1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "LLParser.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalIFunc.h"
32 #include "llvm/IR/GlobalObject.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/IR/ValueSymbolTable.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/SaveAndRestore.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstring>
52 #include <iterator>
53 #include <vector>
54
55 using namespace llvm;
56
getTypeString(Type * T)57 static std::string getTypeString(Type *T) {
58 std::string Result;
59 raw_string_ostream Tmp(Result);
60 Tmp << *T;
61 return Tmp.str();
62 }
63
64 /// Run: module ::= toplevelentity*
Run()65 bool LLParser::Run() {
66 // Prime the lexer.
67 Lex.Lex();
68
69 if (Context.shouldDiscardValueNames())
70 return Error(
71 Lex.getLoc(),
72 "Can't read textual IR with a Context that discards named Values");
73
74 return ParseTopLevelEntities() || ValidateEndOfModule() ||
75 ValidateEndOfIndex();
76 }
77
parseStandaloneConstantValue(Constant * & C,const SlotMapping * Slots)78 bool LLParser::parseStandaloneConstantValue(Constant *&C,
79 const SlotMapping *Slots) {
80 restoreParsingState(Slots);
81 Lex.Lex();
82
83 Type *Ty = nullptr;
84 if (ParseType(Ty) || parseConstantValue(Ty, C))
85 return true;
86 if (Lex.getKind() != lltok::Eof)
87 return Error(Lex.getLoc(), "expected end of string");
88 return false;
89 }
90
parseTypeAtBeginning(Type * & Ty,unsigned & Read,const SlotMapping * Slots)91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
92 const SlotMapping *Slots) {
93 restoreParsingState(Slots);
94 Lex.Lex();
95
96 Read = 0;
97 SMLoc Start = Lex.getLoc();
98 Ty = nullptr;
99 if (ParseType(Ty))
100 return true;
101 SMLoc End = Lex.getLoc();
102 Read = End.getPointer() - Start.getPointer();
103
104 return false;
105 }
106
restoreParsingState(const SlotMapping * Slots)107 void LLParser::restoreParsingState(const SlotMapping *Slots) {
108 if (!Slots)
109 return;
110 NumberedVals = Slots->GlobalValues;
111 NumberedMetadata = Slots->MetadataNodes;
112 for (const auto &I : Slots->NamedTypes)
113 NamedTypes.insert(
114 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
115 for (const auto &I : Slots->Types)
116 NumberedTypes.insert(
117 std::make_pair(I.first, std::make_pair(I.second, LocTy())));
118 }
119
120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
121 /// module.
ValidateEndOfModule()122 bool LLParser::ValidateEndOfModule() {
123 if (!M)
124 return false;
125 // Handle any function attribute group forward references.
126 for (const auto &RAG : ForwardRefAttrGroups) {
127 Value *V = RAG.first;
128 const std::vector<unsigned> &Attrs = RAG.second;
129 AttrBuilder B;
130
131 for (const auto &Attr : Attrs)
132 B.merge(NumberedAttrBuilders[Attr]);
133
134 if (Function *Fn = dyn_cast<Function>(V)) {
135 AttributeList AS = Fn->getAttributes();
136 AttrBuilder FnAttrs(AS.getFnAttributes());
137 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
138
139 FnAttrs.merge(B);
140
141 // If the alignment was parsed as an attribute, move to the alignment
142 // field.
143 if (FnAttrs.hasAlignmentAttr()) {
144 Fn->setAlignment(FnAttrs.getAlignment());
145 FnAttrs.removeAttribute(Attribute::Alignment);
146 }
147
148 AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
149 AttributeSet::get(Context, FnAttrs));
150 Fn->setAttributes(AS);
151 } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
152 AttributeList AS = CI->getAttributes();
153 AttrBuilder FnAttrs(AS.getFnAttributes());
154 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
155 FnAttrs.merge(B);
156 AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
157 AttributeSet::get(Context, FnAttrs));
158 CI->setAttributes(AS);
159 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
160 AttributeList AS = II->getAttributes();
161 AttrBuilder FnAttrs(AS.getFnAttributes());
162 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
163 FnAttrs.merge(B);
164 AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
165 AttributeSet::get(Context, FnAttrs));
166 II->setAttributes(AS);
167 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
168 AttrBuilder Attrs(GV->getAttributes());
169 Attrs.merge(B);
170 GV->setAttributes(AttributeSet::get(Context,Attrs));
171 } else {
172 llvm_unreachable("invalid object with forward attribute group reference");
173 }
174 }
175
176 // If there are entries in ForwardRefBlockAddresses at this point, the
177 // function was never defined.
178 if (!ForwardRefBlockAddresses.empty())
179 return Error(ForwardRefBlockAddresses.begin()->first.Loc,
180 "expected function name in blockaddress");
181
182 for (const auto &NT : NumberedTypes)
183 if (NT.second.second.isValid())
184 return Error(NT.second.second,
185 "use of undefined type '%" + Twine(NT.first) + "'");
186
187 for (StringMap<std::pair<Type*, LocTy> >::iterator I =
188 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
189 if (I->second.second.isValid())
190 return Error(I->second.second,
191 "use of undefined type named '" + I->getKey() + "'");
192
193 if (!ForwardRefComdats.empty())
194 return Error(ForwardRefComdats.begin()->second,
195 "use of undefined comdat '$" +
196 ForwardRefComdats.begin()->first + "'");
197
198 if (!ForwardRefVals.empty())
199 return Error(ForwardRefVals.begin()->second.second,
200 "use of undefined value '@" + ForwardRefVals.begin()->first +
201 "'");
202
203 if (!ForwardRefValIDs.empty())
204 return Error(ForwardRefValIDs.begin()->second.second,
205 "use of undefined value '@" +
206 Twine(ForwardRefValIDs.begin()->first) + "'");
207
208 if (!ForwardRefMDNodes.empty())
209 return Error(ForwardRefMDNodes.begin()->second.second,
210 "use of undefined metadata '!" +
211 Twine(ForwardRefMDNodes.begin()->first) + "'");
212
213 // Resolve metadata cycles.
214 for (auto &N : NumberedMetadata) {
215 if (N.second && !N.second->isResolved())
216 N.second->resolveCycles();
217 }
218
219 for (auto *Inst : InstsWithTBAATag) {
220 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
221 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
222 auto *UpgradedMD = UpgradeTBAANode(*MD);
223 if (MD != UpgradedMD)
224 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
225 }
226
227 // Look for intrinsic functions and CallInst that need to be upgraded
228 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
229 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
230
231 // Some types could be renamed during loading if several modules are
232 // loaded in the same LLVMContext (LTO scenario). In this case we should
233 // remangle intrinsics names as well.
234 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
235 Function *F = &*FI++;
236 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
237 F->replaceAllUsesWith(Remangled.getValue());
238 F->eraseFromParent();
239 }
240 }
241
242 if (UpgradeDebugInfo)
243 llvm::UpgradeDebugInfo(*M);
244
245 UpgradeModuleFlags(*M);
246 UpgradeSectionAttributes(*M);
247
248 if (!Slots)
249 return false;
250 // Initialize the slot mapping.
251 // Because by this point we've parsed and validated everything, we can "steal"
252 // the mapping from LLParser as it doesn't need it anymore.
253 Slots->GlobalValues = std::move(NumberedVals);
254 Slots->MetadataNodes = std::move(NumberedMetadata);
255 for (const auto &I : NamedTypes)
256 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
257 for (const auto &I : NumberedTypes)
258 Slots->Types.insert(std::make_pair(I.first, I.second.first));
259
260 return false;
261 }
262
263 /// Do final validity and sanity checks at the end of the index.
ValidateEndOfIndex()264 bool LLParser::ValidateEndOfIndex() {
265 if (!Index)
266 return false;
267
268 if (!ForwardRefValueInfos.empty())
269 return Error(ForwardRefValueInfos.begin()->second.front().second,
270 "use of undefined summary '^" +
271 Twine(ForwardRefValueInfos.begin()->first) + "'");
272
273 if (!ForwardRefAliasees.empty())
274 return Error(ForwardRefAliasees.begin()->second.front().second,
275 "use of undefined summary '^" +
276 Twine(ForwardRefAliasees.begin()->first) + "'");
277
278 if (!ForwardRefTypeIds.empty())
279 return Error(ForwardRefTypeIds.begin()->second.front().second,
280 "use of undefined type id summary '^" +
281 Twine(ForwardRefTypeIds.begin()->first) + "'");
282
283 return false;
284 }
285
286 //===----------------------------------------------------------------------===//
287 // Top-Level Entities
288 //===----------------------------------------------------------------------===//
289
ParseTopLevelEntities()290 bool LLParser::ParseTopLevelEntities() {
291 // If there is no Module, then parse just the summary index entries.
292 if (!M) {
293 while (true) {
294 switch (Lex.getKind()) {
295 case lltok::Eof:
296 return false;
297 case lltok::SummaryID:
298 if (ParseSummaryEntry())
299 return true;
300 break;
301 case lltok::kw_source_filename:
302 if (ParseSourceFileName())
303 return true;
304 break;
305 default:
306 // Skip everything else
307 Lex.Lex();
308 }
309 }
310 }
311 while (true) {
312 switch (Lex.getKind()) {
313 default: return TokError("expected top-level entity");
314 case lltok::Eof: return false;
315 case lltok::kw_declare: if (ParseDeclare()) return true; break;
316 case lltok::kw_define: if (ParseDefine()) return true; break;
317 case lltok::kw_module: if (ParseModuleAsm()) return true; break;
318 case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
319 case lltok::kw_source_filename:
320 if (ParseSourceFileName())
321 return true;
322 break;
323 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
324 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
325 case lltok::LocalVar: if (ParseNamedType()) return true; break;
326 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break;
327 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
328 case lltok::ComdatVar: if (parseComdat()) return true; break;
329 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break;
330 case lltok::SummaryID:
331 if (ParseSummaryEntry())
332 return true;
333 break;
334 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
335 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
336 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
337 case lltok::kw_uselistorder_bb:
338 if (ParseUseListOrderBB())
339 return true;
340 break;
341 }
342 }
343 }
344
345 /// toplevelentity
346 /// ::= 'module' 'asm' STRINGCONSTANT
ParseModuleAsm()347 bool LLParser::ParseModuleAsm() {
348 assert(Lex.getKind() == lltok::kw_module);
349 Lex.Lex();
350
351 std::string AsmStr;
352 if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
353 ParseStringConstant(AsmStr)) return true;
354
355 M->appendModuleInlineAsm(AsmStr);
356 return false;
357 }
358
359 /// toplevelentity
360 /// ::= 'target' 'triple' '=' STRINGCONSTANT
361 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
ParseTargetDefinition()362 bool LLParser::ParseTargetDefinition() {
363 assert(Lex.getKind() == lltok::kw_target);
364 std::string Str;
365 switch (Lex.Lex()) {
366 default: return TokError("unknown target property");
367 case lltok::kw_triple:
368 Lex.Lex();
369 if (ParseToken(lltok::equal, "expected '=' after target triple") ||
370 ParseStringConstant(Str))
371 return true;
372 M->setTargetTriple(Str);
373 return false;
374 case lltok::kw_datalayout:
375 Lex.Lex();
376 if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
377 ParseStringConstant(Str))
378 return true;
379 if (DataLayoutStr.empty())
380 M->setDataLayout(Str);
381 return false;
382 }
383 }
384
385 /// toplevelentity
386 /// ::= 'source_filename' '=' STRINGCONSTANT
ParseSourceFileName()387 bool LLParser::ParseSourceFileName() {
388 assert(Lex.getKind() == lltok::kw_source_filename);
389 Lex.Lex();
390 if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
391 ParseStringConstant(SourceFileName))
392 return true;
393 if (M)
394 M->setSourceFileName(SourceFileName);
395 return false;
396 }
397
398 /// toplevelentity
399 /// ::= 'deplibs' '=' '[' ']'
400 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
401 /// FIXME: Remove in 4.0. Currently parse, but ignore.
ParseDepLibs()402 bool LLParser::ParseDepLibs() {
403 assert(Lex.getKind() == lltok::kw_deplibs);
404 Lex.Lex();
405 if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
406 ParseToken(lltok::lsquare, "expected '=' after deplibs"))
407 return true;
408
409 if (EatIfPresent(lltok::rsquare))
410 return false;
411
412 do {
413 std::string Str;
414 if (ParseStringConstant(Str)) return true;
415 } while (EatIfPresent(lltok::comma));
416
417 return ParseToken(lltok::rsquare, "expected ']' at end of list");
418 }
419
420 /// ParseUnnamedType:
421 /// ::= LocalVarID '=' 'type' type
ParseUnnamedType()422 bool LLParser::ParseUnnamedType() {
423 LocTy TypeLoc = Lex.getLoc();
424 unsigned TypeID = Lex.getUIntVal();
425 Lex.Lex(); // eat LocalVarID;
426
427 if (ParseToken(lltok::equal, "expected '=' after name") ||
428 ParseToken(lltok::kw_type, "expected 'type' after '='"))
429 return true;
430
431 Type *Result = nullptr;
432 if (ParseStructDefinition(TypeLoc, "",
433 NumberedTypes[TypeID], Result)) return true;
434
435 if (!isa<StructType>(Result)) {
436 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
437 if (Entry.first)
438 return Error(TypeLoc, "non-struct types may not be recursive");
439 Entry.first = Result;
440 Entry.second = SMLoc();
441 }
442
443 return false;
444 }
445
446 /// toplevelentity
447 /// ::= LocalVar '=' 'type' type
ParseNamedType()448 bool LLParser::ParseNamedType() {
449 std::string Name = Lex.getStrVal();
450 LocTy NameLoc = Lex.getLoc();
451 Lex.Lex(); // eat LocalVar.
452
453 if (ParseToken(lltok::equal, "expected '=' after name") ||
454 ParseToken(lltok::kw_type, "expected 'type' after name"))
455 return true;
456
457 Type *Result = nullptr;
458 if (ParseStructDefinition(NameLoc, Name,
459 NamedTypes[Name], Result)) return true;
460
461 if (!isa<StructType>(Result)) {
462 std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
463 if (Entry.first)
464 return Error(NameLoc, "non-struct types may not be recursive");
465 Entry.first = Result;
466 Entry.second = SMLoc();
467 }
468
469 return false;
470 }
471
472 /// toplevelentity
473 /// ::= 'declare' FunctionHeader
ParseDeclare()474 bool LLParser::ParseDeclare() {
475 assert(Lex.getKind() == lltok::kw_declare);
476 Lex.Lex();
477
478 std::vector<std::pair<unsigned, MDNode *>> MDs;
479 while (Lex.getKind() == lltok::MetadataVar) {
480 unsigned MDK;
481 MDNode *N;
482 if (ParseMetadataAttachment(MDK, N))
483 return true;
484 MDs.push_back({MDK, N});
485 }
486
487 Function *F;
488 if (ParseFunctionHeader(F, false))
489 return true;
490 for (auto &MD : MDs)
491 F->addMetadata(MD.first, *MD.second);
492 return false;
493 }
494
495 /// toplevelentity
496 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ...
ParseDefine()497 bool LLParser::ParseDefine() {
498 assert(Lex.getKind() == lltok::kw_define);
499 Lex.Lex();
500
501 Function *F;
502 return ParseFunctionHeader(F, true) ||
503 ParseOptionalFunctionMetadata(*F) ||
504 ParseFunctionBody(*F);
505 }
506
507 /// ParseGlobalType
508 /// ::= 'constant'
509 /// ::= 'global'
ParseGlobalType(bool & IsConstant)510 bool LLParser::ParseGlobalType(bool &IsConstant) {
511 if (Lex.getKind() == lltok::kw_constant)
512 IsConstant = true;
513 else if (Lex.getKind() == lltok::kw_global)
514 IsConstant = false;
515 else {
516 IsConstant = false;
517 return TokError("expected 'global' or 'constant'");
518 }
519 Lex.Lex();
520 return false;
521 }
522
ParseOptionalUnnamedAddr(GlobalVariable::UnnamedAddr & UnnamedAddr)523 bool LLParser::ParseOptionalUnnamedAddr(
524 GlobalVariable::UnnamedAddr &UnnamedAddr) {
525 if (EatIfPresent(lltok::kw_unnamed_addr))
526 UnnamedAddr = GlobalValue::UnnamedAddr::Global;
527 else if (EatIfPresent(lltok::kw_local_unnamed_addr))
528 UnnamedAddr = GlobalValue::UnnamedAddr::Local;
529 else
530 UnnamedAddr = GlobalValue::UnnamedAddr::None;
531 return false;
532 }
533
534 /// ParseUnnamedGlobal:
535 /// OptionalVisibility (ALIAS | IFUNC) ...
536 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
537 /// OptionalDLLStorageClass
538 /// ... -> global variable
539 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
540 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
541 /// OptionalDLLStorageClass
542 /// ... -> global variable
ParseUnnamedGlobal()543 bool LLParser::ParseUnnamedGlobal() {
544 unsigned VarID = NumberedVals.size();
545 std::string Name;
546 LocTy NameLoc = Lex.getLoc();
547
548 // Handle the GlobalID form.
549 if (Lex.getKind() == lltok::GlobalID) {
550 if (Lex.getUIntVal() != VarID)
551 return Error(Lex.getLoc(), "variable expected to be numbered '%" +
552 Twine(VarID) + "'");
553 Lex.Lex(); // eat GlobalID;
554
555 if (ParseToken(lltok::equal, "expected '=' after name"))
556 return true;
557 }
558
559 bool HasLinkage;
560 unsigned Linkage, Visibility, DLLStorageClass;
561 bool DSOLocal;
562 GlobalVariable::ThreadLocalMode TLM;
563 GlobalVariable::UnnamedAddr UnnamedAddr;
564 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
565 DSOLocal) ||
566 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
567 return true;
568
569 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
570 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
571 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
572
573 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
574 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
575 }
576
577 /// ParseNamedGlobal:
578 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
579 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
580 /// OptionalVisibility OptionalDLLStorageClass
581 /// ... -> global variable
ParseNamedGlobal()582 bool LLParser::ParseNamedGlobal() {
583 assert(Lex.getKind() == lltok::GlobalVar);
584 LocTy NameLoc = Lex.getLoc();
585 std::string Name = Lex.getStrVal();
586 Lex.Lex();
587
588 bool HasLinkage;
589 unsigned Linkage, Visibility, DLLStorageClass;
590 bool DSOLocal;
591 GlobalVariable::ThreadLocalMode TLM;
592 GlobalVariable::UnnamedAddr UnnamedAddr;
593 if (ParseToken(lltok::equal, "expected '=' in global variable") ||
594 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
595 DSOLocal) ||
596 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
597 return true;
598
599 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
600 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
601 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
602
603 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
604 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
605 }
606
parseComdat()607 bool LLParser::parseComdat() {
608 assert(Lex.getKind() == lltok::ComdatVar);
609 std::string Name = Lex.getStrVal();
610 LocTy NameLoc = Lex.getLoc();
611 Lex.Lex();
612
613 if (ParseToken(lltok::equal, "expected '=' here"))
614 return true;
615
616 if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
617 return TokError("expected comdat type");
618
619 Comdat::SelectionKind SK;
620 switch (Lex.getKind()) {
621 default:
622 return TokError("unknown selection kind");
623 case lltok::kw_any:
624 SK = Comdat::Any;
625 break;
626 case lltok::kw_exactmatch:
627 SK = Comdat::ExactMatch;
628 break;
629 case lltok::kw_largest:
630 SK = Comdat::Largest;
631 break;
632 case lltok::kw_noduplicates:
633 SK = Comdat::NoDuplicates;
634 break;
635 case lltok::kw_samesize:
636 SK = Comdat::SameSize;
637 break;
638 }
639 Lex.Lex();
640
641 // See if the comdat was forward referenced, if so, use the comdat.
642 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
643 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
644 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
645 return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
646
647 Comdat *C;
648 if (I != ComdatSymTab.end())
649 C = &I->second;
650 else
651 C = M->getOrInsertComdat(Name);
652 C->setSelectionKind(SK);
653
654 return false;
655 }
656
657 // MDString:
658 // ::= '!' STRINGCONSTANT
ParseMDString(MDString * & Result)659 bool LLParser::ParseMDString(MDString *&Result) {
660 std::string Str;
661 if (ParseStringConstant(Str)) return true;
662 Result = MDString::get(Context, Str);
663 return false;
664 }
665
666 // MDNode:
667 // ::= '!' MDNodeNumber
ParseMDNodeID(MDNode * & Result)668 bool LLParser::ParseMDNodeID(MDNode *&Result) {
669 // !{ ..., !42, ... }
670 LocTy IDLoc = Lex.getLoc();
671 unsigned MID = 0;
672 if (ParseUInt32(MID))
673 return true;
674
675 // If not a forward reference, just return it now.
676 if (NumberedMetadata.count(MID)) {
677 Result = NumberedMetadata[MID];
678 return false;
679 }
680
681 // Otherwise, create MDNode forward reference.
682 auto &FwdRef = ForwardRefMDNodes[MID];
683 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
684
685 Result = FwdRef.first.get();
686 NumberedMetadata[MID].reset(Result);
687 return false;
688 }
689
690 /// ParseNamedMetadata:
691 /// !foo = !{ !1, !2 }
ParseNamedMetadata()692 bool LLParser::ParseNamedMetadata() {
693 assert(Lex.getKind() == lltok::MetadataVar);
694 std::string Name = Lex.getStrVal();
695 Lex.Lex();
696
697 if (ParseToken(lltok::equal, "expected '=' here") ||
698 ParseToken(lltok::exclaim, "Expected '!' here") ||
699 ParseToken(lltok::lbrace, "Expected '{' here"))
700 return true;
701
702 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
703 if (Lex.getKind() != lltok::rbrace)
704 do {
705 MDNode *N = nullptr;
706 // Parse DIExpressions inline as a special case. They are still MDNodes,
707 // so they can still appear in named metadata. Remove this logic if they
708 // become plain Metadata.
709 if (Lex.getKind() == lltok::MetadataVar &&
710 Lex.getStrVal() == "DIExpression") {
711 if (ParseDIExpression(N, /*IsDistinct=*/false))
712 return true;
713 } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
714 ParseMDNodeID(N)) {
715 return true;
716 }
717 NMD->addOperand(N);
718 } while (EatIfPresent(lltok::comma));
719
720 return ParseToken(lltok::rbrace, "expected end of metadata node");
721 }
722
723 /// ParseStandaloneMetadata:
724 /// !42 = !{...}
ParseStandaloneMetadata()725 bool LLParser::ParseStandaloneMetadata() {
726 assert(Lex.getKind() == lltok::exclaim);
727 Lex.Lex();
728 unsigned MetadataID = 0;
729
730 MDNode *Init;
731 if (ParseUInt32(MetadataID) ||
732 ParseToken(lltok::equal, "expected '=' here"))
733 return true;
734
735 // Detect common error, from old metadata syntax.
736 if (Lex.getKind() == lltok::Type)
737 return TokError("unexpected type in metadata definition");
738
739 bool IsDistinct = EatIfPresent(lltok::kw_distinct);
740 if (Lex.getKind() == lltok::MetadataVar) {
741 if (ParseSpecializedMDNode(Init, IsDistinct))
742 return true;
743 } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
744 ParseMDTuple(Init, IsDistinct))
745 return true;
746
747 // See if this was forward referenced, if so, handle it.
748 auto FI = ForwardRefMDNodes.find(MetadataID);
749 if (FI != ForwardRefMDNodes.end()) {
750 FI->second.first->replaceAllUsesWith(Init);
751 ForwardRefMDNodes.erase(FI);
752
753 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
754 } else {
755 if (NumberedMetadata.count(MetadataID))
756 return TokError("Metadata id is already used");
757 NumberedMetadata[MetadataID].reset(Init);
758 }
759
760 return false;
761 }
762
763 // Skips a single module summary entry.
SkipModuleSummaryEntry()764 bool LLParser::SkipModuleSummaryEntry() {
765 // Each module summary entry consists of a tag for the entry
766 // type, followed by a colon, then the fields surrounded by nested sets of
767 // parentheses. The "tag:" looks like a Label. Once parsing support is
768 // in place we will look for the tokens corresponding to the expected tags.
769 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
770 Lex.getKind() != lltok::kw_typeid)
771 return TokError(
772 "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
773 Lex.Lex();
774 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
775 ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
776 return true;
777 // Now walk through the parenthesized entry, until the number of open
778 // parentheses goes back down to 0 (the first '(' was parsed above).
779 unsigned NumOpenParen = 1;
780 do {
781 switch (Lex.getKind()) {
782 case lltok::lparen:
783 NumOpenParen++;
784 break;
785 case lltok::rparen:
786 NumOpenParen--;
787 break;
788 case lltok::Eof:
789 return TokError("found end of file while parsing summary entry");
790 default:
791 // Skip everything in between parentheses.
792 break;
793 }
794 Lex.Lex();
795 } while (NumOpenParen > 0);
796 return false;
797 }
798
799 /// SummaryEntry
800 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
ParseSummaryEntry()801 bool LLParser::ParseSummaryEntry() {
802 assert(Lex.getKind() == lltok::SummaryID);
803 unsigned SummaryID = Lex.getUIntVal();
804
805 // For summary entries, colons should be treated as distinct tokens,
806 // not an indication of the end of a label token.
807 Lex.setIgnoreColonInIdentifiers(true);
808
809 Lex.Lex();
810 if (ParseToken(lltok::equal, "expected '=' here"))
811 return true;
812
813 // If we don't have an index object, skip the summary entry.
814 if (!Index)
815 return SkipModuleSummaryEntry();
816
817 switch (Lex.getKind()) {
818 case lltok::kw_gv:
819 return ParseGVEntry(SummaryID);
820 case lltok::kw_module:
821 return ParseModuleEntry(SummaryID);
822 case lltok::kw_typeid:
823 return ParseTypeIdEntry(SummaryID);
824 break;
825 default:
826 return Error(Lex.getLoc(), "unexpected summary kind");
827 }
828 Lex.setIgnoreColonInIdentifiers(false);
829 return false;
830 }
831
isValidVisibilityForLinkage(unsigned V,unsigned L)832 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
833 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
834 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
835 }
836
837 // If there was an explicit dso_local, update GV. In the absence of an explicit
838 // dso_local we keep the default value.
maybeSetDSOLocal(bool DSOLocal,GlobalValue & GV)839 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
840 if (DSOLocal)
841 GV.setDSOLocal(true);
842 }
843
844 /// parseIndirectSymbol:
845 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
846 /// OptionalVisibility OptionalDLLStorageClass
847 /// OptionalThreadLocal OptionalUnnamedAddr
848 // 'alias|ifunc' IndirectSymbol
849 ///
850 /// IndirectSymbol
851 /// ::= TypeAndValue
852 ///
853 /// Everything through OptionalUnnamedAddr has already been parsed.
854 ///
parseIndirectSymbol(const std::string & Name,LocTy NameLoc,unsigned L,unsigned Visibility,unsigned DLLStorageClass,bool DSOLocal,GlobalVariable::ThreadLocalMode TLM,GlobalVariable::UnnamedAddr UnnamedAddr)855 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
856 unsigned L, unsigned Visibility,
857 unsigned DLLStorageClass, bool DSOLocal,
858 GlobalVariable::ThreadLocalMode TLM,
859 GlobalVariable::UnnamedAddr UnnamedAddr) {
860 bool IsAlias;
861 if (Lex.getKind() == lltok::kw_alias)
862 IsAlias = true;
863 else if (Lex.getKind() == lltok::kw_ifunc)
864 IsAlias = false;
865 else
866 llvm_unreachable("Not an alias or ifunc!");
867 Lex.Lex();
868
869 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
870
871 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
872 return Error(NameLoc, "invalid linkage type for alias");
873
874 if (!isValidVisibilityForLinkage(Visibility, L))
875 return Error(NameLoc,
876 "symbol with local linkage must have default visibility");
877
878 Type *Ty;
879 LocTy ExplicitTypeLoc = Lex.getLoc();
880 if (ParseType(Ty) ||
881 ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
882 return true;
883
884 Constant *Aliasee;
885 LocTy AliaseeLoc = Lex.getLoc();
886 if (Lex.getKind() != lltok::kw_bitcast &&
887 Lex.getKind() != lltok::kw_getelementptr &&
888 Lex.getKind() != lltok::kw_addrspacecast &&
889 Lex.getKind() != lltok::kw_inttoptr) {
890 if (ParseGlobalTypeAndValue(Aliasee))
891 return true;
892 } else {
893 // The bitcast dest type is not present, it is implied by the dest type.
894 ValID ID;
895 if (ParseValID(ID))
896 return true;
897 if (ID.Kind != ValID::t_Constant)
898 return Error(AliaseeLoc, "invalid aliasee");
899 Aliasee = ID.ConstantVal;
900 }
901
902 Type *AliaseeType = Aliasee->getType();
903 auto *PTy = dyn_cast<PointerType>(AliaseeType);
904 if (!PTy)
905 return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
906 unsigned AddrSpace = PTy->getAddressSpace();
907
908 if (IsAlias && Ty != PTy->getElementType())
909 return Error(
910 ExplicitTypeLoc,
911 "explicit pointee type doesn't match operand's pointee type");
912
913 if (!IsAlias && !PTy->getElementType()->isFunctionTy())
914 return Error(
915 ExplicitTypeLoc,
916 "explicit pointee type should be a function type");
917
918 GlobalValue *GVal = nullptr;
919
920 // See if the alias was forward referenced, if so, prepare to replace the
921 // forward reference.
922 if (!Name.empty()) {
923 GVal = M->getNamedValue(Name);
924 if (GVal) {
925 if (!ForwardRefVals.erase(Name))
926 return Error(NameLoc, "redefinition of global '@" + Name + "'");
927 }
928 } else {
929 auto I = ForwardRefValIDs.find(NumberedVals.size());
930 if (I != ForwardRefValIDs.end()) {
931 GVal = I->second.first;
932 ForwardRefValIDs.erase(I);
933 }
934 }
935
936 // Okay, create the alias but do not insert it into the module yet.
937 std::unique_ptr<GlobalIndirectSymbol> GA;
938 if (IsAlias)
939 GA.reset(GlobalAlias::create(Ty, AddrSpace,
940 (GlobalValue::LinkageTypes)Linkage, Name,
941 Aliasee, /*Parent*/ nullptr));
942 else
943 GA.reset(GlobalIFunc::create(Ty, AddrSpace,
944 (GlobalValue::LinkageTypes)Linkage, Name,
945 Aliasee, /*Parent*/ nullptr));
946 GA->setThreadLocalMode(TLM);
947 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
948 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
949 GA->setUnnamedAddr(UnnamedAddr);
950 maybeSetDSOLocal(DSOLocal, *GA);
951
952 if (Name.empty())
953 NumberedVals.push_back(GA.get());
954
955 if (GVal) {
956 // Verify that types agree.
957 if (GVal->getType() != GA->getType())
958 return Error(
959 ExplicitTypeLoc,
960 "forward reference and definition of alias have different types");
961
962 // If they agree, just RAUW the old value with the alias and remove the
963 // forward ref info.
964 GVal->replaceAllUsesWith(GA.get());
965 GVal->eraseFromParent();
966 }
967
968 // Insert into the module, we know its name won't collide now.
969 if (IsAlias)
970 M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
971 else
972 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
973 assert(GA->getName() == Name && "Should not be a name conflict!");
974
975 // The module owns this now
976 GA.release();
977
978 return false;
979 }
980
981 /// ParseGlobal
982 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
983 /// OptionalVisibility OptionalDLLStorageClass
984 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
985 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
986 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
987 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
988 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
989 /// Const OptionalAttrs
990 ///
991 /// Everything up to and including OptionalUnnamedAddr has been parsed
992 /// already.
993 ///
ParseGlobal(const std::string & Name,LocTy NameLoc,unsigned Linkage,bool HasLinkage,unsigned Visibility,unsigned DLLStorageClass,bool DSOLocal,GlobalVariable::ThreadLocalMode TLM,GlobalVariable::UnnamedAddr UnnamedAddr)994 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
995 unsigned Linkage, bool HasLinkage,
996 unsigned Visibility, unsigned DLLStorageClass,
997 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
998 GlobalVariable::UnnamedAddr UnnamedAddr) {
999 if (!isValidVisibilityForLinkage(Visibility, Linkage))
1000 return Error(NameLoc,
1001 "symbol with local linkage must have default visibility");
1002
1003 unsigned AddrSpace;
1004 bool IsConstant, IsExternallyInitialized;
1005 LocTy IsExternallyInitializedLoc;
1006 LocTy TyLoc;
1007
1008 Type *Ty = nullptr;
1009 if (ParseOptionalAddrSpace(AddrSpace) ||
1010 ParseOptionalToken(lltok::kw_externally_initialized,
1011 IsExternallyInitialized,
1012 &IsExternallyInitializedLoc) ||
1013 ParseGlobalType(IsConstant) ||
1014 ParseType(Ty, TyLoc))
1015 return true;
1016
1017 // If the linkage is specified and is external, then no initializer is
1018 // present.
1019 Constant *Init = nullptr;
1020 if (!HasLinkage ||
1021 !GlobalValue::isValidDeclarationLinkage(
1022 (GlobalValue::LinkageTypes)Linkage)) {
1023 if (ParseGlobalValue(Ty, Init))
1024 return true;
1025 }
1026
1027 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1028 return Error(TyLoc, "invalid type for global variable");
1029
1030 GlobalValue *GVal = nullptr;
1031
1032 // See if the global was forward referenced, if so, use the global.
1033 if (!Name.empty()) {
1034 GVal = M->getNamedValue(Name);
1035 if (GVal) {
1036 if (!ForwardRefVals.erase(Name))
1037 return Error(NameLoc, "redefinition of global '@" + Name + "'");
1038 }
1039 } else {
1040 auto I = ForwardRefValIDs.find(NumberedVals.size());
1041 if (I != ForwardRefValIDs.end()) {
1042 GVal = I->second.first;
1043 ForwardRefValIDs.erase(I);
1044 }
1045 }
1046
1047 GlobalVariable *GV;
1048 if (!GVal) {
1049 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1050 Name, nullptr, GlobalVariable::NotThreadLocal,
1051 AddrSpace);
1052 } else {
1053 if (GVal->getValueType() != Ty)
1054 return Error(TyLoc,
1055 "forward reference and definition of global have different types");
1056
1057 GV = cast<GlobalVariable>(GVal);
1058
1059 // Move the forward-reference to the correct spot in the module.
1060 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1061 }
1062
1063 if (Name.empty())
1064 NumberedVals.push_back(GV);
1065
1066 // Set the parsed properties on the global.
1067 if (Init)
1068 GV->setInitializer(Init);
1069 GV->setConstant(IsConstant);
1070 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1071 maybeSetDSOLocal(DSOLocal, *GV);
1072 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1073 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1074 GV->setExternallyInitialized(IsExternallyInitialized);
1075 GV->setThreadLocalMode(TLM);
1076 GV->setUnnamedAddr(UnnamedAddr);
1077
1078 // Parse attributes on the global.
1079 while (Lex.getKind() == lltok::comma) {
1080 Lex.Lex();
1081
1082 if (Lex.getKind() == lltok::kw_section) {
1083 Lex.Lex();
1084 GV->setSection(Lex.getStrVal());
1085 if (ParseToken(lltok::StringConstant, "expected global section string"))
1086 return true;
1087 } else if (Lex.getKind() == lltok::kw_align) {
1088 unsigned Alignment;
1089 if (ParseOptionalAlignment(Alignment)) return true;
1090 GV->setAlignment(Alignment);
1091 } else if (Lex.getKind() == lltok::MetadataVar) {
1092 if (ParseGlobalObjectMetadataAttachment(*GV))
1093 return true;
1094 } else {
1095 Comdat *C;
1096 if (parseOptionalComdat(Name, C))
1097 return true;
1098 if (C)
1099 GV->setComdat(C);
1100 else
1101 return TokError("unknown global variable property!");
1102 }
1103 }
1104
1105 AttrBuilder Attrs;
1106 LocTy BuiltinLoc;
1107 std::vector<unsigned> FwdRefAttrGrps;
1108 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1109 return true;
1110 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1111 GV->setAttributes(AttributeSet::get(Context, Attrs));
1112 ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1113 }
1114
1115 return false;
1116 }
1117
1118 /// ParseUnnamedAttrGrp
1119 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
ParseUnnamedAttrGrp()1120 bool LLParser::ParseUnnamedAttrGrp() {
1121 assert(Lex.getKind() == lltok::kw_attributes);
1122 LocTy AttrGrpLoc = Lex.getLoc();
1123 Lex.Lex();
1124
1125 if (Lex.getKind() != lltok::AttrGrpID)
1126 return TokError("expected attribute group id");
1127
1128 unsigned VarID = Lex.getUIntVal();
1129 std::vector<unsigned> unused;
1130 LocTy BuiltinLoc;
1131 Lex.Lex();
1132
1133 if (ParseToken(lltok::equal, "expected '=' here") ||
1134 ParseToken(lltok::lbrace, "expected '{' here") ||
1135 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1136 BuiltinLoc) ||
1137 ParseToken(lltok::rbrace, "expected end of attribute group"))
1138 return true;
1139
1140 if (!NumberedAttrBuilders[VarID].hasAttributes())
1141 return Error(AttrGrpLoc, "attribute group has no attributes");
1142
1143 return false;
1144 }
1145
1146 /// ParseFnAttributeValuePairs
1147 /// ::= <attr> | <attr> '=' <value>
ParseFnAttributeValuePairs(AttrBuilder & B,std::vector<unsigned> & FwdRefAttrGrps,bool inAttrGrp,LocTy & BuiltinLoc)1148 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1149 std::vector<unsigned> &FwdRefAttrGrps,
1150 bool inAttrGrp, LocTy &BuiltinLoc) {
1151 bool HaveError = false;
1152
1153 B.clear();
1154
1155 while (true) {
1156 lltok::Kind Token = Lex.getKind();
1157 if (Token == lltok::kw_builtin)
1158 BuiltinLoc = Lex.getLoc();
1159 switch (Token) {
1160 default:
1161 if (!inAttrGrp) return HaveError;
1162 return Error(Lex.getLoc(), "unterminated attribute group");
1163 case lltok::rbrace:
1164 // Finished.
1165 return false;
1166
1167 case lltok::AttrGrpID: {
1168 // Allow a function to reference an attribute group:
1169 //
1170 // define void @foo() #1 { ... }
1171 if (inAttrGrp)
1172 HaveError |=
1173 Error(Lex.getLoc(),
1174 "cannot have an attribute group reference in an attribute group");
1175
1176 unsigned AttrGrpNum = Lex.getUIntVal();
1177 if (inAttrGrp) break;
1178
1179 // Save the reference to the attribute group. We'll fill it in later.
1180 FwdRefAttrGrps.push_back(AttrGrpNum);
1181 break;
1182 }
1183 // Target-dependent attributes:
1184 case lltok::StringConstant: {
1185 if (ParseStringAttribute(B))
1186 return true;
1187 continue;
1188 }
1189
1190 // Target-independent attributes:
1191 case lltok::kw_align: {
1192 // As a hack, we allow function alignment to be initially parsed as an
1193 // attribute on a function declaration/definition or added to an attribute
1194 // group and later moved to the alignment field.
1195 unsigned Alignment;
1196 if (inAttrGrp) {
1197 Lex.Lex();
1198 if (ParseToken(lltok::equal, "expected '=' here") ||
1199 ParseUInt32(Alignment))
1200 return true;
1201 } else {
1202 if (ParseOptionalAlignment(Alignment))
1203 return true;
1204 }
1205 B.addAlignmentAttr(Alignment);
1206 continue;
1207 }
1208 case lltok::kw_alignstack: {
1209 unsigned Alignment;
1210 if (inAttrGrp) {
1211 Lex.Lex();
1212 if (ParseToken(lltok::equal, "expected '=' here") ||
1213 ParseUInt32(Alignment))
1214 return true;
1215 } else {
1216 if (ParseOptionalStackAlignment(Alignment))
1217 return true;
1218 }
1219 B.addStackAlignmentAttr(Alignment);
1220 continue;
1221 }
1222 case lltok::kw_allocsize: {
1223 unsigned ElemSizeArg;
1224 Optional<unsigned> NumElemsArg;
1225 // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1226 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1227 return true;
1228 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1229 continue;
1230 }
1231 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1232 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1233 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1234 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1235 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1236 case lltok::kw_inaccessiblememonly:
1237 B.addAttribute(Attribute::InaccessibleMemOnly); break;
1238 case lltok::kw_inaccessiblemem_or_argmemonly:
1239 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1240 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1241 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1242 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1243 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1244 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1245 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1246 case lltok::kw_noimplicitfloat:
1247 B.addAttribute(Attribute::NoImplicitFloat); break;
1248 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1249 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1250 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1251 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1252 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1253 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1254 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1255 case lltok::kw_optforfuzzing:
1256 B.addAttribute(Attribute::OptForFuzzing); break;
1257 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1258 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1259 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1260 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1261 case lltok::kw_returns_twice:
1262 B.addAttribute(Attribute::ReturnsTwice); break;
1263 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1264 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1265 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1266 case lltok::kw_sspstrong:
1267 B.addAttribute(Attribute::StackProtectStrong); break;
1268 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1269 case lltok::kw_shadowcallstack:
1270 B.addAttribute(Attribute::ShadowCallStack); break;
1271 case lltok::kw_sanitize_address:
1272 B.addAttribute(Attribute::SanitizeAddress); break;
1273 case lltok::kw_sanitize_hwaddress:
1274 B.addAttribute(Attribute::SanitizeHWAddress); break;
1275 case lltok::kw_sanitize_thread:
1276 B.addAttribute(Attribute::SanitizeThread); break;
1277 case lltok::kw_sanitize_memory:
1278 B.addAttribute(Attribute::SanitizeMemory); break;
1279 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1280 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1281 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1282
1283 // Error handling.
1284 case lltok::kw_inreg:
1285 case lltok::kw_signext:
1286 case lltok::kw_zeroext:
1287 HaveError |=
1288 Error(Lex.getLoc(),
1289 "invalid use of attribute on a function");
1290 break;
1291 case lltok::kw_byval:
1292 case lltok::kw_dereferenceable:
1293 case lltok::kw_dereferenceable_or_null:
1294 case lltok::kw_inalloca:
1295 case lltok::kw_nest:
1296 case lltok::kw_noalias:
1297 case lltok::kw_nocapture:
1298 case lltok::kw_nonnull:
1299 case lltok::kw_returned:
1300 case lltok::kw_sret:
1301 case lltok::kw_swifterror:
1302 case lltok::kw_swiftself:
1303 HaveError |=
1304 Error(Lex.getLoc(),
1305 "invalid use of parameter-only attribute on a function");
1306 break;
1307 }
1308
1309 Lex.Lex();
1310 }
1311 }
1312
1313 //===----------------------------------------------------------------------===//
1314 // GlobalValue Reference/Resolution Routines.
1315 //===----------------------------------------------------------------------===//
1316
createGlobalFwdRef(Module * M,PointerType * PTy,const std::string & Name)1317 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1318 const std::string &Name) {
1319 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1320 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1321 else
1322 return new GlobalVariable(*M, PTy->getElementType(), false,
1323 GlobalValue::ExternalWeakLinkage, nullptr, Name,
1324 nullptr, GlobalVariable::NotThreadLocal,
1325 PTy->getAddressSpace());
1326 }
1327
1328 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1329 /// forward reference record if needed. This can return null if the value
1330 /// exists but does not have the right type.
GetGlobalVal(const std::string & Name,Type * Ty,LocTy Loc)1331 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1332 LocTy Loc) {
1333 PointerType *PTy = dyn_cast<PointerType>(Ty);
1334 if (!PTy) {
1335 Error(Loc, "global variable reference must have pointer type");
1336 return nullptr;
1337 }
1338
1339 // Look this name up in the normal function symbol table.
1340 GlobalValue *Val =
1341 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1342
1343 // If this is a forward reference for the value, see if we already created a
1344 // forward ref record.
1345 if (!Val) {
1346 auto I = ForwardRefVals.find(Name);
1347 if (I != ForwardRefVals.end())
1348 Val = I->second.first;
1349 }
1350
1351 // If we have the value in the symbol table or fwd-ref table, return it.
1352 if (Val) {
1353 if (Val->getType() == Ty) return Val;
1354 Error(Loc, "'@" + Name + "' defined with type '" +
1355 getTypeString(Val->getType()) + "'");
1356 return nullptr;
1357 }
1358
1359 // Otherwise, create a new forward reference for this value and remember it.
1360 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1361 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1362 return FwdVal;
1363 }
1364
GetGlobalVal(unsigned ID,Type * Ty,LocTy Loc)1365 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1366 PointerType *PTy = dyn_cast<PointerType>(Ty);
1367 if (!PTy) {
1368 Error(Loc, "global variable reference must have pointer type");
1369 return nullptr;
1370 }
1371
1372 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1373
1374 // If this is a forward reference for the value, see if we already created a
1375 // forward ref record.
1376 if (!Val) {
1377 auto I = ForwardRefValIDs.find(ID);
1378 if (I != ForwardRefValIDs.end())
1379 Val = I->second.first;
1380 }
1381
1382 // If we have the value in the symbol table or fwd-ref table, return it.
1383 if (Val) {
1384 if (Val->getType() == Ty) return Val;
1385 Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1386 getTypeString(Val->getType()) + "'");
1387 return nullptr;
1388 }
1389
1390 // Otherwise, create a new forward reference for this value and remember it.
1391 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1392 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1393 return FwdVal;
1394 }
1395
1396 //===----------------------------------------------------------------------===//
1397 // Comdat Reference/Resolution Routines.
1398 //===----------------------------------------------------------------------===//
1399
getComdat(const std::string & Name,LocTy Loc)1400 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1401 // Look this name up in the comdat symbol table.
1402 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1403 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1404 if (I != ComdatSymTab.end())
1405 return &I->second;
1406
1407 // Otherwise, create a new forward reference for this value and remember it.
1408 Comdat *C = M->getOrInsertComdat(Name);
1409 ForwardRefComdats[Name] = Loc;
1410 return C;
1411 }
1412
1413 //===----------------------------------------------------------------------===//
1414 // Helper Routines.
1415 //===----------------------------------------------------------------------===//
1416
1417 /// ParseToken - If the current token has the specified kind, eat it and return
1418 /// success. Otherwise, emit the specified error and return failure.
ParseToken(lltok::Kind T,const char * ErrMsg)1419 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1420 if (Lex.getKind() != T)
1421 return TokError(ErrMsg);
1422 Lex.Lex();
1423 return false;
1424 }
1425
1426 /// ParseStringConstant
1427 /// ::= StringConstant
ParseStringConstant(std::string & Result)1428 bool LLParser::ParseStringConstant(std::string &Result) {
1429 if (Lex.getKind() != lltok::StringConstant)
1430 return TokError("expected string constant");
1431 Result = Lex.getStrVal();
1432 Lex.Lex();
1433 return false;
1434 }
1435
1436 /// ParseUInt32
1437 /// ::= uint32
ParseUInt32(uint32_t & Val)1438 bool LLParser::ParseUInt32(uint32_t &Val) {
1439 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1440 return TokError("expected integer");
1441 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1442 if (Val64 != unsigned(Val64))
1443 return TokError("expected 32-bit integer (too large)");
1444 Val = Val64;
1445 Lex.Lex();
1446 return false;
1447 }
1448
1449 /// ParseUInt64
1450 /// ::= uint64
ParseUInt64(uint64_t & Val)1451 bool LLParser::ParseUInt64(uint64_t &Val) {
1452 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1453 return TokError("expected integer");
1454 Val = Lex.getAPSIntVal().getLimitedValue();
1455 Lex.Lex();
1456 return false;
1457 }
1458
1459 /// ParseTLSModel
1460 /// := 'localdynamic'
1461 /// := 'initialexec'
1462 /// := 'localexec'
ParseTLSModel(GlobalVariable::ThreadLocalMode & TLM)1463 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1464 switch (Lex.getKind()) {
1465 default:
1466 return TokError("expected localdynamic, initialexec or localexec");
1467 case lltok::kw_localdynamic:
1468 TLM = GlobalVariable::LocalDynamicTLSModel;
1469 break;
1470 case lltok::kw_initialexec:
1471 TLM = GlobalVariable::InitialExecTLSModel;
1472 break;
1473 case lltok::kw_localexec:
1474 TLM = GlobalVariable::LocalExecTLSModel;
1475 break;
1476 }
1477
1478 Lex.Lex();
1479 return false;
1480 }
1481
1482 /// ParseOptionalThreadLocal
1483 /// := /*empty*/
1484 /// := 'thread_local'
1485 /// := 'thread_local' '(' tlsmodel ')'
ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode & TLM)1486 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1487 TLM = GlobalVariable::NotThreadLocal;
1488 if (!EatIfPresent(lltok::kw_thread_local))
1489 return false;
1490
1491 TLM = GlobalVariable::GeneralDynamicTLSModel;
1492 if (Lex.getKind() == lltok::lparen) {
1493 Lex.Lex();
1494 return ParseTLSModel(TLM) ||
1495 ParseToken(lltok::rparen, "expected ')' after thread local model");
1496 }
1497 return false;
1498 }
1499
1500 /// ParseOptionalAddrSpace
1501 /// := /*empty*/
1502 /// := 'addrspace' '(' uint32 ')'
ParseOptionalAddrSpace(unsigned & AddrSpace)1503 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1504 AddrSpace = 0;
1505 if (!EatIfPresent(lltok::kw_addrspace))
1506 return false;
1507 return ParseToken(lltok::lparen, "expected '(' in address space") ||
1508 ParseUInt32(AddrSpace) ||
1509 ParseToken(lltok::rparen, "expected ')' in address space");
1510 }
1511
1512 /// ParseStringAttribute
1513 /// := StringConstant
1514 /// := StringConstant '=' StringConstant
ParseStringAttribute(AttrBuilder & B)1515 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1516 std::string Attr = Lex.getStrVal();
1517 Lex.Lex();
1518 std::string Val;
1519 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1520 return true;
1521 B.addAttribute(Attr, Val);
1522 return false;
1523 }
1524
1525 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
ParseOptionalParamAttrs(AttrBuilder & B)1526 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1527 bool HaveError = false;
1528
1529 B.clear();
1530
1531 while (true) {
1532 lltok::Kind Token = Lex.getKind();
1533 switch (Token) {
1534 default: // End of attributes.
1535 return HaveError;
1536 case lltok::StringConstant: {
1537 if (ParseStringAttribute(B))
1538 return true;
1539 continue;
1540 }
1541 case lltok::kw_align: {
1542 unsigned Alignment;
1543 if (ParseOptionalAlignment(Alignment))
1544 return true;
1545 B.addAlignmentAttr(Alignment);
1546 continue;
1547 }
1548 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break;
1549 case lltok::kw_dereferenceable: {
1550 uint64_t Bytes;
1551 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1552 return true;
1553 B.addDereferenceableAttr(Bytes);
1554 continue;
1555 }
1556 case lltok::kw_dereferenceable_or_null: {
1557 uint64_t Bytes;
1558 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1559 return true;
1560 B.addDereferenceableOrNullAttr(Bytes);
1561 continue;
1562 }
1563 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break;
1564 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1565 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break;
1566 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break;
1567 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break;
1568 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1569 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1570 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1571 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break;
1572 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1573 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break;
1574 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break;
1575 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break;
1576 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1577 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1578
1579 case lltok::kw_alignstack:
1580 case lltok::kw_alwaysinline:
1581 case lltok::kw_argmemonly:
1582 case lltok::kw_builtin:
1583 case lltok::kw_inlinehint:
1584 case lltok::kw_jumptable:
1585 case lltok::kw_minsize:
1586 case lltok::kw_naked:
1587 case lltok::kw_nobuiltin:
1588 case lltok::kw_noduplicate:
1589 case lltok::kw_noimplicitfloat:
1590 case lltok::kw_noinline:
1591 case lltok::kw_nonlazybind:
1592 case lltok::kw_noredzone:
1593 case lltok::kw_noreturn:
1594 case lltok::kw_nocf_check:
1595 case lltok::kw_nounwind:
1596 case lltok::kw_optforfuzzing:
1597 case lltok::kw_optnone:
1598 case lltok::kw_optsize:
1599 case lltok::kw_returns_twice:
1600 case lltok::kw_sanitize_address:
1601 case lltok::kw_sanitize_hwaddress:
1602 case lltok::kw_sanitize_memory:
1603 case lltok::kw_sanitize_thread:
1604 case lltok::kw_ssp:
1605 case lltok::kw_sspreq:
1606 case lltok::kw_sspstrong:
1607 case lltok::kw_safestack:
1608 case lltok::kw_shadowcallstack:
1609 case lltok::kw_strictfp:
1610 case lltok::kw_uwtable:
1611 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1612 break;
1613 }
1614
1615 Lex.Lex();
1616 }
1617 }
1618
1619 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
ParseOptionalReturnAttrs(AttrBuilder & B)1620 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1621 bool HaveError = false;
1622
1623 B.clear();
1624
1625 while (true) {
1626 lltok::Kind Token = Lex.getKind();
1627 switch (Token) {
1628 default: // End of attributes.
1629 return HaveError;
1630 case lltok::StringConstant: {
1631 if (ParseStringAttribute(B))
1632 return true;
1633 continue;
1634 }
1635 case lltok::kw_dereferenceable: {
1636 uint64_t Bytes;
1637 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1638 return true;
1639 B.addDereferenceableAttr(Bytes);
1640 continue;
1641 }
1642 case lltok::kw_dereferenceable_or_null: {
1643 uint64_t Bytes;
1644 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1645 return true;
1646 B.addDereferenceableOrNullAttr(Bytes);
1647 continue;
1648 }
1649 case lltok::kw_align: {
1650 unsigned Alignment;
1651 if (ParseOptionalAlignment(Alignment))
1652 return true;
1653 B.addAlignmentAttr(Alignment);
1654 continue;
1655 }
1656 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1657 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break;
1658 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1659 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1660 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1661
1662 // Error handling.
1663 case lltok::kw_byval:
1664 case lltok::kw_inalloca:
1665 case lltok::kw_nest:
1666 case lltok::kw_nocapture:
1667 case lltok::kw_returned:
1668 case lltok::kw_sret:
1669 case lltok::kw_swifterror:
1670 case lltok::kw_swiftself:
1671 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1672 break;
1673
1674 case lltok::kw_alignstack:
1675 case lltok::kw_alwaysinline:
1676 case lltok::kw_argmemonly:
1677 case lltok::kw_builtin:
1678 case lltok::kw_cold:
1679 case lltok::kw_inlinehint:
1680 case lltok::kw_jumptable:
1681 case lltok::kw_minsize:
1682 case lltok::kw_naked:
1683 case lltok::kw_nobuiltin:
1684 case lltok::kw_noduplicate:
1685 case lltok::kw_noimplicitfloat:
1686 case lltok::kw_noinline:
1687 case lltok::kw_nonlazybind:
1688 case lltok::kw_noredzone:
1689 case lltok::kw_noreturn:
1690 case lltok::kw_nocf_check:
1691 case lltok::kw_nounwind:
1692 case lltok::kw_optforfuzzing:
1693 case lltok::kw_optnone:
1694 case lltok::kw_optsize:
1695 case lltok::kw_returns_twice:
1696 case lltok::kw_sanitize_address:
1697 case lltok::kw_sanitize_hwaddress:
1698 case lltok::kw_sanitize_memory:
1699 case lltok::kw_sanitize_thread:
1700 case lltok::kw_ssp:
1701 case lltok::kw_sspreq:
1702 case lltok::kw_sspstrong:
1703 case lltok::kw_safestack:
1704 case lltok::kw_shadowcallstack:
1705 case lltok::kw_strictfp:
1706 case lltok::kw_uwtable:
1707 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1708 break;
1709
1710 case lltok::kw_readnone:
1711 case lltok::kw_readonly:
1712 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1713 }
1714
1715 Lex.Lex();
1716 }
1717 }
1718
parseOptionalLinkageAux(lltok::Kind Kind,bool & HasLinkage)1719 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1720 HasLinkage = true;
1721 switch (Kind) {
1722 default:
1723 HasLinkage = false;
1724 return GlobalValue::ExternalLinkage;
1725 case lltok::kw_private:
1726 return GlobalValue::PrivateLinkage;
1727 case lltok::kw_internal:
1728 return GlobalValue::InternalLinkage;
1729 case lltok::kw_weak:
1730 return GlobalValue::WeakAnyLinkage;
1731 case lltok::kw_weak_odr:
1732 return GlobalValue::WeakODRLinkage;
1733 case lltok::kw_linkonce:
1734 return GlobalValue::LinkOnceAnyLinkage;
1735 case lltok::kw_linkonce_odr:
1736 return GlobalValue::LinkOnceODRLinkage;
1737 case lltok::kw_available_externally:
1738 return GlobalValue::AvailableExternallyLinkage;
1739 case lltok::kw_appending:
1740 return GlobalValue::AppendingLinkage;
1741 case lltok::kw_common:
1742 return GlobalValue::CommonLinkage;
1743 case lltok::kw_extern_weak:
1744 return GlobalValue::ExternalWeakLinkage;
1745 case lltok::kw_external:
1746 return GlobalValue::ExternalLinkage;
1747 }
1748 }
1749
1750 /// ParseOptionalLinkage
1751 /// ::= /*empty*/
1752 /// ::= 'private'
1753 /// ::= 'internal'
1754 /// ::= 'weak'
1755 /// ::= 'weak_odr'
1756 /// ::= 'linkonce'
1757 /// ::= 'linkonce_odr'
1758 /// ::= 'available_externally'
1759 /// ::= 'appending'
1760 /// ::= 'common'
1761 /// ::= 'extern_weak'
1762 /// ::= 'external'
ParseOptionalLinkage(unsigned & Res,bool & HasLinkage,unsigned & Visibility,unsigned & DLLStorageClass,bool & DSOLocal)1763 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1764 unsigned &Visibility,
1765 unsigned &DLLStorageClass,
1766 bool &DSOLocal) {
1767 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1768 if (HasLinkage)
1769 Lex.Lex();
1770 ParseOptionalDSOLocal(DSOLocal);
1771 ParseOptionalVisibility(Visibility);
1772 ParseOptionalDLLStorageClass(DLLStorageClass);
1773
1774 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1775 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1776 }
1777
1778 return false;
1779 }
1780
ParseOptionalDSOLocal(bool & DSOLocal)1781 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1782 switch (Lex.getKind()) {
1783 default:
1784 DSOLocal = false;
1785 break;
1786 case lltok::kw_dso_local:
1787 DSOLocal = true;
1788 Lex.Lex();
1789 break;
1790 case lltok::kw_dso_preemptable:
1791 DSOLocal = false;
1792 Lex.Lex();
1793 break;
1794 }
1795 }
1796
1797 /// ParseOptionalVisibility
1798 /// ::= /*empty*/
1799 /// ::= 'default'
1800 /// ::= 'hidden'
1801 /// ::= 'protected'
1802 ///
ParseOptionalVisibility(unsigned & Res)1803 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1804 switch (Lex.getKind()) {
1805 default:
1806 Res = GlobalValue::DefaultVisibility;
1807 return;
1808 case lltok::kw_default:
1809 Res = GlobalValue::DefaultVisibility;
1810 break;
1811 case lltok::kw_hidden:
1812 Res = GlobalValue::HiddenVisibility;
1813 break;
1814 case lltok::kw_protected:
1815 Res = GlobalValue::ProtectedVisibility;
1816 break;
1817 }
1818 Lex.Lex();
1819 }
1820
1821 /// ParseOptionalDLLStorageClass
1822 /// ::= /*empty*/
1823 /// ::= 'dllimport'
1824 /// ::= 'dllexport'
1825 ///
ParseOptionalDLLStorageClass(unsigned & Res)1826 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1827 switch (Lex.getKind()) {
1828 default:
1829 Res = GlobalValue::DefaultStorageClass;
1830 return;
1831 case lltok::kw_dllimport:
1832 Res = GlobalValue::DLLImportStorageClass;
1833 break;
1834 case lltok::kw_dllexport:
1835 Res = GlobalValue::DLLExportStorageClass;
1836 break;
1837 }
1838 Lex.Lex();
1839 }
1840
1841 /// ParseOptionalCallingConv
1842 /// ::= /*empty*/
1843 /// ::= 'ccc'
1844 /// ::= 'fastcc'
1845 /// ::= 'intel_ocl_bicc'
1846 /// ::= 'coldcc'
1847 /// ::= 'x86_stdcallcc'
1848 /// ::= 'x86_fastcallcc'
1849 /// ::= 'x86_thiscallcc'
1850 /// ::= 'x86_vectorcallcc'
1851 /// ::= 'arm_apcscc'
1852 /// ::= 'arm_aapcscc'
1853 /// ::= 'arm_aapcs_vfpcc'
1854 /// ::= 'msp430_intrcc'
1855 /// ::= 'avr_intrcc'
1856 /// ::= 'avr_signalcc'
1857 /// ::= 'ptx_kernel'
1858 /// ::= 'ptx_device'
1859 /// ::= 'spir_func'
1860 /// ::= 'spir_kernel'
1861 /// ::= 'x86_64_sysvcc'
1862 /// ::= 'win64cc'
1863 /// ::= 'webkit_jscc'
1864 /// ::= 'anyregcc'
1865 /// ::= 'preserve_mostcc'
1866 /// ::= 'preserve_allcc'
1867 /// ::= 'ghccc'
1868 /// ::= 'swiftcc'
1869 /// ::= 'x86_intrcc'
1870 /// ::= 'hhvmcc'
1871 /// ::= 'hhvm_ccc'
1872 /// ::= 'cxx_fast_tlscc'
1873 /// ::= 'amdgpu_vs'
1874 /// ::= 'amdgpu_ls'
1875 /// ::= 'amdgpu_hs'
1876 /// ::= 'amdgpu_es'
1877 /// ::= 'amdgpu_gs'
1878 /// ::= 'amdgpu_ps'
1879 /// ::= 'amdgpu_cs'
1880 /// ::= 'amdgpu_kernel'
1881 /// ::= 'cc' UINT
1882 ///
ParseOptionalCallingConv(unsigned & CC)1883 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1884 switch (Lex.getKind()) {
1885 default: CC = CallingConv::C; return false;
1886 case lltok::kw_ccc: CC = CallingConv::C; break;
1887 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
1888 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
1889 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
1890 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1891 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break;
1892 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1893 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1894 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
1895 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
1896 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1897 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break;
1898 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break;
1899 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break;
1900 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break;
1901 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break;
1902 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break;
1903 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break;
1904 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1905 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break;
1906 case lltok::kw_win64cc: CC = CallingConv::Win64; break;
1907 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break;
1908 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break;
1909 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1910 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1911 case lltok::kw_ghccc: CC = CallingConv::GHC; break;
1912 case lltok::kw_swiftcc: CC = CallingConv::Swift; break;
1913 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break;
1914 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break;
1915 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break;
1916 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1917 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break;
1918 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break;
1919 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break;
1920 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break;
1921 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break;
1922 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break;
1923 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break;
1924 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break;
1925 case lltok::kw_cc: {
1926 Lex.Lex();
1927 return ParseUInt32(CC);
1928 }
1929 }
1930
1931 Lex.Lex();
1932 return false;
1933 }
1934
1935 /// ParseMetadataAttachment
1936 /// ::= !dbg !42
ParseMetadataAttachment(unsigned & Kind,MDNode * & MD)1937 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1938 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1939
1940 std::string Name = Lex.getStrVal();
1941 Kind = M->getMDKindID(Name);
1942 Lex.Lex();
1943
1944 return ParseMDNode(MD);
1945 }
1946
1947 /// ParseInstructionMetadata
1948 /// ::= !dbg !42 (',' !dbg !57)*
ParseInstructionMetadata(Instruction & Inst)1949 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1950 do {
1951 if (Lex.getKind() != lltok::MetadataVar)
1952 return TokError("expected metadata after comma");
1953
1954 unsigned MDK;
1955 MDNode *N;
1956 if (ParseMetadataAttachment(MDK, N))
1957 return true;
1958
1959 Inst.setMetadata(MDK, N);
1960 if (MDK == LLVMContext::MD_tbaa)
1961 InstsWithTBAATag.push_back(&Inst);
1962
1963 // If this is the end of the list, we're done.
1964 } while (EatIfPresent(lltok::comma));
1965 return false;
1966 }
1967
1968 /// ParseGlobalObjectMetadataAttachment
1969 /// ::= !dbg !57
ParseGlobalObjectMetadataAttachment(GlobalObject & GO)1970 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1971 unsigned MDK;
1972 MDNode *N;
1973 if (ParseMetadataAttachment(MDK, N))
1974 return true;
1975
1976 GO.addMetadata(MDK, *N);
1977 return false;
1978 }
1979
1980 /// ParseOptionalFunctionMetadata
1981 /// ::= (!dbg !57)*
ParseOptionalFunctionMetadata(Function & F)1982 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
1983 while (Lex.getKind() == lltok::MetadataVar)
1984 if (ParseGlobalObjectMetadataAttachment(F))
1985 return true;
1986 return false;
1987 }
1988
1989 /// ParseOptionalAlignment
1990 /// ::= /* empty */
1991 /// ::= 'align' 4
ParseOptionalAlignment(unsigned & Alignment)1992 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1993 Alignment = 0;
1994 if (!EatIfPresent(lltok::kw_align))
1995 return false;
1996 LocTy AlignLoc = Lex.getLoc();
1997 if (ParseUInt32(Alignment)) return true;
1998 if (!isPowerOf2_32(Alignment))
1999 return Error(AlignLoc, "alignment is not a power of two");
2000 if (Alignment > Value::MaximumAlignment)
2001 return Error(AlignLoc, "huge alignments are not supported yet");
2002 return false;
2003 }
2004
2005 /// ParseOptionalDerefAttrBytes
2006 /// ::= /* empty */
2007 /// ::= AttrKind '(' 4 ')'
2008 ///
2009 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,uint64_t & Bytes)2010 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2011 uint64_t &Bytes) {
2012 assert((AttrKind == lltok::kw_dereferenceable ||
2013 AttrKind == lltok::kw_dereferenceable_or_null) &&
2014 "contract!");
2015
2016 Bytes = 0;
2017 if (!EatIfPresent(AttrKind))
2018 return false;
2019 LocTy ParenLoc = Lex.getLoc();
2020 if (!EatIfPresent(lltok::lparen))
2021 return Error(ParenLoc, "expected '('");
2022 LocTy DerefLoc = Lex.getLoc();
2023 if (ParseUInt64(Bytes)) return true;
2024 ParenLoc = Lex.getLoc();
2025 if (!EatIfPresent(lltok::rparen))
2026 return Error(ParenLoc, "expected ')'");
2027 if (!Bytes)
2028 return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2029 return false;
2030 }
2031
2032 /// ParseOptionalCommaAlign
2033 /// ::=
2034 /// ::= ',' align 4
2035 ///
2036 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2037 /// end.
ParseOptionalCommaAlign(unsigned & Alignment,bool & AteExtraComma)2038 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
2039 bool &AteExtraComma) {
2040 AteExtraComma = false;
2041 while (EatIfPresent(lltok::comma)) {
2042 // Metadata at the end is an early exit.
2043 if (Lex.getKind() == lltok::MetadataVar) {
2044 AteExtraComma = true;
2045 return false;
2046 }
2047
2048 if (Lex.getKind() != lltok::kw_align)
2049 return Error(Lex.getLoc(), "expected metadata or 'align'");
2050
2051 if (ParseOptionalAlignment(Alignment)) return true;
2052 }
2053
2054 return false;
2055 }
2056
2057 /// ParseOptionalCommaAddrSpace
2058 /// ::=
2059 /// ::= ',' addrspace(1)
2060 ///
2061 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2062 /// end.
ParseOptionalCommaAddrSpace(unsigned & AddrSpace,LocTy & Loc,bool & AteExtraComma)2063 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2064 LocTy &Loc,
2065 bool &AteExtraComma) {
2066 AteExtraComma = false;
2067 while (EatIfPresent(lltok::comma)) {
2068 // Metadata at the end is an early exit.
2069 if (Lex.getKind() == lltok::MetadataVar) {
2070 AteExtraComma = true;
2071 return false;
2072 }
2073
2074 Loc = Lex.getLoc();
2075 if (Lex.getKind() != lltok::kw_addrspace)
2076 return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2077
2078 if (ParseOptionalAddrSpace(AddrSpace))
2079 return true;
2080 }
2081
2082 return false;
2083 }
2084
parseAllocSizeArguments(unsigned & BaseSizeArg,Optional<unsigned> & HowManyArg)2085 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2086 Optional<unsigned> &HowManyArg) {
2087 Lex.Lex();
2088
2089 auto StartParen = Lex.getLoc();
2090 if (!EatIfPresent(lltok::lparen))
2091 return Error(StartParen, "expected '('");
2092
2093 if (ParseUInt32(BaseSizeArg))
2094 return true;
2095
2096 if (EatIfPresent(lltok::comma)) {
2097 auto HowManyAt = Lex.getLoc();
2098 unsigned HowMany;
2099 if (ParseUInt32(HowMany))
2100 return true;
2101 if (HowMany == BaseSizeArg)
2102 return Error(HowManyAt,
2103 "'allocsize' indices can't refer to the same parameter");
2104 HowManyArg = HowMany;
2105 } else
2106 HowManyArg = None;
2107
2108 auto EndParen = Lex.getLoc();
2109 if (!EatIfPresent(lltok::rparen))
2110 return Error(EndParen, "expected ')'");
2111 return false;
2112 }
2113
2114 /// ParseScopeAndOrdering
2115 /// if isAtomic: ::= SyncScope? AtomicOrdering
2116 /// else: ::=
2117 ///
2118 /// This sets Scope and Ordering to the parsed values.
ParseScopeAndOrdering(bool isAtomic,SyncScope::ID & SSID,AtomicOrdering & Ordering)2119 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2120 AtomicOrdering &Ordering) {
2121 if (!isAtomic)
2122 return false;
2123
2124 return ParseScope(SSID) || ParseOrdering(Ordering);
2125 }
2126
2127 /// ParseScope
2128 /// ::= syncscope("singlethread" | "<target scope>")?
2129 ///
2130 /// This sets synchronization scope ID to the ID of the parsed value.
ParseScope(SyncScope::ID & SSID)2131 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2132 SSID = SyncScope::System;
2133 if (EatIfPresent(lltok::kw_syncscope)) {
2134 auto StartParenAt = Lex.getLoc();
2135 if (!EatIfPresent(lltok::lparen))
2136 return Error(StartParenAt, "Expected '(' in syncscope");
2137
2138 std::string SSN;
2139 auto SSNAt = Lex.getLoc();
2140 if (ParseStringConstant(SSN))
2141 return Error(SSNAt, "Expected synchronization scope name");
2142
2143 auto EndParenAt = Lex.getLoc();
2144 if (!EatIfPresent(lltok::rparen))
2145 return Error(EndParenAt, "Expected ')' in syncscope");
2146
2147 SSID = Context.getOrInsertSyncScopeID(SSN);
2148 }
2149
2150 return false;
2151 }
2152
2153 /// ParseOrdering
2154 /// ::= AtomicOrdering
2155 ///
2156 /// This sets Ordering to the parsed value.
ParseOrdering(AtomicOrdering & Ordering)2157 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2158 switch (Lex.getKind()) {
2159 default: return TokError("Expected ordering on atomic instruction");
2160 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2161 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2162 // Not specified yet:
2163 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2164 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2165 case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2166 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2167 case lltok::kw_seq_cst:
2168 Ordering = AtomicOrdering::SequentiallyConsistent;
2169 break;
2170 }
2171 Lex.Lex();
2172 return false;
2173 }
2174
2175 /// ParseOptionalStackAlignment
2176 /// ::= /* empty */
2177 /// ::= 'alignstack' '(' 4 ')'
ParseOptionalStackAlignment(unsigned & Alignment)2178 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2179 Alignment = 0;
2180 if (!EatIfPresent(lltok::kw_alignstack))
2181 return false;
2182 LocTy ParenLoc = Lex.getLoc();
2183 if (!EatIfPresent(lltok::lparen))
2184 return Error(ParenLoc, "expected '('");
2185 LocTy AlignLoc = Lex.getLoc();
2186 if (ParseUInt32(Alignment)) return true;
2187 ParenLoc = Lex.getLoc();
2188 if (!EatIfPresent(lltok::rparen))
2189 return Error(ParenLoc, "expected ')'");
2190 if (!isPowerOf2_32(Alignment))
2191 return Error(AlignLoc, "stack alignment is not a power of two");
2192 return false;
2193 }
2194
2195 /// ParseIndexList - This parses the index list for an insert/extractvalue
2196 /// instruction. This sets AteExtraComma in the case where we eat an extra
2197 /// comma at the end of the line and find that it is followed by metadata.
2198 /// Clients that don't allow metadata can call the version of this function that
2199 /// only takes one argument.
2200 ///
2201 /// ParseIndexList
2202 /// ::= (',' uint32)+
2203 ///
ParseIndexList(SmallVectorImpl<unsigned> & Indices,bool & AteExtraComma)2204 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2205 bool &AteExtraComma) {
2206 AteExtraComma = false;
2207
2208 if (Lex.getKind() != lltok::comma)
2209 return TokError("expected ',' as start of index list");
2210
2211 while (EatIfPresent(lltok::comma)) {
2212 if (Lex.getKind() == lltok::MetadataVar) {
2213 if (Indices.empty()) return TokError("expected index");
2214 AteExtraComma = true;
2215 return false;
2216 }
2217 unsigned Idx = 0;
2218 if (ParseUInt32(Idx)) return true;
2219 Indices.push_back(Idx);
2220 }
2221
2222 return false;
2223 }
2224
2225 //===----------------------------------------------------------------------===//
2226 // Type Parsing.
2227 //===----------------------------------------------------------------------===//
2228
2229 /// ParseType - Parse a type.
ParseType(Type * & Result,const Twine & Msg,bool AllowVoid)2230 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2231 SMLoc TypeLoc = Lex.getLoc();
2232 switch (Lex.getKind()) {
2233 default:
2234 return TokError(Msg);
2235 case lltok::Type:
2236 // Type ::= 'float' | 'void' (etc)
2237 Result = Lex.getTyVal();
2238 Lex.Lex();
2239 break;
2240 case lltok::lbrace:
2241 // Type ::= StructType
2242 if (ParseAnonStructType(Result, false))
2243 return true;
2244 break;
2245 case lltok::lsquare:
2246 // Type ::= '[' ... ']'
2247 Lex.Lex(); // eat the lsquare.
2248 if (ParseArrayVectorType(Result, false))
2249 return true;
2250 break;
2251 case lltok::less: // Either vector or packed struct.
2252 // Type ::= '<' ... '>'
2253 Lex.Lex();
2254 if (Lex.getKind() == lltok::lbrace) {
2255 if (ParseAnonStructType(Result, true) ||
2256 ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2257 return true;
2258 } else if (ParseArrayVectorType(Result, true))
2259 return true;
2260 break;
2261 case lltok::LocalVar: {
2262 // Type ::= %foo
2263 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2264
2265 // If the type hasn't been defined yet, create a forward definition and
2266 // remember where that forward def'n was seen (in case it never is defined).
2267 if (!Entry.first) {
2268 Entry.first = StructType::create(Context, Lex.getStrVal());
2269 Entry.second = Lex.getLoc();
2270 }
2271 Result = Entry.first;
2272 Lex.Lex();
2273 break;
2274 }
2275
2276 case lltok::LocalVarID: {
2277 // Type ::= %4
2278 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2279
2280 // If the type hasn't been defined yet, create a forward definition and
2281 // remember where that forward def'n was seen (in case it never is defined).
2282 if (!Entry.first) {
2283 Entry.first = StructType::create(Context);
2284 Entry.second = Lex.getLoc();
2285 }
2286 Result = Entry.first;
2287 Lex.Lex();
2288 break;
2289 }
2290 }
2291
2292 // Parse the type suffixes.
2293 while (true) {
2294 switch (Lex.getKind()) {
2295 // End of type.
2296 default:
2297 if (!AllowVoid && Result->isVoidTy())
2298 return Error(TypeLoc, "void type only allowed for function results");
2299 return false;
2300
2301 // Type ::= Type '*'
2302 case lltok::star:
2303 if (Result->isLabelTy())
2304 return TokError("basic block pointers are invalid");
2305 if (Result->isVoidTy())
2306 return TokError("pointers to void are invalid - use i8* instead");
2307 if (!PointerType::isValidElementType(Result))
2308 return TokError("pointer to this type is invalid");
2309 Result = PointerType::getUnqual(Result);
2310 Lex.Lex();
2311 break;
2312
2313 // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2314 case lltok::kw_addrspace: {
2315 if (Result->isLabelTy())
2316 return TokError("basic block pointers are invalid");
2317 if (Result->isVoidTy())
2318 return TokError("pointers to void are invalid; use i8* instead");
2319 if (!PointerType::isValidElementType(Result))
2320 return TokError("pointer to this type is invalid");
2321 unsigned AddrSpace;
2322 if (ParseOptionalAddrSpace(AddrSpace) ||
2323 ParseToken(lltok::star, "expected '*' in address space"))
2324 return true;
2325
2326 Result = PointerType::get(Result, AddrSpace);
2327 break;
2328 }
2329
2330 /// Types '(' ArgTypeListI ')' OptFuncAttrs
2331 case lltok::lparen:
2332 if (ParseFunctionType(Result))
2333 return true;
2334 break;
2335 }
2336 }
2337 }
2338
2339 /// ParseParameterList
2340 /// ::= '(' ')'
2341 /// ::= '(' Arg (',' Arg)* ')'
2342 /// Arg
2343 /// ::= Type OptionalAttributes Value OptionalAttributes
ParseParameterList(SmallVectorImpl<ParamInfo> & ArgList,PerFunctionState & PFS,bool IsMustTailCall,bool InVarArgsFunc)2344 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2345 PerFunctionState &PFS, bool IsMustTailCall,
2346 bool InVarArgsFunc) {
2347 if (ParseToken(lltok::lparen, "expected '(' in call"))
2348 return true;
2349
2350 while (Lex.getKind() != lltok::rparen) {
2351 // If this isn't the first argument, we need a comma.
2352 if (!ArgList.empty() &&
2353 ParseToken(lltok::comma, "expected ',' in argument list"))
2354 return true;
2355
2356 // Parse an ellipsis if this is a musttail call in a variadic function.
2357 if (Lex.getKind() == lltok::dotdotdot) {
2358 const char *Msg = "unexpected ellipsis in argument list for ";
2359 if (!IsMustTailCall)
2360 return TokError(Twine(Msg) + "non-musttail call");
2361 if (!InVarArgsFunc)
2362 return TokError(Twine(Msg) + "musttail call in non-varargs function");
2363 Lex.Lex(); // Lex the '...', it is purely for readability.
2364 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2365 }
2366
2367 // Parse the argument.
2368 LocTy ArgLoc;
2369 Type *ArgTy = nullptr;
2370 AttrBuilder ArgAttrs;
2371 Value *V;
2372 if (ParseType(ArgTy, ArgLoc))
2373 return true;
2374
2375 if (ArgTy->isMetadataTy()) {
2376 if (ParseMetadataAsValue(V, PFS))
2377 return true;
2378 } else {
2379 // Otherwise, handle normal operands.
2380 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2381 return true;
2382 }
2383 ArgList.push_back(ParamInfo(
2384 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2385 }
2386
2387 if (IsMustTailCall && InVarArgsFunc)
2388 return TokError("expected '...' at end of argument list for musttail call "
2389 "in varargs function");
2390
2391 Lex.Lex(); // Lex the ')'.
2392 return false;
2393 }
2394
2395 /// ParseOptionalOperandBundles
2396 /// ::= /*empty*/
2397 /// ::= '[' OperandBundle [, OperandBundle ]* ']'
2398 ///
2399 /// OperandBundle
2400 /// ::= bundle-tag '(' ')'
2401 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2402 ///
2403 /// bundle-tag ::= String Constant
ParseOptionalOperandBundles(SmallVectorImpl<OperandBundleDef> & BundleList,PerFunctionState & PFS)2404 bool LLParser::ParseOptionalOperandBundles(
2405 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2406 LocTy BeginLoc = Lex.getLoc();
2407 if (!EatIfPresent(lltok::lsquare))
2408 return false;
2409
2410 while (Lex.getKind() != lltok::rsquare) {
2411 // If this isn't the first operand bundle, we need a comma.
2412 if (!BundleList.empty() &&
2413 ParseToken(lltok::comma, "expected ',' in input list"))
2414 return true;
2415
2416 std::string Tag;
2417 if (ParseStringConstant(Tag))
2418 return true;
2419
2420 if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2421 return true;
2422
2423 std::vector<Value *> Inputs;
2424 while (Lex.getKind() != lltok::rparen) {
2425 // If this isn't the first input, we need a comma.
2426 if (!Inputs.empty() &&
2427 ParseToken(lltok::comma, "expected ',' in input list"))
2428 return true;
2429
2430 Type *Ty = nullptr;
2431 Value *Input = nullptr;
2432 if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2433 return true;
2434 Inputs.push_back(Input);
2435 }
2436
2437 BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2438
2439 Lex.Lex(); // Lex the ')'.
2440 }
2441
2442 if (BundleList.empty())
2443 return Error(BeginLoc, "operand bundle set must not be empty");
2444
2445 Lex.Lex(); // Lex the ']'.
2446 return false;
2447 }
2448
2449 /// ParseArgumentList - Parse the argument list for a function type or function
2450 /// prototype.
2451 /// ::= '(' ArgTypeListI ')'
2452 /// ArgTypeListI
2453 /// ::= /*empty*/
2454 /// ::= '...'
2455 /// ::= ArgTypeList ',' '...'
2456 /// ::= ArgType (',' ArgType)*
2457 ///
ParseArgumentList(SmallVectorImpl<ArgInfo> & ArgList,bool & isVarArg)2458 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2459 bool &isVarArg){
2460 isVarArg = false;
2461 assert(Lex.getKind() == lltok::lparen);
2462 Lex.Lex(); // eat the (.
2463
2464 if (Lex.getKind() == lltok::rparen) {
2465 // empty
2466 } else if (Lex.getKind() == lltok::dotdotdot) {
2467 isVarArg = true;
2468 Lex.Lex();
2469 } else {
2470 LocTy TypeLoc = Lex.getLoc();
2471 Type *ArgTy = nullptr;
2472 AttrBuilder Attrs;
2473 std::string Name;
2474
2475 if (ParseType(ArgTy) ||
2476 ParseOptionalParamAttrs(Attrs)) return true;
2477
2478 if (ArgTy->isVoidTy())
2479 return Error(TypeLoc, "argument can not have void type");
2480
2481 if (Lex.getKind() == lltok::LocalVar) {
2482 Name = Lex.getStrVal();
2483 Lex.Lex();
2484 }
2485
2486 if (!FunctionType::isValidArgumentType(ArgTy))
2487 return Error(TypeLoc, "invalid type for function argument");
2488
2489 ArgList.emplace_back(TypeLoc, ArgTy,
2490 AttributeSet::get(ArgTy->getContext(), Attrs),
2491 std::move(Name));
2492
2493 while (EatIfPresent(lltok::comma)) {
2494 // Handle ... at end of arg list.
2495 if (EatIfPresent(lltok::dotdotdot)) {
2496 isVarArg = true;
2497 break;
2498 }
2499
2500 // Otherwise must be an argument type.
2501 TypeLoc = Lex.getLoc();
2502 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2503
2504 if (ArgTy->isVoidTy())
2505 return Error(TypeLoc, "argument can not have void type");
2506
2507 if (Lex.getKind() == lltok::LocalVar) {
2508 Name = Lex.getStrVal();
2509 Lex.Lex();
2510 } else {
2511 Name = "";
2512 }
2513
2514 if (!ArgTy->isFirstClassType())
2515 return Error(TypeLoc, "invalid type for function argument");
2516
2517 ArgList.emplace_back(TypeLoc, ArgTy,
2518 AttributeSet::get(ArgTy->getContext(), Attrs),
2519 std::move(Name));
2520 }
2521 }
2522
2523 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2524 }
2525
2526 /// ParseFunctionType
2527 /// ::= Type ArgumentList OptionalAttrs
ParseFunctionType(Type * & Result)2528 bool LLParser::ParseFunctionType(Type *&Result) {
2529 assert(Lex.getKind() == lltok::lparen);
2530
2531 if (!FunctionType::isValidReturnType(Result))
2532 return TokError("invalid function return type");
2533
2534 SmallVector<ArgInfo, 8> ArgList;
2535 bool isVarArg;
2536 if (ParseArgumentList(ArgList, isVarArg))
2537 return true;
2538
2539 // Reject names on the arguments lists.
2540 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2541 if (!ArgList[i].Name.empty())
2542 return Error(ArgList[i].Loc, "argument name invalid in function type");
2543 if (ArgList[i].Attrs.hasAttributes())
2544 return Error(ArgList[i].Loc,
2545 "argument attributes invalid in function type");
2546 }
2547
2548 SmallVector<Type*, 16> ArgListTy;
2549 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2550 ArgListTy.push_back(ArgList[i].Ty);
2551
2552 Result = FunctionType::get(Result, ArgListTy, isVarArg);
2553 return false;
2554 }
2555
2556 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2557 /// other structs.
ParseAnonStructType(Type * & Result,bool Packed)2558 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2559 SmallVector<Type*, 8> Elts;
2560 if (ParseStructBody(Elts)) return true;
2561
2562 Result = StructType::get(Context, Elts, Packed);
2563 return false;
2564 }
2565
2566 /// ParseStructDefinition - Parse a struct in a 'type' definition.
ParseStructDefinition(SMLoc TypeLoc,StringRef Name,std::pair<Type *,LocTy> & Entry,Type * & ResultTy)2567 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2568 std::pair<Type*, LocTy> &Entry,
2569 Type *&ResultTy) {
2570 // If the type was already defined, diagnose the redefinition.
2571 if (Entry.first && !Entry.second.isValid())
2572 return Error(TypeLoc, "redefinition of type");
2573
2574 // If we have opaque, just return without filling in the definition for the
2575 // struct. This counts as a definition as far as the .ll file goes.
2576 if (EatIfPresent(lltok::kw_opaque)) {
2577 // This type is being defined, so clear the location to indicate this.
2578 Entry.second = SMLoc();
2579
2580 // If this type number has never been uttered, create it.
2581 if (!Entry.first)
2582 Entry.first = StructType::create(Context, Name);
2583 ResultTy = Entry.first;
2584 return false;
2585 }
2586
2587 // If the type starts with '<', then it is either a packed struct or a vector.
2588 bool isPacked = EatIfPresent(lltok::less);
2589
2590 // If we don't have a struct, then we have a random type alias, which we
2591 // accept for compatibility with old files. These types are not allowed to be
2592 // forward referenced and not allowed to be recursive.
2593 if (Lex.getKind() != lltok::lbrace) {
2594 if (Entry.first)
2595 return Error(TypeLoc, "forward references to non-struct type");
2596
2597 ResultTy = nullptr;
2598 if (isPacked)
2599 return ParseArrayVectorType(ResultTy, true);
2600 return ParseType(ResultTy);
2601 }
2602
2603 // This type is being defined, so clear the location to indicate this.
2604 Entry.second = SMLoc();
2605
2606 // If this type number has never been uttered, create it.
2607 if (!Entry.first)
2608 Entry.first = StructType::create(Context, Name);
2609
2610 StructType *STy = cast<StructType>(Entry.first);
2611
2612 SmallVector<Type*, 8> Body;
2613 if (ParseStructBody(Body) ||
2614 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2615 return true;
2616
2617 STy->setBody(Body, isPacked);
2618 ResultTy = STy;
2619 return false;
2620 }
2621
2622 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
2623 /// StructType
2624 /// ::= '{' '}'
2625 /// ::= '{' Type (',' Type)* '}'
2626 /// ::= '<' '{' '}' '>'
2627 /// ::= '<' '{' Type (',' Type)* '}' '>'
ParseStructBody(SmallVectorImpl<Type * > & Body)2628 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2629 assert(Lex.getKind() == lltok::lbrace);
2630 Lex.Lex(); // Consume the '{'
2631
2632 // Handle the empty struct.
2633 if (EatIfPresent(lltok::rbrace))
2634 return false;
2635
2636 LocTy EltTyLoc = Lex.getLoc();
2637 Type *Ty = nullptr;
2638 if (ParseType(Ty)) return true;
2639 Body.push_back(Ty);
2640
2641 if (!StructType::isValidElementType(Ty))
2642 return Error(EltTyLoc, "invalid element type for struct");
2643
2644 while (EatIfPresent(lltok::comma)) {
2645 EltTyLoc = Lex.getLoc();
2646 if (ParseType(Ty)) return true;
2647
2648 if (!StructType::isValidElementType(Ty))
2649 return Error(EltTyLoc, "invalid element type for struct");
2650
2651 Body.push_back(Ty);
2652 }
2653
2654 return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2655 }
2656
2657 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2658 /// token has already been consumed.
2659 /// Type
2660 /// ::= '[' APSINTVAL 'x' Types ']'
2661 /// ::= '<' APSINTVAL 'x' Types '>'
ParseArrayVectorType(Type * & Result,bool isVector)2662 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2663 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2664 Lex.getAPSIntVal().getBitWidth() > 64)
2665 return TokError("expected number in address space");
2666
2667 LocTy SizeLoc = Lex.getLoc();
2668 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2669 Lex.Lex();
2670
2671 if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2672 return true;
2673
2674 LocTy TypeLoc = Lex.getLoc();
2675 Type *EltTy = nullptr;
2676 if (ParseType(EltTy)) return true;
2677
2678 if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2679 "expected end of sequential type"))
2680 return true;
2681
2682 if (isVector) {
2683 if (Size == 0)
2684 return Error(SizeLoc, "zero element vector is illegal");
2685 if ((unsigned)Size != Size)
2686 return Error(SizeLoc, "size too large for vector");
2687 if (!VectorType::isValidElementType(EltTy))
2688 return Error(TypeLoc, "invalid vector element type");
2689 Result = VectorType::get(EltTy, unsigned(Size));
2690 } else {
2691 if (!ArrayType::isValidElementType(EltTy))
2692 return Error(TypeLoc, "invalid array element type");
2693 Result = ArrayType::get(EltTy, Size);
2694 }
2695 return false;
2696 }
2697
2698 //===----------------------------------------------------------------------===//
2699 // Function Semantic Analysis.
2700 //===----------------------------------------------------------------------===//
2701
PerFunctionState(LLParser & p,Function & f,int functionNumber)2702 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2703 int functionNumber)
2704 : P(p), F(f), FunctionNumber(functionNumber) {
2705
2706 // Insert unnamed arguments into the NumberedVals list.
2707 for (Argument &A : F.args())
2708 if (!A.hasName())
2709 NumberedVals.push_back(&A);
2710 }
2711
~PerFunctionState()2712 LLParser::PerFunctionState::~PerFunctionState() {
2713 // If there were any forward referenced non-basicblock values, delete them.
2714
2715 for (const auto &P : ForwardRefVals) {
2716 if (isa<BasicBlock>(P.second.first))
2717 continue;
2718 P.second.first->replaceAllUsesWith(
2719 UndefValue::get(P.second.first->getType()));
2720 P.second.first->deleteValue();
2721 }
2722
2723 for (const auto &P : ForwardRefValIDs) {
2724 if (isa<BasicBlock>(P.second.first))
2725 continue;
2726 P.second.first->replaceAllUsesWith(
2727 UndefValue::get(P.second.first->getType()));
2728 P.second.first->deleteValue();
2729 }
2730 }
2731
FinishFunction()2732 bool LLParser::PerFunctionState::FinishFunction() {
2733 if (!ForwardRefVals.empty())
2734 return P.Error(ForwardRefVals.begin()->second.second,
2735 "use of undefined value '%" + ForwardRefVals.begin()->first +
2736 "'");
2737 if (!ForwardRefValIDs.empty())
2738 return P.Error(ForwardRefValIDs.begin()->second.second,
2739 "use of undefined value '%" +
2740 Twine(ForwardRefValIDs.begin()->first) + "'");
2741 return false;
2742 }
2743
isValidVariableType(Module * M,Type * Ty,Value * Val,bool IsCall)2744 static bool isValidVariableType(Module *M, Type *Ty, Value *Val, bool IsCall) {
2745 if (Val->getType() == Ty)
2746 return true;
2747 // For calls we also accept variables in the program address space
2748 if (IsCall && isa<PointerType>(Ty)) {
2749 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
2750 M->getDataLayout().getProgramAddressSpace());
2751 if (Val->getType() == TyInProgAS)
2752 return true;
2753 }
2754 return false;
2755 }
2756
2757 /// GetVal - Get a value with the specified name or ID, creating a
2758 /// forward reference record if needed. This can return null if the value
2759 /// exists but does not have the right type.
GetVal(const std::string & Name,Type * Ty,LocTy Loc,bool IsCall)2760 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2761 LocTy Loc, bool IsCall) {
2762 // Look this name up in the normal function symbol table.
2763 Value *Val = F.getValueSymbolTable()->lookup(Name);
2764
2765 // If this is a forward reference for the value, see if we already created a
2766 // forward ref record.
2767 if (!Val) {
2768 auto I = ForwardRefVals.find(Name);
2769 if (I != ForwardRefVals.end())
2770 Val = I->second.first;
2771 }
2772
2773 // If we have the value in the symbol table or fwd-ref table, return it.
2774 if (Val) {
2775 if (isValidVariableType(P.M, Ty, Val, IsCall))
2776 return Val;
2777 if (Ty->isLabelTy())
2778 P.Error(Loc, "'%" + Name + "' is not a basic block");
2779 else
2780 P.Error(Loc, "'%" + Name + "' defined with type '" +
2781 getTypeString(Val->getType()) + "'");
2782 return nullptr;
2783 }
2784
2785 // Don't make placeholders with invalid type.
2786 if (!Ty->isFirstClassType()) {
2787 P.Error(Loc, "invalid use of a non-first-class type");
2788 return nullptr;
2789 }
2790
2791 // Otherwise, create a new forward reference for this value and remember it.
2792 Value *FwdVal;
2793 if (Ty->isLabelTy()) {
2794 FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2795 } else {
2796 FwdVal = new Argument(Ty, Name);
2797 }
2798
2799 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2800 return FwdVal;
2801 }
2802
GetVal(unsigned ID,Type * Ty,LocTy Loc,bool IsCall)2803 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2804 bool IsCall) {
2805 // Look this name up in the normal function symbol table.
2806 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2807
2808 // If this is a forward reference for the value, see if we already created a
2809 // forward ref record.
2810 if (!Val) {
2811 auto I = ForwardRefValIDs.find(ID);
2812 if (I != ForwardRefValIDs.end())
2813 Val = I->second.first;
2814 }
2815
2816 // If we have the value in the symbol table or fwd-ref table, return it.
2817 if (Val) {
2818 if (isValidVariableType(P.M, Ty, Val, IsCall))
2819 return Val;
2820 if (Ty->isLabelTy())
2821 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2822 else
2823 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2824 getTypeString(Val->getType()) + "'");
2825 return nullptr;
2826 }
2827
2828 if (!Ty->isFirstClassType()) {
2829 P.Error(Loc, "invalid use of a non-first-class type");
2830 return nullptr;
2831 }
2832
2833 // Otherwise, create a new forward reference for this value and remember it.
2834 Value *FwdVal;
2835 if (Ty->isLabelTy()) {
2836 FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2837 } else {
2838 FwdVal = new Argument(Ty);
2839 }
2840
2841 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2842 return FwdVal;
2843 }
2844
2845 /// SetInstName - After an instruction is parsed and inserted into its
2846 /// basic block, this installs its name.
SetInstName(int NameID,const std::string & NameStr,LocTy NameLoc,Instruction * Inst)2847 bool LLParser::PerFunctionState::SetInstName(int NameID,
2848 const std::string &NameStr,
2849 LocTy NameLoc, Instruction *Inst) {
2850 // If this instruction has void type, it cannot have a name or ID specified.
2851 if (Inst->getType()->isVoidTy()) {
2852 if (NameID != -1 || !NameStr.empty())
2853 return P.Error(NameLoc, "instructions returning void cannot have a name");
2854 return false;
2855 }
2856
2857 // If this was a numbered instruction, verify that the instruction is the
2858 // expected value and resolve any forward references.
2859 if (NameStr.empty()) {
2860 // If neither a name nor an ID was specified, just use the next ID.
2861 if (NameID == -1)
2862 NameID = NumberedVals.size();
2863
2864 if (unsigned(NameID) != NumberedVals.size())
2865 return P.Error(NameLoc, "instruction expected to be numbered '%" +
2866 Twine(NumberedVals.size()) + "'");
2867
2868 auto FI = ForwardRefValIDs.find(NameID);
2869 if (FI != ForwardRefValIDs.end()) {
2870 Value *Sentinel = FI->second.first;
2871 if (Sentinel->getType() != Inst->getType())
2872 return P.Error(NameLoc, "instruction forward referenced with type '" +
2873 getTypeString(FI->second.first->getType()) + "'");
2874
2875 Sentinel->replaceAllUsesWith(Inst);
2876 Sentinel->deleteValue();
2877 ForwardRefValIDs.erase(FI);
2878 }
2879
2880 NumberedVals.push_back(Inst);
2881 return false;
2882 }
2883
2884 // Otherwise, the instruction had a name. Resolve forward refs and set it.
2885 auto FI = ForwardRefVals.find(NameStr);
2886 if (FI != ForwardRefVals.end()) {
2887 Value *Sentinel = FI->second.first;
2888 if (Sentinel->getType() != Inst->getType())
2889 return P.Error(NameLoc, "instruction forward referenced with type '" +
2890 getTypeString(FI->second.first->getType()) + "'");
2891
2892 Sentinel->replaceAllUsesWith(Inst);
2893 Sentinel->deleteValue();
2894 ForwardRefVals.erase(FI);
2895 }
2896
2897 // Set the name on the instruction.
2898 Inst->setName(NameStr);
2899
2900 if (Inst->getName() != NameStr)
2901 return P.Error(NameLoc, "multiple definition of local value named '" +
2902 NameStr + "'");
2903 return false;
2904 }
2905
2906 /// GetBB - Get a basic block with the specified name or ID, creating a
2907 /// forward reference record if needed.
GetBB(const std::string & Name,LocTy Loc)2908 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2909 LocTy Loc) {
2910 return dyn_cast_or_null<BasicBlock>(
2911 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2912 }
2913
GetBB(unsigned ID,LocTy Loc)2914 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2915 return dyn_cast_or_null<BasicBlock>(
2916 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2917 }
2918
2919 /// DefineBB - Define the specified basic block, which is either named or
2920 /// unnamed. If there is an error, this returns null otherwise it returns
2921 /// the block being defined.
DefineBB(const std::string & Name,LocTy Loc)2922 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2923 LocTy Loc) {
2924 BasicBlock *BB;
2925 if (Name.empty())
2926 BB = GetBB(NumberedVals.size(), Loc);
2927 else
2928 BB = GetBB(Name, Loc);
2929 if (!BB) return nullptr; // Already diagnosed error.
2930
2931 // Move the block to the end of the function. Forward ref'd blocks are
2932 // inserted wherever they happen to be referenced.
2933 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2934
2935 // Remove the block from forward ref sets.
2936 if (Name.empty()) {
2937 ForwardRefValIDs.erase(NumberedVals.size());
2938 NumberedVals.push_back(BB);
2939 } else {
2940 // BB forward references are already in the function symbol table.
2941 ForwardRefVals.erase(Name);
2942 }
2943
2944 return BB;
2945 }
2946
2947 //===----------------------------------------------------------------------===//
2948 // Constants.
2949 //===----------------------------------------------------------------------===//
2950
2951 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2952 /// type implied. For example, if we parse "4" we don't know what integer type
2953 /// it has. The value will later be combined with its type and checked for
2954 /// sanity. PFS is used to convert function-local operands of metadata (since
2955 /// metadata operands are not just parsed here but also converted to values).
2956 /// PFS can be null when we are not parsing metadata values inside a function.
ParseValID(ValID & ID,PerFunctionState * PFS)2957 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2958 ID.Loc = Lex.getLoc();
2959 switch (Lex.getKind()) {
2960 default: return TokError("expected value token");
2961 case lltok::GlobalID: // @42
2962 ID.UIntVal = Lex.getUIntVal();
2963 ID.Kind = ValID::t_GlobalID;
2964 break;
2965 case lltok::GlobalVar: // @foo
2966 ID.StrVal = Lex.getStrVal();
2967 ID.Kind = ValID::t_GlobalName;
2968 break;
2969 case lltok::LocalVarID: // %42
2970 ID.UIntVal = Lex.getUIntVal();
2971 ID.Kind = ValID::t_LocalID;
2972 break;
2973 case lltok::LocalVar: // %foo
2974 ID.StrVal = Lex.getStrVal();
2975 ID.Kind = ValID::t_LocalName;
2976 break;
2977 case lltok::APSInt:
2978 ID.APSIntVal = Lex.getAPSIntVal();
2979 ID.Kind = ValID::t_APSInt;
2980 break;
2981 case lltok::APFloat:
2982 ID.APFloatVal = Lex.getAPFloatVal();
2983 ID.Kind = ValID::t_APFloat;
2984 break;
2985 case lltok::kw_true:
2986 ID.ConstantVal = ConstantInt::getTrue(Context);
2987 ID.Kind = ValID::t_Constant;
2988 break;
2989 case lltok::kw_false:
2990 ID.ConstantVal = ConstantInt::getFalse(Context);
2991 ID.Kind = ValID::t_Constant;
2992 break;
2993 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2994 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2995 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2996 case lltok::kw_none: ID.Kind = ValID::t_None; break;
2997
2998 case lltok::lbrace: {
2999 // ValID ::= '{' ConstVector '}'
3000 Lex.Lex();
3001 SmallVector<Constant*, 16> Elts;
3002 if (ParseGlobalValueVector(Elts) ||
3003 ParseToken(lltok::rbrace, "expected end of struct constant"))
3004 return true;
3005
3006 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3007 ID.UIntVal = Elts.size();
3008 memcpy(ID.ConstantStructElts.get(), Elts.data(),
3009 Elts.size() * sizeof(Elts[0]));
3010 ID.Kind = ValID::t_ConstantStruct;
3011 return false;
3012 }
3013 case lltok::less: {
3014 // ValID ::= '<' ConstVector '>' --> Vector.
3015 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3016 Lex.Lex();
3017 bool isPackedStruct = EatIfPresent(lltok::lbrace);
3018
3019 SmallVector<Constant*, 16> Elts;
3020 LocTy FirstEltLoc = Lex.getLoc();
3021 if (ParseGlobalValueVector(Elts) ||
3022 (isPackedStruct &&
3023 ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3024 ParseToken(lltok::greater, "expected end of constant"))
3025 return true;
3026
3027 if (isPackedStruct) {
3028 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3029 memcpy(ID.ConstantStructElts.get(), Elts.data(),
3030 Elts.size() * sizeof(Elts[0]));
3031 ID.UIntVal = Elts.size();
3032 ID.Kind = ValID::t_PackedConstantStruct;
3033 return false;
3034 }
3035
3036 if (Elts.empty())
3037 return Error(ID.Loc, "constant vector must not be empty");
3038
3039 if (!Elts[0]->getType()->isIntegerTy() &&
3040 !Elts[0]->getType()->isFloatingPointTy() &&
3041 !Elts[0]->getType()->isPointerTy())
3042 return Error(FirstEltLoc,
3043 "vector elements must have integer, pointer or floating point type");
3044
3045 // Verify that all the vector elements have the same type.
3046 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3047 if (Elts[i]->getType() != Elts[0]->getType())
3048 return Error(FirstEltLoc,
3049 "vector element #" + Twine(i) +
3050 " is not of type '" + getTypeString(Elts[0]->getType()));
3051
3052 ID.ConstantVal = ConstantVector::get(Elts);
3053 ID.Kind = ValID::t_Constant;
3054 return false;
3055 }
3056 case lltok::lsquare: { // Array Constant
3057 Lex.Lex();
3058 SmallVector<Constant*, 16> Elts;
3059 LocTy FirstEltLoc = Lex.getLoc();
3060 if (ParseGlobalValueVector(Elts) ||
3061 ParseToken(lltok::rsquare, "expected end of array constant"))
3062 return true;
3063
3064 // Handle empty element.
3065 if (Elts.empty()) {
3066 // Use undef instead of an array because it's inconvenient to determine
3067 // the element type at this point, there being no elements to examine.
3068 ID.Kind = ValID::t_EmptyArray;
3069 return false;
3070 }
3071
3072 if (!Elts[0]->getType()->isFirstClassType())
3073 return Error(FirstEltLoc, "invalid array element type: " +
3074 getTypeString(Elts[0]->getType()));
3075
3076 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3077
3078 // Verify all elements are correct type!
3079 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3080 if (Elts[i]->getType() != Elts[0]->getType())
3081 return Error(FirstEltLoc,
3082 "array element #" + Twine(i) +
3083 " is not of type '" + getTypeString(Elts[0]->getType()));
3084 }
3085
3086 ID.ConstantVal = ConstantArray::get(ATy, Elts);
3087 ID.Kind = ValID::t_Constant;
3088 return false;
3089 }
3090 case lltok::kw_c: // c "foo"
3091 Lex.Lex();
3092 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3093 false);
3094 if (ParseToken(lltok::StringConstant, "expected string")) return true;
3095 ID.Kind = ValID::t_Constant;
3096 return false;
3097
3098 case lltok::kw_asm: {
3099 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3100 // STRINGCONSTANT
3101 bool HasSideEffect, AlignStack, AsmDialect;
3102 Lex.Lex();
3103 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3104 ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3105 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3106 ParseStringConstant(ID.StrVal) ||
3107 ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3108 ParseToken(lltok::StringConstant, "expected constraint string"))
3109 return true;
3110 ID.StrVal2 = Lex.getStrVal();
3111 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3112 (unsigned(AsmDialect)<<2);
3113 ID.Kind = ValID::t_InlineAsm;
3114 return false;
3115 }
3116
3117 case lltok::kw_blockaddress: {
3118 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3119 Lex.Lex();
3120
3121 ValID Fn, Label;
3122
3123 if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3124 ParseValID(Fn) ||
3125 ParseToken(lltok::comma, "expected comma in block address expression")||
3126 ParseValID(Label) ||
3127 ParseToken(lltok::rparen, "expected ')' in block address expression"))
3128 return true;
3129
3130 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3131 return Error(Fn.Loc, "expected function name in blockaddress");
3132 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3133 return Error(Label.Loc, "expected basic block name in blockaddress");
3134
3135 // Try to find the function (but skip it if it's forward-referenced).
3136 GlobalValue *GV = nullptr;
3137 if (Fn.Kind == ValID::t_GlobalID) {
3138 if (Fn.UIntVal < NumberedVals.size())
3139 GV = NumberedVals[Fn.UIntVal];
3140 } else if (!ForwardRefVals.count(Fn.StrVal)) {
3141 GV = M->getNamedValue(Fn.StrVal);
3142 }
3143 Function *F = nullptr;
3144 if (GV) {
3145 // Confirm that it's actually a function with a definition.
3146 if (!isa<Function>(GV))
3147 return Error(Fn.Loc, "expected function name in blockaddress");
3148 F = cast<Function>(GV);
3149 if (F->isDeclaration())
3150 return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3151 }
3152
3153 if (!F) {
3154 // Make a global variable as a placeholder for this reference.
3155 GlobalValue *&FwdRef =
3156 ForwardRefBlockAddresses.insert(std::make_pair(
3157 std::move(Fn),
3158 std::map<ValID, GlobalValue *>()))
3159 .first->second.insert(std::make_pair(std::move(Label), nullptr))
3160 .first->second;
3161 if (!FwdRef)
3162 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3163 GlobalValue::InternalLinkage, nullptr, "");
3164 ID.ConstantVal = FwdRef;
3165 ID.Kind = ValID::t_Constant;
3166 return false;
3167 }
3168
3169 // We found the function; now find the basic block. Don't use PFS, since we
3170 // might be inside a constant expression.
3171 BasicBlock *BB;
3172 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3173 if (Label.Kind == ValID::t_LocalID)
3174 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3175 else
3176 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3177 if (!BB)
3178 return Error(Label.Loc, "referenced value is not a basic block");
3179 } else {
3180 if (Label.Kind == ValID::t_LocalID)
3181 return Error(Label.Loc, "cannot take address of numeric label after "
3182 "the function is defined");
3183 BB = dyn_cast_or_null<BasicBlock>(
3184 F->getValueSymbolTable()->lookup(Label.StrVal));
3185 if (!BB)
3186 return Error(Label.Loc, "referenced value is not a basic block");
3187 }
3188
3189 ID.ConstantVal = BlockAddress::get(F, BB);
3190 ID.Kind = ValID::t_Constant;
3191 return false;
3192 }
3193
3194 case lltok::kw_trunc:
3195 case lltok::kw_zext:
3196 case lltok::kw_sext:
3197 case lltok::kw_fptrunc:
3198 case lltok::kw_fpext:
3199 case lltok::kw_bitcast:
3200 case lltok::kw_addrspacecast:
3201 case lltok::kw_uitofp:
3202 case lltok::kw_sitofp:
3203 case lltok::kw_fptoui:
3204 case lltok::kw_fptosi:
3205 case lltok::kw_inttoptr:
3206 case lltok::kw_ptrtoint: {
3207 unsigned Opc = Lex.getUIntVal();
3208 Type *DestTy = nullptr;
3209 Constant *SrcVal;
3210 Lex.Lex();
3211 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3212 ParseGlobalTypeAndValue(SrcVal) ||
3213 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3214 ParseType(DestTy) ||
3215 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3216 return true;
3217 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3218 return Error(ID.Loc, "invalid cast opcode for cast from '" +
3219 getTypeString(SrcVal->getType()) + "' to '" +
3220 getTypeString(DestTy) + "'");
3221 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3222 SrcVal, DestTy);
3223 ID.Kind = ValID::t_Constant;
3224 return false;
3225 }
3226 case lltok::kw_extractvalue: {
3227 Lex.Lex();
3228 Constant *Val;
3229 SmallVector<unsigned, 4> Indices;
3230 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3231 ParseGlobalTypeAndValue(Val) ||
3232 ParseIndexList(Indices) ||
3233 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3234 return true;
3235
3236 if (!Val->getType()->isAggregateType())
3237 return Error(ID.Loc, "extractvalue operand must be aggregate type");
3238 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3239 return Error(ID.Loc, "invalid indices for extractvalue");
3240 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3241 ID.Kind = ValID::t_Constant;
3242 return false;
3243 }
3244 case lltok::kw_insertvalue: {
3245 Lex.Lex();
3246 Constant *Val0, *Val1;
3247 SmallVector<unsigned, 4> Indices;
3248 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3249 ParseGlobalTypeAndValue(Val0) ||
3250 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3251 ParseGlobalTypeAndValue(Val1) ||
3252 ParseIndexList(Indices) ||
3253 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3254 return true;
3255 if (!Val0->getType()->isAggregateType())
3256 return Error(ID.Loc, "insertvalue operand must be aggregate type");
3257 Type *IndexedType =
3258 ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3259 if (!IndexedType)
3260 return Error(ID.Loc, "invalid indices for insertvalue");
3261 if (IndexedType != Val1->getType())
3262 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3263 getTypeString(Val1->getType()) +
3264 "' instead of '" + getTypeString(IndexedType) +
3265 "'");
3266 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3267 ID.Kind = ValID::t_Constant;
3268 return false;
3269 }
3270 case lltok::kw_icmp:
3271 case lltok::kw_fcmp: {
3272 unsigned PredVal, Opc = Lex.getUIntVal();
3273 Constant *Val0, *Val1;
3274 Lex.Lex();
3275 if (ParseCmpPredicate(PredVal, Opc) ||
3276 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3277 ParseGlobalTypeAndValue(Val0) ||
3278 ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3279 ParseGlobalTypeAndValue(Val1) ||
3280 ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3281 return true;
3282
3283 if (Val0->getType() != Val1->getType())
3284 return Error(ID.Loc, "compare operands must have the same type");
3285
3286 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3287
3288 if (Opc == Instruction::FCmp) {
3289 if (!Val0->getType()->isFPOrFPVectorTy())
3290 return Error(ID.Loc, "fcmp requires floating point operands");
3291 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3292 } else {
3293 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3294 if (!Val0->getType()->isIntOrIntVectorTy() &&
3295 !Val0->getType()->isPtrOrPtrVectorTy())
3296 return Error(ID.Loc, "icmp requires pointer or integer operands");
3297 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3298 }
3299 ID.Kind = ValID::t_Constant;
3300 return false;
3301 }
3302
3303 // Binary Operators.
3304 case lltok::kw_add:
3305 case lltok::kw_fadd:
3306 case lltok::kw_sub:
3307 case lltok::kw_fsub:
3308 case lltok::kw_mul:
3309 case lltok::kw_fmul:
3310 case lltok::kw_udiv:
3311 case lltok::kw_sdiv:
3312 case lltok::kw_fdiv:
3313 case lltok::kw_urem:
3314 case lltok::kw_srem:
3315 case lltok::kw_frem:
3316 case lltok::kw_shl:
3317 case lltok::kw_lshr:
3318 case lltok::kw_ashr: {
3319 bool NUW = false;
3320 bool NSW = false;
3321 bool Exact = false;
3322 unsigned Opc = Lex.getUIntVal();
3323 Constant *Val0, *Val1;
3324 Lex.Lex();
3325 LocTy ModifierLoc = Lex.getLoc();
3326 if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3327 Opc == Instruction::Mul || Opc == Instruction::Shl) {
3328 if (EatIfPresent(lltok::kw_nuw))
3329 NUW = true;
3330 if (EatIfPresent(lltok::kw_nsw)) {
3331 NSW = true;
3332 if (EatIfPresent(lltok::kw_nuw))
3333 NUW = true;
3334 }
3335 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3336 Opc == Instruction::LShr || Opc == Instruction::AShr) {
3337 if (EatIfPresent(lltok::kw_exact))
3338 Exact = true;
3339 }
3340 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3341 ParseGlobalTypeAndValue(Val0) ||
3342 ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3343 ParseGlobalTypeAndValue(Val1) ||
3344 ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3345 return true;
3346 if (Val0->getType() != Val1->getType())
3347 return Error(ID.Loc, "operands of constexpr must have same type");
3348 if (!Val0->getType()->isIntOrIntVectorTy()) {
3349 if (NUW)
3350 return Error(ModifierLoc, "nuw only applies to integer operations");
3351 if (NSW)
3352 return Error(ModifierLoc, "nsw only applies to integer operations");
3353 }
3354 // Check that the type is valid for the operator.
3355 switch (Opc) {
3356 case Instruction::Add:
3357 case Instruction::Sub:
3358 case Instruction::Mul:
3359 case Instruction::UDiv:
3360 case Instruction::SDiv:
3361 case Instruction::URem:
3362 case Instruction::SRem:
3363 case Instruction::Shl:
3364 case Instruction::AShr:
3365 case Instruction::LShr:
3366 if (!Val0->getType()->isIntOrIntVectorTy())
3367 return Error(ID.Loc, "constexpr requires integer operands");
3368 break;
3369 case Instruction::FAdd:
3370 case Instruction::FSub:
3371 case Instruction::FMul:
3372 case Instruction::FDiv:
3373 case Instruction::FRem:
3374 if (!Val0->getType()->isFPOrFPVectorTy())
3375 return Error(ID.Loc, "constexpr requires fp operands");
3376 break;
3377 default: llvm_unreachable("Unknown binary operator!");
3378 }
3379 unsigned Flags = 0;
3380 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3381 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
3382 if (Exact) Flags |= PossiblyExactOperator::IsExact;
3383 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3384 ID.ConstantVal = C;
3385 ID.Kind = ValID::t_Constant;
3386 return false;
3387 }
3388
3389 // Logical Operations
3390 case lltok::kw_and:
3391 case lltok::kw_or:
3392 case lltok::kw_xor: {
3393 unsigned Opc = Lex.getUIntVal();
3394 Constant *Val0, *Val1;
3395 Lex.Lex();
3396 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3397 ParseGlobalTypeAndValue(Val0) ||
3398 ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3399 ParseGlobalTypeAndValue(Val1) ||
3400 ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3401 return true;
3402 if (Val0->getType() != Val1->getType())
3403 return Error(ID.Loc, "operands of constexpr must have same type");
3404 if (!Val0->getType()->isIntOrIntVectorTy())
3405 return Error(ID.Loc,
3406 "constexpr requires integer or integer vector operands");
3407 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3408 ID.Kind = ValID::t_Constant;
3409 return false;
3410 }
3411
3412 case lltok::kw_getelementptr:
3413 case lltok::kw_shufflevector:
3414 case lltok::kw_insertelement:
3415 case lltok::kw_extractelement:
3416 case lltok::kw_select: {
3417 unsigned Opc = Lex.getUIntVal();
3418 SmallVector<Constant*, 16> Elts;
3419 bool InBounds = false;
3420 Type *Ty;
3421 Lex.Lex();
3422
3423 if (Opc == Instruction::GetElementPtr)
3424 InBounds = EatIfPresent(lltok::kw_inbounds);
3425
3426 if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3427 return true;
3428
3429 LocTy ExplicitTypeLoc = Lex.getLoc();
3430 if (Opc == Instruction::GetElementPtr) {
3431 if (ParseType(Ty) ||
3432 ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3433 return true;
3434 }
3435
3436 Optional<unsigned> InRangeOp;
3437 if (ParseGlobalValueVector(
3438 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3439 ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3440 return true;
3441
3442 if (Opc == Instruction::GetElementPtr) {
3443 if (Elts.size() == 0 ||
3444 !Elts[0]->getType()->isPtrOrPtrVectorTy())
3445 return Error(ID.Loc, "base of getelementptr must be a pointer");
3446
3447 Type *BaseType = Elts[0]->getType();
3448 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3449 if (Ty != BasePointerType->getElementType())
3450 return Error(
3451 ExplicitTypeLoc,
3452 "explicit pointee type doesn't match operand's pointee type");
3453
3454 unsigned GEPWidth =
3455 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3456
3457 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3458 for (Constant *Val : Indices) {
3459 Type *ValTy = Val->getType();
3460 if (!ValTy->isIntOrIntVectorTy())
3461 return Error(ID.Loc, "getelementptr index must be an integer");
3462 if (ValTy->isVectorTy()) {
3463 unsigned ValNumEl = ValTy->getVectorNumElements();
3464 if (GEPWidth && (ValNumEl != GEPWidth))
3465 return Error(
3466 ID.Loc,
3467 "getelementptr vector index has a wrong number of elements");
3468 // GEPWidth may have been unknown because the base is a scalar,
3469 // but it is known now.
3470 GEPWidth = ValNumEl;
3471 }
3472 }
3473
3474 SmallPtrSet<Type*, 4> Visited;
3475 if (!Indices.empty() && !Ty->isSized(&Visited))
3476 return Error(ID.Loc, "base element of getelementptr must be sized");
3477
3478 if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3479 return Error(ID.Loc, "invalid getelementptr indices");
3480
3481 if (InRangeOp) {
3482 if (*InRangeOp == 0)
3483 return Error(ID.Loc,
3484 "inrange keyword may not appear on pointer operand");
3485 --*InRangeOp;
3486 }
3487
3488 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3489 InBounds, InRangeOp);
3490 } else if (Opc == Instruction::Select) {
3491 if (Elts.size() != 3)
3492 return Error(ID.Loc, "expected three operands to select");
3493 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3494 Elts[2]))
3495 return Error(ID.Loc, Reason);
3496 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3497 } else if (Opc == Instruction::ShuffleVector) {
3498 if (Elts.size() != 3)
3499 return Error(ID.Loc, "expected three operands to shufflevector");
3500 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3501 return Error(ID.Loc, "invalid operands to shufflevector");
3502 ID.ConstantVal =
3503 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3504 } else if (Opc == Instruction::ExtractElement) {
3505 if (Elts.size() != 2)
3506 return Error(ID.Loc, "expected two operands to extractelement");
3507 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3508 return Error(ID.Loc, "invalid extractelement operands");
3509 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3510 } else {
3511 assert(Opc == Instruction::InsertElement && "Unknown opcode");
3512 if (Elts.size() != 3)
3513 return Error(ID.Loc, "expected three operands to insertelement");
3514 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3515 return Error(ID.Loc, "invalid insertelement operands");
3516 ID.ConstantVal =
3517 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3518 }
3519
3520 ID.Kind = ValID::t_Constant;
3521 return false;
3522 }
3523 }
3524
3525 Lex.Lex();
3526 return false;
3527 }
3528
3529 /// ParseGlobalValue - Parse a global value with the specified type.
ParseGlobalValue(Type * Ty,Constant * & C)3530 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3531 C = nullptr;
3532 ValID ID;
3533 Value *V = nullptr;
3534 bool Parsed = ParseValID(ID) ||
3535 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3536 if (V && !(C = dyn_cast<Constant>(V)))
3537 return Error(ID.Loc, "global values must be constants");
3538 return Parsed;
3539 }
3540
ParseGlobalTypeAndValue(Constant * & V)3541 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3542 Type *Ty = nullptr;
3543 return ParseType(Ty) ||
3544 ParseGlobalValue(Ty, V);
3545 }
3546
parseOptionalComdat(StringRef GlobalName,Comdat * & C)3547 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3548 C = nullptr;
3549
3550 LocTy KwLoc = Lex.getLoc();
3551 if (!EatIfPresent(lltok::kw_comdat))
3552 return false;
3553
3554 if (EatIfPresent(lltok::lparen)) {
3555 if (Lex.getKind() != lltok::ComdatVar)
3556 return TokError("expected comdat variable");
3557 C = getComdat(Lex.getStrVal(), Lex.getLoc());
3558 Lex.Lex();
3559 if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3560 return true;
3561 } else {
3562 if (GlobalName.empty())
3563 return TokError("comdat cannot be unnamed");
3564 C = getComdat(GlobalName, KwLoc);
3565 }
3566
3567 return false;
3568 }
3569
3570 /// ParseGlobalValueVector
3571 /// ::= /*empty*/
3572 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
ParseGlobalValueVector(SmallVectorImpl<Constant * > & Elts,Optional<unsigned> * InRangeOp)3573 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3574 Optional<unsigned> *InRangeOp) {
3575 // Empty list.
3576 if (Lex.getKind() == lltok::rbrace ||
3577 Lex.getKind() == lltok::rsquare ||
3578 Lex.getKind() == lltok::greater ||
3579 Lex.getKind() == lltok::rparen)
3580 return false;
3581
3582 do {
3583 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3584 *InRangeOp = Elts.size();
3585
3586 Constant *C;
3587 if (ParseGlobalTypeAndValue(C)) return true;
3588 Elts.push_back(C);
3589 } while (EatIfPresent(lltok::comma));
3590
3591 return false;
3592 }
3593
ParseMDTuple(MDNode * & MD,bool IsDistinct)3594 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3595 SmallVector<Metadata *, 16> Elts;
3596 if (ParseMDNodeVector(Elts))
3597 return true;
3598
3599 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3600 return false;
3601 }
3602
3603 /// MDNode:
3604 /// ::= !{ ... }
3605 /// ::= !7
3606 /// ::= !DILocation(...)
ParseMDNode(MDNode * & N)3607 bool LLParser::ParseMDNode(MDNode *&N) {
3608 if (Lex.getKind() == lltok::MetadataVar)
3609 return ParseSpecializedMDNode(N);
3610
3611 return ParseToken(lltok::exclaim, "expected '!' here") ||
3612 ParseMDNodeTail(N);
3613 }
3614
ParseMDNodeTail(MDNode * & N)3615 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3616 // !{ ... }
3617 if (Lex.getKind() == lltok::lbrace)
3618 return ParseMDTuple(N);
3619
3620 // !42
3621 return ParseMDNodeID(N);
3622 }
3623
3624 namespace {
3625
3626 /// Structure to represent an optional metadata field.
3627 template <class FieldTy> struct MDFieldImpl {
3628 typedef MDFieldImpl ImplTy;
3629 FieldTy Val;
3630 bool Seen;
3631
assign__anon66c1efec0111::MDFieldImpl3632 void assign(FieldTy Val) {
3633 Seen = true;
3634 this->Val = std::move(Val);
3635 }
3636
MDFieldImpl__anon66c1efec0111::MDFieldImpl3637 explicit MDFieldImpl(FieldTy Default)
3638 : Val(std::move(Default)), Seen(false) {}
3639 };
3640
3641 /// Structure to represent an optional metadata field that
3642 /// can be of either type (A or B) and encapsulates the
3643 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3644 /// to reimplement the specifics for representing each Field.
3645 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3646 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3647 FieldTypeA A;
3648 FieldTypeB B;
3649 bool Seen;
3650
3651 enum {
3652 IsInvalid = 0,
3653 IsTypeA = 1,
3654 IsTypeB = 2
3655 } WhatIs;
3656
assign__anon66c1efec0111::MDEitherFieldImpl3657 void assign(FieldTypeA A) {
3658 Seen = true;
3659 this->A = std::move(A);
3660 WhatIs = IsTypeA;
3661 }
3662
assign__anon66c1efec0111::MDEitherFieldImpl3663 void assign(FieldTypeB B) {
3664 Seen = true;
3665 this->B = std::move(B);
3666 WhatIs = IsTypeB;
3667 }
3668
MDEitherFieldImpl__anon66c1efec0111::MDEitherFieldImpl3669 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3670 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3671 WhatIs(IsInvalid) {}
3672 };
3673
3674 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3675 uint64_t Max;
3676
MDUnsignedField__anon66c1efec0111::MDUnsignedField3677 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3678 : ImplTy(Default), Max(Max) {}
3679 };
3680
3681 struct LineField : public MDUnsignedField {
LineField__anon66c1efec0111::LineField3682 LineField() : MDUnsignedField(0, UINT32_MAX) {}
3683 };
3684
3685 struct ColumnField : public MDUnsignedField {
ColumnField__anon66c1efec0111::ColumnField3686 ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3687 };
3688
3689 struct DwarfTagField : public MDUnsignedField {
DwarfTagField__anon66c1efec0111::DwarfTagField3690 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
DwarfTagField__anon66c1efec0111::DwarfTagField3691 DwarfTagField(dwarf::Tag DefaultTag)
3692 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3693 };
3694
3695 struct DwarfMacinfoTypeField : public MDUnsignedField {
DwarfMacinfoTypeField__anon66c1efec0111::DwarfMacinfoTypeField3696 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
DwarfMacinfoTypeField__anon66c1efec0111::DwarfMacinfoTypeField3697 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3698 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3699 };
3700
3701 struct DwarfAttEncodingField : public MDUnsignedField {
DwarfAttEncodingField__anon66c1efec0111::DwarfAttEncodingField3702 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3703 };
3704
3705 struct DwarfVirtualityField : public MDUnsignedField {
DwarfVirtualityField__anon66c1efec0111::DwarfVirtualityField3706 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3707 };
3708
3709 struct DwarfLangField : public MDUnsignedField {
DwarfLangField__anon66c1efec0111::DwarfLangField3710 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3711 };
3712
3713 struct DwarfCCField : public MDUnsignedField {
DwarfCCField__anon66c1efec0111::DwarfCCField3714 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3715 };
3716
3717 struct EmissionKindField : public MDUnsignedField {
EmissionKindField__anon66c1efec0111::EmissionKindField3718 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3719 };
3720
3721 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
DIFlagField__anon66c1efec0111::DIFlagField3722 DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3723 };
3724
3725 struct MDSignedField : public MDFieldImpl<int64_t> {
3726 int64_t Min;
3727 int64_t Max;
3728
MDSignedField__anon66c1efec0111::MDSignedField3729 MDSignedField(int64_t Default = 0)
3730 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
MDSignedField__anon66c1efec0111::MDSignedField3731 MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3732 : ImplTy(Default), Min(Min), Max(Max) {}
3733 };
3734
3735 struct MDBoolField : public MDFieldImpl<bool> {
MDBoolField__anon66c1efec0111::MDBoolField3736 MDBoolField(bool Default = false) : ImplTy(Default) {}
3737 };
3738
3739 struct MDField : public MDFieldImpl<Metadata *> {
3740 bool AllowNull;
3741
MDField__anon66c1efec0111::MDField3742 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3743 };
3744
3745 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
MDConstant__anon66c1efec0111::MDConstant3746 MDConstant() : ImplTy(nullptr) {}
3747 };
3748
3749 struct MDStringField : public MDFieldImpl<MDString *> {
3750 bool AllowEmpty;
MDStringField__anon66c1efec0111::MDStringField3751 MDStringField(bool AllowEmpty = true)
3752 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3753 };
3754
3755 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
MDFieldList__anon66c1efec0111::MDFieldList3756 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3757 };
3758
3759 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
ChecksumKindField__anon66c1efec0111::ChecksumKindField3760 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3761 };
3762
3763 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
MDSignedOrMDField__anon66c1efec0111::MDSignedOrMDField3764 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3765 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3766
MDSignedOrMDField__anon66c1efec0111::MDSignedOrMDField3767 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3768 bool AllowNull = true)
3769 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3770
isMDSignedField__anon66c1efec0111::MDSignedOrMDField3771 bool isMDSignedField() const { return WhatIs == IsTypeA; }
isMDField__anon66c1efec0111::MDSignedOrMDField3772 bool isMDField() const { return WhatIs == IsTypeB; }
getMDSignedValue__anon66c1efec0111::MDSignedOrMDField3773 int64_t getMDSignedValue() const {
3774 assert(isMDSignedField() && "Wrong field type");
3775 return A.Val;
3776 }
getMDFieldValue__anon66c1efec0111::MDSignedOrMDField3777 Metadata *getMDFieldValue() const {
3778 assert(isMDField() && "Wrong field type");
3779 return B.Val;
3780 }
3781 };
3782
3783 struct MDSignedOrUnsignedField
3784 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
MDSignedOrUnsignedField__anon66c1efec0111::MDSignedOrUnsignedField3785 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3786
isMDSignedField__anon66c1efec0111::MDSignedOrUnsignedField3787 bool isMDSignedField() const { return WhatIs == IsTypeA; }
isMDUnsignedField__anon66c1efec0111::MDSignedOrUnsignedField3788 bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
getMDSignedValue__anon66c1efec0111::MDSignedOrUnsignedField3789 int64_t getMDSignedValue() const {
3790 assert(isMDSignedField() && "Wrong field type");
3791 return A.Val;
3792 }
getMDUnsignedValue__anon66c1efec0111::MDSignedOrUnsignedField3793 uint64_t getMDUnsignedValue() const {
3794 assert(isMDUnsignedField() && "Wrong field type");
3795 return B.Val;
3796 }
3797 };
3798
3799 } // end anonymous namespace
3800
3801 namespace llvm {
3802
3803 template <>
ParseMDField(LocTy Loc,StringRef Name,MDUnsignedField & Result)3804 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3805 MDUnsignedField &Result) {
3806 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3807 return TokError("expected unsigned integer");
3808
3809 auto &U = Lex.getAPSIntVal();
3810 if (U.ugt(Result.Max))
3811 return TokError("value for '" + Name + "' too large, limit is " +
3812 Twine(Result.Max));
3813 Result.assign(U.getZExtValue());
3814 assert(Result.Val <= Result.Max && "Expected value in range");
3815 Lex.Lex();
3816 return false;
3817 }
3818
3819 template <>
ParseMDField(LocTy Loc,StringRef Name,LineField & Result)3820 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3821 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3822 }
3823 template <>
ParseMDField(LocTy Loc,StringRef Name,ColumnField & Result)3824 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3825 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3826 }
3827
3828 template <>
ParseMDField(LocTy Loc,StringRef Name,DwarfTagField & Result)3829 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3830 if (Lex.getKind() == lltok::APSInt)
3831 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3832
3833 if (Lex.getKind() != lltok::DwarfTag)
3834 return TokError("expected DWARF tag");
3835
3836 unsigned Tag = dwarf::getTag(Lex.getStrVal());
3837 if (Tag == dwarf::DW_TAG_invalid)
3838 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3839 assert(Tag <= Result.Max && "Expected valid DWARF tag");
3840
3841 Result.assign(Tag);
3842 Lex.Lex();
3843 return false;
3844 }
3845
3846 template <>
ParseMDField(LocTy Loc,StringRef Name,DwarfMacinfoTypeField & Result)3847 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3848 DwarfMacinfoTypeField &Result) {
3849 if (Lex.getKind() == lltok::APSInt)
3850 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3851
3852 if (Lex.getKind() != lltok::DwarfMacinfo)
3853 return TokError("expected DWARF macinfo type");
3854
3855 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3856 if (Macinfo == dwarf::DW_MACINFO_invalid)
3857 return TokError(
3858 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3859 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3860
3861 Result.assign(Macinfo);
3862 Lex.Lex();
3863 return false;
3864 }
3865
3866 template <>
ParseMDField(LocTy Loc,StringRef Name,DwarfVirtualityField & Result)3867 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3868 DwarfVirtualityField &Result) {
3869 if (Lex.getKind() == lltok::APSInt)
3870 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3871
3872 if (Lex.getKind() != lltok::DwarfVirtuality)
3873 return TokError("expected DWARF virtuality code");
3874
3875 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3876 if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3877 return TokError("invalid DWARF virtuality code" + Twine(" '") +
3878 Lex.getStrVal() + "'");
3879 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3880 Result.assign(Virtuality);
3881 Lex.Lex();
3882 return false;
3883 }
3884
3885 template <>
ParseMDField(LocTy Loc,StringRef Name,DwarfLangField & Result)3886 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3887 if (Lex.getKind() == lltok::APSInt)
3888 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3889
3890 if (Lex.getKind() != lltok::DwarfLang)
3891 return TokError("expected DWARF language");
3892
3893 unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3894 if (!Lang)
3895 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3896 "'");
3897 assert(Lang <= Result.Max && "Expected valid DWARF language");
3898 Result.assign(Lang);
3899 Lex.Lex();
3900 return false;
3901 }
3902
3903 template <>
ParseMDField(LocTy Loc,StringRef Name,DwarfCCField & Result)3904 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3905 if (Lex.getKind() == lltok::APSInt)
3906 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3907
3908 if (Lex.getKind() != lltok::DwarfCC)
3909 return TokError("expected DWARF calling convention");
3910
3911 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3912 if (!CC)
3913 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3914 "'");
3915 assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3916 Result.assign(CC);
3917 Lex.Lex();
3918 return false;
3919 }
3920
3921 template <>
ParseMDField(LocTy Loc,StringRef Name,EmissionKindField & Result)3922 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3923 if (Lex.getKind() == lltok::APSInt)
3924 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3925
3926 if (Lex.getKind() != lltok::EmissionKind)
3927 return TokError("expected emission kind");
3928
3929 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3930 if (!Kind)
3931 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3932 "'");
3933 assert(*Kind <= Result.Max && "Expected valid emission kind");
3934 Result.assign(*Kind);
3935 Lex.Lex();
3936 return false;
3937 }
3938
3939 template <>
ParseMDField(LocTy Loc,StringRef Name,DwarfAttEncodingField & Result)3940 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3941 DwarfAttEncodingField &Result) {
3942 if (Lex.getKind() == lltok::APSInt)
3943 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3944
3945 if (Lex.getKind() != lltok::DwarfAttEncoding)
3946 return TokError("expected DWARF type attribute encoding");
3947
3948 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3949 if (!Encoding)
3950 return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3951 Lex.getStrVal() + "'");
3952 assert(Encoding <= Result.Max && "Expected valid DWARF language");
3953 Result.assign(Encoding);
3954 Lex.Lex();
3955 return false;
3956 }
3957
3958 /// DIFlagField
3959 /// ::= uint32
3960 /// ::= DIFlagVector
3961 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3962 template <>
ParseMDField(LocTy Loc,StringRef Name,DIFlagField & Result)3963 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3964
3965 // Parser for a single flag.
3966 auto parseFlag = [&](DINode::DIFlags &Val) {
3967 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
3968 uint32_t TempVal = static_cast<uint32_t>(Val);
3969 bool Res = ParseUInt32(TempVal);
3970 Val = static_cast<DINode::DIFlags>(TempVal);
3971 return Res;
3972 }
3973
3974 if (Lex.getKind() != lltok::DIFlag)
3975 return TokError("expected debug info flag");
3976
3977 Val = DINode::getFlag(Lex.getStrVal());
3978 if (!Val)
3979 return TokError(Twine("invalid debug info flag flag '") +
3980 Lex.getStrVal() + "'");
3981 Lex.Lex();
3982 return false;
3983 };
3984
3985 // Parse the flags and combine them together.
3986 DINode::DIFlags Combined = DINode::FlagZero;
3987 do {
3988 DINode::DIFlags Val;
3989 if (parseFlag(Val))
3990 return true;
3991 Combined |= Val;
3992 } while (EatIfPresent(lltok::bar));
3993
3994 Result.assign(Combined);
3995 return false;
3996 }
3997
3998 template <>
ParseMDField(LocTy Loc,StringRef Name,MDSignedField & Result)3999 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4000 MDSignedField &Result) {
4001 if (Lex.getKind() != lltok::APSInt)
4002 return TokError("expected signed integer");
4003
4004 auto &S = Lex.getAPSIntVal();
4005 if (S < Result.Min)
4006 return TokError("value for '" + Name + "' too small, limit is " +
4007 Twine(Result.Min));
4008 if (S > Result.Max)
4009 return TokError("value for '" + Name + "' too large, limit is " +
4010 Twine(Result.Max));
4011 Result.assign(S.getExtValue());
4012 assert(Result.Val >= Result.Min && "Expected value in range");
4013 assert(Result.Val <= Result.Max && "Expected value in range");
4014 Lex.Lex();
4015 return false;
4016 }
4017
4018 template <>
ParseMDField(LocTy Loc,StringRef Name,MDBoolField & Result)4019 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4020 switch (Lex.getKind()) {
4021 default:
4022 return TokError("expected 'true' or 'false'");
4023 case lltok::kw_true:
4024 Result.assign(true);
4025 break;
4026 case lltok::kw_false:
4027 Result.assign(false);
4028 break;
4029 }
4030 Lex.Lex();
4031 return false;
4032 }
4033
4034 template <>
ParseMDField(LocTy Loc,StringRef Name,MDField & Result)4035 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4036 if (Lex.getKind() == lltok::kw_null) {
4037 if (!Result.AllowNull)
4038 return TokError("'" + Name + "' cannot be null");
4039 Lex.Lex();
4040 Result.assign(nullptr);
4041 return false;
4042 }
4043
4044 Metadata *MD;
4045 if (ParseMetadata(MD, nullptr))
4046 return true;
4047
4048 Result.assign(MD);
4049 return false;
4050 }
4051
4052 template <>
ParseMDField(LocTy Loc,StringRef Name,MDSignedOrMDField & Result)4053 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4054 MDSignedOrMDField &Result) {
4055 // Try to parse a signed int.
4056 if (Lex.getKind() == lltok::APSInt) {
4057 MDSignedField Res = Result.A;
4058 if (!ParseMDField(Loc, Name, Res)) {
4059 Result.assign(Res);
4060 return false;
4061 }
4062 return true;
4063 }
4064
4065 // Otherwise, try to parse as an MDField.
4066 MDField Res = Result.B;
4067 if (!ParseMDField(Loc, Name, Res)) {
4068 Result.assign(Res);
4069 return false;
4070 }
4071
4072 return true;
4073 }
4074
4075 template <>
ParseMDField(LocTy Loc,StringRef Name,MDSignedOrUnsignedField & Result)4076 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4077 MDSignedOrUnsignedField &Result) {
4078 if (Lex.getKind() != lltok::APSInt)
4079 return false;
4080
4081 if (Lex.getAPSIntVal().isSigned()) {
4082 MDSignedField Res = Result.A;
4083 if (ParseMDField(Loc, Name, Res))
4084 return true;
4085 Result.assign(Res);
4086 return false;
4087 }
4088
4089 MDUnsignedField Res = Result.B;
4090 if (ParseMDField(Loc, Name, Res))
4091 return true;
4092 Result.assign(Res);
4093 return false;
4094 }
4095
4096 template <>
ParseMDField(LocTy Loc,StringRef Name,MDStringField & Result)4097 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4098 LocTy ValueLoc = Lex.getLoc();
4099 std::string S;
4100 if (ParseStringConstant(S))
4101 return true;
4102
4103 if (!Result.AllowEmpty && S.empty())
4104 return Error(ValueLoc, "'" + Name + "' cannot be empty");
4105
4106 Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4107 return false;
4108 }
4109
4110 template <>
ParseMDField(LocTy Loc,StringRef Name,MDFieldList & Result)4111 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4112 SmallVector<Metadata *, 4> MDs;
4113 if (ParseMDNodeVector(MDs))
4114 return true;
4115
4116 Result.assign(std::move(MDs));
4117 return false;
4118 }
4119
4120 template <>
ParseMDField(LocTy Loc,StringRef Name,ChecksumKindField & Result)4121 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4122 ChecksumKindField &Result) {
4123 Optional<DIFile::ChecksumKind> CSKind =
4124 DIFile::getChecksumKind(Lex.getStrVal());
4125
4126 if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4127 return TokError(
4128 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4129
4130 Result.assign(*CSKind);
4131 Lex.Lex();
4132 return false;
4133 }
4134
4135 } // end namespace llvm
4136
4137 template <class ParserTy>
ParseMDFieldsImplBody(ParserTy parseField)4138 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4139 do {
4140 if (Lex.getKind() != lltok::LabelStr)
4141 return TokError("expected field label here");
4142
4143 if (parseField())
4144 return true;
4145 } while (EatIfPresent(lltok::comma));
4146
4147 return false;
4148 }
4149
4150 template <class ParserTy>
ParseMDFieldsImpl(ParserTy parseField,LocTy & ClosingLoc)4151 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4152 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4153 Lex.Lex();
4154
4155 if (ParseToken(lltok::lparen, "expected '(' here"))
4156 return true;
4157 if (Lex.getKind() != lltok::rparen)
4158 if (ParseMDFieldsImplBody(parseField))
4159 return true;
4160
4161 ClosingLoc = Lex.getLoc();
4162 return ParseToken(lltok::rparen, "expected ')' here");
4163 }
4164
4165 template <class FieldTy>
ParseMDField(StringRef Name,FieldTy & Result)4166 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4167 if (Result.Seen)
4168 return TokError("field '" + Name + "' cannot be specified more than once");
4169
4170 LocTy Loc = Lex.getLoc();
4171 Lex.Lex();
4172 return ParseMDField(Loc, Name, Result);
4173 }
4174
ParseSpecializedMDNode(MDNode * & N,bool IsDistinct)4175 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4176 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4177
4178 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
4179 if (Lex.getStrVal() == #CLASS) \
4180 return Parse##CLASS(N, IsDistinct);
4181 #include "llvm/IR/Metadata.def"
4182
4183 return TokError("expected metadata type");
4184 }
4185
4186 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4187 #define NOP_FIELD(NAME, TYPE, INIT)
4188 #define REQUIRE_FIELD(NAME, TYPE, INIT) \
4189 if (!NAME.Seen) \
4190 return Error(ClosingLoc, "missing required field '" #NAME "'");
4191 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \
4192 if (Lex.getStrVal() == #NAME) \
4193 return ParseMDField(#NAME, NAME);
4194 #define PARSE_MD_FIELDS() \
4195 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \
4196 do { \
4197 LocTy ClosingLoc; \
4198 if (ParseMDFieldsImpl([&]() -> bool { \
4199 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \
4200 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \
4201 }, ClosingLoc)) \
4202 return true; \
4203 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \
4204 } while (false)
4205 #define GET_OR_DISTINCT(CLASS, ARGS) \
4206 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4207
4208 /// ParseDILocationFields:
4209 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
ParseDILocation(MDNode * & Result,bool IsDistinct)4210 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4211 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4212 OPTIONAL(line, LineField, ); \
4213 OPTIONAL(column, ColumnField, ); \
4214 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4215 OPTIONAL(inlinedAt, MDField, );
4216 PARSE_MD_FIELDS();
4217 #undef VISIT_MD_FIELDS
4218
4219 Result = GET_OR_DISTINCT(
4220 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
4221 return false;
4222 }
4223
4224 /// ParseGenericDINode:
4225 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...})
ParseGenericDINode(MDNode * & Result,bool IsDistinct)4226 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4227 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4228 REQUIRED(tag, DwarfTagField, ); \
4229 OPTIONAL(header, MDStringField, ); \
4230 OPTIONAL(operands, MDFieldList, );
4231 PARSE_MD_FIELDS();
4232 #undef VISIT_MD_FIELDS
4233
4234 Result = GET_OR_DISTINCT(GenericDINode,
4235 (Context, tag.Val, header.Val, operands.Val));
4236 return false;
4237 }
4238
4239 /// ParseDISubrange:
4240 /// ::= !DISubrange(count: 30, lowerBound: 2)
4241 /// ::= !DISubrange(count: !node, lowerBound: 2)
ParseDISubrange(MDNode * & Result,bool IsDistinct)4242 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4243 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4244 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \
4245 OPTIONAL(lowerBound, MDSignedField, );
4246 PARSE_MD_FIELDS();
4247 #undef VISIT_MD_FIELDS
4248
4249 if (count.isMDSignedField())
4250 Result = GET_OR_DISTINCT(
4251 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4252 else if (count.isMDField())
4253 Result = GET_OR_DISTINCT(
4254 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4255 else
4256 return true;
4257
4258 return false;
4259 }
4260
4261 /// ParseDIEnumerator:
4262 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
ParseDIEnumerator(MDNode * & Result,bool IsDistinct)4263 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4264 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4265 REQUIRED(name, MDStringField, ); \
4266 REQUIRED(value, MDSignedOrUnsignedField, ); \
4267 OPTIONAL(isUnsigned, MDBoolField, (false));
4268 PARSE_MD_FIELDS();
4269 #undef VISIT_MD_FIELDS
4270
4271 if (isUnsigned.Val && value.isMDSignedField())
4272 return TokError("unsigned enumerator with negative value");
4273
4274 int64_t Value = value.isMDSignedField()
4275 ? value.getMDSignedValue()
4276 : static_cast<int64_t>(value.getMDUnsignedValue());
4277 Result =
4278 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4279
4280 return false;
4281 }
4282
4283 /// ParseDIBasicType:
4284 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
ParseDIBasicType(MDNode * & Result,bool IsDistinct)4285 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4286 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4287 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \
4288 OPTIONAL(name, MDStringField, ); \
4289 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4290 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4291 OPTIONAL(encoding, DwarfAttEncodingField, );
4292 PARSE_MD_FIELDS();
4293 #undef VISIT_MD_FIELDS
4294
4295 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4296 align.Val, encoding.Val));
4297 return false;
4298 }
4299
4300 /// ParseDIDerivedType:
4301 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4302 /// line: 7, scope: !1, baseType: !2, size: 32,
4303 /// align: 32, offset: 0, flags: 0, extraData: !3,
4304 /// dwarfAddressSpace: 3)
ParseDIDerivedType(MDNode * & Result,bool IsDistinct)4305 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4306 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4307 REQUIRED(tag, DwarfTagField, ); \
4308 OPTIONAL(name, MDStringField, ); \
4309 OPTIONAL(file, MDField, ); \
4310 OPTIONAL(line, LineField, ); \
4311 OPTIONAL(scope, MDField, ); \
4312 REQUIRED(baseType, MDField, ); \
4313 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4314 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4315 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
4316 OPTIONAL(flags, DIFlagField, ); \
4317 OPTIONAL(extraData, MDField, ); \
4318 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4319 PARSE_MD_FIELDS();
4320 #undef VISIT_MD_FIELDS
4321
4322 Optional<unsigned> DWARFAddressSpace;
4323 if (dwarfAddressSpace.Val != UINT32_MAX)
4324 DWARFAddressSpace = dwarfAddressSpace.Val;
4325
4326 Result = GET_OR_DISTINCT(DIDerivedType,
4327 (Context, tag.Val, name.Val, file.Val, line.Val,
4328 scope.Val, baseType.Val, size.Val, align.Val,
4329 offset.Val, DWARFAddressSpace, flags.Val,
4330 extraData.Val));
4331 return false;
4332 }
4333
ParseDICompositeType(MDNode * & Result,bool IsDistinct)4334 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4335 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4336 REQUIRED(tag, DwarfTagField, ); \
4337 OPTIONAL(name, MDStringField, ); \
4338 OPTIONAL(file, MDField, ); \
4339 OPTIONAL(line, LineField, ); \
4340 OPTIONAL(scope, MDField, ); \
4341 OPTIONAL(baseType, MDField, ); \
4342 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4343 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4344 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
4345 OPTIONAL(flags, DIFlagField, ); \
4346 OPTIONAL(elements, MDField, ); \
4347 OPTIONAL(runtimeLang, DwarfLangField, ); \
4348 OPTIONAL(vtableHolder, MDField, ); \
4349 OPTIONAL(templateParams, MDField, ); \
4350 OPTIONAL(identifier, MDStringField, ); \
4351 OPTIONAL(discriminator, MDField, );
4352 PARSE_MD_FIELDS();
4353 #undef VISIT_MD_FIELDS
4354
4355 // If this has an identifier try to build an ODR type.
4356 if (identifier.Val)
4357 if (auto *CT = DICompositeType::buildODRType(
4358 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4359 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4360 elements.Val, runtimeLang.Val, vtableHolder.Val,
4361 templateParams.Val, discriminator.Val)) {
4362 Result = CT;
4363 return false;
4364 }
4365
4366 // Create a new node, and save it in the context if it belongs in the type
4367 // map.
4368 Result = GET_OR_DISTINCT(
4369 DICompositeType,
4370 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4371 size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4372 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4373 discriminator.Val));
4374 return false;
4375 }
4376
ParseDISubroutineType(MDNode * & Result,bool IsDistinct)4377 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4378 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4379 OPTIONAL(flags, DIFlagField, ); \
4380 OPTIONAL(cc, DwarfCCField, ); \
4381 REQUIRED(types, MDField, );
4382 PARSE_MD_FIELDS();
4383 #undef VISIT_MD_FIELDS
4384
4385 Result = GET_OR_DISTINCT(DISubroutineType,
4386 (Context, flags.Val, cc.Val, types.Val));
4387 return false;
4388 }
4389
4390 /// ParseDIFileType:
4391 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4392 /// checksumkind: CSK_MD5,
4393 /// checksum: "000102030405060708090a0b0c0d0e0f",
4394 /// source: "source file contents")
ParseDIFile(MDNode * & Result,bool IsDistinct)4395 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4396 // The default constructed value for checksumkind is required, but will never
4397 // be used, as the parser checks if the field was actually Seen before using
4398 // the Val.
4399 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4400 REQUIRED(filename, MDStringField, ); \
4401 REQUIRED(directory, MDStringField, ); \
4402 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \
4403 OPTIONAL(checksum, MDStringField, ); \
4404 OPTIONAL(source, MDStringField, );
4405 PARSE_MD_FIELDS();
4406 #undef VISIT_MD_FIELDS
4407
4408 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4409 if (checksumkind.Seen && checksum.Seen)
4410 OptChecksum.emplace(checksumkind.Val, checksum.Val);
4411 else if (checksumkind.Seen || checksum.Seen)
4412 return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4413
4414 Optional<MDString *> OptSource;
4415 if (source.Seen)
4416 OptSource = source.Val;
4417 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4418 OptChecksum, OptSource));
4419 return false;
4420 }
4421
4422 /// ParseDICompileUnit:
4423 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4424 /// isOptimized: true, flags: "-O2", runtimeVersion: 1,
4425 /// splitDebugFilename: "abc.debug",
4426 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4427 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
ParseDICompileUnit(MDNode * & Result,bool IsDistinct)4428 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4429 if (!IsDistinct)
4430 return Lex.Error("missing 'distinct', required for !DICompileUnit");
4431
4432 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4433 REQUIRED(language, DwarfLangField, ); \
4434 REQUIRED(file, MDField, (/* AllowNull */ false)); \
4435 OPTIONAL(producer, MDStringField, ); \
4436 OPTIONAL(isOptimized, MDBoolField, ); \
4437 OPTIONAL(flags, MDStringField, ); \
4438 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \
4439 OPTIONAL(splitDebugFilename, MDStringField, ); \
4440 OPTIONAL(emissionKind, EmissionKindField, ); \
4441 OPTIONAL(enums, MDField, ); \
4442 OPTIONAL(retainedTypes, MDField, ); \
4443 OPTIONAL(globals, MDField, ); \
4444 OPTIONAL(imports, MDField, ); \
4445 OPTIONAL(macros, MDField, ); \
4446 OPTIONAL(dwoId, MDUnsignedField, ); \
4447 OPTIONAL(splitDebugInlining, MDBoolField, = true); \
4448 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \
4449 OPTIONAL(gnuPubnames, MDBoolField, = false);
4450 PARSE_MD_FIELDS();
4451 #undef VISIT_MD_FIELDS
4452
4453 Result = DICompileUnit::getDistinct(
4454 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4455 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4456 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4457 splitDebugInlining.Val, debugInfoForProfiling.Val, gnuPubnames.Val);
4458 return false;
4459 }
4460
4461 /// ParseDISubprogram:
4462 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4463 /// file: !1, line: 7, type: !2, isLocal: false,
4464 /// isDefinition: true, scopeLine: 8, containingType: !3,
4465 /// virtuality: DW_VIRTUALTIY_pure_virtual,
4466 /// virtualIndex: 10, thisAdjustment: 4, flags: 11,
4467 /// isOptimized: false, templateParams: !4, declaration: !5,
4468 /// retainedNodes: !6, thrownTypes: !7)
ParseDISubprogram(MDNode * & Result,bool IsDistinct)4469 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4470 auto Loc = Lex.getLoc();
4471 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4472 OPTIONAL(scope, MDField, ); \
4473 OPTIONAL(name, MDStringField, ); \
4474 OPTIONAL(linkageName, MDStringField, ); \
4475 OPTIONAL(file, MDField, ); \
4476 OPTIONAL(line, LineField, ); \
4477 OPTIONAL(type, MDField, ); \
4478 OPTIONAL(isLocal, MDBoolField, ); \
4479 OPTIONAL(isDefinition, MDBoolField, (true)); \
4480 OPTIONAL(scopeLine, LineField, ); \
4481 OPTIONAL(containingType, MDField, ); \
4482 OPTIONAL(virtuality, DwarfVirtualityField, ); \
4483 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \
4484 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \
4485 OPTIONAL(flags, DIFlagField, ); \
4486 OPTIONAL(isOptimized, MDBoolField, ); \
4487 OPTIONAL(unit, MDField, ); \
4488 OPTIONAL(templateParams, MDField, ); \
4489 OPTIONAL(declaration, MDField, ); \
4490 OPTIONAL(retainedNodes, MDField, ); \
4491 OPTIONAL(thrownTypes, MDField, );
4492 PARSE_MD_FIELDS();
4493 #undef VISIT_MD_FIELDS
4494
4495 if (isDefinition.Val && !IsDistinct)
4496 return Lex.Error(
4497 Loc,
4498 "missing 'distinct', required for !DISubprogram when 'isDefinition'");
4499
4500 Result = GET_OR_DISTINCT(
4501 DISubprogram,
4502 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4503 type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val,
4504 containingType.Val, virtuality.Val, virtualIndex.Val, thisAdjustment.Val,
4505 flags.Val, isOptimized.Val, unit.Val, templateParams.Val,
4506 declaration.Val, retainedNodes.Val, thrownTypes.Val));
4507 return false;
4508 }
4509
4510 /// ParseDILexicalBlock:
4511 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
ParseDILexicalBlock(MDNode * & Result,bool IsDistinct)4512 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4513 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4514 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4515 OPTIONAL(file, MDField, ); \
4516 OPTIONAL(line, LineField, ); \
4517 OPTIONAL(column, ColumnField, );
4518 PARSE_MD_FIELDS();
4519 #undef VISIT_MD_FIELDS
4520
4521 Result = GET_OR_DISTINCT(
4522 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4523 return false;
4524 }
4525
4526 /// ParseDILexicalBlockFile:
4527 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
ParseDILexicalBlockFile(MDNode * & Result,bool IsDistinct)4528 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4529 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4530 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4531 OPTIONAL(file, MDField, ); \
4532 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4533 PARSE_MD_FIELDS();
4534 #undef VISIT_MD_FIELDS
4535
4536 Result = GET_OR_DISTINCT(DILexicalBlockFile,
4537 (Context, scope.Val, file.Val, discriminator.Val));
4538 return false;
4539 }
4540
4541 /// ParseDINamespace:
4542 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
ParseDINamespace(MDNode * & Result,bool IsDistinct)4543 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4544 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4545 REQUIRED(scope, MDField, ); \
4546 OPTIONAL(name, MDStringField, ); \
4547 OPTIONAL(exportSymbols, MDBoolField, );
4548 PARSE_MD_FIELDS();
4549 #undef VISIT_MD_FIELDS
4550
4551 Result = GET_OR_DISTINCT(DINamespace,
4552 (Context, scope.Val, name.Val, exportSymbols.Val));
4553 return false;
4554 }
4555
4556 /// ParseDIMacro:
4557 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
ParseDIMacro(MDNode * & Result,bool IsDistinct)4558 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4559 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4560 REQUIRED(type, DwarfMacinfoTypeField, ); \
4561 OPTIONAL(line, LineField, ); \
4562 REQUIRED(name, MDStringField, ); \
4563 OPTIONAL(value, MDStringField, );
4564 PARSE_MD_FIELDS();
4565 #undef VISIT_MD_FIELDS
4566
4567 Result = GET_OR_DISTINCT(DIMacro,
4568 (Context, type.Val, line.Val, name.Val, value.Val));
4569 return false;
4570 }
4571
4572 /// ParseDIMacroFile:
4573 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
ParseDIMacroFile(MDNode * & Result,bool IsDistinct)4574 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4575 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4576 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \
4577 OPTIONAL(line, LineField, ); \
4578 REQUIRED(file, MDField, ); \
4579 OPTIONAL(nodes, MDField, );
4580 PARSE_MD_FIELDS();
4581 #undef VISIT_MD_FIELDS
4582
4583 Result = GET_OR_DISTINCT(DIMacroFile,
4584 (Context, type.Val, line.Val, file.Val, nodes.Val));
4585 return false;
4586 }
4587
4588 /// ParseDIModule:
4589 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4590 /// includePath: "/usr/include", isysroot: "/")
ParseDIModule(MDNode * & Result,bool IsDistinct)4591 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4592 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4593 REQUIRED(scope, MDField, ); \
4594 REQUIRED(name, MDStringField, ); \
4595 OPTIONAL(configMacros, MDStringField, ); \
4596 OPTIONAL(includePath, MDStringField, ); \
4597 OPTIONAL(isysroot, MDStringField, );
4598 PARSE_MD_FIELDS();
4599 #undef VISIT_MD_FIELDS
4600
4601 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4602 configMacros.Val, includePath.Val, isysroot.Val));
4603 return false;
4604 }
4605
4606 /// ParseDITemplateTypeParameter:
4607 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1)
ParseDITemplateTypeParameter(MDNode * & Result,bool IsDistinct)4608 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4609 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4610 OPTIONAL(name, MDStringField, ); \
4611 REQUIRED(type, MDField, );
4612 PARSE_MD_FIELDS();
4613 #undef VISIT_MD_FIELDS
4614
4615 Result =
4616 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4617 return false;
4618 }
4619
4620 /// ParseDITemplateValueParameter:
4621 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4622 /// name: "V", type: !1, value: i32 7)
ParseDITemplateValueParameter(MDNode * & Result,bool IsDistinct)4623 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4624 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4625 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \
4626 OPTIONAL(name, MDStringField, ); \
4627 OPTIONAL(type, MDField, ); \
4628 REQUIRED(value, MDField, );
4629 PARSE_MD_FIELDS();
4630 #undef VISIT_MD_FIELDS
4631
4632 Result = GET_OR_DISTINCT(DITemplateValueParameter,
4633 (Context, tag.Val, name.Val, type.Val, value.Val));
4634 return false;
4635 }
4636
4637 /// ParseDIGlobalVariable:
4638 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4639 /// file: !1, line: 7, type: !2, isLocal: false,
4640 /// isDefinition: true, declaration: !3, align: 8)
ParseDIGlobalVariable(MDNode * & Result,bool IsDistinct)4641 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4642 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4643 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \
4644 OPTIONAL(scope, MDField, ); \
4645 OPTIONAL(linkageName, MDStringField, ); \
4646 OPTIONAL(file, MDField, ); \
4647 OPTIONAL(line, LineField, ); \
4648 OPTIONAL(type, MDField, ); \
4649 OPTIONAL(isLocal, MDBoolField, ); \
4650 OPTIONAL(isDefinition, MDBoolField, (true)); \
4651 OPTIONAL(declaration, MDField, ); \
4652 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4653 PARSE_MD_FIELDS();
4654 #undef VISIT_MD_FIELDS
4655
4656 Result = GET_OR_DISTINCT(DIGlobalVariable,
4657 (Context, scope.Val, name.Val, linkageName.Val,
4658 file.Val, line.Val, type.Val, isLocal.Val,
4659 isDefinition.Val, declaration.Val, align.Val));
4660 return false;
4661 }
4662
4663 /// ParseDILocalVariable:
4664 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4665 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
4666 /// align: 8)
4667 /// ::= !DILocalVariable(scope: !0, name: "foo",
4668 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
4669 /// align: 8)
ParseDILocalVariable(MDNode * & Result,bool IsDistinct)4670 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4671 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4672 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4673 OPTIONAL(name, MDStringField, ); \
4674 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \
4675 OPTIONAL(file, MDField, ); \
4676 OPTIONAL(line, LineField, ); \
4677 OPTIONAL(type, MDField, ); \
4678 OPTIONAL(flags, DIFlagField, ); \
4679 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4680 PARSE_MD_FIELDS();
4681 #undef VISIT_MD_FIELDS
4682
4683 Result = GET_OR_DISTINCT(DILocalVariable,
4684 (Context, scope.Val, name.Val, file.Val, line.Val,
4685 type.Val, arg.Val, flags.Val, align.Val));
4686 return false;
4687 }
4688
4689 /// ParseDILabel:
4690 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
ParseDILabel(MDNode * & Result,bool IsDistinct)4691 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4692 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4693 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4694 REQUIRED(name, MDStringField, ); \
4695 REQUIRED(file, MDField, ); \
4696 REQUIRED(line, LineField, );
4697 PARSE_MD_FIELDS();
4698 #undef VISIT_MD_FIELDS
4699
4700 Result = GET_OR_DISTINCT(DILabel,
4701 (Context, scope.Val, name.Val, file.Val, line.Val));
4702 return false;
4703 }
4704
4705 /// ParseDIExpression:
4706 /// ::= !DIExpression(0, 7, -1)
ParseDIExpression(MDNode * & Result,bool IsDistinct)4707 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4708 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4709 Lex.Lex();
4710
4711 if (ParseToken(lltok::lparen, "expected '(' here"))
4712 return true;
4713
4714 SmallVector<uint64_t, 8> Elements;
4715 if (Lex.getKind() != lltok::rparen)
4716 do {
4717 if (Lex.getKind() == lltok::DwarfOp) {
4718 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4719 Lex.Lex();
4720 Elements.push_back(Op);
4721 continue;
4722 }
4723 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4724 }
4725
4726 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4727 return TokError("expected unsigned integer");
4728
4729 auto &U = Lex.getAPSIntVal();
4730 if (U.ugt(UINT64_MAX))
4731 return TokError("element too large, limit is " + Twine(UINT64_MAX));
4732 Elements.push_back(U.getZExtValue());
4733 Lex.Lex();
4734 } while (EatIfPresent(lltok::comma));
4735
4736 if (ParseToken(lltok::rparen, "expected ')' here"))
4737 return true;
4738
4739 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4740 return false;
4741 }
4742
4743 /// ParseDIGlobalVariableExpression:
4744 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1)
ParseDIGlobalVariableExpression(MDNode * & Result,bool IsDistinct)4745 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4746 bool IsDistinct) {
4747 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4748 REQUIRED(var, MDField, ); \
4749 REQUIRED(expr, MDField, );
4750 PARSE_MD_FIELDS();
4751 #undef VISIT_MD_FIELDS
4752
4753 Result =
4754 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4755 return false;
4756 }
4757
4758 /// ParseDIObjCProperty:
4759 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4760 /// getter: "getFoo", attributes: 7, type: !2)
ParseDIObjCProperty(MDNode * & Result,bool IsDistinct)4761 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4762 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4763 OPTIONAL(name, MDStringField, ); \
4764 OPTIONAL(file, MDField, ); \
4765 OPTIONAL(line, LineField, ); \
4766 OPTIONAL(setter, MDStringField, ); \
4767 OPTIONAL(getter, MDStringField, ); \
4768 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \
4769 OPTIONAL(type, MDField, );
4770 PARSE_MD_FIELDS();
4771 #undef VISIT_MD_FIELDS
4772
4773 Result = GET_OR_DISTINCT(DIObjCProperty,
4774 (Context, name.Val, file.Val, line.Val, setter.Val,
4775 getter.Val, attributes.Val, type.Val));
4776 return false;
4777 }
4778
4779 /// ParseDIImportedEntity:
4780 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4781 /// line: 7, name: "foo")
ParseDIImportedEntity(MDNode * & Result,bool IsDistinct)4782 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4783 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4784 REQUIRED(tag, DwarfTagField, ); \
4785 REQUIRED(scope, MDField, ); \
4786 OPTIONAL(entity, MDField, ); \
4787 OPTIONAL(file, MDField, ); \
4788 OPTIONAL(line, LineField, ); \
4789 OPTIONAL(name, MDStringField, );
4790 PARSE_MD_FIELDS();
4791 #undef VISIT_MD_FIELDS
4792
4793 Result = GET_OR_DISTINCT(
4794 DIImportedEntity,
4795 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
4796 return false;
4797 }
4798
4799 #undef PARSE_MD_FIELD
4800 #undef NOP_FIELD
4801 #undef REQUIRE_FIELD
4802 #undef DECLARE_FIELD
4803
4804 /// ParseMetadataAsValue
4805 /// ::= metadata i32 %local
4806 /// ::= metadata i32 @global
4807 /// ::= metadata i32 7
4808 /// ::= metadata !0
4809 /// ::= metadata !{...}
4810 /// ::= metadata !"string"
ParseMetadataAsValue(Value * & V,PerFunctionState & PFS)4811 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4812 // Note: the type 'metadata' has already been parsed.
4813 Metadata *MD;
4814 if (ParseMetadata(MD, &PFS))
4815 return true;
4816
4817 V = MetadataAsValue::get(Context, MD);
4818 return false;
4819 }
4820
4821 /// ParseValueAsMetadata
4822 /// ::= i32 %local
4823 /// ::= i32 @global
4824 /// ::= i32 7
ParseValueAsMetadata(Metadata * & MD,const Twine & TypeMsg,PerFunctionState * PFS)4825 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4826 PerFunctionState *PFS) {
4827 Type *Ty;
4828 LocTy Loc;
4829 if (ParseType(Ty, TypeMsg, Loc))
4830 return true;
4831 if (Ty->isMetadataTy())
4832 return Error(Loc, "invalid metadata-value-metadata roundtrip");
4833
4834 Value *V;
4835 if (ParseValue(Ty, V, PFS))
4836 return true;
4837
4838 MD = ValueAsMetadata::get(V);
4839 return false;
4840 }
4841
4842 /// ParseMetadata
4843 /// ::= i32 %local
4844 /// ::= i32 @global
4845 /// ::= i32 7
4846 /// ::= !42
4847 /// ::= !{...}
4848 /// ::= !"string"
4849 /// ::= !DILocation(...)
ParseMetadata(Metadata * & MD,PerFunctionState * PFS)4850 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4851 if (Lex.getKind() == lltok::MetadataVar) {
4852 MDNode *N;
4853 if (ParseSpecializedMDNode(N))
4854 return true;
4855 MD = N;
4856 return false;
4857 }
4858
4859 // ValueAsMetadata:
4860 // <type> <value>
4861 if (Lex.getKind() != lltok::exclaim)
4862 return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4863
4864 // '!'.
4865 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4866 Lex.Lex();
4867
4868 // MDString:
4869 // ::= '!' STRINGCONSTANT
4870 if (Lex.getKind() == lltok::StringConstant) {
4871 MDString *S;
4872 if (ParseMDString(S))
4873 return true;
4874 MD = S;
4875 return false;
4876 }
4877
4878 // MDNode:
4879 // !{ ... }
4880 // !7
4881 MDNode *N;
4882 if (ParseMDNodeTail(N))
4883 return true;
4884 MD = N;
4885 return false;
4886 }
4887
4888 //===----------------------------------------------------------------------===//
4889 // Function Parsing.
4890 //===----------------------------------------------------------------------===//
4891
ConvertValIDToValue(Type * Ty,ValID & ID,Value * & V,PerFunctionState * PFS,bool IsCall)4892 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4893 PerFunctionState *PFS, bool IsCall) {
4894 if (Ty->isFunctionTy())
4895 return Error(ID.Loc, "functions are not values, refer to them as pointers");
4896
4897 switch (ID.Kind) {
4898 case ValID::t_LocalID:
4899 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4900 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
4901 return V == nullptr;
4902 case ValID::t_LocalName:
4903 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4904 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
4905 return V == nullptr;
4906 case ValID::t_InlineAsm: {
4907 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
4908 return Error(ID.Loc, "invalid type for inline asm constraint string");
4909 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
4910 (ID.UIntVal >> 1) & 1,
4911 (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
4912 return false;
4913 }
4914 case ValID::t_GlobalName:
4915 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
4916 return V == nullptr;
4917 case ValID::t_GlobalID:
4918 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
4919 return V == nullptr;
4920 case ValID::t_APSInt:
4921 if (!Ty->isIntegerTy())
4922 return Error(ID.Loc, "integer constant must have integer type");
4923 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
4924 V = ConstantInt::get(Context, ID.APSIntVal);
4925 return false;
4926 case ValID::t_APFloat:
4927 if (!Ty->isFloatingPointTy() ||
4928 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
4929 return Error(ID.Loc, "floating point constant invalid for type");
4930
4931 // The lexer has no type info, so builds all half, float, and double FP
4932 // constants as double. Fix this here. Long double does not need this.
4933 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
4934 bool Ignored;
4935 if (Ty->isHalfTy())
4936 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
4937 &Ignored);
4938 else if (Ty->isFloatTy())
4939 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
4940 &Ignored);
4941 }
4942 V = ConstantFP::get(Context, ID.APFloatVal);
4943
4944 if (V->getType() != Ty)
4945 return Error(ID.Loc, "floating point constant does not have type '" +
4946 getTypeString(Ty) + "'");
4947
4948 return false;
4949 case ValID::t_Null:
4950 if (!Ty->isPointerTy())
4951 return Error(ID.Loc, "null must be a pointer type");
4952 V = ConstantPointerNull::get(cast<PointerType>(Ty));
4953 return false;
4954 case ValID::t_Undef:
4955 // FIXME: LabelTy should not be a first-class type.
4956 if (!Ty->isFirstClassType() || Ty->isLabelTy())
4957 return Error(ID.Loc, "invalid type for undef constant");
4958 V = UndefValue::get(Ty);
4959 return false;
4960 case ValID::t_EmptyArray:
4961 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
4962 return Error(ID.Loc, "invalid empty array initializer");
4963 V = UndefValue::get(Ty);
4964 return false;
4965 case ValID::t_Zero:
4966 // FIXME: LabelTy should not be a first-class type.
4967 if (!Ty->isFirstClassType() || Ty->isLabelTy())
4968 return Error(ID.Loc, "invalid type for null constant");
4969 V = Constant::getNullValue(Ty);
4970 return false;
4971 case ValID::t_None:
4972 if (!Ty->isTokenTy())
4973 return Error(ID.Loc, "invalid type for none constant");
4974 V = Constant::getNullValue(Ty);
4975 return false;
4976 case ValID::t_Constant:
4977 if (ID.ConstantVal->getType() != Ty)
4978 return Error(ID.Loc, "constant expression type mismatch");
4979
4980 V = ID.ConstantVal;
4981 return false;
4982 case ValID::t_ConstantStruct:
4983 case ValID::t_PackedConstantStruct:
4984 if (StructType *ST = dyn_cast<StructType>(Ty)) {
4985 if (ST->getNumElements() != ID.UIntVal)
4986 return Error(ID.Loc,
4987 "initializer with struct type has wrong # elements");
4988 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
4989 return Error(ID.Loc, "packed'ness of initializer and type don't match");
4990
4991 // Verify that the elements are compatible with the structtype.
4992 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
4993 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
4994 return Error(ID.Loc, "element " + Twine(i) +
4995 " of struct initializer doesn't match struct element type");
4996
4997 V = ConstantStruct::get(
4998 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
4999 } else
5000 return Error(ID.Loc, "constant expression type mismatch");
5001 return false;
5002 }
5003 llvm_unreachable("Invalid ValID");
5004 }
5005
parseConstantValue(Type * Ty,Constant * & C)5006 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5007 C = nullptr;
5008 ValID ID;
5009 auto Loc = Lex.getLoc();
5010 if (ParseValID(ID, /*PFS=*/nullptr))
5011 return true;
5012 switch (ID.Kind) {
5013 case ValID::t_APSInt:
5014 case ValID::t_APFloat:
5015 case ValID::t_Undef:
5016 case ValID::t_Constant:
5017 case ValID::t_ConstantStruct:
5018 case ValID::t_PackedConstantStruct: {
5019 Value *V;
5020 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5021 return true;
5022 assert(isa<Constant>(V) && "Expected a constant value");
5023 C = cast<Constant>(V);
5024 return false;
5025 }
5026 case ValID::t_Null:
5027 C = Constant::getNullValue(Ty);
5028 return false;
5029 default:
5030 return Error(Loc, "expected a constant value");
5031 }
5032 }
5033
ParseValue(Type * Ty,Value * & V,PerFunctionState * PFS)5034 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5035 V = nullptr;
5036 ValID ID;
5037 return ParseValID(ID, PFS) ||
5038 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5039 }
5040
ParseTypeAndValue(Value * & V,PerFunctionState * PFS)5041 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5042 Type *Ty = nullptr;
5043 return ParseType(Ty) ||
5044 ParseValue(Ty, V, PFS);
5045 }
5046
ParseTypeAndBasicBlock(BasicBlock * & BB,LocTy & Loc,PerFunctionState & PFS)5047 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5048 PerFunctionState &PFS) {
5049 Value *V;
5050 Loc = Lex.getLoc();
5051 if (ParseTypeAndValue(V, PFS)) return true;
5052 if (!isa<BasicBlock>(V))
5053 return Error(Loc, "expected a basic block");
5054 BB = cast<BasicBlock>(V);
5055 return false;
5056 }
5057
5058 /// FunctionHeader
5059 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5060 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5061 /// '(' ArgList ')' OptFuncAttrs OptSection OptionalAlign OptGC
5062 /// OptionalPrefix OptionalPrologue OptPersonalityFn
ParseFunctionHeader(Function * & Fn,bool isDefine)5063 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5064 // Parse the linkage.
5065 LocTy LinkageLoc = Lex.getLoc();
5066 unsigned Linkage;
5067 unsigned Visibility;
5068 unsigned DLLStorageClass;
5069 bool DSOLocal;
5070 AttrBuilder RetAttrs;
5071 unsigned CC;
5072 bool HasLinkage;
5073 Type *RetType = nullptr;
5074 LocTy RetTypeLoc = Lex.getLoc();
5075 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5076 DSOLocal) ||
5077 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5078 ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5079 return true;
5080
5081 // Verify that the linkage is ok.
5082 switch ((GlobalValue::LinkageTypes)Linkage) {
5083 case GlobalValue::ExternalLinkage:
5084 break; // always ok.
5085 case GlobalValue::ExternalWeakLinkage:
5086 if (isDefine)
5087 return Error(LinkageLoc, "invalid linkage for function definition");
5088 break;
5089 case GlobalValue::PrivateLinkage:
5090 case GlobalValue::InternalLinkage:
5091 case GlobalValue::AvailableExternallyLinkage:
5092 case GlobalValue::LinkOnceAnyLinkage:
5093 case GlobalValue::LinkOnceODRLinkage:
5094 case GlobalValue::WeakAnyLinkage:
5095 case GlobalValue::WeakODRLinkage:
5096 if (!isDefine)
5097 return Error(LinkageLoc, "invalid linkage for function declaration");
5098 break;
5099 case GlobalValue::AppendingLinkage:
5100 case GlobalValue::CommonLinkage:
5101 return Error(LinkageLoc, "invalid function linkage type");
5102 }
5103
5104 if (!isValidVisibilityForLinkage(Visibility, Linkage))
5105 return Error(LinkageLoc,
5106 "symbol with local linkage must have default visibility");
5107
5108 if (!FunctionType::isValidReturnType(RetType))
5109 return Error(RetTypeLoc, "invalid function return type");
5110
5111 LocTy NameLoc = Lex.getLoc();
5112
5113 std::string FunctionName;
5114 if (Lex.getKind() == lltok::GlobalVar) {
5115 FunctionName = Lex.getStrVal();
5116 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
5117 unsigned NameID = Lex.getUIntVal();
5118
5119 if (NameID != NumberedVals.size())
5120 return TokError("function expected to be numbered '%" +
5121 Twine(NumberedVals.size()) + "'");
5122 } else {
5123 return TokError("expected function name");
5124 }
5125
5126 Lex.Lex();
5127
5128 if (Lex.getKind() != lltok::lparen)
5129 return TokError("expected '(' in function argument list");
5130
5131 SmallVector<ArgInfo, 8> ArgList;
5132 bool isVarArg;
5133 AttrBuilder FuncAttrs;
5134 std::vector<unsigned> FwdRefAttrGrps;
5135 LocTy BuiltinLoc;
5136 std::string Section;
5137 unsigned Alignment;
5138 std::string GC;
5139 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5140 Constant *Prefix = nullptr;
5141 Constant *Prologue = nullptr;
5142 Constant *PersonalityFn = nullptr;
5143 Comdat *C;
5144
5145 if (ParseArgumentList(ArgList, isVarArg) ||
5146 ParseOptionalUnnamedAddr(UnnamedAddr) ||
5147 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5148 BuiltinLoc) ||
5149 (EatIfPresent(lltok::kw_section) &&
5150 ParseStringConstant(Section)) ||
5151 parseOptionalComdat(FunctionName, C) ||
5152 ParseOptionalAlignment(Alignment) ||
5153 (EatIfPresent(lltok::kw_gc) &&
5154 ParseStringConstant(GC)) ||
5155 (EatIfPresent(lltok::kw_prefix) &&
5156 ParseGlobalTypeAndValue(Prefix)) ||
5157 (EatIfPresent(lltok::kw_prologue) &&
5158 ParseGlobalTypeAndValue(Prologue)) ||
5159 (EatIfPresent(lltok::kw_personality) &&
5160 ParseGlobalTypeAndValue(PersonalityFn)))
5161 return true;
5162
5163 if (FuncAttrs.contains(Attribute::Builtin))
5164 return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5165
5166 // If the alignment was parsed as an attribute, move to the alignment field.
5167 if (FuncAttrs.hasAlignmentAttr()) {
5168 Alignment = FuncAttrs.getAlignment();
5169 FuncAttrs.removeAttribute(Attribute::Alignment);
5170 }
5171
5172 // Okay, if we got here, the function is syntactically valid. Convert types
5173 // and do semantic checks.
5174 std::vector<Type*> ParamTypeList;
5175 SmallVector<AttributeSet, 8> Attrs;
5176
5177 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5178 ParamTypeList.push_back(ArgList[i].Ty);
5179 Attrs.push_back(ArgList[i].Attrs);
5180 }
5181
5182 AttributeList PAL =
5183 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5184 AttributeSet::get(Context, RetAttrs), Attrs);
5185
5186 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5187 return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5188
5189 FunctionType *FT =
5190 FunctionType::get(RetType, ParamTypeList, isVarArg);
5191 PointerType *PFT = PointerType::getUnqual(FT);
5192
5193 Fn = nullptr;
5194 if (!FunctionName.empty()) {
5195 // If this was a definition of a forward reference, remove the definition
5196 // from the forward reference table and fill in the forward ref.
5197 auto FRVI = ForwardRefVals.find(FunctionName);
5198 if (FRVI != ForwardRefVals.end()) {
5199 Fn = M->getFunction(FunctionName);
5200 if (!Fn)
5201 return Error(FRVI->second.second, "invalid forward reference to "
5202 "function as global value!");
5203 if (Fn->getType() != PFT)
5204 return Error(FRVI->second.second, "invalid forward reference to "
5205 "function '" + FunctionName + "' with wrong type!");
5206
5207 ForwardRefVals.erase(FRVI);
5208 } else if ((Fn = M->getFunction(FunctionName))) {
5209 // Reject redefinitions.
5210 return Error(NameLoc, "invalid redefinition of function '" +
5211 FunctionName + "'");
5212 } else if (M->getNamedValue(FunctionName)) {
5213 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5214 }
5215
5216 } else {
5217 // If this is a definition of a forward referenced function, make sure the
5218 // types agree.
5219 auto I = ForwardRefValIDs.find(NumberedVals.size());
5220 if (I != ForwardRefValIDs.end()) {
5221 Fn = cast<Function>(I->second.first);
5222 if (Fn->getType() != PFT)
5223 return Error(NameLoc, "type of definition and forward reference of '@" +
5224 Twine(NumberedVals.size()) + "' disagree");
5225 ForwardRefValIDs.erase(I);
5226 }
5227 }
5228
5229 if (!Fn)
5230 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
5231 else // Move the forward-reference to the correct spot in the module.
5232 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5233
5234 if (FunctionName.empty())
5235 NumberedVals.push_back(Fn);
5236
5237 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5238 maybeSetDSOLocal(DSOLocal, *Fn);
5239 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5240 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5241 Fn->setCallingConv(CC);
5242 Fn->setAttributes(PAL);
5243 Fn->setUnnamedAddr(UnnamedAddr);
5244 Fn->setAlignment(Alignment);
5245 Fn->setSection(Section);
5246 Fn->setComdat(C);
5247 Fn->setPersonalityFn(PersonalityFn);
5248 if (!GC.empty()) Fn->setGC(GC);
5249 Fn->setPrefixData(Prefix);
5250 Fn->setPrologueData(Prologue);
5251 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5252
5253 // Add all of the arguments we parsed to the function.
5254 Function::arg_iterator ArgIt = Fn->arg_begin();
5255 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5256 // If the argument has a name, insert it into the argument symbol table.
5257 if (ArgList[i].Name.empty()) continue;
5258
5259 // Set the name, if it conflicted, it will be auto-renamed.
5260 ArgIt->setName(ArgList[i].Name);
5261
5262 if (ArgIt->getName() != ArgList[i].Name)
5263 return Error(ArgList[i].Loc, "redefinition of argument '%" +
5264 ArgList[i].Name + "'");
5265 }
5266
5267 if (isDefine)
5268 return false;
5269
5270 // Check the declaration has no block address forward references.
5271 ValID ID;
5272 if (FunctionName.empty()) {
5273 ID.Kind = ValID::t_GlobalID;
5274 ID.UIntVal = NumberedVals.size() - 1;
5275 } else {
5276 ID.Kind = ValID::t_GlobalName;
5277 ID.StrVal = FunctionName;
5278 }
5279 auto Blocks = ForwardRefBlockAddresses.find(ID);
5280 if (Blocks != ForwardRefBlockAddresses.end())
5281 return Error(Blocks->first.Loc,
5282 "cannot take blockaddress inside a declaration");
5283 return false;
5284 }
5285
resolveForwardRefBlockAddresses()5286 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5287 ValID ID;
5288 if (FunctionNumber == -1) {
5289 ID.Kind = ValID::t_GlobalName;
5290 ID.StrVal = F.getName();
5291 } else {
5292 ID.Kind = ValID::t_GlobalID;
5293 ID.UIntVal = FunctionNumber;
5294 }
5295
5296 auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5297 if (Blocks == P.ForwardRefBlockAddresses.end())
5298 return false;
5299
5300 for (const auto &I : Blocks->second) {
5301 const ValID &BBID = I.first;
5302 GlobalValue *GV = I.second;
5303
5304 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5305 "Expected local id or name");
5306 BasicBlock *BB;
5307 if (BBID.Kind == ValID::t_LocalName)
5308 BB = GetBB(BBID.StrVal, BBID.Loc);
5309 else
5310 BB = GetBB(BBID.UIntVal, BBID.Loc);
5311 if (!BB)
5312 return P.Error(BBID.Loc, "referenced value is not a basic block");
5313
5314 GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5315 GV->eraseFromParent();
5316 }
5317
5318 P.ForwardRefBlockAddresses.erase(Blocks);
5319 return false;
5320 }
5321
5322 /// ParseFunctionBody
5323 /// ::= '{' BasicBlock+ UseListOrderDirective* '}'
ParseFunctionBody(Function & Fn)5324 bool LLParser::ParseFunctionBody(Function &Fn) {
5325 if (Lex.getKind() != lltok::lbrace)
5326 return TokError("expected '{' in function body");
5327 Lex.Lex(); // eat the {.
5328
5329 int FunctionNumber = -1;
5330 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5331
5332 PerFunctionState PFS(*this, Fn, FunctionNumber);
5333
5334 // Resolve block addresses and allow basic blocks to be forward-declared
5335 // within this function.
5336 if (PFS.resolveForwardRefBlockAddresses())
5337 return true;
5338 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5339
5340 // We need at least one basic block.
5341 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5342 return TokError("function body requires at least one basic block");
5343
5344 while (Lex.getKind() != lltok::rbrace &&
5345 Lex.getKind() != lltok::kw_uselistorder)
5346 if (ParseBasicBlock(PFS)) return true;
5347
5348 while (Lex.getKind() != lltok::rbrace)
5349 if (ParseUseListOrder(&PFS))
5350 return true;
5351
5352 // Eat the }.
5353 Lex.Lex();
5354
5355 // Verify function is ok.
5356 return PFS.FinishFunction();
5357 }
5358
5359 /// ParseBasicBlock
5360 /// ::= LabelStr? Instruction*
ParseBasicBlock(PerFunctionState & PFS)5361 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5362 // If this basic block starts out with a name, remember it.
5363 std::string Name;
5364 LocTy NameLoc = Lex.getLoc();
5365 if (Lex.getKind() == lltok::LabelStr) {
5366 Name = Lex.getStrVal();
5367 Lex.Lex();
5368 }
5369
5370 BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
5371 if (!BB)
5372 return Error(NameLoc,
5373 "unable to create block named '" + Name + "'");
5374
5375 std::string NameStr;
5376
5377 // Parse the instructions in this block until we get a terminator.
5378 Instruction *Inst;
5379 do {
5380 // This instruction may have three possibilities for a name: a) none
5381 // specified, b) name specified "%foo =", c) number specified: "%4 =".
5382 LocTy NameLoc = Lex.getLoc();
5383 int NameID = -1;
5384 NameStr = "";
5385
5386 if (Lex.getKind() == lltok::LocalVarID) {
5387 NameID = Lex.getUIntVal();
5388 Lex.Lex();
5389 if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5390 return true;
5391 } else if (Lex.getKind() == lltok::LocalVar) {
5392 NameStr = Lex.getStrVal();
5393 Lex.Lex();
5394 if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5395 return true;
5396 }
5397
5398 switch (ParseInstruction(Inst, BB, PFS)) {
5399 default: llvm_unreachable("Unknown ParseInstruction result!");
5400 case InstError: return true;
5401 case InstNormal:
5402 BB->getInstList().push_back(Inst);
5403
5404 // With a normal result, we check to see if the instruction is followed by
5405 // a comma and metadata.
5406 if (EatIfPresent(lltok::comma))
5407 if (ParseInstructionMetadata(*Inst))
5408 return true;
5409 break;
5410 case InstExtraComma:
5411 BB->getInstList().push_back(Inst);
5412
5413 // If the instruction parser ate an extra comma at the end of it, it
5414 // *must* be followed by metadata.
5415 if (ParseInstructionMetadata(*Inst))
5416 return true;
5417 break;
5418 }
5419
5420 // Set the name on the instruction.
5421 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5422 } while (!isa<TerminatorInst>(Inst));
5423
5424 return false;
5425 }
5426
5427 //===----------------------------------------------------------------------===//
5428 // Instruction Parsing.
5429 //===----------------------------------------------------------------------===//
5430
5431 /// ParseInstruction - Parse one of the many different instructions.
5432 ///
ParseInstruction(Instruction * & Inst,BasicBlock * BB,PerFunctionState & PFS)5433 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5434 PerFunctionState &PFS) {
5435 lltok::Kind Token = Lex.getKind();
5436 if (Token == lltok::Eof)
5437 return TokError("found end of file when expecting more instructions");
5438 LocTy Loc = Lex.getLoc();
5439 unsigned KeywordVal = Lex.getUIntVal();
5440 Lex.Lex(); // Eat the keyword.
5441
5442 switch (Token) {
5443 default: return Error(Loc, "expected instruction opcode");
5444 // Terminator Instructions.
5445 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5446 case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
5447 case lltok::kw_br: return ParseBr(Inst, PFS);
5448 case lltok::kw_switch: return ParseSwitch(Inst, PFS);
5449 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS);
5450 case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
5451 case lltok::kw_resume: return ParseResume(Inst, PFS);
5452 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS);
5453 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS);
5454 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5455 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS);
5456 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS);
5457 // Binary Operators.
5458 case lltok::kw_add:
5459 case lltok::kw_sub:
5460 case lltok::kw_mul:
5461 case lltok::kw_shl: {
5462 bool NUW = EatIfPresent(lltok::kw_nuw);
5463 bool NSW = EatIfPresent(lltok::kw_nsw);
5464 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5465
5466 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5467
5468 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5469 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5470 return false;
5471 }
5472 case lltok::kw_fadd:
5473 case lltok::kw_fsub:
5474 case lltok::kw_fmul:
5475 case lltok::kw_fdiv:
5476 case lltok::kw_frem: {
5477 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5478 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
5479 if (Res != 0)
5480 return Res;
5481 if (FMF.any())
5482 Inst->setFastMathFlags(FMF);
5483 return 0;
5484 }
5485
5486 case lltok::kw_sdiv:
5487 case lltok::kw_udiv:
5488 case lltok::kw_lshr:
5489 case lltok::kw_ashr: {
5490 bool Exact = EatIfPresent(lltok::kw_exact);
5491
5492 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5493 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5494 return false;
5495 }
5496
5497 case lltok::kw_urem:
5498 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1);
5499 case lltok::kw_and:
5500 case lltok::kw_or:
5501 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
5502 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal);
5503 case lltok::kw_fcmp: {
5504 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5505 int Res = ParseCompare(Inst, PFS, KeywordVal);
5506 if (Res != 0)
5507 return Res;
5508 if (FMF.any())
5509 Inst->setFastMathFlags(FMF);
5510 return 0;
5511 }
5512
5513 // Casts.
5514 case lltok::kw_trunc:
5515 case lltok::kw_zext:
5516 case lltok::kw_sext:
5517 case lltok::kw_fptrunc:
5518 case lltok::kw_fpext:
5519 case lltok::kw_bitcast:
5520 case lltok::kw_addrspacecast:
5521 case lltok::kw_uitofp:
5522 case lltok::kw_sitofp:
5523 case lltok::kw_fptoui:
5524 case lltok::kw_fptosi:
5525 case lltok::kw_inttoptr:
5526 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
5527 // Other.
5528 case lltok::kw_select: return ParseSelect(Inst, PFS);
5529 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
5530 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5531 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
5532 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
5533 case lltok::kw_phi: return ParsePHI(Inst, PFS);
5534 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS);
5535 // Call.
5536 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None);
5537 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5538 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5539 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5540 // Memory.
5541 case lltok::kw_alloca: return ParseAlloc(Inst, PFS);
5542 case lltok::kw_load: return ParseLoad(Inst, PFS);
5543 case lltok::kw_store: return ParseStore(Inst, PFS);
5544 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS);
5545 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS);
5546 case lltok::kw_fence: return ParseFence(Inst, PFS);
5547 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5548 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
5549 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
5550 }
5551 }
5552
5553 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
ParseCmpPredicate(unsigned & P,unsigned Opc)5554 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5555 if (Opc == Instruction::FCmp) {
5556 switch (Lex.getKind()) {
5557 default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5558 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5559 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5560 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5561 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5562 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5563 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5564 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5565 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5566 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5567 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5568 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5569 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5570 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5571 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5572 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5573 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5574 }
5575 } else {
5576 switch (Lex.getKind()) {
5577 default: return TokError("expected icmp predicate (e.g. 'eq')");
5578 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
5579 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
5580 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5581 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5582 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5583 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5584 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5585 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5586 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5587 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5588 }
5589 }
5590 Lex.Lex();
5591 return false;
5592 }
5593
5594 //===----------------------------------------------------------------------===//
5595 // Terminator Instructions.
5596 //===----------------------------------------------------------------------===//
5597
5598 /// ParseRet - Parse a return instruction.
5599 /// ::= 'ret' void (',' !dbg, !1)*
5600 /// ::= 'ret' TypeAndValue (',' !dbg, !1)*
ParseRet(Instruction * & Inst,BasicBlock * BB,PerFunctionState & PFS)5601 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5602 PerFunctionState &PFS) {
5603 SMLoc TypeLoc = Lex.getLoc();
5604 Type *Ty = nullptr;
5605 if (ParseType(Ty, true /*void allowed*/)) return true;
5606
5607 Type *ResType = PFS.getFunction().getReturnType();
5608
5609 if (Ty->isVoidTy()) {
5610 if (!ResType->isVoidTy())
5611 return Error(TypeLoc, "value doesn't match function result type '" +
5612 getTypeString(ResType) + "'");
5613
5614 Inst = ReturnInst::Create(Context);
5615 return false;
5616 }
5617
5618 Value *RV;
5619 if (ParseValue(Ty, RV, PFS)) return true;
5620
5621 if (ResType != RV->getType())
5622 return Error(TypeLoc, "value doesn't match function result type '" +
5623 getTypeString(ResType) + "'");
5624
5625 Inst = ReturnInst::Create(Context, RV);
5626 return false;
5627 }
5628
5629 /// ParseBr
5630 /// ::= 'br' TypeAndValue
5631 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseBr(Instruction * & Inst,PerFunctionState & PFS)5632 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5633 LocTy Loc, Loc2;
5634 Value *Op0;
5635 BasicBlock *Op1, *Op2;
5636 if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5637
5638 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5639 Inst = BranchInst::Create(BB);
5640 return false;
5641 }
5642
5643 if (Op0->getType() != Type::getInt1Ty(Context))
5644 return Error(Loc, "branch condition must have 'i1' type");
5645
5646 if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5647 ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5648 ParseToken(lltok::comma, "expected ',' after true destination") ||
5649 ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5650 return true;
5651
5652 Inst = BranchInst::Create(Op1, Op2, Op0);
5653 return false;
5654 }
5655
5656 /// ParseSwitch
5657 /// Instruction
5658 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5659 /// JumpTable
5660 /// ::= (TypeAndValue ',' TypeAndValue)*
ParseSwitch(Instruction * & Inst,PerFunctionState & PFS)5661 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5662 LocTy CondLoc, BBLoc;
5663 Value *Cond;
5664 BasicBlock *DefaultBB;
5665 if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5666 ParseToken(lltok::comma, "expected ',' after switch condition") ||
5667 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5668 ParseToken(lltok::lsquare, "expected '[' with switch table"))
5669 return true;
5670
5671 if (!Cond->getType()->isIntegerTy())
5672 return Error(CondLoc, "switch condition must have integer type");
5673
5674 // Parse the jump table pairs.
5675 SmallPtrSet<Value*, 32> SeenCases;
5676 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5677 while (Lex.getKind() != lltok::rsquare) {
5678 Value *Constant;
5679 BasicBlock *DestBB;
5680
5681 if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5682 ParseToken(lltok::comma, "expected ',' after case value") ||
5683 ParseTypeAndBasicBlock(DestBB, PFS))
5684 return true;
5685
5686 if (!SeenCases.insert(Constant).second)
5687 return Error(CondLoc, "duplicate case value in switch");
5688 if (!isa<ConstantInt>(Constant))
5689 return Error(CondLoc, "case value is not a constant integer");
5690
5691 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5692 }
5693
5694 Lex.Lex(); // Eat the ']'.
5695
5696 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5697 for (unsigned i = 0, e = Table.size(); i != e; ++i)
5698 SI->addCase(Table[i].first, Table[i].second);
5699 Inst = SI;
5700 return false;
5701 }
5702
5703 /// ParseIndirectBr
5704 /// Instruction
5705 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
ParseIndirectBr(Instruction * & Inst,PerFunctionState & PFS)5706 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5707 LocTy AddrLoc;
5708 Value *Address;
5709 if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5710 ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5711 ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5712 return true;
5713
5714 if (!Address->getType()->isPointerTy())
5715 return Error(AddrLoc, "indirectbr address must have pointer type");
5716
5717 // Parse the destination list.
5718 SmallVector<BasicBlock*, 16> DestList;
5719
5720 if (Lex.getKind() != lltok::rsquare) {
5721 BasicBlock *DestBB;
5722 if (ParseTypeAndBasicBlock(DestBB, PFS))
5723 return true;
5724 DestList.push_back(DestBB);
5725
5726 while (EatIfPresent(lltok::comma)) {
5727 if (ParseTypeAndBasicBlock(DestBB, PFS))
5728 return true;
5729 DestList.push_back(DestBB);
5730 }
5731 }
5732
5733 if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5734 return true;
5735
5736 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5737 for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5738 IBI->addDestination(DestList[i]);
5739 Inst = IBI;
5740 return false;
5741 }
5742
5743 /// ParseInvoke
5744 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5745 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
ParseInvoke(Instruction * & Inst,PerFunctionState & PFS)5746 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5747 LocTy CallLoc = Lex.getLoc();
5748 AttrBuilder RetAttrs, FnAttrs;
5749 std::vector<unsigned> FwdRefAttrGrps;
5750 LocTy NoBuiltinLoc;
5751 unsigned CC;
5752 Type *RetType = nullptr;
5753 LocTy RetTypeLoc;
5754 ValID CalleeID;
5755 SmallVector<ParamInfo, 16> ArgList;
5756 SmallVector<OperandBundleDef, 2> BundleList;
5757
5758 BasicBlock *NormalBB, *UnwindBB;
5759 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5760 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5761 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5762 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5763 NoBuiltinLoc) ||
5764 ParseOptionalOperandBundles(BundleList, PFS) ||
5765 ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5766 ParseTypeAndBasicBlock(NormalBB, PFS) ||
5767 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5768 ParseTypeAndBasicBlock(UnwindBB, PFS))
5769 return true;
5770
5771 // If RetType is a non-function pointer type, then this is the short syntax
5772 // for the call, which means that RetType is just the return type. Infer the
5773 // rest of the function argument types from the arguments that are present.
5774 FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5775 if (!Ty) {
5776 // Pull out the types of all of the arguments...
5777 std::vector<Type*> ParamTypes;
5778 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5779 ParamTypes.push_back(ArgList[i].V->getType());
5780
5781 if (!FunctionType::isValidReturnType(RetType))
5782 return Error(RetTypeLoc, "Invalid result type for LLVM function");
5783
5784 Ty = FunctionType::get(RetType, ParamTypes, false);
5785 }
5786
5787 CalleeID.FTy = Ty;
5788
5789 // Look up the callee.
5790 Value *Callee;
5791 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
5792 /*IsCall=*/true))
5793 return true;
5794
5795 // Set up the Attribute for the function.
5796 SmallVector<Value *, 8> Args;
5797 SmallVector<AttributeSet, 8> ArgAttrs;
5798
5799 // Loop through FunctionType's arguments and ensure they are specified
5800 // correctly. Also, gather any parameter attributes.
5801 FunctionType::param_iterator I = Ty->param_begin();
5802 FunctionType::param_iterator E = Ty->param_end();
5803 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5804 Type *ExpectedTy = nullptr;
5805 if (I != E) {
5806 ExpectedTy = *I++;
5807 } else if (!Ty->isVarArg()) {
5808 return Error(ArgList[i].Loc, "too many arguments specified");
5809 }
5810
5811 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5812 return Error(ArgList[i].Loc, "argument is not of expected type '" +
5813 getTypeString(ExpectedTy) + "'");
5814 Args.push_back(ArgList[i].V);
5815 ArgAttrs.push_back(ArgList[i].Attrs);
5816 }
5817
5818 if (I != E)
5819 return Error(CallLoc, "not enough parameters specified for call");
5820
5821 if (FnAttrs.hasAlignmentAttr())
5822 return Error(CallLoc, "invoke instructions may not have an alignment");
5823
5824 // Finish off the Attribute and check them
5825 AttributeList PAL =
5826 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
5827 AttributeSet::get(Context, RetAttrs), ArgAttrs);
5828
5829 InvokeInst *II =
5830 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5831 II->setCallingConv(CC);
5832 II->setAttributes(PAL);
5833 ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5834 Inst = II;
5835 return false;
5836 }
5837
5838 /// ParseResume
5839 /// ::= 'resume' TypeAndValue
ParseResume(Instruction * & Inst,PerFunctionState & PFS)5840 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5841 Value *Exn; LocTy ExnLoc;
5842 if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5843 return true;
5844
5845 ResumeInst *RI = ResumeInst::Create(Exn);
5846 Inst = RI;
5847 return false;
5848 }
5849
ParseExceptionArgs(SmallVectorImpl<Value * > & Args,PerFunctionState & PFS)5850 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5851 PerFunctionState &PFS) {
5852 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5853 return true;
5854
5855 while (Lex.getKind() != lltok::rsquare) {
5856 // If this isn't the first argument, we need a comma.
5857 if (!Args.empty() &&
5858 ParseToken(lltok::comma, "expected ',' in argument list"))
5859 return true;
5860
5861 // Parse the argument.
5862 LocTy ArgLoc;
5863 Type *ArgTy = nullptr;
5864 if (ParseType(ArgTy, ArgLoc))
5865 return true;
5866
5867 Value *V;
5868 if (ArgTy->isMetadataTy()) {
5869 if (ParseMetadataAsValue(V, PFS))
5870 return true;
5871 } else {
5872 if (ParseValue(ArgTy, V, PFS))
5873 return true;
5874 }
5875 Args.push_back(V);
5876 }
5877
5878 Lex.Lex(); // Lex the ']'.
5879 return false;
5880 }
5881
5882 /// ParseCleanupRet
5883 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
ParseCleanupRet(Instruction * & Inst,PerFunctionState & PFS)5884 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
5885 Value *CleanupPad = nullptr;
5886
5887 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
5888 return true;
5889
5890 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
5891 return true;
5892
5893 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
5894 return true;
5895
5896 BasicBlock *UnwindBB = nullptr;
5897 if (Lex.getKind() == lltok::kw_to) {
5898 Lex.Lex();
5899 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
5900 return true;
5901 } else {
5902 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
5903 return true;
5904 }
5905 }
5906
5907 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
5908 return false;
5909 }
5910
5911 /// ParseCatchRet
5912 /// ::= 'catchret' from Parent Value 'to' TypeAndValue
ParseCatchRet(Instruction * & Inst,PerFunctionState & PFS)5913 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
5914 Value *CatchPad = nullptr;
5915
5916 if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
5917 return true;
5918
5919 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
5920 return true;
5921
5922 BasicBlock *BB;
5923 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
5924 ParseTypeAndBasicBlock(BB, PFS))
5925 return true;
5926
5927 Inst = CatchReturnInst::Create(CatchPad, BB);
5928 return false;
5929 }
5930
5931 /// ParseCatchSwitch
5932 /// ::= 'catchswitch' within Parent
ParseCatchSwitch(Instruction * & Inst,PerFunctionState & PFS)5933 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5934 Value *ParentPad;
5935
5936 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
5937 return true;
5938
5939 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5940 Lex.getKind() != lltok::LocalVarID)
5941 return TokError("expected scope value for catchswitch");
5942
5943 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5944 return true;
5945
5946 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
5947 return true;
5948
5949 SmallVector<BasicBlock *, 32> Table;
5950 do {
5951 BasicBlock *DestBB;
5952 if (ParseTypeAndBasicBlock(DestBB, PFS))
5953 return true;
5954 Table.push_back(DestBB);
5955 } while (EatIfPresent(lltok::comma));
5956
5957 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
5958 return true;
5959
5960 if (ParseToken(lltok::kw_unwind,
5961 "expected 'unwind' after catchswitch scope"))
5962 return true;
5963
5964 BasicBlock *UnwindBB = nullptr;
5965 if (EatIfPresent(lltok::kw_to)) {
5966 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
5967 return true;
5968 } else {
5969 if (ParseTypeAndBasicBlock(UnwindBB, PFS))
5970 return true;
5971 }
5972
5973 auto *CatchSwitch =
5974 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
5975 for (BasicBlock *DestBB : Table)
5976 CatchSwitch->addHandler(DestBB);
5977 Inst = CatchSwitch;
5978 return false;
5979 }
5980
5981 /// ParseCatchPad
5982 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
ParseCatchPad(Instruction * & Inst,PerFunctionState & PFS)5983 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
5984 Value *CatchSwitch = nullptr;
5985
5986 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
5987 return true;
5988
5989 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
5990 return TokError("expected scope value for catchpad");
5991
5992 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
5993 return true;
5994
5995 SmallVector<Value *, 8> Args;
5996 if (ParseExceptionArgs(Args, PFS))
5997 return true;
5998
5999 Inst = CatchPadInst::Create(CatchSwitch, Args);
6000 return false;
6001 }
6002
6003 /// ParseCleanupPad
6004 /// ::= 'cleanuppad' within Parent ParamList
ParseCleanupPad(Instruction * & Inst,PerFunctionState & PFS)6005 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6006 Value *ParentPad = nullptr;
6007
6008 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6009 return true;
6010
6011 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6012 Lex.getKind() != lltok::LocalVarID)
6013 return TokError("expected scope value for cleanuppad");
6014
6015 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6016 return true;
6017
6018 SmallVector<Value *, 8> Args;
6019 if (ParseExceptionArgs(Args, PFS))
6020 return true;
6021
6022 Inst = CleanupPadInst::Create(ParentPad, Args);
6023 return false;
6024 }
6025
6026 //===----------------------------------------------------------------------===//
6027 // Binary Operators.
6028 //===----------------------------------------------------------------------===//
6029
6030 /// ParseArithmetic
6031 /// ::= ArithmeticOps TypeAndValue ',' Value
6032 ///
6033 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
6034 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
ParseArithmetic(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc,unsigned OperandType)6035 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6036 unsigned Opc, unsigned OperandType) {
6037 LocTy Loc; Value *LHS, *RHS;
6038 if (ParseTypeAndValue(LHS, Loc, PFS) ||
6039 ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6040 ParseValue(LHS->getType(), RHS, PFS))
6041 return true;
6042
6043 bool Valid;
6044 switch (OperandType) {
6045 default: llvm_unreachable("Unknown operand type!");
6046 case 0: // int or FP.
6047 Valid = LHS->getType()->isIntOrIntVectorTy() ||
6048 LHS->getType()->isFPOrFPVectorTy();
6049 break;
6050 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
6051 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
6052 }
6053
6054 if (!Valid)
6055 return Error(Loc, "invalid operand type for instruction");
6056
6057 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6058 return false;
6059 }
6060
6061 /// ParseLogical
6062 /// ::= ArithmeticOps TypeAndValue ',' Value {
ParseLogical(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)6063 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6064 unsigned Opc) {
6065 LocTy Loc; Value *LHS, *RHS;
6066 if (ParseTypeAndValue(LHS, Loc, PFS) ||
6067 ParseToken(lltok::comma, "expected ',' in logical operation") ||
6068 ParseValue(LHS->getType(), RHS, PFS))
6069 return true;
6070
6071 if (!LHS->getType()->isIntOrIntVectorTy())
6072 return Error(Loc,"instruction requires integer or integer vector operands");
6073
6074 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6075 return false;
6076 }
6077
6078 /// ParseCompare
6079 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
6080 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
ParseCompare(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)6081 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6082 unsigned Opc) {
6083 // Parse the integer/fp comparison predicate.
6084 LocTy Loc;
6085 unsigned Pred;
6086 Value *LHS, *RHS;
6087 if (ParseCmpPredicate(Pred, Opc) ||
6088 ParseTypeAndValue(LHS, Loc, PFS) ||
6089 ParseToken(lltok::comma, "expected ',' after compare value") ||
6090 ParseValue(LHS->getType(), RHS, PFS))
6091 return true;
6092
6093 if (Opc == Instruction::FCmp) {
6094 if (!LHS->getType()->isFPOrFPVectorTy())
6095 return Error(Loc, "fcmp requires floating point operands");
6096 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6097 } else {
6098 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6099 if (!LHS->getType()->isIntOrIntVectorTy() &&
6100 !LHS->getType()->isPtrOrPtrVectorTy())
6101 return Error(Loc, "icmp requires integer operands");
6102 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6103 }
6104 return false;
6105 }
6106
6107 //===----------------------------------------------------------------------===//
6108 // Other Instructions.
6109 //===----------------------------------------------------------------------===//
6110
6111
6112 /// ParseCast
6113 /// ::= CastOpc TypeAndValue 'to' Type
ParseCast(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)6114 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6115 unsigned Opc) {
6116 LocTy Loc;
6117 Value *Op;
6118 Type *DestTy = nullptr;
6119 if (ParseTypeAndValue(Op, Loc, PFS) ||
6120 ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6121 ParseType(DestTy))
6122 return true;
6123
6124 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6125 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6126 return Error(Loc, "invalid cast opcode for cast from '" +
6127 getTypeString(Op->getType()) + "' to '" +
6128 getTypeString(DestTy) + "'");
6129 }
6130 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6131 return false;
6132 }
6133
6134 /// ParseSelect
6135 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseSelect(Instruction * & Inst,PerFunctionState & PFS)6136 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6137 LocTy Loc;
6138 Value *Op0, *Op1, *Op2;
6139 if (ParseTypeAndValue(Op0, Loc, PFS) ||
6140 ParseToken(lltok::comma, "expected ',' after select condition") ||
6141 ParseTypeAndValue(Op1, PFS) ||
6142 ParseToken(lltok::comma, "expected ',' after select value") ||
6143 ParseTypeAndValue(Op2, PFS))
6144 return true;
6145
6146 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6147 return Error(Loc, Reason);
6148
6149 Inst = SelectInst::Create(Op0, Op1, Op2);
6150 return false;
6151 }
6152
6153 /// ParseVA_Arg
6154 /// ::= 'va_arg' TypeAndValue ',' Type
ParseVA_Arg(Instruction * & Inst,PerFunctionState & PFS)6155 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6156 Value *Op;
6157 Type *EltTy = nullptr;
6158 LocTy TypeLoc;
6159 if (ParseTypeAndValue(Op, PFS) ||
6160 ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6161 ParseType(EltTy, TypeLoc))
6162 return true;
6163
6164 if (!EltTy->isFirstClassType())
6165 return Error(TypeLoc, "va_arg requires operand with first class type");
6166
6167 Inst = new VAArgInst(Op, EltTy);
6168 return false;
6169 }
6170
6171 /// ParseExtractElement
6172 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
ParseExtractElement(Instruction * & Inst,PerFunctionState & PFS)6173 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6174 LocTy Loc;
6175 Value *Op0, *Op1;
6176 if (ParseTypeAndValue(Op0, Loc, PFS) ||
6177 ParseToken(lltok::comma, "expected ',' after extract value") ||
6178 ParseTypeAndValue(Op1, PFS))
6179 return true;
6180
6181 if (!ExtractElementInst::isValidOperands(Op0, Op1))
6182 return Error(Loc, "invalid extractelement operands");
6183
6184 Inst = ExtractElementInst::Create(Op0, Op1);
6185 return false;
6186 }
6187
6188 /// ParseInsertElement
6189 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseInsertElement(Instruction * & Inst,PerFunctionState & PFS)6190 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6191 LocTy Loc;
6192 Value *Op0, *Op1, *Op2;
6193 if (ParseTypeAndValue(Op0, Loc, PFS) ||
6194 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6195 ParseTypeAndValue(Op1, PFS) ||
6196 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6197 ParseTypeAndValue(Op2, PFS))
6198 return true;
6199
6200 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6201 return Error(Loc, "invalid insertelement operands");
6202
6203 Inst = InsertElementInst::Create(Op0, Op1, Op2);
6204 return false;
6205 }
6206
6207 /// ParseShuffleVector
6208 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseShuffleVector(Instruction * & Inst,PerFunctionState & PFS)6209 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6210 LocTy Loc;
6211 Value *Op0, *Op1, *Op2;
6212 if (ParseTypeAndValue(Op0, Loc, PFS) ||
6213 ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6214 ParseTypeAndValue(Op1, PFS) ||
6215 ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6216 ParseTypeAndValue(Op2, PFS))
6217 return true;
6218
6219 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6220 return Error(Loc, "invalid shufflevector operands");
6221
6222 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6223 return false;
6224 }
6225
6226 /// ParsePHI
6227 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
ParsePHI(Instruction * & Inst,PerFunctionState & PFS)6228 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6229 Type *Ty = nullptr; LocTy TypeLoc;
6230 Value *Op0, *Op1;
6231
6232 if (ParseType(Ty, TypeLoc) ||
6233 ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6234 ParseValue(Ty, Op0, PFS) ||
6235 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6236 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6237 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6238 return true;
6239
6240 bool AteExtraComma = false;
6241 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6242
6243 while (true) {
6244 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6245
6246 if (!EatIfPresent(lltok::comma))
6247 break;
6248
6249 if (Lex.getKind() == lltok::MetadataVar) {
6250 AteExtraComma = true;
6251 break;
6252 }
6253
6254 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6255 ParseValue(Ty, Op0, PFS) ||
6256 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6257 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6258 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6259 return true;
6260 }
6261
6262 if (!Ty->isFirstClassType())
6263 return Error(TypeLoc, "phi node must have first class type");
6264
6265 PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6266 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6267 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6268 Inst = PN;
6269 return AteExtraComma ? InstExtraComma : InstNormal;
6270 }
6271
6272 /// ParseLandingPad
6273 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6274 /// Clause
6275 /// ::= 'catch' TypeAndValue
6276 /// ::= 'filter'
6277 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
ParseLandingPad(Instruction * & Inst,PerFunctionState & PFS)6278 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6279 Type *Ty = nullptr; LocTy TyLoc;
6280
6281 if (ParseType(Ty, TyLoc))
6282 return true;
6283
6284 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6285 LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6286
6287 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6288 LandingPadInst::ClauseType CT;
6289 if (EatIfPresent(lltok::kw_catch))
6290 CT = LandingPadInst::Catch;
6291 else if (EatIfPresent(lltok::kw_filter))
6292 CT = LandingPadInst::Filter;
6293 else
6294 return TokError("expected 'catch' or 'filter' clause type");
6295
6296 Value *V;
6297 LocTy VLoc;
6298 if (ParseTypeAndValue(V, VLoc, PFS))
6299 return true;
6300
6301 // A 'catch' type expects a non-array constant. A filter clause expects an
6302 // array constant.
6303 if (CT == LandingPadInst::Catch) {
6304 if (isa<ArrayType>(V->getType()))
6305 Error(VLoc, "'catch' clause has an invalid type");
6306 } else {
6307 if (!isa<ArrayType>(V->getType()))
6308 Error(VLoc, "'filter' clause has an invalid type");
6309 }
6310
6311 Constant *CV = dyn_cast<Constant>(V);
6312 if (!CV)
6313 return Error(VLoc, "clause argument must be a constant");
6314 LP->addClause(CV);
6315 }
6316
6317 Inst = LP.release();
6318 return false;
6319 }
6320
6321 /// ParseCall
6322 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv
6323 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6324 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6325 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6326 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6327 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6328 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv
6329 /// OptionalAttrs Type Value ParameterList OptionalAttrs
ParseCall(Instruction * & Inst,PerFunctionState & PFS,CallInst::TailCallKind TCK)6330 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6331 CallInst::TailCallKind TCK) {
6332 AttrBuilder RetAttrs, FnAttrs;
6333 std::vector<unsigned> FwdRefAttrGrps;
6334 LocTy BuiltinLoc;
6335 unsigned CC;
6336 Type *RetType = nullptr;
6337 LocTy RetTypeLoc;
6338 ValID CalleeID;
6339 SmallVector<ParamInfo, 16> ArgList;
6340 SmallVector<OperandBundleDef, 2> BundleList;
6341 LocTy CallLoc = Lex.getLoc();
6342
6343 if (TCK != CallInst::TCK_None &&
6344 ParseToken(lltok::kw_call,
6345 "expected 'tail call', 'musttail call', or 'notail call'"))
6346 return true;
6347
6348 FastMathFlags FMF = EatFastMathFlagsIfPresent();
6349
6350 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6351 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6352 ParseValID(CalleeID) ||
6353 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6354 PFS.getFunction().isVarArg()) ||
6355 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6356 ParseOptionalOperandBundles(BundleList, PFS))
6357 return true;
6358
6359 if (FMF.any() && !RetType->isFPOrFPVectorTy())
6360 return Error(CallLoc, "fast-math-flags specified for call without "
6361 "floating-point scalar or vector return type");
6362
6363 // If RetType is a non-function pointer type, then this is the short syntax
6364 // for the call, which means that RetType is just the return type. Infer the
6365 // rest of the function argument types from the arguments that are present.
6366 FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6367 if (!Ty) {
6368 // Pull out the types of all of the arguments...
6369 std::vector<Type*> ParamTypes;
6370 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6371 ParamTypes.push_back(ArgList[i].V->getType());
6372
6373 if (!FunctionType::isValidReturnType(RetType))
6374 return Error(RetTypeLoc, "Invalid result type for LLVM function");
6375
6376 Ty = FunctionType::get(RetType, ParamTypes, false);
6377 }
6378
6379 CalleeID.FTy = Ty;
6380
6381 // Look up the callee.
6382 Value *Callee;
6383 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6384 /*IsCall=*/true))
6385 return true;
6386
6387 // Set up the Attribute for the function.
6388 SmallVector<AttributeSet, 8> Attrs;
6389
6390 SmallVector<Value*, 8> Args;
6391
6392 // Loop through FunctionType's arguments and ensure they are specified
6393 // correctly. Also, gather any parameter attributes.
6394 FunctionType::param_iterator I = Ty->param_begin();
6395 FunctionType::param_iterator E = Ty->param_end();
6396 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6397 Type *ExpectedTy = nullptr;
6398 if (I != E) {
6399 ExpectedTy = *I++;
6400 } else if (!Ty->isVarArg()) {
6401 return Error(ArgList[i].Loc, "too many arguments specified");
6402 }
6403
6404 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6405 return Error(ArgList[i].Loc, "argument is not of expected type '" +
6406 getTypeString(ExpectedTy) + "'");
6407 Args.push_back(ArgList[i].V);
6408 Attrs.push_back(ArgList[i].Attrs);
6409 }
6410
6411 if (I != E)
6412 return Error(CallLoc, "not enough parameters specified for call");
6413
6414 if (FnAttrs.hasAlignmentAttr())
6415 return Error(CallLoc, "call instructions may not have an alignment");
6416
6417 // Finish off the Attribute and check them
6418 AttributeList PAL =
6419 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6420 AttributeSet::get(Context, RetAttrs), Attrs);
6421
6422 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6423 CI->setTailCallKind(TCK);
6424 CI->setCallingConv(CC);
6425 if (FMF.any())
6426 CI->setFastMathFlags(FMF);
6427 CI->setAttributes(PAL);
6428 ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6429 Inst = CI;
6430 return false;
6431 }
6432
6433 //===----------------------------------------------------------------------===//
6434 // Memory Instructions.
6435 //===----------------------------------------------------------------------===//
6436
6437 /// ParseAlloc
6438 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6439 /// (',' 'align' i32)? (',', 'addrspace(n))?
ParseAlloc(Instruction * & Inst,PerFunctionState & PFS)6440 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6441 Value *Size = nullptr;
6442 LocTy SizeLoc, TyLoc, ASLoc;
6443 unsigned Alignment = 0;
6444 unsigned AddrSpace = 0;
6445 Type *Ty = nullptr;
6446
6447 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6448 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6449
6450 if (ParseType(Ty, TyLoc)) return true;
6451
6452 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6453 return Error(TyLoc, "invalid type for alloca");
6454
6455 bool AteExtraComma = false;
6456 if (EatIfPresent(lltok::comma)) {
6457 if (Lex.getKind() == lltok::kw_align) {
6458 if (ParseOptionalAlignment(Alignment))
6459 return true;
6460 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6461 return true;
6462 } else if (Lex.getKind() == lltok::kw_addrspace) {
6463 ASLoc = Lex.getLoc();
6464 if (ParseOptionalAddrSpace(AddrSpace))
6465 return true;
6466 } else if (Lex.getKind() == lltok::MetadataVar) {
6467 AteExtraComma = true;
6468 } else {
6469 if (ParseTypeAndValue(Size, SizeLoc, PFS))
6470 return true;
6471 if (EatIfPresent(lltok::comma)) {
6472 if (Lex.getKind() == lltok::kw_align) {
6473 if (ParseOptionalAlignment(Alignment))
6474 return true;
6475 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6476 return true;
6477 } else if (Lex.getKind() == lltok::kw_addrspace) {
6478 ASLoc = Lex.getLoc();
6479 if (ParseOptionalAddrSpace(AddrSpace))
6480 return true;
6481 } else if (Lex.getKind() == lltok::MetadataVar) {
6482 AteExtraComma = true;
6483 }
6484 }
6485 }
6486 }
6487
6488 if (Size && !Size->getType()->isIntegerTy())
6489 return Error(SizeLoc, "element count must have integer type");
6490
6491 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
6492 AI->setUsedWithInAlloca(IsInAlloca);
6493 AI->setSwiftError(IsSwiftError);
6494 Inst = AI;
6495 return AteExtraComma ? InstExtraComma : InstNormal;
6496 }
6497
6498 /// ParseLoad
6499 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6500 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue
6501 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
ParseLoad(Instruction * & Inst,PerFunctionState & PFS)6502 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6503 Value *Val; LocTy Loc;
6504 unsigned Alignment = 0;
6505 bool AteExtraComma = false;
6506 bool isAtomic = false;
6507 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6508 SyncScope::ID SSID = SyncScope::System;
6509
6510 if (Lex.getKind() == lltok::kw_atomic) {
6511 isAtomic = true;
6512 Lex.Lex();
6513 }
6514
6515 bool isVolatile = false;
6516 if (Lex.getKind() == lltok::kw_volatile) {
6517 isVolatile = true;
6518 Lex.Lex();
6519 }
6520
6521 Type *Ty;
6522 LocTy ExplicitTypeLoc = Lex.getLoc();
6523 if (ParseType(Ty) ||
6524 ParseToken(lltok::comma, "expected comma after load's type") ||
6525 ParseTypeAndValue(Val, Loc, PFS) ||
6526 ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6527 ParseOptionalCommaAlign(Alignment, AteExtraComma))
6528 return true;
6529
6530 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6531 return Error(Loc, "load operand must be a pointer to a first class type");
6532 if (isAtomic && !Alignment)
6533 return Error(Loc, "atomic load must have explicit non-zero alignment");
6534 if (Ordering == AtomicOrdering::Release ||
6535 Ordering == AtomicOrdering::AcquireRelease)
6536 return Error(Loc, "atomic load cannot use Release ordering");
6537
6538 if (Ty != cast<PointerType>(Val->getType())->getElementType())
6539 return Error(ExplicitTypeLoc,
6540 "explicit pointee type doesn't match operand's pointee type");
6541
6542 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6543 return AteExtraComma ? InstExtraComma : InstNormal;
6544 }
6545
6546 /// ParseStore
6547
6548 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6549 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6550 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
ParseStore(Instruction * & Inst,PerFunctionState & PFS)6551 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6552 Value *Val, *Ptr; LocTy Loc, PtrLoc;
6553 unsigned Alignment = 0;
6554 bool AteExtraComma = false;
6555 bool isAtomic = false;
6556 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6557 SyncScope::ID SSID = SyncScope::System;
6558
6559 if (Lex.getKind() == lltok::kw_atomic) {
6560 isAtomic = true;
6561 Lex.Lex();
6562 }
6563
6564 bool isVolatile = false;
6565 if (Lex.getKind() == lltok::kw_volatile) {
6566 isVolatile = true;
6567 Lex.Lex();
6568 }
6569
6570 if (ParseTypeAndValue(Val, Loc, PFS) ||
6571 ParseToken(lltok::comma, "expected ',' after store operand") ||
6572 ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6573 ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6574 ParseOptionalCommaAlign(Alignment, AteExtraComma))
6575 return true;
6576
6577 if (!Ptr->getType()->isPointerTy())
6578 return Error(PtrLoc, "store operand must be a pointer");
6579 if (!Val->getType()->isFirstClassType())
6580 return Error(Loc, "store operand must be a first class value");
6581 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6582 return Error(Loc, "stored value and pointer type do not match");
6583 if (isAtomic && !Alignment)
6584 return Error(Loc, "atomic store must have explicit non-zero alignment");
6585 if (Ordering == AtomicOrdering::Acquire ||
6586 Ordering == AtomicOrdering::AcquireRelease)
6587 return Error(Loc, "atomic store cannot use Acquire ordering");
6588
6589 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
6590 return AteExtraComma ? InstExtraComma : InstNormal;
6591 }
6592
6593 /// ParseCmpXchg
6594 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6595 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
ParseCmpXchg(Instruction * & Inst,PerFunctionState & PFS)6596 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6597 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6598 bool AteExtraComma = false;
6599 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6600 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6601 SyncScope::ID SSID = SyncScope::System;
6602 bool isVolatile = false;
6603 bool isWeak = false;
6604
6605 if (EatIfPresent(lltok::kw_weak))
6606 isWeak = true;
6607
6608 if (EatIfPresent(lltok::kw_volatile))
6609 isVolatile = true;
6610
6611 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6612 ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6613 ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6614 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6615 ParseTypeAndValue(New, NewLoc, PFS) ||
6616 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
6617 ParseOrdering(FailureOrdering))
6618 return true;
6619
6620 if (SuccessOrdering == AtomicOrdering::Unordered ||
6621 FailureOrdering == AtomicOrdering::Unordered)
6622 return TokError("cmpxchg cannot be unordered");
6623 if (isStrongerThan(FailureOrdering, SuccessOrdering))
6624 return TokError("cmpxchg failure argument shall be no stronger than the "
6625 "success argument");
6626 if (FailureOrdering == AtomicOrdering::Release ||
6627 FailureOrdering == AtomicOrdering::AcquireRelease)
6628 return TokError(
6629 "cmpxchg failure ordering cannot include release semantics");
6630 if (!Ptr->getType()->isPointerTy())
6631 return Error(PtrLoc, "cmpxchg operand must be a pointer");
6632 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6633 return Error(CmpLoc, "compare value and pointer type do not match");
6634 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6635 return Error(NewLoc, "new value and pointer type do not match");
6636 if (!New->getType()->isFirstClassType())
6637 return Error(NewLoc, "cmpxchg operand must be a first class value");
6638 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6639 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
6640 CXI->setVolatile(isVolatile);
6641 CXI->setWeak(isWeak);
6642 Inst = CXI;
6643 return AteExtraComma ? InstExtraComma : InstNormal;
6644 }
6645
6646 /// ParseAtomicRMW
6647 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6648 /// 'singlethread'? AtomicOrdering
ParseAtomicRMW(Instruction * & Inst,PerFunctionState & PFS)6649 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6650 Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6651 bool AteExtraComma = false;
6652 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6653 SyncScope::ID SSID = SyncScope::System;
6654 bool isVolatile = false;
6655 AtomicRMWInst::BinOp Operation;
6656
6657 if (EatIfPresent(lltok::kw_volatile))
6658 isVolatile = true;
6659
6660 switch (Lex.getKind()) {
6661 default: return TokError("expected binary operation in atomicrmw");
6662 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6663 case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6664 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6665 case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6666 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6667 case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6668 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6669 case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6670 case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6671 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
6672 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
6673 }
6674 Lex.Lex(); // Eat the operation.
6675
6676 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6677 ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
6678 ParseTypeAndValue(Val, ValLoc, PFS) ||
6679 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6680 return true;
6681
6682 if (Ordering == AtomicOrdering::Unordered)
6683 return TokError("atomicrmw cannot be unordered");
6684 if (!Ptr->getType()->isPointerTy())
6685 return Error(PtrLoc, "atomicrmw operand must be a pointer");
6686 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6687 return Error(ValLoc, "atomicrmw value and pointer type do not match");
6688 if (!Val->getType()->isIntegerTy())
6689 return Error(ValLoc, "atomicrmw operand must be an integer");
6690 unsigned Size = Val->getType()->getPrimitiveSizeInBits();
6691 if (Size < 8 || (Size & (Size - 1)))
6692 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
6693 " integer");
6694
6695 AtomicRMWInst *RMWI =
6696 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
6697 RMWI->setVolatile(isVolatile);
6698 Inst = RMWI;
6699 return AteExtraComma ? InstExtraComma : InstNormal;
6700 }
6701
6702 /// ParseFence
6703 /// ::= 'fence' 'singlethread'? AtomicOrdering
ParseFence(Instruction * & Inst,PerFunctionState & PFS)6704 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
6705 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6706 SyncScope::ID SSID = SyncScope::System;
6707 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6708 return true;
6709
6710 if (Ordering == AtomicOrdering::Unordered)
6711 return TokError("fence cannot be unordered");
6712 if (Ordering == AtomicOrdering::Monotonic)
6713 return TokError("fence cannot be monotonic");
6714
6715 Inst = new FenceInst(Context, Ordering, SSID);
6716 return InstNormal;
6717 }
6718
6719 /// ParseGetElementPtr
6720 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
ParseGetElementPtr(Instruction * & Inst,PerFunctionState & PFS)6721 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
6722 Value *Ptr = nullptr;
6723 Value *Val = nullptr;
6724 LocTy Loc, EltLoc;
6725
6726 bool InBounds = EatIfPresent(lltok::kw_inbounds);
6727
6728 Type *Ty = nullptr;
6729 LocTy ExplicitTypeLoc = Lex.getLoc();
6730 if (ParseType(Ty) ||
6731 ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
6732 ParseTypeAndValue(Ptr, Loc, PFS))
6733 return true;
6734
6735 Type *BaseType = Ptr->getType();
6736 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
6737 if (!BasePointerType)
6738 return Error(Loc, "base of getelementptr must be a pointer");
6739
6740 if (Ty != BasePointerType->getElementType())
6741 return Error(ExplicitTypeLoc,
6742 "explicit pointee type doesn't match operand's pointee type");
6743
6744 SmallVector<Value*, 16> Indices;
6745 bool AteExtraComma = false;
6746 // GEP returns a vector of pointers if at least one of parameters is a vector.
6747 // All vector parameters should have the same vector width.
6748 unsigned GEPWidth = BaseType->isVectorTy() ?
6749 BaseType->getVectorNumElements() : 0;
6750
6751 while (EatIfPresent(lltok::comma)) {
6752 if (Lex.getKind() == lltok::MetadataVar) {
6753 AteExtraComma = true;
6754 break;
6755 }
6756 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
6757 if (!Val->getType()->isIntOrIntVectorTy())
6758 return Error(EltLoc, "getelementptr index must be an integer");
6759
6760 if (Val->getType()->isVectorTy()) {
6761 unsigned ValNumEl = Val->getType()->getVectorNumElements();
6762 if (GEPWidth && GEPWidth != ValNumEl)
6763 return Error(EltLoc,
6764 "getelementptr vector index has a wrong number of elements");
6765 GEPWidth = ValNumEl;
6766 }
6767 Indices.push_back(Val);
6768 }
6769
6770 SmallPtrSet<Type*, 4> Visited;
6771 if (!Indices.empty() && !Ty->isSized(&Visited))
6772 return Error(Loc, "base element of getelementptr must be sized");
6773
6774 if (!GetElementPtrInst::getIndexedType(Ty, Indices))
6775 return Error(Loc, "invalid getelementptr indices");
6776 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
6777 if (InBounds)
6778 cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
6779 return AteExtraComma ? InstExtraComma : InstNormal;
6780 }
6781
6782 /// ParseExtractValue
6783 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
ParseExtractValue(Instruction * & Inst,PerFunctionState & PFS)6784 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
6785 Value *Val; LocTy Loc;
6786 SmallVector<unsigned, 4> Indices;
6787 bool AteExtraComma;
6788 if (ParseTypeAndValue(Val, Loc, PFS) ||
6789 ParseIndexList(Indices, AteExtraComma))
6790 return true;
6791
6792 if (!Val->getType()->isAggregateType())
6793 return Error(Loc, "extractvalue operand must be aggregate type");
6794
6795 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
6796 return Error(Loc, "invalid indices for extractvalue");
6797 Inst = ExtractValueInst::Create(Val, Indices);
6798 return AteExtraComma ? InstExtraComma : InstNormal;
6799 }
6800
6801 /// ParseInsertValue
6802 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
ParseInsertValue(Instruction * & Inst,PerFunctionState & PFS)6803 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
6804 Value *Val0, *Val1; LocTy Loc0, Loc1;
6805 SmallVector<unsigned, 4> Indices;
6806 bool AteExtraComma;
6807 if (ParseTypeAndValue(Val0, Loc0, PFS) ||
6808 ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
6809 ParseTypeAndValue(Val1, Loc1, PFS) ||
6810 ParseIndexList(Indices, AteExtraComma))
6811 return true;
6812
6813 if (!Val0->getType()->isAggregateType())
6814 return Error(Loc0, "insertvalue operand must be aggregate type");
6815
6816 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
6817 if (!IndexedType)
6818 return Error(Loc0, "invalid indices for insertvalue");
6819 if (IndexedType != Val1->getType())
6820 return Error(Loc1, "insertvalue operand and field disagree in type: '" +
6821 getTypeString(Val1->getType()) + "' instead of '" +
6822 getTypeString(IndexedType) + "'");
6823 Inst = InsertValueInst::Create(Val0, Val1, Indices);
6824 return AteExtraComma ? InstExtraComma : InstNormal;
6825 }
6826
6827 //===----------------------------------------------------------------------===//
6828 // Embedded metadata.
6829 //===----------------------------------------------------------------------===//
6830
6831 /// ParseMDNodeVector
6832 /// ::= { Element (',' Element)* }
6833 /// Element
6834 /// ::= 'null' | TypeAndValue
ParseMDNodeVector(SmallVectorImpl<Metadata * > & Elts)6835 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
6836 if (ParseToken(lltok::lbrace, "expected '{' here"))
6837 return true;
6838
6839 // Check for an empty list.
6840 if (EatIfPresent(lltok::rbrace))
6841 return false;
6842
6843 do {
6844 // Null is a special case since it is typeless.
6845 if (EatIfPresent(lltok::kw_null)) {
6846 Elts.push_back(nullptr);
6847 continue;
6848 }
6849
6850 Metadata *MD;
6851 if (ParseMetadata(MD, nullptr))
6852 return true;
6853 Elts.push_back(MD);
6854 } while (EatIfPresent(lltok::comma));
6855
6856 return ParseToken(lltok::rbrace, "expected end of metadata node");
6857 }
6858
6859 //===----------------------------------------------------------------------===//
6860 // Use-list order directives.
6861 //===----------------------------------------------------------------------===//
sortUseListOrder(Value * V,ArrayRef<unsigned> Indexes,SMLoc Loc)6862 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
6863 SMLoc Loc) {
6864 if (V->use_empty())
6865 return Error(Loc, "value has no uses");
6866
6867 unsigned NumUses = 0;
6868 SmallDenseMap<const Use *, unsigned, 16> Order;
6869 for (const Use &U : V->uses()) {
6870 if (++NumUses > Indexes.size())
6871 break;
6872 Order[&U] = Indexes[NumUses - 1];
6873 }
6874 if (NumUses < 2)
6875 return Error(Loc, "value only has one use");
6876 if (Order.size() != Indexes.size() || NumUses > Indexes.size())
6877 return Error(Loc,
6878 "wrong number of indexes, expected " + Twine(V->getNumUses()));
6879
6880 V->sortUseList([&](const Use &L, const Use &R) {
6881 return Order.lookup(&L) < Order.lookup(&R);
6882 });
6883 return false;
6884 }
6885
6886 /// ParseUseListOrderIndexes
6887 /// ::= '{' uint32 (',' uint32)+ '}'
ParseUseListOrderIndexes(SmallVectorImpl<unsigned> & Indexes)6888 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
6889 SMLoc Loc = Lex.getLoc();
6890 if (ParseToken(lltok::lbrace, "expected '{' here"))
6891 return true;
6892 if (Lex.getKind() == lltok::rbrace)
6893 return Lex.Error("expected non-empty list of uselistorder indexes");
6894
6895 // Use Offset, Max, and IsOrdered to check consistency of indexes. The
6896 // indexes should be distinct numbers in the range [0, size-1], and should
6897 // not be in order.
6898 unsigned Offset = 0;
6899 unsigned Max = 0;
6900 bool IsOrdered = true;
6901 assert(Indexes.empty() && "Expected empty order vector");
6902 do {
6903 unsigned Index;
6904 if (ParseUInt32(Index))
6905 return true;
6906
6907 // Update consistency checks.
6908 Offset += Index - Indexes.size();
6909 Max = std::max(Max, Index);
6910 IsOrdered &= Index == Indexes.size();
6911
6912 Indexes.push_back(Index);
6913 } while (EatIfPresent(lltok::comma));
6914
6915 if (ParseToken(lltok::rbrace, "expected '}' here"))
6916 return true;
6917
6918 if (Indexes.size() < 2)
6919 return Error(Loc, "expected >= 2 uselistorder indexes");
6920 if (Offset != 0 || Max >= Indexes.size())
6921 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
6922 if (IsOrdered)
6923 return Error(Loc, "expected uselistorder indexes to change the order");
6924
6925 return false;
6926 }
6927
6928 /// ParseUseListOrder
6929 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes
ParseUseListOrder(PerFunctionState * PFS)6930 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
6931 SMLoc Loc = Lex.getLoc();
6932 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
6933 return true;
6934
6935 Value *V;
6936 SmallVector<unsigned, 16> Indexes;
6937 if (ParseTypeAndValue(V, PFS) ||
6938 ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
6939 ParseUseListOrderIndexes(Indexes))
6940 return true;
6941
6942 return sortUseListOrder(V, Indexes, Loc);
6943 }
6944
6945 /// ParseUseListOrderBB
6946 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
ParseUseListOrderBB()6947 bool LLParser::ParseUseListOrderBB() {
6948 assert(Lex.getKind() == lltok::kw_uselistorder_bb);
6949 SMLoc Loc = Lex.getLoc();
6950 Lex.Lex();
6951
6952 ValID Fn, Label;
6953 SmallVector<unsigned, 16> Indexes;
6954 if (ParseValID(Fn) ||
6955 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6956 ParseValID(Label) ||
6957 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6958 ParseUseListOrderIndexes(Indexes))
6959 return true;
6960
6961 // Check the function.
6962 GlobalValue *GV;
6963 if (Fn.Kind == ValID::t_GlobalName)
6964 GV = M->getNamedValue(Fn.StrVal);
6965 else if (Fn.Kind == ValID::t_GlobalID)
6966 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
6967 else
6968 return Error(Fn.Loc, "expected function name in uselistorder_bb");
6969 if (!GV)
6970 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
6971 auto *F = dyn_cast<Function>(GV);
6972 if (!F)
6973 return Error(Fn.Loc, "expected function name in uselistorder_bb");
6974 if (F->isDeclaration())
6975 return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
6976
6977 // Check the basic block.
6978 if (Label.Kind == ValID::t_LocalID)
6979 return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
6980 if (Label.Kind != ValID::t_LocalName)
6981 return Error(Label.Loc, "expected basic block name in uselistorder_bb");
6982 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
6983 if (!V)
6984 return Error(Label.Loc, "invalid basic block in uselistorder_bb");
6985 if (!isa<BasicBlock>(V))
6986 return Error(Label.Loc, "expected basic block in uselistorder_bb");
6987
6988 return sortUseListOrder(V, Indexes, Loc);
6989 }
6990
6991 /// ModuleEntry
6992 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
6993 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
ParseModuleEntry(unsigned ID)6994 bool LLParser::ParseModuleEntry(unsigned ID) {
6995 assert(Lex.getKind() == lltok::kw_module);
6996 Lex.Lex();
6997
6998 std::string Path;
6999 if (ParseToken(lltok::colon, "expected ':' here") ||
7000 ParseToken(lltok::lparen, "expected '(' here") ||
7001 ParseToken(lltok::kw_path, "expected 'path' here") ||
7002 ParseToken(lltok::colon, "expected ':' here") ||
7003 ParseStringConstant(Path) ||
7004 ParseToken(lltok::comma, "expected ',' here") ||
7005 ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7006 ParseToken(lltok::colon, "expected ':' here") ||
7007 ParseToken(lltok::lparen, "expected '(' here"))
7008 return true;
7009
7010 ModuleHash Hash;
7011 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7012 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7013 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7014 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7015 ParseUInt32(Hash[4]))
7016 return true;
7017
7018 if (ParseToken(lltok::rparen, "expected ')' here") ||
7019 ParseToken(lltok::rparen, "expected ')' here"))
7020 return true;
7021
7022 auto ModuleEntry = Index->addModule(Path, ID, Hash);
7023 ModuleIdMap[ID] = ModuleEntry->first();
7024
7025 return false;
7026 }
7027
7028 /// TypeIdEntry
7029 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
ParseTypeIdEntry(unsigned ID)7030 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7031 assert(Lex.getKind() == lltok::kw_typeid);
7032 Lex.Lex();
7033
7034 std::string Name;
7035 if (ParseToken(lltok::colon, "expected ':' here") ||
7036 ParseToken(lltok::lparen, "expected '(' here") ||
7037 ParseToken(lltok::kw_name, "expected 'name' here") ||
7038 ParseToken(lltok::colon, "expected ':' here") ||
7039 ParseStringConstant(Name))
7040 return true;
7041
7042 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7043 if (ParseToken(lltok::comma, "expected ',' here") ||
7044 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7045 return true;
7046
7047 // Check if this ID was forward referenced, and if so, update the
7048 // corresponding GUIDs.
7049 auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7050 if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7051 for (auto TIDRef : FwdRefTIDs->second) {
7052 assert(!*TIDRef.first &&
7053 "Forward referenced type id GUID expected to be 0");
7054 *TIDRef.first = GlobalValue::getGUID(Name);
7055 }
7056 ForwardRefTypeIds.erase(FwdRefTIDs);
7057 }
7058
7059 return false;
7060 }
7061
7062 /// TypeIdSummary
7063 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
ParseTypeIdSummary(TypeIdSummary & TIS)7064 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7065 if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7066 ParseToken(lltok::colon, "expected ':' here") ||
7067 ParseToken(lltok::lparen, "expected '(' here") ||
7068 ParseTypeTestResolution(TIS.TTRes))
7069 return true;
7070
7071 if (EatIfPresent(lltok::comma)) {
7072 // Expect optional wpdResolutions field
7073 if (ParseOptionalWpdResolutions(TIS.WPDRes))
7074 return true;
7075 }
7076
7077 if (ParseToken(lltok::rparen, "expected ')' here"))
7078 return true;
7079
7080 return false;
7081 }
7082
7083 /// TypeTestResolution
7084 /// ::= 'typeTestRes' ':' '(' 'kind' ':'
7085 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7086 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7087 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7088 /// [',' 'inlinesBits' ':' UInt64]? ')'
ParseTypeTestResolution(TypeTestResolution & TTRes)7089 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7090 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7091 ParseToken(lltok::colon, "expected ':' here") ||
7092 ParseToken(lltok::lparen, "expected '(' here") ||
7093 ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7094 ParseToken(lltok::colon, "expected ':' here"))
7095 return true;
7096
7097 switch (Lex.getKind()) {
7098 case lltok::kw_unsat:
7099 TTRes.TheKind = TypeTestResolution::Unsat;
7100 break;
7101 case lltok::kw_byteArray:
7102 TTRes.TheKind = TypeTestResolution::ByteArray;
7103 break;
7104 case lltok::kw_inline:
7105 TTRes.TheKind = TypeTestResolution::Inline;
7106 break;
7107 case lltok::kw_single:
7108 TTRes.TheKind = TypeTestResolution::Single;
7109 break;
7110 case lltok::kw_allOnes:
7111 TTRes.TheKind = TypeTestResolution::AllOnes;
7112 break;
7113 default:
7114 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7115 }
7116 Lex.Lex();
7117
7118 if (ParseToken(lltok::comma, "expected ',' here") ||
7119 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7120 ParseToken(lltok::colon, "expected ':' here") ||
7121 ParseUInt32(TTRes.SizeM1BitWidth))
7122 return true;
7123
7124 // Parse optional fields
7125 while (EatIfPresent(lltok::comma)) {
7126 switch (Lex.getKind()) {
7127 case lltok::kw_alignLog2:
7128 Lex.Lex();
7129 if (ParseToken(lltok::colon, "expected ':'") ||
7130 ParseUInt64(TTRes.AlignLog2))
7131 return true;
7132 break;
7133 case lltok::kw_sizeM1:
7134 Lex.Lex();
7135 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7136 return true;
7137 break;
7138 case lltok::kw_bitMask: {
7139 unsigned Val;
7140 Lex.Lex();
7141 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7142 return true;
7143 assert(Val <= 0xff);
7144 TTRes.BitMask = (uint8_t)Val;
7145 break;
7146 }
7147 case lltok::kw_inlineBits:
7148 Lex.Lex();
7149 if (ParseToken(lltok::colon, "expected ':'") ||
7150 ParseUInt64(TTRes.InlineBits))
7151 return true;
7152 break;
7153 default:
7154 return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7155 }
7156 }
7157
7158 if (ParseToken(lltok::rparen, "expected ')' here"))
7159 return true;
7160
7161 return false;
7162 }
7163
7164 /// OptionalWpdResolutions
7165 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7166 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
ParseOptionalWpdResolutions(std::map<uint64_t,WholeProgramDevirtResolution> & WPDResMap)7167 bool LLParser::ParseOptionalWpdResolutions(
7168 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7169 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7170 ParseToken(lltok::colon, "expected ':' here") ||
7171 ParseToken(lltok::lparen, "expected '(' here"))
7172 return true;
7173
7174 do {
7175 uint64_t Offset;
7176 WholeProgramDevirtResolution WPDRes;
7177 if (ParseToken(lltok::lparen, "expected '(' here") ||
7178 ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7179 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7180 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7181 ParseToken(lltok::rparen, "expected ')' here"))
7182 return true;
7183 WPDResMap[Offset] = WPDRes;
7184 } while (EatIfPresent(lltok::comma));
7185
7186 if (ParseToken(lltok::rparen, "expected ')' here"))
7187 return true;
7188
7189 return false;
7190 }
7191
7192 /// WpdRes
7193 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7194 /// [',' OptionalResByArg]? ')'
7195 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7196 /// ',' 'singleImplName' ':' STRINGCONSTANT ','
7197 /// [',' OptionalResByArg]? ')'
7198 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7199 /// [',' OptionalResByArg]? ')'
ParseWpdRes(WholeProgramDevirtResolution & WPDRes)7200 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7201 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7202 ParseToken(lltok::colon, "expected ':' here") ||
7203 ParseToken(lltok::lparen, "expected '(' here") ||
7204 ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7205 ParseToken(lltok::colon, "expected ':' here"))
7206 return true;
7207
7208 switch (Lex.getKind()) {
7209 case lltok::kw_indir:
7210 WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7211 break;
7212 case lltok::kw_singleImpl:
7213 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7214 break;
7215 case lltok::kw_branchFunnel:
7216 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7217 break;
7218 default:
7219 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7220 }
7221 Lex.Lex();
7222
7223 // Parse optional fields
7224 while (EatIfPresent(lltok::comma)) {
7225 switch (Lex.getKind()) {
7226 case lltok::kw_singleImplName:
7227 Lex.Lex();
7228 if (ParseToken(lltok::colon, "expected ':' here") ||
7229 ParseStringConstant(WPDRes.SingleImplName))
7230 return true;
7231 break;
7232 case lltok::kw_resByArg:
7233 if (ParseOptionalResByArg(WPDRes.ResByArg))
7234 return true;
7235 break;
7236 default:
7237 return Error(Lex.getLoc(),
7238 "expected optional WholeProgramDevirtResolution field");
7239 }
7240 }
7241
7242 if (ParseToken(lltok::rparen, "expected ')' here"))
7243 return true;
7244
7245 return false;
7246 }
7247
7248 /// OptionalResByArg
7249 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7250 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7251 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7252 /// 'virtualConstProp' )
7253 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7254 /// [',' 'bit' ':' UInt32]? ')'
ParseOptionalResByArg(std::map<std::vector<uint64_t>,WholeProgramDevirtResolution::ByArg> & ResByArg)7255 bool LLParser::ParseOptionalResByArg(
7256 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7257 &ResByArg) {
7258 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7259 ParseToken(lltok::colon, "expected ':' here") ||
7260 ParseToken(lltok::lparen, "expected '(' here"))
7261 return true;
7262
7263 do {
7264 std::vector<uint64_t> Args;
7265 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7266 ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7267 ParseToken(lltok::colon, "expected ':' here") ||
7268 ParseToken(lltok::lparen, "expected '(' here") ||
7269 ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7270 ParseToken(lltok::colon, "expected ':' here"))
7271 return true;
7272
7273 WholeProgramDevirtResolution::ByArg ByArg;
7274 switch (Lex.getKind()) {
7275 case lltok::kw_indir:
7276 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7277 break;
7278 case lltok::kw_uniformRetVal:
7279 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7280 break;
7281 case lltok::kw_uniqueRetVal:
7282 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7283 break;
7284 case lltok::kw_virtualConstProp:
7285 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7286 break;
7287 default:
7288 return Error(Lex.getLoc(),
7289 "unexpected WholeProgramDevirtResolution::ByArg kind");
7290 }
7291 Lex.Lex();
7292
7293 // Parse optional fields
7294 while (EatIfPresent(lltok::comma)) {
7295 switch (Lex.getKind()) {
7296 case lltok::kw_info:
7297 Lex.Lex();
7298 if (ParseToken(lltok::colon, "expected ':' here") ||
7299 ParseUInt64(ByArg.Info))
7300 return true;
7301 break;
7302 case lltok::kw_byte:
7303 Lex.Lex();
7304 if (ParseToken(lltok::colon, "expected ':' here") ||
7305 ParseUInt32(ByArg.Byte))
7306 return true;
7307 break;
7308 case lltok::kw_bit:
7309 Lex.Lex();
7310 if (ParseToken(lltok::colon, "expected ':' here") ||
7311 ParseUInt32(ByArg.Bit))
7312 return true;
7313 break;
7314 default:
7315 return Error(Lex.getLoc(),
7316 "expected optional whole program devirt field");
7317 }
7318 }
7319
7320 if (ParseToken(lltok::rparen, "expected ')' here"))
7321 return true;
7322
7323 ResByArg[Args] = ByArg;
7324 } while (EatIfPresent(lltok::comma));
7325
7326 if (ParseToken(lltok::rparen, "expected ')' here"))
7327 return true;
7328
7329 return false;
7330 }
7331
7332 /// OptionalResByArg
7333 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')'
ParseArgs(std::vector<uint64_t> & Args)7334 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
7335 if (ParseToken(lltok::kw_args, "expected 'args' here") ||
7336 ParseToken(lltok::colon, "expected ':' here") ||
7337 ParseToken(lltok::lparen, "expected '(' here"))
7338 return true;
7339
7340 do {
7341 uint64_t Val;
7342 if (ParseUInt64(Val))
7343 return true;
7344 Args.push_back(Val);
7345 } while (EatIfPresent(lltok::comma));
7346
7347 if (ParseToken(lltok::rparen, "expected ')' here"))
7348 return true;
7349
7350 return false;
7351 }
7352
7353 static ValueInfo EmptyVI =
7354 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7355
7356 /// Stores the given Name/GUID and associated summary into the Index.
7357 /// Also updates any forward references to the associated entry ID.
AddGlobalValueToIndex(std::string Name,GlobalValue::GUID GUID,GlobalValue::LinkageTypes Linkage,unsigned ID,std::unique_ptr<GlobalValueSummary> Summary)7358 void LLParser::AddGlobalValueToIndex(
7359 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
7360 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
7361 // First create the ValueInfo utilizing the Name or GUID.
7362 ValueInfo VI;
7363 if (GUID != 0) {
7364 assert(Name.empty());
7365 VI = Index->getOrInsertValueInfo(GUID);
7366 } else {
7367 assert(!Name.empty());
7368 if (M) {
7369 auto *GV = M->getNamedValue(Name);
7370 assert(GV);
7371 VI = Index->getOrInsertValueInfo(GV);
7372 } else {
7373 assert(
7374 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
7375 "Need a source_filename to compute GUID for local");
7376 GUID = GlobalValue::getGUID(
7377 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
7378 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
7379 }
7380 }
7381
7382 // Add the summary if one was provided.
7383 if (Summary)
7384 Index->addGlobalValueSummary(VI, std::move(Summary));
7385
7386 // Resolve forward references from calls/refs
7387 auto FwdRefVIs = ForwardRefValueInfos.find(ID);
7388 if (FwdRefVIs != ForwardRefValueInfos.end()) {
7389 for (auto VIRef : FwdRefVIs->second) {
7390 assert(*VIRef.first == EmptyVI &&
7391 "Forward referenced ValueInfo expected to be empty");
7392 *VIRef.first = VI;
7393 }
7394 ForwardRefValueInfos.erase(FwdRefVIs);
7395 }
7396
7397 // Resolve forward references from aliases
7398 auto FwdRefAliasees = ForwardRefAliasees.find(ID);
7399 if (FwdRefAliasees != ForwardRefAliasees.end()) {
7400 for (auto AliaseeRef : FwdRefAliasees->second) {
7401 assert(!AliaseeRef.first->hasAliasee() &&
7402 "Forward referencing alias already has aliasee");
7403 AliaseeRef.first->setAliasee(VI.getSummaryList().front().get());
7404 }
7405 ForwardRefAliasees.erase(FwdRefAliasees);
7406 }
7407
7408 // Save the associated ValueInfo for use in later references by ID.
7409 if (ID == NumberedValueInfos.size())
7410 NumberedValueInfos.push_back(VI);
7411 else {
7412 // Handle non-continuous numbers (to make test simplification easier).
7413 if (ID > NumberedValueInfos.size())
7414 NumberedValueInfos.resize(ID + 1);
7415 NumberedValueInfos[ID] = VI;
7416 }
7417 }
7418
7419 /// ParseGVEntry
7420 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
7421 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
7422 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
ParseGVEntry(unsigned ID)7423 bool LLParser::ParseGVEntry(unsigned ID) {
7424 assert(Lex.getKind() == lltok::kw_gv);
7425 Lex.Lex();
7426
7427 if (ParseToken(lltok::colon, "expected ':' here") ||
7428 ParseToken(lltok::lparen, "expected '(' here"))
7429 return true;
7430
7431 std::string Name;
7432 GlobalValue::GUID GUID = 0;
7433 switch (Lex.getKind()) {
7434 case lltok::kw_name:
7435 Lex.Lex();
7436 if (ParseToken(lltok::colon, "expected ':' here") ||
7437 ParseStringConstant(Name))
7438 return true;
7439 // Can't create GUID/ValueInfo until we have the linkage.
7440 break;
7441 case lltok::kw_guid:
7442 Lex.Lex();
7443 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
7444 return true;
7445 break;
7446 default:
7447 return Error(Lex.getLoc(), "expected name or guid tag");
7448 }
7449
7450 if (!EatIfPresent(lltok::comma)) {
7451 // No summaries. Wrap up.
7452 if (ParseToken(lltok::rparen, "expected ')' here"))
7453 return true;
7454 // This was created for a call to an external or indirect target.
7455 // A GUID with no summary came from a VALUE_GUID record, dummy GUID
7456 // created for indirect calls with VP. A Name with no GUID came from
7457 // an external definition. We pass ExternalLinkage since that is only
7458 // used when the GUID must be computed from Name, and in that case
7459 // the symbol must have external linkage.
7460 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
7461 nullptr);
7462 return false;
7463 }
7464
7465 // Have a list of summaries
7466 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
7467 ParseToken(lltok::colon, "expected ':' here"))
7468 return true;
7469
7470 do {
7471 if (ParseToken(lltok::lparen, "expected '(' here"))
7472 return true;
7473 switch (Lex.getKind()) {
7474 case lltok::kw_function:
7475 if (ParseFunctionSummary(Name, GUID, ID))
7476 return true;
7477 break;
7478 case lltok::kw_variable:
7479 if (ParseVariableSummary(Name, GUID, ID))
7480 return true;
7481 break;
7482 case lltok::kw_alias:
7483 if (ParseAliasSummary(Name, GUID, ID))
7484 return true;
7485 break;
7486 default:
7487 return Error(Lex.getLoc(), "expected summary type");
7488 }
7489 if (ParseToken(lltok::rparen, "expected ')' here"))
7490 return true;
7491 } while (EatIfPresent(lltok::comma));
7492
7493 if (ParseToken(lltok::rparen, "expected ')' here"))
7494 return true;
7495
7496 return false;
7497 }
7498
7499 /// FunctionSummary
7500 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7501 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
7502 /// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
ParseFunctionSummary(std::string Name,GlobalValue::GUID GUID,unsigned ID)7503 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
7504 unsigned ID) {
7505 assert(Lex.getKind() == lltok::kw_function);
7506 Lex.Lex();
7507
7508 StringRef ModulePath;
7509 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7510 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7511 /*Live=*/false, /*IsLocal=*/false);
7512 unsigned InstCount;
7513 std::vector<FunctionSummary::EdgeTy> Calls;
7514 FunctionSummary::TypeIdInfo TypeIdInfo;
7515 std::vector<ValueInfo> Refs;
7516 // Default is all-zeros (conservative values).
7517 FunctionSummary::FFlags FFlags = {};
7518 if (ParseToken(lltok::colon, "expected ':' here") ||
7519 ParseToken(lltok::lparen, "expected '(' here") ||
7520 ParseModuleReference(ModulePath) ||
7521 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7522 ParseToken(lltok::comma, "expected ',' here") ||
7523 ParseToken(lltok::kw_insts, "expected 'insts' here") ||
7524 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
7525 return true;
7526
7527 // Parse optional fields
7528 while (EatIfPresent(lltok::comma)) {
7529 switch (Lex.getKind()) {
7530 case lltok::kw_funcFlags:
7531 if (ParseOptionalFFlags(FFlags))
7532 return true;
7533 break;
7534 case lltok::kw_calls:
7535 if (ParseOptionalCalls(Calls))
7536 return true;
7537 break;
7538 case lltok::kw_typeIdInfo:
7539 if (ParseOptionalTypeIdInfo(TypeIdInfo))
7540 return true;
7541 break;
7542 case lltok::kw_refs:
7543 if (ParseOptionalRefs(Refs))
7544 return true;
7545 break;
7546 default:
7547 return Error(Lex.getLoc(), "expected optional function summary field");
7548 }
7549 }
7550
7551 if (ParseToken(lltok::rparen, "expected ')' here"))
7552 return true;
7553
7554 auto FS = llvm::make_unique<FunctionSummary>(
7555 GVFlags, InstCount, FFlags, std::move(Refs), std::move(Calls),
7556 std::move(TypeIdInfo.TypeTests),
7557 std::move(TypeIdInfo.TypeTestAssumeVCalls),
7558 std::move(TypeIdInfo.TypeCheckedLoadVCalls),
7559 std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
7560 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
7561
7562 FS->setModulePath(ModulePath);
7563
7564 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7565 ID, std::move(FS));
7566
7567 return false;
7568 }
7569
7570 /// VariableSummary
7571 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7572 /// [',' OptionalRefs]? ')'
ParseVariableSummary(std::string Name,GlobalValue::GUID GUID,unsigned ID)7573 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
7574 unsigned ID) {
7575 assert(Lex.getKind() == lltok::kw_variable);
7576 Lex.Lex();
7577
7578 StringRef ModulePath;
7579 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7580 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7581 /*Live=*/false, /*IsLocal=*/false);
7582 std::vector<ValueInfo> Refs;
7583 if (ParseToken(lltok::colon, "expected ':' here") ||
7584 ParseToken(lltok::lparen, "expected '(' here") ||
7585 ParseModuleReference(ModulePath) ||
7586 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags))
7587 return true;
7588
7589 // Parse optional refs field
7590 if (EatIfPresent(lltok::comma)) {
7591 if (ParseOptionalRefs(Refs))
7592 return true;
7593 }
7594
7595 if (ParseToken(lltok::rparen, "expected ')' here"))
7596 return true;
7597
7598 auto GS = llvm::make_unique<GlobalVarSummary>(GVFlags, std::move(Refs));
7599
7600 GS->setModulePath(ModulePath);
7601
7602 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7603 ID, std::move(GS));
7604
7605 return false;
7606 }
7607
7608 /// AliasSummary
7609 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
7610 /// 'aliasee' ':' GVReference ')'
ParseAliasSummary(std::string Name,GlobalValue::GUID GUID,unsigned ID)7611 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
7612 unsigned ID) {
7613 assert(Lex.getKind() == lltok::kw_alias);
7614 LocTy Loc = Lex.getLoc();
7615 Lex.Lex();
7616
7617 StringRef ModulePath;
7618 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7619 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7620 /*Live=*/false, /*IsLocal=*/false);
7621 if (ParseToken(lltok::colon, "expected ':' here") ||
7622 ParseToken(lltok::lparen, "expected '(' here") ||
7623 ParseModuleReference(ModulePath) ||
7624 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7625 ParseToken(lltok::comma, "expected ',' here") ||
7626 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
7627 ParseToken(lltok::colon, "expected ':' here"))
7628 return true;
7629
7630 ValueInfo AliaseeVI;
7631 unsigned GVId;
7632 if (ParseGVReference(AliaseeVI, GVId))
7633 return true;
7634
7635 if (ParseToken(lltok::rparen, "expected ')' here"))
7636 return true;
7637
7638 auto AS = llvm::make_unique<AliasSummary>(GVFlags);
7639
7640 AS->setModulePath(ModulePath);
7641
7642 // Record forward reference if the aliasee is not parsed yet.
7643 if (AliaseeVI == EmptyVI) {
7644 auto FwdRef = ForwardRefAliasees.insert(
7645 std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
7646 FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
7647 } else
7648 AS->setAliasee(AliaseeVI.getSummaryList().front().get());
7649
7650 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7651 ID, std::move(AS));
7652
7653 return false;
7654 }
7655
7656 /// Flag
7657 /// ::= [0|1]
ParseFlag(unsigned & Val)7658 bool LLParser::ParseFlag(unsigned &Val) {
7659 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
7660 return TokError("expected integer");
7661 Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
7662 Lex.Lex();
7663 return false;
7664 }
7665
7666 /// OptionalFFlags
7667 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
7668 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
7669 /// [',' 'returnDoesNotAlias' ':' Flag]? ')'
ParseOptionalFFlags(FunctionSummary::FFlags & FFlags)7670 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
7671 assert(Lex.getKind() == lltok::kw_funcFlags);
7672 Lex.Lex();
7673
7674 if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
7675 ParseToken(lltok::lparen, "expected '(' in funcFlags"))
7676 return true;
7677
7678 do {
7679 unsigned Val;
7680 switch (Lex.getKind()) {
7681 case lltok::kw_readNone:
7682 Lex.Lex();
7683 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
7684 return true;
7685 FFlags.ReadNone = Val;
7686 break;
7687 case lltok::kw_readOnly:
7688 Lex.Lex();
7689 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
7690 return true;
7691 FFlags.ReadOnly = Val;
7692 break;
7693 case lltok::kw_noRecurse:
7694 Lex.Lex();
7695 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
7696 return true;
7697 FFlags.NoRecurse = Val;
7698 break;
7699 case lltok::kw_returnDoesNotAlias:
7700 Lex.Lex();
7701 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
7702 return true;
7703 FFlags.ReturnDoesNotAlias = Val;
7704 break;
7705 default:
7706 return Error(Lex.getLoc(), "expected function flag type");
7707 }
7708 } while (EatIfPresent(lltok::comma));
7709
7710 if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
7711 return true;
7712
7713 return false;
7714 }
7715
7716 /// OptionalCalls
7717 /// := 'calls' ':' '(' Call [',' Call]* ')'
7718 /// Call ::= '(' 'callee' ':' GVReference
7719 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> & Calls)7720 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
7721 assert(Lex.getKind() == lltok::kw_calls);
7722 Lex.Lex();
7723
7724 if (ParseToken(lltok::colon, "expected ':' in calls") |
7725 ParseToken(lltok::lparen, "expected '(' in calls"))
7726 return true;
7727
7728 IdToIndexMapType IdToIndexMap;
7729 // Parse each call edge
7730 do {
7731 ValueInfo VI;
7732 if (ParseToken(lltok::lparen, "expected '(' in call") ||
7733 ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
7734 ParseToken(lltok::colon, "expected ':'"))
7735 return true;
7736
7737 LocTy Loc = Lex.getLoc();
7738 unsigned GVId;
7739 if (ParseGVReference(VI, GVId))
7740 return true;
7741
7742 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7743 unsigned RelBF = 0;
7744 if (EatIfPresent(lltok::comma)) {
7745 // Expect either hotness or relbf
7746 if (EatIfPresent(lltok::kw_hotness)) {
7747 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
7748 return true;
7749 } else {
7750 if (ParseToken(lltok::kw_relbf, "expected relbf") ||
7751 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
7752 return true;
7753 }
7754 }
7755 // Keep track of the Call array index needing a forward reference.
7756 // We will save the location of the ValueInfo needing an update, but
7757 // can only do so once the std::vector is finalized.
7758 if (VI == EmptyVI)
7759 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
7760 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
7761
7762 if (ParseToken(lltok::rparen, "expected ')' in call"))
7763 return true;
7764 } while (EatIfPresent(lltok::comma));
7765
7766 // Now that the Calls vector is finalized, it is safe to save the locations
7767 // of any forward GV references that need updating later.
7768 for (auto I : IdToIndexMap) {
7769 for (auto P : I.second) {
7770 assert(Calls[P.first].first == EmptyVI &&
7771 "Forward referenced ValueInfo expected to be empty");
7772 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
7773 I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
7774 FwdRef.first->second.push_back(
7775 std::make_pair(&Calls[P.first].first, P.second));
7776 }
7777 }
7778
7779 if (ParseToken(lltok::rparen, "expected ')' in calls"))
7780 return true;
7781
7782 return false;
7783 }
7784
7785 /// Hotness
7786 /// := ('unknown'|'cold'|'none'|'hot'|'critical')
ParseHotness(CalleeInfo::HotnessType & Hotness)7787 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
7788 switch (Lex.getKind()) {
7789 case lltok::kw_unknown:
7790 Hotness = CalleeInfo::HotnessType::Unknown;
7791 break;
7792 case lltok::kw_cold:
7793 Hotness = CalleeInfo::HotnessType::Cold;
7794 break;
7795 case lltok::kw_none:
7796 Hotness = CalleeInfo::HotnessType::None;
7797 break;
7798 case lltok::kw_hot:
7799 Hotness = CalleeInfo::HotnessType::Hot;
7800 break;
7801 case lltok::kw_critical:
7802 Hotness = CalleeInfo::HotnessType::Critical;
7803 break;
7804 default:
7805 return Error(Lex.getLoc(), "invalid call edge hotness");
7806 }
7807 Lex.Lex();
7808 return false;
7809 }
7810
7811 /// OptionalRefs
7812 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')'
ParseOptionalRefs(std::vector<ValueInfo> & Refs)7813 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
7814 assert(Lex.getKind() == lltok::kw_refs);
7815 Lex.Lex();
7816
7817 if (ParseToken(lltok::colon, "expected ':' in refs") |
7818 ParseToken(lltok::lparen, "expected '(' in refs"))
7819 return true;
7820
7821 IdToIndexMapType IdToIndexMap;
7822 // Parse each ref edge
7823 do {
7824 ValueInfo VI;
7825 LocTy Loc = Lex.getLoc();
7826 unsigned GVId;
7827 if (ParseGVReference(VI, GVId))
7828 return true;
7829
7830 // Keep track of the Refs array index needing a forward reference.
7831 // We will save the location of the ValueInfo needing an update, but
7832 // can only do so once the std::vector is finalized.
7833 if (VI == EmptyVI)
7834 IdToIndexMap[GVId].push_back(std::make_pair(Refs.size(), Loc));
7835 Refs.push_back(VI);
7836 } while (EatIfPresent(lltok::comma));
7837
7838 // Now that the Refs vector is finalized, it is safe to save the locations
7839 // of any forward GV references that need updating later.
7840 for (auto I : IdToIndexMap) {
7841 for (auto P : I.second) {
7842 assert(Refs[P.first] == EmptyVI &&
7843 "Forward referenced ValueInfo expected to be empty");
7844 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
7845 I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
7846 FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
7847 }
7848 }
7849
7850 if (ParseToken(lltok::rparen, "expected ')' in refs"))
7851 return true;
7852
7853 return false;
7854 }
7855
7856 /// OptionalTypeIdInfo
7857 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
7858 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]?
7859 /// [',' TypeCheckedLoadConstVCalls]? ')'
ParseOptionalTypeIdInfo(FunctionSummary::TypeIdInfo & TypeIdInfo)7860 bool LLParser::ParseOptionalTypeIdInfo(
7861 FunctionSummary::TypeIdInfo &TypeIdInfo) {
7862 assert(Lex.getKind() == lltok::kw_typeIdInfo);
7863 Lex.Lex();
7864
7865 if (ParseToken(lltok::colon, "expected ':' here") ||
7866 ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
7867 return true;
7868
7869 do {
7870 switch (Lex.getKind()) {
7871 case lltok::kw_typeTests:
7872 if (ParseTypeTests(TypeIdInfo.TypeTests))
7873 return true;
7874 break;
7875 case lltok::kw_typeTestAssumeVCalls:
7876 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
7877 TypeIdInfo.TypeTestAssumeVCalls))
7878 return true;
7879 break;
7880 case lltok::kw_typeCheckedLoadVCalls:
7881 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
7882 TypeIdInfo.TypeCheckedLoadVCalls))
7883 return true;
7884 break;
7885 case lltok::kw_typeTestAssumeConstVCalls:
7886 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
7887 TypeIdInfo.TypeTestAssumeConstVCalls))
7888 return true;
7889 break;
7890 case lltok::kw_typeCheckedLoadConstVCalls:
7891 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
7892 TypeIdInfo.TypeCheckedLoadConstVCalls))
7893 return true;
7894 break;
7895 default:
7896 return Error(Lex.getLoc(), "invalid typeIdInfo list type");
7897 }
7898 } while (EatIfPresent(lltok::comma));
7899
7900 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
7901 return true;
7902
7903 return false;
7904 }
7905
7906 /// TypeTests
7907 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64)
7908 /// [',' (SummaryID | UInt64)]* ')'
ParseTypeTests(std::vector<GlobalValue::GUID> & TypeTests)7909 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
7910 assert(Lex.getKind() == lltok::kw_typeTests);
7911 Lex.Lex();
7912
7913 if (ParseToken(lltok::colon, "expected ':' here") ||
7914 ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
7915 return true;
7916
7917 IdToIndexMapType IdToIndexMap;
7918 do {
7919 GlobalValue::GUID GUID = 0;
7920 if (Lex.getKind() == lltok::SummaryID) {
7921 unsigned ID = Lex.getUIntVal();
7922 LocTy Loc = Lex.getLoc();
7923 // Keep track of the TypeTests array index needing a forward reference.
7924 // We will save the location of the GUID needing an update, but
7925 // can only do so once the std::vector is finalized.
7926 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
7927 Lex.Lex();
7928 } else if (ParseUInt64(GUID))
7929 return true;
7930 TypeTests.push_back(GUID);
7931 } while (EatIfPresent(lltok::comma));
7932
7933 // Now that the TypeTests vector is finalized, it is safe to save the
7934 // locations of any forward GV references that need updating later.
7935 for (auto I : IdToIndexMap) {
7936 for (auto P : I.second) {
7937 assert(TypeTests[P.first] == 0 &&
7938 "Forward referenced type id GUID expected to be 0");
7939 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
7940 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
7941 FwdRef.first->second.push_back(
7942 std::make_pair(&TypeTests[P.first], P.second));
7943 }
7944 }
7945
7946 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
7947 return true;
7948
7949 return false;
7950 }
7951
7952 /// VFuncIdList
7953 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
ParseVFuncIdList(lltok::Kind Kind,std::vector<FunctionSummary::VFuncId> & VFuncIdList)7954 bool LLParser::ParseVFuncIdList(
7955 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
7956 assert(Lex.getKind() == Kind);
7957 Lex.Lex();
7958
7959 if (ParseToken(lltok::colon, "expected ':' here") ||
7960 ParseToken(lltok::lparen, "expected '(' here"))
7961 return true;
7962
7963 IdToIndexMapType IdToIndexMap;
7964 do {
7965 FunctionSummary::VFuncId VFuncId;
7966 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
7967 return true;
7968 VFuncIdList.push_back(VFuncId);
7969 } while (EatIfPresent(lltok::comma));
7970
7971 if (ParseToken(lltok::rparen, "expected ')' here"))
7972 return true;
7973
7974 // Now that the VFuncIdList vector is finalized, it is safe to save the
7975 // locations of any forward GV references that need updating later.
7976 for (auto I : IdToIndexMap) {
7977 for (auto P : I.second) {
7978 assert(VFuncIdList[P.first].GUID == 0 &&
7979 "Forward referenced type id GUID expected to be 0");
7980 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
7981 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
7982 FwdRef.first->second.push_back(
7983 std::make_pair(&VFuncIdList[P.first].GUID, P.second));
7984 }
7985 }
7986
7987 return false;
7988 }
7989
7990 /// ConstVCallList
7991 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
ParseConstVCallList(lltok::Kind Kind,std::vector<FunctionSummary::ConstVCall> & ConstVCallList)7992 bool LLParser::ParseConstVCallList(
7993 lltok::Kind Kind,
7994 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
7995 assert(Lex.getKind() == Kind);
7996 Lex.Lex();
7997
7998 if (ParseToken(lltok::colon, "expected ':' here") ||
7999 ParseToken(lltok::lparen, "expected '(' here"))
8000 return true;
8001
8002 IdToIndexMapType IdToIndexMap;
8003 do {
8004 FunctionSummary::ConstVCall ConstVCall;
8005 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8006 return true;
8007 ConstVCallList.push_back(ConstVCall);
8008 } while (EatIfPresent(lltok::comma));
8009
8010 if (ParseToken(lltok::rparen, "expected ')' here"))
8011 return true;
8012
8013 // Now that the ConstVCallList vector is finalized, it is safe to save the
8014 // locations of any forward GV references that need updating later.
8015 for (auto I : IdToIndexMap) {
8016 for (auto P : I.second) {
8017 assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8018 "Forward referenced type id GUID expected to be 0");
8019 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8020 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8021 FwdRef.first->second.push_back(
8022 std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8023 }
8024 }
8025
8026 return false;
8027 }
8028
8029 /// ConstVCall
8030 /// ::= VFuncId, Args
ParseConstVCall(FunctionSummary::ConstVCall & ConstVCall,IdToIndexMapType & IdToIndexMap,unsigned Index)8031 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8032 IdToIndexMapType &IdToIndexMap, unsigned Index) {
8033 if (ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index) ||
8034 ParseToken(lltok::comma, "expected ',' here") ||
8035 ParseArgs(ConstVCall.Args))
8036 return true;
8037
8038 return false;
8039 }
8040
8041 /// VFuncId
8042 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8043 /// 'offset' ':' UInt64 ')'
ParseVFuncId(FunctionSummary::VFuncId & VFuncId,IdToIndexMapType & IdToIndexMap,unsigned Index)8044 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
8045 IdToIndexMapType &IdToIndexMap, unsigned Index) {
8046 assert(Lex.getKind() == lltok::kw_vFuncId);
8047 Lex.Lex();
8048
8049 if (ParseToken(lltok::colon, "expected ':' here") ||
8050 ParseToken(lltok::lparen, "expected '(' here"))
8051 return true;
8052
8053 if (Lex.getKind() == lltok::SummaryID) {
8054 VFuncId.GUID = 0;
8055 unsigned ID = Lex.getUIntVal();
8056 LocTy Loc = Lex.getLoc();
8057 // Keep track of the array index needing a forward reference.
8058 // We will save the location of the GUID needing an update, but
8059 // can only do so once the caller's std::vector is finalized.
8060 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
8061 Lex.Lex();
8062 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
8063 ParseToken(lltok::colon, "expected ':' here") ||
8064 ParseUInt64(VFuncId.GUID))
8065 return true;
8066
8067 if (ParseToken(lltok::comma, "expected ',' here") ||
8068 ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8069 ParseToken(lltok::colon, "expected ':' here") ||
8070 ParseUInt64(VFuncId.Offset) ||
8071 ParseToken(lltok::rparen, "expected ')' here"))
8072 return true;
8073
8074 return false;
8075 }
8076
8077 /// GVFlags
8078 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8079 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8080 /// 'dsoLocal' ':' Flag ')'
ParseGVFlags(GlobalValueSummary::GVFlags & GVFlags)8081 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
8082 assert(Lex.getKind() == lltok::kw_flags);
8083 Lex.Lex();
8084
8085 bool HasLinkage;
8086 if (ParseToken(lltok::colon, "expected ':' here") ||
8087 ParseToken(lltok::lparen, "expected '(' here") ||
8088 ParseToken(lltok::kw_linkage, "expected 'linkage' here") ||
8089 ParseToken(lltok::colon, "expected ':' here"))
8090 return true;
8091
8092 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
8093 assert(HasLinkage && "Linkage not optional in summary entry");
8094 Lex.Lex();
8095
8096 unsigned Flag;
8097 if (ParseToken(lltok::comma, "expected ',' here") ||
8098 ParseToken(lltok::kw_notEligibleToImport,
8099 "expected 'notEligibleToImport' here") ||
8100 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8101 return true;
8102 GVFlags.NotEligibleToImport = Flag;
8103
8104 if (ParseToken(lltok::comma, "expected ',' here") ||
8105 ParseToken(lltok::kw_live, "expected 'live' here") ||
8106 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8107 return true;
8108 GVFlags.Live = Flag;
8109
8110 if (ParseToken(lltok::comma, "expected ',' here") ||
8111 ParseToken(lltok::kw_dsoLocal, "expected 'dsoLocal' here") ||
8112 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8113 return true;
8114 GVFlags.DSOLocal = Flag;
8115
8116 if (ParseToken(lltok::rparen, "expected ')' here"))
8117 return true;
8118
8119 return false;
8120 }
8121
8122 /// ModuleReference
8123 /// ::= 'module' ':' UInt
ParseModuleReference(StringRef & ModulePath)8124 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
8125 // Parse module id.
8126 if (ParseToken(lltok::kw_module, "expected 'module' here") ||
8127 ParseToken(lltok::colon, "expected ':' here") ||
8128 ParseToken(lltok::SummaryID, "expected module ID"))
8129 return true;
8130
8131 unsigned ModuleID = Lex.getUIntVal();
8132 auto I = ModuleIdMap.find(ModuleID);
8133 // We should have already parsed all module IDs
8134 assert(I != ModuleIdMap.end());
8135 ModulePath = I->second;
8136 return false;
8137 }
8138
8139 /// GVReference
8140 /// ::= SummaryID
ParseGVReference(ValueInfo & VI,unsigned & GVId)8141 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
8142 if (ParseToken(lltok::SummaryID, "expected GV ID"))
8143 return true;
8144
8145 GVId = Lex.getUIntVal();
8146
8147 // Check if we already have a VI for this GV
8148 if (GVId < NumberedValueInfos.size()) {
8149 assert(NumberedValueInfos[GVId] != EmptyVI);
8150 VI = NumberedValueInfos[GVId];
8151 } else
8152 // We will create a forward reference to the stored location.
8153 VI = EmptyVI;
8154
8155 return false;
8156 }
8157