1 //===- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops that contain branches on loop-invariant conditions
11 // to multiple loops. For example, it turns the left into the right code:
12 //
13 // for (...) if (lic)
14 // A for (...)
15 // if (lic) A; B; C
16 // B else
17 // C for (...)
18 // A; C
19 //
20 // This can increase the size of the code exponentially (doubling it every time
21 // a loop is unswitched) so we only unswitch if the resultant code will be
22 // smaller than a threshold.
23 //
24 // This pass expects LICM to be run before it to hoist invariant conditions out
25 // of the loop, to make the unswitching opportunity obvious.
26 //
27 //===----------------------------------------------------------------------===//
28
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/Analysis/AssumptionCache.h"
35 #include "llvm/Analysis/CodeMetrics.h"
36 #include "llvm/Analysis/DivergenceAnalysis.h"
37 #include "llvm/Analysis/InstructionSimplify.h"
38 #include "llvm/Analysis/LoopInfo.h"
39 #include "llvm/Analysis/LoopPass.h"
40 #include "llvm/Analysis/ScalarEvolution.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Dominators.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/IRBuilder.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/Intrinsics.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueHandle.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/Scalar.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/Cloning.h"
70 #include "llvm/Transforms/Utils/LoopUtils.h"
71 #include "llvm/Transforms/Utils/ValueMapper.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <map>
75 #include <set>
76 #include <tuple>
77 #include <utility>
78 #include <vector>
79
80 using namespace llvm;
81
82 #define DEBUG_TYPE "loop-unswitch"
83
84 STATISTIC(NumBranches, "Number of branches unswitched");
85 STATISTIC(NumSwitches, "Number of switches unswitched");
86 STATISTIC(NumGuards, "Number of guards unswitched");
87 STATISTIC(NumSelects , "Number of selects unswitched");
88 STATISTIC(NumTrivial , "Number of unswitches that are trivial");
89 STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
90 STATISTIC(TotalInsts, "Total number of instructions analyzed");
91
92 // The specific value of 100 here was chosen based only on intuition and a
93 // few specific examples.
94 static cl::opt<unsigned>
95 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
96 cl::init(100), cl::Hidden);
97
98 namespace {
99
100 class LUAnalysisCache {
101 using UnswitchedValsMap =
102 DenseMap<const SwitchInst *, SmallPtrSet<const Value *, 8>>;
103 using UnswitchedValsIt = UnswitchedValsMap::iterator;
104
105 struct LoopProperties {
106 unsigned CanBeUnswitchedCount;
107 unsigned WasUnswitchedCount;
108 unsigned SizeEstimation;
109 UnswitchedValsMap UnswitchedVals;
110 };
111
112 // Here we use std::map instead of DenseMap, since we need to keep valid
113 // LoopProperties pointer for current loop for better performance.
114 using LoopPropsMap = std::map<const Loop *, LoopProperties>;
115 using LoopPropsMapIt = LoopPropsMap::iterator;
116
117 LoopPropsMap LoopsProperties;
118 UnswitchedValsMap *CurLoopInstructions = nullptr;
119 LoopProperties *CurrentLoopProperties = nullptr;
120
121 // A loop unswitching with an estimated cost above this threshold
122 // is not performed. MaxSize is turned into unswitching quota for
123 // the current loop, and reduced correspondingly, though note that
124 // the quota is returned by releaseMemory() when the loop has been
125 // processed, so that MaxSize will return to its previous
126 // value. So in most cases MaxSize will equal the Threshold flag
127 // when a new loop is processed. An exception to that is that
128 // MaxSize will have a smaller value while processing nested loops
129 // that were introduced due to loop unswitching of an outer loop.
130 //
131 // FIXME: The way that MaxSize works is subtle and depends on the
132 // pass manager processing loops and calling releaseMemory() in a
133 // specific order. It would be good to find a more straightforward
134 // way of doing what MaxSize does.
135 unsigned MaxSize;
136
137 public:
LUAnalysisCache()138 LUAnalysisCache() : MaxSize(Threshold) {}
139
140 // Analyze loop. Check its size, calculate is it possible to unswitch
141 // it. Returns true if we can unswitch this loop.
142 bool countLoop(const Loop *L, const TargetTransformInfo &TTI,
143 AssumptionCache *AC);
144
145 // Clean all data related to given loop.
146 void forgetLoop(const Loop *L);
147
148 // Mark case value as unswitched.
149 // Since SI instruction can be partly unswitched, in order to avoid
150 // extra unswitching in cloned loops keep track all unswitched values.
151 void setUnswitched(const SwitchInst *SI, const Value *V);
152
153 // Check was this case value unswitched before or not.
154 bool isUnswitched(const SwitchInst *SI, const Value *V);
155
156 // Returns true if another unswitching could be done within the cost
157 // threshold.
158 bool CostAllowsUnswitching();
159
160 // Clone all loop-unswitch related loop properties.
161 // Redistribute unswitching quotas.
162 // Note, that new loop data is stored inside the VMap.
163 void cloneData(const Loop *NewLoop, const Loop *OldLoop,
164 const ValueToValueMapTy &VMap);
165 };
166
167 class LoopUnswitch : public LoopPass {
168 LoopInfo *LI; // Loop information
169 LPPassManager *LPM;
170 AssumptionCache *AC;
171
172 // Used to check if second loop needs processing after
173 // RewriteLoopBodyWithConditionConstant rewrites first loop.
174 std::vector<Loop*> LoopProcessWorklist;
175
176 LUAnalysisCache BranchesInfo;
177
178 bool OptimizeForSize;
179 bool redoLoop = false;
180
181 Loop *currentLoop = nullptr;
182 DominatorTree *DT = nullptr;
183 BasicBlock *loopHeader = nullptr;
184 BasicBlock *loopPreheader = nullptr;
185
186 bool SanitizeMemory;
187 LoopSafetyInfo SafetyInfo;
188
189 // LoopBlocks contains all of the basic blocks of the loop, including the
190 // preheader of the loop, the body of the loop, and the exit blocks of the
191 // loop, in that order.
192 std::vector<BasicBlock*> LoopBlocks;
193 // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
194 std::vector<BasicBlock*> NewBlocks;
195
196 bool hasBranchDivergence;
197
198 public:
199 static char ID; // Pass ID, replacement for typeid
200
LoopUnswitch(bool Os=false,bool hasBranchDivergence=false)201 explicit LoopUnswitch(bool Os = false, bool hasBranchDivergence = false)
202 : LoopPass(ID), OptimizeForSize(Os),
203 hasBranchDivergence(hasBranchDivergence) {
204 initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
205 }
206
207 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
208 bool processCurrentLoop();
209 bool isUnreachableDueToPreviousUnswitching(BasicBlock *);
210
211 /// This transformation requires natural loop information & requires that
212 /// loop preheaders be inserted into the CFG.
213 ///
getAnalysisUsage(AnalysisUsage & AU) const214 void getAnalysisUsage(AnalysisUsage &AU) const override {
215 AU.addRequired<AssumptionCacheTracker>();
216 AU.addRequired<TargetTransformInfoWrapperPass>();
217 if (hasBranchDivergence)
218 AU.addRequired<DivergenceAnalysis>();
219 getLoopAnalysisUsage(AU);
220 }
221
222 private:
releaseMemory()223 void releaseMemory() override {
224 BranchesInfo.forgetLoop(currentLoop);
225 }
226
initLoopData()227 void initLoopData() {
228 loopHeader = currentLoop->getHeader();
229 loopPreheader = currentLoop->getLoopPreheader();
230 }
231
232 /// Split all of the edges from inside the loop to their exit blocks.
233 /// Update the appropriate Phi nodes as we do so.
234 void SplitExitEdges(Loop *L,
235 const SmallVectorImpl<BasicBlock *> &ExitBlocks);
236
237 bool TryTrivialLoopUnswitch(bool &Changed);
238
239 bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,
240 TerminatorInst *TI = nullptr);
241 void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
242 BasicBlock *ExitBlock, TerminatorInst *TI);
243 void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L,
244 TerminatorInst *TI);
245
246 void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
247 Constant *Val, bool isEqual);
248
249 void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
250 BasicBlock *TrueDest,
251 BasicBlock *FalseDest,
252 BranchInst *OldBranch,
253 TerminatorInst *TI);
254
255 void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
256
257 /// Given that the Invariant is not equal to Val. Simplify instructions
258 /// in the loop.
259 Value *SimplifyInstructionWithNotEqual(Instruction *Inst, Value *Invariant,
260 Constant *Val);
261 };
262
263 } // end anonymous namespace
264
265 // Analyze loop. Check its size, calculate is it possible to unswitch
266 // it. Returns true if we can unswitch this loop.
countLoop(const Loop * L,const TargetTransformInfo & TTI,AssumptionCache * AC)267 bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI,
268 AssumptionCache *AC) {
269 LoopPropsMapIt PropsIt;
270 bool Inserted;
271 std::tie(PropsIt, Inserted) =
272 LoopsProperties.insert(std::make_pair(L, LoopProperties()));
273
274 LoopProperties &Props = PropsIt->second;
275
276 if (Inserted) {
277 // New loop.
278
279 // Limit the number of instructions to avoid causing significant code
280 // expansion, and the number of basic blocks, to avoid loops with
281 // large numbers of branches which cause loop unswitching to go crazy.
282 // This is a very ad-hoc heuristic.
283
284 SmallPtrSet<const Value *, 32> EphValues;
285 CodeMetrics::collectEphemeralValues(L, AC, EphValues);
286
287 // FIXME: This is overly conservative because it does not take into
288 // consideration code simplification opportunities and code that can
289 // be shared by the resultant unswitched loops.
290 CodeMetrics Metrics;
291 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
292 ++I)
293 Metrics.analyzeBasicBlock(*I, TTI, EphValues);
294
295 Props.SizeEstimation = Metrics.NumInsts;
296 Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
297 Props.WasUnswitchedCount = 0;
298 MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
299
300 if (Metrics.notDuplicatable) {
301 LLVM_DEBUG(dbgs() << "NOT unswitching loop %" << L->getHeader()->getName()
302 << ", contents cannot be "
303 << "duplicated!\n");
304 return false;
305 }
306 }
307
308 // Be careful. This links are good only before new loop addition.
309 CurrentLoopProperties = &Props;
310 CurLoopInstructions = &Props.UnswitchedVals;
311
312 return true;
313 }
314
315 // Clean all data related to given loop.
forgetLoop(const Loop * L)316 void LUAnalysisCache::forgetLoop(const Loop *L) {
317 LoopPropsMapIt LIt = LoopsProperties.find(L);
318
319 if (LIt != LoopsProperties.end()) {
320 LoopProperties &Props = LIt->second;
321 MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) *
322 Props.SizeEstimation;
323 LoopsProperties.erase(LIt);
324 }
325
326 CurrentLoopProperties = nullptr;
327 CurLoopInstructions = nullptr;
328 }
329
330 // Mark case value as unswitched.
331 // Since SI instruction can be partly unswitched, in order to avoid
332 // extra unswitching in cloned loops keep track all unswitched values.
setUnswitched(const SwitchInst * SI,const Value * V)333 void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) {
334 (*CurLoopInstructions)[SI].insert(V);
335 }
336
337 // Check was this case value unswitched before or not.
isUnswitched(const SwitchInst * SI,const Value * V)338 bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) {
339 return (*CurLoopInstructions)[SI].count(V);
340 }
341
CostAllowsUnswitching()342 bool LUAnalysisCache::CostAllowsUnswitching() {
343 return CurrentLoopProperties->CanBeUnswitchedCount > 0;
344 }
345
346 // Clone all loop-unswitch related loop properties.
347 // Redistribute unswitching quotas.
348 // Note, that new loop data is stored inside the VMap.
cloneData(const Loop * NewLoop,const Loop * OldLoop,const ValueToValueMapTy & VMap)349 void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop,
350 const ValueToValueMapTy &VMap) {
351 LoopProperties &NewLoopProps = LoopsProperties[NewLoop];
352 LoopProperties &OldLoopProps = *CurrentLoopProperties;
353 UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals;
354
355 // Reallocate "can-be-unswitched quota"
356
357 --OldLoopProps.CanBeUnswitchedCount;
358 ++OldLoopProps.WasUnswitchedCount;
359 NewLoopProps.WasUnswitchedCount = 0;
360 unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
361 NewLoopProps.CanBeUnswitchedCount = Quota / 2;
362 OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
363
364 NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
365
366 // Clone unswitched values info:
367 // for new loop switches we clone info about values that was
368 // already unswitched and has redundant successors.
369 for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
370 const SwitchInst *OldInst = I->first;
371 Value *NewI = VMap.lookup(OldInst);
372 const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI);
373 assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
374
375 NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
376 }
377 }
378
379 char LoopUnswitch::ID = 0;
380
381 INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
382 false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)383 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
384 INITIALIZE_PASS_DEPENDENCY(LoopPass)
385 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
386 INITIALIZE_PASS_DEPENDENCY(DivergenceAnalysis)
387 INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
388 false, false)
389
390 Pass *llvm::createLoopUnswitchPass(bool Os, bool hasBranchDivergence) {
391 return new LoopUnswitch(Os, hasBranchDivergence);
392 }
393
394 /// Operator chain lattice.
395 enum OperatorChain {
396 OC_OpChainNone, ///< There is no operator.
397 OC_OpChainOr, ///< There are only ORs.
398 OC_OpChainAnd, ///< There are only ANDs.
399 OC_OpChainMixed ///< There are ANDs and ORs.
400 };
401
402 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has
403 /// an invariant piece, return the invariant. Otherwise, return null.
404 //
405 /// NOTE: FindLIVLoopCondition will not return a partial LIV by walking up a
406 /// mixed operator chain, as we can not reliably find a value which will simplify
407 /// the operator chain. If the chain is AND-only or OR-only, we can use 0 or ~0
408 /// to simplify the chain.
409 ///
410 /// NOTE: In case a partial LIV and a mixed operator chain, we may be able to
411 /// simplify the condition itself to a loop variant condition, but at the
412 /// cost of creating an entirely new loop.
FindLIVLoopCondition(Value * Cond,Loop * L,bool & Changed,OperatorChain & ParentChain,DenseMap<Value *,Value * > & Cache)413 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed,
414 OperatorChain &ParentChain,
415 DenseMap<Value *, Value *> &Cache) {
416 auto CacheIt = Cache.find(Cond);
417 if (CacheIt != Cache.end())
418 return CacheIt->second;
419
420 // We started analyze new instruction, increment scanned instructions counter.
421 ++TotalInsts;
422
423 // We can never unswitch on vector conditions.
424 if (Cond->getType()->isVectorTy())
425 return nullptr;
426
427 // Constants should be folded, not unswitched on!
428 if (isa<Constant>(Cond)) return nullptr;
429
430 // TODO: Handle: br (VARIANT|INVARIANT).
431
432 // Hoist simple values out.
433 if (L->makeLoopInvariant(Cond, Changed)) {
434 Cache[Cond] = Cond;
435 return Cond;
436 }
437
438 // Walk up the operator chain to find partial invariant conditions.
439 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
440 if (BO->getOpcode() == Instruction::And ||
441 BO->getOpcode() == Instruction::Or) {
442 // Given the previous operator, compute the current operator chain status.
443 OperatorChain NewChain;
444 switch (ParentChain) {
445 case OC_OpChainNone:
446 NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
447 OC_OpChainOr;
448 break;
449 case OC_OpChainOr:
450 NewChain = BO->getOpcode() == Instruction::Or ? OC_OpChainOr :
451 OC_OpChainMixed;
452 break;
453 case OC_OpChainAnd:
454 NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
455 OC_OpChainMixed;
456 break;
457 case OC_OpChainMixed:
458 NewChain = OC_OpChainMixed;
459 break;
460 }
461
462 // If we reach a Mixed state, we do not want to keep walking up as we can not
463 // reliably find a value that will simplify the chain. With this check, we
464 // will return null on the first sight of mixed chain and the caller will
465 // either backtrack to find partial LIV in other operand or return null.
466 if (NewChain != OC_OpChainMixed) {
467 // Update the current operator chain type before we search up the chain.
468 ParentChain = NewChain;
469 // If either the left or right side is invariant, we can unswitch on this,
470 // which will cause the branch to go away in one loop and the condition to
471 // simplify in the other one.
472 if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed,
473 ParentChain, Cache)) {
474 Cache[Cond] = LHS;
475 return LHS;
476 }
477 // We did not manage to find a partial LIV in operand(0). Backtrack and try
478 // operand(1).
479 ParentChain = NewChain;
480 if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed,
481 ParentChain, Cache)) {
482 Cache[Cond] = RHS;
483 return RHS;
484 }
485 }
486 }
487
488 Cache[Cond] = nullptr;
489 return nullptr;
490 }
491
492 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has
493 /// an invariant piece, return the invariant along with the operator chain type.
494 /// Otherwise, return null.
FindLIVLoopCondition(Value * Cond,Loop * L,bool & Changed)495 static std::pair<Value *, OperatorChain> FindLIVLoopCondition(Value *Cond,
496 Loop *L,
497 bool &Changed) {
498 DenseMap<Value *, Value *> Cache;
499 OperatorChain OpChain = OC_OpChainNone;
500 Value *FCond = FindLIVLoopCondition(Cond, L, Changed, OpChain, Cache);
501
502 // In case we do find a LIV, it can not be obtained by walking up a mixed
503 // operator chain.
504 assert((!FCond || OpChain != OC_OpChainMixed) &&
505 "Do not expect a partial LIV with mixed operator chain");
506 return {FCond, OpChain};
507 }
508
runOnLoop(Loop * L,LPPassManager & LPM_Ref)509 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
510 if (skipLoop(L))
511 return false;
512
513 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
514 *L->getHeader()->getParent());
515 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
516 LPM = &LPM_Ref;
517 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
518 currentLoop = L;
519 Function *F = currentLoop->getHeader()->getParent();
520
521 SanitizeMemory = F->hasFnAttribute(Attribute::SanitizeMemory);
522 if (SanitizeMemory)
523 computeLoopSafetyInfo(&SafetyInfo, L);
524
525 bool Changed = false;
526 do {
527 assert(currentLoop->isLCSSAForm(*DT));
528 redoLoop = false;
529 Changed |= processCurrentLoop();
530 } while(redoLoop);
531
532 return Changed;
533 }
534
535 // Return true if the BasicBlock BB is unreachable from the loop header.
536 // Return false, otherwise.
isUnreachableDueToPreviousUnswitching(BasicBlock * BB)537 bool LoopUnswitch::isUnreachableDueToPreviousUnswitching(BasicBlock *BB) {
538 auto *Node = DT->getNode(BB)->getIDom();
539 BasicBlock *DomBB = Node->getBlock();
540 while (currentLoop->contains(DomBB)) {
541 BranchInst *BInst = dyn_cast<BranchInst>(DomBB->getTerminator());
542
543 Node = DT->getNode(DomBB)->getIDom();
544 DomBB = Node->getBlock();
545
546 if (!BInst || !BInst->isConditional())
547 continue;
548
549 Value *Cond = BInst->getCondition();
550 if (!isa<ConstantInt>(Cond))
551 continue;
552
553 BasicBlock *UnreachableSucc =
554 Cond == ConstantInt::getTrue(Cond->getContext())
555 ? BInst->getSuccessor(1)
556 : BInst->getSuccessor(0);
557
558 if (DT->dominates(UnreachableSucc, BB))
559 return true;
560 }
561 return false;
562 }
563
564 /// FIXME: Remove this workaround when freeze related patches are done.
565 /// LoopUnswitch and Equality propagation in GVN have discrepancy about
566 /// whether branch on undef/poison has undefine behavior. Here it is to
567 /// rule out some common cases that we found such discrepancy already
568 /// causing problems. Detail could be found in PR31652. Note if the
569 /// func returns true, it is unsafe. But if it is false, it doesn't mean
570 /// it is necessarily safe.
EqualityPropUnSafe(Value & LoopCond)571 static bool EqualityPropUnSafe(Value &LoopCond) {
572 ICmpInst *CI = dyn_cast<ICmpInst>(&LoopCond);
573 if (!CI || !CI->isEquality())
574 return false;
575
576 Value *LHS = CI->getOperand(0);
577 Value *RHS = CI->getOperand(1);
578 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
579 return true;
580
581 auto hasUndefInPHI = [](PHINode &PN) {
582 for (Value *Opd : PN.incoming_values()) {
583 if (isa<UndefValue>(Opd))
584 return true;
585 }
586 return false;
587 };
588 PHINode *LPHI = dyn_cast<PHINode>(LHS);
589 PHINode *RPHI = dyn_cast<PHINode>(RHS);
590 if ((LPHI && hasUndefInPHI(*LPHI)) || (RPHI && hasUndefInPHI(*RPHI)))
591 return true;
592
593 auto hasUndefInSelect = [](SelectInst &SI) {
594 if (isa<UndefValue>(SI.getTrueValue()) ||
595 isa<UndefValue>(SI.getFalseValue()))
596 return true;
597 return false;
598 };
599 SelectInst *LSI = dyn_cast<SelectInst>(LHS);
600 SelectInst *RSI = dyn_cast<SelectInst>(RHS);
601 if ((LSI && hasUndefInSelect(*LSI)) || (RSI && hasUndefInSelect(*RSI)))
602 return true;
603 return false;
604 }
605
606 /// Do actual work and unswitch loop if possible and profitable.
processCurrentLoop()607 bool LoopUnswitch::processCurrentLoop() {
608 bool Changed = false;
609
610 initLoopData();
611
612 // If LoopSimplify was unable to form a preheader, don't do any unswitching.
613 if (!loopPreheader)
614 return false;
615
616 // Loops with indirectbr cannot be cloned.
617 if (!currentLoop->isSafeToClone())
618 return false;
619
620 // Without dedicated exits, splitting the exit edge may fail.
621 if (!currentLoop->hasDedicatedExits())
622 return false;
623
624 LLVMContext &Context = loopHeader->getContext();
625
626 // Analyze loop cost, and stop unswitching if loop content can not be duplicated.
627 if (!BranchesInfo.countLoop(
628 currentLoop, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
629 *currentLoop->getHeader()->getParent()),
630 AC))
631 return false;
632
633 // Try trivial unswitch first before loop over other basic blocks in the loop.
634 if (TryTrivialLoopUnswitch(Changed)) {
635 return true;
636 }
637
638 // Do not do non-trivial unswitch while optimizing for size.
639 // FIXME: Use Function::optForSize().
640 if (OptimizeForSize ||
641 loopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize))
642 return false;
643
644 // Run through the instructions in the loop, keeping track of three things:
645 //
646 // - That we do not unswitch loops containing convergent operations, as we
647 // might be making them control dependent on the unswitch value when they
648 // were not before.
649 // FIXME: This could be refined to only bail if the convergent operation is
650 // not already control-dependent on the unswitch value.
651 //
652 // - That basic blocks in the loop contain invokes whose predecessor edges we
653 // cannot split.
654 //
655 // - The set of guard intrinsics encountered (these are non terminator
656 // instructions that are also profitable to be unswitched).
657
658 SmallVector<IntrinsicInst *, 4> Guards;
659
660 for (const auto BB : currentLoop->blocks()) {
661 for (auto &I : *BB) {
662 auto CS = CallSite(&I);
663 if (!CS) continue;
664 if (CS.hasFnAttr(Attribute::Convergent))
665 return false;
666 if (auto *II = dyn_cast<InvokeInst>(&I))
667 if (!II->getUnwindDest()->canSplitPredecessors())
668 return false;
669 if (auto *II = dyn_cast<IntrinsicInst>(&I))
670 if (II->getIntrinsicID() == Intrinsic::experimental_guard)
671 Guards.push_back(II);
672 }
673 }
674
675 for (IntrinsicInst *Guard : Guards) {
676 Value *LoopCond =
677 FindLIVLoopCondition(Guard->getOperand(0), currentLoop, Changed).first;
678 if (LoopCond &&
679 UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) {
680 // NB! Unswitching (if successful) could have erased some of the
681 // instructions in Guards leaving dangling pointers there. This is fine
682 // because we're returning now, and won't look at Guards again.
683 ++NumGuards;
684 return true;
685 }
686 }
687
688 // Loop over all of the basic blocks in the loop. If we find an interior
689 // block that is branching on a loop-invariant condition, we can unswitch this
690 // loop.
691 for (Loop::block_iterator I = currentLoop->block_begin(),
692 E = currentLoop->block_end(); I != E; ++I) {
693 TerminatorInst *TI = (*I)->getTerminator();
694
695 // Unswitching on a potentially uninitialized predicate is not
696 // MSan-friendly. Limit this to the cases when the original predicate is
697 // guaranteed to execute, to avoid creating a use-of-uninitialized-value
698 // in the code that did not have one.
699 // This is a workaround for the discrepancy between LLVM IR and MSan
700 // semantics. See PR28054 for more details.
701 if (SanitizeMemory &&
702 !isGuaranteedToExecute(*TI, DT, currentLoop, &SafetyInfo))
703 continue;
704
705 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
706 // Some branches may be rendered unreachable because of previous
707 // unswitching.
708 // Unswitch only those branches that are reachable.
709 if (isUnreachableDueToPreviousUnswitching(*I))
710 continue;
711
712 // If this isn't branching on an invariant condition, we can't unswitch
713 // it.
714 if (BI->isConditional()) {
715 // See if this, or some part of it, is loop invariant. If so, we can
716 // unswitch on it if we desire.
717 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
718 currentLoop, Changed).first;
719 if (LoopCond && !EqualityPropUnSafe(*LoopCond) &&
720 UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) {
721 ++NumBranches;
722 return true;
723 }
724 }
725 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
726 Value *SC = SI->getCondition();
727 Value *LoopCond;
728 OperatorChain OpChain;
729 std::tie(LoopCond, OpChain) =
730 FindLIVLoopCondition(SC, currentLoop, Changed);
731
732 unsigned NumCases = SI->getNumCases();
733 if (LoopCond && NumCases) {
734 // Find a value to unswitch on:
735 // FIXME: this should chose the most expensive case!
736 // FIXME: scan for a case with a non-critical edge?
737 Constant *UnswitchVal = nullptr;
738 // Find a case value such that at least one case value is unswitched
739 // out.
740 if (OpChain == OC_OpChainAnd) {
741 // If the chain only has ANDs and the switch has a case value of 0.
742 // Dropping in a 0 to the chain will unswitch out the 0-casevalue.
743 auto *AllZero = cast<ConstantInt>(Constant::getNullValue(SC->getType()));
744 if (BranchesInfo.isUnswitched(SI, AllZero))
745 continue;
746 // We are unswitching 0 out.
747 UnswitchVal = AllZero;
748 } else if (OpChain == OC_OpChainOr) {
749 // If the chain only has ORs and the switch has a case value of ~0.
750 // Dropping in a ~0 to the chain will unswitch out the ~0-casevalue.
751 auto *AllOne = cast<ConstantInt>(Constant::getAllOnesValue(SC->getType()));
752 if (BranchesInfo.isUnswitched(SI, AllOne))
753 continue;
754 // We are unswitching ~0 out.
755 UnswitchVal = AllOne;
756 } else {
757 assert(OpChain == OC_OpChainNone &&
758 "Expect to unswitch on trivial chain");
759 // Do not process same value again and again.
760 // At this point we have some cases already unswitched and
761 // some not yet unswitched. Let's find the first not yet unswitched one.
762 for (auto Case : SI->cases()) {
763 Constant *UnswitchValCandidate = Case.getCaseValue();
764 if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
765 UnswitchVal = UnswitchValCandidate;
766 break;
767 }
768 }
769 }
770
771 if (!UnswitchVal)
772 continue;
773
774 if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
775 ++NumSwitches;
776 // In case of a full LIV, UnswitchVal is the value we unswitched out.
777 // In case of a partial LIV, we only unswitch when its an AND-chain
778 // or OR-chain. In both cases switch input value simplifies to
779 // UnswitchVal.
780 BranchesInfo.setUnswitched(SI, UnswitchVal);
781 return true;
782 }
783 }
784 }
785
786 // Scan the instructions to check for unswitchable values.
787 for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
788 BBI != E; ++BBI)
789 if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
790 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
791 currentLoop, Changed).first;
792 if (LoopCond && UnswitchIfProfitable(LoopCond,
793 ConstantInt::getTrue(Context))) {
794 ++NumSelects;
795 return true;
796 }
797 }
798 }
799 return Changed;
800 }
801
802 /// Check to see if all paths from BB exit the loop with no side effects
803 /// (including infinite loops).
804 ///
805 /// If true, we return true and set ExitBB to the block we
806 /// exit through.
807 ///
isTrivialLoopExitBlockHelper(Loop * L,BasicBlock * BB,BasicBlock * & ExitBB,std::set<BasicBlock * > & Visited)808 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
809 BasicBlock *&ExitBB,
810 std::set<BasicBlock*> &Visited) {
811 if (!Visited.insert(BB).second) {
812 // Already visited. Without more analysis, this could indicate an infinite
813 // loop.
814 return false;
815 }
816 if (!L->contains(BB)) {
817 // Otherwise, this is a loop exit, this is fine so long as this is the
818 // first exit.
819 if (ExitBB) return false;
820 ExitBB = BB;
821 return true;
822 }
823
824 // Otherwise, this is an unvisited intra-loop node. Check all successors.
825 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
826 // Check to see if the successor is a trivial loop exit.
827 if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
828 return false;
829 }
830
831 // Okay, everything after this looks good, check to make sure that this block
832 // doesn't include any side effects.
833 for (Instruction &I : *BB)
834 if (I.mayHaveSideEffects())
835 return false;
836
837 return true;
838 }
839
840 /// Return true if the specified block unconditionally leads to an exit from
841 /// the specified loop, and has no side-effects in the process. If so, return
842 /// the block that is exited to, otherwise return null.
isTrivialLoopExitBlock(Loop * L,BasicBlock * BB)843 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
844 std::set<BasicBlock*> Visited;
845 Visited.insert(L->getHeader()); // Branches to header make infinite loops.
846 BasicBlock *ExitBB = nullptr;
847 if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
848 return ExitBB;
849 return nullptr;
850 }
851
852 /// We have found that we can unswitch currentLoop when LoopCond == Val to
853 /// simplify the loop. If we decide that this is profitable,
854 /// unswitch the loop, reprocess the pieces, then return true.
UnswitchIfProfitable(Value * LoopCond,Constant * Val,TerminatorInst * TI)855 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,
856 TerminatorInst *TI) {
857 // Check to see if it would be profitable to unswitch current loop.
858 if (!BranchesInfo.CostAllowsUnswitching()) {
859 LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
860 << currentLoop->getHeader()->getName()
861 << " at non-trivial condition '" << *Val
862 << "' == " << *LoopCond << "\n"
863 << ". Cost too high.\n");
864 return false;
865 }
866 if (hasBranchDivergence &&
867 getAnalysis<DivergenceAnalysis>().isDivergent(LoopCond)) {
868 LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
869 << currentLoop->getHeader()->getName()
870 << " at non-trivial condition '" << *Val
871 << "' == " << *LoopCond << "\n"
872 << ". Condition is divergent.\n");
873 return false;
874 }
875
876 UnswitchNontrivialCondition(LoopCond, Val, currentLoop, TI);
877 return true;
878 }
879
880 /// Recursively clone the specified loop and all of its children,
881 /// mapping the blocks with the specified map.
CloneLoop(Loop * L,Loop * PL,ValueToValueMapTy & VM,LoopInfo * LI,LPPassManager * LPM)882 static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
883 LoopInfo *LI, LPPassManager *LPM) {
884 Loop &New = *LI->AllocateLoop();
885 if (PL)
886 PL->addChildLoop(&New);
887 else
888 LI->addTopLevelLoop(&New);
889 LPM->addLoop(New);
890
891 // Add all of the blocks in L to the new loop.
892 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
893 I != E; ++I)
894 if (LI->getLoopFor(*I) == L)
895 New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
896
897 // Add all of the subloops to the new loop.
898 for (Loop *I : *L)
899 CloneLoop(I, &New, VM, LI, LPM);
900
901 return &New;
902 }
903
904 /// Emit a conditional branch on two values if LIC == Val, branch to TrueDst,
905 /// otherwise branch to FalseDest. Insert the code immediately before OldBranch
906 /// and remove (but not erase!) it from the function.
EmitPreheaderBranchOnCondition(Value * LIC,Constant * Val,BasicBlock * TrueDest,BasicBlock * FalseDest,BranchInst * OldBranch,TerminatorInst * TI)907 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
908 BasicBlock *TrueDest,
909 BasicBlock *FalseDest,
910 BranchInst *OldBranch,
911 TerminatorInst *TI) {
912 assert(OldBranch->isUnconditional() && "Preheader is not split correctly");
913 assert(TrueDest != FalseDest && "Branch targets should be different");
914 // Insert a conditional branch on LIC to the two preheaders. The original
915 // code is the true version and the new code is the false version.
916 Value *BranchVal = LIC;
917 bool Swapped = false;
918 if (!isa<ConstantInt>(Val) ||
919 Val->getType() != Type::getInt1Ty(LIC->getContext()))
920 BranchVal = new ICmpInst(OldBranch, ICmpInst::ICMP_EQ, LIC, Val);
921 else if (Val != ConstantInt::getTrue(Val->getContext())) {
922 // We want to enter the new loop when the condition is true.
923 std::swap(TrueDest, FalseDest);
924 Swapped = true;
925 }
926
927 // Old branch will be removed, so save its parent and successor to update the
928 // DomTree.
929 auto *OldBranchSucc = OldBranch->getSuccessor(0);
930 auto *OldBranchParent = OldBranch->getParent();
931
932 // Insert the new branch.
933 BranchInst *BI =
934 IRBuilder<>(OldBranch).CreateCondBr(BranchVal, TrueDest, FalseDest, TI);
935 if (Swapped)
936 BI->swapProfMetadata();
937
938 // Remove the old branch so there is only one branch at the end. This is
939 // needed to perform DomTree's internal DFS walk on the function's CFG.
940 OldBranch->removeFromParent();
941
942 // Inform the DT about the new branch.
943 if (DT) {
944 // First, add both successors.
945 SmallVector<DominatorTree::UpdateType, 3> Updates;
946 if (TrueDest != OldBranchSucc)
947 Updates.push_back({DominatorTree::Insert, OldBranchParent, TrueDest});
948 if (FalseDest != OldBranchSucc)
949 Updates.push_back({DominatorTree::Insert, OldBranchParent, FalseDest});
950 // If both of the new successors are different from the old one, inform the
951 // DT that the edge was deleted.
952 if (OldBranchSucc != TrueDest && OldBranchSucc != FalseDest) {
953 Updates.push_back({DominatorTree::Delete, OldBranchParent, OldBranchSucc});
954 }
955
956 DT->applyUpdates(Updates);
957 }
958
959 // If either edge is critical, split it. This helps preserve LoopSimplify
960 // form for enclosing loops.
961 auto Options = CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA();
962 SplitCriticalEdge(BI, 0, Options);
963 SplitCriticalEdge(BI, 1, Options);
964 }
965
966 /// Given a loop that has a trivial unswitchable condition in it (a cond branch
967 /// from its header block to its latch block, where the path through the loop
968 /// that doesn't execute its body has no side-effects), unswitch it. This
969 /// doesn't involve any code duplication, just moving the conditional branch
970 /// outside of the loop and updating loop info.
UnswitchTrivialCondition(Loop * L,Value * Cond,Constant * Val,BasicBlock * ExitBlock,TerminatorInst * TI)971 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
972 BasicBlock *ExitBlock,
973 TerminatorInst *TI) {
974 LLVM_DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
975 << loopHeader->getName() << " [" << L->getBlocks().size()
976 << " blocks] in Function "
977 << L->getHeader()->getParent()->getName()
978 << " on cond: " << *Val << " == " << *Cond << "\n");
979 // We are going to make essential changes to CFG. This may invalidate cached
980 // information for L or one of its parent loops in SCEV.
981 if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
982 SEWP->getSE().forgetTopmostLoop(L);
983
984 // First step, split the preheader, so that we know that there is a safe place
985 // to insert the conditional branch. We will change loopPreheader to have a
986 // conditional branch on Cond.
987 BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, DT, LI);
988
989 // Now that we have a place to insert the conditional branch, create a place
990 // to branch to: this is the exit block out of the loop that we should
991 // short-circuit to.
992
993 // Split this block now, so that the loop maintains its exit block, and so
994 // that the jump from the preheader can execute the contents of the exit block
995 // without actually branching to it (the exit block should be dominated by the
996 // loop header, not the preheader).
997 assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
998 BasicBlock *NewExit = SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI);
999
1000 // Okay, now we have a position to branch from and a position to branch to,
1001 // insert the new conditional branch.
1002 auto *OldBranch = dyn_cast<BranchInst>(loopPreheader->getTerminator());
1003 assert(OldBranch && "Failed to split the preheader");
1004 EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, OldBranch, TI);
1005 LPM->deleteSimpleAnalysisValue(OldBranch, L);
1006
1007 // EmitPreheaderBranchOnCondition removed the OldBranch from the function.
1008 // Delete it, as it is no longer needed.
1009 delete OldBranch;
1010
1011 // We need to reprocess this loop, it could be unswitched again.
1012 redoLoop = true;
1013
1014 // Now that we know that the loop is never entered when this condition is a
1015 // particular value, rewrite the loop with this info. We know that this will
1016 // at least eliminate the old branch.
1017 RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
1018 ++NumTrivial;
1019 }
1020
1021 /// Check if the first non-constant condition starting from the loop header is
1022 /// a trivial unswitch condition: that is, a condition controls whether or not
1023 /// the loop does anything at all. If it is a trivial condition, unswitching
1024 /// produces no code duplications (equivalently, it produces a simpler loop and
1025 /// a new empty loop, which gets deleted). Therefore always unswitch trivial
1026 /// condition.
TryTrivialLoopUnswitch(bool & Changed)1027 bool LoopUnswitch::TryTrivialLoopUnswitch(bool &Changed) {
1028 BasicBlock *CurrentBB = currentLoop->getHeader();
1029 TerminatorInst *CurrentTerm = CurrentBB->getTerminator();
1030 LLVMContext &Context = CurrentBB->getContext();
1031
1032 // If loop header has only one reachable successor (currently via an
1033 // unconditional branch or constant foldable conditional branch, but
1034 // should also consider adding constant foldable switch instruction in
1035 // future), we should keep looking for trivial condition candidates in
1036 // the successor as well. An alternative is to constant fold conditions
1037 // and merge successors into loop header (then we only need to check header's
1038 // terminator). The reason for not doing this in LoopUnswitch pass is that
1039 // it could potentially break LoopPassManager's invariants. Folding dead
1040 // branches could either eliminate the current loop or make other loops
1041 // unreachable. LCSSA form might also not be preserved after deleting
1042 // branches. The following code keeps traversing loop header's successors
1043 // until it finds the trivial condition candidate (condition that is not a
1044 // constant). Since unswitching generates branches with constant conditions,
1045 // this scenario could be very common in practice.
1046 SmallPtrSet<BasicBlock*, 8> Visited;
1047
1048 while (true) {
1049 // If we exit loop or reach a previous visited block, then
1050 // we can not reach any trivial condition candidates (unfoldable
1051 // branch instructions or switch instructions) and no unswitch
1052 // can happen. Exit and return false.
1053 if (!currentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second)
1054 return false;
1055
1056 // Check if this loop will execute any side-effecting instructions (e.g.
1057 // stores, calls, volatile loads) in the part of the loop that the code
1058 // *would* execute. Check the header first.
1059 for (Instruction &I : *CurrentBB)
1060 if (I.mayHaveSideEffects())
1061 return false;
1062
1063 if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
1064 if (BI->isUnconditional()) {
1065 CurrentBB = BI->getSuccessor(0);
1066 } else if (BI->getCondition() == ConstantInt::getTrue(Context)) {
1067 CurrentBB = BI->getSuccessor(0);
1068 } else if (BI->getCondition() == ConstantInt::getFalse(Context)) {
1069 CurrentBB = BI->getSuccessor(1);
1070 } else {
1071 // Found a trivial condition candidate: non-foldable conditional branch.
1072 break;
1073 }
1074 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
1075 // At this point, any constant-foldable instructions should have probably
1076 // been folded.
1077 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
1078 if (!Cond)
1079 break;
1080 // Find the target block we are definitely going to.
1081 CurrentBB = SI->findCaseValue(Cond)->getCaseSuccessor();
1082 } else {
1083 // We do not understand these terminator instructions.
1084 break;
1085 }
1086
1087 CurrentTerm = CurrentBB->getTerminator();
1088 }
1089
1090 // CondVal is the condition that controls the trivial condition.
1091 // LoopExitBB is the BasicBlock that loop exits when meets trivial condition.
1092 Constant *CondVal = nullptr;
1093 BasicBlock *LoopExitBB = nullptr;
1094
1095 if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
1096 // If this isn't branching on an invariant condition, we can't unswitch it.
1097 if (!BI->isConditional())
1098 return false;
1099
1100 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
1101 currentLoop, Changed).first;
1102
1103 // Unswitch only if the trivial condition itself is an LIV (not
1104 // partial LIV which could occur in and/or)
1105 if (!LoopCond || LoopCond != BI->getCondition())
1106 return false;
1107
1108 // Check to see if a successor of the branch is guaranteed to
1109 // exit through a unique exit block without having any
1110 // side-effects. If so, determine the value of Cond that causes
1111 // it to do this.
1112 if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
1113 BI->getSuccessor(0)))) {
1114 CondVal = ConstantInt::getTrue(Context);
1115 } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
1116 BI->getSuccessor(1)))) {
1117 CondVal = ConstantInt::getFalse(Context);
1118 }
1119
1120 // If we didn't find a single unique LoopExit block, or if the loop exit
1121 // block contains phi nodes, this isn't trivial.
1122 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
1123 return false; // Can't handle this.
1124
1125 if (EqualityPropUnSafe(*LoopCond))
1126 return false;
1127
1128 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
1129 CurrentTerm);
1130 ++NumBranches;
1131 return true;
1132 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
1133 // If this isn't switching on an invariant condition, we can't unswitch it.
1134 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
1135 currentLoop, Changed).first;
1136
1137 // Unswitch only if the trivial condition itself is an LIV (not
1138 // partial LIV which could occur in and/or)
1139 if (!LoopCond || LoopCond != SI->getCondition())
1140 return false;
1141
1142 // Check to see if a successor of the switch is guaranteed to go to the
1143 // latch block or exit through a one exit block without having any
1144 // side-effects. If so, determine the value of Cond that causes it to do
1145 // this.
1146 // Note that we can't trivially unswitch on the default case or
1147 // on already unswitched cases.
1148 for (auto Case : SI->cases()) {
1149 BasicBlock *LoopExitCandidate;
1150 if ((LoopExitCandidate =
1151 isTrivialLoopExitBlock(currentLoop, Case.getCaseSuccessor()))) {
1152 // Okay, we found a trivial case, remember the value that is trivial.
1153 ConstantInt *CaseVal = Case.getCaseValue();
1154
1155 // Check that it was not unswitched before, since already unswitched
1156 // trivial vals are looks trivial too.
1157 if (BranchesInfo.isUnswitched(SI, CaseVal))
1158 continue;
1159 LoopExitBB = LoopExitCandidate;
1160 CondVal = CaseVal;
1161 break;
1162 }
1163 }
1164
1165 // If we didn't find a single unique LoopExit block, or if the loop exit
1166 // block contains phi nodes, this isn't trivial.
1167 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
1168 return false; // Can't handle this.
1169
1170 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
1171 nullptr);
1172
1173 // We are only unswitching full LIV.
1174 BranchesInfo.setUnswitched(SI, CondVal);
1175 ++NumSwitches;
1176 return true;
1177 }
1178 return false;
1179 }
1180
1181 /// Split all of the edges from inside the loop to their exit blocks.
1182 /// Update the appropriate Phi nodes as we do so.
SplitExitEdges(Loop * L,const SmallVectorImpl<BasicBlock * > & ExitBlocks)1183 void LoopUnswitch::SplitExitEdges(Loop *L,
1184 const SmallVectorImpl<BasicBlock *> &ExitBlocks){
1185
1186 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
1187 BasicBlock *ExitBlock = ExitBlocks[i];
1188 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
1189 pred_end(ExitBlock));
1190
1191 // Although SplitBlockPredecessors doesn't preserve loop-simplify in
1192 // general, if we call it on all predecessors of all exits then it does.
1193 SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI,
1194 /*PreserveLCSSA*/ true);
1195 }
1196 }
1197
1198 /// We determined that the loop is profitable to unswitch when LIC equal Val.
1199 /// Split it into loop versions and test the condition outside of either loop.
1200 /// Return the loops created as Out1/Out2.
UnswitchNontrivialCondition(Value * LIC,Constant * Val,Loop * L,TerminatorInst * TI)1201 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
1202 Loop *L, TerminatorInst *TI) {
1203 Function *F = loopHeader->getParent();
1204 LLVM_DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
1205 << loopHeader->getName() << " [" << L->getBlocks().size()
1206 << " blocks] in Function " << F->getName() << " when '"
1207 << *Val << "' == " << *LIC << "\n");
1208
1209 // We are going to make essential changes to CFG. This may invalidate cached
1210 // information for L or one of its parent loops in SCEV.
1211 if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
1212 SEWP->getSE().forgetTopmostLoop(L);
1213
1214 LoopBlocks.clear();
1215 NewBlocks.clear();
1216
1217 // First step, split the preheader and exit blocks, and add these blocks to
1218 // the LoopBlocks list.
1219 BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, DT, LI);
1220 LoopBlocks.push_back(NewPreheader);
1221
1222 // We want the loop to come after the preheader, but before the exit blocks.
1223 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
1224
1225 SmallVector<BasicBlock*, 8> ExitBlocks;
1226 L->getUniqueExitBlocks(ExitBlocks);
1227
1228 // Split all of the edges from inside the loop to their exit blocks. Update
1229 // the appropriate Phi nodes as we do so.
1230 SplitExitEdges(L, ExitBlocks);
1231
1232 // The exit blocks may have been changed due to edge splitting, recompute.
1233 ExitBlocks.clear();
1234 L->getUniqueExitBlocks(ExitBlocks);
1235
1236 // Add exit blocks to the loop blocks.
1237 LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
1238
1239 // Next step, clone all of the basic blocks that make up the loop (including
1240 // the loop preheader and exit blocks), keeping track of the mapping between
1241 // the instructions and blocks.
1242 NewBlocks.reserve(LoopBlocks.size());
1243 ValueToValueMapTy VMap;
1244 for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
1245 BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
1246
1247 NewBlocks.push_back(NewBB);
1248 VMap[LoopBlocks[i]] = NewBB; // Keep the BB mapping.
1249 LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
1250 }
1251
1252 // Splice the newly inserted blocks into the function right before the
1253 // original preheader.
1254 F->getBasicBlockList().splice(NewPreheader->getIterator(),
1255 F->getBasicBlockList(),
1256 NewBlocks[0]->getIterator(), F->end());
1257
1258 // Now we create the new Loop object for the versioned loop.
1259 Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
1260
1261 // Recalculate unswitching quota, inherit simplified switches info for NewBB,
1262 // Probably clone more loop-unswitch related loop properties.
1263 BranchesInfo.cloneData(NewLoop, L, VMap);
1264
1265 Loop *ParentLoop = L->getParentLoop();
1266 if (ParentLoop) {
1267 // Make sure to add the cloned preheader and exit blocks to the parent loop
1268 // as well.
1269 ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
1270 }
1271
1272 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
1273 BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
1274 // The new exit block should be in the same loop as the old one.
1275 if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
1276 ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
1277
1278 assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
1279 "Exit block should have been split to have one successor!");
1280 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
1281
1282 // If the successor of the exit block had PHI nodes, add an entry for
1283 // NewExit.
1284 for (PHINode &PN : ExitSucc->phis()) {
1285 Value *V = PN.getIncomingValueForBlock(ExitBlocks[i]);
1286 ValueToValueMapTy::iterator It = VMap.find(V);
1287 if (It != VMap.end()) V = It->second;
1288 PN.addIncoming(V, NewExit);
1289 }
1290
1291 if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
1292 PHINode *PN = PHINode::Create(LPad->getType(), 0, "",
1293 &*ExitSucc->getFirstInsertionPt());
1294
1295 for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
1296 I != E; ++I) {
1297 BasicBlock *BB = *I;
1298 LandingPadInst *LPI = BB->getLandingPadInst();
1299 LPI->replaceAllUsesWith(PN);
1300 PN->addIncoming(LPI, BB);
1301 }
1302 }
1303 }
1304
1305 // Rewrite the code to refer to itself.
1306 for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
1307 for (Instruction &I : *NewBlocks[i]) {
1308 RemapInstruction(&I, VMap,
1309 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1310 if (auto *II = dyn_cast<IntrinsicInst>(&I))
1311 if (II->getIntrinsicID() == Intrinsic::assume)
1312 AC->registerAssumption(II);
1313 }
1314 }
1315
1316 // Rewrite the original preheader to select between versions of the loop.
1317 BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
1318 assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
1319 "Preheader splitting did not work correctly!");
1320
1321 // Emit the new branch that selects between the two versions of this loop.
1322 EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR,
1323 TI);
1324 LPM->deleteSimpleAnalysisValue(OldBR, L);
1325
1326 // The OldBr was replaced by a new one and removed (but not erased) by
1327 // EmitPreheaderBranchOnCondition. It is no longer needed, so delete it.
1328 delete OldBR;
1329
1330 LoopProcessWorklist.push_back(NewLoop);
1331 redoLoop = true;
1332
1333 // Keep a WeakTrackingVH holding onto LIC. If the first call to
1334 // RewriteLoopBody
1335 // deletes the instruction (for example by simplifying a PHI that feeds into
1336 // the condition that we're unswitching on), we don't rewrite the second
1337 // iteration.
1338 WeakTrackingVH LICHandle(LIC);
1339
1340 // Now we rewrite the original code to know that the condition is true and the
1341 // new code to know that the condition is false.
1342 RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
1343
1344 // It's possible that simplifying one loop could cause the other to be
1345 // changed to another value or a constant. If its a constant, don't simplify
1346 // it.
1347 if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
1348 LICHandle && !isa<Constant>(LICHandle))
1349 RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
1350 }
1351
1352 /// Remove all instances of I from the worklist vector specified.
RemoveFromWorklist(Instruction * I,std::vector<Instruction * > & Worklist)1353 static void RemoveFromWorklist(Instruction *I,
1354 std::vector<Instruction*> &Worklist) {
1355
1356 Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
1357 Worklist.end());
1358 }
1359
1360 /// When we find that I really equals V, remove I from the
1361 /// program, replacing all uses with V and update the worklist.
ReplaceUsesOfWith(Instruction * I,Value * V,std::vector<Instruction * > & Worklist,Loop * L,LPPassManager * LPM)1362 static void ReplaceUsesOfWith(Instruction *I, Value *V,
1363 std::vector<Instruction*> &Worklist,
1364 Loop *L, LPPassManager *LPM) {
1365 LLVM_DEBUG(dbgs() << "Replace with '" << *V << "': " << *I << "\n");
1366
1367 // Add uses to the worklist, which may be dead now.
1368 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1369 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1370 Worklist.push_back(Use);
1371
1372 // Add users to the worklist which may be simplified now.
1373 for (User *U : I->users())
1374 Worklist.push_back(cast<Instruction>(U));
1375 LPM->deleteSimpleAnalysisValue(I, L);
1376 RemoveFromWorklist(I, Worklist);
1377 I->replaceAllUsesWith(V);
1378 if (!I->mayHaveSideEffects())
1379 I->eraseFromParent();
1380 ++NumSimplify;
1381 }
1382
1383 /// We know either that the value LIC has the value specified by Val in the
1384 /// specified loop, or we know it does NOT have that value.
1385 /// Rewrite any uses of LIC or of properties correlated to it.
RewriteLoopBodyWithConditionConstant(Loop * L,Value * LIC,Constant * Val,bool IsEqual)1386 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
1387 Constant *Val,
1388 bool IsEqual) {
1389 assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
1390
1391 // FIXME: Support correlated properties, like:
1392 // for (...)
1393 // if (li1 < li2)
1394 // ...
1395 // if (li1 > li2)
1396 // ...
1397
1398 // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches,
1399 // selects, switches.
1400 std::vector<Instruction*> Worklist;
1401 LLVMContext &Context = Val->getContext();
1402
1403 // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
1404 // in the loop with the appropriate one directly.
1405 if (IsEqual || (isa<ConstantInt>(Val) &&
1406 Val->getType()->isIntegerTy(1))) {
1407 Value *Replacement;
1408 if (IsEqual)
1409 Replacement = Val;
1410 else
1411 Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
1412 !cast<ConstantInt>(Val)->getZExtValue());
1413
1414 for (User *U : LIC->users()) {
1415 Instruction *UI = dyn_cast<Instruction>(U);
1416 if (!UI || !L->contains(UI))
1417 continue;
1418 Worklist.push_back(UI);
1419 }
1420
1421 for (Instruction *UI : Worklist)
1422 UI->replaceUsesOfWith(LIC, Replacement);
1423
1424 SimplifyCode(Worklist, L);
1425 return;
1426 }
1427
1428 // Otherwise, we don't know the precise value of LIC, but we do know that it
1429 // is certainly NOT "Val". As such, simplify any uses in the loop that we
1430 // can. This case occurs when we unswitch switch statements.
1431 for (User *U : LIC->users()) {
1432 Instruction *UI = dyn_cast<Instruction>(U);
1433 if (!UI || !L->contains(UI))
1434 continue;
1435
1436 // At this point, we know LIC is definitely not Val. Try to use some simple
1437 // logic to simplify the user w.r.t. to the context.
1438 if (Value *Replacement = SimplifyInstructionWithNotEqual(UI, LIC, Val)) {
1439 if (LI->replacementPreservesLCSSAForm(UI, Replacement)) {
1440 // This in-loop instruction has been simplified w.r.t. its context,
1441 // i.e. LIC != Val, make sure we propagate its replacement value to
1442 // all its users.
1443 //
1444 // We can not yet delete UI, the LIC user, yet, because that would invalidate
1445 // the LIC->users() iterator !. However, we can make this instruction
1446 // dead by replacing all its users and push it onto the worklist so that
1447 // it can be properly deleted and its operands simplified.
1448 UI->replaceAllUsesWith(Replacement);
1449 }
1450 }
1451
1452 // This is a LIC user, push it into the worklist so that SimplifyCode can
1453 // attempt to simplify it.
1454 Worklist.push_back(UI);
1455
1456 // If we know that LIC is not Val, use this info to simplify code.
1457 SwitchInst *SI = dyn_cast<SwitchInst>(UI);
1458 if (!SI || !isa<ConstantInt>(Val)) continue;
1459
1460 // NOTE: if a case value for the switch is unswitched out, we record it
1461 // after the unswitch finishes. We can not record it here as the switch
1462 // is not a direct user of the partial LIV.
1463 SwitchInst::CaseHandle DeadCase =
1464 *SI->findCaseValue(cast<ConstantInt>(Val));
1465 // Default case is live for multiple values.
1466 if (DeadCase == *SI->case_default())
1467 continue;
1468
1469 // Found a dead case value. Don't remove PHI nodes in the
1470 // successor if they become single-entry, those PHI nodes may
1471 // be in the Users list.
1472
1473 BasicBlock *Switch = SI->getParent();
1474 BasicBlock *SISucc = DeadCase.getCaseSuccessor();
1475 BasicBlock *Latch = L->getLoopLatch();
1476
1477 if (!SI->findCaseDest(SISucc)) continue; // Edge is critical.
1478 // If the DeadCase successor dominates the loop latch, then the
1479 // transformation isn't safe since it will delete the sole predecessor edge
1480 // to the latch.
1481 if (Latch && DT->dominates(SISucc, Latch))
1482 continue;
1483
1484 // FIXME: This is a hack. We need to keep the successor around
1485 // and hooked up so as to preserve the loop structure, because
1486 // trying to update it is complicated. So instead we preserve the
1487 // loop structure and put the block on a dead code path.
1488 SplitEdge(Switch, SISucc, DT, LI);
1489 // Compute the successors instead of relying on the return value
1490 // of SplitEdge, since it may have split the switch successor
1491 // after PHI nodes.
1492 BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
1493 BasicBlock *OldSISucc = *succ_begin(NewSISucc);
1494 // Create an "unreachable" destination.
1495 BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
1496 Switch->getParent(),
1497 OldSISucc);
1498 new UnreachableInst(Context, Abort);
1499 // Force the new case destination to branch to the "unreachable"
1500 // block while maintaining a (dead) CFG edge to the old block.
1501 NewSISucc->getTerminator()->eraseFromParent();
1502 BranchInst::Create(Abort, OldSISucc,
1503 ConstantInt::getTrue(Context), NewSISucc);
1504 // Release the PHI operands for this edge.
1505 for (PHINode &PN : NewSISucc->phis())
1506 PN.setIncomingValue(PN.getBasicBlockIndex(Switch),
1507 UndefValue::get(PN.getType()));
1508 // Tell the domtree about the new block. We don't fully update the
1509 // domtree here -- instead we force it to do a full recomputation
1510 // after the pass is complete -- but we do need to inform it of
1511 // new blocks.
1512 DT->addNewBlock(Abort, NewSISucc);
1513 }
1514
1515 SimplifyCode(Worklist, L);
1516 }
1517
1518 /// Now that we have simplified some instructions in the loop, walk over it and
1519 /// constant prop, dce, and fold control flow where possible. Note that this is
1520 /// effectively a very simple loop-structure-aware optimizer. During processing
1521 /// of this loop, L could very well be deleted, so it must not be used.
1522 ///
1523 /// FIXME: When the loop optimizer is more mature, separate this out to a new
1524 /// pass.
1525 ///
SimplifyCode(std::vector<Instruction * > & Worklist,Loop * L)1526 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
1527 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1528 while (!Worklist.empty()) {
1529 Instruction *I = Worklist.back();
1530 Worklist.pop_back();
1531
1532 // Simple DCE.
1533 if (isInstructionTriviallyDead(I)) {
1534 LLVM_DEBUG(dbgs() << "Remove dead instruction '" << *I << "\n");
1535
1536 // Add uses to the worklist, which may be dead now.
1537 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1538 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1539 Worklist.push_back(Use);
1540 LPM->deleteSimpleAnalysisValue(I, L);
1541 RemoveFromWorklist(I, Worklist);
1542 I->eraseFromParent();
1543 ++NumSimplify;
1544 continue;
1545 }
1546
1547 // See if instruction simplification can hack this up. This is common for
1548 // things like "select false, X, Y" after unswitching made the condition be
1549 // 'false'. TODO: update the domtree properly so we can pass it here.
1550 if (Value *V = SimplifyInstruction(I, DL))
1551 if (LI->replacementPreservesLCSSAForm(I, V)) {
1552 ReplaceUsesOfWith(I, V, Worklist, L, LPM);
1553 continue;
1554 }
1555
1556 // Special case hacks that appear commonly in unswitched code.
1557 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1558 if (BI->isUnconditional()) {
1559 // If BI's parent is the only pred of the successor, fold the two blocks
1560 // together.
1561 BasicBlock *Pred = BI->getParent();
1562 BasicBlock *Succ = BI->getSuccessor(0);
1563 BasicBlock *SinglePred = Succ->getSinglePredecessor();
1564 if (!SinglePred) continue; // Nothing to do.
1565 assert(SinglePred == Pred && "CFG broken");
1566
1567 LLVM_DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
1568 << Succ->getName() << "\n");
1569
1570 // Resolve any single entry PHI nodes in Succ.
1571 while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1572 ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
1573
1574 // If Succ has any successors with PHI nodes, update them to have
1575 // entries coming from Pred instead of Succ.
1576 Succ->replaceAllUsesWith(Pred);
1577
1578 // Move all of the successor contents from Succ to Pred.
1579 Pred->getInstList().splice(BI->getIterator(), Succ->getInstList(),
1580 Succ->begin(), Succ->end());
1581 LPM->deleteSimpleAnalysisValue(BI, L);
1582 RemoveFromWorklist(BI, Worklist);
1583 BI->eraseFromParent();
1584
1585 // Remove Succ from the loop tree.
1586 LI->removeBlock(Succ);
1587 LPM->deleteSimpleAnalysisValue(Succ, L);
1588 Succ->eraseFromParent();
1589 ++NumSimplify;
1590 continue;
1591 }
1592
1593 continue;
1594 }
1595 }
1596 }
1597
1598 /// Simple simplifications we can do given the information that Cond is
1599 /// definitely not equal to Val.
SimplifyInstructionWithNotEqual(Instruction * Inst,Value * Invariant,Constant * Val)1600 Value *LoopUnswitch::SimplifyInstructionWithNotEqual(Instruction *Inst,
1601 Value *Invariant,
1602 Constant *Val) {
1603 // icmp eq cond, val -> false
1604 ICmpInst *CI = dyn_cast<ICmpInst>(Inst);
1605 if (CI && CI->isEquality()) {
1606 Value *Op0 = CI->getOperand(0);
1607 Value *Op1 = CI->getOperand(1);
1608 if ((Op0 == Invariant && Op1 == Val) || (Op0 == Val && Op1 == Invariant)) {
1609 LLVMContext &Ctx = Inst->getContext();
1610 if (CI->getPredicate() == CmpInst::ICMP_EQ)
1611 return ConstantInt::getFalse(Ctx);
1612 else
1613 return ConstantInt::getTrue(Ctx);
1614 }
1615 }
1616
1617 // FIXME: there may be other opportunities, e.g. comparison with floating
1618 // point, or Invariant - Val != 0, etc.
1619 return nullptr;
1620 }
1621