1 //===- GVNSink.cpp - sink expressions into successors ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file GVNSink.cpp
11 /// This pass attempts to sink instructions into successors, reducing static
12 /// instruction count and enabling if-conversion.
13 ///
14 /// We use a variant of global value numbering to decide what can be sunk.
15 /// Consider:
16 ///
17 /// [ %a1 = add i32 %b, 1 ] [ %c1 = add i32 %d, 1 ]
18 /// [ %a2 = xor i32 %a1, 1 ] [ %c2 = xor i32 %c1, 1 ]
19 /// \ /
20 /// [ %e = phi i32 %a2, %c2 ]
21 /// [ add i32 %e, 4 ]
22 ///
23 ///
24 /// GVN would number %a1 and %c1 differently because they compute different
25 /// results - the VN of an instruction is a function of its opcode and the
26 /// transitive closure of its operands. This is the key property for hoisting
27 /// and CSE.
28 ///
29 /// What we want when sinking however is for a numbering that is a function of
30 /// the *uses* of an instruction, which allows us to answer the question "if I
31 /// replace %a1 with %c1, will it contribute in an equivalent way to all
32 /// successive instructions?". The PostValueTable class in GVN provides this
33 /// mapping.
34 //
35 //===----------------------------------------------------------------------===//
36
37 #include "llvm/ADT/ArrayRef.h"
38 #include "llvm/ADT/DenseMap.h"
39 #include "llvm/ADT/DenseMapInfo.h"
40 #include "llvm/ADT/DenseSet.h"
41 #include "llvm/ADT/Hashing.h"
42 #include "llvm/ADT/None.h"
43 #include "llvm/ADT/Optional.h"
44 #include "llvm/ADT/PostOrderIterator.h"
45 #include "llvm/ADT/STLExtras.h"
46 #include "llvm/ADT/SmallPtrSet.h"
47 #include "llvm/ADT/SmallVector.h"
48 #include "llvm/ADT/Statistic.h"
49 #include "llvm/ADT/StringExtras.h"
50 #include "llvm/Analysis/GlobalsModRef.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 #include "llvm/IR/BasicBlock.h"
53 #include "llvm/IR/CFG.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/InstrTypes.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/PassManager.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Use.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Allocator.h"
65 #include "llvm/Support/ArrayRecycler.h"
66 #include "llvm/Support/AtomicOrdering.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/Compiler.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/Scalar.h"
72 #include "llvm/Transforms/Scalar/GVN.h"
73 #include "llvm/Transforms/Scalar/GVNExpression.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <iterator>
80 #include <utility>
81
82 using namespace llvm;
83
84 #define DEBUG_TYPE "gvn-sink"
85
86 STATISTIC(NumRemoved, "Number of instructions removed");
87
88 namespace llvm {
89 namespace GVNExpression {
90
dump() const91 LLVM_DUMP_METHOD void Expression::dump() const {
92 print(dbgs());
93 dbgs() << "\n";
94 }
95
96 } // end namespace GVNExpression
97 } // end namespace llvm
98
99 namespace {
100
isMemoryInst(const Instruction * I)101 static bool isMemoryInst(const Instruction *I) {
102 return isa<LoadInst>(I) || isa<StoreInst>(I) ||
103 (isa<InvokeInst>(I) && !cast<InvokeInst>(I)->doesNotAccessMemory()) ||
104 (isa<CallInst>(I) && !cast<CallInst>(I)->doesNotAccessMemory());
105 }
106
107 /// Iterates through instructions in a set of blocks in reverse order from the
108 /// first non-terminator. For example (assume all blocks have size n):
109 /// LockstepReverseIterator I([B1, B2, B3]);
110 /// *I-- = [B1[n], B2[n], B3[n]];
111 /// *I-- = [B1[n-1], B2[n-1], B3[n-1]];
112 /// *I-- = [B1[n-2], B2[n-2], B3[n-2]];
113 /// ...
114 ///
115 /// It continues until all blocks have been exhausted. Use \c getActiveBlocks()
116 /// to
117 /// determine which blocks are still going and the order they appear in the
118 /// list returned by operator*.
119 class LockstepReverseIterator {
120 ArrayRef<BasicBlock *> Blocks;
121 SmallSetVector<BasicBlock *, 4> ActiveBlocks;
122 SmallVector<Instruction *, 4> Insts;
123 bool Fail;
124
125 public:
LockstepReverseIterator(ArrayRef<BasicBlock * > Blocks)126 LockstepReverseIterator(ArrayRef<BasicBlock *> Blocks) : Blocks(Blocks) {
127 reset();
128 }
129
reset()130 void reset() {
131 Fail = false;
132 ActiveBlocks.clear();
133 for (BasicBlock *BB : Blocks)
134 ActiveBlocks.insert(BB);
135 Insts.clear();
136 for (BasicBlock *BB : Blocks) {
137 if (BB->size() <= 1) {
138 // Block wasn't big enough - only contained a terminator.
139 ActiveBlocks.remove(BB);
140 continue;
141 }
142 Insts.push_back(BB->getTerminator()->getPrevNode());
143 }
144 if (Insts.empty())
145 Fail = true;
146 }
147
isValid() const148 bool isValid() const { return !Fail; }
operator *() const149 ArrayRef<Instruction *> operator*() const { return Insts; }
150
151 // Note: This needs to return a SmallSetVector as the elements of
152 // ActiveBlocks will be later copied to Blocks using std::copy. The
153 // resultant order of elements in Blocks needs to be deterministic.
154 // Using SmallPtrSet instead causes non-deterministic order while
155 // copying. And we cannot simply sort Blocks as they need to match the
156 // corresponding Values.
getActiveBlocks()157 SmallSetVector<BasicBlock *, 4> &getActiveBlocks() { return ActiveBlocks; }
158
restrictToBlocks(SmallSetVector<BasicBlock *,4> & Blocks)159 void restrictToBlocks(SmallSetVector<BasicBlock *, 4> &Blocks) {
160 for (auto II = Insts.begin(); II != Insts.end();) {
161 if (std::find(Blocks.begin(), Blocks.end(), (*II)->getParent()) ==
162 Blocks.end()) {
163 ActiveBlocks.remove((*II)->getParent());
164 II = Insts.erase(II);
165 } else {
166 ++II;
167 }
168 }
169 }
170
operator --()171 void operator--() {
172 if (Fail)
173 return;
174 SmallVector<Instruction *, 4> NewInsts;
175 for (auto *Inst : Insts) {
176 if (Inst == &Inst->getParent()->front())
177 ActiveBlocks.remove(Inst->getParent());
178 else
179 NewInsts.push_back(Inst->getPrevNode());
180 }
181 if (NewInsts.empty()) {
182 Fail = true;
183 return;
184 }
185 Insts = NewInsts;
186 }
187 };
188
189 //===----------------------------------------------------------------------===//
190
191 /// Candidate solution for sinking. There may be different ways to
192 /// sink instructions, differing in the number of instructions sunk,
193 /// the number of predecessors sunk from and the number of PHIs
194 /// required.
195 struct SinkingInstructionCandidate {
196 unsigned NumBlocks;
197 unsigned NumInstructions;
198 unsigned NumPHIs;
199 unsigned NumMemoryInsts;
200 int Cost = -1;
201 SmallVector<BasicBlock *, 4> Blocks;
202
calculateCost__anonec26fc0d0111::SinkingInstructionCandidate203 void calculateCost(unsigned NumOrigPHIs, unsigned NumOrigBlocks) {
204 unsigned NumExtraPHIs = NumPHIs - NumOrigPHIs;
205 unsigned SplitEdgeCost = (NumOrigBlocks > NumBlocks) ? 2 : 0;
206 Cost = (NumInstructions * (NumBlocks - 1)) -
207 (NumExtraPHIs *
208 NumExtraPHIs) // PHIs are expensive, so make sure they're worth it.
209 - SplitEdgeCost;
210 }
211
operator >__anonec26fc0d0111::SinkingInstructionCandidate212 bool operator>(const SinkingInstructionCandidate &Other) const {
213 return Cost > Other.Cost;
214 }
215 };
216
217 #ifndef NDEBUG
operator <<(raw_ostream & OS,const SinkingInstructionCandidate & C)218 raw_ostream &operator<<(raw_ostream &OS, const SinkingInstructionCandidate &C) {
219 OS << "<Candidate Cost=" << C.Cost << " #Blocks=" << C.NumBlocks
220 << " #Insts=" << C.NumInstructions << " #PHIs=" << C.NumPHIs << ">";
221 return OS;
222 }
223 #endif
224
225 //===----------------------------------------------------------------------===//
226
227 /// Describes a PHI node that may or may not exist. These track the PHIs
228 /// that must be created if we sunk a sequence of instructions. It provides
229 /// a hash function for efficient equality comparisons.
230 class ModelledPHI {
231 SmallVector<Value *, 4> Values;
232 SmallVector<BasicBlock *, 4> Blocks;
233
234 public:
235 ModelledPHI() = default;
236
ModelledPHI(const PHINode * PN)237 ModelledPHI(const PHINode *PN) {
238 // BasicBlock comes first so we sort by basic block pointer order, then by value pointer order.
239 SmallVector<std::pair<BasicBlock *, Value *>, 4> Ops;
240 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I)
241 Ops.push_back({PN->getIncomingBlock(I), PN->getIncomingValue(I)});
242 llvm::sort(Ops.begin(), Ops.end());
243 for (auto &P : Ops) {
244 Blocks.push_back(P.first);
245 Values.push_back(P.second);
246 }
247 }
248
249 /// Create a dummy ModelledPHI that will compare unequal to any other ModelledPHI
250 /// without the same ID.
251 /// \note This is specifically for DenseMapInfo - do not use this!
createDummy(size_t ID)252 static ModelledPHI createDummy(size_t ID) {
253 ModelledPHI M;
254 M.Values.push_back(reinterpret_cast<Value*>(ID));
255 return M;
256 }
257
258 /// Create a PHI from an array of incoming values and incoming blocks.
259 template <typename VArray, typename BArray>
ModelledPHI(const VArray & V,const BArray & B)260 ModelledPHI(const VArray &V, const BArray &B) {
261 std::copy(V.begin(), V.end(), std::back_inserter(Values));
262 std::copy(B.begin(), B.end(), std::back_inserter(Blocks));
263 }
264
265 /// Create a PHI from [I[OpNum] for I in Insts].
266 template <typename BArray>
ModelledPHI(ArrayRef<Instruction * > Insts,unsigned OpNum,const BArray & B)267 ModelledPHI(ArrayRef<Instruction *> Insts, unsigned OpNum, const BArray &B) {
268 std::copy(B.begin(), B.end(), std::back_inserter(Blocks));
269 for (auto *I : Insts)
270 Values.push_back(I->getOperand(OpNum));
271 }
272
273 /// Restrict the PHI's contents down to only \c NewBlocks.
274 /// \c NewBlocks must be a subset of \c this->Blocks.
restrictToBlocks(const SmallSetVector<BasicBlock *,4> & NewBlocks)275 void restrictToBlocks(const SmallSetVector<BasicBlock *, 4> &NewBlocks) {
276 auto BI = Blocks.begin();
277 auto VI = Values.begin();
278 while (BI != Blocks.end()) {
279 assert(VI != Values.end());
280 if (std::find(NewBlocks.begin(), NewBlocks.end(), *BI) ==
281 NewBlocks.end()) {
282 BI = Blocks.erase(BI);
283 VI = Values.erase(VI);
284 } else {
285 ++BI;
286 ++VI;
287 }
288 }
289 assert(Blocks.size() == NewBlocks.size());
290 }
291
getValues() const292 ArrayRef<Value *> getValues() const { return Values; }
293
areAllIncomingValuesSame() const294 bool areAllIncomingValuesSame() const {
295 return llvm::all_of(Values, [&](Value *V) { return V == Values[0]; });
296 }
297
areAllIncomingValuesSameType() const298 bool areAllIncomingValuesSameType() const {
299 return llvm::all_of(
300 Values, [&](Value *V) { return V->getType() == Values[0]->getType(); });
301 }
302
areAnyIncomingValuesConstant() const303 bool areAnyIncomingValuesConstant() const {
304 return llvm::any_of(Values, [&](Value *V) { return isa<Constant>(V); });
305 }
306
307 // Hash functor
hash() const308 unsigned hash() const {
309 return (unsigned)hash_combine_range(Values.begin(), Values.end());
310 }
311
operator ==(const ModelledPHI & Other) const312 bool operator==(const ModelledPHI &Other) const {
313 return Values == Other.Values && Blocks == Other.Blocks;
314 }
315 };
316
317 template <typename ModelledPHI> struct DenseMapInfo {
getEmptyKey__anonec26fc0d0111::DenseMapInfo318 static inline ModelledPHI &getEmptyKey() {
319 static ModelledPHI Dummy = ModelledPHI::createDummy(0);
320 return Dummy;
321 }
322
getTombstoneKey__anonec26fc0d0111::DenseMapInfo323 static inline ModelledPHI &getTombstoneKey() {
324 static ModelledPHI Dummy = ModelledPHI::createDummy(1);
325 return Dummy;
326 }
327
getHashValue__anonec26fc0d0111::DenseMapInfo328 static unsigned getHashValue(const ModelledPHI &V) { return V.hash(); }
329
isEqual__anonec26fc0d0111::DenseMapInfo330 static bool isEqual(const ModelledPHI &LHS, const ModelledPHI &RHS) {
331 return LHS == RHS;
332 }
333 };
334
335 using ModelledPHISet = DenseSet<ModelledPHI, DenseMapInfo<ModelledPHI>>;
336
337 //===----------------------------------------------------------------------===//
338 // ValueTable
339 //===----------------------------------------------------------------------===//
340 // This is a value number table where the value number is a function of the
341 // *uses* of a value, rather than its operands. Thus, if VN(A) == VN(B) we know
342 // that the program would be equivalent if we replaced A with PHI(A, B).
343 //===----------------------------------------------------------------------===//
344
345 /// A GVN expression describing how an instruction is used. The operands
346 /// field of BasicExpression is used to store uses, not operands.
347 ///
348 /// This class also contains fields for discriminators used when determining
349 /// equivalence of instructions with sideeffects.
350 class InstructionUseExpr : public GVNExpression::BasicExpression {
351 unsigned MemoryUseOrder = -1;
352 bool Volatile = false;
353
354 public:
InstructionUseExpr(Instruction * I,ArrayRecycler<Value * > & R,BumpPtrAllocator & A)355 InstructionUseExpr(Instruction *I, ArrayRecycler<Value *> &R,
356 BumpPtrAllocator &A)
357 : GVNExpression::BasicExpression(I->getNumUses()) {
358 allocateOperands(R, A);
359 setOpcode(I->getOpcode());
360 setType(I->getType());
361
362 for (auto &U : I->uses())
363 op_push_back(U.getUser());
364 llvm::sort(op_begin(), op_end());
365 }
366
setMemoryUseOrder(unsigned MUO)367 void setMemoryUseOrder(unsigned MUO) { MemoryUseOrder = MUO; }
setVolatile(bool V)368 void setVolatile(bool V) { Volatile = V; }
369
getHashValue() const370 hash_code getHashValue() const override {
371 return hash_combine(GVNExpression::BasicExpression::getHashValue(),
372 MemoryUseOrder, Volatile);
373 }
374
getHashValue(Function MapFn)375 template <typename Function> hash_code getHashValue(Function MapFn) {
376 hash_code H =
377 hash_combine(getOpcode(), getType(), MemoryUseOrder, Volatile);
378 for (auto *V : operands())
379 H = hash_combine(H, MapFn(V));
380 return H;
381 }
382 };
383
384 class ValueTable {
385 DenseMap<Value *, uint32_t> ValueNumbering;
386 DenseMap<GVNExpression::Expression *, uint32_t> ExpressionNumbering;
387 DenseMap<size_t, uint32_t> HashNumbering;
388 BumpPtrAllocator Allocator;
389 ArrayRecycler<Value *> Recycler;
390 uint32_t nextValueNumber = 1;
391
392 /// Create an expression for I based on its opcode and its uses. If I
393 /// touches or reads memory, the expression is also based upon its memory
394 /// order - see \c getMemoryUseOrder().
createExpr(Instruction * I)395 InstructionUseExpr *createExpr(Instruction *I) {
396 InstructionUseExpr *E =
397 new (Allocator) InstructionUseExpr(I, Recycler, Allocator);
398 if (isMemoryInst(I))
399 E->setMemoryUseOrder(getMemoryUseOrder(I));
400
401 if (CmpInst *C = dyn_cast<CmpInst>(I)) {
402 CmpInst::Predicate Predicate = C->getPredicate();
403 E->setOpcode((C->getOpcode() << 8) | Predicate);
404 }
405 return E;
406 }
407
408 /// Helper to compute the value number for a memory instruction
409 /// (LoadInst/StoreInst), including checking the memory ordering and
410 /// volatility.
createMemoryExpr(Inst * I)411 template <class Inst> InstructionUseExpr *createMemoryExpr(Inst *I) {
412 if (isStrongerThanUnordered(I->getOrdering()) || I->isAtomic())
413 return nullptr;
414 InstructionUseExpr *E = createExpr(I);
415 E->setVolatile(I->isVolatile());
416 return E;
417 }
418
419 public:
420 ValueTable() = default;
421
422 /// Returns the value number for the specified value, assigning
423 /// it a new number if it did not have one before.
lookupOrAdd(Value * V)424 uint32_t lookupOrAdd(Value *V) {
425 auto VI = ValueNumbering.find(V);
426 if (VI != ValueNumbering.end())
427 return VI->second;
428
429 if (!isa<Instruction>(V)) {
430 ValueNumbering[V] = nextValueNumber;
431 return nextValueNumber++;
432 }
433
434 Instruction *I = cast<Instruction>(V);
435 InstructionUseExpr *exp = nullptr;
436 switch (I->getOpcode()) {
437 case Instruction::Load:
438 exp = createMemoryExpr(cast<LoadInst>(I));
439 break;
440 case Instruction::Store:
441 exp = createMemoryExpr(cast<StoreInst>(I));
442 break;
443 case Instruction::Call:
444 case Instruction::Invoke:
445 case Instruction::Add:
446 case Instruction::FAdd:
447 case Instruction::Sub:
448 case Instruction::FSub:
449 case Instruction::Mul:
450 case Instruction::FMul:
451 case Instruction::UDiv:
452 case Instruction::SDiv:
453 case Instruction::FDiv:
454 case Instruction::URem:
455 case Instruction::SRem:
456 case Instruction::FRem:
457 case Instruction::Shl:
458 case Instruction::LShr:
459 case Instruction::AShr:
460 case Instruction::And:
461 case Instruction::Or:
462 case Instruction::Xor:
463 case Instruction::ICmp:
464 case Instruction::FCmp:
465 case Instruction::Trunc:
466 case Instruction::ZExt:
467 case Instruction::SExt:
468 case Instruction::FPToUI:
469 case Instruction::FPToSI:
470 case Instruction::UIToFP:
471 case Instruction::SIToFP:
472 case Instruction::FPTrunc:
473 case Instruction::FPExt:
474 case Instruction::PtrToInt:
475 case Instruction::IntToPtr:
476 case Instruction::BitCast:
477 case Instruction::Select:
478 case Instruction::ExtractElement:
479 case Instruction::InsertElement:
480 case Instruction::ShuffleVector:
481 case Instruction::InsertValue:
482 case Instruction::GetElementPtr:
483 exp = createExpr(I);
484 break;
485 default:
486 break;
487 }
488
489 if (!exp) {
490 ValueNumbering[V] = nextValueNumber;
491 return nextValueNumber++;
492 }
493
494 uint32_t e = ExpressionNumbering[exp];
495 if (!e) {
496 hash_code H = exp->getHashValue([=](Value *V) { return lookupOrAdd(V); });
497 auto I = HashNumbering.find(H);
498 if (I != HashNumbering.end()) {
499 e = I->second;
500 } else {
501 e = nextValueNumber++;
502 HashNumbering[H] = e;
503 ExpressionNumbering[exp] = e;
504 }
505 }
506 ValueNumbering[V] = e;
507 return e;
508 }
509
510 /// Returns the value number of the specified value. Fails if the value has
511 /// not yet been numbered.
lookup(Value * V) const512 uint32_t lookup(Value *V) const {
513 auto VI = ValueNumbering.find(V);
514 assert(VI != ValueNumbering.end() && "Value not numbered?");
515 return VI->second;
516 }
517
518 /// Removes all value numberings and resets the value table.
clear()519 void clear() {
520 ValueNumbering.clear();
521 ExpressionNumbering.clear();
522 HashNumbering.clear();
523 Recycler.clear(Allocator);
524 nextValueNumber = 1;
525 }
526
527 /// \c Inst uses or touches memory. Return an ID describing the memory state
528 /// at \c Inst such that if getMemoryUseOrder(I1) == getMemoryUseOrder(I2),
529 /// the exact same memory operations happen after I1 and I2.
530 ///
531 /// This is a very hard problem in general, so we use domain-specific
532 /// knowledge that we only ever check for equivalence between blocks sharing a
533 /// single immediate successor that is common, and when determining if I1 ==
534 /// I2 we will have already determined that next(I1) == next(I2). This
535 /// inductive property allows us to simply return the value number of the next
536 /// instruction that defines memory.
getMemoryUseOrder(Instruction * Inst)537 uint32_t getMemoryUseOrder(Instruction *Inst) {
538 auto *BB = Inst->getParent();
539 for (auto I = std::next(Inst->getIterator()), E = BB->end();
540 I != E && !I->isTerminator(); ++I) {
541 if (!isMemoryInst(&*I))
542 continue;
543 if (isa<LoadInst>(&*I))
544 continue;
545 CallInst *CI = dyn_cast<CallInst>(&*I);
546 if (CI && CI->onlyReadsMemory())
547 continue;
548 InvokeInst *II = dyn_cast<InvokeInst>(&*I);
549 if (II && II->onlyReadsMemory())
550 continue;
551 return lookupOrAdd(&*I);
552 }
553 return 0;
554 }
555 };
556
557 //===----------------------------------------------------------------------===//
558
559 class GVNSink {
560 public:
561 GVNSink() = default;
562
run(Function & F)563 bool run(Function &F) {
564 LLVM_DEBUG(dbgs() << "GVNSink: running on function @" << F.getName()
565 << "\n");
566
567 unsigned NumSunk = 0;
568 ReversePostOrderTraversal<Function*> RPOT(&F);
569 for (auto *N : RPOT)
570 NumSunk += sinkBB(N);
571
572 return NumSunk > 0;
573 }
574
575 private:
576 ValueTable VN;
577
isInstructionBlacklisted(Instruction * I)578 bool isInstructionBlacklisted(Instruction *I) {
579 // These instructions may change or break semantics if moved.
580 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
581 I->getType()->isTokenTy())
582 return true;
583 return false;
584 }
585
586 /// The main heuristic function. Analyze the set of instructions pointed to by
587 /// LRI and return a candidate solution if these instructions can be sunk, or
588 /// None otherwise.
589 Optional<SinkingInstructionCandidate> analyzeInstructionForSinking(
590 LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum,
591 ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents);
592
593 /// Create a ModelledPHI for each PHI in BB, adding to PHIs.
analyzeInitialPHIs(BasicBlock * BB,ModelledPHISet & PHIs,SmallPtrSetImpl<Value * > & PHIContents)594 void analyzeInitialPHIs(BasicBlock *BB, ModelledPHISet &PHIs,
595 SmallPtrSetImpl<Value *> &PHIContents) {
596 for (PHINode &PN : BB->phis()) {
597 auto MPHI = ModelledPHI(&PN);
598 PHIs.insert(MPHI);
599 for (auto *V : MPHI.getValues())
600 PHIContents.insert(V);
601 }
602 }
603
604 /// The main instruction sinking driver. Set up state and try and sink
605 /// instructions into BBEnd from its predecessors.
606 unsigned sinkBB(BasicBlock *BBEnd);
607
608 /// Perform the actual mechanics of sinking an instruction from Blocks into
609 /// BBEnd, which is their only successor.
610 void sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, BasicBlock *BBEnd);
611
612 /// Remove PHIs that all have the same incoming value.
foldPointlessPHINodes(BasicBlock * BB)613 void foldPointlessPHINodes(BasicBlock *BB) {
614 auto I = BB->begin();
615 while (PHINode *PN = dyn_cast<PHINode>(I++)) {
616 if (!llvm::all_of(PN->incoming_values(), [&](const Value *V) {
617 return V == PN->getIncomingValue(0);
618 }))
619 continue;
620 if (PN->getIncomingValue(0) != PN)
621 PN->replaceAllUsesWith(PN->getIncomingValue(0));
622 else
623 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
624 PN->eraseFromParent();
625 }
626 }
627 };
628
analyzeInstructionForSinking(LockstepReverseIterator & LRI,unsigned & InstNum,unsigned & MemoryInstNum,ModelledPHISet & NeededPHIs,SmallPtrSetImpl<Value * > & PHIContents)629 Optional<SinkingInstructionCandidate> GVNSink::analyzeInstructionForSinking(
630 LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum,
631 ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents) {
632 auto Insts = *LRI;
633 LLVM_DEBUG(dbgs() << " -- Analyzing instruction set: [\n"; for (auto *I
634 : Insts) {
635 I->dump();
636 } dbgs() << " ]\n";);
637
638 DenseMap<uint32_t, unsigned> VNums;
639 for (auto *I : Insts) {
640 uint32_t N = VN.lookupOrAdd(I);
641 LLVM_DEBUG(dbgs() << " VN=" << Twine::utohexstr(N) << " for" << *I << "\n");
642 if (N == ~0U)
643 return None;
644 VNums[N]++;
645 }
646 unsigned VNumToSink =
647 std::max_element(VNums.begin(), VNums.end(),
648 [](const std::pair<uint32_t, unsigned> &I,
649 const std::pair<uint32_t, unsigned> &J) {
650 return I.second < J.second;
651 })
652 ->first;
653
654 if (VNums[VNumToSink] == 1)
655 // Can't sink anything!
656 return None;
657
658 // Now restrict the number of incoming blocks down to only those with
659 // VNumToSink.
660 auto &ActivePreds = LRI.getActiveBlocks();
661 unsigned InitialActivePredSize = ActivePreds.size();
662 SmallVector<Instruction *, 4> NewInsts;
663 for (auto *I : Insts) {
664 if (VN.lookup(I) != VNumToSink)
665 ActivePreds.remove(I->getParent());
666 else
667 NewInsts.push_back(I);
668 }
669 for (auto *I : NewInsts)
670 if (isInstructionBlacklisted(I))
671 return None;
672
673 // If we've restricted the incoming blocks, restrict all needed PHIs also
674 // to that set.
675 bool RecomputePHIContents = false;
676 if (ActivePreds.size() != InitialActivePredSize) {
677 ModelledPHISet NewNeededPHIs;
678 for (auto P : NeededPHIs) {
679 P.restrictToBlocks(ActivePreds);
680 NewNeededPHIs.insert(P);
681 }
682 NeededPHIs = NewNeededPHIs;
683 LRI.restrictToBlocks(ActivePreds);
684 RecomputePHIContents = true;
685 }
686
687 // The sunk instruction's results.
688 ModelledPHI NewPHI(NewInsts, ActivePreds);
689
690 // Does sinking this instruction render previous PHIs redundant?
691 if (NeededPHIs.find(NewPHI) != NeededPHIs.end()) {
692 NeededPHIs.erase(NewPHI);
693 RecomputePHIContents = true;
694 }
695
696 if (RecomputePHIContents) {
697 // The needed PHIs have changed, so recompute the set of all needed
698 // values.
699 PHIContents.clear();
700 for (auto &PHI : NeededPHIs)
701 PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end());
702 }
703
704 // Is this instruction required by a later PHI that doesn't match this PHI?
705 // if so, we can't sink this instruction.
706 for (auto *V : NewPHI.getValues())
707 if (PHIContents.count(V))
708 // V exists in this PHI, but the whole PHI is different to NewPHI
709 // (else it would have been removed earlier). We cannot continue
710 // because this isn't representable.
711 return None;
712
713 // Which operands need PHIs?
714 // FIXME: If any of these fail, we should partition up the candidates to
715 // try and continue making progress.
716 Instruction *I0 = NewInsts[0];
717 for (unsigned OpNum = 0, E = I0->getNumOperands(); OpNum != E; ++OpNum) {
718 ModelledPHI PHI(NewInsts, OpNum, ActivePreds);
719 if (PHI.areAllIncomingValuesSame())
720 continue;
721 if (!canReplaceOperandWithVariable(I0, OpNum))
722 // We can 't create a PHI from this instruction!
723 return None;
724 if (NeededPHIs.count(PHI))
725 continue;
726 if (!PHI.areAllIncomingValuesSameType())
727 return None;
728 // Don't create indirect calls! The called value is the final operand.
729 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OpNum == E - 1 &&
730 PHI.areAnyIncomingValuesConstant())
731 return None;
732
733 NeededPHIs.reserve(NeededPHIs.size());
734 NeededPHIs.insert(PHI);
735 PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end());
736 }
737
738 if (isMemoryInst(NewInsts[0]))
739 ++MemoryInstNum;
740
741 SinkingInstructionCandidate Cand;
742 Cand.NumInstructions = ++InstNum;
743 Cand.NumMemoryInsts = MemoryInstNum;
744 Cand.NumBlocks = ActivePreds.size();
745 Cand.NumPHIs = NeededPHIs.size();
746 for (auto *C : ActivePreds)
747 Cand.Blocks.push_back(C);
748
749 return Cand;
750 }
751
sinkBB(BasicBlock * BBEnd)752 unsigned GVNSink::sinkBB(BasicBlock *BBEnd) {
753 LLVM_DEBUG(dbgs() << "GVNSink: running on basic block ";
754 BBEnd->printAsOperand(dbgs()); dbgs() << "\n");
755 SmallVector<BasicBlock *, 4> Preds;
756 for (auto *B : predecessors(BBEnd)) {
757 auto *T = B->getTerminator();
758 if (isa<BranchInst>(T) || isa<SwitchInst>(T))
759 Preds.push_back(B);
760 else
761 return 0;
762 }
763 if (Preds.size() < 2)
764 return 0;
765 llvm::sort(Preds.begin(), Preds.end());
766
767 unsigned NumOrigPreds = Preds.size();
768 // We can only sink instructions through unconditional branches.
769 for (auto I = Preds.begin(); I != Preds.end();) {
770 if ((*I)->getTerminator()->getNumSuccessors() != 1)
771 I = Preds.erase(I);
772 else
773 ++I;
774 }
775
776 LockstepReverseIterator LRI(Preds);
777 SmallVector<SinkingInstructionCandidate, 4> Candidates;
778 unsigned InstNum = 0, MemoryInstNum = 0;
779 ModelledPHISet NeededPHIs;
780 SmallPtrSet<Value *, 4> PHIContents;
781 analyzeInitialPHIs(BBEnd, NeededPHIs, PHIContents);
782 unsigned NumOrigPHIs = NeededPHIs.size();
783
784 while (LRI.isValid()) {
785 auto Cand = analyzeInstructionForSinking(LRI, InstNum, MemoryInstNum,
786 NeededPHIs, PHIContents);
787 if (!Cand)
788 break;
789 Cand->calculateCost(NumOrigPHIs, Preds.size());
790 Candidates.emplace_back(*Cand);
791 --LRI;
792 }
793
794 std::stable_sort(
795 Candidates.begin(), Candidates.end(),
796 [](const SinkingInstructionCandidate &A,
797 const SinkingInstructionCandidate &B) { return A > B; });
798 LLVM_DEBUG(dbgs() << " -- Sinking candidates:\n"; for (auto &C
799 : Candidates) dbgs()
800 << " " << C << "\n";);
801
802 // Pick the top candidate, as long it is positive!
803 if (Candidates.empty() || Candidates.front().Cost <= 0)
804 return 0;
805 auto C = Candidates.front();
806
807 LLVM_DEBUG(dbgs() << " -- Sinking: " << C << "\n");
808 BasicBlock *InsertBB = BBEnd;
809 if (C.Blocks.size() < NumOrigPreds) {
810 LLVM_DEBUG(dbgs() << " -- Splitting edge to ";
811 BBEnd->printAsOperand(dbgs()); dbgs() << "\n");
812 InsertBB = SplitBlockPredecessors(BBEnd, C.Blocks, ".gvnsink.split");
813 if (!InsertBB) {
814 LLVM_DEBUG(dbgs() << " -- FAILED to split edge!\n");
815 // Edge couldn't be split.
816 return 0;
817 }
818 }
819
820 for (unsigned I = 0; I < C.NumInstructions; ++I)
821 sinkLastInstruction(C.Blocks, InsertBB);
822
823 return C.NumInstructions;
824 }
825
sinkLastInstruction(ArrayRef<BasicBlock * > Blocks,BasicBlock * BBEnd)826 void GVNSink::sinkLastInstruction(ArrayRef<BasicBlock *> Blocks,
827 BasicBlock *BBEnd) {
828 SmallVector<Instruction *, 4> Insts;
829 for (BasicBlock *BB : Blocks)
830 Insts.push_back(BB->getTerminator()->getPrevNode());
831 Instruction *I0 = Insts.front();
832
833 SmallVector<Value *, 4> NewOperands;
834 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
835 bool NeedPHI = llvm::any_of(Insts, [&I0, O](const Instruction *I) {
836 return I->getOperand(O) != I0->getOperand(O);
837 });
838 if (!NeedPHI) {
839 NewOperands.push_back(I0->getOperand(O));
840 continue;
841 }
842
843 // Create a new PHI in the successor block and populate it.
844 auto *Op = I0->getOperand(O);
845 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
846 auto *PN = PHINode::Create(Op->getType(), Insts.size(),
847 Op->getName() + ".sink", &BBEnd->front());
848 for (auto *I : Insts)
849 PN->addIncoming(I->getOperand(O), I->getParent());
850 NewOperands.push_back(PN);
851 }
852
853 // Arbitrarily use I0 as the new "common" instruction; remap its operands
854 // and move it to the start of the successor block.
855 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
856 I0->getOperandUse(O).set(NewOperands[O]);
857 I0->moveBefore(&*BBEnd->getFirstInsertionPt());
858
859 // Update metadata and IR flags.
860 for (auto *I : Insts)
861 if (I != I0) {
862 combineMetadataForCSE(I0, I);
863 I0->andIRFlags(I);
864 }
865
866 for (auto *I : Insts)
867 if (I != I0)
868 I->replaceAllUsesWith(I0);
869 foldPointlessPHINodes(BBEnd);
870
871 // Finally nuke all instructions apart from the common instruction.
872 for (auto *I : Insts)
873 if (I != I0)
874 I->eraseFromParent();
875
876 NumRemoved += Insts.size() - 1;
877 }
878
879 ////////////////////////////////////////////////////////////////////////////////
880 // Pass machinery / boilerplate
881
882 class GVNSinkLegacyPass : public FunctionPass {
883 public:
884 static char ID;
885
GVNSinkLegacyPass()886 GVNSinkLegacyPass() : FunctionPass(ID) {
887 initializeGVNSinkLegacyPassPass(*PassRegistry::getPassRegistry());
888 }
889
runOnFunction(Function & F)890 bool runOnFunction(Function &F) override {
891 if (skipFunction(F))
892 return false;
893 GVNSink G;
894 return G.run(F);
895 }
896
getAnalysisUsage(AnalysisUsage & AU) const897 void getAnalysisUsage(AnalysisUsage &AU) const override {
898 AU.addPreserved<GlobalsAAWrapperPass>();
899 }
900 };
901
902 } // end anonymous namespace
903
run(Function & F,FunctionAnalysisManager & AM)904 PreservedAnalyses GVNSinkPass::run(Function &F, FunctionAnalysisManager &AM) {
905 GVNSink G;
906 if (!G.run(F))
907 return PreservedAnalyses::all();
908
909 PreservedAnalyses PA;
910 PA.preserve<GlobalsAA>();
911 return PA;
912 }
913
914 char GVNSinkLegacyPass::ID = 0;
915
916 INITIALIZE_PASS_BEGIN(GVNSinkLegacyPass, "gvn-sink",
917 "Early GVN sinking of Expressions", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)918 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
919 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
920 INITIALIZE_PASS_END(GVNSinkLegacyPass, "gvn-sink",
921 "Early GVN sinking of Expressions", false, false)
922
923 FunctionPass *llvm::createGVNSinkPass() { return new GVNSinkLegacyPass(); }
924