1 /* gpt.cc -- Functions for loading, saving, and manipulating legacy MBR and GPT partition
2 data. */
3
4 /* By Rod Smith, initial coding January to February, 2009 */
5
6 /* This program is copyright (c) 2009-2013 by Roderick W. Smith. It is distributed
7 under the terms of the GNU GPL version 2, as detailed in the COPYING file. */
8
9 #define __STDC_LIMIT_MACROS
10 #ifndef __STDC_CONSTANT_MACROS
11 #define __STDC_CONSTANT_MACROS
12 #endif
13
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <stdint.h>
17 #include <fcntl.h>
18 #include <string.h>
19 #include <math.h>
20 #include <time.h>
21 #include <sys/stat.h>
22 #include <errno.h>
23 #include <iostream>
24 #include <algorithm>
25 #include "crc32.h"
26 #include "gpt.h"
27 #include "bsd.h"
28 #include "support.h"
29 #include "parttypes.h"
30 #include "attributes.h"
31 #include "diskio.h"
32
33 using namespace std;
34
35 #ifdef __FreeBSD__
36 #define log2(x) (log(x) / M_LN2)
37 #endif // __FreeBSD__
38
39 #ifdef _MSC_VER
40 #define log2(x) (log((double) x) / log(2.0))
41 #endif // Microsoft Visual C++
42
43 #ifdef EFI
44 // in UEFI mode MMX registers are not yet available so using the
45 // x86_64 ABI to move "double" values around is not an option.
46 #ifdef log2
47 #undef log2
48 #endif
49 #define log2(x) log2_32( x )
log2_32(uint32_t v)50 static inline uint32_t log2_32(uint32_t v) {
51 int r = -1;
52 while (v >= 1) {
53 r++;
54 v >>= 1;
55 }
56 return r;
57 }
58 #endif
59
60 /****************************************
61 * *
62 * GPTData class and related structures *
63 * *
64 ****************************************/
65
66 // Default constructor
GPTData(void)67 GPTData::GPTData(void) {
68 blockSize = SECTOR_SIZE; // set a default
69 diskSize = 0;
70 partitions = NULL;
71 state = gpt_valid;
72 device = "";
73 justLooking = 0;
74 syncing = 1;
75 mainCrcOk = 0;
76 secondCrcOk = 0;
77 mainPartsCrcOk = 0;
78 secondPartsCrcOk = 0;
79 apmFound = 0;
80 bsdFound = 0;
81 sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default
82 beQuiet = 0;
83 whichWasUsed = use_new;
84 mainHeader.numParts = 0;
85 numParts = 0;
86 SetGPTSize(NUM_GPT_ENTRIES);
87 // Initialize CRC functions...
88 chksum_crc32gentab();
89 } // GPTData default constructor
90
91 // The following constructor loads GPT data from a device file
GPTData(string filename)92 GPTData::GPTData(string filename) {
93 blockSize = SECTOR_SIZE; // set a default
94 diskSize = 0;
95 partitions = NULL;
96 state = gpt_invalid;
97 device = "";
98 justLooking = 0;
99 syncing = 1;
100 mainCrcOk = 0;
101 secondCrcOk = 0;
102 mainPartsCrcOk = 0;
103 secondPartsCrcOk = 0;
104 apmFound = 0;
105 bsdFound = 0;
106 sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default
107 beQuiet = 0;
108 whichWasUsed = use_new;
109 mainHeader.numParts = 0;
110 numParts = 0;
111 // Initialize CRC functions...
112 chksum_crc32gentab();
113 if (!LoadPartitions(filename))
114 exit(2);
115 } // GPTData(string filename) constructor
116
117 // Destructor
~GPTData(void)118 GPTData::~GPTData(void) {
119 delete[] partitions;
120 } // GPTData destructor
121
122 // Assignment operator
operator =(const GPTData & orig)123 GPTData & GPTData::operator=(const GPTData & orig) {
124 uint32_t i;
125
126 mainHeader = orig.mainHeader;
127 numParts = orig.numParts;
128 secondHeader = orig.secondHeader;
129 protectiveMBR = orig.protectiveMBR;
130 device = orig.device;
131 blockSize = orig.blockSize;
132 diskSize = orig.diskSize;
133 state = orig.state;
134 justLooking = orig.justLooking;
135 syncing = orig.syncing;
136 mainCrcOk = orig.mainCrcOk;
137 secondCrcOk = orig.secondCrcOk;
138 mainPartsCrcOk = orig.mainPartsCrcOk;
139 secondPartsCrcOk = orig.secondPartsCrcOk;
140 apmFound = orig.apmFound;
141 bsdFound = orig.bsdFound;
142 sectorAlignment = orig.sectorAlignment;
143 beQuiet = orig.beQuiet;
144 whichWasUsed = orig.whichWasUsed;
145
146 myDisk.OpenForRead(orig.myDisk.GetName());
147
148 delete[] partitions;
149 partitions = new GPTPart [numParts];
150 if (partitions == NULL) {
151 cerr << "Error! Could not allocate memory for partitions in GPTData::operator=()!\n"
152 << "Terminating!\n";
153 exit(1);
154 } // if
155 for (i = 0; i < numParts; i++) {
156 partitions[i] = orig.partitions[i];
157 } // for
158
159 return *this;
160 } // GPTData::operator=()
161
162 /*********************************************************************
163 * *
164 * Begin functions that verify data, or that adjust the verification *
165 * information (compute CRCs, rebuild headers) *
166 * *
167 *********************************************************************/
168
169 // Perform detailed verification, reporting on any problems found, but
170 // do *NOT* recover from these problems. Returns the total number of
171 // problems identified.
Verify(void)172 int GPTData::Verify(void) {
173 int problems = 0, alignProbs = 0;
174 uint32_t i, numSegments;
175 uint64_t totalFree, largestSegment;
176
177 // First, check for CRC errors in the GPT data....
178 if (!mainCrcOk) {
179 problems++;
180 cout << "\nProblem: The CRC for the main GPT header is invalid. The main GPT header may\n"
181 << "be corrupt. Consider loading the backup GPT header to rebuild the main GPT\n"
182 << "header ('b' on the recovery & transformation menu). This report may be a false\n"
183 << "alarm if you've already corrected other problems.\n";
184 } // if
185 if (!mainPartsCrcOk) {
186 problems++;
187 cout << "\nProblem: The CRC for the main partition table is invalid. This table may be\n"
188 << "corrupt. Consider loading the backup partition table ('c' on the recovery &\n"
189 << "transformation menu). This report may be a false alarm if you've already\n"
190 << "corrected other problems.\n";
191 } // if
192 if (!secondCrcOk) {
193 problems++;
194 cout << "\nProblem: The CRC for the backup GPT header is invalid. The backup GPT header\n"
195 << "may be corrupt. Consider using the main GPT header to rebuild the backup GPT\n"
196 << "header ('d' on the recovery & transformation menu). This report may be a false\n"
197 << "alarm if you've already corrected other problems.\n";
198 } // if
199 if (!secondPartsCrcOk) {
200 problems++;
201 cout << "\nCaution: The CRC for the backup partition table is invalid. This table may\n"
202 << "be corrupt. This program will automatically create a new backup partition\n"
203 << "table when you save your partitions.\n";
204 } // if
205
206 // Now check that the main and backup headers both point to themselves....
207 if (mainHeader.currentLBA != 1) {
208 problems++;
209 cout << "\nProblem: The main header's self-pointer doesn't point to itself. This problem\n"
210 << "is being automatically corrected, but it may be a symptom of more serious\n"
211 << "problems. Think carefully before saving changes with 'w' or using this disk.\n";
212 mainHeader.currentLBA = 1;
213 } // if
214 if (secondHeader.currentLBA != (diskSize - UINT64_C(1))) {
215 problems++;
216 cout << "\nProblem: The secondary header's self-pointer indicates that it doesn't reside\n"
217 << "at the end of the disk. If you've added a disk to a RAID array, use the 'e'\n"
218 << "option on the experts' menu to adjust the secondary header's and partition\n"
219 << "table's locations.\n";
220 } // if
221
222 // Now check that critical main and backup GPT entries match each other
223 if (mainHeader.currentLBA != secondHeader.backupLBA) {
224 problems++;
225 cout << "\nProblem: main GPT header's current LBA pointer (" << mainHeader.currentLBA
226 << ") doesn't\nmatch the backup GPT header's alternate LBA pointer("
227 << secondHeader.backupLBA << ").\n";
228 } // if
229 if (mainHeader.backupLBA != secondHeader.currentLBA) {
230 problems++;
231 cout << "\nProblem: main GPT header's backup LBA pointer (" << mainHeader.backupLBA
232 << ") doesn't\nmatch the backup GPT header's current LBA pointer ("
233 << secondHeader.currentLBA << ").\n"
234 << "The 'e' option on the experts' menu may fix this problem.\n";
235 } // if
236 if (mainHeader.firstUsableLBA != secondHeader.firstUsableLBA) {
237 problems++;
238 cout << "\nProblem: main GPT header's first usable LBA pointer (" << mainHeader.firstUsableLBA
239 << ") doesn't\nmatch the backup GPT header's first usable LBA pointer ("
240 << secondHeader.firstUsableLBA << ")\n";
241 } // if
242 if (mainHeader.lastUsableLBA != secondHeader.lastUsableLBA) {
243 problems++;
244 cout << "\nProblem: main GPT header's last usable LBA pointer (" << mainHeader.lastUsableLBA
245 << ") doesn't\nmatch the backup GPT header's last usable LBA pointer ("
246 << secondHeader.lastUsableLBA << ")\n"
247 << "The 'e' option on the experts' menu can probably fix this problem.\n";
248 } // if
249 if ((mainHeader.diskGUID != secondHeader.diskGUID)) {
250 problems++;
251 cout << "\nProblem: main header's disk GUID (" << mainHeader.diskGUID
252 << ") doesn't\nmatch the backup GPT header's disk GUID ("
253 << secondHeader.diskGUID << ")\n"
254 << "You should use the 'b' or 'd' option on the recovery & transformation menu to\n"
255 << "select one or the other header.\n";
256 } // if
257 if (mainHeader.numParts != secondHeader.numParts) {
258 problems++;
259 cout << "\nProblem: main GPT header's number of partitions (" << mainHeader.numParts
260 << ") doesn't\nmatch the backup GPT header's number of partitions ("
261 << secondHeader.numParts << ")\n"
262 << "Resizing the partition table ('s' on the experts' menu) may help.\n";
263 } // if
264 if (mainHeader.sizeOfPartitionEntries != secondHeader.sizeOfPartitionEntries) {
265 problems++;
266 cout << "\nProblem: main GPT header's size of partition entries ("
267 << mainHeader.sizeOfPartitionEntries << ") doesn't\n"
268 << "match the backup GPT header's size of partition entries ("
269 << secondHeader.sizeOfPartitionEntries << ")\n"
270 << "You should use the 'b' or 'd' option on the recovery & transformation menu to\n"
271 << "select one or the other header.\n";
272 } // if
273
274 // Now check for a few other miscellaneous problems...
275 // Check that the disk size will hold the data...
276 if (mainHeader.backupLBA >= diskSize) {
277 problems++;
278 cout << "\nProblem: Disk is too small to hold all the data!\n"
279 << "(Disk size is " << diskSize << " sectors, needs to be "
280 << mainHeader.backupLBA + UINT64_C(1) << " sectors.)\n"
281 << "The 'e' option on the experts' menu may fix this problem.\n";
282 } // if
283
284 if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) {
285 problems++;
286 cout << "\nProblem: GPT claims the disk is larger than it is! (Claimed last usable\n"
287 << "sector is " << mainHeader.lastUsableLBA << ", but backup header is at\n"
288 << mainHeader.backupLBA << " and disk size is " << diskSize << " sectors.\n"
289 << "The 'e' option on the experts' menu will probably fix this problem\n";
290 }
291
292 // Check for overlapping partitions....
293 problems += FindOverlaps();
294
295 // Check for insane partitions (start after end, hugely big, etc.)
296 problems += FindInsanePartitions();
297
298 // Check for mismatched MBR and GPT partitions...
299 problems += FindHybridMismatches();
300
301 // Check for MBR-specific problems....
302 problems += VerifyMBR();
303
304 // Check for a 0xEE protective partition that's marked as active....
305 if (protectiveMBR.IsEEActive()) {
306 cout << "\nWarning: The 0xEE protective partition in the MBR is marked as active. This is\n"
307 << "technically a violation of the GPT specification, and can cause some EFIs to\n"
308 << "ignore the disk, but it is required to boot from a GPT disk on some BIOS-based\n"
309 << "computers. You can clear this flag by creating a fresh protective MBR using\n"
310 << "the 'n' option on the experts' menu.\n";
311 }
312
313 // Verify that partitions don't run into GPT data areas....
314 problems += CheckGPTSize();
315
316 if (!protectiveMBR.DoTheyFit()) {
317 cout << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n"
318 << "fresh protective or hybrid MBR is recommended.\n";
319 problems++;
320 }
321
322 // Check that partitions are aligned on proper boundaries (for WD Advanced
323 // Format and similar disks)....
324 for (i = 0; i < numParts; i++) {
325 if ((partitions[i].IsUsed()) && (partitions[i].GetFirstLBA() % sectorAlignment) != 0) {
326 cout << "\nCaution: Partition " << i + 1 << " doesn't begin on a "
327 << sectorAlignment << "-sector boundary. This may\nresult "
328 << "in degraded performance on some modern (2009 and later) hard disks.\n";
329 alignProbs++;
330 } // if
331 } // for
332 if (alignProbs > 0)
333 cout << "\nConsult http://www.ibm.com/developerworks/linux/library/l-4kb-sector-disks/\n"
334 << "for information on disk alignment.\n";
335
336 // Now compute available space, but only if no problems found, since
337 // problems could affect the results
338 if (problems == 0) {
339 totalFree = FindFreeBlocks(&numSegments, &largestSegment);
340 cout << "\nNo problems found. " << totalFree << " free sectors ("
341 << BytesToIeee(totalFree, blockSize) << ") available in "
342 << numSegments << "\nsegments, the largest of which is "
343 << largestSegment << " (" << BytesToIeee(largestSegment, blockSize)
344 << ") in size.\n";
345 } else {
346 cout << "\nIdentified " << problems << " problems!\n";
347 } // if/else
348
349 return (problems);
350 } // GPTData::Verify()
351
352 // Checks to see if the GPT tables overrun existing partitions; if they
353 // do, issues a warning but takes no action. Returns number of problems
354 // detected (0 if OK, 1 to 2 if problems).
CheckGPTSize(void)355 int GPTData::CheckGPTSize(void) {
356 uint64_t overlap, firstUsedBlock, lastUsedBlock;
357 uint32_t i;
358 int numProbs = 0;
359
360 // first, locate the first & last used blocks
361 firstUsedBlock = UINT64_MAX;
362 lastUsedBlock = 0;
363 for (i = 0; i < numParts; i++) {
364 if (partitions[i].IsUsed()) {
365 if (partitions[i].GetFirstLBA() < firstUsedBlock)
366 firstUsedBlock = partitions[i].GetFirstLBA();
367 if (partitions[i].GetLastLBA() > lastUsedBlock) {
368 lastUsedBlock = partitions[i].GetLastLBA();
369 } // if
370 } // if
371 } // for
372
373 // If the disk size is 0 (the default), then it means that various
374 // variables aren't yet set, so the below tests will be useless;
375 // therefore we should skip everything
376 if (diskSize != 0) {
377 if (mainHeader.firstUsableLBA > firstUsedBlock) {
378 overlap = mainHeader.firstUsableLBA - firstUsedBlock;
379 cout << "Warning! Main partition table overlaps the first partition by "
380 << overlap << " blocks!\n";
381 if (firstUsedBlock > 2) {
382 cout << "Try reducing the partition table size by " << overlap * 4
383 << " entries.\n(Use the 's' item on the experts' menu.)\n";
384 } else {
385 cout << "You will need to delete this partition or resize it in another utility.\n";
386 } // if/else
387 numProbs++;
388 } // Problem at start of disk
389 if (mainHeader.lastUsableLBA < lastUsedBlock) {
390 overlap = lastUsedBlock - mainHeader.lastUsableLBA;
391 cout << "\nWarning! Secondary partition table overlaps the last partition by\n"
392 << overlap << " blocks!\n";
393 if (lastUsedBlock > (diskSize - 2)) {
394 cout << "You will need to delete this partition or resize it in another utility.\n";
395 } else {
396 cout << "Try reducing the partition table size by " << overlap * 4
397 << " entries.\n(Use the 's' item on the experts' menu.)\n";
398 } // if/else
399 numProbs++;
400 } // Problem at end of disk
401 } // if (diskSize != 0)
402 return numProbs;
403 } // GPTData::CheckGPTSize()
404
405 // Check the validity of the GPT header. Returns 1 if the main header
406 // is valid, 2 if the backup header is valid, 3 if both are valid, and
407 // 0 if neither is valid. Note that this function checks the GPT signature,
408 // revision value, and CRCs in both headers.
CheckHeaderValidity(void)409 int GPTData::CheckHeaderValidity(void) {
410 int valid = 3;
411
412 cout.setf(ios::uppercase);
413 cout.fill('0');
414
415 // Note: failed GPT signature checks produce no error message because
416 // a message is displayed in the ReversePartitionBytes() function
417 if ((mainHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&mainHeader, 1))) {
418 valid -= 1;
419 } else if ((mainHeader.revision != 0x00010000) && valid) {
420 valid -= 1;
421 cout << "Unsupported GPT version in main header; read 0x";
422 cout.width(8);
423 cout << hex << mainHeader.revision << ", should be\n0x";
424 cout.width(8);
425 cout << UINT32_C(0x00010000) << dec << "\n";
426 } // if/else/if
427
428 if ((secondHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&secondHeader))) {
429 valid -= 2;
430 } else if ((secondHeader.revision != 0x00010000) && valid) {
431 valid -= 2;
432 cout << "Unsupported GPT version in backup header; read 0x";
433 cout.width(8);
434 cout << hex << secondHeader.revision << ", should be\n0x";
435 cout.width(8);
436 cout << UINT32_C(0x00010000) << dec << "\n";
437 } // if/else/if
438
439 // Check for an Apple disk signature
440 if (((mainHeader.signature << 32) == APM_SIGNATURE1) ||
441 (mainHeader.signature << 32) == APM_SIGNATURE2) {
442 apmFound = 1; // Will display warning message later
443 } // if
444 cout.fill(' ');
445
446 return valid;
447 } // GPTData::CheckHeaderValidity()
448
449 // Check the header CRC to see if it's OK...
450 // Note: Must be called with header in platform-ordered byte order.
451 // Returns 1 if header's computed CRC matches the stored value, 0 if the
452 // computed and stored values don't match
CheckHeaderCRC(struct GPTHeader * header,int warn)453 int GPTData::CheckHeaderCRC(struct GPTHeader* header, int warn) {
454 uint32_t oldCRC, newCRC, hSize;
455 uint8_t *temp;
456
457 // Back up old header CRC and then blank it, since it must be 0 for
458 // computation to be valid
459 oldCRC = header->headerCRC;
460 header->headerCRC = UINT32_C(0);
461
462 hSize = header->headerSize;
463
464 if (IsLittleEndian() == 0)
465 ReverseHeaderBytes(header);
466
467 if ((hSize > blockSize) || (hSize < HEADER_SIZE)) {
468 if (warn) {
469 cerr << "\aWarning! Header size is specified as " << hSize << ", which is invalid.\n";
470 cerr << "Setting the header size for CRC computation to " << HEADER_SIZE << "\n";
471 } // if
472 hSize = HEADER_SIZE;
473 } else if ((hSize > sizeof(GPTHeader)) && warn) {
474 cout << "\aCaution! Header size for CRC check is " << hSize << ", which is greater than " << sizeof(GPTHeader) << ".\n";
475 cout << "If stray data exists after the header on the header sector, it will be ignored,\n"
476 << "which may result in a CRC false alarm.\n";
477 } // if/elseif
478 temp = new uint8_t[hSize];
479 if (temp != NULL) {
480 memset(temp, 0, hSize);
481 if (hSize < sizeof(GPTHeader))
482 memcpy(temp, header, hSize);
483 else
484 memcpy(temp, header, sizeof(GPTHeader));
485
486 newCRC = chksum_crc32((unsigned char*) temp, hSize);
487 delete[] temp;
488 } else {
489 cerr << "Could not allocate memory in GPTData::CheckHeaderCRC()! Aborting!\n";
490 exit(1);
491 }
492 if (IsLittleEndian() == 0)
493 ReverseHeaderBytes(header);
494 header->headerCRC = oldCRC;
495 return (oldCRC == newCRC);
496 } // GPTData::CheckHeaderCRC()
497
498 // Recompute all the CRCs. Must be called before saving if any changes have
499 // been made. Must be called on platform-ordered data (this function reverses
500 // byte order and then undoes that reversal.)
RecomputeCRCs(void)501 void GPTData::RecomputeCRCs(void) {
502 uint32_t crc, hSize;
503 int littleEndian = 1;
504
505 // If the header size is bigger than the GPT header data structure, reset it;
506 // otherwise, set both header sizes to whatever the main one is....
507 if (mainHeader.headerSize > sizeof(GPTHeader))
508 hSize = secondHeader.headerSize = mainHeader.headerSize = HEADER_SIZE;
509 else
510 hSize = secondHeader.headerSize = mainHeader.headerSize;
511
512 if ((littleEndian = IsLittleEndian()) == 0) {
513 ReversePartitionBytes();
514 ReverseHeaderBytes(&mainHeader);
515 ReverseHeaderBytes(&secondHeader);
516 } // if
517
518 // Compute CRC of partition tables & store in main and secondary headers
519 crc = chksum_crc32((unsigned char*) partitions, numParts * GPT_SIZE);
520 mainHeader.partitionEntriesCRC = crc;
521 secondHeader.partitionEntriesCRC = crc;
522 if (littleEndian == 0) {
523 ReverseBytes(&mainHeader.partitionEntriesCRC, 4);
524 ReverseBytes(&secondHeader.partitionEntriesCRC, 4);
525 } // if
526
527 // Zero out GPT headers' own CRCs (required for correct computation)
528 mainHeader.headerCRC = 0;
529 secondHeader.headerCRC = 0;
530
531 crc = chksum_crc32((unsigned char*) &mainHeader, hSize);
532 if (littleEndian == 0)
533 ReverseBytes(&crc, 4);
534 mainHeader.headerCRC = crc;
535 crc = chksum_crc32((unsigned char*) &secondHeader, hSize);
536 if (littleEndian == 0)
537 ReverseBytes(&crc, 4);
538 secondHeader.headerCRC = crc;
539
540 if (littleEndian == 0) {
541 ReverseHeaderBytes(&mainHeader);
542 ReverseHeaderBytes(&secondHeader);
543 ReversePartitionBytes();
544 } // if
545 } // GPTData::RecomputeCRCs()
546
547 // Rebuild the main GPT header, using the secondary header as a model.
548 // Typically called when the main header has been found to be corrupt.
RebuildMainHeader(void)549 void GPTData::RebuildMainHeader(void) {
550 mainHeader.signature = GPT_SIGNATURE;
551 mainHeader.revision = secondHeader.revision;
552 mainHeader.headerSize = secondHeader.headerSize;
553 mainHeader.headerCRC = UINT32_C(0);
554 mainHeader.reserved = secondHeader.reserved;
555 mainHeader.currentLBA = secondHeader.backupLBA;
556 mainHeader.backupLBA = secondHeader.currentLBA;
557 mainHeader.firstUsableLBA = secondHeader.firstUsableLBA;
558 mainHeader.lastUsableLBA = secondHeader.lastUsableLBA;
559 mainHeader.diskGUID = secondHeader.diskGUID;
560 mainHeader.partitionEntriesLBA = UINT64_C(2);
561 mainHeader.numParts = secondHeader.numParts;
562 mainHeader.sizeOfPartitionEntries = secondHeader.sizeOfPartitionEntries;
563 mainHeader.partitionEntriesCRC = secondHeader.partitionEntriesCRC;
564 memcpy(mainHeader.reserved2, secondHeader.reserved2, sizeof(mainHeader.reserved2));
565 mainCrcOk = secondCrcOk;
566 SetGPTSize(mainHeader.numParts, 0);
567 } // GPTData::RebuildMainHeader()
568
569 // Rebuild the secondary GPT header, using the main header as a model.
RebuildSecondHeader(void)570 void GPTData::RebuildSecondHeader(void) {
571 secondHeader.signature = GPT_SIGNATURE;
572 secondHeader.revision = mainHeader.revision;
573 secondHeader.headerSize = mainHeader.headerSize;
574 secondHeader.headerCRC = UINT32_C(0);
575 secondHeader.reserved = mainHeader.reserved;
576 secondHeader.currentLBA = mainHeader.backupLBA;
577 secondHeader.backupLBA = mainHeader.currentLBA;
578 secondHeader.firstUsableLBA = mainHeader.firstUsableLBA;
579 secondHeader.lastUsableLBA = mainHeader.lastUsableLBA;
580 secondHeader.diskGUID = mainHeader.diskGUID;
581 secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1);
582 secondHeader.numParts = mainHeader.numParts;
583 secondHeader.sizeOfPartitionEntries = mainHeader.sizeOfPartitionEntries;
584 secondHeader.partitionEntriesCRC = mainHeader.partitionEntriesCRC;
585 memcpy(secondHeader.reserved2, mainHeader.reserved2, sizeof(secondHeader.reserved2));
586 secondCrcOk = mainCrcOk;
587 SetGPTSize(secondHeader.numParts, 0);
588 } // GPTData::RebuildSecondHeader()
589
590 // Search for hybrid MBR entries that have no corresponding GPT partition.
591 // Returns number of such mismatches found
FindHybridMismatches(void)592 int GPTData::FindHybridMismatches(void) {
593 int i, found, numFound = 0;
594 uint32_t j;
595 uint64_t mbrFirst, mbrLast;
596
597 for (i = 0; i < 4; i++) {
598 if ((protectiveMBR.GetType(i) != 0xEE) && (protectiveMBR.GetType(i) != 0x00)) {
599 j = 0;
600 found = 0;
601 mbrFirst = (uint64_t) protectiveMBR.GetFirstSector(i);
602 mbrLast = mbrFirst + (uint64_t) protectiveMBR.GetLength(i) - UINT64_C(1);
603 do {
604 if ((j < numParts) && (partitions[j].GetFirstLBA() == mbrFirst) &&
605 (partitions[j].GetLastLBA() == mbrLast) && (partitions[j].IsUsed()))
606 found = 1;
607 j++;
608 } while ((!found) && (j < numParts));
609 if (!found) {
610 numFound++;
611 cout << "\nWarning! Mismatched GPT and MBR partition! MBR partition "
612 << i + 1 << ", of type 0x";
613 cout.fill('0');
614 cout.setf(ios::uppercase);
615 cout.width(2);
616 cout << hex << (int) protectiveMBR.GetType(i) << ",\n"
617 << "has no corresponding GPT partition! You may continue, but this condition\n"
618 << "might cause data loss in the future!\a\n" << dec;
619 cout.fill(' ');
620 } // if
621 } // if
622 } // for
623 return numFound;
624 } // GPTData::FindHybridMismatches
625
626 // Find overlapping partitions and warn user about them. Returns number of
627 // overlapping partitions.
628 // Returns number of overlapping segments found.
FindOverlaps(void)629 int GPTData::FindOverlaps(void) {
630 int problems = 0;
631 uint32_t i, j;
632
633 for (i = 1; i < numParts; i++) {
634 for (j = 0; j < i; j++) {
635 if ((partitions[i].IsUsed()) && (partitions[j].IsUsed()) &&
636 (partitions[i].DoTheyOverlap(partitions[j]))) {
637 problems++;
638 cout << "\nProblem: partitions " << i + 1 << " and " << j + 1 << " overlap:\n";
639 cout << " Partition " << i + 1 << ": " << partitions[i].GetFirstLBA()
640 << " to " << partitions[i].GetLastLBA() << "\n";
641 cout << " Partition " << j + 1 << ": " << partitions[j].GetFirstLBA()
642 << " to " << partitions[j].GetLastLBA() << "\n";
643 } // if
644 } // for j...
645 } // for i...
646 return problems;
647 } // GPTData::FindOverlaps()
648
649 // Find partitions that are insane -- they start after they end or are too
650 // big for the disk. (The latter should duplicate detection of overlaps
651 // with GPT backup data structures, but better to err on the side of
652 // redundant tests than to miss something....)
653 // Returns number of problems found.
FindInsanePartitions(void)654 int GPTData::FindInsanePartitions(void) {
655 uint32_t i;
656 int problems = 0;
657
658 for (i = 0; i < numParts; i++) {
659 if (partitions[i].IsUsed()) {
660 if (partitions[i].GetFirstLBA() > partitions[i].GetLastLBA()) {
661 problems++;
662 cout << "\nProblem: partition " << i + 1 << " ends before it begins.\n";
663 } // if
664 if (partitions[i].GetLastLBA() >= diskSize) {
665 problems++;
666 cout << "\nProblem: partition " << i + 1 << " is too big for the disk.\n";
667 } // if
668 } // if
669 } // for
670 return problems;
671 } // GPTData::FindInsanePartitions(void)
672
673
674 /******************************************************************
675 * *
676 * Begin functions that load data from disk or save data to disk. *
677 * *
678 ******************************************************************/
679
680 // Change the filename associated with the GPT. Used for duplicating
681 // the partition table to a new disk and saving backups.
682 // Returns 1 on success, 0 on failure.
SetDisk(const string & deviceFilename)683 int GPTData::SetDisk(const string & deviceFilename) {
684 int err, allOK = 1;
685
686 device = deviceFilename;
687 if (allOK && myDisk.OpenForRead(deviceFilename)) {
688 // store disk information....
689 diskSize = myDisk.DiskSize(&err);
690 blockSize = (uint32_t) myDisk.GetBlockSize();
691 } // if
692 protectiveMBR.SetDisk(&myDisk);
693 protectiveMBR.SetDiskSize(diskSize);
694 protectiveMBR.SetBlockSize(blockSize);
695 return allOK;
696 } // GPTData::SetDisk()
697
698 // Scan for partition data. This function loads the MBR data (regular MBR or
699 // protective MBR) and loads BSD disklabel data (which is probably invalid).
700 // It also looks for APM data, forces a load of GPT data, and summarizes
701 // the results.
PartitionScan(void)702 void GPTData::PartitionScan(void) {
703 BSDData bsdDisklabel;
704
705 // Read the MBR & check for BSD disklabel
706 protectiveMBR.ReadMBRData(&myDisk);
707 bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1);
708
709 // Load the GPT data, whether or not it's valid
710 ForceLoadGPTData();
711
712 // Some tools create a 0xEE partition that's too big. If this is detected,
713 // normalize it....
714 if ((state == gpt_valid) && !protectiveMBR.DoTheyFit() && (protectiveMBR.GetValidity() == gpt)) {
715 if (!beQuiet) {
716 cerr << "\aThe protective MBR's 0xEE partition is oversized! Auto-repairing.\n\n";
717 } // if
718 protectiveMBR.MakeProtectiveMBR();
719 } // if
720
721 if (!beQuiet) {
722 cout << "Partition table scan:\n";
723 protectiveMBR.ShowState();
724 bsdDisklabel.ShowState();
725 ShowAPMState(); // Show whether there's an Apple Partition Map present
726 ShowGPTState(); // Show GPT status
727 cout << "\n";
728 } // if
729
730 if (apmFound) {
731 cout << "\n*******************************************************************\n"
732 << "This disk appears to contain an Apple-format (APM) partition table!\n";
733 if (!justLooking) {
734 cout << "It will be destroyed if you continue!\n";
735 } // if
736 cout << "*******************************************************************\n\n\a";
737 } // if
738 } // GPTData::PartitionScan()
739
740 // Read GPT data from a disk.
LoadPartitions(const string & deviceFilename)741 int GPTData::LoadPartitions(const string & deviceFilename) {
742 BSDData bsdDisklabel;
743 int err, allOK = 1;
744 MBRValidity mbrState;
745
746 if (myDisk.OpenForRead(deviceFilename)) {
747 err = myDisk.OpenForWrite(deviceFilename);
748 if ((err == 0) && (!justLooking)) {
749 cout << "\aNOTE: Write test failed with error number " << errno
750 << ". It will be impossible to save\nchanges to this disk's partition table!\n";
751 #if defined (__FreeBSD__) || defined (__FreeBSD_kernel__)
752 cout << "You may be able to enable writes by exiting this program, typing\n"
753 << "'sysctl kern.geom.debugflags=16' at a shell prompt, and re-running this\n"
754 << "program.\n";
755 #endif
756 cout << "\n";
757 } // if
758 myDisk.Close(); // Close and re-open read-only in case of bugs
759 } else allOK = 0; // if
760
761 if (allOK && myDisk.OpenForRead(deviceFilename)) {
762 // store disk information....
763 diskSize = myDisk.DiskSize(&err);
764 blockSize = (uint32_t) myDisk.GetBlockSize();
765 device = deviceFilename;
766 PartitionScan(); // Check for partition types, load GPT, & print summary
767
768 whichWasUsed = UseWhichPartitions();
769 switch (whichWasUsed) {
770 case use_mbr:
771 XFormPartitions();
772 break;
773 case use_bsd:
774 bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1);
775 // bsdDisklabel.DisplayBSDData();
776 ClearGPTData();
777 protectiveMBR.MakeProtectiveMBR(1); // clear boot area (option 1)
778 XFormDisklabel(&bsdDisklabel);
779 break;
780 case use_gpt:
781 mbrState = protectiveMBR.GetValidity();
782 if ((mbrState == invalid) || (mbrState == mbr))
783 protectiveMBR.MakeProtectiveMBR();
784 break;
785 case use_new:
786 ClearGPTData();
787 protectiveMBR.MakeProtectiveMBR();
788 break;
789 case use_abort:
790 allOK = 0;
791 cerr << "Invalid partition data!\n";
792 break;
793 } // switch
794
795 if (allOK)
796 CheckGPTSize();
797 myDisk.Close();
798 ComputeAlignment();
799 } else {
800 allOK = 0;
801 } // if/else
802 return (allOK);
803 } // GPTData::LoadPartitions()
804
805 // Loads the GPT, as much as possible. Returns 1 if this seems to have
806 // succeeded, 0 if there are obvious problems....
ForceLoadGPTData(void)807 int GPTData::ForceLoadGPTData(void) {
808 int allOK, validHeaders, loadedTable = 1;
809
810 allOK = LoadHeader(&mainHeader, myDisk, 1, &mainCrcOk);
811
812 if (mainCrcOk && (mainHeader.backupLBA < diskSize)) {
813 allOK = LoadHeader(&secondHeader, myDisk, mainHeader.backupLBA, &secondCrcOk) && allOK;
814 } else {
815 allOK = LoadHeader(&secondHeader, myDisk, diskSize - UINT64_C(1), &secondCrcOk) && allOK;
816 if (mainCrcOk && (mainHeader.backupLBA >= diskSize))
817 cout << "Warning! Disk size is smaller than the main header indicates! Loading\n"
818 << "secondary header from the last sector of the disk! You should use 'v' to\n"
819 << "verify disk integrity, and perhaps options on the experts' menu to repair\n"
820 << "the disk.\n";
821 } // if/else
822 if (!allOK)
823 state = gpt_invalid;
824
825 // Return valid headers code: 0 = both headers bad; 1 = main header
826 // good, backup bad; 2 = backup header good, main header bad;
827 // 3 = both headers good. Note these codes refer to valid GPT
828 // signatures, version numbers, and CRCs.
829 validHeaders = CheckHeaderValidity();
830
831 // Read partitions (from primary array)
832 if (validHeaders > 0) { // if at least one header is OK....
833 // GPT appears to be valid....
834 state = gpt_valid;
835
836 // We're calling the GPT valid, but there's a possibility that one
837 // of the two headers is corrupt. If so, use the one that seems to
838 // be in better shape to regenerate the bad one
839 if (validHeaders == 1) { // valid main header, invalid backup header
840 cerr << "\aCaution: invalid backup GPT header, but valid main header; regenerating\n"
841 << "backup header from main header.\n\n";
842 RebuildSecondHeader();
843 state = gpt_corrupt;
844 secondCrcOk = mainCrcOk; // Since regenerated, use CRC validity of main
845 } else if (validHeaders == 2) { // valid backup header, invalid main header
846 cerr << "\aCaution: invalid main GPT header, but valid backup; regenerating main header\n"
847 << "from backup!\n\n";
848 RebuildMainHeader();
849 state = gpt_corrupt;
850 mainCrcOk = secondCrcOk; // Since copied, use CRC validity of backup
851 } // if/else/if
852
853 // Figure out which partition table to load....
854 // Load the main partition table, since either its header's CRC is OK or the
855 // backup header's CRC is not OK....
856 if (mainCrcOk || !secondCrcOk) {
857 if (LoadMainTable() == 0)
858 allOK = 0;
859 } else { // bad main header CRC and backup header CRC is OK
860 state = gpt_corrupt;
861 if (LoadSecondTableAsMain()) {
862 loadedTable = 2;
863 cerr << "\aWarning: Invalid CRC on main header data; loaded backup partition table.\n";
864 } else { // backup table bad, bad main header CRC, but try main table in desperation....
865 if (LoadMainTable() == 0) {
866 allOK = 0;
867 loadedTable = 0;
868 cerr << "\a\aWarning! Unable to load either main or backup partition table!\n";
869 } // if
870 } // if/else (LoadSecondTableAsMain())
871 } // if/else (load partition table)
872
873 if (loadedTable == 1)
874 secondPartsCrcOk = CheckTable(&secondHeader);
875 else if (loadedTable == 2)
876 mainPartsCrcOk = CheckTable(&mainHeader);
877 else
878 mainPartsCrcOk = secondPartsCrcOk = 0;
879
880 // Problem with main partition table; if backup is OK, use it instead....
881 if (secondPartsCrcOk && secondCrcOk && !mainPartsCrcOk) {
882 state = gpt_corrupt;
883 allOK = allOK && LoadSecondTableAsMain();
884 mainPartsCrcOk = 0; // LoadSecondTableAsMain() resets this, so re-flag as bad
885 cerr << "\aWarning! Main partition table CRC mismatch! Loaded backup "
886 << "partition table\ninstead of main partition table!\n\n";
887 } // if */
888
889 // Check for valid CRCs and warn if there are problems
890 if ((mainCrcOk == 0) || (secondCrcOk == 0) || (mainPartsCrcOk == 0) ||
891 (secondPartsCrcOk == 0)) {
892 cerr << "Warning! One or more CRCs don't match. You should repair the disk!\n\n";
893 state = gpt_corrupt;
894 } // if
895 } else {
896 state = gpt_invalid;
897 } // if/else
898 return allOK;
899 } // GPTData::ForceLoadGPTData()
900
901 // Loads the partition table pointed to by the main GPT header. The
902 // main GPT header in memory MUST be valid for this call to do anything
903 // sensible!
904 // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
LoadMainTable(void)905 int GPTData::LoadMainTable(void) {
906 return LoadPartitionTable(mainHeader, myDisk);
907 } // GPTData::LoadMainTable()
908
909 // Load the second (backup) partition table as the primary partition
910 // table. Used in repair functions, and when starting up if the main
911 // partition table is damaged.
912 // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
LoadSecondTableAsMain(void)913 int GPTData::LoadSecondTableAsMain(void) {
914 return LoadPartitionTable(secondHeader, myDisk);
915 } // GPTData::LoadSecondTableAsMain()
916
917 // Load a single GPT header (main or backup) from the specified disk device and
918 // sector. Applies byte-order corrections on big-endian platforms. Sets crcOk
919 // value appropriately.
920 // Returns 1 on success, 0 on failure. Note that CRC errors do NOT qualify as
921 // failure.
LoadHeader(struct GPTHeader * header,DiskIO & disk,uint64_t sector,int * crcOk)922 int GPTData::LoadHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector, int *crcOk) {
923 int allOK = 1;
924 GPTHeader tempHeader;
925
926 disk.Seek(sector);
927 if (disk.Read(&tempHeader, 512) != 512) {
928 cerr << "Warning! Read error " << errno << "; strange behavior now likely!\n";
929 allOK = 0;
930 } // if
931
932 // Reverse byte order, if necessary
933 if (IsLittleEndian() == 0) {
934 ReverseHeaderBytes(&tempHeader);
935 } // if
936 *crcOk = CheckHeaderCRC(&tempHeader);
937
938 if (allOK && (numParts != tempHeader.numParts) && *crcOk) {
939 allOK = SetGPTSize(tempHeader.numParts, 0);
940 }
941
942 *header = tempHeader;
943 return allOK;
944 } // GPTData::LoadHeader
945
946 // Load a partition table (either main or secondary) from the specified disk,
947 // using header as a reference for what to load. If sector != 0 (the default
948 // is 0), loads from the specified sector; otherwise loads from the sector
949 // indicated in header.
950 // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
LoadPartitionTable(const struct GPTHeader & header,DiskIO & disk,uint64_t sector)951 int GPTData::LoadPartitionTable(const struct GPTHeader & header, DiskIO & disk, uint64_t sector) {
952 uint32_t sizeOfParts, newCRC;
953 int retval;
954
955 if (disk.OpenForRead()) {
956 if (sector == 0) {
957 retval = disk.Seek(header.partitionEntriesLBA);
958 } else {
959 retval = disk.Seek(sector);
960 } // if/else
961 if (retval == 1)
962 retval = SetGPTSize(header.numParts, 0);
963 if (retval == 1) {
964 sizeOfParts = header.numParts * header.sizeOfPartitionEntries;
965 if (disk.Read(partitions, sizeOfParts) != (int) sizeOfParts) {
966 cerr << "Warning! Read error " << errno << "! Misbehavior now likely!\n";
967 retval = 0;
968 } // if
969 newCRC = chksum_crc32((unsigned char*) partitions, sizeOfParts);
970 mainPartsCrcOk = secondPartsCrcOk = (newCRC == header.partitionEntriesCRC);
971 if (IsLittleEndian() == 0)
972 ReversePartitionBytes();
973 if (!mainPartsCrcOk) {
974 cout << "Caution! After loading partitions, the CRC doesn't check out!\n";
975 } // if
976 } else {
977 cerr << "Error! Couldn't seek to partition table!\n";
978 } // if/else
979 } else {
980 cerr << "Error! Couldn't open device " << device
981 << " when reading partition table!\n";
982 retval = 0;
983 } // if/else
984 return retval;
985 } // GPTData::LoadPartitionsTable()
986
987 // Check the partition table pointed to by header, but don't keep it
988 // around.
989 // Returns 1 if the CRC is OK & this table matches the one already in memory,
990 // 0 if not or if there was a read error.
CheckTable(struct GPTHeader * header)991 int GPTData::CheckTable(struct GPTHeader *header) {
992 uint32_t sizeOfParts, newCRC;
993 GPTPart *partsToCheck;
994 GPTHeader *otherHeader;
995 int allOK = 0;
996
997 // Load partition table into temporary storage to check
998 // its CRC and store the results, then discard this temporary
999 // storage, since we don't use it in any but recovery operations
1000 if (myDisk.Seek(header->partitionEntriesLBA)) {
1001 partsToCheck = new GPTPart[header->numParts];
1002 sizeOfParts = header->numParts * header->sizeOfPartitionEntries;
1003 if (partsToCheck == NULL) {
1004 cerr << "Could not allocate memory in GPTData::CheckTable()! Terminating!\n";
1005 exit(1);
1006 } // if
1007 if (myDisk.Read(partsToCheck, sizeOfParts) != (int) sizeOfParts) {
1008 cerr << "Warning! Error " << errno << " reading partition table for CRC check!\n";
1009 } else {
1010 newCRC = chksum_crc32((unsigned char*) partsToCheck, sizeOfParts);
1011 allOK = (newCRC == header->partitionEntriesCRC);
1012 if (header == &mainHeader)
1013 otherHeader = &secondHeader;
1014 else
1015 otherHeader = &mainHeader;
1016 if (newCRC != otherHeader->partitionEntriesCRC) {
1017 cerr << "Warning! Main and backup partition tables differ! Use the 'c' and 'e' options\n"
1018 << "on the recovery & transformation menu to examine the two tables.\n\n";
1019 allOK = 0;
1020 } // if
1021 } // if/else
1022 delete[] partsToCheck;
1023 } // if
1024 return allOK;
1025 } // GPTData::CheckTable()
1026
1027 // Writes GPT (and protective MBR) to disk. If quiet==1, moves the second
1028 // header later on the disk without asking for permission, if necessary, and
1029 // doesn't confirm the operation before writing. If quiet==0, asks permission
1030 // before moving the second header and asks for final confirmation of any
1031 // write.
1032 // Returns 1 on successful write, 0 if there was a problem.
SaveGPTData(int quiet)1033 int GPTData::SaveGPTData(int quiet) {
1034 int allOK = 1, syncIt = 1;
1035 char answer;
1036
1037 // First do some final sanity checks....
1038
1039 // This test should only fail on read-only disks....
1040 if (justLooking) {
1041 cout << "The justLooking flag is set. This probably means you can't write to the disk.\n";
1042 allOK = 0;
1043 } // if
1044
1045 // Check that disk is really big enough to handle the second header...
1046 if (mainHeader.backupLBA >= diskSize) {
1047 cerr << "Caution! Secondary header was placed beyond the disk's limits! Moving the\n"
1048 << "header, but other problems may occur!\n";
1049 MoveSecondHeaderToEnd();
1050 } // if
1051
1052 // Is there enough space to hold the GPT headers and partition tables,
1053 // given the partition sizes?
1054 if (CheckGPTSize() > 0) {
1055 allOK = 0;
1056 } // if
1057
1058 // Check that second header is properly placed. Warn and ask if this should
1059 // be corrected if the test fails....
1060 if (mainHeader.backupLBA < (diskSize - UINT64_C(1))) {
1061 if (quiet == 0) {
1062 cout << "Warning! Secondary header is placed too early on the disk! Do you want to\n"
1063 << "correct this problem? ";
1064 if (GetYN() == 'Y') {
1065 MoveSecondHeaderToEnd();
1066 cout << "Have moved second header and partition table to correct location.\n";
1067 } else {
1068 cout << "Have not corrected the problem. Strange problems may occur in the future!\n";
1069 } // if correction requested
1070 } else { // Go ahead and do correction automatically
1071 MoveSecondHeaderToEnd();
1072 } // if/else quiet
1073 } // if
1074
1075 if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) {
1076 if (quiet == 0) {
1077 cout << "Warning! The claimed last usable sector is incorrect! Do you want to correct\n"
1078 << "this problem? ";
1079 if (GetYN() == 'Y') {
1080 MoveSecondHeaderToEnd();
1081 cout << "Have adjusted the second header and last usable sector value.\n";
1082 } else {
1083 cout << "Have not corrected the problem. Strange problems may occur in the future!\n";
1084 } // if correction requested
1085 } else { // go ahead and do correction automatically
1086 MoveSecondHeaderToEnd();
1087 } // if/else quiet
1088 } // if
1089
1090 // Check for overlapping or insane partitions....
1091 if ((FindOverlaps() > 0) || (FindInsanePartitions() > 0)) {
1092 allOK = 0;
1093 cerr << "Aborting write operation!\n";
1094 } // if
1095
1096 // Check that protective MBR fits, and warn if it doesn't....
1097 if (!protectiveMBR.DoTheyFit()) {
1098 cerr << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n"
1099 << "fresh protective or hybrid MBR is recommended.\n";
1100 }
1101
1102 // Check for mismatched MBR and GPT data, but let it pass if found
1103 // (function displays warning message)
1104 FindHybridMismatches();
1105
1106 RecomputeCRCs();
1107
1108 if ((allOK) && (!quiet)) {
1109 cout << "\nFinal checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING\n"
1110 << "PARTITIONS!!\n\nDo you want to proceed? ";
1111 answer = GetYN();
1112 if (answer == 'Y') {
1113 cout << "OK; writing new GUID partition table (GPT) to " << myDisk.GetName() << ".\n";
1114 } else {
1115 allOK = 0;
1116 } // if/else
1117 } // if
1118
1119 // Do it!
1120 if (allOK) {
1121 if (myDisk.OpenForWrite()) {
1122 // As per UEFI specs, write the secondary table and GPT first....
1123 allOK = SavePartitionTable(myDisk, secondHeader.partitionEntriesLBA);
1124 if (!allOK) {
1125 cerr << "Unable to save backup partition table! Perhaps the 'e' option on the experts'\n"
1126 << "menu will resolve this problem.\n";
1127 syncIt = 0;
1128 } // if
1129
1130 // Now write the secondary GPT header...
1131 allOK = allOK && SaveHeader(&secondHeader, myDisk, mainHeader.backupLBA);
1132
1133 // Now write the main partition tables...
1134 allOK = allOK && SavePartitionTable(myDisk, mainHeader.partitionEntriesLBA);
1135
1136 // Now write the main GPT header...
1137 allOK = allOK && SaveHeader(&mainHeader, myDisk, 1);
1138
1139 // To top it off, write the protective MBR...
1140 allOK = allOK && protectiveMBR.WriteMBRData(&myDisk);
1141
1142 // re-read the partition table
1143 // Note: Done even if some write operations failed, but not if all of them failed.
1144 // Done this way because I've received one problem report from a user one whose
1145 // system the MBR write failed but everything else was OK (on a GPT disk under
1146 // Windows), and the failure to sync therefore caused Windows to restore the
1147 // original partition table from its cache. OTOH, such restoration might be
1148 // desirable if the error occurs later; but that seems unlikely unless the initial
1149 // write fails....
1150 if (syncIt && syncing)
1151 myDisk.DiskSync();
1152
1153 if (allOK) { // writes completed OK
1154 cout << "The operation has completed successfully.\n";
1155 } else {
1156 cerr << "Warning! An error was reported when writing the partition table! This error\n"
1157 << "MIGHT be harmless, or the disk might be damaged! Checking it is advisable.\n";
1158 } // if/else
1159
1160 myDisk.Close();
1161 } else {
1162 cerr << "Unable to open device '" << myDisk.GetName() << "' for writing! Errno is "
1163 << errno << "! Aborting write!\n";
1164 allOK = 0;
1165 } // if/else
1166 } else {
1167 cout << "Aborting write of new partition table.\n";
1168 } // if
1169
1170 return (allOK);
1171 } // GPTData::SaveGPTData()
1172
1173 // Save GPT data to a backup file. This function does much less error
1174 // checking than SaveGPTData(). It can therefore preserve many types of
1175 // corruption for later analysis; however, it preserves only the MBR,
1176 // the main GPT header, the backup GPT header, and the main partition
1177 // table; it discards the backup partition table, since it should be
1178 // identical to the main partition table on healthy disks.
SaveGPTBackup(const string & filename)1179 int GPTData::SaveGPTBackup(const string & filename) {
1180 int allOK = 1;
1181 DiskIO backupFile;
1182
1183 if (backupFile.OpenForWrite(filename)) {
1184 // Recomputing the CRCs is likely to alter them, which could be bad
1185 // if the intent is to save a potentially bad GPT for later analysis;
1186 // but if we don't do this, we get bogus errors when we load the
1187 // backup. I'm favoring misses over false alarms....
1188 RecomputeCRCs();
1189
1190 protectiveMBR.WriteMBRData(&backupFile);
1191 protectiveMBR.SetDisk(&myDisk);
1192
1193 if (allOK) {
1194 // MBR write closed disk, so re-open and seek to end....
1195 backupFile.OpenForWrite();
1196 allOK = SaveHeader(&mainHeader, backupFile, 1);
1197 } // if (allOK)
1198
1199 if (allOK)
1200 allOK = SaveHeader(&secondHeader, backupFile, 2);
1201
1202 if (allOK)
1203 allOK = SavePartitionTable(backupFile, 3);
1204
1205 if (allOK) { // writes completed OK
1206 cout << "The operation has completed successfully.\n";
1207 } else {
1208 cerr << "Warning! An error was reported when writing the backup file.\n"
1209 << "It may not be usable!\n";
1210 } // if/else
1211 backupFile.Close();
1212 } else {
1213 cerr << "Unable to open file '" << filename << "' for writing! Aborting!\n";
1214 allOK = 0;
1215 } // if/else
1216 return allOK;
1217 } // GPTData::SaveGPTBackup()
1218
1219 // Write a GPT header (main or backup) to the specified sector. Used by both
1220 // the SaveGPTData() and SaveGPTBackup() functions.
1221 // Should be passed an architecture-appropriate header (DO NOT call
1222 // ReverseHeaderBytes() on the header before calling this function)
1223 // Returns 1 on success, 0 on failure
SaveHeader(struct GPTHeader * header,DiskIO & disk,uint64_t sector)1224 int GPTData::SaveHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector) {
1225 int littleEndian, allOK = 1;
1226
1227 littleEndian = IsLittleEndian();
1228 if (!littleEndian)
1229 ReverseHeaderBytes(header);
1230 if (disk.Seek(sector)) {
1231 if (disk.Write(header, 512) == -1)
1232 allOK = 0;
1233 } else allOK = 0; // if (disk.Seek()...)
1234 if (!littleEndian)
1235 ReverseHeaderBytes(header);
1236 return allOK;
1237 } // GPTData::SaveHeader()
1238
1239 // Save the partitions to the specified sector. Used by both the SaveGPTData()
1240 // and SaveGPTBackup() functions.
1241 // Should be passed an architecture-appropriate header (DO NOT call
1242 // ReverseHeaderBytes() on the header before calling this function)
1243 // Returns 1 on success, 0 on failure
SavePartitionTable(DiskIO & disk,uint64_t sector)1244 int GPTData::SavePartitionTable(DiskIO & disk, uint64_t sector) {
1245 int littleEndian, allOK = 1;
1246
1247 littleEndian = IsLittleEndian();
1248 if (disk.Seek(sector)) {
1249 if (!littleEndian)
1250 ReversePartitionBytes();
1251 if (disk.Write(partitions, mainHeader.sizeOfPartitionEntries * numParts) == -1)
1252 allOK = 0;
1253 if (!littleEndian)
1254 ReversePartitionBytes();
1255 } else allOK = 0; // if (myDisk.Seek()...)
1256 return allOK;
1257 } // GPTData::SavePartitionTable()
1258
1259 // Load GPT data from a backup file created by SaveGPTBackup(). This function
1260 // does minimal error checking. It returns 1 if it completed successfully,
1261 // 0 if there was a problem. In the latter case, it creates a new empty
1262 // set of partitions.
LoadGPTBackup(const string & filename)1263 int GPTData::LoadGPTBackup(const string & filename) {
1264 int allOK = 1, val, err;
1265 int shortBackup = 0;
1266 DiskIO backupFile;
1267
1268 if (backupFile.OpenForRead(filename)) {
1269 // Let the MBRData class load the saved MBR...
1270 protectiveMBR.ReadMBRData(&backupFile, 0); // 0 = don't check block size
1271 protectiveMBR.SetDisk(&myDisk);
1272
1273 LoadHeader(&mainHeader, backupFile, 1, &mainCrcOk);
1274
1275 // Check backup file size and rebuild second header if file is right
1276 // size to be direct dd copy of MBR, main header, and main partition
1277 // table; if other size, treat it like a GPT fdisk-generated backup
1278 // file
1279 shortBackup = ((backupFile.DiskSize(&err) * backupFile.GetBlockSize()) ==
1280 (mainHeader.numParts * mainHeader.sizeOfPartitionEntries) + 1024);
1281 if (shortBackup) {
1282 RebuildSecondHeader();
1283 secondCrcOk = mainCrcOk;
1284 } else {
1285 LoadHeader(&secondHeader, backupFile, 2, &secondCrcOk);
1286 } // if/else
1287
1288 // Return valid headers code: 0 = both headers bad; 1 = main header
1289 // good, backup bad; 2 = backup header good, main header bad;
1290 // 3 = both headers good. Note these codes refer to valid GPT
1291 // signatures and version numbers; more subtle problems will elude
1292 // this check!
1293 if ((val = CheckHeaderValidity()) > 0) {
1294 if (val == 2) { // only backup header seems to be good
1295 SetGPTSize(secondHeader.numParts, 0);
1296 } else { // main header is OK
1297 SetGPTSize(mainHeader.numParts, 0);
1298 } // if/else
1299
1300 if (secondHeader.currentLBA != diskSize - UINT64_C(1)) {
1301 cout << "Warning! Current disk size doesn't match that of the backup!\n"
1302 << "Adjusting sizes to match, but subsequent problems are possible!\n";
1303 MoveSecondHeaderToEnd();
1304 } // if
1305
1306 if (!LoadPartitionTable(mainHeader, backupFile, (uint64_t) (3 - shortBackup)))
1307 cerr << "Warning! Read error " << errno
1308 << " loading partition table; strange behavior now likely!\n";
1309 } else {
1310 allOK = 0;
1311 } // if/else
1312 // Something went badly wrong, so blank out partitions
1313 if (allOK == 0) {
1314 cerr << "Improper backup file! Clearing all partition data!\n";
1315 ClearGPTData();
1316 protectiveMBR.MakeProtectiveMBR();
1317 } // if
1318 } else {
1319 allOK = 0;
1320 cerr << "Unable to open file '" << filename << "' for reading! Aborting!\n";
1321 } // if/else
1322
1323 return allOK;
1324 } // GPTData::LoadGPTBackup()
1325
SaveMBR(void)1326 int GPTData::SaveMBR(void) {
1327 return protectiveMBR.WriteMBRData(&myDisk);
1328 } // GPTData::SaveMBR()
1329
1330 // This function destroys the on-disk GPT structures, but NOT the on-disk
1331 // MBR.
1332 // Returns 1 if the operation succeeds, 0 if not.
DestroyGPT(void)1333 int GPTData::DestroyGPT(void) {
1334 int sum, tableSize, allOK = 1;
1335 uint8_t blankSector[512];
1336 uint8_t* emptyTable;
1337
1338 memset(blankSector, 0, sizeof(blankSector));
1339 ClearGPTData();
1340
1341 if (myDisk.OpenForWrite()) {
1342 if (!myDisk.Seek(mainHeader.currentLBA))
1343 allOK = 0;
1344 if (myDisk.Write(blankSector, 512) != 512) { // blank it out
1345 cerr << "Warning! GPT main header not overwritten! Error is " << errno << "\n";
1346 allOK = 0;
1347 } // if
1348 if (!myDisk.Seek(mainHeader.partitionEntriesLBA))
1349 allOK = 0;
1350 tableSize = numParts * mainHeader.sizeOfPartitionEntries;
1351 emptyTable = new uint8_t[tableSize];
1352 if (emptyTable == NULL) {
1353 cerr << "Could not allocate memory in GPTData::DestroyGPT()! Terminating!\n";
1354 exit(1);
1355 } // if
1356 memset(emptyTable, 0, tableSize);
1357 if (allOK) {
1358 sum = myDisk.Write(emptyTable, tableSize);
1359 if (sum != tableSize) {
1360 cerr << "Warning! GPT main partition table not overwritten! Error is " << errno << "\n";
1361 allOK = 0;
1362 } // if write failed
1363 } // if
1364 if (!myDisk.Seek(secondHeader.partitionEntriesLBA))
1365 allOK = 0;
1366 if (allOK) {
1367 sum = myDisk.Write(emptyTable, tableSize);
1368 if (sum != tableSize) {
1369 cerr << "Warning! GPT backup partition table not overwritten! Error is "
1370 << errno << "\n";
1371 allOK = 0;
1372 } // if wrong size written
1373 } // if
1374 if (!myDisk.Seek(secondHeader.currentLBA))
1375 allOK = 0;
1376 if (allOK) {
1377 if (myDisk.Write(blankSector, 512) != 512) { // blank it out
1378 cerr << "Warning! GPT backup header not overwritten! Error is " << errno << "\n";
1379 allOK = 0;
1380 } // if
1381 } // if
1382 if (syncing) {
1383 myDisk.DiskSync();
1384 }
1385 myDisk.Close();
1386 cout << "GPT data structures destroyed! You may now partition the disk using fdisk or\n"
1387 << "other utilities.\n";
1388 delete[] emptyTable;
1389 } else {
1390 cerr << "Problem opening '" << device << "' for writing! Program will now terminate.\n";
1391 } // if/else (fd != -1)
1392 return (allOK);
1393 } // GPTDataTextUI::DestroyGPT()
1394
1395 // Wipe MBR data from the disk (zero it out completely)
1396 // Returns 1 on success, 0 on failure.
DestroyMBR(void)1397 int GPTData::DestroyMBR(void) {
1398 int allOK;
1399 uint8_t blankSector[512];
1400
1401 memset(blankSector, 0, sizeof(blankSector));
1402
1403 allOK = myDisk.OpenForWrite() && myDisk.Seek(0) && (myDisk.Write(blankSector, 512) == 512);
1404
1405 if (!allOK)
1406 cerr << "Warning! MBR not overwritten! Error is " << errno << "!\n";
1407 return allOK;
1408 } // GPTData::DestroyMBR(void)
1409
1410 // Tell user whether Apple Partition Map (APM) was discovered....
ShowAPMState(void)1411 void GPTData::ShowAPMState(void) {
1412 if (apmFound)
1413 cout << " APM: present\n";
1414 else
1415 cout << " APM: not present\n";
1416 } // GPTData::ShowAPMState()
1417
1418 // Tell user about the state of the GPT data....
ShowGPTState(void)1419 void GPTData::ShowGPTState(void) {
1420 switch (state) {
1421 case gpt_invalid:
1422 cout << " GPT: not present\n";
1423 break;
1424 case gpt_valid:
1425 cout << " GPT: present\n";
1426 break;
1427 case gpt_corrupt:
1428 cout << " GPT: damaged\n";
1429 break;
1430 default:
1431 cout << "\a GPT: unknown -- bug!\n";
1432 break;
1433 } // switch
1434 } // GPTData::ShowGPTState()
1435
1436 // Display the basic GPT data
DisplayGPTData(void)1437 void GPTData::DisplayGPTData(void) {
1438 uint32_t i;
1439 uint64_t temp, totalFree;
1440
1441 cout << "Disk " << device << ": " << diskSize << " sectors, "
1442 << BytesToIeee(diskSize, blockSize) << "\n";
1443 cout << "Logical sector size: " << blockSize << " bytes\n";
1444 cout << "Disk identifier (GUID): " << mainHeader.diskGUID << "\n";
1445 cout << "Partition table holds up to " << numParts << " entries\n";
1446 cout << "First usable sector is " << mainHeader.firstUsableLBA
1447 << ", last usable sector is " << mainHeader.lastUsableLBA << "\n";
1448 totalFree = FindFreeBlocks(&i, &temp);
1449 cout << "Partitions will be aligned on " << sectorAlignment << "-sector boundaries\n";
1450 cout << "Total free space is " << totalFree << " sectors ("
1451 << BytesToIeee(totalFree, blockSize) << ")\n";
1452 cout << "\nNumber Start (sector) End (sector) Size Code Name\n";
1453 for (i = 0; i < numParts; i++) {
1454 partitions[i].ShowSummary(i, blockSize);
1455 } // for
1456 } // GPTData::DisplayGPTData()
1457
1458 // Show detailed information on the specified partition
ShowPartDetails(uint32_t partNum)1459 void GPTData::ShowPartDetails(uint32_t partNum) {
1460 if ((partNum < numParts) && !IsFreePartNum(partNum)) {
1461 partitions[partNum].ShowDetails(blockSize);
1462 } else {
1463 cout << "Partition #" << partNum + 1 << " does not exist.\n";
1464 } // if
1465 } // GPTData::ShowPartDetails()
1466
1467 /**************************************************************************
1468 * *
1469 * Partition table transformation functions (MBR or BSD disklabel to GPT) *
1470 * (some of these functions may require user interaction) *
1471 * *
1472 **************************************************************************/
1473
1474 // Examines the MBR & GPT data to determine which set of data to use: the
1475 // MBR (use_mbr), the GPT (use_gpt), the BSD disklabel (use_bsd), or create
1476 // a new set of partitions (use_new). A return value of use_abort indicates
1477 // that this function couldn't determine what to do. Overriding functions
1478 // in derived classes may ask users questions in such cases.
UseWhichPartitions(void)1479 WhichToUse GPTData::UseWhichPartitions(void) {
1480 WhichToUse which = use_new;
1481 MBRValidity mbrState;
1482
1483 mbrState = protectiveMBR.GetValidity();
1484
1485 if ((state == gpt_invalid) && ((mbrState == mbr) || (mbrState == hybrid))) {
1486 cout << "\n***************************************************************\n"
1487 << "Found invalid GPT and valid MBR; converting MBR to GPT format\n"
1488 << "in memory. ";
1489 if (!justLooking) {
1490 cout << "\aTHIS OPERATION IS POTENTIALLY DESTRUCTIVE! Exit by\n"
1491 << "typing 'q' if you don't want to convert your MBR partitions\n"
1492 << "to GPT format!";
1493 } // if
1494 cout << "\n***************************************************************\n\n";
1495 which = use_mbr;
1496 } // if
1497
1498 if ((state == gpt_invalid) && bsdFound) {
1499 cout << "\n**********************************************************************\n"
1500 << "Found invalid GPT and valid BSD disklabel; converting BSD disklabel\n"
1501 << "to GPT format.";
1502 if ((!justLooking) && (!beQuiet)) {
1503 cout << "\a THIS OPERATION IS POTENTIALLY DESTRUCTIVE! Your first\n"
1504 << "BSD partition will likely be unusable. Exit by typing 'q' if you don't\n"
1505 << "want to convert your BSD partitions to GPT format!";
1506 } // if
1507 cout << "\n**********************************************************************\n\n";
1508 which = use_bsd;
1509 } // if
1510
1511 if ((state == gpt_valid) && (mbrState == gpt)) {
1512 which = use_gpt;
1513 if (!beQuiet)
1514 cout << "Found valid GPT with protective MBR; using GPT.\n";
1515 } // if
1516 if ((state == gpt_valid) && (mbrState == hybrid)) {
1517 which = use_gpt;
1518 if (!beQuiet)
1519 cout << "Found valid GPT with hybrid MBR; using GPT.\n";
1520 } // if
1521 if ((state == gpt_valid) && (mbrState == invalid)) {
1522 cout << "\aFound valid GPT with corrupt MBR; using GPT and will write new\n"
1523 << "protective MBR on save.\n";
1524 which = use_gpt;
1525 } // if
1526 if ((state == gpt_valid) && (mbrState == mbr)) {
1527 which = use_abort;
1528 } // if
1529
1530 if (state == gpt_corrupt) {
1531 if (mbrState == gpt) {
1532 cout << "\a\a****************************************************************************\n"
1533 << "Caution: Found protective or hybrid MBR and corrupt GPT. Using GPT, but disk\n"
1534 << "verification and recovery are STRONGLY recommended.\n"
1535 << "****************************************************************************\n";
1536 which = use_gpt;
1537 } else {
1538 which = use_abort;
1539 } // if/else MBR says disk is GPT
1540 } // if GPT corrupt
1541
1542 if (which == use_new)
1543 cout << "Creating new GPT entries.\n";
1544
1545 return which;
1546 } // UseWhichPartitions()
1547
1548 // Convert MBR partition table into GPT form.
XFormPartitions(void)1549 void GPTData::XFormPartitions(void) {
1550 int i, numToConvert;
1551 uint8_t origType;
1552
1553 // Clear out old data & prepare basics....
1554 ClearGPTData();
1555
1556 // Convert the smaller of the # of GPT or MBR partitions
1557 if (numParts > MAX_MBR_PARTS)
1558 numToConvert = MAX_MBR_PARTS;
1559 else
1560 numToConvert = numParts;
1561
1562 for (i = 0; i < numToConvert; i++) {
1563 origType = protectiveMBR.GetType(i);
1564 // don't waste CPU time trying to convert extended, hybrid protective, or
1565 // null (non-existent) partitions
1566 if ((origType != 0x05) && (origType != 0x0f) && (origType != 0x85) &&
1567 (origType != 0x00) && (origType != 0xEE))
1568 partitions[i] = protectiveMBR.AsGPT(i);
1569 } // for
1570
1571 // Convert MBR into protective MBR
1572 protectiveMBR.MakeProtectiveMBR();
1573
1574 // Record that all original CRCs were OK so as not to raise flags
1575 // when doing a disk verification
1576 mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1;
1577 } // GPTData::XFormPartitions()
1578
1579 // Transforms BSD disklabel on the specified partition (numbered from 0).
1580 // If an invalid partition number is given, the program does nothing.
1581 // Returns the number of new partitions created.
XFormDisklabel(uint32_t partNum)1582 int GPTData::XFormDisklabel(uint32_t partNum) {
1583 uint32_t low, high;
1584 int goOn = 1, numDone = 0;
1585 BSDData disklabel;
1586
1587 if (GetPartRange(&low, &high) == 0) {
1588 goOn = 0;
1589 cout << "No partitions!\n";
1590 } // if
1591 if (partNum > high) {
1592 goOn = 0;
1593 cout << "Specified partition is invalid!\n";
1594 } // if
1595
1596 // If all is OK, read the disklabel and convert it.
1597 if (goOn) {
1598 goOn = disklabel.ReadBSDData(&myDisk, partitions[partNum].GetFirstLBA(),
1599 partitions[partNum].GetLastLBA());
1600 if ((goOn) && (disklabel.IsDisklabel())) {
1601 numDone = XFormDisklabel(&disklabel);
1602 if (numDone == 1)
1603 cout << "Converted 1 BSD partition.\n";
1604 else
1605 cout << "Converted " << numDone << " BSD partitions.\n";
1606 } else {
1607 cout << "Unable to convert partitions! Unrecognized BSD disklabel.\n";
1608 } // if/else
1609 } // if
1610 if (numDone > 0) { // converted partitions; delete carrier
1611 partitions[partNum].BlankPartition();
1612 } // if
1613 return numDone;
1614 } // GPTData::XFormDisklabel(uint32_t i)
1615
1616 // Transform the partitions on an already-loaded BSD disklabel...
XFormDisklabel(BSDData * disklabel)1617 int GPTData::XFormDisklabel(BSDData* disklabel) {
1618 int i, partNum = 0, numDone = 0;
1619
1620 if (disklabel->IsDisklabel()) {
1621 for (i = 0; i < disklabel->GetNumParts(); i++) {
1622 partNum = FindFirstFreePart();
1623 if (partNum >= 0) {
1624 partitions[partNum] = disklabel->AsGPT(i);
1625 if (partitions[partNum].IsUsed())
1626 numDone++;
1627 } // if
1628 } // for
1629 if (partNum == -1)
1630 cerr << "Warning! Too many partitions to convert!\n";
1631 } // if
1632
1633 // Record that all original CRCs were OK so as not to raise flags
1634 // when doing a disk verification
1635 mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1;
1636
1637 return numDone;
1638 } // GPTData::XFormDisklabel(BSDData* disklabel)
1639
1640 // Add one GPT partition to MBR. Used by PartsToMBR() functions. Created
1641 // partition has the active/bootable flag UNset and uses the GPT fdisk
1642 // type code divided by 0x0100 as the MBR type code.
1643 // Returns 1 if operation was 100% successful, 0 if there were ANY
1644 // problems.
OnePartToMBR(uint32_t gptPart,int mbrPart)1645 int GPTData::OnePartToMBR(uint32_t gptPart, int mbrPart) {
1646 int allOK = 1;
1647
1648 if ((mbrPart < 0) || (mbrPart > 3)) {
1649 cout << "MBR partition " << mbrPart + 1 << " is out of range; omitting it.\n";
1650 allOK = 0;
1651 } // if
1652 if (gptPart >= numParts) {
1653 cout << "GPT partition " << gptPart + 1 << " is out of range; omitting it.\n";
1654 allOK = 0;
1655 } // if
1656 if (allOK && (partitions[gptPart].GetLastLBA() == UINT64_C(0))) {
1657 cout << "GPT partition " << gptPart + 1 << " is undefined; omitting it.\n";
1658 allOK = 0;
1659 } // if
1660 if (allOK && (partitions[gptPart].GetFirstLBA() <= UINT32_MAX) &&
1661 (partitions[gptPart].GetLengthLBA() <= UINT32_MAX)) {
1662 if (partitions[gptPart].GetLastLBA() > UINT32_MAX) {
1663 cout << "Caution: Partition end point past 32-bit pointer boundary;"
1664 << " some OSes may\nreact strangely.\n";
1665 } // if
1666 protectiveMBR.MakePart(mbrPart, (uint32_t) partitions[gptPart].GetFirstLBA(),
1667 (uint32_t) partitions[gptPart].GetLengthLBA(),
1668 partitions[gptPart].GetHexType() / 256, 0);
1669 } else { // partition out of range
1670 if (allOK) // Display only if "else" triggered by out-of-bounds condition
1671 cout << "Partition " << gptPart + 1 << " begins beyond the 32-bit pointer limit of MBR "
1672 << "partitions, or is\n too big; omitting it.\n";
1673 allOK = 0;
1674 } // if/else
1675 return allOK;
1676 } // GPTData::OnePartToMBR()
1677
1678
1679 /**********************************************************************
1680 * *
1681 * Functions that adjust GPT data structures WITHOUT user interaction *
1682 * (they may display information for the user's benefit, though) *
1683 * *
1684 **********************************************************************/
1685
1686 // Resizes GPT to specified number of entries. Creates a new table if
1687 // necessary, copies data if it already exists. If fillGPTSectors is 1
1688 // (the default), rounds numEntries to fill all the sectors necessary to
1689 // hold the GPT.
1690 // Returns 1 if all goes well, 0 if an error is encountered.
SetGPTSize(uint32_t numEntries,int fillGPTSectors)1691 int GPTData::SetGPTSize(uint32_t numEntries, int fillGPTSectors) {
1692 GPTPart* newParts;
1693 uint32_t i, high, copyNum, entriesPerSector;
1694 int allOK = 1;
1695
1696 // First, adjust numEntries upward, if necessary, to get a number
1697 // that fills the allocated sectors
1698 entriesPerSector = blockSize / GPT_SIZE;
1699 if (fillGPTSectors && ((numEntries % entriesPerSector) != 0)) {
1700 cout << "Adjusting GPT size from " << numEntries << " to ";
1701 numEntries = ((numEntries / entriesPerSector) + 1) * entriesPerSector;
1702 cout << numEntries << " to fill the sector\n";
1703 } // if
1704
1705 // Do the work only if the # of partitions is changing. Along with being
1706 // efficient, this prevents mucking with the location of the secondary
1707 // partition table, which causes problems when loading data from a RAID
1708 // array that's been expanded because this function is called when loading
1709 // data.
1710 if (((numEntries != numParts) || (partitions == NULL)) && (numEntries > 0)) {
1711 newParts = new GPTPart [numEntries];
1712 if (newParts != NULL) {
1713 if (partitions != NULL) { // existing partitions; copy them over
1714 GetPartRange(&i, &high);
1715 if (numEntries < (high + 1)) { // Highest entry too high for new #
1716 cout << "The highest-numbered partition is " << high + 1
1717 << ", which is greater than the requested\n"
1718 << "partition table size of " << numEntries
1719 << "; cannot resize. Perhaps sorting will help.\n";
1720 allOK = 0;
1721 delete[] newParts;
1722 } else { // go ahead with copy
1723 if (numEntries < numParts)
1724 copyNum = numEntries;
1725 else
1726 copyNum = numParts;
1727 for (i = 0; i < copyNum; i++) {
1728 newParts[i] = partitions[i];
1729 } // for
1730 delete[] partitions;
1731 partitions = newParts;
1732 } // if
1733 } else { // No existing partition table; just create it
1734 partitions = newParts;
1735 } // if/else existing partitions
1736 numParts = numEntries;
1737 mainHeader.firstUsableLBA = ((numEntries * GPT_SIZE) / blockSize) + (((numEntries * GPT_SIZE) % blockSize) != 0) + 2 ;
1738 secondHeader.firstUsableLBA = mainHeader.firstUsableLBA;
1739 MoveSecondHeaderToEnd();
1740 if (diskSize > 0)
1741 CheckGPTSize();
1742 } else { // Bad memory allocation
1743 cerr << "Error allocating memory for partition table! Size is unchanged!\n";
1744 allOK = 0;
1745 } // if/else
1746 } // if/else
1747 mainHeader.numParts = numParts;
1748 secondHeader.numParts = numParts;
1749 return (allOK);
1750 } // GPTData::SetGPTSize()
1751
1752 // Blank the partition array
BlankPartitions(void)1753 void GPTData::BlankPartitions(void) {
1754 uint32_t i;
1755
1756 for (i = 0; i < numParts; i++) {
1757 partitions[i].BlankPartition();
1758 } // for
1759 } // GPTData::BlankPartitions()
1760
1761 // Delete a partition by number. Returns 1 if successful,
1762 // 0 if there was a problem. Returns 1 if partition was in
1763 // range, 0 if it was out of range.
DeletePartition(uint32_t partNum)1764 int GPTData::DeletePartition(uint32_t partNum) {
1765 uint64_t startSector, length;
1766 uint32_t low, high, numUsedParts, retval = 1;;
1767
1768 numUsedParts = GetPartRange(&low, &high);
1769 if ((numUsedParts > 0) && (partNum >= low) && (partNum <= high)) {
1770 // In case there's a protective MBR, look for & delete matching
1771 // MBR partition....
1772 startSector = partitions[partNum].GetFirstLBA();
1773 length = partitions[partNum].GetLengthLBA();
1774 protectiveMBR.DeleteByLocation(startSector, length);
1775
1776 // Now delete the GPT partition
1777 partitions[partNum].BlankPartition();
1778 } else {
1779 cerr << "Partition number " << partNum + 1 << " out of range!\n";
1780 retval = 0;
1781 } // if/else
1782 return retval;
1783 } // GPTData::DeletePartition(uint32_t partNum)
1784
1785 // Non-interactively create a partition.
1786 // Returns 1 if the operation was successful, 0 if a problem was discovered.
CreatePartition(uint32_t partNum,uint64_t startSector,uint64_t endSector)1787 uint32_t GPTData::CreatePartition(uint32_t partNum, uint64_t startSector, uint64_t endSector) {
1788 int retval = 1; // assume there'll be no problems
1789 uint64_t origSector = startSector;
1790
1791 if (IsFreePartNum(partNum)) {
1792 if (Align(&startSector)) {
1793 cout << "Information: Moved requested sector from " << origSector << " to "
1794 << startSector << " in\norder to align on " << sectorAlignment
1795 << "-sector boundaries.\n";
1796 } // if
1797 if (IsFree(startSector) && (startSector <= endSector)) {
1798 if (FindLastInFree(startSector) >= endSector) {
1799 partitions[partNum].SetFirstLBA(startSector);
1800 partitions[partNum].SetLastLBA(endSector);
1801 partitions[partNum].SetType(DEFAULT_GPT_TYPE);
1802 partitions[partNum].RandomizeUniqueGUID();
1803 } else retval = 0; // if free space until endSector
1804 } else retval = 0; // if startSector is free
1805 } else retval = 0; // if legal partition number
1806 return retval;
1807 } // GPTData::CreatePartition(partNum, startSector, endSector)
1808
1809 // Sort the GPT entries, eliminating gaps and making for a logical
1810 // ordering.
SortGPT(void)1811 void GPTData::SortGPT(void) {
1812 if (numParts > 0)
1813 sort(partitions, partitions + numParts);
1814 } // GPTData::SortGPT()
1815
1816 // Swap the contents of two partitions.
1817 // Returns 1 if successful, 0 if either partition is out of range
1818 // (that is, not a legal number; either or both can be empty).
1819 // Note that if partNum1 = partNum2 and this number is in range,
1820 // it will be considered successful.
SwapPartitions(uint32_t partNum1,uint32_t partNum2)1821 int GPTData::SwapPartitions(uint32_t partNum1, uint32_t partNum2) {
1822 GPTPart temp;
1823 int allOK = 1;
1824
1825 if ((partNum1 < numParts) && (partNum2 < numParts)) {
1826 if (partNum1 != partNum2) {
1827 temp = partitions[partNum1];
1828 partitions[partNum1] = partitions[partNum2];
1829 partitions[partNum2] = temp;
1830 } // if
1831 } else allOK = 0; // partition numbers are valid
1832 return allOK;
1833 } // GPTData::SwapPartitions()
1834
1835 // Set up data structures for entirely new set of partitions on the
1836 // specified device. Returns 1 if OK, 0 if there were problems.
1837 // Note that this function does NOT clear the protectiveMBR data
1838 // structure, since it may hold the original MBR partitions if the
1839 // program was launched on an MBR disk, and those may need to be
1840 // converted to GPT format.
ClearGPTData(void)1841 int GPTData::ClearGPTData(void) {
1842 int goOn = 1, i;
1843
1844 // Set up the partition table....
1845 delete[] partitions;
1846 partitions = NULL;
1847 SetGPTSize(NUM_GPT_ENTRIES);
1848
1849 // Now initialize a bunch of stuff that's static....
1850 mainHeader.signature = GPT_SIGNATURE;
1851 mainHeader.revision = 0x00010000;
1852 mainHeader.headerSize = HEADER_SIZE;
1853 mainHeader.reserved = 0;
1854 mainHeader.currentLBA = UINT64_C(1);
1855 mainHeader.partitionEntriesLBA = (uint64_t) 2;
1856 mainHeader.sizeOfPartitionEntries = GPT_SIZE;
1857 for (i = 0; i < GPT_RESERVED; i++) {
1858 mainHeader.reserved2[i] = '\0';
1859 } // for
1860 if (blockSize > 0)
1861 sectorAlignment = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize;
1862 else
1863 sectorAlignment = DEFAULT_ALIGNMENT;
1864
1865 // Now some semi-static items (computed based on end of disk)
1866 mainHeader.backupLBA = diskSize - UINT64_C(1);
1867 mainHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA;
1868
1869 // Set a unique GUID for the disk, based on random numbers
1870 mainHeader.diskGUID.Randomize();
1871
1872 // Copy main header to backup header
1873 RebuildSecondHeader();
1874
1875 // Blank out the partitions array....
1876 BlankPartitions();
1877
1878 // Flag all CRCs as being OK....
1879 mainCrcOk = 1;
1880 secondCrcOk = 1;
1881 mainPartsCrcOk = 1;
1882 secondPartsCrcOk = 1;
1883
1884 return (goOn);
1885 } // GPTData::ClearGPTData()
1886
1887 // Set the location of the second GPT header data to the end of the disk.
1888 // If the disk size has actually changed, this also adjusts the protective
1889 // entry in the MBR, since it's probably no longer correct.
1890 // Used internally and called by the 'e' option on the recovery &
1891 // transformation menu, to help users of RAID arrays who add disk space
1892 // to their arrays or to adjust data structures in restore operations
1893 // involving unequal-sized disks.
MoveSecondHeaderToEnd()1894 void GPTData::MoveSecondHeaderToEnd() {
1895 mainHeader.backupLBA = secondHeader.currentLBA = diskSize - UINT64_C(1);
1896 if (mainHeader.lastUsableLBA != diskSize - mainHeader.firstUsableLBA) {
1897 if (protectiveMBR.GetValidity() == hybrid) {
1898 protectiveMBR.OptimizeEESize();
1899 RecomputeCHS();
1900 } // if
1901 if (protectiveMBR.GetValidity() == gpt)
1902 MakeProtectiveMBR();
1903 } // if
1904 mainHeader.lastUsableLBA = secondHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA;
1905 secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1);
1906 } // GPTData::FixSecondHeaderLocation()
1907
1908 // Sets the partition's name to the specified UnicodeString without
1909 // user interaction.
1910 // Returns 1 on success, 0 on failure (invalid partition number).
SetName(uint32_t partNum,const UnicodeString & theName)1911 int GPTData::SetName(uint32_t partNum, const UnicodeString & theName) {
1912 int retval = 1;
1913
1914 if (IsUsedPartNum(partNum))
1915 partitions[partNum].SetName(theName);
1916 else
1917 retval = 0;
1918
1919 return retval;
1920 } // GPTData::SetName
1921
1922 // Set the disk GUID to the specified value. Note that the header CRCs must
1923 // be recomputed after calling this function.
SetDiskGUID(GUIDData newGUID)1924 void GPTData::SetDiskGUID(GUIDData newGUID) {
1925 mainHeader.diskGUID = newGUID;
1926 secondHeader.diskGUID = newGUID;
1927 } // SetDiskGUID()
1928
1929 // Set the unique GUID of the specified partition. Returns 1 on
1930 // successful completion, 0 if there were problems (invalid
1931 // partition number).
SetPartitionGUID(uint32_t pn,GUIDData theGUID)1932 int GPTData::SetPartitionGUID(uint32_t pn, GUIDData theGUID) {
1933 int retval = 0;
1934
1935 if (pn < numParts) {
1936 if (partitions[pn].IsUsed()) {
1937 partitions[pn].SetUniqueGUID(theGUID);
1938 retval = 1;
1939 } // if
1940 } // if
1941 return retval;
1942 } // GPTData::SetPartitionGUID()
1943
1944 // Set new random GUIDs for the disk and all partitions. Intended to be used
1945 // after disk cloning or similar operations that don't randomize the GUIDs.
RandomizeGUIDs(void)1946 void GPTData::RandomizeGUIDs(void) {
1947 uint32_t i;
1948
1949 mainHeader.diskGUID.Randomize();
1950 secondHeader.diskGUID = mainHeader.diskGUID;
1951 for (i = 0; i < numParts; i++)
1952 if (partitions[i].IsUsed())
1953 partitions[i].RandomizeUniqueGUID();
1954 } // GPTData::RandomizeGUIDs()
1955
1956 // Change partition type code non-interactively. Returns 1 if
1957 // successful, 0 if not....
ChangePartType(uint32_t partNum,PartType theGUID)1958 int GPTData::ChangePartType(uint32_t partNum, PartType theGUID) {
1959 int retval = 1;
1960
1961 if (!IsFreePartNum(partNum)) {
1962 partitions[partNum].SetType(theGUID);
1963 } else retval = 0;
1964 return retval;
1965 } // GPTData::ChangePartType()
1966
1967 // Recompute the CHS values of all the MBR partitions. Used to reset
1968 // CHS values that some BIOSes require, despite the fact that the
1969 // resulting CHS values violate the GPT standard.
RecomputeCHS(void)1970 void GPTData::RecomputeCHS(void) {
1971 int i;
1972
1973 for (i = 0; i < 4; i++)
1974 protectiveMBR.RecomputeCHS(i);
1975 } // GPTData::RecomputeCHS()
1976
1977 // Adjust sector number so that it falls on a sector boundary that's a
1978 // multiple of sectorAlignment. This is done to improve the performance
1979 // of Western Digital Advanced Format disks and disks with similar
1980 // technology from other companies, which use 4096-byte sectors
1981 // internally although they translate to 512-byte sectors for the
1982 // benefit of the OS. If partitions aren't properly aligned on these
1983 // disks, some filesystem data structures can span multiple physical
1984 // sectors, degrading performance. This function should be called
1985 // only on the FIRST sector of the partition, not the last!
1986 // This function returns 1 if the alignment was altered, 0 if it
1987 // was unchanged.
Align(uint64_t * sector)1988 int GPTData::Align(uint64_t* sector) {
1989 int retval = 0, sectorOK = 0;
1990 uint64_t earlier, later, testSector;
1991
1992 if ((*sector % sectorAlignment) != 0) {
1993 earlier = (*sector / sectorAlignment) * sectorAlignment;
1994 later = earlier + (uint64_t) sectorAlignment;
1995
1996 // Check to see that every sector between the earlier one and the
1997 // requested one is clear, and that it's not too early....
1998 if (earlier >= mainHeader.firstUsableLBA) {
1999 sectorOK = 1;
2000 testSector = earlier;
2001 do {
2002 sectorOK = IsFree(testSector++);
2003 } while ((sectorOK == 1) && (testSector < *sector));
2004 if (sectorOK == 1) {
2005 *sector = earlier;
2006 retval = 1;
2007 } // if
2008 } // if firstUsableLBA check
2009
2010 // If couldn't move the sector earlier, try to move it later instead....
2011 if ((sectorOK != 1) && (later <= mainHeader.lastUsableLBA)) {
2012 sectorOK = 1;
2013 testSector = later;
2014 do {
2015 sectorOK = IsFree(testSector--);
2016 } while ((sectorOK == 1) && (testSector > *sector));
2017 if (sectorOK == 1) {
2018 *sector = later;
2019 retval = 1;
2020 } // if
2021 } // if
2022 } // if
2023 return retval;
2024 } // GPTData::Align()
2025
2026 /********************************************************
2027 * *
2028 * Functions that return data about GPT data structures *
2029 * (most of these are inline in gpt.h) *
2030 * *
2031 ********************************************************/
2032
2033 // Find the low and high used partition numbers (numbered from 0).
2034 // Return value is the number of partitions found. Note that the
2035 // *low and *high values are both set to 0 when no partitions
2036 // are found, as well as when a single partition in the first
2037 // position exists. Thus, the return value is the only way to
2038 // tell when no partitions exist.
GetPartRange(uint32_t * low,uint32_t * high)2039 int GPTData::GetPartRange(uint32_t *low, uint32_t *high) {
2040 uint32_t i;
2041 int numFound = 0;
2042
2043 *low = numParts + 1; // code for "not found"
2044 *high = 0;
2045 for (i = 0; i < numParts; i++) {
2046 if (partitions[i].IsUsed()) { // it exists
2047 *high = i; // since we're counting up, set the high value
2048 // Set the low value only if it's not yet found...
2049 if (*low == (numParts + 1)) *low = i;
2050 numFound++;
2051 } // if
2052 } // for
2053
2054 // Above will leave *low pointing to its "not found" value if no partitions
2055 // are defined, so reset to 0 if this is the case....
2056 if (*low == (numParts + 1))
2057 *low = 0;
2058 return numFound;
2059 } // GPTData::GetPartRange()
2060
2061 // Returns the value of the first free partition, or -1 if none is
2062 // unused.
FindFirstFreePart(void)2063 int GPTData::FindFirstFreePart(void) {
2064 int i = 0;
2065
2066 if (partitions != NULL) {
2067 while ((i < (int) numParts) && (partitions[i].IsUsed()))
2068 i++;
2069 if (i >= (int) numParts)
2070 i = -1;
2071 } else i = -1;
2072 return i;
2073 } // GPTData::FindFirstFreePart()
2074
2075 // Returns the number of defined partitions.
CountParts(void)2076 uint32_t GPTData::CountParts(void) {
2077 uint32_t i, counted = 0;
2078
2079 for (i = 0; i < numParts; i++) {
2080 if (partitions[i].IsUsed())
2081 counted++;
2082 } // for
2083 return counted;
2084 } // GPTData::CountParts()
2085
2086 /****************************************************
2087 * *
2088 * Functions that return data about disk free space *
2089 * *
2090 ****************************************************/
2091
2092 // Find the first available block after the starting point; returns 0 if
2093 // there are no available blocks left
FindFirstAvailable(uint64_t start)2094 uint64_t GPTData::FindFirstAvailable(uint64_t start) {
2095 uint64_t first;
2096 uint32_t i;
2097 int firstMoved = 0;
2098
2099 // Begin from the specified starting point or from the first usable
2100 // LBA, whichever is greater...
2101 if (start < mainHeader.firstUsableLBA)
2102 first = mainHeader.firstUsableLBA;
2103 else
2104 first = start;
2105
2106 // ...now search through all partitions; if first is within an
2107 // existing partition, move it to the next sector after that
2108 // partition and repeat. If first was moved, set firstMoved
2109 // flag; repeat until firstMoved is not set, so as to catch
2110 // cases where partitions are out of sequential order....
2111 do {
2112 firstMoved = 0;
2113 for (i = 0; i < numParts; i++) {
2114 if ((partitions[i].IsUsed()) && (first >= partitions[i].GetFirstLBA()) &&
2115 (first <= partitions[i].GetLastLBA())) { // in existing part.
2116 first = partitions[i].GetLastLBA() + 1;
2117 firstMoved = 1;
2118 } // if
2119 } // for
2120 } while (firstMoved == 1);
2121 if (first > mainHeader.lastUsableLBA)
2122 first = 0;
2123 return (first);
2124 } // GPTData::FindFirstAvailable()
2125
2126 // Finds the first available sector in the largest block of unallocated
2127 // space on the disk. Returns 0 if there are no available blocks left
FindFirstInLargest(void)2128 uint64_t GPTData::FindFirstInLargest(void) {
2129 uint64_t start, firstBlock, lastBlock, segmentSize, selectedSize = 0, selectedSegment = 0;
2130
2131 start = 0;
2132 do {
2133 firstBlock = FindFirstAvailable(start);
2134 if (firstBlock != UINT32_C(0)) { // something's free...
2135 lastBlock = FindLastInFree(firstBlock);
2136 segmentSize = lastBlock - firstBlock + UINT32_C(1);
2137 if (segmentSize > selectedSize) {
2138 selectedSize = segmentSize;
2139 selectedSegment = firstBlock;
2140 } // if
2141 start = lastBlock + 1;
2142 } // if
2143 } while (firstBlock != 0);
2144 return selectedSegment;
2145 } // GPTData::FindFirstInLargest()
2146
2147 // Find the last available block on the disk.
2148 // Returns 0 if there are no available sectors
FindLastAvailable(void)2149 uint64_t GPTData::FindLastAvailable(void) {
2150 uint64_t last;
2151 uint32_t i;
2152 int lastMoved = 0;
2153
2154 // Start by assuming the last usable LBA is available....
2155 last = mainHeader.lastUsableLBA;
2156
2157 // ...now, similar to algorithm in FindFirstAvailable(), search
2158 // through all partitions, moving last when it's in an existing
2159 // partition. Set the lastMoved flag so we repeat to catch cases
2160 // where partitions are out of logical order.
2161 do {
2162 lastMoved = 0;
2163 for (i = 0; i < numParts; i++) {
2164 if ((last >= partitions[i].GetFirstLBA()) &&
2165 (last <= partitions[i].GetLastLBA())) { // in existing part.
2166 last = partitions[i].GetFirstLBA() - 1;
2167 lastMoved = 1;
2168 } // if
2169 } // for
2170 } while (lastMoved == 1);
2171 if (last < mainHeader.firstUsableLBA)
2172 last = 0;
2173 return (last);
2174 } // GPTData::FindLastAvailable()
2175
2176 // Find the last available block in the free space pointed to by start.
FindLastInFree(uint64_t start)2177 uint64_t GPTData::FindLastInFree(uint64_t start) {
2178 uint64_t nearestStart;
2179 uint32_t i;
2180
2181 nearestStart = mainHeader.lastUsableLBA;
2182 for (i = 0; i < numParts; i++) {
2183 if ((nearestStart > partitions[i].GetFirstLBA()) &&
2184 (partitions[i].GetFirstLBA() > start)) {
2185 nearestStart = partitions[i].GetFirstLBA() - 1;
2186 } // if
2187 } // for
2188 return (nearestStart);
2189 } // GPTData::FindLastInFree()
2190
2191 // Finds the total number of free blocks, the number of segments in which
2192 // they reside, and the size of the largest of those segments
FindFreeBlocks(uint32_t * numSegments,uint64_t * largestSegment)2193 uint64_t GPTData::FindFreeBlocks(uint32_t *numSegments, uint64_t *largestSegment) {
2194 uint64_t start = UINT64_C(0); // starting point for each search
2195 uint64_t totalFound = UINT64_C(0); // running total
2196 uint64_t firstBlock; // first block in a segment
2197 uint64_t lastBlock; // last block in a segment
2198 uint64_t segmentSize; // size of segment in blocks
2199 uint32_t num = 0;
2200
2201 *largestSegment = UINT64_C(0);
2202 if (diskSize > 0) {
2203 do {
2204 firstBlock = FindFirstAvailable(start);
2205 if (firstBlock != UINT64_C(0)) { // something's free...
2206 lastBlock = FindLastInFree(firstBlock);
2207 segmentSize = lastBlock - firstBlock + UINT64_C(1);
2208 if (segmentSize > *largestSegment) {
2209 *largestSegment = segmentSize;
2210 } // if
2211 totalFound += segmentSize;
2212 num++;
2213 start = lastBlock + 1;
2214 } // if
2215 } while (firstBlock != 0);
2216 } // if
2217 *numSegments = num;
2218 return totalFound;
2219 } // GPTData::FindFreeBlocks()
2220
2221 // Returns 1 if sector is unallocated, 0 if it's allocated to a partition.
2222 // If it's allocated, return the partition number to which it's allocated
2223 // in partNum, if that variable is non-NULL. (A value of UINT32_MAX is
2224 // returned in partNum if the sector is in use by basic GPT data structures.)
IsFree(uint64_t sector,uint32_t * partNum)2225 int GPTData::IsFree(uint64_t sector, uint32_t *partNum) {
2226 int isFree = 1;
2227 uint32_t i;
2228
2229 for (i = 0; i < numParts; i++) {
2230 if ((sector >= partitions[i].GetFirstLBA()) &&
2231 (sector <= partitions[i].GetLastLBA())) {
2232 isFree = 0;
2233 if (partNum != NULL)
2234 *partNum = i;
2235 } // if
2236 } // for
2237 if ((sector < mainHeader.firstUsableLBA) ||
2238 (sector > mainHeader.lastUsableLBA)) {
2239 isFree = 0;
2240 if (partNum != NULL)
2241 *partNum = UINT32_MAX;
2242 } // if
2243 return (isFree);
2244 } // GPTData::IsFree()
2245
2246 // Returns 1 if partNum is unused AND if it's a legal value.
IsFreePartNum(uint32_t partNum)2247 int GPTData::IsFreePartNum(uint32_t partNum) {
2248 return ((partNum < numParts) && (partitions != NULL) &&
2249 (!partitions[partNum].IsUsed()));
2250 } // GPTData::IsFreePartNum()
2251
2252 // Returns 1 if partNum is in use.
IsUsedPartNum(uint32_t partNum)2253 int GPTData::IsUsedPartNum(uint32_t partNum) {
2254 return ((partNum < numParts) && (partitions != NULL) &&
2255 (partitions[partNum].IsUsed()));
2256 } // GPTData::IsUsedPartNum()
2257
2258 /***********************************************************
2259 * *
2260 * Change how functions work or return information on them *
2261 * *
2262 ***********************************************************/
2263
2264 // Set partition alignment value; partitions will begin on multiples of
2265 // the specified value
SetAlignment(uint32_t n)2266 void GPTData::SetAlignment(uint32_t n) {
2267 if (n > 0)
2268 sectorAlignment = n;
2269 else
2270 cerr << "Attempt to set partition alignment to 0!\n";
2271 } // GPTData::SetAlignment()
2272
2273 // Compute sector alignment based on the current partitions (if any). Each
2274 // partition's starting LBA is examined, and if it's divisible by a power-of-2
2275 // value less than or equal to the DEFAULT_ALIGNMENT value (adjusted for the
2276 // sector size), but not by the previously-located alignment value, then the
2277 // alignment value is adjusted down. If the computed alignment is less than 8
2278 // and the disk is bigger than SMALLEST_ADVANCED_FORMAT, resets it to 8. This
2279 // is a safety measure for Advanced Format drives. If no partitions are
2280 // defined, the alignment value is set to DEFAULT_ALIGNMENT (2048) (or an
2281 // adjustment of that based on the current sector size). The result is that new
2282 // drives are aligned to 2048-sector multiples but the program won't complain
2283 // about other alignments on existing disks unless a smaller-than-8 alignment
2284 // is used on big disks (as safety for Advanced Format drives).
2285 // Returns the computed alignment value.
ComputeAlignment(void)2286 uint32_t GPTData::ComputeAlignment(void) {
2287 uint32_t i = 0, found, exponent = 31;
2288 uint32_t align = DEFAULT_ALIGNMENT;
2289
2290 if (blockSize > 0)
2291 align = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize;
2292 exponent = (uint32_t) log2(align);
2293 for (i = 0; i < numParts; i++) {
2294 if (partitions[i].IsUsed()) {
2295 found = 0;
2296 while (!found) {
2297 align = UINT64_C(1) << exponent;
2298 if ((partitions[i].GetFirstLBA() % align) == 0) {
2299 found = 1;
2300 } else {
2301 exponent--;
2302 } // if/else
2303 } // while
2304 } // if
2305 } // for
2306 if ((align < MIN_AF_ALIGNMENT) && (diskSize >= SMALLEST_ADVANCED_FORMAT))
2307 align = MIN_AF_ALIGNMENT;
2308 sectorAlignment = align;
2309 return align;
2310 } // GPTData::ComputeAlignment()
2311
2312 /********************************
2313 * *
2314 * Endianness support functions *
2315 * *
2316 ********************************/
2317
ReverseHeaderBytes(struct GPTHeader * header)2318 void GPTData::ReverseHeaderBytes(struct GPTHeader* header) {
2319 ReverseBytes(&header->signature, 8);
2320 ReverseBytes(&header->revision, 4);
2321 ReverseBytes(&header->headerSize, 4);
2322 ReverseBytes(&header->headerCRC, 4);
2323 ReverseBytes(&header->reserved, 4);
2324 ReverseBytes(&header->currentLBA, 8);
2325 ReverseBytes(&header->backupLBA, 8);
2326 ReverseBytes(&header->firstUsableLBA, 8);
2327 ReverseBytes(&header->lastUsableLBA, 8);
2328 ReverseBytes(&header->partitionEntriesLBA, 8);
2329 ReverseBytes(&header->numParts, 4);
2330 ReverseBytes(&header->sizeOfPartitionEntries, 4);
2331 ReverseBytes(&header->partitionEntriesCRC, 4);
2332 ReverseBytes(header->reserved2, GPT_RESERVED);
2333 } // GPTData::ReverseHeaderBytes()
2334
2335 // Reverse byte order for all partitions.
ReversePartitionBytes()2336 void GPTData::ReversePartitionBytes() {
2337 uint32_t i;
2338
2339 for (i = 0; i < numParts; i++) {
2340 partitions[i].ReversePartBytes();
2341 } // for
2342 } // GPTData::ReversePartitionBytes()
2343
2344 // Validate partition number
ValidPartNum(const uint32_t partNum)2345 bool GPTData::ValidPartNum (const uint32_t partNum) {
2346 if (partNum >= numParts) {
2347 cerr << "Partition number out of range: " << partNum << "\n";
2348 return false;
2349 } // if
2350 return true;
2351 } // GPTData::ValidPartNum
2352
2353 // Return a single partition for inspection (not modification!) by other
2354 // functions.
operator [](uint32_t partNum) const2355 const GPTPart & GPTData::operator[](uint32_t partNum) const {
2356 if (partNum >= numParts) {
2357 cerr << "Partition number out of range (" << partNum << " requested, but only "
2358 << numParts << " available)\n";
2359 exit(1);
2360 } // if
2361 if (partitions == NULL) {
2362 cerr << "No partitions defined in GPTData::operator[]; fatal error!\n";
2363 exit(1);
2364 } // if
2365 return partitions[partNum];
2366 } // operator[]
2367
2368 // Return (not for modification!) the disk's GUID value
GetDiskGUID(void) const2369 const GUIDData & GPTData::GetDiskGUID(void) const {
2370 return mainHeader.diskGUID;
2371 } // GPTData::GetDiskGUID()
2372
2373 // Manage attributes for a partition, based on commands passed to this function.
2374 // (Function is non-interactive.)
2375 // Returns 1 if a modification command succeeded, 0 if the command should not have
2376 // modified data, and -1 if a modification command failed.
ManageAttributes(int partNum,const string & command,const string & bits)2377 int GPTData::ManageAttributes(int partNum, const string & command, const string & bits) {
2378 int retval = 0;
2379 Attributes theAttr;
2380
2381 if (partNum >= (int) numParts) {
2382 cerr << "Invalid partition number (" << partNum + 1 << ")\n";
2383 retval = -1;
2384 } else {
2385 if (command == "show") {
2386 ShowAttributes(partNum);
2387 } else if (command == "get") {
2388 GetAttribute(partNum, bits);
2389 } else {
2390 theAttr = partitions[partNum].GetAttributes();
2391 if (theAttr.OperateOnAttributes(partNum, command, bits)) {
2392 partitions[partNum].SetAttributes(theAttr.GetAttributes());
2393 retval = 1;
2394 } else {
2395 retval = -1;
2396 } // if/else
2397 } // if/elseif/else
2398 } // if/else invalid partition #
2399
2400 return retval;
2401 } // GPTData::ManageAttributes()
2402
2403 // Show all attributes for a specified partition....
ShowAttributes(const uint32_t partNum)2404 void GPTData::ShowAttributes(const uint32_t partNum) {
2405 if ((partNum < numParts) && partitions[partNum].IsUsed())
2406 partitions[partNum].ShowAttributes(partNum);
2407 } // GPTData::ShowAttributes
2408
2409 // Show whether a single attribute bit is set (terse output)...
GetAttribute(const uint32_t partNum,const string & attributeBits)2410 void GPTData::GetAttribute(const uint32_t partNum, const string& attributeBits) {
2411 if (partNum < numParts)
2412 partitions[partNum].GetAttributes().OperateOnAttributes(partNum, "get", attributeBits);
2413 } // GPTData::GetAttribute
2414
2415
2416 /******************************************
2417 * *
2418 * Additional non-class support functions *
2419 * *
2420 ******************************************/
2421
2422 // Check to be sure that data type sizes are correct. The basic types (uint*_t) should
2423 // never fail these tests, but the struct types may fail depending on compile options.
2424 // Specifically, the -fpack-struct option to gcc may be required to ensure proper structure
2425 // sizes.
SizesOK(void)2426 int SizesOK(void) {
2427 int allOK = 1;
2428
2429 if (sizeof(uint8_t) != 1) {
2430 cerr << "uint8_t is " << sizeof(uint8_t) << " bytes, should be 1 byte; aborting!\n";
2431 allOK = 0;
2432 } // if
2433 if (sizeof(uint16_t) != 2) {
2434 cerr << "uint16_t is " << sizeof(uint16_t) << " bytes, should be 2 bytes; aborting!\n";
2435 allOK = 0;
2436 } // if
2437 if (sizeof(uint32_t) != 4) {
2438 cerr << "uint32_t is " << sizeof(uint32_t) << " bytes, should be 4 bytes; aborting!\n";
2439 allOK = 0;
2440 } // if
2441 if (sizeof(uint64_t) != 8) {
2442 cerr << "uint64_t is " << sizeof(uint64_t) << " bytes, should be 8 bytes; aborting!\n";
2443 allOK = 0;
2444 } // if
2445 if (sizeof(struct MBRRecord) != 16) {
2446 cerr << "MBRRecord is " << sizeof(MBRRecord) << " bytes, should be 16 bytes; aborting!\n";
2447 allOK = 0;
2448 } // if
2449 if (sizeof(struct TempMBR) != 512) {
2450 cerr << "TempMBR is " << sizeof(TempMBR) << " bytes, should be 512 bytes; aborting!\n";
2451 allOK = 0;
2452 } // if
2453 if (sizeof(struct GPTHeader) != 512) {
2454 cerr << "GPTHeader is " << sizeof(GPTHeader) << " bytes, should be 512 bytes; aborting!\n";
2455 allOK = 0;
2456 } // if
2457 if (sizeof(GPTPart) != 128) {
2458 cerr << "GPTPart is " << sizeof(GPTPart) << " bytes, should be 128 bytes; aborting!\n";
2459 allOK = 0;
2460 } // if
2461 if (sizeof(GUIDData) != 16) {
2462 cerr << "GUIDData is " << sizeof(GUIDData) << " bytes, should be 16 bytes; aborting!\n";
2463 allOK = 0;
2464 } // if
2465 if (sizeof(PartType) != 16) {
2466 cerr << "PartType is " << sizeof(PartType) << " bytes, should be 16 bytes; aborting!\n";
2467 allOK = 0;
2468 } // if
2469 return (allOK);
2470 } // SizesOK()
2471
2472