1 /* -----------------------------------------------------------------------------
2 Software License for The Fraunhofer FDK AAC Codec Library for Android
3 
4 © Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5 Forschung e.V. All rights reserved.
6 
7  1.    INTRODUCTION
8 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9 that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10 scheme for digital audio. This FDK AAC Codec software is intended to be used on
11 a wide variety of Android devices.
12 
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14 general perceptual audio codecs. AAC-ELD is considered the best-performing
15 full-bandwidth communications codec by independent studies and is widely
16 deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17 specifications.
18 
19 Patent licenses for necessary patent claims for the FDK AAC Codec (including
20 those of Fraunhofer) may be obtained through Via Licensing
21 (www.vialicensing.com) or through the respective patent owners individually for
22 the purpose of encoding or decoding bit streams in products that are compliant
23 with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24 Android devices already license these patent claims through Via Licensing or
25 directly from the patent owners, and therefore FDK AAC Codec software may
26 already be covered under those patent licenses when it is used for those
27 licensed purposes only.
28 
29 Commercially-licensed AAC software libraries, including floating-point versions
30 with enhanced sound quality, are also available from Fraunhofer. Users are
31 encouraged to check the Fraunhofer website for additional applications
32 information and documentation.
33 
34 2.    COPYRIGHT LICENSE
35 
36 Redistribution and use in source and binary forms, with or without modification,
37 are permitted without payment of copyright license fees provided that you
38 satisfy the following conditions:
39 
40 You must retain the complete text of this software license in redistributions of
41 the FDK AAC Codec or your modifications thereto in source code form.
42 
43 You must retain the complete text of this software license in the documentation
44 and/or other materials provided with redistributions of the FDK AAC Codec or
45 your modifications thereto in binary form. You must make available free of
46 charge copies of the complete source code of the FDK AAC Codec and your
47 modifications thereto to recipients of copies in binary form.
48 
49 The name of Fraunhofer may not be used to endorse or promote products derived
50 from this library without prior written permission.
51 
52 You may not charge copyright license fees for anyone to use, copy or distribute
53 the FDK AAC Codec software or your modifications thereto.
54 
55 Your modified versions of the FDK AAC Codec must carry prominent notices stating
56 that you changed the software and the date of any change. For modified versions
57 of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58 must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59 AAC Codec Library for Android."
60 
61 3.    NO PATENT LICENSE
62 
63 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64 limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65 Fraunhofer provides no warranty of patent non-infringement with respect to this
66 software.
67 
68 You may use this FDK AAC Codec software or modifications thereto only for
69 purposes that are authorized by appropriate patent licenses.
70 
71 4.    DISCLAIMER
72 
73 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74 holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75 including but not limited to the implied warranties of merchantability and
76 fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78 or consequential damages, including but not limited to procurement of substitute
79 goods or services; loss of use, data, or profits, or business interruption,
80 however caused and on any theory of liability, whether in contract, strict
81 liability, or tort (including negligence), arising in any way out of the use of
82 this software, even if advised of the possibility of such damage.
83 
84 5.    CONTACT INFORMATION
85 
86 Fraunhofer Institute for Integrated Circuits IIS
87 Attention: Audio and Multimedia Departments - FDK AAC LL
88 Am Wolfsmantel 33
89 91058 Erlangen, Germany
90 
91 www.iis.fraunhofer.de/amm
92 amm-info@iis.fraunhofer.de
93 ----------------------------------------------------------------------------- */
94 
95 /**************************** SBR decoder library ******************************
96 
97    Author(s):   Matthias Hildenbrand
98 
99    Description: Decode Predictive Vector Coding Data
100 
101 *******************************************************************************/
102 
103 #ifndef PVC_DEC_H
104 #define PVC_DEC_H
105 
106 #include "common_fix.h"
107 
108 #define PVC_DIVMODE_BITS 3
109 #define PVC_REUSEPVCID_BITS 1
110 #define PVC_PVCID_BITS 7
111 #define PVC_GRIDINFO_BITS 1
112 
113 #define MAX_PVC_ENVELOPES 2
114 #define PVC_NTIMESLOT 16
115 #define PVC_NBLOW 3 /* max. number of grouped QMF subbands below SBR range */
116 
117 #define PVC_NBHIGH_MODE1 8
118 #define PVC_NBHIGH_MODE2 6
119 #define PVC_NBHIGH_MAX (PVC_NBHIGH_MODE1)
120 #define PVC_NS_MAX 16
121 
122 /** Data for each PVC instance which needs to be persistent accross SBR frames
123  */
124 typedef struct {
125   UCHAR kx_last;        /**< Xover frequency of last frame */
126   UCHAR pvc_mode_last;  /**< PVC mode of last frame */
127   UCHAR Esg_slot_index; /**< Ring buffer index to current Esg time slot */
128   UCHAR pvcBorder0;     /**< Start SBR time slot of PVC frame */
129   FIXP_DBL Esg[PVC_NS_MAX][PVC_NBLOW]; /**< Esg(ksg,t) of current and 15
130                                           previous time slots (ring buffer) in
131                                           logarithmical domain */
132 } PVC_STATIC_DATA;
133 
134 /** Data for each PVC instance which is valid during one SBR frame */
135 typedef struct {
136   UCHAR pvc_mode;   /**< PVC mode 1 or 2, 0 means legacy SBR */
137   UCHAR pvcBorder0; /**< Start SBR time slot of PVC frame */
138   UCHAR kx;         /**< Index of the first QMF subband in the SBR range */
139   UCHAR RATE;       /**< Number of QMF subband samples per time slot (2 or 4) */
140   UCHAR ns; /**< Number of time slots for time-domain smoothing of Esg(ksg,t) */
141   const UCHAR
142       *pPvcID; /**< Pointer to prediction coefficient matrix index table */
143   UCHAR pastEsgSlotsAvail;   /**< Number of past Esg(ksg,t) which are available
144                                 for smoothing filter */
145   const FIXP_SGL *pSCcoeffs; /**< Pointer to smoothing window table */
146   SCHAR
147   sg_offset_low[PVC_NBLOW + 1]; /**< Offset table for PVC grouping of SBR
148                                    subbands below SBR range */
149   SCHAR sg_offset_high_kx[PVC_NBHIGH_MAX + 1]; /**< Offset table for PVC
150                                                   grouping of SBR subbands in
151                                                   SBR range (relativ to kx) */
152   UCHAR nbHigh; /**< Number of grouped QMF subbands in the SBR range */
153   const SCHAR *pScalingCoef; /**< Pointer to scaling coeff table */
154   const UCHAR *pPVCTab1;     /**< PVC mode 1 table */
155   const UCHAR *pPVCTab2;     /**< PVC mode 2 table */
156   const UCHAR *pPVCTab1_dp;  /**< Mapping of pvcID to PVC mode 1 table */
157   FIXP_DBL predEsg[PVC_NTIMESLOT]
158                   [PVC_NBHIGH_MAX]; /**< Predicted Energy in linear domain */
159   int predEsg_exp[PVC_NTIMESLOT];   /**< Exponent of predicted Energy in linear
160                                        domain */
161   int predEsg_expMax;               /**< Maximum of predEsg_exp[] */
162 } PVC_DYNAMIC_DATA;
163 
164 /**
165  * \brief Initialize PVC data structures for current frame (call if pvcMode =
166  * 0,1,2)
167  * \param[in] pPvcStaticData Pointer to PVC persistent data
168  * \param[out] pPvcDynamicData Pointer to PVC dynamic data
169  * \param[in] pvcMode PVC mode 1 or 2, 0 means legacy SBR
170  * \param[in] ns Number of time slots for time-domain smoothing of Esg(ksg,t)
171  * \param[in] RATE Number of QMF subband samples per time slot (2 or 4)
172  * \param[in] kx Index of the first QMF subband in the SBR range
173  * \param[in] pvcBorder0 Start SBR time slot of PVC frame
174  * \param[in] pPvcID Pointer to array of PvcIDs read from bitstream
175  */
176 int pvcInitFrame(PVC_STATIC_DATA *pPvcStaticData,
177                  PVC_DYNAMIC_DATA *pPvcDynamicData, const UCHAR pvcMode,
178                  const UCHAR ns, const int RATE, const int kx,
179                  const int pvcBorder0, const UCHAR *pPvcID);
180 
181 /**
182  * \brief Wrapper function for pvcDecodeTimeSlot() to decode PVC data of one
183  * frame (call if pvcMode = 1,2)
184  * \param[in,out] pPvcStaticData Pointer to PVC persistent data
185  * \param[in,out] pPvcDynamicData Pointer to PVC dynamic data
186  * \param[in] qmfBufferReal Pointer to array with real QMF subbands
187  * \param[in] qmfBufferImag Pointer to array with imag QMF subbands
188  * \param[in] overlap Number of QMF overlap slots
189  * \param[in] qmfExponentOverlap Exponent of qmfBuffer (low part) of overlap
190  * slots
191  * \param[in] qmfExponentCurrent Exponent of qmfBuffer (low part)
192  */
193 void pvcDecodeFrame(PVC_STATIC_DATA *pPvcStaticData,
194                     PVC_DYNAMIC_DATA *pPvcDynamicData, FIXP_DBL **qmfBufferReal,
195                     FIXP_DBL **qmfBufferImag, const int overlap,
196                     const int qmfExponentOverlap, const int qmfExponentCurrent);
197 
198 /**
199  * \brief Decode PVC data for one SBR time slot (call if pvcMode = 1,2)
200  * \param[in,out] pPvcStaticData Pointer to PVC persistent data
201  * \param[in,out] pPvcDynamicData Pointer to PVC dynamic data
202  * \param[in] qmfBufferReal Pointer to array with real QMF subbands
203  * \param[in] qmfBufferImag Pointer to array with imag QMF subbands
204  * \param[in] qmfExponent Exponent of qmfBuffer of current time slot
205  * \param[in] pvcBorder0 Start SBR time slot of PVC frame
206  * \param[in] timeSlotNumber Number of current SBR time slot (0..15)
207  * \param[out] predictedEsgSlot Predicted Energy of current time slot
208  * \param[out] predictedEsg_exp Exponent of predicted Energy of current time
209  * slot
210  */
211 void pvcDecodeTimeSlot(PVC_STATIC_DATA *pPvcStaticData,
212                        PVC_DYNAMIC_DATA *pPvcDynamicData,
213                        FIXP_DBL **qmfSlotReal, FIXP_DBL **qmfSlotImag,
214                        const int qmfExponent, const int pvcBorder0,
215                        const int timeSlotNumber, FIXP_DBL predictedEsgSlot[],
216                        int *predictedEsg_exp);
217 
218 /**
219  * \brief Finish the current PVC frame (call if pvcMode = 0,1,2)
220  * \param[in,out] pPvcStaticData Pointer to PVC persistent data
221  * \param[in,out] pPvcDynamicData Pointer to PVC dynamic data
222  */
223 void pvcEndFrame(PVC_STATIC_DATA *pPvcStaticData,
224                  PVC_DYNAMIC_DATA *pPvcDynamicData);
225 
226 /**
227  * \brief Expand predicted PVC grouped energies to full QMF subband resolution
228  * \param[in] pPvcDynamicData Pointer to PVC dynamic data
229  * \param[in] timeSlot Number of current SBR time slot (0..15)
230  * \param[in] lengthOutputVector Lenght of output vector
231  * \param[out] pOutput Output array for predicted energies
232  * \param[out] pOutput_exp Exponent of predicted energies
233  */
234 void expandPredEsg(const PVC_DYNAMIC_DATA *pPvcDynamicData, const int timeSlot,
235                    const int lengthOutputVector, FIXP_DBL *pOutput,
236                    SCHAR *pOutput_exp);
237 
238 #endif /* PVC_DEC_H*/
239