1 /******************************************************************************
2 
3  @File         PVRTQuaternionF.cpp
4 
5  @Title        PVRTQuaternionF
6 
7  @Version
8 
9  @Copyright    Copyright (c) Imagination Technologies Limited.
10 
11  @Platform     ANSI compatible
12 
13  @Description  Set of mathematical functions for quaternions.
14 
15 ******************************************************************************/
16 #include "PVRTGlobal.h"
17 #include <math.h>
18 #include <string.h>
19 #include "PVRTFixedPoint.h"		// Only needed for trig function float lookups
20 #include "PVRTQuaternion.h"
21 
22 
23 /****************************************************************************
24 ** Functions
25 ****************************************************************************/
26 
27 /*!***************************************************************************
28  @Function			PVRTMatrixQuaternionIdentityF
29  @Output			qOut	Identity quaternion
30  @Description		Sets the quaternion to (0, 0, 0, 1), the identity quaternion.
31 *****************************************************************************/
PVRTMatrixQuaternionIdentityF(PVRTQUATERNIONf & qOut)32 void PVRTMatrixQuaternionIdentityF(PVRTQUATERNIONf &qOut)
33 {
34 	qOut.x = 0;
35 	qOut.y = 0;
36 	qOut.z = 0;
37 	qOut.w = 1;
38 }
39 
40 /*!***************************************************************************
41  @Function			PVRTMatrixQuaternionRotationAxisF
42  @Output			qOut	Rotation quaternion
43  @Input				vAxis	Axis to rotate around
44  @Input				fAngle	Angle to rotate
45  @Description		Create quaternion corresponding to a rotation of fAngle
46 					radians around submitted vector.
47 *****************************************************************************/
PVRTMatrixQuaternionRotationAxisF(PVRTQUATERNIONf & qOut,const PVRTVECTOR3f & vAxis,const float fAngle)48 void PVRTMatrixQuaternionRotationAxisF(
49 	PVRTQUATERNIONf		&qOut,
50 	const PVRTVECTOR3f	&vAxis,
51 	const float			fAngle)
52 {
53 	float	fSin, fCos;
54 
55 	fSin = (float)PVRTFSIN(fAngle * 0.5f);
56 	fCos = (float)PVRTFCOS(fAngle * 0.5f);
57 
58 	/* Create quaternion */
59 	qOut.x = vAxis.x * fSin;
60 	qOut.y = vAxis.y * fSin;
61 	qOut.z = vAxis.z * fSin;
62 	qOut.w = fCos;
63 
64 	/* Normalise it */
65 	PVRTMatrixQuaternionNormalizeF(qOut);
66 }
67 
68 /*!***************************************************************************
69  @Function			PVRTMatrixQuaternionToAxisAngleF
70  @Input				qIn		Quaternion to transform
71  @Output			vAxis	Axis of rotation
72  @Output			fAngle	Angle of rotation
73  @Description		Convert a quaternion to an axis and angle. Expects a unit
74 					quaternion.
75 *****************************************************************************/
PVRTMatrixQuaternionToAxisAngleF(const PVRTQUATERNIONf & qIn,PVRTVECTOR3f & vAxis,float & fAngle)76 void PVRTMatrixQuaternionToAxisAngleF(
77 	const PVRTQUATERNIONf	&qIn,
78 	PVRTVECTOR3f			&vAxis,
79 	float					&fAngle)
80 {
81 	float	fCosAngle, fSinAngle;
82 	double	temp;
83 
84 	/* Compute some values */
85 	fCosAngle	= qIn.w;
86 	temp		= 1.0f - fCosAngle*fCosAngle;
87 	fAngle		= (float)PVRTFACOS(fCosAngle)*2.0f;
88 	fSinAngle	= (float)sqrt(temp);
89 
90 	/* This is to avoid a division by zero */
91 	if ((float)fabs(fSinAngle)<0.0005f)
92 		fSinAngle = 1.0f;
93 
94 	/* Get axis vector */
95 	vAxis.x = qIn.x / fSinAngle;
96 	vAxis.y = qIn.y / fSinAngle;
97 	vAxis.z = qIn.z / fSinAngle;
98 }
99 
100 /*!***************************************************************************
101  @Function			PVRTMatrixQuaternionSlerpF
102  @Output			qOut	Result of the interpolation
103  @Input				qA		First quaternion to interpolate from
104  @Input				qB		Second quaternion to interpolate from
105  @Input				t		Coefficient of interpolation
106  @Description		Perform a Spherical Linear intERPolation between quaternion A
107 					and quaternion B at time t. t must be between 0.0f and 1.0f
108 *****************************************************************************/
PVRTMatrixQuaternionSlerpF(PVRTQUATERNIONf & qOut,const PVRTQUATERNIONf & qA,const PVRTQUATERNIONf & qB,const float t)109 void PVRTMatrixQuaternionSlerpF(
110 	PVRTQUATERNIONf			&qOut,
111 	const PVRTQUATERNIONf	&qA,
112 	const PVRTQUATERNIONf	&qB,
113 	const float				t)
114 {
115 	float		fCosine, fAngle, A, B;
116 
117 	/* Parameter checking */
118 	if (t<0.0f || t>1.0f)
119 	{
120 		_RPT0(_CRT_WARN, "PVRTMatrixQuaternionSlerp : Bad parameters\n");
121 		qOut.x = 0;
122 		qOut.y = 0;
123 		qOut.z = 0;
124 		qOut.w = 1;
125 		return;
126 	}
127 
128 	/* Find sine of Angle between Quaternion A and B (dot product between quaternion A and B) */
129 	fCosine = qA.w*qB.w + qA.x*qB.x + qA.y*qB.y + qA.z*qB.z;
130 
131 	if (fCosine < 0)
132 	{
133 		PVRTQUATERNIONf qi;
134 
135 		/*
136 			<http://www.magic-software.com/Documentation/Quaternions.pdf>
137 
138 			"It is important to note that the quaternions q and -q represent
139 			the same rotation... while either quaternion will do, the
140 			interpolation methods require choosing one over the other.
141 
142 			"Although q1 and -q1 represent the same rotation, the values of
143 			Slerp(t; q0, q1) and Slerp(t; q0,-q1) are not the same. It is
144 			customary to choose the sign... on q1 so that... the angle
145 			between q0 and q1 is acute. This choice avoids extra
146 			spinning caused by the interpolated rotations."
147 		*/
148 		qi.x = -qB.x;
149 		qi.y = -qB.y;
150 		qi.z = -qB.z;
151 		qi.w = -qB.w;
152 
153 		PVRTMatrixQuaternionSlerpF(qOut, qA, qi, t);
154 		return;
155 	}
156 
157 	fCosine = PVRT_MIN(fCosine, 1.0f);
158 	fAngle = (float)PVRTFACOS(fCosine);
159 
160 	/* Avoid a division by zero */
161 	if (fAngle==0.0f)
162 	{
163 		qOut = qA;
164 		return;
165 	}
166 
167 	/* Precompute some values */
168 	A = (float)(PVRTFSIN((1.0f-t)*fAngle) / PVRTFSIN(fAngle));
169 	B = (float)(PVRTFSIN(t*fAngle) / PVRTFSIN(fAngle));
170 
171 	/* Compute resulting quaternion */
172 	qOut.x = A * qA.x + B * qB.x;
173 	qOut.y = A * qA.y + B * qB.y;
174 	qOut.z = A * qA.z + B * qB.z;
175 	qOut.w = A * qA.w + B * qB.w;
176 
177 	/* Normalise result */
178 	PVRTMatrixQuaternionNormalizeF(qOut);
179 }
180 
181 /*!***************************************************************************
182  @Function			PVRTMatrixQuaternionNormalizeF
183  @Modified			quat	Vector to normalize
184  @Description		Normalize quaternion.
185 *****************************************************************************/
PVRTMatrixQuaternionNormalizeF(PVRTQUATERNIONf & quat)186 void PVRTMatrixQuaternionNormalizeF(PVRTQUATERNIONf &quat)
187 {
188 	float	fMagnitude;
189 	double	temp;
190 
191 	/* Compute quaternion magnitude */
192 	temp = quat.w*quat.w + quat.x*quat.x + quat.y*quat.y + quat.z*quat.z;
193 	fMagnitude = (float)sqrt(temp);
194 
195 	/* Divide each quaternion component by this magnitude */
196 	if (fMagnitude!=0.0f)
197 	{
198 		fMagnitude = 1.0f / fMagnitude;
199 		quat.x *= fMagnitude;
200 		quat.y *= fMagnitude;
201 		quat.z *= fMagnitude;
202 		quat.w *= fMagnitude;
203 	}
204 }
205 
206 /*!***************************************************************************
207  @Function			PVRTMatrixRotationQuaternionF
208  @Output			mOut	Resulting rotation matrix
209  @Input				quat	Quaternion to transform
210  @Description		Create rotation matrix from submitted quaternion.
211 					Assuming the quaternion is of the form [X Y Z W]:
212 
213 						|       2     2									|
214 						| 1 - 2Y  - 2Z    2XY - 2ZW      2XZ + 2YW		 0	|
215 						|													|
216 						|                       2     2					|
217 					M = | 2XY + 2ZW       1 - 2X  - 2Z   2YZ - 2XW		 0	|
218 						|													|
219 						|                                      2     2		|
220 						| 2XZ - 2YW       2YZ + 2XW      1 - 2X  - 2Y	 0	|
221 						|													|
222 						|     0			   0			  0          1  |
223 *****************************************************************************/
PVRTMatrixRotationQuaternionF(PVRTMATRIXf & mOut,const PVRTQUATERNIONf & quat)224 void PVRTMatrixRotationQuaternionF(
225 	PVRTMATRIXf				&mOut,
226 	const PVRTQUATERNIONf	&quat)
227 {
228 	const PVRTQUATERNIONf *pQ;
229 
230 #if defined(BUILD_DX11)
231 	PVRTQUATERNIONf qInv;
232 
233 	qInv.x = -quat.x;
234 	qInv.y = -quat.y;
235 	qInv.z = -quat.z;
236 	qInv.w = quat.w;
237 
238 	pQ = &qInv;
239 #else
240 	pQ = &quat;
241 #endif
242 
243     /* Fill matrix members */
244 	mOut.f[0] = 1.0f - 2.0f*pQ->y*pQ->y - 2.0f*pQ->z*pQ->z;
245 	mOut.f[1] = 2.0f*pQ->x*pQ->y - 2.0f*pQ->z*pQ->w;
246 	mOut.f[2] = 2.0f*pQ->x*pQ->z + 2.0f*pQ->y*pQ->w;
247 	mOut.f[3] = 0.0f;
248 
249 	mOut.f[4] = 2.0f*pQ->x*pQ->y + 2.0f*pQ->z*pQ->w;
250 	mOut.f[5] = 1.0f - 2.0f*pQ->x*pQ->x - 2.0f*pQ->z*pQ->z;
251 	mOut.f[6] = 2.0f*pQ->y*pQ->z - 2.0f*pQ->x*pQ->w;
252 	mOut.f[7] = 0.0f;
253 
254 	mOut.f[8] = 2.0f*pQ->x*pQ->z - 2*pQ->y*pQ->w;
255 	mOut.f[9] = 2.0f*pQ->y*pQ->z + 2.0f*pQ->x*pQ->w;
256 	mOut.f[10] = 1.0f - 2.0f*pQ->x*pQ->x - 2*pQ->y*pQ->y;
257 	mOut.f[11] = 0.0f;
258 
259 	mOut.f[12] = 0.0f;
260 	mOut.f[13] = 0.0f;
261 	mOut.f[14] = 0.0f;
262 	mOut.f[15] = 1.0f;
263 }
264 
265 /*!***************************************************************************
266  @Function			PVRTMatrixQuaternionMultiplyF
267  @Output			qOut	Resulting quaternion
268  @Input				qA		First quaternion to multiply
269  @Input				qB		Second quaternion to multiply
270  @Description		Multiply quaternion A with quaternion B and return the
271 					result in qOut.
272 *****************************************************************************/
PVRTMatrixQuaternionMultiplyF(PVRTQUATERNIONf & qOut,const PVRTQUATERNIONf & qA,const PVRTQUATERNIONf & qB)273 void PVRTMatrixQuaternionMultiplyF(
274 	PVRTQUATERNIONf			&qOut,
275 	const PVRTQUATERNIONf	&qA,
276 	const PVRTQUATERNIONf	&qB)
277 {
278 	PVRTVECTOR3f	CrossProduct;
279 	PVRTQUATERNIONf qRet;
280 
281 	/* Compute scalar component */
282 	qRet.w = (qA.w*qB.w) - (qA.x*qB.x + qA.y*qB.y + qA.z*qB.z);
283 
284 	/* Compute cross product */
285 	CrossProduct.x = qA.y*qB.z - qA.z*qB.y;
286 	CrossProduct.y = qA.z*qB.x - qA.x*qB.z;
287 	CrossProduct.z = qA.x*qB.y - qA.y*qB.x;
288 
289 	/* Compute result vector */
290 	qRet.x = (qA.w * qB.x) + (qB.w * qA.x) + CrossProduct.x;
291 	qRet.y = (qA.w * qB.y) + (qB.w * qA.y) + CrossProduct.y;
292 	qRet.z = (qA.w * qB.z) + (qB.w * qA.z) + CrossProduct.z;
293 
294 	/* Normalize resulting quaternion */
295 	PVRTMatrixQuaternionNormalizeF(qRet);
296 
297 	/* Copy result to mOut */
298 	qOut = qRet;
299 }
300 
301 /*****************************************************************************
302  End of file (PVRTQuaternionF.cpp)
303 *****************************************************************************/
304 
305