPU::S_BFE_U32: return AMDGPU::V_BFE_U32;
1817   case AMDGPU::S_BFE_I32: return AMDGPU::V_BFE_I32;
1818   case AMDGPU::S_BFM_B32: return AMDGPU::V_BFM_B32_e64;
1819   case AMDGPU::S_BREV_B32: return AMDGPU::V_BFREV_B32_e32;
1820   case AMDGPU::S_NOT_B32: return AMDGPU::V_NOT_B32_e32;
1821   case AMDGPU::S_NOT_B64: return AMDGPU::V_NOT_B32_e32;
1822   case AMDGPU::S_CMP_EQ_I32: return AMDGPU::V_CMP_EQ_I32_e32;
1823   case AMDGPU::S_CMP_LG_I32: return AMDGPU::V_CMP_NE_I32_e32;
1824   case AMDGPU::S_CMP_GT_I32: return AMDGPU::V_CMP_GT_I32_e32;
1825   case AMDGPU::S_CMP_GE_I32: return AMDGPU::V_CMP_GE_I32_e32;
1826   case AMDGPU::S_CMP_LT_I32: return AMDGPU::V_CMP_LT_I32_e32;
1827   case AMDGPU::S_CMP_LE_I32: return AMDGPU::V_CMP_LE_I32_e32;
1828   case AMDGPU::S_CMP_EQ_U32: return AMDGPU::V_CMP_EQ_U32_e32;
1829   case AMDGPU::S_CMP_LG_U32: return AMDGPU::V_CMP_NE_U32_e32;
1830   case AMDGPU::S_CMP_GT_U32: return AMDGPU::V_CMP_GT_U32_e32;
1831   case AMDGPU::S_CMP_GE_U32: return AMDGPU::V_CMP_GE_U32_e32;
1832   case AMDGPU::S_CMP_LT_U32: return AMDGPU::V_CMP_LT_U32_e32;
1833   case AMDGPU::S_CMP_LE_U32: return AMDGPU::V_CMP_LE_U32_e32;
1834   case AMDGPU::S_BCNT1_I32_B32: return AMDGPU::V_BCNT_U32_B32_e64;
1835   case AMDGPU::S_FF1_I32_B32: return AMDGPU::V_FFBL_B32_e32;
1836   case AMDGPU::S_FLBIT_I32_B32: return AMDGPU::V_FFBH_U32_e32;
1837   case AMDGPU::S_FLBIT_I32: return AMDGPU::V_FFBH_I32_e64;
1838   case AMDGPU::S_CBRANCH_SCC0: return AMDGPU::S_CBRANCH_VCCZ;
1839   case AMDGPU::S_CBRANCH_SCC1: return AMDGPU::S_CBRANCH_VCCNZ;
1840   }
1841 }
1842 
isSALUOpSupportedOnVALU(const MachineInstr & MI) const1843 bool SIInstrInfo::isSALUOpSupportedOnVALU(const MachineInstr &MI) const {
1844   return getVALUOp(MI) != AMDGPU::INSTRUCTION_LIST_END;
1845 }
1846 
getOpRegClass(const MachineInstr & MI,unsigned OpNo) const1847 const TargetRegisterClass *SIInstrInfo::getOpRegClass(const MachineInstr &MI,
1848                                                       unsigned OpNo) const {
1849   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
1850   const MCInstrDesc &Desc = get(MI.getOpcode());
1851   if (MI.isVariadic() || OpNo >= Desc.getNumOperands() ||
1852       Desc.OpInfo[OpNo].RegClass == -1) {
1853     unsigned Reg = MI.getOperand(OpNo).getReg();
1854 
1855     if (TargetRegisterInfo::isVirtualRegister(Reg))
1856       return MRI.getRegClass(Reg);
1857     return RI.getPhysRegClass(Reg);
1858   }
1859 
1860   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
1861   return RI.getRegClass(RCID);
1862 }
1863 
canReadVGPR(const MachineInstr & MI,unsigned OpNo) const1864 bool SIInstrInfo::canReadVGPR(const MachineInstr &MI, unsigned OpNo) const {
1865   switch (MI.getOpcode()) {
1866   case AMDGPU::COPY:
1867   case AMDGPU::REG_SEQUENCE:
1868   case AMDGPU::PHI:
1869   case AMDGPU::INSERT_SUBREG:
1870     return RI.hasVGPRs(getOpRegClass(MI, 0));
1871   default:
1872     return RI.hasVGPRs(getOpRegClass(MI, OpNo));
1873   }
1874 }
1875 
legalizeOpWithMove(MachineInstr & MI,unsigned OpIdx) const1876 void SIInstrInfo::legalizeOpWithMove(MachineInstr &MI, unsigned OpIdx) const {
1877   MachineBasicBlock::iterator I = MI;
1878   MachineBasicBlock *MBB = MI.getParent();
1879   MachineOperand &MO = MI.getOperand(OpIdx);
1880   MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
1881   unsigned RCID = get(MI.getOpcode()).OpInfo[OpIdx].RegClass;
1882   const TargetRegisterClass *RC = RI.getRegClass(RCID);
1883   unsigned Opcode = AMDGPU::V_MOV_B32_e32;
1884   if (MO.isReg())
1885     Opcode = AMDGPU::COPY;
1886   else if (RI.isSGPRClass(RC))
1887     Opcode = AMDGPU::S_MOV_B32;
1888 
1889   const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(RC);
1890   if (RI.getCommonSubClass(&AMDGPU::VReg_64RegClass, VRC))
1891     VRC = &AMDGPU::VReg_64RegClass;
1892   else
1893     VRC = &AMDGPU::VGPR_32RegClass;
1894 
1895   unsigned Reg = MRI.createVirtualRegister(VRC);
1896   DebugLoc DL = MBB->findDebugLoc(I);
1897   BuildMI(*MI.getParent(), I, DL, get(Opcode), Reg).addOperand(MO);
1898   MO.ChangeToRegister(Reg, false);
1899 }
1900 
buildExtractSubReg(MachineBasicBlock::iterator MI,MachineRegisterInfo & MRI,MachineOperand & SuperReg,const TargetRegisterClass * SuperRC,unsigned SubIdx,const TargetRegisterClass * SubRC) const1901 unsigned SIInstrInfo::buildExtractSubReg(MachineBasicBlock::iterator MI,
1902                                          MachineRegisterInfo &MRI,
1903                                          MachineOperand &SuperReg,
1904                                          const TargetRegisterClass *SuperRC,
1905                                          unsigned SubIdx,
1906                                          const TargetRegisterClass *SubRC)
1907                                          const {
1908   MachineBasicBlock *MBB = MI->getParent();
1909   DebugLoc DL = MI->getDebugLoc();
1910   unsigned SubReg = MRI.createVirtualRegister(SubRC);
1911 
1912   if (SuperReg.getSubReg() == AMDGPU::NoSubRegister) {
1913     BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg)
1914       .addReg(SuperReg.getReg(), 0, SubIdx);
1915     return SubReg;
1916   }
1917 
1918   // Just in case the super register is itself a sub-register, copy it to a new
1919   // value so we don't need to worry about merging its subreg index with the
1920   // SubIdx passed to this function. The register coalescer should be able to
1921   // eliminate this extra copy.
1922   unsigned NewSuperReg = MRI.createVirtualRegister(SuperRC);
1923 
1924   BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), NewSuperReg)
1925     .addReg(SuperReg.getReg(), 0, SuperReg.getSubReg());
1926 
1927   BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg)
1928     .addReg(NewSuperReg, 0, SubIdx);
1929 
1930   return SubReg;
1931 }
1932 
buildExtractSubRegOrImm(MachineBasicBlock::iterator MII,MachineRegisterInfo & MRI,MachineOperand & Op,const TargetRegisterClass * SuperRC,unsigned SubIdx,const TargetRegisterClass * SubRC) const1933 MachineOperand SIInstrInfo::buildExtractSubRegOrImm(
1934   MachineBasicBlock::iterator MII,
1935   MachineRegisterInfo &MRI,
1936   MachineOperand &Op,
1937   const TargetRegisterClass *SuperRC,
1938   unsigned SubIdx,
1939   const TargetRegisterClass *SubRC) const {
1940   if (Op.isImm()) {
1941     // XXX - Is there a better way to do this?
1942     if (SubIdx == AMDGPU::sub0)
1943       return MachineOperand::CreateImm(Op.getImm() & 0xFFFFFFFF);
1944     if (SubIdx == AMDGPU::sub1)
1945       return MachineOperand::CreateImm(Op.getImm() >> 32);
1946 
1947     llvm_unreachable("Unhandled register index for immediate");
1948   }
1949 
1950   unsigned SubReg = buildExtractSubReg(MII, MRI, Op, SuperRC,
1951                                        SubIdx, SubRC);
1952   return MachineOperand::CreateReg(SubReg, false);
1953 }
1954 
1955 // Change the order of operands from (0, 1, 2) to (0, 2, 1)
swapOperands(MachineInstr & Inst) const1956 void SIInstrInfo::swapOperands(MachineInstr &Inst) const {
1957   assert(Inst.getNumExplicitOperands() == 3);
1958   MachineOperand Op1 = Inst.getOperand(1);
1959   Inst.RemoveOperand(1);
1960   Inst.addOperand(Op1);
1961 }
1962 
isLegalRegOperand(const MachineRegisterInfo & MRI,const MCOperandInfo & OpInfo,const MachineOperand & MO) const1963 bool SIInstrInfo::isLegalRegOperand(const MachineRegisterInfo &MRI,
1964                                     const MCOperandInfo &OpInfo,
1965                                     const MachineOperand &MO) const {
1966   if (!MO.isReg())
1967     return false;
1968 
1969   unsigned Reg = MO.getReg();
1970   const TargetRegisterClass *RC =
1971     TargetRegisterInfo::isVirtualRegister(Reg) ?
1972     MRI.getRegClass(Reg) :
1973     RI.getPhysRegClass(Reg);
1974 
1975   const SIRegisterInfo *TRI =
1976       static_cast<const SIRegisterInfo*>(MRI.getTargetRegisterInfo());
1977   RC = TRI->getSubRegClass(RC, MO.getSubReg());
1978 
1979   // In order to be legal, the common sub-class must be equal to the
1980   // class of the current operand.  For example:
1981   //
1982   // v_mov_b32 s0 ; Operand defined as vsrc_32
1983   //              ; RI.getCommonSubClass(s0,vsrc_32) = sgpr ; LEGAL
1984   //
1985   // s_sendmsg 0, s0 ; Operand defined as m0reg
1986   //                 ; RI.getCommonSubClass(s0,m0reg) = m0reg ; NOT LEGAL
1987 
1988   return RI.getCommonSubClass(RC, RI.getRegClass(OpInfo.RegClass)) == RC;
1989 }
1990 
isLegalVSrcOperand(const MachineRegisterInfo & MRI,const MCOperandInfo & OpInfo,const MachineOperand & MO) const1991 bool SIInstrInfo::isLegalVSrcOperand(const MachineRegisterInfo &MRI,
1992                                      const MCOperandInfo &OpInfo,
1993                                      const MachineOperand &MO) const {
1994   if (MO.isReg())
1995     return isLegalRegOperand(MRI, OpInfo, MO);
1996 
1997   // Handle non-register types that are treated like immediates.
1998   assert(MO.isImm() || MO.isTargetIndex() || MO.isFI());
1999   return true;
2000 }
2001 
isOperandLegal(const MachineInstr & MI,unsigned OpIdx,const MachineOperand * MO) const2002 bool SIInstrInfo::isOperandLegal(const MachineInstr &MI, unsigned OpIdx,
2003                                  const MachineOperand *MO) const {
2004   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2005   const MCInstrDesc &InstDesc = MI.getDesc();
2006   const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpIdx];
2007   const TargetRegisterClass *DefinedRC =
2008       OpInfo.RegClass != -1 ? RI.getRegClass(OpInfo.RegClass) : nullptr;
2009   if (!MO)
2010     MO = &MI.getOperand(OpIdx);
2011 
2012   if (isVALU(MI) && usesConstantBus(MRI, *MO, DefinedRC->getSize())) {
2013 
2014     RegSubRegPair SGPRUsed;
2015     if (MO->isReg())
2016       SGPRUsed = RegSubRegPair(MO->getReg(), MO->getSubReg());
2017 
2018     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2019       if (i == OpIdx)
2020         continue;
2021       const MachineOperand &Op = MI.getOperand(i);
2022       if (Op.isReg()) {
2023         if ((Op.getReg() != SGPRUsed.Reg || Op.getSubReg() != SGPRUsed.SubReg) &&
2024             usesConstantBus(MRI, Op, getOpSize(MI, i))) {
2025           return false;
2026         }
2027       } else if (InstDesc.OpInfo[i].OperandType == AMDGPU::OPERAND_KIMM32) {
2028         return false;
2029       }
2030     }
2031   }
2032 
2033   if (MO->isReg()) {
2034     assert(DefinedRC);
2035     return isLegalRegOperand(MRI, OpInfo, *MO);
2036   }
2037 
2038   // Handle non-register types that are treated like immediates.
2039   assert(MO->isImm() || MO->isTargetIndex() || MO->isFI());
2040 
2041   if (!DefinedRC) {
2042     // This operand expects an immediate.
2043     return true;
2044   }
2045 
2046   return isImmOperandLegal(MI, OpIdx, *MO);
2047 }
2048 
legalizeOperandsVOP2(MachineRegisterInfo & MRI,MachineInstr & MI) const2049 void SIInstrInfo::legalizeOperandsVOP2(MachineRegisterInfo &MRI,
2050                                        MachineInstr &MI) const {
2051   unsigned Opc = MI.getOpcode();
2052   const MCInstrDesc &InstrDesc = get(Opc);
2053 
2054   int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
2055   MachineOperand &Src1 = MI.getOperand(Src1Idx);
2056 
2057   // If there is an implicit SGPR use such as VCC use for v_addc_u32/v_subb_u32
2058   // we need to only have one constant bus use.
2059   //
2060   // Note we do not need to worry about literal constants here. They are
2061   // disabled for the operand type for instructions because they will always
2062   // violate the one constant bus use rule.
2063   bool HasImplicitSGPR = findImplicitSGPRRead(MI) != AMDGPU::NoRegister;
2064   if (HasImplicitSGPR) {
2065     int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
2066     MachineOperand &Src0 = MI.getOperand(Src0Idx);
2067 
2068     if (Src0.isReg() && RI.isSGPRReg(MRI, Src0.getReg()))
2069       legalizeOpWithMove(MI, Src0Idx);
2070   }
2071 
2072   // VOP2 src0 instructions support all operand types, so we don't need to check
2073   // their legality. If src1 is already legal, we don't need to do anything.
2074   if (isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src1))
2075     return;
2076 
2077   // We do not use commuteInstruction here because it is too aggressive and will
2078   // commute if it is possible. We only want to commute here if it improves
2079   // legality. This can be called a fairly large number of times so don't waste
2080   // compile time pointlessly swapping and checking legality again.
2081   if (HasImplicitSGPR || !MI.isCommutable()) {
2082     legalizeOpWithMove(MI, Src1Idx);
2083     return;
2084   }
2085 
2086   int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
2087   MachineOperand &Src0 = MI.getOperand(Src0Idx);
2088 
2089   // If src0 can be used as src1, commuting will make the operands legal.
2090   // Otherwise we have to give up and insert a move.
2091   //
2092   // TODO: Other immediate-like operand kinds could be commuted if there was a
2093   // MachineOperand::ChangeTo* for them.
2094   if ((!Src1.isImm() && !Src1.isReg()) ||
2095       !isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src0)) {
2096     legalizeOpWithMove(MI, Src1Idx);
2097     return;
2098   }
2099 
2100   int CommutedOpc = commuteOpcode(MI);
2101   if (CommutedOpc == -1) {
2102     legalizeOpWithMove(MI, Src1Idx);
2103     return;
2104   }
2105 
2106   MI.setDesc(get(CommutedOpc));
2107 
2108   unsigned Src0Reg = Src0.getReg();
2109   unsigned Src0SubReg = Src0.getSubReg();
2110   bool Src0Kill = Src0.isKill();
2111 
2112   if (Src1.isImm())
2113     Src0.ChangeToImmediate(Src1.getImm());
2114   else if (Src1.isReg()) {
2115     Src0.ChangeToRegister(Src1.getReg(), false, false, Src1.isKill());
2116     Src0.setSubReg(Src1.getSubReg());
2117   } else
2118     llvm_unreachable("Should only have register or immediate operands");
2119 
2120   Src1.ChangeToRegister(Src0Reg, false, false, Src0Kill);
2121   Src1.setSubReg(Src0SubReg);
2122 }
2123 
2124 // Legalize VOP3 operands. Because all operand types are supported for any
2125 // operand, and since literal constants are not allowed and should never be
2126 // seen, we only need to worry about inserting copies if we use multiple SGPR
2127 // operands.
legalizeOperandsVOP3(MachineRegisterInfo & MRI,MachineInstr & MI) const2128 void SIInstrInfo::legalizeOperandsVOP3(MachineRegisterInfo &MRI,
2129                                        MachineInstr &MI) const {
2130   unsigned Opc = MI.getOpcode();
2131 
2132   int VOP3Idx[3] = {
2133     AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
2134     AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1),
2135     AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)
2136   };
2137 
2138   // Find the one SGPR operand we are allowed to use.
2139   unsigned SGPRReg = findUsedSGPR(MI, VOP3Idx);
2140 
2141   for (unsigned i = 0; i < 3; ++i) {
2142     int Idx = VOP3Idx[i];
2143     if (Idx == -1)
2144       break;
2145     MachineOperand &MO = MI.getOperand(Idx);
2146 
2147     // We should never see a VOP3 instruction with an illegal immediate operand.
2148     if (!MO.isReg())
2149       continue;
2150 
2151     if (!RI.isSGPRClass(MRI.getRegClass(MO.getReg())))
2152       continue; // VGPRs are legal
2153 
2154     if (SGPRReg == AMDGPU::NoRegister || SGPRReg == MO.getReg()) {
2155       SGPRReg = MO.getReg();
2156       // We can use one SGPR in each VOP3 instruction.
2157       continue;
2158     }
2159 
2160     // If we make it this far, then the operand is not legal and we must
2161     // legalize it.
2162     legalizeOpWithMove(MI, Idx);
2163   }
2164 }
2165 
readlaneVGPRToSGPR(unsigned SrcReg,MachineInstr & UseMI,MachineRegisterInfo & MRI) const2166 unsigned SIInstrInfo::readlaneVGPRToSGPR(unsigned SrcReg, MachineInstr &UseMI,
2167                                          MachineRegisterInfo &MRI) const {
2168   const TargetRegisterClass *VRC = MRI.getRegClass(SrcReg);
2169   const TargetRegisterClass *SRC = RI.getEquivalentSGPRClass(VRC);
2170   unsigned DstReg = MRI.createVirtualRegister(SRC);
2171   unsigned SubRegs = VRC->getSize() / 4;
2172 
2173   SmallVector<unsigned, 8> SRegs;
2174   for (unsigned i = 0; i < SubRegs; ++i) {
2175     unsigned SGPR = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
2176     BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(),
2177             get(AMDGPU::V_READFIRSTLANE_B32), SGPR)
2178         .addReg(SrcReg, 0, RI.getSubRegFromChannel(i));
2179     SRegs.push_back(SGPR);
2180   }
2181 
2182   MachineInstrBuilder MIB =
2183       BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(),
2184               get(AMDGPU::REG_SEQUENCE), DstReg);
2185   for (unsigned i = 0; i < SubRegs; ++i) {
2186     MIB.addReg(SRegs[i]);
2187     MIB.addImm(RI.getSubRegFromChannel(i));
2188   }
2189   return DstReg;
2190 }
2191 
legalizeOperandsSMRD(MachineRegisterInfo & MRI,MachineInstr & MI) const2192 void SIInstrInfo::legalizeOperandsSMRD(MachineRegisterInfo &MRI,
2193                                        MachineInstr &MI) const {
2194 
2195   // If the pointer is store in VGPRs, then we need to move them to
2196   // SGPRs using v_readfirstlane.  This is safe because we only select
2197   // loads with uniform pointers to SMRD instruction so we know the
2198   // pointer value is uniform.
2199   MachineOperand *SBase = getNamedOperand(MI, AMDGPU::OpName::sbase);
2200   if (SBase && !RI.isSGPRClass(MRI.getRegClass(SBase->getReg()))) {
2201       unsigned SGPR = readlaneVGPRToSGPR(SBase->getReg(), MI, MRI);
2202       SBase->setReg(SGPR);
2203   }
2204 }
2205 
legalizeOperands(MachineInstr & MI) const2206 void SIInstrInfo::legalizeOperands(MachineInstr &MI) const {
2207   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2208 
2209   // Legalize VOP2
2210   if (isVOP2(MI) || isVOPC(MI)) {
2211     legalizeOperandsVOP2(MRI, MI);
2212     return;
2213   }
2214 
2215   // Legalize VOP3
2216   if (isVOP3(MI)) {
2217     legalizeOperandsVOP3(MRI, MI);
2218     return;
2219   }
2220 
2221   // Legalize SMRD
2222   if (isSMRD(MI)) {
2223     legalizeOperandsSMRD(MRI, MI);
2224     return;
2225   }
2226 
2227   // Legalize REG_SEQUENCE and PHI
2228   // The register class of the operands much be the same type as the register
2229   // class of the output.
2230   if (MI.getOpcode() == AMDGPU::PHI) {
2231     const TargetRegisterClass *RC = nullptr, *SRC = nullptr, *VRC = nullptr;
2232     for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
2233       if (!MI.getOperand(i).isReg() ||
2234           !TargetRegisterInfo::isVirtualRegister(MI.getOperand(i).getReg()))
2235         continue;
2236       const TargetRegisterClass *OpRC =
2237           MRI.getRegClass(MI.getOperand(i).getReg());
2238       if (RI.hasVGPRs(OpRC)) {
2239         VRC = OpRC;
2240       } else {
2241         SRC = OpRC;
2242       }
2243     }
2244 
2245     // If any of the operands are VGPR registers, then they all most be
2246     // otherwise we will create illegal VGPR->SGPR copies when legalizing
2247     // them.
2248     if (VRC || !RI.isSGPRClass(getOpRegClass(MI, 0))) {
2249       if (!VRC) {
2250         assert(SRC);
2251         VRC = RI.getEquivalentVGPRClass(SRC);
2252       }
2253       RC = VRC;
2254     } else {
2255       RC = SRC;
2256     }
2257 
2258     // Update all the operands so they have the same type.
2259     for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
2260       MachineOperand &Op = MI.getOperand(I);
2261       if (!Op.isReg() || !TargetRegisterInfo::isVirtualRegister(Op.getReg()))
2262         continue;
2263       unsigned DstReg = MRI.createVirtualRegister(RC);
2264 
2265       // MI is a PHI instruction.
2266       MachineBasicBlock *InsertBB = MI.getOperand(I + 1).getMBB();
2267       MachineBasicBlock::iterator Insert = InsertBB->getFirstTerminator();
2268 
2269       BuildMI(*InsertBB, Insert, MI.getDebugLoc(), get(AMDGPU::COPY), DstReg)
2270           .addOperand(Op);
2271       Op.setReg(DstReg);
2272     }
2273   }
2274 
2275   // REG_SEQUENCE doesn't really require operand legalization, but if one has a
2276   // VGPR dest type and SGPR sources, insert copies so all operands are
2277   // VGPRs. This seems to help operand folding / the register coalescer.
2278   if (MI.getOpcode() == AMDGPU::REG_SEQUENCE) {
2279     MachineBasicBlock *MBB = MI.getParent();
2280     const TargetRegisterClass *DstRC = getOpRegClass(MI, 0);
2281     if (RI.hasVGPRs(DstRC)) {
2282       // Update all the operands so they are VGPR register classes. These may
2283       // not be the same register class because REG_SEQUENCE supports mixing
2284       // subregister index types e.g. sub0_sub1 + sub2 + sub3
2285       for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
2286         MachineOperand &Op = MI.getOperand(I);
2287         if (!Op.isReg() || !TargetRegisterInfo::isVirtualRegister(Op.getReg()))
2288           continue;
2289 
2290         const TargetRegisterClass *OpRC = MRI.getRegClass(Op.getReg());
2291         const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(OpRC);
2292         if (VRC == OpRC)
2293           continue;
2294 
2295         unsigned DstReg = MRI.createVirtualRegister(VRC);
2296 
2297         BuildMI(*MBB, MI, MI.getDebugLoc(), get(AMDGPU::COPY), DstReg)
2298             .addOperand(Op);
2299 
2300         Op.setReg(DstReg);
2301         Op.setIsKill();
2302       }
2303     }
2304 
2305     return;
2306   }
2307 
2308   // Legalize INSERT_SUBREG
2309   // src0 must have the same register class as dst
2310   if (MI.getOpcode() == AMDGPU::INSERT_SUBREG) {
2311     unsigned Dst = MI.getOperand(0).getReg();
2312     unsigned Src0 = MI.getOperand(1).getReg();
2313     const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
2314     const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0);
2315     if (DstRC != Src0RC) {
2316       MachineBasicBlock &MBB = *MI.getParent();
2317       unsigned NewSrc0 = MRI.createVirtualRegister(DstRC);
2318       BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::COPY), NewSrc0)
2319           .addReg(Src0);
2320       MI.getOperand(1).setReg(NewSrc0);
2321     }
2322     return;
2323   }
2324 
2325   // Legalize MIMG
2326   if (isMIMG(MI)) {
2327     MachineOperand *SRsrc = getNamedOperand(MI, AMDGPU::OpName::srsrc);
2328     if (SRsrc && !RI.isSGPRClass(MRI.getRegClass(SRsrc->getReg()))) {
2329       unsigned SGPR = readlaneVGPRToSGPR(SRsrc->getReg(), MI, MRI);
2330       SRsrc->setReg(SGPR);
2331     }
2332 
2333     MachineOperand *SSamp = getNamedOperand(MI, AMDGPU::OpName::ssamp);
2334     if (SSamp && !RI.isSGPRClass(MRI.getRegClass(SSamp->getReg()))) {
2335       unsigned SGPR = readlaneVGPRToSGPR(SSamp->getReg(), MI, MRI);
2336       SSamp->setReg(SGPR);
2337     }
2338     return;
2339   }
2340 
2341   // Legalize MUBUF* instructions
2342   // FIXME: If we start using the non-addr64 instructions for compute, we
2343   // may need to legalize them here.
2344   int SRsrcIdx =
2345       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
2346   if (SRsrcIdx != -1) {
2347     // We have an MUBUF instruction
2348     MachineOperand *SRsrc = &MI.getOperand(SRsrcIdx);
2349     unsigned SRsrcRC = get(MI.getOpcode()).OpInfo[SRsrcIdx].RegClass;
2350     if (RI.getCommonSubClass(MRI.getRegClass(SRsrc->getReg()),
2351                                              RI.getRegClass(SRsrcRC))) {
2352       // The operands are legal.
2353       // FIXME: We may need to legalize operands besided srsrc.
2354       return;
2355     }
2356 
2357     MachineBasicBlock &MBB = *MI.getParent();
2358 
2359     // Extract the ptr from the resource descriptor.
2360     unsigned SRsrcPtr = buildExtractSubReg(MI, MRI, *SRsrc,
2361       &AMDGPU::VReg_128RegClass, AMDGPU::sub0_sub1, &AMDGPU::VReg_64RegClass);
2362 
2363     // Create an empty resource descriptor
2364     unsigned Zero64 = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
2365     unsigned SRsrcFormatLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
2366     unsigned SRsrcFormatHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
2367     unsigned NewSRsrc = MRI.createVirtualRegister(&AMDGPU::SReg_128RegClass);
2368     uint64_t RsrcDataFormat = getDefaultRsrcDataFormat();
2369 
2370     // Zero64 = 0
2371     BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::S_MOV_B64), Zero64)
2372         .addImm(0);
2373 
2374     // SRsrcFormatLo = RSRC_DATA_FORMAT{31-0}
2375     BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::S_MOV_B32), SRsrcFormatLo)
2376         .addImm(RsrcDataFormat & 0xFFFFFFFF);
2377 
2378     // SRsrcFormatHi = RSRC_DATA_FORMAT{63-32}
2379     BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::S_MOV_B32), SRsrcFormatHi)
2380         .addImm(RsrcDataFormat >> 32);
2381 
2382     // NewSRsrc = {Zero64, SRsrcFormat}
2383     BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewSRsrc)
2384         .addReg(Zero64)
2385         .addImm(AMDGPU::sub0_sub1)
2386         .addReg(SRsrcFormatLo)
2387         .addImm(AMDGPU::sub2)
2388         .addReg(SRsrcFormatHi)
2389         .addImm(AMDGPU::sub3);
2390 
2391     MachineOperand *VAddr = getNamedOperand(MI, AMDGPU::OpName::vaddr);
2392     unsigned NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
2393     if (VAddr) {
2394       // This is already an ADDR64 instruction so we need to add the pointer
2395       // extracted from the resource descriptor to the current value of VAddr.
2396       unsigned NewVAddrLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2397       unsigned NewVAddrHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2398 
2399       // NewVaddrLo = SRsrcPtr:sub0 + VAddr:sub0
2400       DebugLoc DL = MI.getDebugLoc();
2401       BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_I32_e32), NewVAddrLo)
2402         .addReg(SRsrcPtr, 0, AMDGPU::sub0)
2403         .addReg(VAddr->getReg(), 0, AMDGPU::sub0);
2404 
2405       // NewVaddrHi = SRsrcPtr:sub1 + VAddr:sub1
2406       BuildMI(MBB, MI, DL, get(AMDGPU::V_ADDC_U32_e32), NewVAddrHi)
2407         .addReg(SRsrcPtr, 0, AMDGPU::sub1)
2408         .addReg(VAddr->getReg(), 0, AMDGPU::sub1);
2409 
2410       // NewVaddr = {NewVaddrHi, NewVaddrLo}
2411       BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewVAddr)
2412           .addReg(NewVAddrLo)
2413           .addImm(AMDGPU::sub0)
2414           .addReg(NewVAddrHi)
2415           .addImm(AMDGPU::sub1);
2416     } else {
2417       // This instructions is the _OFFSET variant, so we need to convert it to
2418       // ADDR64.
2419       assert(MBB.getParent()->getSubtarget<SISubtarget>().getGeneration()
2420              < SISubtarget::VOLCANIC_ISLANDS &&
2421              "FIXME: Need to emit flat atomics here");
2422 
2423       MachineOperand *VData = getNamedOperand(MI, AMDGPU::OpName::vdata);
2424       MachineOperand *Offset = getNamedOperand(MI, AMDGPU::OpName::offset);
2425       MachineOperand *SOffset = getNamedOperand(MI, AMDGPU::OpName::soffset);
2426       unsigned Addr64Opcode = AMDGPU::getAddr64Inst(MI.getOpcode());
2427 
2428       // Atomics rith return have have an additional tied operand and are
2429       // missing some of the special bits.
2430       MachineOperand *VDataIn = getNamedOperand(MI, AMDGPU::OpName::vdata_in);
2431       MachineInstr *Addr64;
2432 
2433       if (!VDataIn) {
2434         // Regular buffer load / store.
2435         MachineInstrBuilder MIB =
2436             BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode))
2437                 .addOperand(*VData)
2438                 .addReg(AMDGPU::NoRegister) // Dummy value for vaddr.
2439                 // This will be replaced later
2440                 // with the new value of vaddr.
2441                 .addOperand(*SRsrc)
2442                 .addOperand(*SOffset)
2443                 .addOperand(*Offset);
2444 
2445         // Atomics do not have this operand.
2446         if (const MachineOperand *GLC =
2447                 getNamedOperand(MI, AMDGPU::OpName::glc)) {
2448           MIB.addImm(GLC->getImm());
2449         }
2450 
2451         MIB.addImm(getNamedImmOperand(MI, AMDGPU::OpName::slc));
2452 
2453         if (const MachineOperand *TFE =
2454                 getNamedOperand(MI, AMDGPU::OpName::tfe)) {
2455           MIB.addImm(TFE->getImm());
2456         }
2457 
2458         MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
2459         Addr64 = MIB;
2460       } else {
2461         // Atomics with return.
2462         Addr64 = BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode))
2463                      .addOperand(*VData)
2464                      .addOperand(*VDataIn)
2465                      .addReg(AMDGPU::NoRegister) // Dummy value for vaddr.
2466                      // This will be replaced later
2467                      // with the new value of vaddr.
2468                      .addOperand(*SRsrc)
2469                      .addOperand(*SOffset)
2470                      .addOperand(*Offset)
2471                      .addImm(getNamedImmOperand(MI, AMDGPU::OpName::slc))
2472                      .setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
2473       }
2474 
2475       MI.removeFromParent();
2476 
2477       // NewVaddr = {NewVaddrHi, NewVaddrLo}
2478       BuildMI(MBB, Addr64, Addr64->getDebugLoc(), get(AMDGPU::REG_SEQUENCE),
2479               NewVAddr)
2480           .addReg(SRsrcPtr, 0, AMDGPU::sub0)
2481           .addImm(AMDGPU::sub0)
2482           .addReg(SRsrcPtr, 0, AMDGPU::sub1)
2483           .addImm(AMDGPU::sub1);
2484 
2485       VAddr = getNamedOperand(*Addr64, AMDGPU::OpName::vaddr);
2486       SRsrc = getNamedOperand(*Addr64, AMDGPU::OpName::srsrc);
2487     }
2488 
2489     // Update the instruction to use NewVaddr
2490     VAddr->setReg(NewVAddr);
2491     // Update the instruction to use NewSRsrc
2492     SRsrc->setReg(NewSRsrc);
2493   }
2494 }
2495 
moveToVALU(MachineInstr & TopInst) const2496 void SIInstrInfo::moveToVALU(MachineInstr &TopInst) const {
2497   SmallVector<MachineInstr *, 128> Worklist;
2498   Worklist.push_back(&TopInst);
2499 
2500   while (!Worklist.empty()) {
2501     MachineInstr &Inst = *Worklist.pop_back_val();
2502     MachineBasicBlock *MBB = Inst.getParent();
2503     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
2504 
2505     unsigned Opcode = Inst.getOpcode();
2506     unsigned NewOpcode = getVALUOp(Inst);
2507 
2508     // Handle some special cases
2509     switch (Opcode) {
2510     default:
2511       break;
2512     case AMDGPU::S_AND_B64:
2513       splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_AND_B32_e64);
2514       Inst.eraseFromParent();
2515       continue;
2516 
2517     case AMDGPU::S_OR_B64:
2518       splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_OR_B32_e64);
2519       Inst.eraseFromParent();
2520       continue;
2521 
2522     case AMDGPU::S_XOR_B64:
2523       splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_XOR_B32_e64);
2524       Inst.eraseFromParent();
2525       continue;
2526 
2527     case AMDGPU::S_NOT_B64:
2528       splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::V_NOT_B32_e32);
2529       Inst.eraseFromParent();
2530       continue;
2531 
2532     case AMDGPU::S_BCNT1_I32_B64:
2533       splitScalar64BitBCNT(Worklist, Inst);
2534       Inst.eraseFromParent();
2535       continue;
2536 
2537     case AMDGPU::S_BFE_I64: {
2538       splitScalar64BitBFE(Worklist, Inst);
2539       Inst.eraseFromParent();
2540       continue;
2541     }
2542 
2543     case AMDGPU::S_LSHL_B32:
2544       if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
2545         NewOpcode = AMDGPU::V_LSHLREV_B32_e64;
2546         swapOperands(Inst);
2547       }
2548       break;
2549     case AMDGPU::S_ASHR_I32:
2550       if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
2551         NewOpcode = AMDGPU::V_ASHRREV_I32_e64;
2552         swapOperands(Inst);
2553       }
2554       break;
2555     case AMDGPU::S_LSHR_B32:
2556       if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
2557         NewOpcode = AMDGPU::V_LSHRREV_B32_e64;
2558         swapOperands(Inst);
2559       }
2560       break;
2561     case AMDGPU::S_LSHL_B64:
2562       if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
2563         NewOpcode = AMDGPU::V_LSHLREV_B64;
2564         swapOperands(Inst);
2565       }
2566       break;
2567     case AMDGPU::S_ASHR_I64:
2568       if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
2569         NewOpcode = AMDGPU::V_ASHRREV_I64;
2570         swapOperands(Inst);
2571       }
2572       break;
2573     case AMDGPU::S_LSHR_B64:
2574       if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
2575         NewOpcode = AMDGPU::V_LSHRREV_B64;
2576         swapOperands(Inst);
2577       }
2578       break;
2579 
2580     case AMDGPU::S_ABS_I32:
2581       lowerScalarAbs(Worklist, Inst);
2582       Inst.eraseFromParent();
2583       continue;
2584 
2585     case AMDGPU::S_CBRANCH_SCC0:
2586     case AMDGPU::S_CBRANCH_SCC1:
2587       // Clear unused bits of vcc
2588       BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(AMDGPU::S_AND_B64),
2589               AMDGPU::VCC)
2590           .addReg(AMDGPU::EXEC)
2591           .addReg(AMDGPU::VCC);
2592       break;
2593 
2594     case AMDGPU::S_BFE_U64:
2595     case AMDGPU::S_BFM_B64:
2596       llvm_unreachable("Moving this op to VALU not implemented");
2597     }
2598 
2599     if (NewOpcode == AMDGPU::INSTRUCTION_LIST_END) {
2600       // We cannot move this instruction to the VALU, so we should try to
2601       // legalize its operands instead.
2602       legalizeOperands(Inst);
2603       continue;
2604     }
2605 
2606     // Use the new VALU Opcode.
2607     const MCInstrDesc &NewDesc = get(NewOpcode);
2608     Inst.setDesc(NewDesc);
2609 
2610     // Remove any references to SCC. Vector instructions can't read from it, and
2611     // We're just about to add the implicit use / defs of VCC, and we don't want
2612     // both.
2613     for (unsigned i = Inst.getNumOperands() - 1; i > 0; --i) {
2614       MachineOperand &Op = Inst.getOperand(i);
2615       if (Op.isReg() && Op.getReg() == AMDGPU::SCC) {
2616         Inst.RemoveOperand(i);
2617         addSCCDefUsersToVALUWorklist(Inst, Worklist);
2618       }
2619     }
2620 
2621     if (Opcode == AMDGPU::S_SEXT_I32_I8 || Opcode == AMDGPU::S_SEXT_I32_I16) {
2622       // We are converting these to a BFE, so we need to add the missing
2623       // operands for the size and offset.
2624       unsigned Size = (Opcode == AMDGPU::S_SEXT_I32_I8) ? 8 : 16;
2625       Inst.addOperand(MachineOperand::CreateImm(0));
2626       Inst.addOperand(MachineOperand::CreateImm(Size));
2627 
2628     } else if (Opcode == AMDGPU::S_BCNT1_I32_B32) {
2629       // The VALU version adds the second operand to the result, so insert an
2630       // extra 0 operand.
2631       Inst.addOperand(MachineOperand::CreateImm(0));
2632     }
2633 
2634     Inst.addImplicitDefUseOperands(*Inst.getParent()->getParent());
2635 
2636     if (Opcode == AMDGPU::S_BFE_I32 || Opcode == AMDGPU::S_BFE_U32) {
2637       const MachineOperand &OffsetWidthOp = Inst.getOperand(2);
2638       // If we need to move this to VGPRs, we need to unpack the second operand
2639       // back into the 2 separate ones for bit offset and width.
2640       assert(OffsetWidthOp.isImm() &&
2641              "Scalar BFE is only implemented for constant width and offset");
2642       uint32_t Imm = OffsetWidthOp.getImm();
2643 
2644       uint32_t Offset = Imm & 0x3f; // Extract bits [5:0].
2645       uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16].
2646       Inst.RemoveOperand(2);                     // Remove old immediate.
2647       Inst.addOperand(MachineOperand::CreateImm(Offset));
2648       Inst.addOperand(MachineOperand::CreateImm(BitWidth));
2649     }
2650 
2651     bool HasDst = Inst.getOperand(0).isReg() && Inst.getOperand(0).isDef();
2652     unsigned NewDstReg = AMDGPU::NoRegister;
2653     if (HasDst) {
2654       // Update the destination register class.
2655       const TargetRegisterClass *NewDstRC = getDestEquivalentVGPRClass(Inst);
2656       if (!NewDstRC)
2657         continue;
2658 
2659       unsigned DstReg = Inst.getOperand(0).getReg();
2660       NewDstReg = MRI.createVirtualRegister(NewDstRC);
2661       MRI.replaceRegWith(DstReg, NewDstReg);
2662     }
2663 
2664     // Legalize the operands
2665     legalizeOperands(Inst);
2666 
2667     if (HasDst)
2668      addUsersToMoveToVALUWorklist(NewDstReg, MRI, Worklist);
2669   }
2670 }
2671 
lowerScalarAbs(SmallVectorImpl<MachineInstr * > & Worklist,MachineInstr & Inst) const2672 void SIInstrInfo::lowerScalarAbs(SmallVectorImpl<MachineInstr *> &Worklist,
2673                                  MachineInstr &Inst) const {
2674   MachineBasicBlock &MBB = *Inst.getParent();
2675   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2676   MachineBasicBlock::iterator MII = Inst;
2677   DebugLoc DL = Inst.getDebugLoc();
2678 
2679   MachineOperand &Dest = Inst.getOperand(0);
2680   MachineOperand &Src = Inst.getOperand(1);
2681   unsigned TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2682   unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2683 
2684   BuildMI(MBB, MII, DL, get(AMDGPU::V_SUB_I32_e32), TmpReg)
2685     .addImm(0)
2686     .addReg(Src.getReg());
2687 
2688   BuildMI(MBB, MII, DL, get(AMDGPU::V_MAX_I32_e64), ResultReg)
2689     .addReg(Src.getReg())
2690     .addReg(TmpReg);
2691 
2692   MRI.replaceRegWith(Dest.getReg(), ResultReg);
2693   addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
2694 }
2695 
splitScalar64BitUnaryOp(SmallVectorImpl<MachineInstr * > & Worklist,MachineInstr & Inst,unsigned Opcode) const2696 void SIInstrInfo::splitScalar64BitUnaryOp(
2697     SmallVectorImpl<MachineInstr *> &Worklist, MachineInstr &Inst,
2698     unsigned Opcode) const {
2699   MachineBasicBlock &MBB = *Inst.getParent();
2700   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2701 
2702   MachineOperand &Dest = Inst.getOperand(0);
2703   MachineOperand &Src0 = Inst.getOperand(1);
2704   DebugLoc DL = Inst.getDebugLoc();
2705 
2706   MachineBasicBlock::iterator MII = Inst;
2707 
2708   const MCInstrDesc &InstDesc = get(Opcode);
2709   const TargetRegisterClass *Src0RC = Src0.isReg() ?
2710     MRI.getRegClass(Src0.getReg()) :
2711     &AMDGPU::SGPR_32RegClass;
2712 
2713   const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0);
2714 
2715   MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
2716                                                        AMDGPU::sub0, Src0SubRC);
2717 
2718   const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg());
2719   const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC);
2720   const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0);
2721 
2722   unsigned DestSub0 = MRI.createVirtualRegister(NewDestSubRC);
2723   BuildMI(MBB, MII, DL, InstDesc, DestSub0)
2724     .addOperand(SrcReg0Sub0);
2725 
2726   MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
2727                                                        AMDGPU::sub1, Src0SubRC);
2728 
2729   unsigned DestSub1 = MRI.createVirtualRegister(NewDestSubRC);
2730   BuildMI(MBB, MII, DL, InstDesc, DestSub1)
2731     .addOperand(SrcReg0Sub1);
2732 
2733   unsigned FullDestReg = MRI.createVirtualRegister(NewDestRC);
2734   BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
2735     .addReg(DestSub0)
2736     .addImm(AMDGPU::sub0)
2737     .addReg(DestSub1)
2738     .addImm(AMDGPU::sub1);
2739 
2740   MRI.replaceRegWith(Dest.getReg(), FullDestReg);
2741 
2742   // We don't need to legalizeOperands here because for a single operand, src0
2743   // will support any kind of input.
2744 
2745   // Move all users of this moved value.
2746   addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist);
2747 }
2748 
splitScalar64BitBinaryOp(SmallVectorImpl<MachineInstr * > & Worklist,MachineInstr & Inst,unsigned Opcode) const2749 void SIInstrInfo::splitScalar64BitBinaryOp(
2750     SmallVectorImpl<MachineInstr *> &Worklist, MachineInstr &Inst,
2751     unsigned Opcode) const {
2752   MachineBasicBlock &MBB = *Inst.getParent();
2753   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2754 
2755   MachineOperand &Dest = Inst.getOperand(0);
2756   MachineOperand &Src0 = Inst.getOperand(1);
2757   MachineOperand &Src1 = Inst.getOperand(2);
2758   DebugLoc DL = Inst.getDebugLoc();
2759 
2760   MachineBasicBlock::iterator MII = Inst;
2761 
2762   const MCInstrDesc &InstDesc = get(Opcode);
2763   const TargetRegisterClass *Src0RC = Src0.isReg() ?
2764     MRI.getRegClass(Src0.getReg()) :
2765     &AMDGPU::SGPR_32RegClass;
2766 
2767   const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0);
2768   const TargetRegisterClass *Src1RC = Src1.isReg() ?
2769     MRI.getRegClass(Src1.getReg()) :
2770     &AMDGPU::SGPR_32RegClass;
2771 
2772   const TargetRegisterClass *Src1SubRC = RI.getSubRegClass(Src1RC, AMDGPU::sub0);
2773 
2774   MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
2775                                                        AMDGPU::sub0, Src0SubRC);
2776   MachineOperand SrcReg1Sub0 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
2777                                                        AMDGPU::sub0, Src1SubRC);
2778 
2779   const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg());
2780   const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC);
2781   const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0);
2782 
2783   unsigned DestSub0 = MRI.createVirtualRegister(NewDestSubRC);
2784   MachineInstr &LoHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub0)
2785                               .addOperand(SrcReg0Sub0)
2786                               .addOperand(SrcReg1Sub0);
2787 
2788   MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
2789                                                        AMDGPU::sub1, Src0SubRC);
2790   MachineOperand SrcReg1Sub1 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
2791                                                        AMDGPU::sub1, Src1SubRC);
2792 
2793   unsigned DestSub1 = MRI.createVirtualRegister(NewDestSubRC);
2794   MachineInstr &HiHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub1)
2795                               .addOperand(SrcReg0Sub1)
2796                               .addOperand(SrcReg1Sub1);
2797 
2798   unsigned FullDestReg = MRI.createVirtualRegister(NewDestRC);
2799   BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
2800     .addReg(DestSub0)
2801     .addImm(AMDGPU::sub0)
2802     .addReg(DestSub1)
2803     .addImm(AMDGPU::sub1);
2804 
2805   MRI.replaceRegWith(Dest.getReg(), FullDestReg);
2806 
2807   // Try to legalize the operands in case we need to swap the order to keep it
2808   // valid.
2809   legalizeOperands(LoHalf);
2810   legalizeOperands(HiHalf);
2811 
2812   // Move all users of this moved vlaue.
2813   addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist);
2814 }
2815 
splitScalar64BitBCNT(SmallVectorImpl<MachineInstr * > & Worklist,MachineInstr & Inst) const2816 void SIInstrInfo::splitScalar64BitBCNT(
2817     SmallVectorImpl<MachineInstr *> &Worklist, MachineInstr &Inst) const {
2818   MachineBasicBlock &MBB = *Inst.getParent();
2819   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2820 
2821   MachineBasicBlock::iterator MII = Inst;
2822   DebugLoc DL = Inst.getDebugLoc();
2823 
2824   MachineOperand &Dest = Inst.getOperand(0);
2825   MachineOperand &Src = Inst.getOperand(1);
2826 
2827   const MCInstrDesc &InstDesc = get(AMDGPU::V_BCNT_U32_B32_e64);
2828   const TargetRegisterClass *SrcRC = Src.isReg() ?
2829     MRI.getRegClass(Src.getReg()) :
2830     &AMDGPU::SGPR_32RegClass;
2831 
2832   unsigned MidReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2833   unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2834 
2835   const TargetRegisterClass *SrcSubRC = RI.getSubRegClass(SrcRC, AMDGPU::sub0);
2836 
2837   MachineOperand SrcRegSub0 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC,
2838                                                       AMDGPU::sub0, SrcSubRC);
2839   MachineOperand SrcRegSub1 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC,
2840                                                       AMDGPU::sub1, SrcSubRC);
2841 
2842   BuildMI(MBB, MII, DL, InstDesc, MidReg)
2843     .addOperand(SrcRegSub0)
2844     .addImm(0);
2845 
2846   BuildMI(MBB, MII, DL, InstDesc, ResultReg)
2847     .addOperand(SrcRegSub1)
2848     .addReg(MidReg);
2849 
2850   MRI.replaceRegWith(Dest.getReg(), ResultReg);
2851 
2852   // We don't need to legalize operands here. src0 for etiher instruction can be
2853   // an SGPR, and the second input is unused or determined here.
2854   addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
2855 }
2856 
splitScalar64BitBFE(SmallVectorImpl<MachineInstr * > & Worklist,MachineInstr & Inst) const2857 void SIInstrInfo::splitScalar64BitBFE(SmallVectorImpl<MachineInstr *> &Worklist,
2858                                       MachineInstr &Inst) const {
2859   MachineBasicBlock &MBB = *Inst.getParent();
2860   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2861   MachineBasicBlock::iterator MII = Inst;
2862   DebugLoc DL = Inst.getDebugLoc();
2863 
2864   MachineOperand &Dest = Inst.getOperand(0);
2865   uint32_t Imm = Inst.getOperand(2).getImm();
2866   uint32_t Offset = Imm & 0x3f; // Extract bits [5:0].
2867   uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16].
2868 
2869   (void) Offset;
2870 
2871   // Only sext_inreg cases handled.
2872   assert(Inst.getOpcode() == AMDGPU::S_BFE_I64 && BitWidth <= 32 &&
2873          Offset == 0 && "Not implemented");
2874 
2875   if (BitWidth < 32) {
2876     unsigned MidRegLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2877     unsigned MidRegHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2878     unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
2879 
2880     BuildMI(MBB, MII, DL, get(AMDGPU::V_BFE_I32), MidRegLo)
2881         .addReg(Inst.getOperand(1).getReg(), 0, AMDGPU::sub0)
2882         .addImm(0)
2883         .addImm(BitWidth);
2884 
2885     BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e32), MidRegHi)
2886       .addImm(31)
2887       .addReg(MidRegLo);
2888 
2889     BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg)
2890       .addReg(MidRegLo)
2891       .addImm(AMDGPU::sub0)
2892       .addReg(MidRegHi)
2893       .addImm(AMDGPU::sub1);
2894 
2895     MRI.replaceRegWith(Dest.getReg(), ResultReg);
2896     addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
2897     return;
2898   }
2899 
2900   MachineOperand &Src = Inst.getOperand(1);
2901   unsigned TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2902   unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
2903 
2904   BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e64), TmpReg)
2905     .addImm(31)
2906     .addReg(Src.getReg(), 0, AMDGPU::sub0);
2907 
2908   BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg)
2909     .addReg(Src.getReg(), 0, AMDGPU::sub0)
2910     .addImm(AMDGPU::sub0)
2911     .addReg(TmpReg)
2912     .addImm(AMDGPU::sub1);
2913 
2914   MRI.replaceRegWith(Dest.getReg(), ResultReg);
2915   addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
2916 }
2917 
addUsersToMoveToVALUWorklist(unsigned DstReg,MachineRegisterInfo & MRI,SmallVectorImpl<MachineInstr * > & Worklist) const2918 void SIInstrInfo::addUsersToMoveToVALUWorklist(
2919   unsigned DstReg,
2920   MachineRegisterInfo &MRI,
2921   SmallVectorImpl<MachineInstr *> &Worklist) const {
2922   for (MachineRegisterInfo::use_iterator I = MRI.use_begin(DstReg),
2923          E = MRI.use_end(); I != E; ++I) {
2924     MachineInstr &UseMI = *I->getParent();
2925     if (!canReadVGPR(UseMI, I.getOperandNo())) {
2926       Worklist.push_back(&UseMI);
2927     }
2928   }
2929 }
2930 
addSCCDefUsersToVALUWorklist(MachineInstr & SCCDefInst,SmallVectorImpl<MachineInstr * > & Worklist) const2931 void SIInstrInfo::addSCCDefUsersToVALUWorklist(
2932     MachineInstr &SCCDefInst, SmallVectorImpl<MachineInstr *> &Worklist) const {
2933   // This assumes that all the users of SCC are in the same block
2934   // as the SCC def.
2935   for (MachineInstr &MI :
2936        llvm::make_range(MachineBasicBlock::iterator(SCCDefInst),
2937                         SCCDefInst.getParent()->end())) {
2938     // Exit if we find another SCC def.
2939     if (MI.findRegisterDefOperandIdx(AMDGPU::SCC) != -1)
2940       return;
2941 
2942     if (MI.findRegisterUseOperandIdx(AMDGPU::SCC) != -1)
2943       Worklist.push_back(&MI);
2944   }
2945 }
2946 
getDestEquivalentVGPRClass(const MachineInstr & Inst) const2947 const TargetRegisterClass *SIInstrInfo::getDestEquivalentVGPRClass(
2948   const MachineInstr &Inst) const {
2949   const TargetRegisterClass *NewDstRC = getOpRegClass(Inst, 0);
2950 
2951   switch (Inst.getOpcode()) {
2952   // For target instructions, getOpRegClass just returns the virtual register
2953   // class associated with the operand, so we need to find an equivalent VGPR
2954   // register class in order to move the instruction to the VALU.
2955   case AMDGPU::COPY:
2956   case AMDGPU::PHI:
2957   case AMDGPU::REG_SEQUENCE:
2958   case AMDGPU::INSERT_SUBREG:
2959     if (RI.hasVGPRs(NewDstRC))
2960       return nullptr;
2961 
2962     NewDstRC = RI.getEquivalentVGPRClass(NewDstRC);
2963     if (!NewDstRC)
2964       return nullptr;
2965     return NewDstRC;
2966   default:
2967     return NewDstRC;
2968   }
2969 }
2970 
2971 // Find the one SGPR operand we are allowed to use.
findUsedSGPR(const MachineInstr & MI,int OpIndices[3]) const2972 unsigned SIInstrInfo::findUsedSGPR(const MachineInstr &MI,
2973                                    int OpIndices[3]) const {
2974   const MCInstrDesc &Desc = MI.getDesc();
2975 
2976   // Find the one SGPR operand we are allowed to use.
2977   //
2978   // First we need to consider the instruction's operand requirements before
2979   // legalizing. Some operands are required to be SGPRs, such as implicit uses
2980   // of VCC, but we are still bound by the constant bus requirement to only use
2981   // one.
2982   //
2983   // If the operand's class is an SGPR, we can never move it.
2984 
2985   unsigned SGPRReg = findImplicitSGPRRead(MI);
2986   if (SGPRReg != AMDGPU::NoRegister)
2987     return SGPRReg;
2988 
2989   unsigned UsedSGPRs[3] = { AMDGPU::NoRegister };
2990   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2991 
2992   for (unsigned i = 0; i < 3; ++i) {
2993     int Idx = OpIndices[i];
2994     if (Idx == -1)
2995       break;
2996 
2997     const MachineOperand &MO = MI.getOperand(Idx);
2998     if (!MO.isReg())
2999       continue;
3000 
3001     // Is this operand statically required to be an SGPR based on the operand
3002     // constraints?
3003     const TargetRegisterClass *OpRC = RI.getRegClass(Desc.OpInfo[Idx].RegClass);
3004     bool IsRequiredSGPR = RI.isSGPRClass(OpRC);
3005     if (IsRequiredSGPR)
3006       return MO.getReg();
3007 
3008     // If this could be a VGPR or an SGPR, Check the dynamic register class.
3009     unsigned Reg = MO.getReg();
3010     const TargetRegisterClass *RegRC = MRI.getRegClass(Reg);
3011     if (RI.isSGPRClass(RegRC))
3012       UsedSGPRs[i] = Reg;
3013   }
3014 
3015   // We don't have a required SGPR operand, so we have a bit more freedom in
3016   // selecting operands to move.
3017 
3018   // Try to select the most used SGPR. If an SGPR is equal to one of the
3019   // others, we choose that.
3020   //
3021   // e.g.
3022   // V_FMA_F32 v0, s0, s0, s0 -> No moves
3023   // V_FMA_F32 v0, s0, s1, s0 -> Move s1
3024 
3025   // TODO: If some of the operands are 64-bit SGPRs and some 32, we should
3026   // prefer those.
3027 
3028   if (UsedSGPRs[0] != AMDGPU::NoRegister) {
3029     if (UsedSGPRs[0] == UsedSGPRs[1] || UsedSGPRs[0] == UsedSGPRs[2])
3030       SGPRReg = UsedSGPRs[0];
3031   }
3032 
3033   if (SGPRReg == AMDGPU::NoRegister && UsedSGPRs[1] != AMDGPU::NoRegister) {
3034     if (UsedSGPRs[1] == UsedSGPRs[2])
3035       SGPRReg = UsedSGPRs[1];
3036   }
3037 
3038   return SGPRReg;
3039 }
3040 
getNamedOperand(MachineInstr & MI,unsigned OperandName) const3041 MachineOperand *SIInstrInfo::getNamedOperand(MachineInstr &MI,
3042                                              unsigned OperandName) const {
3043   int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OperandName);
3044   if (Idx == -1)
3045     return nullptr;
3046 
3047   return &MI.getOperand(Idx);
3048 }
3049 
getDefaultRsrcDataFormat() const3050 uint64_t SIInstrInfo::getDefaultRsrcDataFormat() const {
3051   uint64_t RsrcDataFormat = AMDGPU::RSRC_DATA_FORMAT;
3052   if (ST.isAmdHsaOS()) {
3053     RsrcDataFormat |= (1ULL << 56);
3054 
3055     if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
3056       // Set MTYPE = 2
3057       RsrcDataFormat |= (2ULL << 59);
3058   }
3059 
3060   return RsrcDataFormat;
3061 }
3062 
getScratchRsrcWords23() const3063 uint64_t SIInstrInfo::getScratchRsrcWords23() const {
3064   uint64_t Rsrc23 = getDefaultRsrcDataFormat() |
3065                     AMDGPU::RSRC_TID_ENABLE |
3066                     0xffffffff; // Size;
3067 
3068   uint64_t EltSizeValue = Log2_32(ST.getMaxPrivateElementSize()) - 1;
3069 
3070   Rsrc23 |= (EltSizeValue << AMDGPU::RSRC_ELEMENT_SIZE_SHIFT) |
3071             // IndexStride = 64
3072             (UINT64_C(3) << AMDGPU::RSRC_INDEX_STRIDE_SHIFT);
3073 
3074   // If TID_ENABLE is set, DATA_FORMAT specifies stride bits [14:17].
3075   // Clear them unless we want a huge stride.
3076   if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
3077     Rsrc23 &= ~AMDGPU::RSRC_DATA_FORMAT;
3078 
3079   return Rsrc23;
3080 }
3081 
isLowLatencyInstruction(const MachineInstr & MI) const3082 bool SIInstrInfo::isLowLatencyInstruction(const MachineInstr &MI) const {
3083   unsigned Opc = MI.getOpcode();
3084 
3085   return isSMRD(Opc);
3086 }
3087 
isHighLatencyInstruction(const MachineInstr & MI) const3088 bool SIInstrInfo::isHighLatencyInstruction(const MachineInstr &MI) const {
3089   unsigned Opc = MI.getOpcode();
3090 
3091   return isMUBUF(Opc) || isMTBUF(Opc) || isMIMG(Opc);
3092 }
3093 
getInstSizeInBytes(const MachineInstr & MI) const3094 unsigned SIInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
3095   unsigned Opc = MI.getOpcode();
3096   const MCInstrDesc &Desc = getMCOpcodeFromPseudo(Opc);
3097   unsigned DescSize = Desc.getSize();
3098 
3099   // If we have a definitive size, we can use it. Otherwise we need to inspect
3100   // the operands to know the size.
3101   if (DescSize == 8 || DescSize == 4)
3102     return DescSize;
3103 
3104   assert(DescSize == 0);
3105 
3106   // 4-byte instructions may have a 32-bit literal encoded after them. Check
3107   // operands that coud ever be literals.
3108   if (isVALU(MI) || isSALU(MI)) {
3109     int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
3110     if (Src0Idx == -1)
3111       return 4; // No operands.
3112 
3113     if (isLiteralConstant(MI.getOperand(Src0Idx), getOpSize(MI, Src0Idx)))
3114       return 8;
3115 
3116     int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
3117     if (Src1Idx == -1)
3118       return 4;
3119 
3120     if (isLiteralConstant(MI.getOperand(Src1Idx), getOpSize(MI, Src1Idx)))
3121       return 8;
3122 
3123     return 4;
3124   }
3125 
3126   switch (Opc) {
3127   case TargetOpcode::IMPLICIT_DEF:
3128   case TargetOpcode::KILL:
3129   case TargetOpcode::DBG_VALUE:
3130   case TargetOpcode::BUNDLE:
3131   case TargetOpcode::EH_LABEL:
3132     return 0;
3133   case TargetOpcode::INLINEASM: {
3134     const MachineFunction *MF = MI.getParent()->getParent();
3135     const char *AsmStr = MI.getOperand(0).getSymbolName();
3136     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
3137   }
3138   default:
3139     llvm_unreachable("unable to find instruction size");
3140   }
3141 }
3142 
3143 ArrayRef<std::pair<int, const char *>>
getSerializableTargetIndices() const3144 SIInstrInfo::getSerializableTargetIndices() const {
3145   static const std::pair<int, const char *> TargetIndices[] = {
3146       {AMDGPU::TI_CONSTDATA_START, "amdgpu-constdata-start"},
3147       {AMDGPU::TI_SCRATCH_RSRC_DWORD0, "amdgpu-scratch-rsrc-dword0"},
3148       {AMDGPU::TI_SCRATCH_RSRC_DWORD1, "amdgpu-scratch-rsrc-dword1"},
3149       {AMDGPU::TI_SCRATCH_RSRC_DWORD2, "amdgpu-scratch-rsrc-dword2"},
3150       {AMDGPU::TI_SCRATCH_RSRC_DWORD3, "amdgpu-scratch-rsrc-dword3"}};
3151   return makeArrayRef(TargetIndices);
3152 }
3153 
3154 /// This is used by the post-RA scheduler (SchedulePostRAList.cpp).  The
3155 /// post-RA version of misched uses CreateTargetMIHazardRecognizer.
3156 ScheduleHazardRecognizer *
CreateTargetPostRAHazardRecognizer(const InstrItineraryData * II,const ScheduleDAG * DAG) const3157 SIInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
3158                                             const ScheduleDAG *DAG) const {
3159   return new GCNHazardRecognizer(DAG->MF);
3160 }
3161 
3162 /// This is the hazard recognizer used at -O0 by the PostRAHazardRecognizer
3163 /// pass.
3164 ScheduleHazardRecognizer *
CreateTargetPostRAHazardRecognizer(const MachineFunction & MF) const3165 SIInstrInfo::CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
3166   return new GCNHazardRecognizer(MF);
3167 }
3168