1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/compiler/gap-resolver.h"
6
7 #include <algorithm>
8 #include <set>
9
10 namespace v8 {
11 namespace internal {
12 namespace compiler {
13
14 namespace {
15
16 #define REP_BIT(rep) (1 << static_cast<int>(rep))
17
18 const int kFloat32Bit = REP_BIT(MachineRepresentation::kFloat32);
19 const int kFloat64Bit = REP_BIT(MachineRepresentation::kFloat64);
20
21 // Splits a FP move between two location operands into the equivalent series of
22 // moves between smaller sub-operands, e.g. a double move to two single moves.
23 // This helps reduce the number of cycles that would normally occur under FP
24 // aliasing, and makes swaps much easier to implement.
Split(MoveOperands * move,MachineRepresentation smaller_rep,ParallelMove * moves)25 MoveOperands* Split(MoveOperands* move, MachineRepresentation smaller_rep,
26 ParallelMove* moves) {
27 DCHECK(!kSimpleFPAliasing);
28 // Splitting is only possible when the slot size is the same as float size.
29 DCHECK_EQ(kPointerSize, kFloatSize);
30 const LocationOperand& src_loc = LocationOperand::cast(move->source());
31 const LocationOperand& dst_loc = LocationOperand::cast(move->destination());
32 MachineRepresentation dst_rep = dst_loc.representation();
33 DCHECK_NE(smaller_rep, dst_rep);
34 auto src_kind = src_loc.location_kind();
35 auto dst_kind = dst_loc.location_kind();
36
37 int aliases =
38 1 << (ElementSizeLog2Of(dst_rep) - ElementSizeLog2Of(smaller_rep));
39 int base = -1;
40 USE(base);
41 DCHECK_EQ(aliases, RegisterConfiguration::Default()->GetAliases(
42 dst_rep, 0, smaller_rep, &base));
43
44 int src_index = -1;
45 int slot_size = (1 << ElementSizeLog2Of(smaller_rep)) / kPointerSize;
46 int src_step = 1;
47 if (src_kind == LocationOperand::REGISTER) {
48 src_index = src_loc.register_code() * aliases;
49 } else {
50 src_index = src_loc.index();
51 // For operands that occupy multiple slots, the index refers to the last
52 // slot. On little-endian architectures, we start at the high slot and use a
53 // negative step so that register-to-slot moves are in the correct order.
54 src_step = -slot_size;
55 }
56 int dst_index = -1;
57 int dst_step = 1;
58 if (dst_kind == LocationOperand::REGISTER) {
59 dst_index = dst_loc.register_code() * aliases;
60 } else {
61 dst_index = dst_loc.index();
62 dst_step = -slot_size;
63 }
64
65 // Reuse 'move' for the first fragment. It is not pending.
66 move->set_source(AllocatedOperand(src_kind, smaller_rep, src_index));
67 move->set_destination(AllocatedOperand(dst_kind, smaller_rep, dst_index));
68 // Add the remaining fragment moves.
69 for (int i = 1; i < aliases; ++i) {
70 src_index += src_step;
71 dst_index += dst_step;
72 moves->AddMove(AllocatedOperand(src_kind, smaller_rep, src_index),
73 AllocatedOperand(dst_kind, smaller_rep, dst_index));
74 }
75 // Return the first fragment.
76 return move;
77 }
78
79 } // namespace
80
Resolve(ParallelMove * moves)81 void GapResolver::Resolve(ParallelMove* moves) {
82 // Clear redundant moves, and collect FP move representations if aliasing
83 // is non-simple.
84 int reps = 0;
85 for (size_t i = 0; i < moves->size();) {
86 MoveOperands* move = (*moves)[i];
87 if (move->IsRedundant()) {
88 (*moves)[i] = moves->back();
89 moves->pop_back();
90 continue;
91 }
92 i++;
93 if (!kSimpleFPAliasing && move->destination().IsFPRegister()) {
94 reps |=
95 REP_BIT(LocationOperand::cast(move->destination()).representation());
96 }
97 }
98
99 if (!kSimpleFPAliasing) {
100 if (reps && !base::bits::IsPowerOfTwo(reps)) {
101 // Start with the smallest FP moves, so we never encounter smaller moves
102 // in the middle of a cycle of larger moves.
103 if ((reps & kFloat32Bit) != 0) {
104 split_rep_ = MachineRepresentation::kFloat32;
105 for (size_t i = 0; i < moves->size(); ++i) {
106 auto move = (*moves)[i];
107 if (!move->IsEliminated() && move->destination().IsFloatRegister())
108 PerformMove(moves, move);
109 }
110 }
111 if ((reps & kFloat64Bit) != 0) {
112 split_rep_ = MachineRepresentation::kFloat64;
113 for (size_t i = 0; i < moves->size(); ++i) {
114 auto move = (*moves)[i];
115 if (!move->IsEliminated() && move->destination().IsDoubleRegister())
116 PerformMove(moves, move);
117 }
118 }
119 }
120 split_rep_ = MachineRepresentation::kSimd128;
121 }
122
123 for (size_t i = 0; i < moves->size(); ++i) {
124 auto move = (*moves)[i];
125 if (!move->IsEliminated()) PerformMove(moves, move);
126 }
127 }
128
PerformMove(ParallelMove * moves,MoveOperands * move)129 void GapResolver::PerformMove(ParallelMove* moves, MoveOperands* move) {
130 // Each call to this function performs a move and deletes it from the move
131 // graph. We first recursively perform any move blocking this one. We mark a
132 // move as "pending" on entry to PerformMove in order to detect cycles in the
133 // move graph. We use operand swaps to resolve cycles, which means that a
134 // call to PerformMove could change any source operand in the move graph.
135 DCHECK(!move->IsPending());
136 DCHECK(!move->IsRedundant());
137
138 // Clear this move's destination to indicate a pending move. The actual
139 // destination is saved on the side.
140 InstructionOperand source = move->source();
141 DCHECK(!source.IsInvalid()); // Or else it will look eliminated.
142 InstructionOperand destination = move->destination();
143 move->SetPending();
144
145 // We may need to split moves between FP locations differently.
146 const bool is_fp_loc_move =
147 !kSimpleFPAliasing && destination.IsFPLocationOperand();
148
149 // Perform a depth-first traversal of the move graph to resolve dependencies.
150 // Any unperformed, unpending move with a source the same as this one's
151 // destination blocks this one so recursively perform all such moves.
152 for (size_t i = 0; i < moves->size(); ++i) {
153 auto other = (*moves)[i];
154 if (other->IsEliminated()) continue;
155 if (other->IsPending()) continue;
156 if (other->source().InterferesWith(destination)) {
157 if (is_fp_loc_move &&
158 LocationOperand::cast(other->source()).representation() >
159 split_rep_) {
160 // 'other' must also be an FP location move. Break it into fragments
161 // of the same size as 'move'. 'other' is set to one of the fragments,
162 // and the rest are appended to 'moves'.
163 other = Split(other, split_rep_, moves);
164 // 'other' may not block destination now.
165 if (!other->source().InterferesWith(destination)) continue;
166 }
167 // Though PerformMove can change any source operand in the move graph,
168 // this call cannot create a blocking move via a swap (this loop does not
169 // miss any). Assume there is a non-blocking move with source A and this
170 // move is blocked on source B and there is a swap of A and B. Then A and
171 // B must be involved in the same cycle (or they would not be swapped).
172 // Since this move's destination is B and there is only a single incoming
173 // edge to an operand, this move must also be involved in the same cycle.
174 // In that case, the blocking move will be created but will be "pending"
175 // when we return from PerformMove.
176 PerformMove(moves, other);
177 }
178 }
179
180 // This move's source may have changed due to swaps to resolve cycles and so
181 // it may now be the last move in the cycle. If so remove it.
182 source = move->source();
183 if (source.EqualsCanonicalized(destination)) {
184 move->Eliminate();
185 return;
186 }
187
188 // We are about to resolve this move and don't need it marked as pending, so
189 // restore its destination.
190 move->set_destination(destination);
191
192 // The move may be blocked on a (at most one) pending move, in which case we
193 // have a cycle. Search for such a blocking move and perform a swap to
194 // resolve it.
195 auto blocker =
196 std::find_if(moves->begin(), moves->end(), [&](MoveOperands* move) {
197 return !move->IsEliminated() &&
198 move->source().InterferesWith(destination);
199 });
200 if (blocker == moves->end()) {
201 // The easy case: This move is not blocked.
202 assembler_->AssembleMove(&source, &destination);
203 move->Eliminate();
204 return;
205 }
206
207 // Ensure source is a register or both are stack slots, to limit swap cases.
208 if (source.IsStackSlot() || source.IsFPStackSlot()) {
209 std::swap(source, destination);
210 }
211 assembler_->AssembleSwap(&source, &destination);
212 move->Eliminate();
213
214 // Update outstanding moves whose source may now have been moved.
215 if (is_fp_loc_move) {
216 // We may have to split larger moves.
217 for (size_t i = 0; i < moves->size(); ++i) {
218 auto other = (*moves)[i];
219 if (other->IsEliminated()) continue;
220 if (source.InterferesWith(other->source())) {
221 if (LocationOperand::cast(other->source()).representation() >
222 split_rep_) {
223 other = Split(other, split_rep_, moves);
224 if (!source.InterferesWith(other->source())) continue;
225 }
226 other->set_source(destination);
227 } else if (destination.InterferesWith(other->source())) {
228 if (LocationOperand::cast(other->source()).representation() >
229 split_rep_) {
230 other = Split(other, split_rep_, moves);
231 if (!destination.InterferesWith(other->source())) continue;
232 }
233 other->set_source(source);
234 }
235 }
236 } else {
237 for (auto other : *moves) {
238 if (other->IsEliminated()) continue;
239 if (source.EqualsCanonicalized(other->source())) {
240 other->set_source(destination);
241 } else if (destination.EqualsCanonicalized(other->source())) {
242 other->set_source(source);
243 }
244 }
245 }
246 }
247 } // namespace compiler
248 } // namespace internal
249 } // namespace v8
250