1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the Base ARM implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "ARMBaseInstrInfo.h"
15 #include "ARMBaseRegisterInfo.h"
16 #include "ARMConstantPoolValue.h"
17 #include "ARMFeatures.h"
18 #include "ARMHazardRecognizer.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMSubtarget.h"
21 #include "MCTargetDesc/ARMAddressingModes.h"
22 #include "MCTargetDesc/ARMBaseInfo.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/CodeGen/LiveVariables.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/TargetInstrInfo.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/CodeGen/TargetSchedule.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DebugLoc.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/MC/MCAsmInfo.h"
49 #include "llvm/MC/MCInstrDesc.h"
50 #include "llvm/MC/MCInstrItineraries.h"
51 #include "llvm/Support/BranchProbability.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Target/TargetMachine.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <cstdint>
62 #include <iterator>
63 #include <new>
64 #include <utility>
65 #include <vector>
66
67 using namespace llvm;
68
69 #define DEBUG_TYPE "arm-instrinfo"
70
71 #define GET_INSTRINFO_CTOR_DTOR
72 #include "ARMGenInstrInfo.inc"
73
74 static cl::opt<bool>
75 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
76 cl::desc("Enable ARM 2-addr to 3-addr conv"));
77
78 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
79 struct ARM_MLxEntry {
80 uint16_t MLxOpc; // MLA / MLS opcode
81 uint16_t MulOpc; // Expanded multiplication opcode
82 uint16_t AddSubOpc; // Expanded add / sub opcode
83 bool NegAcc; // True if the acc is negated before the add / sub.
84 bool HasLane; // True if instruction has an extra "lane" operand.
85 };
86
87 static const ARM_MLxEntry ARM_MLxTable[] = {
88 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane
89 // fp scalar ops
90 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false },
91 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false },
92 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false },
93 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false },
94 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false },
95 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false },
96 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false },
97 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false },
98
99 // fp SIMD ops
100 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false },
101 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false },
102 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false },
103 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false },
104 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true },
105 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true },
106 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true },
107 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true },
108 };
109
ARMBaseInstrInfo(const ARMSubtarget & STI)110 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
111 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
112 Subtarget(STI) {
113 for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
114 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
115 llvm_unreachable("Duplicated entries?");
116 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
117 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
118 }
119 }
120
121 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
122 // currently defaults to no prepass hazard recognizer.
123 ScheduleHazardRecognizer *
CreateTargetHazardRecognizer(const TargetSubtargetInfo * STI,const ScheduleDAG * DAG) const124 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
125 const ScheduleDAG *DAG) const {
126 if (usePreRAHazardRecognizer()) {
127 const InstrItineraryData *II =
128 static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
129 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
130 }
131 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
132 }
133
134 ScheduleHazardRecognizer *ARMBaseInstrInfo::
CreateTargetPostRAHazardRecognizer(const InstrItineraryData * II,const ScheduleDAG * DAG) const135 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
136 const ScheduleDAG *DAG) const {
137 if (Subtarget.isThumb2() || Subtarget.hasVFP2())
138 return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG);
139 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
140 }
141
convertToThreeAddress(MachineFunction::iterator & MFI,MachineInstr & MI,LiveVariables * LV) const142 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress(
143 MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
144 // FIXME: Thumb2 support.
145
146 if (!EnableARM3Addr)
147 return nullptr;
148
149 MachineFunction &MF = *MI.getParent()->getParent();
150 uint64_t TSFlags = MI.getDesc().TSFlags;
151 bool isPre = false;
152 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
153 default: return nullptr;
154 case ARMII::IndexModePre:
155 isPre = true;
156 break;
157 case ARMII::IndexModePost:
158 break;
159 }
160
161 // Try splitting an indexed load/store to an un-indexed one plus an add/sub
162 // operation.
163 unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
164 if (MemOpc == 0)
165 return nullptr;
166
167 MachineInstr *UpdateMI = nullptr;
168 MachineInstr *MemMI = nullptr;
169 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
170 const MCInstrDesc &MCID = MI.getDesc();
171 unsigned NumOps = MCID.getNumOperands();
172 bool isLoad = !MI.mayStore();
173 const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
174 const MachineOperand &Base = MI.getOperand(2);
175 const MachineOperand &Offset = MI.getOperand(NumOps - 3);
176 unsigned WBReg = WB.getReg();
177 unsigned BaseReg = Base.getReg();
178 unsigned OffReg = Offset.getReg();
179 unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
180 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
181 switch (AddrMode) {
182 default: llvm_unreachable("Unknown indexed op!");
183 case ARMII::AddrMode2: {
184 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
185 unsigned Amt = ARM_AM::getAM2Offset(OffImm);
186 if (OffReg == 0) {
187 if (ARM_AM::getSOImmVal(Amt) == -1)
188 // Can't encode it in a so_imm operand. This transformation will
189 // add more than 1 instruction. Abandon!
190 return nullptr;
191 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
192 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
193 .addReg(BaseReg)
194 .addImm(Amt)
195 .add(predOps(Pred))
196 .add(condCodeOp());
197 } else if (Amt != 0) {
198 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
199 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
200 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
201 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
202 .addReg(BaseReg)
203 .addReg(OffReg)
204 .addReg(0)
205 .addImm(SOOpc)
206 .add(predOps(Pred))
207 .add(condCodeOp());
208 } else
209 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
210 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
211 .addReg(BaseReg)
212 .addReg(OffReg)
213 .add(predOps(Pred))
214 .add(condCodeOp());
215 break;
216 }
217 case ARMII::AddrMode3 : {
218 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
219 unsigned Amt = ARM_AM::getAM3Offset(OffImm);
220 if (OffReg == 0)
221 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
222 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
223 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
224 .addReg(BaseReg)
225 .addImm(Amt)
226 .add(predOps(Pred))
227 .add(condCodeOp());
228 else
229 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
230 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
231 .addReg(BaseReg)
232 .addReg(OffReg)
233 .add(predOps(Pred))
234 .add(condCodeOp());
235 break;
236 }
237 }
238
239 std::vector<MachineInstr*> NewMIs;
240 if (isPre) {
241 if (isLoad)
242 MemMI =
243 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
244 .addReg(WBReg)
245 .addImm(0)
246 .addImm(Pred);
247 else
248 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
249 .addReg(MI.getOperand(1).getReg())
250 .addReg(WBReg)
251 .addReg(0)
252 .addImm(0)
253 .addImm(Pred);
254 NewMIs.push_back(MemMI);
255 NewMIs.push_back(UpdateMI);
256 } else {
257 if (isLoad)
258 MemMI =
259 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
260 .addReg(BaseReg)
261 .addImm(0)
262 .addImm(Pred);
263 else
264 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
265 .addReg(MI.getOperand(1).getReg())
266 .addReg(BaseReg)
267 .addReg(0)
268 .addImm(0)
269 .addImm(Pred);
270 if (WB.isDead())
271 UpdateMI->getOperand(0).setIsDead();
272 NewMIs.push_back(UpdateMI);
273 NewMIs.push_back(MemMI);
274 }
275
276 // Transfer LiveVariables states, kill / dead info.
277 if (LV) {
278 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
279 MachineOperand &MO = MI.getOperand(i);
280 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
281 unsigned Reg = MO.getReg();
282
283 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
284 if (MO.isDef()) {
285 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
286 if (MO.isDead())
287 LV->addVirtualRegisterDead(Reg, *NewMI);
288 }
289 if (MO.isUse() && MO.isKill()) {
290 for (unsigned j = 0; j < 2; ++j) {
291 // Look at the two new MI's in reverse order.
292 MachineInstr *NewMI = NewMIs[j];
293 if (!NewMI->readsRegister(Reg))
294 continue;
295 LV->addVirtualRegisterKilled(Reg, *NewMI);
296 if (VI.removeKill(MI))
297 VI.Kills.push_back(NewMI);
298 break;
299 }
300 }
301 }
302 }
303 }
304
305 MachineBasicBlock::iterator MBBI = MI.getIterator();
306 MFI->insert(MBBI, NewMIs[1]);
307 MFI->insert(MBBI, NewMIs[0]);
308 return NewMIs[0];
309 }
310
311 // Branch analysis.
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const312 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
313 MachineBasicBlock *&TBB,
314 MachineBasicBlock *&FBB,
315 SmallVectorImpl<MachineOperand> &Cond,
316 bool AllowModify) const {
317 TBB = nullptr;
318 FBB = nullptr;
319
320 MachineBasicBlock::iterator I = MBB.end();
321 if (I == MBB.begin())
322 return false; // Empty blocks are easy.
323 --I;
324
325 // Walk backwards from the end of the basic block until the branch is
326 // analyzed or we give up.
327 while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
328 // Flag to be raised on unanalyzeable instructions. This is useful in cases
329 // where we want to clean up on the end of the basic block before we bail
330 // out.
331 bool CantAnalyze = false;
332
333 // Skip over DEBUG values and predicated nonterminators.
334 while (I->isDebugInstr() || !I->isTerminator()) {
335 if (I == MBB.begin())
336 return false;
337 --I;
338 }
339
340 if (isIndirectBranchOpcode(I->getOpcode()) ||
341 isJumpTableBranchOpcode(I->getOpcode())) {
342 // Indirect branches and jump tables can't be analyzed, but we still want
343 // to clean up any instructions at the tail of the basic block.
344 CantAnalyze = true;
345 } else if (isUncondBranchOpcode(I->getOpcode())) {
346 TBB = I->getOperand(0).getMBB();
347 } else if (isCondBranchOpcode(I->getOpcode())) {
348 // Bail out if we encounter multiple conditional branches.
349 if (!Cond.empty())
350 return true;
351
352 assert(!FBB && "FBB should have been null.");
353 FBB = TBB;
354 TBB = I->getOperand(0).getMBB();
355 Cond.push_back(I->getOperand(1));
356 Cond.push_back(I->getOperand(2));
357 } else if (I->isReturn()) {
358 // Returns can't be analyzed, but we should run cleanup.
359 CantAnalyze = !isPredicated(*I);
360 } else {
361 // We encountered other unrecognized terminator. Bail out immediately.
362 return true;
363 }
364
365 // Cleanup code - to be run for unpredicated unconditional branches and
366 // returns.
367 if (!isPredicated(*I) &&
368 (isUncondBranchOpcode(I->getOpcode()) ||
369 isIndirectBranchOpcode(I->getOpcode()) ||
370 isJumpTableBranchOpcode(I->getOpcode()) ||
371 I->isReturn())) {
372 // Forget any previous condition branch information - it no longer applies.
373 Cond.clear();
374 FBB = nullptr;
375
376 // If we can modify the function, delete everything below this
377 // unconditional branch.
378 if (AllowModify) {
379 MachineBasicBlock::iterator DI = std::next(I);
380 while (DI != MBB.end()) {
381 MachineInstr &InstToDelete = *DI;
382 ++DI;
383 InstToDelete.eraseFromParent();
384 }
385 }
386 }
387
388 if (CantAnalyze)
389 return true;
390
391 if (I == MBB.begin())
392 return false;
393
394 --I;
395 }
396
397 // We made it past the terminators without bailing out - we must have
398 // analyzed this branch successfully.
399 return false;
400 }
401
removeBranch(MachineBasicBlock & MBB,int * BytesRemoved) const402 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB,
403 int *BytesRemoved) const {
404 assert(!BytesRemoved && "code size not handled");
405
406 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
407 if (I == MBB.end())
408 return 0;
409
410 if (!isUncondBranchOpcode(I->getOpcode()) &&
411 !isCondBranchOpcode(I->getOpcode()))
412 return 0;
413
414 // Remove the branch.
415 I->eraseFromParent();
416
417 I = MBB.end();
418
419 if (I == MBB.begin()) return 1;
420 --I;
421 if (!isCondBranchOpcode(I->getOpcode()))
422 return 1;
423
424 // Remove the branch.
425 I->eraseFromParent();
426 return 2;
427 }
428
insertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL,int * BytesAdded) const429 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB,
430 MachineBasicBlock *TBB,
431 MachineBasicBlock *FBB,
432 ArrayRef<MachineOperand> Cond,
433 const DebugLoc &DL,
434 int *BytesAdded) const {
435 assert(!BytesAdded && "code size not handled");
436 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
437 int BOpc = !AFI->isThumbFunction()
438 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
439 int BccOpc = !AFI->isThumbFunction()
440 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
441 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
442
443 // Shouldn't be a fall through.
444 assert(TBB && "insertBranch must not be told to insert a fallthrough");
445 assert((Cond.size() == 2 || Cond.size() == 0) &&
446 "ARM branch conditions have two components!");
447
448 // For conditional branches, we use addOperand to preserve CPSR flags.
449
450 if (!FBB) {
451 if (Cond.empty()) { // Unconditional branch?
452 if (isThumb)
453 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL));
454 else
455 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
456 } else
457 BuildMI(&MBB, DL, get(BccOpc))
458 .addMBB(TBB)
459 .addImm(Cond[0].getImm())
460 .add(Cond[1]);
461 return 1;
462 }
463
464 // Two-way conditional branch.
465 BuildMI(&MBB, DL, get(BccOpc))
466 .addMBB(TBB)
467 .addImm(Cond[0].getImm())
468 .add(Cond[1]);
469 if (isThumb)
470 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL));
471 else
472 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
473 return 2;
474 }
475
476 bool ARMBaseInstrInfo::
reverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const477 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
478 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
479 Cond[0].setImm(ARMCC::getOppositeCondition(CC));
480 return false;
481 }
482
isPredicated(const MachineInstr & MI) const483 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
484 if (MI.isBundle()) {
485 MachineBasicBlock::const_instr_iterator I = MI.getIterator();
486 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
487 while (++I != E && I->isInsideBundle()) {
488 int PIdx = I->findFirstPredOperandIdx();
489 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
490 return true;
491 }
492 return false;
493 }
494
495 int PIdx = MI.findFirstPredOperandIdx();
496 return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
497 }
498
PredicateInstruction(MachineInstr & MI,ArrayRef<MachineOperand> Pred) const499 bool ARMBaseInstrInfo::PredicateInstruction(
500 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
501 unsigned Opc = MI.getOpcode();
502 if (isUncondBranchOpcode(Opc)) {
503 MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
504 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
505 .addImm(Pred[0].getImm())
506 .addReg(Pred[1].getReg());
507 return true;
508 }
509
510 int PIdx = MI.findFirstPredOperandIdx();
511 if (PIdx != -1) {
512 MachineOperand &PMO = MI.getOperand(PIdx);
513 PMO.setImm(Pred[0].getImm());
514 MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
515 return true;
516 }
517 return false;
518 }
519
SubsumesPredicate(ArrayRef<MachineOperand> Pred1,ArrayRef<MachineOperand> Pred2) const520 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
521 ArrayRef<MachineOperand> Pred2) const {
522 if (Pred1.size() > 2 || Pred2.size() > 2)
523 return false;
524
525 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
526 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
527 if (CC1 == CC2)
528 return true;
529
530 switch (CC1) {
531 default:
532 return false;
533 case ARMCC::AL:
534 return true;
535 case ARMCC::HS:
536 return CC2 == ARMCC::HI;
537 case ARMCC::LS:
538 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
539 case ARMCC::GE:
540 return CC2 == ARMCC::GT;
541 case ARMCC::LE:
542 return CC2 == ARMCC::LT;
543 }
544 }
545
DefinesPredicate(MachineInstr & MI,std::vector<MachineOperand> & Pred) const546 bool ARMBaseInstrInfo::DefinesPredicate(
547 MachineInstr &MI, std::vector<MachineOperand> &Pred) const {
548 bool Found = false;
549 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
550 const MachineOperand &MO = MI.getOperand(i);
551 if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
552 (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
553 Pred.push_back(MO);
554 Found = true;
555 }
556 }
557
558 return Found;
559 }
560
isCPSRDefined(const MachineInstr & MI)561 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) {
562 for (const auto &MO : MI.operands())
563 if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
564 return true;
565 return false;
566 }
567
isAddrMode3OpImm(const MachineInstr & MI,unsigned Op) const568 bool ARMBaseInstrInfo::isAddrMode3OpImm(const MachineInstr &MI,
569 unsigned Op) const {
570 const MachineOperand &Offset = MI.getOperand(Op + 1);
571 return Offset.getReg() != 0;
572 }
573
574 // Load with negative register offset requires additional 1cyc and +I unit
575 // for Cortex A57
isAddrMode3OpMinusReg(const MachineInstr & MI,unsigned Op) const576 bool ARMBaseInstrInfo::isAddrMode3OpMinusReg(const MachineInstr &MI,
577 unsigned Op) const {
578 const MachineOperand &Offset = MI.getOperand(Op + 1);
579 const MachineOperand &Opc = MI.getOperand(Op + 2);
580 assert(Opc.isImm());
581 assert(Offset.isReg());
582 int64_t OpcImm = Opc.getImm();
583
584 bool isSub = ARM_AM::getAM3Op(OpcImm) == ARM_AM::sub;
585 return (isSub && Offset.getReg() != 0);
586 }
587
isLdstScaledReg(const MachineInstr & MI,unsigned Op) const588 bool ARMBaseInstrInfo::isLdstScaledReg(const MachineInstr &MI,
589 unsigned Op) const {
590 const MachineOperand &Opc = MI.getOperand(Op + 2);
591 unsigned OffImm = Opc.getImm();
592 return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift;
593 }
594
595 // Load, scaled register offset, not plus LSL2
isLdstScaledRegNotPlusLsl2(const MachineInstr & MI,unsigned Op) const596 bool ARMBaseInstrInfo::isLdstScaledRegNotPlusLsl2(const MachineInstr &MI,
597 unsigned Op) const {
598 const MachineOperand &Opc = MI.getOperand(Op + 2);
599 unsigned OffImm = Opc.getImm();
600
601 bool isAdd = ARM_AM::getAM2Op(OffImm) == ARM_AM::add;
602 unsigned Amt = ARM_AM::getAM2Offset(OffImm);
603 ARM_AM::ShiftOpc ShiftOpc = ARM_AM::getAM2ShiftOpc(OffImm);
604 if (ShiftOpc == ARM_AM::no_shift) return false; // not scaled
605 bool SimpleScaled = (isAdd && ShiftOpc == ARM_AM::lsl && Amt == 2);
606 return !SimpleScaled;
607 }
608
609 // Minus reg for ldstso addr mode
isLdstSoMinusReg(const MachineInstr & MI,unsigned Op) const610 bool ARMBaseInstrInfo::isLdstSoMinusReg(const MachineInstr &MI,
611 unsigned Op) const {
612 unsigned OffImm = MI.getOperand(Op + 2).getImm();
613 return ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
614 }
615
616 // Load, scaled register offset
isAm2ScaledReg(const MachineInstr & MI,unsigned Op) const617 bool ARMBaseInstrInfo::isAm2ScaledReg(const MachineInstr &MI,
618 unsigned Op) const {
619 unsigned OffImm = MI.getOperand(Op + 2).getImm();
620 return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift;
621 }
622
isEligibleForITBlock(const MachineInstr * MI)623 static bool isEligibleForITBlock(const MachineInstr *MI) {
624 switch (MI->getOpcode()) {
625 default: return true;
626 case ARM::tADC: // ADC (register) T1
627 case ARM::tADDi3: // ADD (immediate) T1
628 case ARM::tADDi8: // ADD (immediate) T2
629 case ARM::tADDrr: // ADD (register) T1
630 case ARM::tAND: // AND (register) T1
631 case ARM::tASRri: // ASR (immediate) T1
632 case ARM::tASRrr: // ASR (register) T1
633 case ARM::tBIC: // BIC (register) T1
634 case ARM::tEOR: // EOR (register) T1
635 case ARM::tLSLri: // LSL (immediate) T1
636 case ARM::tLSLrr: // LSL (register) T1
637 case ARM::tLSRri: // LSR (immediate) T1
638 case ARM::tLSRrr: // LSR (register) T1
639 case ARM::tMUL: // MUL T1
640 case ARM::tMVN: // MVN (register) T1
641 case ARM::tORR: // ORR (register) T1
642 case ARM::tROR: // ROR (register) T1
643 case ARM::tRSB: // RSB (immediate) T1
644 case ARM::tSBC: // SBC (register) T1
645 case ARM::tSUBi3: // SUB (immediate) T1
646 case ARM::tSUBi8: // SUB (immediate) T2
647 case ARM::tSUBrr: // SUB (register) T1
648 return !ARMBaseInstrInfo::isCPSRDefined(*MI);
649 }
650 }
651
652 /// isPredicable - Return true if the specified instruction can be predicated.
653 /// By default, this returns true for every instruction with a
654 /// PredicateOperand.
isPredicable(const MachineInstr & MI) const655 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const {
656 if (!MI.isPredicable())
657 return false;
658
659 if (MI.isBundle())
660 return false;
661
662 if (!isEligibleForITBlock(&MI))
663 return false;
664
665 const ARMFunctionInfo *AFI =
666 MI.getParent()->getParent()->getInfo<ARMFunctionInfo>();
667
668 // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
669 // In their ARM encoding, they can't be encoded in a conditional form.
670 if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
671 return false;
672
673 if (AFI->isThumb2Function()) {
674 if (getSubtarget().restrictIT())
675 return isV8EligibleForIT(&MI);
676 }
677
678 return true;
679 }
680
681 namespace llvm {
682
IsCPSRDead(const MachineInstr * MI)683 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) {
684 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
685 const MachineOperand &MO = MI->getOperand(i);
686 if (!MO.isReg() || MO.isUndef() || MO.isUse())
687 continue;
688 if (MO.getReg() != ARM::CPSR)
689 continue;
690 if (!MO.isDead())
691 return false;
692 }
693 // all definitions of CPSR are dead
694 return true;
695 }
696
697 } // end namespace llvm
698
699 /// GetInstSize - Return the size of the specified MachineInstr.
700 ///
getInstSizeInBytes(const MachineInstr & MI) const701 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
702 const MachineBasicBlock &MBB = *MI.getParent();
703 const MachineFunction *MF = MBB.getParent();
704 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
705
706 const MCInstrDesc &MCID = MI.getDesc();
707 if (MCID.getSize())
708 return MCID.getSize();
709
710 // If this machine instr is an inline asm, measure it.
711 if (MI.getOpcode() == ARM::INLINEASM)
712 return getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
713 unsigned Opc = MI.getOpcode();
714 switch (Opc) {
715 default:
716 // pseudo-instruction sizes are zero.
717 return 0;
718 case TargetOpcode::BUNDLE:
719 return getInstBundleLength(MI);
720 case ARM::MOVi16_ga_pcrel:
721 case ARM::MOVTi16_ga_pcrel:
722 case ARM::t2MOVi16_ga_pcrel:
723 case ARM::t2MOVTi16_ga_pcrel:
724 return 4;
725 case ARM::MOVi32imm:
726 case ARM::t2MOVi32imm:
727 return 8;
728 case ARM::CONSTPOOL_ENTRY:
729 case ARM::JUMPTABLE_INSTS:
730 case ARM::JUMPTABLE_ADDRS:
731 case ARM::JUMPTABLE_TBB:
732 case ARM::JUMPTABLE_TBH:
733 // If this machine instr is a constant pool entry, its size is recorded as
734 // operand #2.
735 return MI.getOperand(2).getImm();
736 case ARM::Int_eh_sjlj_longjmp:
737 return 16;
738 case ARM::tInt_eh_sjlj_longjmp:
739 return 10;
740 case ARM::tInt_WIN_eh_sjlj_longjmp:
741 return 12;
742 case ARM::Int_eh_sjlj_setjmp:
743 case ARM::Int_eh_sjlj_setjmp_nofp:
744 return 20;
745 case ARM::tInt_eh_sjlj_setjmp:
746 case ARM::t2Int_eh_sjlj_setjmp:
747 case ARM::t2Int_eh_sjlj_setjmp_nofp:
748 return 12;
749 case ARM::SPACE:
750 return MI.getOperand(1).getImm();
751 }
752 }
753
getInstBundleLength(const MachineInstr & MI) const754 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
755 unsigned Size = 0;
756 MachineBasicBlock::const_instr_iterator I = MI.getIterator();
757 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
758 while (++I != E && I->isInsideBundle()) {
759 assert(!I->isBundle() && "No nested bundle!");
760 Size += getInstSizeInBytes(*I);
761 }
762 return Size;
763 }
764
copyFromCPSR(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,bool KillSrc,const ARMSubtarget & Subtarget) const765 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
766 MachineBasicBlock::iterator I,
767 unsigned DestReg, bool KillSrc,
768 const ARMSubtarget &Subtarget) const {
769 unsigned Opc = Subtarget.isThumb()
770 ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
771 : ARM::MRS;
772
773 MachineInstrBuilder MIB =
774 BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
775
776 // There is only 1 A/R class MRS instruction, and it always refers to
777 // APSR. However, there are lots of other possibilities on M-class cores.
778 if (Subtarget.isMClass())
779 MIB.addImm(0x800);
780
781 MIB.add(predOps(ARMCC::AL))
782 .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
783 }
784
copyToCPSR(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned SrcReg,bool KillSrc,const ARMSubtarget & Subtarget) const785 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
786 MachineBasicBlock::iterator I,
787 unsigned SrcReg, bool KillSrc,
788 const ARMSubtarget &Subtarget) const {
789 unsigned Opc = Subtarget.isThumb()
790 ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
791 : ARM::MSR;
792
793 MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
794
795 if (Subtarget.isMClass())
796 MIB.addImm(0x800);
797 else
798 MIB.addImm(8);
799
800 MIB.addReg(SrcReg, getKillRegState(KillSrc))
801 .add(predOps(ARMCC::AL))
802 .addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
803 }
804
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,unsigned DestReg,unsigned SrcReg,bool KillSrc) const805 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
806 MachineBasicBlock::iterator I,
807 const DebugLoc &DL, unsigned DestReg,
808 unsigned SrcReg, bool KillSrc) const {
809 bool GPRDest = ARM::GPRRegClass.contains(DestReg);
810 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
811
812 if (GPRDest && GPRSrc) {
813 BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
814 .addReg(SrcReg, getKillRegState(KillSrc))
815 .add(predOps(ARMCC::AL))
816 .add(condCodeOp());
817 return;
818 }
819
820 bool SPRDest = ARM::SPRRegClass.contains(DestReg);
821 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
822
823 unsigned Opc = 0;
824 if (SPRDest && SPRSrc)
825 Opc = ARM::VMOVS;
826 else if (GPRDest && SPRSrc)
827 Opc = ARM::VMOVRS;
828 else if (SPRDest && GPRSrc)
829 Opc = ARM::VMOVSR;
830 else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && !Subtarget.isFPOnlySP())
831 Opc = ARM::VMOVD;
832 else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
833 Opc = ARM::VORRq;
834
835 if (Opc) {
836 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
837 MIB.addReg(SrcReg, getKillRegState(KillSrc));
838 if (Opc == ARM::VORRq)
839 MIB.addReg(SrcReg, getKillRegState(KillSrc));
840 MIB.add(predOps(ARMCC::AL));
841 return;
842 }
843
844 // Handle register classes that require multiple instructions.
845 unsigned BeginIdx = 0;
846 unsigned SubRegs = 0;
847 int Spacing = 1;
848
849 // Use VORRq when possible.
850 if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
851 Opc = ARM::VORRq;
852 BeginIdx = ARM::qsub_0;
853 SubRegs = 2;
854 } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
855 Opc = ARM::VORRq;
856 BeginIdx = ARM::qsub_0;
857 SubRegs = 4;
858 // Fall back to VMOVD.
859 } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
860 Opc = ARM::VMOVD;
861 BeginIdx = ARM::dsub_0;
862 SubRegs = 2;
863 } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
864 Opc = ARM::VMOVD;
865 BeginIdx = ARM::dsub_0;
866 SubRegs = 3;
867 } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
868 Opc = ARM::VMOVD;
869 BeginIdx = ARM::dsub_0;
870 SubRegs = 4;
871 } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
872 Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
873 BeginIdx = ARM::gsub_0;
874 SubRegs = 2;
875 } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
876 Opc = ARM::VMOVD;
877 BeginIdx = ARM::dsub_0;
878 SubRegs = 2;
879 Spacing = 2;
880 } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
881 Opc = ARM::VMOVD;
882 BeginIdx = ARM::dsub_0;
883 SubRegs = 3;
884 Spacing = 2;
885 } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
886 Opc = ARM::VMOVD;
887 BeginIdx = ARM::dsub_0;
888 SubRegs = 4;
889 Spacing = 2;
890 } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.isFPOnlySP()) {
891 Opc = ARM::VMOVS;
892 BeginIdx = ARM::ssub_0;
893 SubRegs = 2;
894 } else if (SrcReg == ARM::CPSR) {
895 copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
896 return;
897 } else if (DestReg == ARM::CPSR) {
898 copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
899 return;
900 }
901
902 assert(Opc && "Impossible reg-to-reg copy");
903
904 const TargetRegisterInfo *TRI = &getRegisterInfo();
905 MachineInstrBuilder Mov;
906
907 // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
908 if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
909 BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
910 Spacing = -Spacing;
911 }
912 #ifndef NDEBUG
913 SmallSet<unsigned, 4> DstRegs;
914 #endif
915 for (unsigned i = 0; i != SubRegs; ++i) {
916 unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
917 unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
918 assert(Dst && Src && "Bad sub-register");
919 #ifndef NDEBUG
920 assert(!DstRegs.count(Src) && "destructive vector copy");
921 DstRegs.insert(Dst);
922 #endif
923 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
924 // VORR takes two source operands.
925 if (Opc == ARM::VORRq)
926 Mov.addReg(Src);
927 Mov = Mov.add(predOps(ARMCC::AL));
928 // MOVr can set CC.
929 if (Opc == ARM::MOVr)
930 Mov = Mov.add(condCodeOp());
931 }
932 // Add implicit super-register defs and kills to the last instruction.
933 Mov->addRegisterDefined(DestReg, TRI);
934 if (KillSrc)
935 Mov->addRegisterKilled(SrcReg, TRI);
936 }
937
isCopyInstr(const MachineInstr & MI,const MachineOperand * & Src,const MachineOperand * & Dest) const938 bool ARMBaseInstrInfo::isCopyInstr(const MachineInstr &MI,
939 const MachineOperand *&Src,
940 const MachineOperand *&Dest) const {
941 // VMOVRRD is also a copy instruction but it requires
942 // special way of handling. It is more complex copy version
943 // and since that we are not considering it. For recognition
944 // of such instruction isExtractSubregLike MI interface fuction
945 // could be used.
946 // VORRq is considered as a move only if two inputs are
947 // the same register.
948 if (!MI.isMoveReg() ||
949 (MI.getOpcode() == ARM::VORRq &&
950 MI.getOperand(1).getReg() != MI.getOperand(2).getReg()))
951 return false;
952 Dest = &MI.getOperand(0);
953 Src = &MI.getOperand(1);
954 return true;
955 }
956
957 const MachineInstrBuilder &
AddDReg(MachineInstrBuilder & MIB,unsigned Reg,unsigned SubIdx,unsigned State,const TargetRegisterInfo * TRI) const958 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
959 unsigned SubIdx, unsigned State,
960 const TargetRegisterInfo *TRI) const {
961 if (!SubIdx)
962 return MIB.addReg(Reg, State);
963
964 if (TargetRegisterInfo::isPhysicalRegister(Reg))
965 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
966 return MIB.addReg(Reg, State, SubIdx);
967 }
968
969 void ARMBaseInstrInfo::
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned SrcReg,bool isKill,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const970 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
971 unsigned SrcReg, bool isKill, int FI,
972 const TargetRegisterClass *RC,
973 const TargetRegisterInfo *TRI) const {
974 DebugLoc DL;
975 if (I != MBB.end()) DL = I->getDebugLoc();
976 MachineFunction &MF = *MBB.getParent();
977 MachineFrameInfo &MFI = MF.getFrameInfo();
978 unsigned Align = MFI.getObjectAlignment(FI);
979
980 MachineMemOperand *MMO = MF.getMachineMemOperand(
981 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
982 MFI.getObjectSize(FI), Align);
983
984 switch (TRI->getSpillSize(*RC)) {
985 case 2:
986 if (ARM::HPRRegClass.hasSubClassEq(RC)) {
987 BuildMI(MBB, I, DL, get(ARM::VSTRH))
988 .addReg(SrcReg, getKillRegState(isKill))
989 .addFrameIndex(FI)
990 .addImm(0)
991 .addMemOperand(MMO)
992 .add(predOps(ARMCC::AL));
993 } else
994 llvm_unreachable("Unknown reg class!");
995 break;
996 case 4:
997 if (ARM::GPRRegClass.hasSubClassEq(RC)) {
998 BuildMI(MBB, I, DL, get(ARM::STRi12))
999 .addReg(SrcReg, getKillRegState(isKill))
1000 .addFrameIndex(FI)
1001 .addImm(0)
1002 .addMemOperand(MMO)
1003 .add(predOps(ARMCC::AL));
1004 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1005 BuildMI(MBB, I, DL, get(ARM::VSTRS))
1006 .addReg(SrcReg, getKillRegState(isKill))
1007 .addFrameIndex(FI)
1008 .addImm(0)
1009 .addMemOperand(MMO)
1010 .add(predOps(ARMCC::AL));
1011 } else
1012 llvm_unreachable("Unknown reg class!");
1013 break;
1014 case 8:
1015 if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1016 BuildMI(MBB, I, DL, get(ARM::VSTRD))
1017 .addReg(SrcReg, getKillRegState(isKill))
1018 .addFrameIndex(FI)
1019 .addImm(0)
1020 .addMemOperand(MMO)
1021 .add(predOps(ARMCC::AL));
1022 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1023 if (Subtarget.hasV5TEOps()) {
1024 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::STRD));
1025 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1026 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1027 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1028 .add(predOps(ARMCC::AL));
1029 } else {
1030 // Fallback to STM instruction, which has existed since the dawn of
1031 // time.
1032 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::STMIA))
1033 .addFrameIndex(FI)
1034 .addMemOperand(MMO)
1035 .add(predOps(ARMCC::AL));
1036 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1037 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1038 }
1039 } else
1040 llvm_unreachable("Unknown reg class!");
1041 break;
1042 case 16:
1043 if (ARM::DPairRegClass.hasSubClassEq(RC)) {
1044 // Use aligned spills if the stack can be realigned.
1045 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1046 BuildMI(MBB, I, DL, get(ARM::VST1q64))
1047 .addFrameIndex(FI)
1048 .addImm(16)
1049 .addReg(SrcReg, getKillRegState(isKill))
1050 .addMemOperand(MMO)
1051 .add(predOps(ARMCC::AL));
1052 } else {
1053 BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
1054 .addReg(SrcReg, getKillRegState(isKill))
1055 .addFrameIndex(FI)
1056 .addMemOperand(MMO)
1057 .add(predOps(ARMCC::AL));
1058 }
1059 } else
1060 llvm_unreachable("Unknown reg class!");
1061 break;
1062 case 24:
1063 if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1064 // Use aligned spills if the stack can be realigned.
1065 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1066 BuildMI(MBB, I, DL, get(ARM::VST1d64TPseudo))
1067 .addFrameIndex(FI)
1068 .addImm(16)
1069 .addReg(SrcReg, getKillRegState(isKill))
1070 .addMemOperand(MMO)
1071 .add(predOps(ARMCC::AL));
1072 } else {
1073 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
1074 .addFrameIndex(FI)
1075 .add(predOps(ARMCC::AL))
1076 .addMemOperand(MMO);
1077 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1078 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1079 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1080 }
1081 } else
1082 llvm_unreachable("Unknown reg class!");
1083 break;
1084 case 32:
1085 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1086 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1087 // FIXME: It's possible to only store part of the QQ register if the
1088 // spilled def has a sub-register index.
1089 BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
1090 .addFrameIndex(FI)
1091 .addImm(16)
1092 .addReg(SrcReg, getKillRegState(isKill))
1093 .addMemOperand(MMO)
1094 .add(predOps(ARMCC::AL));
1095 } else {
1096 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
1097 .addFrameIndex(FI)
1098 .add(predOps(ARMCC::AL))
1099 .addMemOperand(MMO);
1100 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1101 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1102 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1103 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1104 }
1105 } else
1106 llvm_unreachable("Unknown reg class!");
1107 break;
1108 case 64:
1109 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1110 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
1111 .addFrameIndex(FI)
1112 .add(predOps(ARMCC::AL))
1113 .addMemOperand(MMO);
1114 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1115 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1116 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1117 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1118 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
1119 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
1120 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
1121 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
1122 } else
1123 llvm_unreachable("Unknown reg class!");
1124 break;
1125 default:
1126 llvm_unreachable("Unknown reg class!");
1127 }
1128 }
1129
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex) const1130 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1131 int &FrameIndex) const {
1132 switch (MI.getOpcode()) {
1133 default: break;
1134 case ARM::STRrs:
1135 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
1136 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1137 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1138 MI.getOperand(3).getImm() == 0) {
1139 FrameIndex = MI.getOperand(1).getIndex();
1140 return MI.getOperand(0).getReg();
1141 }
1142 break;
1143 case ARM::STRi12:
1144 case ARM::t2STRi12:
1145 case ARM::tSTRspi:
1146 case ARM::VSTRD:
1147 case ARM::VSTRS:
1148 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1149 MI.getOperand(2).getImm() == 0) {
1150 FrameIndex = MI.getOperand(1).getIndex();
1151 return MI.getOperand(0).getReg();
1152 }
1153 break;
1154 case ARM::VST1q64:
1155 case ARM::VST1d64TPseudo:
1156 case ARM::VST1d64QPseudo:
1157 if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
1158 FrameIndex = MI.getOperand(0).getIndex();
1159 return MI.getOperand(2).getReg();
1160 }
1161 break;
1162 case ARM::VSTMQIA:
1163 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1164 FrameIndex = MI.getOperand(1).getIndex();
1165 return MI.getOperand(0).getReg();
1166 }
1167 break;
1168 }
1169
1170 return 0;
1171 }
1172
isStoreToStackSlotPostFE(const MachineInstr & MI,int & FrameIndex) const1173 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
1174 int &FrameIndex) const {
1175 const MachineMemOperand *Dummy;
1176 return MI.mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex);
1177 }
1178
1179 void ARMBaseInstrInfo::
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const1180 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1181 unsigned DestReg, int FI,
1182 const TargetRegisterClass *RC,
1183 const TargetRegisterInfo *TRI) const {
1184 DebugLoc DL;
1185 if (I != MBB.end()) DL = I->getDebugLoc();
1186 MachineFunction &MF = *MBB.getParent();
1187 MachineFrameInfo &MFI = MF.getFrameInfo();
1188 unsigned Align = MFI.getObjectAlignment(FI);
1189 MachineMemOperand *MMO = MF.getMachineMemOperand(
1190 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
1191 MFI.getObjectSize(FI), Align);
1192
1193 switch (TRI->getSpillSize(*RC)) {
1194 case 2:
1195 if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1196 BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg)
1197 .addFrameIndex(FI)
1198 .addImm(0)
1199 .addMemOperand(MMO)
1200 .add(predOps(ARMCC::AL));
1201 } else
1202 llvm_unreachable("Unknown reg class!");
1203 break;
1204 case 4:
1205 if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1206 BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1207 .addFrameIndex(FI)
1208 .addImm(0)
1209 .addMemOperand(MMO)
1210 .add(predOps(ARMCC::AL));
1211 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1212 BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1213 .addFrameIndex(FI)
1214 .addImm(0)
1215 .addMemOperand(MMO)
1216 .add(predOps(ARMCC::AL));
1217 } else
1218 llvm_unreachable("Unknown reg class!");
1219 break;
1220 case 8:
1221 if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1222 BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1223 .addFrameIndex(FI)
1224 .addImm(0)
1225 .addMemOperand(MMO)
1226 .add(predOps(ARMCC::AL));
1227 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1228 MachineInstrBuilder MIB;
1229
1230 if (Subtarget.hasV5TEOps()) {
1231 MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1232 AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1233 AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1234 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1235 .add(predOps(ARMCC::AL));
1236 } else {
1237 // Fallback to LDM instruction, which has existed since the dawn of
1238 // time.
1239 MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA))
1240 .addFrameIndex(FI)
1241 .addMemOperand(MMO)
1242 .add(predOps(ARMCC::AL));
1243 MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1244 MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1245 }
1246
1247 if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1248 MIB.addReg(DestReg, RegState::ImplicitDefine);
1249 } else
1250 llvm_unreachable("Unknown reg class!");
1251 break;
1252 case 16:
1253 if (ARM::DPairRegClass.hasSubClassEq(RC)) {
1254 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1255 BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1256 .addFrameIndex(FI)
1257 .addImm(16)
1258 .addMemOperand(MMO)
1259 .add(predOps(ARMCC::AL));
1260 } else {
1261 BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1262 .addFrameIndex(FI)
1263 .addMemOperand(MMO)
1264 .add(predOps(ARMCC::AL));
1265 }
1266 } else
1267 llvm_unreachable("Unknown reg class!");
1268 break;
1269 case 24:
1270 if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1271 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1272 BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1273 .addFrameIndex(FI)
1274 .addImm(16)
1275 .addMemOperand(MMO)
1276 .add(predOps(ARMCC::AL));
1277 } else {
1278 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1279 .addFrameIndex(FI)
1280 .addMemOperand(MMO)
1281 .add(predOps(ARMCC::AL));
1282 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1283 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1284 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1285 if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1286 MIB.addReg(DestReg, RegState::ImplicitDefine);
1287 }
1288 } else
1289 llvm_unreachable("Unknown reg class!");
1290 break;
1291 case 32:
1292 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1293 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1294 BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1295 .addFrameIndex(FI)
1296 .addImm(16)
1297 .addMemOperand(MMO)
1298 .add(predOps(ARMCC::AL));
1299 } else {
1300 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1301 .addFrameIndex(FI)
1302 .add(predOps(ARMCC::AL))
1303 .addMemOperand(MMO);
1304 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1305 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1306 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1307 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1308 if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1309 MIB.addReg(DestReg, RegState::ImplicitDefine);
1310 }
1311 } else
1312 llvm_unreachable("Unknown reg class!");
1313 break;
1314 case 64:
1315 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1316 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1317 .addFrameIndex(FI)
1318 .add(predOps(ARMCC::AL))
1319 .addMemOperand(MMO);
1320 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1321 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1322 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1323 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1324 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1325 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1326 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1327 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1328 if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1329 MIB.addReg(DestReg, RegState::ImplicitDefine);
1330 } else
1331 llvm_unreachable("Unknown reg class!");
1332 break;
1333 default:
1334 llvm_unreachable("Unknown regclass!");
1335 }
1336 }
1337
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex) const1338 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1339 int &FrameIndex) const {
1340 switch (MI.getOpcode()) {
1341 default: break;
1342 case ARM::LDRrs:
1343 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame.
1344 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1345 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1346 MI.getOperand(3).getImm() == 0) {
1347 FrameIndex = MI.getOperand(1).getIndex();
1348 return MI.getOperand(0).getReg();
1349 }
1350 break;
1351 case ARM::LDRi12:
1352 case ARM::t2LDRi12:
1353 case ARM::tLDRspi:
1354 case ARM::VLDRD:
1355 case ARM::VLDRS:
1356 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1357 MI.getOperand(2).getImm() == 0) {
1358 FrameIndex = MI.getOperand(1).getIndex();
1359 return MI.getOperand(0).getReg();
1360 }
1361 break;
1362 case ARM::VLD1q64:
1363 case ARM::VLD1d8TPseudo:
1364 case ARM::VLD1d16TPseudo:
1365 case ARM::VLD1d32TPseudo:
1366 case ARM::VLD1d64TPseudo:
1367 case ARM::VLD1d8QPseudo:
1368 case ARM::VLD1d16QPseudo:
1369 case ARM::VLD1d32QPseudo:
1370 case ARM::VLD1d64QPseudo:
1371 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1372 FrameIndex = MI.getOperand(1).getIndex();
1373 return MI.getOperand(0).getReg();
1374 }
1375 break;
1376 case ARM::VLDMQIA:
1377 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1378 FrameIndex = MI.getOperand(1).getIndex();
1379 return MI.getOperand(0).getReg();
1380 }
1381 break;
1382 }
1383
1384 return 0;
1385 }
1386
isLoadFromStackSlotPostFE(const MachineInstr & MI,int & FrameIndex) const1387 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
1388 int &FrameIndex) const {
1389 const MachineMemOperand *Dummy;
1390 return MI.mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
1391 }
1392
1393 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1394 /// depending on whether the result is used.
expandMEMCPY(MachineBasicBlock::iterator MI) const1395 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
1396 bool isThumb1 = Subtarget.isThumb1Only();
1397 bool isThumb2 = Subtarget.isThumb2();
1398 const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
1399
1400 DebugLoc dl = MI->getDebugLoc();
1401 MachineBasicBlock *BB = MI->getParent();
1402
1403 MachineInstrBuilder LDM, STM;
1404 if (isThumb1 || !MI->getOperand(1).isDead()) {
1405 MachineOperand LDWb(MI->getOperand(1));
1406 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
1407 : isThumb1 ? ARM::tLDMIA_UPD
1408 : ARM::LDMIA_UPD))
1409 .add(LDWb);
1410 } else {
1411 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
1412 }
1413
1414 if (isThumb1 || !MI->getOperand(0).isDead()) {
1415 MachineOperand STWb(MI->getOperand(0));
1416 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
1417 : isThumb1 ? ARM::tSTMIA_UPD
1418 : ARM::STMIA_UPD))
1419 .add(STWb);
1420 } else {
1421 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
1422 }
1423
1424 MachineOperand LDBase(MI->getOperand(3));
1425 LDM.add(LDBase).add(predOps(ARMCC::AL));
1426
1427 MachineOperand STBase(MI->getOperand(2));
1428 STM.add(STBase).add(predOps(ARMCC::AL));
1429
1430 // Sort the scratch registers into ascending order.
1431 const TargetRegisterInfo &TRI = getRegisterInfo();
1432 SmallVector<unsigned, 6> ScratchRegs;
1433 for(unsigned I = 5; I < MI->getNumOperands(); ++I)
1434 ScratchRegs.push_back(MI->getOperand(I).getReg());
1435 llvm::sort(ScratchRegs.begin(), ScratchRegs.end(),
1436 [&TRI](const unsigned &Reg1,
1437 const unsigned &Reg2) -> bool {
1438 return TRI.getEncodingValue(Reg1) <
1439 TRI.getEncodingValue(Reg2);
1440 });
1441
1442 for (const auto &Reg : ScratchRegs) {
1443 LDM.addReg(Reg, RegState::Define);
1444 STM.addReg(Reg, RegState::Kill);
1445 }
1446
1447 BB->erase(MI);
1448 }
1449
expandPostRAPseudo(MachineInstr & MI) const1450 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1451 if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1452 assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() &&
1453 "LOAD_STACK_GUARD currently supported only for MachO.");
1454 expandLoadStackGuard(MI);
1455 MI.getParent()->erase(MI);
1456 return true;
1457 }
1458
1459 if (MI.getOpcode() == ARM::MEMCPY) {
1460 expandMEMCPY(MI);
1461 return true;
1462 }
1463
1464 // This hook gets to expand COPY instructions before they become
1465 // copyPhysReg() calls. Look for VMOVS instructions that can legally be
1466 // widened to VMOVD. We prefer the VMOVD when possible because it may be
1467 // changed into a VORR that can go down the NEON pipeline.
1468 if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || Subtarget.isFPOnlySP())
1469 return false;
1470
1471 // Look for a copy between even S-registers. That is where we keep floats
1472 // when using NEON v2f32 instructions for f32 arithmetic.
1473 unsigned DstRegS = MI.getOperand(0).getReg();
1474 unsigned SrcRegS = MI.getOperand(1).getReg();
1475 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1476 return false;
1477
1478 const TargetRegisterInfo *TRI = &getRegisterInfo();
1479 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1480 &ARM::DPRRegClass);
1481 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1482 &ARM::DPRRegClass);
1483 if (!DstRegD || !SrcRegD)
1484 return false;
1485
1486 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only
1487 // legal if the COPY already defines the full DstRegD, and it isn't a
1488 // sub-register insertion.
1489 if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
1490 return false;
1491
1492 // A dead copy shouldn't show up here, but reject it just in case.
1493 if (MI.getOperand(0).isDead())
1494 return false;
1495
1496 // All clear, widen the COPY.
1497 LLVM_DEBUG(dbgs() << "widening: " << MI);
1498 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
1499
1500 // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg
1501 // or some other super-register.
1502 int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD);
1503 if (ImpDefIdx != -1)
1504 MI.RemoveOperand(ImpDefIdx);
1505
1506 // Change the opcode and operands.
1507 MI.setDesc(get(ARM::VMOVD));
1508 MI.getOperand(0).setReg(DstRegD);
1509 MI.getOperand(1).setReg(SrcRegD);
1510 MIB.add(predOps(ARMCC::AL));
1511
1512 // We are now reading SrcRegD instead of SrcRegS. This may upset the
1513 // register scavenger and machine verifier, so we need to indicate that we
1514 // are reading an undefined value from SrcRegD, but a proper value from
1515 // SrcRegS.
1516 MI.getOperand(1).setIsUndef();
1517 MIB.addReg(SrcRegS, RegState::Implicit);
1518
1519 // SrcRegD may actually contain an unrelated value in the ssub_1
1520 // sub-register. Don't kill it. Only kill the ssub_0 sub-register.
1521 if (MI.getOperand(1).isKill()) {
1522 MI.getOperand(1).setIsKill(false);
1523 MI.addRegisterKilled(SrcRegS, TRI, true);
1524 }
1525
1526 LLVM_DEBUG(dbgs() << "replaced by: " << MI);
1527 return true;
1528 }
1529
1530 /// Create a copy of a const pool value. Update CPI to the new index and return
1531 /// the label UID.
duplicateCPV(MachineFunction & MF,unsigned & CPI)1532 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1533 MachineConstantPool *MCP = MF.getConstantPool();
1534 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1535
1536 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1537 assert(MCPE.isMachineConstantPoolEntry() &&
1538 "Expecting a machine constantpool entry!");
1539 ARMConstantPoolValue *ACPV =
1540 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1541
1542 unsigned PCLabelId = AFI->createPICLabelUId();
1543 ARMConstantPoolValue *NewCPV = nullptr;
1544
1545 // FIXME: The below assumes PIC relocation model and that the function
1546 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1547 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1548 // instructions, so that's probably OK, but is PIC always correct when
1549 // we get here?
1550 if (ACPV->isGlobalValue())
1551 NewCPV = ARMConstantPoolConstant::Create(
1552 cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
1553 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
1554 else if (ACPV->isExtSymbol())
1555 NewCPV = ARMConstantPoolSymbol::
1556 Create(MF.getFunction().getContext(),
1557 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1558 else if (ACPV->isBlockAddress())
1559 NewCPV = ARMConstantPoolConstant::
1560 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1561 ARMCP::CPBlockAddress, 4);
1562 else if (ACPV->isLSDA())
1563 NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId,
1564 ARMCP::CPLSDA, 4);
1565 else if (ACPV->isMachineBasicBlock())
1566 NewCPV = ARMConstantPoolMBB::
1567 Create(MF.getFunction().getContext(),
1568 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1569 else
1570 llvm_unreachable("Unexpected ARM constantpool value type!!");
1571 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
1572 return PCLabelId;
1573 }
1574
reMaterialize(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,unsigned SubIdx,const MachineInstr & Orig,const TargetRegisterInfo & TRI) const1575 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
1576 MachineBasicBlock::iterator I,
1577 unsigned DestReg, unsigned SubIdx,
1578 const MachineInstr &Orig,
1579 const TargetRegisterInfo &TRI) const {
1580 unsigned Opcode = Orig.getOpcode();
1581 switch (Opcode) {
1582 default: {
1583 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1584 MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1585 MBB.insert(I, MI);
1586 break;
1587 }
1588 case ARM::tLDRpci_pic:
1589 case ARM::t2LDRpci_pic: {
1590 MachineFunction &MF = *MBB.getParent();
1591 unsigned CPI = Orig.getOperand(1).getIndex();
1592 unsigned PCLabelId = duplicateCPV(MF, CPI);
1593 MachineInstrBuilder MIB =
1594 BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
1595 .addConstantPoolIndex(CPI)
1596 .addImm(PCLabelId);
1597 MIB->setMemRefs(Orig.memoperands_begin(), Orig.memoperands_end());
1598 break;
1599 }
1600 }
1601 }
1602
1603 MachineInstr &
duplicate(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertBefore,const MachineInstr & Orig) const1604 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB,
1605 MachineBasicBlock::iterator InsertBefore,
1606 const MachineInstr &Orig) const {
1607 MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig);
1608 MachineBasicBlock::instr_iterator I = Cloned.getIterator();
1609 for (;;) {
1610 switch (I->getOpcode()) {
1611 case ARM::tLDRpci_pic:
1612 case ARM::t2LDRpci_pic: {
1613 MachineFunction &MF = *MBB.getParent();
1614 unsigned CPI = I->getOperand(1).getIndex();
1615 unsigned PCLabelId = duplicateCPV(MF, CPI);
1616 I->getOperand(1).setIndex(CPI);
1617 I->getOperand(2).setImm(PCLabelId);
1618 break;
1619 }
1620 }
1621 if (!I->isBundledWithSucc())
1622 break;
1623 ++I;
1624 }
1625 return Cloned;
1626 }
1627
produceSameValue(const MachineInstr & MI0,const MachineInstr & MI1,const MachineRegisterInfo * MRI) const1628 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
1629 const MachineInstr &MI1,
1630 const MachineRegisterInfo *MRI) const {
1631 unsigned Opcode = MI0.getOpcode();
1632 if (Opcode == ARM::t2LDRpci ||
1633 Opcode == ARM::t2LDRpci_pic ||
1634 Opcode == ARM::tLDRpci ||
1635 Opcode == ARM::tLDRpci_pic ||
1636 Opcode == ARM::LDRLIT_ga_pcrel ||
1637 Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1638 Opcode == ARM::tLDRLIT_ga_pcrel ||
1639 Opcode == ARM::MOV_ga_pcrel ||
1640 Opcode == ARM::MOV_ga_pcrel_ldr ||
1641 Opcode == ARM::t2MOV_ga_pcrel) {
1642 if (MI1.getOpcode() != Opcode)
1643 return false;
1644 if (MI0.getNumOperands() != MI1.getNumOperands())
1645 return false;
1646
1647 const MachineOperand &MO0 = MI0.getOperand(1);
1648 const MachineOperand &MO1 = MI1.getOperand(1);
1649 if (MO0.getOffset() != MO1.getOffset())
1650 return false;
1651
1652 if (Opcode == ARM::LDRLIT_ga_pcrel ||
1653 Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1654 Opcode == ARM::tLDRLIT_ga_pcrel ||
1655 Opcode == ARM::MOV_ga_pcrel ||
1656 Opcode == ARM::MOV_ga_pcrel_ldr ||
1657 Opcode == ARM::t2MOV_ga_pcrel)
1658 // Ignore the PC labels.
1659 return MO0.getGlobal() == MO1.getGlobal();
1660
1661 const MachineFunction *MF = MI0.getParent()->getParent();
1662 const MachineConstantPool *MCP = MF->getConstantPool();
1663 int CPI0 = MO0.getIndex();
1664 int CPI1 = MO1.getIndex();
1665 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1666 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1667 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1668 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1669 if (isARMCP0 && isARMCP1) {
1670 ARMConstantPoolValue *ACPV0 =
1671 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1672 ARMConstantPoolValue *ACPV1 =
1673 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1674 return ACPV0->hasSameValue(ACPV1);
1675 } else if (!isARMCP0 && !isARMCP1) {
1676 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1677 }
1678 return false;
1679 } else if (Opcode == ARM::PICLDR) {
1680 if (MI1.getOpcode() != Opcode)
1681 return false;
1682 if (MI0.getNumOperands() != MI1.getNumOperands())
1683 return false;
1684
1685 unsigned Addr0 = MI0.getOperand(1).getReg();
1686 unsigned Addr1 = MI1.getOperand(1).getReg();
1687 if (Addr0 != Addr1) {
1688 if (!MRI ||
1689 !TargetRegisterInfo::isVirtualRegister(Addr0) ||
1690 !TargetRegisterInfo::isVirtualRegister(Addr1))
1691 return false;
1692
1693 // This assumes SSA form.
1694 MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1695 MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1696 // Check if the loaded value, e.g. a constantpool of a global address, are
1697 // the same.
1698 if (!produceSameValue(*Def0, *Def1, MRI))
1699 return false;
1700 }
1701
1702 for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
1703 // %12 = PICLDR %11, 0, 14, %noreg
1704 const MachineOperand &MO0 = MI0.getOperand(i);
1705 const MachineOperand &MO1 = MI1.getOperand(i);
1706 if (!MO0.isIdenticalTo(MO1))
1707 return false;
1708 }
1709 return true;
1710 }
1711
1712 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1713 }
1714
1715 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1716 /// determine if two loads are loading from the same base address. It should
1717 /// only return true if the base pointers are the same and the only differences
1718 /// between the two addresses is the offset. It also returns the offsets by
1719 /// reference.
1720 ///
1721 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1722 /// is permanently disabled.
areLoadsFromSameBasePtr(SDNode * Load1,SDNode * Load2,int64_t & Offset1,int64_t & Offset2) const1723 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1724 int64_t &Offset1,
1725 int64_t &Offset2) const {
1726 // Don't worry about Thumb: just ARM and Thumb2.
1727 if (Subtarget.isThumb1Only()) return false;
1728
1729 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1730 return false;
1731
1732 switch (Load1->getMachineOpcode()) {
1733 default:
1734 return false;
1735 case ARM::LDRi12:
1736 case ARM::LDRBi12:
1737 case ARM::LDRD:
1738 case ARM::LDRH:
1739 case ARM::LDRSB:
1740 case ARM::LDRSH:
1741 case ARM::VLDRD:
1742 case ARM::VLDRS:
1743 case ARM::t2LDRi8:
1744 case ARM::t2LDRBi8:
1745 case ARM::t2LDRDi8:
1746 case ARM::t2LDRSHi8:
1747 case ARM::t2LDRi12:
1748 case ARM::t2LDRBi12:
1749 case ARM::t2LDRSHi12:
1750 break;
1751 }
1752
1753 switch (Load2->getMachineOpcode()) {
1754 default:
1755 return false;
1756 case ARM::LDRi12:
1757 case ARM::LDRBi12:
1758 case ARM::LDRD:
1759 case ARM::LDRH:
1760 case ARM::LDRSB:
1761 case ARM::LDRSH:
1762 case ARM::VLDRD:
1763 case ARM::VLDRS:
1764 case ARM::t2LDRi8:
1765 case ARM::t2LDRBi8:
1766 case ARM::t2LDRSHi8:
1767 case ARM::t2LDRi12:
1768 case ARM::t2LDRBi12:
1769 case ARM::t2LDRSHi12:
1770 break;
1771 }
1772
1773 // Check if base addresses and chain operands match.
1774 if (Load1->getOperand(0) != Load2->getOperand(0) ||
1775 Load1->getOperand(4) != Load2->getOperand(4))
1776 return false;
1777
1778 // Index should be Reg0.
1779 if (Load1->getOperand(3) != Load2->getOperand(3))
1780 return false;
1781
1782 // Determine the offsets.
1783 if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1784 isa<ConstantSDNode>(Load2->getOperand(1))) {
1785 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1786 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1787 return true;
1788 }
1789
1790 return false;
1791 }
1792
1793 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1794 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1795 /// be scheduled togther. On some targets if two loads are loading from
1796 /// addresses in the same cache line, it's better if they are scheduled
1797 /// together. This function takes two integers that represent the load offsets
1798 /// from the common base address. It returns true if it decides it's desirable
1799 /// to schedule the two loads together. "NumLoads" is the number of loads that
1800 /// have already been scheduled after Load1.
1801 ///
1802 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1803 /// is permanently disabled.
shouldScheduleLoadsNear(SDNode * Load1,SDNode * Load2,int64_t Offset1,int64_t Offset2,unsigned NumLoads) const1804 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1805 int64_t Offset1, int64_t Offset2,
1806 unsigned NumLoads) const {
1807 // Don't worry about Thumb: just ARM and Thumb2.
1808 if (Subtarget.isThumb1Only()) return false;
1809
1810 assert(Offset2 > Offset1);
1811
1812 if ((Offset2 - Offset1) / 8 > 64)
1813 return false;
1814
1815 // Check if the machine opcodes are different. If they are different
1816 // then we consider them to not be of the same base address,
1817 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
1818 // In this case, they are considered to be the same because they are different
1819 // encoding forms of the same basic instruction.
1820 if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
1821 !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
1822 Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
1823 (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
1824 Load2->getMachineOpcode() == ARM::t2LDRBi8)))
1825 return false; // FIXME: overly conservative?
1826
1827 // Four loads in a row should be sufficient.
1828 if (NumLoads >= 3)
1829 return false;
1830
1831 return true;
1832 }
1833
isSchedulingBoundary(const MachineInstr & MI,const MachineBasicBlock * MBB,const MachineFunction & MF) const1834 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1835 const MachineBasicBlock *MBB,
1836 const MachineFunction &MF) const {
1837 // Debug info is never a scheduling boundary. It's necessary to be explicit
1838 // due to the special treatment of IT instructions below, otherwise a
1839 // dbg_value followed by an IT will result in the IT instruction being
1840 // considered a scheduling hazard, which is wrong. It should be the actual
1841 // instruction preceding the dbg_value instruction(s), just like it is
1842 // when debug info is not present.
1843 if (MI.isDebugInstr())
1844 return false;
1845
1846 // Terminators and labels can't be scheduled around.
1847 if (MI.isTerminator() || MI.isPosition())
1848 return true;
1849
1850 // Treat the start of the IT block as a scheduling boundary, but schedule
1851 // t2IT along with all instructions following it.
1852 // FIXME: This is a big hammer. But the alternative is to add all potential
1853 // true and anti dependencies to IT block instructions as implicit operands
1854 // to the t2IT instruction. The added compile time and complexity does not
1855 // seem worth it.
1856 MachineBasicBlock::const_iterator I = MI;
1857 // Make sure to skip any debug instructions
1858 while (++I != MBB->end() && I->isDebugInstr())
1859 ;
1860 if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
1861 return true;
1862
1863 // Don't attempt to schedule around any instruction that defines
1864 // a stack-oriented pointer, as it's unlikely to be profitable. This
1865 // saves compile time, because it doesn't require every single
1866 // stack slot reference to depend on the instruction that does the
1867 // modification.
1868 // Calls don't actually change the stack pointer, even if they have imp-defs.
1869 // No ARM calling conventions change the stack pointer. (X86 calling
1870 // conventions sometimes do).
1871 if (!MI.isCall() && MI.definesRegister(ARM::SP))
1872 return true;
1873
1874 return false;
1875 }
1876
1877 bool ARMBaseInstrInfo::
isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,BranchProbability Probability) const1878 isProfitableToIfCvt(MachineBasicBlock &MBB,
1879 unsigned NumCycles, unsigned ExtraPredCycles,
1880 BranchProbability Probability) const {
1881 if (!NumCycles)
1882 return false;
1883
1884 // If we are optimizing for size, see if the branch in the predecessor can be
1885 // lowered to cbn?z by the constant island lowering pass, and return false if
1886 // so. This results in a shorter instruction sequence.
1887 if (MBB.getParent()->getFunction().optForSize()) {
1888 MachineBasicBlock *Pred = *MBB.pred_begin();
1889 if (!Pred->empty()) {
1890 MachineInstr *LastMI = &*Pred->rbegin();
1891 if (LastMI->getOpcode() == ARM::t2Bcc) {
1892 MachineBasicBlock::iterator CmpMI = LastMI;
1893 if (CmpMI != Pred->begin()) {
1894 --CmpMI;
1895 if (CmpMI->getOpcode() == ARM::tCMPi8 ||
1896 CmpMI->getOpcode() == ARM::t2CMPri) {
1897 unsigned Reg = CmpMI->getOperand(0).getReg();
1898 unsigned PredReg = 0;
1899 ARMCC::CondCodes P = getInstrPredicate(*CmpMI, PredReg);
1900 if (P == ARMCC::AL && CmpMI->getOperand(1).getImm() == 0 &&
1901 isARMLowRegister(Reg))
1902 return false;
1903 }
1904 }
1905 }
1906 }
1907 }
1908 return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles,
1909 MBB, 0, 0, Probability);
1910 }
1911
1912 bool ARMBaseInstrInfo::
isProfitableToIfCvt(MachineBasicBlock & TBB,unsigned TCycles,unsigned TExtra,MachineBasicBlock & FBB,unsigned FCycles,unsigned FExtra,BranchProbability Probability) const1913 isProfitableToIfCvt(MachineBasicBlock &TBB,
1914 unsigned TCycles, unsigned TExtra,
1915 MachineBasicBlock &FBB,
1916 unsigned FCycles, unsigned FExtra,
1917 BranchProbability Probability) const {
1918 if (!TCycles)
1919 return false;
1920
1921 // Attempt to estimate the relative costs of predication versus branching.
1922 // Here we scale up each component of UnpredCost to avoid precision issue when
1923 // scaling TCycles/FCycles by Probability.
1924 const unsigned ScalingUpFactor = 1024;
1925
1926 unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor;
1927 unsigned UnpredCost;
1928 if (!Subtarget.hasBranchPredictor()) {
1929 // When we don't have a branch predictor it's always cheaper to not take a
1930 // branch than take it, so we have to take that into account.
1931 unsigned NotTakenBranchCost = 1;
1932 unsigned TakenBranchCost = Subtarget.getMispredictionPenalty();
1933 unsigned TUnpredCycles, FUnpredCycles;
1934 if (!FCycles) {
1935 // Triangle: TBB is the fallthrough
1936 TUnpredCycles = TCycles + NotTakenBranchCost;
1937 FUnpredCycles = TakenBranchCost;
1938 } else {
1939 // Diamond: TBB is the block that is branched to, FBB is the fallthrough
1940 TUnpredCycles = TCycles + TakenBranchCost;
1941 FUnpredCycles = FCycles + NotTakenBranchCost;
1942 // The branch at the end of FBB will disappear when it's predicated, so
1943 // discount it from PredCost.
1944 PredCost -= 1 * ScalingUpFactor;
1945 }
1946 // The total cost is the cost of each path scaled by their probabilites
1947 unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor);
1948 unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor);
1949 UnpredCost = TUnpredCost + FUnpredCost;
1950 // When predicating assume that the first IT can be folded away but later
1951 // ones cost one cycle each
1952 if (Subtarget.isThumb2() && TCycles + FCycles > 4) {
1953 PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor;
1954 }
1955 } else {
1956 unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
1957 unsigned FUnpredCost =
1958 Probability.getCompl().scale(FCycles * ScalingUpFactor);
1959 UnpredCost = TUnpredCost + FUnpredCost;
1960 UnpredCost += 1 * ScalingUpFactor; // The branch itself
1961 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
1962 }
1963
1964 return PredCost <= UnpredCost;
1965 }
1966
1967 bool
isProfitableToUnpredicate(MachineBasicBlock & TMBB,MachineBasicBlock & FMBB) const1968 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
1969 MachineBasicBlock &FMBB) const {
1970 // Reduce false anti-dependencies to let the target's out-of-order execution
1971 // engine do its thing.
1972 return Subtarget.isProfitableToUnpredicate();
1973 }
1974
1975 /// getInstrPredicate - If instruction is predicated, returns its predicate
1976 /// condition, otherwise returns AL. It also returns the condition code
1977 /// register by reference.
getInstrPredicate(const MachineInstr & MI,unsigned & PredReg)1978 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
1979 unsigned &PredReg) {
1980 int PIdx = MI.findFirstPredOperandIdx();
1981 if (PIdx == -1) {
1982 PredReg = 0;
1983 return ARMCC::AL;
1984 }
1985
1986 PredReg = MI.getOperand(PIdx+1).getReg();
1987 return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
1988 }
1989
getMatchingCondBranchOpcode(unsigned Opc)1990 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
1991 if (Opc == ARM::B)
1992 return ARM::Bcc;
1993 if (Opc == ARM::tB)
1994 return ARM::tBcc;
1995 if (Opc == ARM::t2B)
1996 return ARM::t2Bcc;
1997
1998 llvm_unreachable("Unknown unconditional branch opcode!");
1999 }
2000
commuteInstructionImpl(MachineInstr & MI,bool NewMI,unsigned OpIdx1,unsigned OpIdx2) const2001 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
2002 bool NewMI,
2003 unsigned OpIdx1,
2004 unsigned OpIdx2) const {
2005 switch (MI.getOpcode()) {
2006 case ARM::MOVCCr:
2007 case ARM::t2MOVCCr: {
2008 // MOVCC can be commuted by inverting the condition.
2009 unsigned PredReg = 0;
2010 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
2011 // MOVCC AL can't be inverted. Shouldn't happen.
2012 if (CC == ARMCC::AL || PredReg != ARM::CPSR)
2013 return nullptr;
2014 MachineInstr *CommutedMI =
2015 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2016 if (!CommutedMI)
2017 return nullptr;
2018 // After swapping the MOVCC operands, also invert the condition.
2019 CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
2020 .setImm(ARMCC::getOppositeCondition(CC));
2021 return CommutedMI;
2022 }
2023 }
2024 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2025 }
2026
2027 /// Identify instructions that can be folded into a MOVCC instruction, and
2028 /// return the defining instruction.
canFoldIntoMOVCC(unsigned Reg,const MachineRegisterInfo & MRI,const TargetInstrInfo * TII)2029 static MachineInstr *canFoldIntoMOVCC(unsigned Reg,
2030 const MachineRegisterInfo &MRI,
2031 const TargetInstrInfo *TII) {
2032 if (!TargetRegisterInfo::isVirtualRegister(Reg))
2033 return nullptr;
2034 if (!MRI.hasOneNonDBGUse(Reg))
2035 return nullptr;
2036 MachineInstr *MI = MRI.getVRegDef(Reg);
2037 if (!MI)
2038 return nullptr;
2039 // MI is folded into the MOVCC by predicating it.
2040 if (!MI->isPredicable())
2041 return nullptr;
2042 // Check if MI has any non-dead defs or physreg uses. This also detects
2043 // predicated instructions which will be reading CPSR.
2044 for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
2045 const MachineOperand &MO = MI->getOperand(i);
2046 // Reject frame index operands, PEI can't handle the predicated pseudos.
2047 if (MO.isFI() || MO.isCPI() || MO.isJTI())
2048 return nullptr;
2049 if (!MO.isReg())
2050 continue;
2051 // MI can't have any tied operands, that would conflict with predication.
2052 if (MO.isTied())
2053 return nullptr;
2054 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
2055 return nullptr;
2056 if (MO.isDef() && !MO.isDead())
2057 return nullptr;
2058 }
2059 bool DontMoveAcrossStores = true;
2060 if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
2061 return nullptr;
2062 return MI;
2063 }
2064
analyzeSelect(const MachineInstr & MI,SmallVectorImpl<MachineOperand> & Cond,unsigned & TrueOp,unsigned & FalseOp,bool & Optimizable) const2065 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
2066 SmallVectorImpl<MachineOperand> &Cond,
2067 unsigned &TrueOp, unsigned &FalseOp,
2068 bool &Optimizable) const {
2069 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2070 "Unknown select instruction");
2071 // MOVCC operands:
2072 // 0: Def.
2073 // 1: True use.
2074 // 2: False use.
2075 // 3: Condition code.
2076 // 4: CPSR use.
2077 TrueOp = 1;
2078 FalseOp = 2;
2079 Cond.push_back(MI.getOperand(3));
2080 Cond.push_back(MI.getOperand(4));
2081 // We can always fold a def.
2082 Optimizable = true;
2083 return false;
2084 }
2085
2086 MachineInstr *
optimizeSelect(MachineInstr & MI,SmallPtrSetImpl<MachineInstr * > & SeenMIs,bool PreferFalse) const2087 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
2088 SmallPtrSetImpl<MachineInstr *> &SeenMIs,
2089 bool PreferFalse) const {
2090 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2091 "Unknown select instruction");
2092 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2093 MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
2094 bool Invert = !DefMI;
2095 if (!DefMI)
2096 DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
2097 if (!DefMI)
2098 return nullptr;
2099
2100 // Find new register class to use.
2101 MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
2102 unsigned DestReg = MI.getOperand(0).getReg();
2103 const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
2104 if (!MRI.constrainRegClass(DestReg, PreviousClass))
2105 return nullptr;
2106
2107 // Create a new predicated version of DefMI.
2108 // Rfalse is the first use.
2109 MachineInstrBuilder NewMI =
2110 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
2111
2112 // Copy all the DefMI operands, excluding its (null) predicate.
2113 const MCInstrDesc &DefDesc = DefMI->getDesc();
2114 for (unsigned i = 1, e = DefDesc.getNumOperands();
2115 i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
2116 NewMI.add(DefMI->getOperand(i));
2117
2118 unsigned CondCode = MI.getOperand(3).getImm();
2119 if (Invert)
2120 NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
2121 else
2122 NewMI.addImm(CondCode);
2123 NewMI.add(MI.getOperand(4));
2124
2125 // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
2126 if (NewMI->hasOptionalDef())
2127 NewMI.add(condCodeOp());
2128
2129 // The output register value when the predicate is false is an implicit
2130 // register operand tied to the first def.
2131 // The tie makes the register allocator ensure the FalseReg is allocated the
2132 // same register as operand 0.
2133 FalseReg.setImplicit();
2134 NewMI.add(FalseReg);
2135 NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
2136
2137 // Update SeenMIs set: register newly created MI and erase removed DefMI.
2138 SeenMIs.insert(NewMI);
2139 SeenMIs.erase(DefMI);
2140
2141 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
2142 // DefMI would be invalid when tranferred inside the loop. Checking for a
2143 // loop is expensive, but at least remove kill flags if they are in different
2144 // BBs.
2145 if (DefMI->getParent() != MI.getParent())
2146 NewMI->clearKillInfo();
2147
2148 // The caller will erase MI, but not DefMI.
2149 DefMI->eraseFromParent();
2150 return NewMI;
2151 }
2152
2153 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
2154 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
2155 /// def operand.
2156 ///
2157 /// This will go away once we can teach tblgen how to set the optional CPSR def
2158 /// operand itself.
2159 struct AddSubFlagsOpcodePair {
2160 uint16_t PseudoOpc;
2161 uint16_t MachineOpc;
2162 };
2163
2164 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
2165 {ARM::ADDSri, ARM::ADDri},
2166 {ARM::ADDSrr, ARM::ADDrr},
2167 {ARM::ADDSrsi, ARM::ADDrsi},
2168 {ARM::ADDSrsr, ARM::ADDrsr},
2169
2170 {ARM::SUBSri, ARM::SUBri},
2171 {ARM::SUBSrr, ARM::SUBrr},
2172 {ARM::SUBSrsi, ARM::SUBrsi},
2173 {ARM::SUBSrsr, ARM::SUBrsr},
2174
2175 {ARM::RSBSri, ARM::RSBri},
2176 {ARM::RSBSrsi, ARM::RSBrsi},
2177 {ARM::RSBSrsr, ARM::RSBrsr},
2178
2179 {ARM::tADDSi3, ARM::tADDi3},
2180 {ARM::tADDSi8, ARM::tADDi8},
2181 {ARM::tADDSrr, ARM::tADDrr},
2182 {ARM::tADCS, ARM::tADC},
2183
2184 {ARM::tSUBSi3, ARM::tSUBi3},
2185 {ARM::tSUBSi8, ARM::tSUBi8},
2186 {ARM::tSUBSrr, ARM::tSUBrr},
2187 {ARM::tSBCS, ARM::tSBC},
2188
2189 {ARM::t2ADDSri, ARM::t2ADDri},
2190 {ARM::t2ADDSrr, ARM::t2ADDrr},
2191 {ARM::t2ADDSrs, ARM::t2ADDrs},
2192
2193 {ARM::t2SUBSri, ARM::t2SUBri},
2194 {ARM::t2SUBSrr, ARM::t2SUBrr},
2195 {ARM::t2SUBSrs, ARM::t2SUBrs},
2196
2197 {ARM::t2RSBSri, ARM::t2RSBri},
2198 {ARM::t2RSBSrs, ARM::t2RSBrs},
2199 };
2200
convertAddSubFlagsOpcode(unsigned OldOpc)2201 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
2202 for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
2203 if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
2204 return AddSubFlagsOpcodeMap[i].MachineOpc;
2205 return 0;
2206 }
2207
emitARMRegPlusImmediate(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const DebugLoc & dl,unsigned DestReg,unsigned BaseReg,int NumBytes,ARMCC::CondCodes Pred,unsigned PredReg,const ARMBaseInstrInfo & TII,unsigned MIFlags)2208 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
2209 MachineBasicBlock::iterator &MBBI,
2210 const DebugLoc &dl, unsigned DestReg,
2211 unsigned BaseReg, int NumBytes,
2212 ARMCC::CondCodes Pred, unsigned PredReg,
2213 const ARMBaseInstrInfo &TII,
2214 unsigned MIFlags) {
2215 if (NumBytes == 0 && DestReg != BaseReg) {
2216 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
2217 .addReg(BaseReg, RegState::Kill)
2218 .add(predOps(Pred, PredReg))
2219 .add(condCodeOp())
2220 .setMIFlags(MIFlags);
2221 return;
2222 }
2223
2224 bool isSub = NumBytes < 0;
2225 if (isSub) NumBytes = -NumBytes;
2226
2227 while (NumBytes) {
2228 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
2229 unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
2230 assert(ThisVal && "Didn't extract field correctly");
2231
2232 // We will handle these bits from offset, clear them.
2233 NumBytes &= ~ThisVal;
2234
2235 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
2236
2237 // Build the new ADD / SUB.
2238 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
2239 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
2240 .addReg(BaseReg, RegState::Kill)
2241 .addImm(ThisVal)
2242 .add(predOps(Pred, PredReg))
2243 .add(condCodeOp())
2244 .setMIFlags(MIFlags);
2245 BaseReg = DestReg;
2246 }
2247 }
2248
tryFoldSPUpdateIntoPushPop(const ARMSubtarget & Subtarget,MachineFunction & MF,MachineInstr * MI,unsigned NumBytes)2249 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
2250 MachineFunction &MF, MachineInstr *MI,
2251 unsigned NumBytes) {
2252 // This optimisation potentially adds lots of load and store
2253 // micro-operations, it's only really a great benefit to code-size.
2254 if (!MF.getFunction().optForMinSize())
2255 return false;
2256
2257 // If only one register is pushed/popped, LLVM can use an LDR/STR
2258 // instead. We can't modify those so make sure we're dealing with an
2259 // instruction we understand.
2260 bool IsPop = isPopOpcode(MI->getOpcode());
2261 bool IsPush = isPushOpcode(MI->getOpcode());
2262 if (!IsPush && !IsPop)
2263 return false;
2264
2265 bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2266 MI->getOpcode() == ARM::VLDMDIA_UPD;
2267 bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2268 MI->getOpcode() == ARM::tPOP ||
2269 MI->getOpcode() == ARM::tPOP_RET;
2270
2271 assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2272 MI->getOperand(1).getReg() == ARM::SP)) &&
2273 "trying to fold sp update into non-sp-updating push/pop");
2274
2275 // The VFP push & pop act on D-registers, so we can only fold an adjustment
2276 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2277 // if this is violated.
2278 if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2279 return false;
2280
2281 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2282 // pred) so the list starts at 4. Thumb1 starts after the predicate.
2283 int RegListIdx = IsT1PushPop ? 2 : 4;
2284
2285 // Calculate the space we'll need in terms of registers.
2286 unsigned RegsNeeded;
2287 const TargetRegisterClass *RegClass;
2288 if (IsVFPPushPop) {
2289 RegsNeeded = NumBytes / 8;
2290 RegClass = &ARM::DPRRegClass;
2291 } else {
2292 RegsNeeded = NumBytes / 4;
2293 RegClass = &ARM::GPRRegClass;
2294 }
2295
2296 // We're going to have to strip all list operands off before
2297 // re-adding them since the order matters, so save the existing ones
2298 // for later.
2299 SmallVector<MachineOperand, 4> RegList;
2300
2301 // We're also going to need the first register transferred by this
2302 // instruction, which won't necessarily be the first register in the list.
2303 unsigned FirstRegEnc = -1;
2304
2305 const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2306 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) {
2307 MachineOperand &MO = MI->getOperand(i);
2308 RegList.push_back(MO);
2309
2310 if (MO.isReg() && TRI->getEncodingValue(MO.getReg()) < FirstRegEnc)
2311 FirstRegEnc = TRI->getEncodingValue(MO.getReg());
2312 }
2313
2314 const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
2315
2316 // Now try to find enough space in the reglist to allocate NumBytes.
2317 for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded;
2318 --CurRegEnc) {
2319 unsigned CurReg = RegClass->getRegister(CurRegEnc);
2320 if (!IsPop) {
2321 // Pushing any register is completely harmless, mark the register involved
2322 // as undef since we don't care about its value and must not restore it
2323 // during stack unwinding.
2324 RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
2325 false, false, true));
2326 --RegsNeeded;
2327 continue;
2328 }
2329
2330 // However, we can only pop an extra register if it's not live. For
2331 // registers live within the function we might clobber a return value
2332 // register; the other way a register can be live here is if it's
2333 // callee-saved.
2334 if (isCalleeSavedRegister(CurReg, CSRegs) ||
2335 MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
2336 MachineBasicBlock::LQR_Dead) {
2337 // VFP pops don't allow holes in the register list, so any skip is fatal
2338 // for our transformation. GPR pops do, so we should just keep looking.
2339 if (IsVFPPushPop)
2340 return false;
2341 else
2342 continue;
2343 }
2344
2345 // Mark the unimportant registers as <def,dead> in the POP.
2346 RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
2347 true));
2348 --RegsNeeded;
2349 }
2350
2351 if (RegsNeeded > 0)
2352 return false;
2353
2354 // Finally we know we can profitably perform the optimisation so go
2355 // ahead: strip all existing registers off and add them back again
2356 // in the right order.
2357 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2358 MI->RemoveOperand(i);
2359
2360 // Add the complete list back in.
2361 MachineInstrBuilder MIB(MF, &*MI);
2362 for (int i = RegList.size() - 1; i >= 0; --i)
2363 MIB.add(RegList[i]);
2364
2365 return true;
2366 }
2367
rewriteARMFrameIndex(MachineInstr & MI,unsigned FrameRegIdx,unsigned FrameReg,int & Offset,const ARMBaseInstrInfo & TII)2368 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2369 unsigned FrameReg, int &Offset,
2370 const ARMBaseInstrInfo &TII) {
2371 unsigned Opcode = MI.getOpcode();
2372 const MCInstrDesc &Desc = MI.getDesc();
2373 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2374 bool isSub = false;
2375
2376 // Memory operands in inline assembly always use AddrMode2.
2377 if (Opcode == ARM::INLINEASM)
2378 AddrMode = ARMII::AddrMode2;
2379
2380 if (Opcode == ARM::ADDri) {
2381 Offset += MI.getOperand(FrameRegIdx+1).getImm();
2382 if (Offset == 0) {
2383 // Turn it into a move.
2384 MI.setDesc(TII.get(ARM::MOVr));
2385 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2386 MI.RemoveOperand(FrameRegIdx+1);
2387 Offset = 0;
2388 return true;
2389 } else if (Offset < 0) {
2390 Offset = -Offset;
2391 isSub = true;
2392 MI.setDesc(TII.get(ARM::SUBri));
2393 }
2394
2395 // Common case: small offset, fits into instruction.
2396 if (ARM_AM::getSOImmVal(Offset) != -1) {
2397 // Replace the FrameIndex with sp / fp
2398 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2399 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2400 Offset = 0;
2401 return true;
2402 }
2403
2404 // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2405 // as possible.
2406 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2407 unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
2408
2409 // We will handle these bits from offset, clear them.
2410 Offset &= ~ThisImmVal;
2411
2412 // Get the properly encoded SOImmVal field.
2413 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2414 "Bit extraction didn't work?");
2415 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2416 } else {
2417 unsigned ImmIdx = 0;
2418 int InstrOffs = 0;
2419 unsigned NumBits = 0;
2420 unsigned Scale = 1;
2421 switch (AddrMode) {
2422 case ARMII::AddrMode_i12:
2423 ImmIdx = FrameRegIdx + 1;
2424 InstrOffs = MI.getOperand(ImmIdx).getImm();
2425 NumBits = 12;
2426 break;
2427 case ARMII::AddrMode2:
2428 ImmIdx = FrameRegIdx+2;
2429 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2430 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2431 InstrOffs *= -1;
2432 NumBits = 12;
2433 break;
2434 case ARMII::AddrMode3:
2435 ImmIdx = FrameRegIdx+2;
2436 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2437 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2438 InstrOffs *= -1;
2439 NumBits = 8;
2440 break;
2441 case ARMII::AddrMode4:
2442 case ARMII::AddrMode6:
2443 // Can't fold any offset even if it's zero.
2444 return false;
2445 case ARMII::AddrMode5:
2446 ImmIdx = FrameRegIdx+1;
2447 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2448 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2449 InstrOffs *= -1;
2450 NumBits = 8;
2451 Scale = 4;
2452 break;
2453 case ARMII::AddrMode5FP16:
2454 ImmIdx = FrameRegIdx+1;
2455 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2456 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2457 InstrOffs *= -1;
2458 NumBits = 8;
2459 Scale = 2;
2460 break;
2461 default:
2462 llvm_unreachable("Unsupported addressing mode!");
2463 }
2464
2465 Offset += InstrOffs * Scale;
2466 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2467 if (Offset < 0) {
2468 Offset = -Offset;
2469 isSub = true;
2470 }
2471
2472 // Attempt to fold address comp. if opcode has offset bits
2473 if (NumBits > 0) {
2474 // Common case: small offset, fits into instruction.
2475 MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2476 int ImmedOffset = Offset / Scale;
2477 unsigned Mask = (1 << NumBits) - 1;
2478 if ((unsigned)Offset <= Mask * Scale) {
2479 // Replace the FrameIndex with sp
2480 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2481 // FIXME: When addrmode2 goes away, this will simplify (like the
2482 // T2 version), as the LDR.i12 versions don't need the encoding
2483 // tricks for the offset value.
2484 if (isSub) {
2485 if (AddrMode == ARMII::AddrMode_i12)
2486 ImmedOffset = -ImmedOffset;
2487 else
2488 ImmedOffset |= 1 << NumBits;
2489 }
2490 ImmOp.ChangeToImmediate(ImmedOffset);
2491 Offset = 0;
2492 return true;
2493 }
2494
2495 // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2496 ImmedOffset = ImmedOffset & Mask;
2497 if (isSub) {
2498 if (AddrMode == ARMII::AddrMode_i12)
2499 ImmedOffset = -ImmedOffset;
2500 else
2501 ImmedOffset |= 1 << NumBits;
2502 }
2503 ImmOp.ChangeToImmediate(ImmedOffset);
2504 Offset &= ~(Mask*Scale);
2505 }
2506 }
2507
2508 Offset = (isSub) ? -Offset : Offset;
2509 return Offset == 0;
2510 }
2511
2512 /// analyzeCompare - For a comparison instruction, return the source registers
2513 /// in SrcReg and SrcReg2 if having two register operands, and the value it
2514 /// compares against in CmpValue. Return true if the comparison instruction
2515 /// can be analyzed.
analyzeCompare(const MachineInstr & MI,unsigned & SrcReg,unsigned & SrcReg2,int & CmpMask,int & CmpValue) const2516 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
2517 unsigned &SrcReg2, int &CmpMask,
2518 int &CmpValue) const {
2519 switch (MI.getOpcode()) {
2520 default: break;
2521 case ARM::CMPri:
2522 case ARM::t2CMPri:
2523 case ARM::tCMPi8:
2524 SrcReg = MI.getOperand(0).getReg();
2525 SrcReg2 = 0;
2526 CmpMask = ~0;
2527 CmpValue = MI.getOperand(1).getImm();
2528 return true;
2529 case ARM::CMPrr:
2530 case ARM::t2CMPrr:
2531 SrcReg = MI.getOperand(0).getReg();
2532 SrcReg2 = MI.getOperand(1).getReg();
2533 CmpMask = ~0;
2534 CmpValue = 0;
2535 return true;
2536 case ARM::TSTri:
2537 case ARM::t2TSTri:
2538 SrcReg = MI.getOperand(0).getReg();
2539 SrcReg2 = 0;
2540 CmpMask = MI.getOperand(1).getImm();
2541 CmpValue = 0;
2542 return true;
2543 }
2544
2545 return false;
2546 }
2547
2548 /// isSuitableForMask - Identify a suitable 'and' instruction that
2549 /// operates on the given source register and applies the same mask
2550 /// as a 'tst' instruction. Provide a limited look-through for copies.
2551 /// When successful, MI will hold the found instruction.
isSuitableForMask(MachineInstr * & MI,unsigned SrcReg,int CmpMask,bool CommonUse)2552 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
2553 int CmpMask, bool CommonUse) {
2554 switch (MI->getOpcode()) {
2555 case ARM::ANDri:
2556 case ARM::t2ANDri:
2557 if (CmpMask != MI->getOperand(2).getImm())
2558 return false;
2559 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2560 return true;
2561 break;
2562 }
2563
2564 return false;
2565 }
2566
2567 /// getSwappedCondition - assume the flags are set by MI(a,b), return
2568 /// the condition code if we modify the instructions such that flags are
2569 /// set by MI(b,a).
getSwappedCondition(ARMCC::CondCodes CC)2570 inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
2571 switch (CC) {
2572 default: return ARMCC::AL;
2573 case ARMCC::EQ: return ARMCC::EQ;
2574 case ARMCC::NE: return ARMCC::NE;
2575 case ARMCC::HS: return ARMCC::LS;
2576 case ARMCC::LO: return ARMCC::HI;
2577 case ARMCC::HI: return ARMCC::LO;
2578 case ARMCC::LS: return ARMCC::HS;
2579 case ARMCC::GE: return ARMCC::LE;
2580 case ARMCC::LT: return ARMCC::GT;
2581 case ARMCC::GT: return ARMCC::LT;
2582 case ARMCC::LE: return ARMCC::GE;
2583 }
2584 }
2585
2586 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
2587 /// the condition code if we modify the instructions such that flags are
2588 /// set by ADD(a,b,X).
getCmpToAddCondition(ARMCC::CondCodes CC)2589 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) {
2590 switch (CC) {
2591 default: return ARMCC::AL;
2592 case ARMCC::HS: return ARMCC::LO;
2593 case ARMCC::LO: return ARMCC::HS;
2594 case ARMCC::VS: return ARMCC::VS;
2595 case ARMCC::VC: return ARMCC::VC;
2596 }
2597 }
2598
2599 /// isRedundantFlagInstr - check whether the first instruction, whose only
2600 /// purpose is to update flags, can be made redundant.
2601 /// CMPrr can be made redundant by SUBrr if the operands are the same.
2602 /// CMPri can be made redundant by SUBri if the operands are the same.
2603 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
2604 /// This function can be extended later on.
isRedundantFlagInstr(const MachineInstr * CmpI,unsigned SrcReg,unsigned SrcReg2,int ImmValue,const MachineInstr * OI)2605 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI,
2606 unsigned SrcReg, unsigned SrcReg2,
2607 int ImmValue, const MachineInstr *OI) {
2608 if ((CmpI->getOpcode() == ARM::CMPrr ||
2609 CmpI->getOpcode() == ARM::t2CMPrr) &&
2610 (OI->getOpcode() == ARM::SUBrr ||
2611 OI->getOpcode() == ARM::t2SUBrr) &&
2612 ((OI->getOperand(1).getReg() == SrcReg &&
2613 OI->getOperand(2).getReg() == SrcReg2) ||
2614 (OI->getOperand(1).getReg() == SrcReg2 &&
2615 OI->getOperand(2).getReg() == SrcReg)))
2616 return true;
2617
2618 if ((CmpI->getOpcode() == ARM::CMPri ||
2619 CmpI->getOpcode() == ARM::t2CMPri) &&
2620 (OI->getOpcode() == ARM::SUBri ||
2621 OI->getOpcode() == ARM::t2SUBri) &&
2622 OI->getOperand(1).getReg() == SrcReg &&
2623 OI->getOperand(2).getImm() == ImmValue)
2624 return true;
2625
2626 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2627 (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr ||
2628 OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) &&
2629 OI->getOperand(0).isReg() && OI->getOperand(1).isReg() &&
2630 OI->getOperand(0).getReg() == SrcReg &&
2631 OI->getOperand(1).getReg() == SrcReg2)
2632 return true;
2633 return false;
2634 }
2635
isOptimizeCompareCandidate(MachineInstr * MI,bool & IsThumb1)2636 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) {
2637 switch (MI->getOpcode()) {
2638 default: return false;
2639 case ARM::tLSLri:
2640 case ARM::tLSRri:
2641 case ARM::tLSLrr:
2642 case ARM::tLSRrr:
2643 case ARM::tSUBrr:
2644 case ARM::tADDrr:
2645 case ARM::tADDi3:
2646 case ARM::tADDi8:
2647 case ARM::tSUBi3:
2648 case ARM::tSUBi8:
2649 case ARM::tMUL:
2650 IsThumb1 = true;
2651 LLVM_FALLTHROUGH;
2652 case ARM::RSBrr:
2653 case ARM::RSBri:
2654 case ARM::RSCrr:
2655 case ARM::RSCri:
2656 case ARM::ADDrr:
2657 case ARM::ADDri:
2658 case ARM::ADCrr:
2659 case ARM::ADCri:
2660 case ARM::SUBrr:
2661 case ARM::SUBri:
2662 case ARM::SBCrr:
2663 case ARM::SBCri:
2664 case ARM::t2RSBri:
2665 case ARM::t2ADDrr:
2666 case ARM::t2ADDri:
2667 case ARM::t2ADCrr:
2668 case ARM::t2ADCri:
2669 case ARM::t2SUBrr:
2670 case ARM::t2SUBri:
2671 case ARM::t2SBCrr:
2672 case ARM::t2SBCri:
2673 case ARM::ANDrr:
2674 case ARM::ANDri:
2675 case ARM::t2ANDrr:
2676 case ARM::t2ANDri:
2677 case ARM::ORRrr:
2678 case ARM::ORRri:
2679 case ARM::t2ORRrr:
2680 case ARM::t2ORRri:
2681 case ARM::EORrr:
2682 case ARM::EORri:
2683 case ARM::t2EORrr:
2684 case ARM::t2EORri:
2685 case ARM::t2LSRri:
2686 case ARM::t2LSRrr:
2687 case ARM::t2LSLri:
2688 case ARM::t2LSLrr:
2689 return true;
2690 }
2691 }
2692
2693 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
2694 /// comparison into one that sets the zero bit in the flags register;
2695 /// Remove a redundant Compare instruction if an earlier instruction can set the
2696 /// flags in the same way as Compare.
2697 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
2698 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
2699 /// condition code of instructions which use the flags.
optimizeCompareInstr(MachineInstr & CmpInstr,unsigned SrcReg,unsigned SrcReg2,int CmpMask,int CmpValue,const MachineRegisterInfo * MRI) const2700 bool ARMBaseInstrInfo::optimizeCompareInstr(
2701 MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask,
2702 int CmpValue, const MachineRegisterInfo *MRI) const {
2703 // Get the unique definition of SrcReg.
2704 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2705 if (!MI) return false;
2706
2707 // Masked compares sometimes use the same register as the corresponding 'and'.
2708 if (CmpMask != ~0) {
2709 if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
2710 MI = nullptr;
2711 for (MachineRegisterInfo::use_instr_iterator
2712 UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
2713 UI != UE; ++UI) {
2714 if (UI->getParent() != CmpInstr.getParent())
2715 continue;
2716 MachineInstr *PotentialAND = &*UI;
2717 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
2718 isPredicated(*PotentialAND))
2719 continue;
2720 MI = PotentialAND;
2721 break;
2722 }
2723 if (!MI) return false;
2724 }
2725 }
2726
2727 // Get ready to iterate backward from CmpInstr.
2728 MachineBasicBlock::iterator I = CmpInstr, E = MI,
2729 B = CmpInstr.getParent()->begin();
2730
2731 // Early exit if CmpInstr is at the beginning of the BB.
2732 if (I == B) return false;
2733
2734 // There are two possible candidates which can be changed to set CPSR:
2735 // One is MI, the other is a SUB or ADD instruction.
2736 // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
2737 // ADDr[ri](r1, r2, X).
2738 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
2739 MachineInstr *SubAdd = nullptr;
2740 if (SrcReg2 != 0)
2741 // MI is not a candidate for CMPrr.
2742 MI = nullptr;
2743 else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
2744 // Conservatively refuse to convert an instruction which isn't in the same
2745 // BB as the comparison.
2746 // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
2747 // Thus we cannot return here.
2748 if (CmpInstr.getOpcode() == ARM::CMPri ||
2749 CmpInstr.getOpcode() == ARM::t2CMPri)
2750 MI = nullptr;
2751 else
2752 return false;
2753 }
2754
2755 bool IsThumb1 = false;
2756 if (MI && !isOptimizeCompareCandidate(MI, IsThumb1))
2757 return false;
2758
2759 // We also want to do this peephole for cases like this: if (a*b == 0),
2760 // and optimise away the CMP instruction from the generated code sequence:
2761 // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
2762 // resulting from the select instruction, but these MOVS instructions for
2763 // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
2764 // However, if we only have MOVS instructions in between the CMP and the
2765 // other instruction (the MULS in this example), then the CPSR is dead so we
2766 // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
2767 // reordering and then continue the analysis hoping we can eliminate the
2768 // CMP. This peephole works on the vregs, so is still in SSA form. As a
2769 // consequence, the movs won't redefine/kill the MUL operands which would
2770 // make this reordering illegal.
2771 if (MI && IsThumb1) {
2772 --I;
2773 bool CanReorder = true;
2774 const bool HasStmts = I != E;
2775 for (; I != E; --I) {
2776 if (I->getOpcode() != ARM::tMOVi8) {
2777 CanReorder = false;
2778 break;
2779 }
2780 }
2781 if (HasStmts && CanReorder) {
2782 MI = MI->removeFromParent();
2783 E = CmpInstr;
2784 CmpInstr.getParent()->insert(E, MI);
2785 }
2786 I = CmpInstr;
2787 E = MI;
2788 }
2789
2790 // Check that CPSR isn't set between the comparison instruction and the one we
2791 // want to change. At the same time, search for SubAdd.
2792 const TargetRegisterInfo *TRI = &getRegisterInfo();
2793 do {
2794 const MachineInstr &Instr = *--I;
2795
2796 // Check whether CmpInstr can be made redundant by the current instruction.
2797 if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr)) {
2798 SubAdd = &*I;
2799 break;
2800 }
2801
2802 // Allow E (which was initially MI) to be SubAdd but do not search before E.
2803 if (I == E)
2804 break;
2805
2806 if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
2807 Instr.readsRegister(ARM::CPSR, TRI))
2808 // This instruction modifies or uses CPSR after the one we want to
2809 // change. We can't do this transformation.
2810 return false;
2811
2812 } while (I != B);
2813
2814 // Return false if no candidates exist.
2815 if (!MI && !SubAdd)
2816 return false;
2817
2818 // The single candidate is called MI.
2819 if (!MI) MI = SubAdd;
2820
2821 // We can't use a predicated instruction - it doesn't always write the flags.
2822 if (isPredicated(*MI))
2823 return false;
2824
2825 // Scan forward for the use of CPSR
2826 // When checking against MI: if it's a conditional code that requires
2827 // checking of the V bit or C bit, then this is not safe to do.
2828 // It is safe to remove CmpInstr if CPSR is redefined or killed.
2829 // If we are done with the basic block, we need to check whether CPSR is
2830 // live-out.
2831 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
2832 OperandsToUpdate;
2833 bool isSafe = false;
2834 I = CmpInstr;
2835 E = CmpInstr.getParent()->end();
2836 while (!isSafe && ++I != E) {
2837 const MachineInstr &Instr = *I;
2838 for (unsigned IO = 0, EO = Instr.getNumOperands();
2839 !isSafe && IO != EO; ++IO) {
2840 const MachineOperand &MO = Instr.getOperand(IO);
2841 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
2842 isSafe = true;
2843 break;
2844 }
2845 if (!MO.isReg() || MO.getReg() != ARM::CPSR)
2846 continue;
2847 if (MO.isDef()) {
2848 isSafe = true;
2849 break;
2850 }
2851 // Condition code is after the operand before CPSR except for VSELs.
2852 ARMCC::CondCodes CC;
2853 bool IsInstrVSel = true;
2854 switch (Instr.getOpcode()) {
2855 default:
2856 IsInstrVSel = false;
2857 CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
2858 break;
2859 case ARM::VSELEQD:
2860 case ARM::VSELEQS:
2861 CC = ARMCC::EQ;
2862 break;
2863 case ARM::VSELGTD:
2864 case ARM::VSELGTS:
2865 CC = ARMCC::GT;
2866 break;
2867 case ARM::VSELGED:
2868 case ARM::VSELGES:
2869 CC = ARMCC::GE;
2870 break;
2871 case ARM::VSELVSS:
2872 case ARM::VSELVSD:
2873 CC = ARMCC::VS;
2874 break;
2875 }
2876
2877 if (SubAdd) {
2878 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
2879 // on CMP needs to be updated to be based on SUB.
2880 // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
2881 // needs to be modified.
2882 // Push the condition code operands to OperandsToUpdate.
2883 // If it is safe to remove CmpInstr, the condition code of these
2884 // operands will be modified.
2885 unsigned Opc = SubAdd->getOpcode();
2886 bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr ||
2887 Opc == ARM::SUBri || Opc == ARM::t2SUBri;
2888 if (!IsSub || (SrcReg2 != 0 && SubAdd->getOperand(1).getReg() == SrcReg2 &&
2889 SubAdd->getOperand(2).getReg() == SrcReg)) {
2890 // VSel doesn't support condition code update.
2891 if (IsInstrVSel)
2892 return false;
2893 // Ensure we can swap the condition.
2894 ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC));
2895 if (NewCC == ARMCC::AL)
2896 return false;
2897 OperandsToUpdate.push_back(
2898 std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
2899 }
2900 } else {
2901 // No SubAdd, so this is x = <op> y, z; cmp x, 0.
2902 switch (CC) {
2903 case ARMCC::EQ: // Z
2904 case ARMCC::NE: // Z
2905 case ARMCC::MI: // N
2906 case ARMCC::PL: // N
2907 case ARMCC::AL: // none
2908 // CPSR can be used multiple times, we should continue.
2909 break;
2910 case ARMCC::HS: // C
2911 case ARMCC::LO: // C
2912 case ARMCC::VS: // V
2913 case ARMCC::VC: // V
2914 case ARMCC::HI: // C Z
2915 case ARMCC::LS: // C Z
2916 case ARMCC::GE: // N V
2917 case ARMCC::LT: // N V
2918 case ARMCC::GT: // Z N V
2919 case ARMCC::LE: // Z N V
2920 // The instruction uses the V bit or C bit which is not safe.
2921 return false;
2922 }
2923 }
2924 }
2925 }
2926
2927 // If CPSR is not killed nor re-defined, we should check whether it is
2928 // live-out. If it is live-out, do not optimize.
2929 if (!isSafe) {
2930 MachineBasicBlock *MBB = CmpInstr.getParent();
2931 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
2932 SE = MBB->succ_end(); SI != SE; ++SI)
2933 if ((*SI)->isLiveIn(ARM::CPSR))
2934 return false;
2935 }
2936
2937 // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
2938 // set CPSR so this is represented as an explicit output)
2939 if (!IsThumb1) {
2940 MI->getOperand(5).setReg(ARM::CPSR);
2941 MI->getOperand(5).setIsDef(true);
2942 }
2943 assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
2944 CmpInstr.eraseFromParent();
2945
2946 // Modify the condition code of operands in OperandsToUpdate.
2947 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2948 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2949 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
2950 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
2951
2952 return true;
2953 }
2954
shouldSink(const MachineInstr & MI) const2955 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const {
2956 // Do not sink MI if it might be used to optimize a redundant compare.
2957 // We heuristically only look at the instruction immediately following MI to
2958 // avoid potentially searching the entire basic block.
2959 if (isPredicated(MI))
2960 return true;
2961 MachineBasicBlock::const_iterator Next = &MI;
2962 ++Next;
2963 unsigned SrcReg, SrcReg2;
2964 int CmpMask, CmpValue;
2965 if (Next != MI.getParent()->end() &&
2966 analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) &&
2967 isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI))
2968 return false;
2969 return true;
2970 }
2971
FoldImmediate(MachineInstr & UseMI,MachineInstr & DefMI,unsigned Reg,MachineRegisterInfo * MRI) const2972 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
2973 unsigned Reg,
2974 MachineRegisterInfo *MRI) const {
2975 // Fold large immediates into add, sub, or, xor.
2976 unsigned DefOpc = DefMI.getOpcode();
2977 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
2978 return false;
2979 if (!DefMI.getOperand(1).isImm())
2980 // Could be t2MOVi32imm @xx
2981 return false;
2982
2983 if (!MRI->hasOneNonDBGUse(Reg))
2984 return false;
2985
2986 const MCInstrDesc &DefMCID = DefMI.getDesc();
2987 if (DefMCID.hasOptionalDef()) {
2988 unsigned NumOps = DefMCID.getNumOperands();
2989 const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
2990 if (MO.getReg() == ARM::CPSR && !MO.isDead())
2991 // If DefMI defines CPSR and it is not dead, it's obviously not safe
2992 // to delete DefMI.
2993 return false;
2994 }
2995
2996 const MCInstrDesc &UseMCID = UseMI.getDesc();
2997 if (UseMCID.hasOptionalDef()) {
2998 unsigned NumOps = UseMCID.getNumOperands();
2999 if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
3000 // If the instruction sets the flag, do not attempt this optimization
3001 // since it may change the semantics of the code.
3002 return false;
3003 }
3004
3005 unsigned UseOpc = UseMI.getOpcode();
3006 unsigned NewUseOpc = 0;
3007 uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
3008 uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
3009 bool Commute = false;
3010 switch (UseOpc) {
3011 default: return false;
3012 case ARM::SUBrr:
3013 case ARM::ADDrr:
3014 case ARM::ORRrr:
3015 case ARM::EORrr:
3016 case ARM::t2SUBrr:
3017 case ARM::t2ADDrr:
3018 case ARM::t2ORRrr:
3019 case ARM::t2EORrr: {
3020 Commute = UseMI.getOperand(2).getReg() != Reg;
3021 switch (UseOpc) {
3022 default: break;
3023 case ARM::ADDrr:
3024 case ARM::SUBrr:
3025 if (UseOpc == ARM::SUBrr && Commute)
3026 return false;
3027
3028 // ADD/SUB are special because they're essentially the same operation, so
3029 // we can handle a larger range of immediates.
3030 if (ARM_AM::isSOImmTwoPartVal(ImmVal))
3031 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
3032 else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
3033 ImmVal = -ImmVal;
3034 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
3035 } else
3036 return false;
3037 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3038 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3039 break;
3040 case ARM::ORRrr:
3041 case ARM::EORrr:
3042 if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
3043 return false;
3044 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3045 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3046 switch (UseOpc) {
3047 default: break;
3048 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
3049 case ARM::EORrr: NewUseOpc = ARM::EORri; break;
3050 }
3051 break;
3052 case ARM::t2ADDrr:
3053 case ARM::t2SUBrr:
3054 if (UseOpc == ARM::t2SUBrr && Commute)
3055 return false;
3056
3057 // ADD/SUB are special because they're essentially the same operation, so
3058 // we can handle a larger range of immediates.
3059 if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3060 NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2ADDri : ARM::t2SUBri;
3061 else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
3062 ImmVal = -ImmVal;
3063 NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2SUBri : ARM::t2ADDri;
3064 } else
3065 return false;
3066 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3067 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3068 break;
3069 case ARM::t2ORRrr:
3070 case ARM::t2EORrr:
3071 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3072 return false;
3073 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3074 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3075 switch (UseOpc) {
3076 default: break;
3077 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
3078 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
3079 }
3080 break;
3081 }
3082 }
3083 }
3084
3085 unsigned OpIdx = Commute ? 2 : 1;
3086 unsigned Reg1 = UseMI.getOperand(OpIdx).getReg();
3087 bool isKill = UseMI.getOperand(OpIdx).isKill();
3088 unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
3089 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc),
3090 NewReg)
3091 .addReg(Reg1, getKillRegState(isKill))
3092 .addImm(SOImmValV1)
3093 .add(predOps(ARMCC::AL))
3094 .add(condCodeOp());
3095 UseMI.setDesc(get(NewUseOpc));
3096 UseMI.getOperand(1).setReg(NewReg);
3097 UseMI.getOperand(1).setIsKill();
3098 UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
3099 DefMI.eraseFromParent();
3100 return true;
3101 }
3102
getNumMicroOpsSwiftLdSt(const InstrItineraryData * ItinData,const MachineInstr & MI)3103 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
3104 const MachineInstr &MI) {
3105 switch (MI.getOpcode()) {
3106 default: {
3107 const MCInstrDesc &Desc = MI.getDesc();
3108 int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
3109 assert(UOps >= 0 && "bad # UOps");
3110 return UOps;
3111 }
3112
3113 case ARM::LDRrs:
3114 case ARM::LDRBrs:
3115 case ARM::STRrs:
3116 case ARM::STRBrs: {
3117 unsigned ShOpVal = MI.getOperand(3).getImm();
3118 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3119 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3120 if (!isSub &&
3121 (ShImm == 0 ||
3122 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3123 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3124 return 1;
3125 return 2;
3126 }
3127
3128 case ARM::LDRH:
3129 case ARM::STRH: {
3130 if (!MI.getOperand(2).getReg())
3131 return 1;
3132
3133 unsigned ShOpVal = MI.getOperand(3).getImm();
3134 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3135 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3136 if (!isSub &&
3137 (ShImm == 0 ||
3138 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3139 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3140 return 1;
3141 return 2;
3142 }
3143
3144 case ARM::LDRSB:
3145 case ARM::LDRSH:
3146 return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
3147
3148 case ARM::LDRSB_POST:
3149 case ARM::LDRSH_POST: {
3150 unsigned Rt = MI.getOperand(0).getReg();
3151 unsigned Rm = MI.getOperand(3).getReg();
3152 return (Rt == Rm) ? 4 : 3;
3153 }
3154
3155 case ARM::LDR_PRE_REG:
3156 case ARM::LDRB_PRE_REG: {
3157 unsigned Rt = MI.getOperand(0).getReg();
3158 unsigned Rm = MI.getOperand(3).getReg();
3159 if (Rt == Rm)
3160 return 3;
3161 unsigned ShOpVal = MI.getOperand(4).getImm();
3162 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3163 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3164 if (!isSub &&
3165 (ShImm == 0 ||
3166 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3167 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3168 return 2;
3169 return 3;
3170 }
3171
3172 case ARM::STR_PRE_REG:
3173 case ARM::STRB_PRE_REG: {
3174 unsigned ShOpVal = MI.getOperand(4).getImm();
3175 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3176 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3177 if (!isSub &&
3178 (ShImm == 0 ||
3179 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3180 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3181 return 2;
3182 return 3;
3183 }
3184
3185 case ARM::LDRH_PRE:
3186 case ARM::STRH_PRE: {
3187 unsigned Rt = MI.getOperand(0).getReg();
3188 unsigned Rm = MI.getOperand(3).getReg();
3189 if (!Rm)
3190 return 2;
3191 if (Rt == Rm)
3192 return 3;
3193 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
3194 }
3195
3196 case ARM::LDR_POST_REG:
3197 case ARM::LDRB_POST_REG:
3198 case ARM::LDRH_POST: {
3199 unsigned Rt = MI.getOperand(0).getReg();
3200 unsigned Rm = MI.getOperand(3).getReg();
3201 return (Rt == Rm) ? 3 : 2;
3202 }
3203
3204 case ARM::LDR_PRE_IMM:
3205 case ARM::LDRB_PRE_IMM:
3206 case ARM::LDR_POST_IMM:
3207 case ARM::LDRB_POST_IMM:
3208 case ARM::STRB_POST_IMM:
3209 case ARM::STRB_POST_REG:
3210 case ARM::STRB_PRE_IMM:
3211 case ARM::STRH_POST:
3212 case ARM::STR_POST_IMM:
3213 case ARM::STR_POST_REG:
3214 case ARM::STR_PRE_IMM:
3215 return 2;
3216
3217 case ARM::LDRSB_PRE:
3218 case ARM::LDRSH_PRE: {
3219 unsigned Rm = MI.getOperand(3).getReg();
3220 if (Rm == 0)
3221 return 3;
3222 unsigned Rt = MI.getOperand(0).getReg();
3223 if (Rt == Rm)
3224 return 4;
3225 unsigned ShOpVal = MI.getOperand(4).getImm();
3226 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3227 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3228 if (!isSub &&
3229 (ShImm == 0 ||
3230 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3231 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3232 return 3;
3233 return 4;
3234 }
3235
3236 case ARM::LDRD: {
3237 unsigned Rt = MI.getOperand(0).getReg();
3238 unsigned Rn = MI.getOperand(2).getReg();
3239 unsigned Rm = MI.getOperand(3).getReg();
3240 if (Rm)
3241 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3242 : 3;
3243 return (Rt == Rn) ? 3 : 2;
3244 }
3245
3246 case ARM::STRD: {
3247 unsigned Rm = MI.getOperand(3).getReg();
3248 if (Rm)
3249 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3250 : 3;
3251 return 2;
3252 }
3253
3254 case ARM::LDRD_POST:
3255 case ARM::t2LDRD_POST:
3256 return 3;
3257
3258 case ARM::STRD_POST:
3259 case ARM::t2STRD_POST:
3260 return 4;
3261
3262 case ARM::LDRD_PRE: {
3263 unsigned Rt = MI.getOperand(0).getReg();
3264 unsigned Rn = MI.getOperand(3).getReg();
3265 unsigned Rm = MI.getOperand(4).getReg();
3266 if (Rm)
3267 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3268 : 4;
3269 return (Rt == Rn) ? 4 : 3;
3270 }
3271
3272 case ARM::t2LDRD_PRE: {
3273 unsigned Rt = MI.getOperand(0).getReg();
3274 unsigned Rn = MI.getOperand(3).getReg();
3275 return (Rt == Rn) ? 4 : 3;
3276 }
3277
3278 case ARM::STRD_PRE: {
3279 unsigned Rm = MI.getOperand(4).getReg();
3280 if (Rm)
3281 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3282 : 4;
3283 return 3;
3284 }
3285
3286 case ARM::t2STRD_PRE:
3287 return 3;
3288
3289 case ARM::t2LDR_POST:
3290 case ARM::t2LDRB_POST:
3291 case ARM::t2LDRB_PRE:
3292 case ARM::t2LDRSBi12:
3293 case ARM::t2LDRSBi8:
3294 case ARM::t2LDRSBpci:
3295 case ARM::t2LDRSBs:
3296 case ARM::t2LDRH_POST:
3297 case ARM::t2LDRH_PRE:
3298 case ARM::t2LDRSBT:
3299 case ARM::t2LDRSB_POST:
3300 case ARM::t2LDRSB_PRE:
3301 case ARM::t2LDRSH_POST:
3302 case ARM::t2LDRSH_PRE:
3303 case ARM::t2LDRSHi12:
3304 case ARM::t2LDRSHi8:
3305 case ARM::t2LDRSHpci:
3306 case ARM::t2LDRSHs:
3307 return 2;
3308
3309 case ARM::t2LDRDi8: {
3310 unsigned Rt = MI.getOperand(0).getReg();
3311 unsigned Rn = MI.getOperand(2).getReg();
3312 return (Rt == Rn) ? 3 : 2;
3313 }
3314
3315 case ARM::t2STRB_POST:
3316 case ARM::t2STRB_PRE:
3317 case ARM::t2STRBs:
3318 case ARM::t2STRDi8:
3319 case ARM::t2STRH_POST:
3320 case ARM::t2STRH_PRE:
3321 case ARM::t2STRHs:
3322 case ARM::t2STR_POST:
3323 case ARM::t2STR_PRE:
3324 case ARM::t2STRs:
3325 return 2;
3326 }
3327 }
3328
3329 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
3330 // can't be easily determined return 0 (missing MachineMemOperand).
3331 //
3332 // FIXME: The current MachineInstr design does not support relying on machine
3333 // mem operands to determine the width of a memory access. Instead, we expect
3334 // the target to provide this information based on the instruction opcode and
3335 // operands. However, using MachineMemOperand is the best solution now for
3336 // two reasons:
3337 //
3338 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3339 // operands. This is much more dangerous than using the MachineMemOperand
3340 // sizes because CodeGen passes can insert/remove optional machine operands. In
3341 // fact, it's totally incorrect for preRA passes and appears to be wrong for
3342 // postRA passes as well.
3343 //
3344 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
3345 // machine model that calls this should handle the unknown (zero size) case.
3346 //
3347 // Long term, we should require a target hook that verifies MachineMemOperand
3348 // sizes during MC lowering. That target hook should be local to MC lowering
3349 // because we can't ensure that it is aware of other MI forms. Doing this will
3350 // ensure that MachineMemOperands are correctly propagated through all passes.
getNumLDMAddresses(const MachineInstr & MI) const3351 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
3352 unsigned Size = 0;
3353 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
3354 E = MI.memoperands_end();
3355 I != E; ++I) {
3356 Size += (*I)->getSize();
3357 }
3358 return Size / 4;
3359 }
3360
getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,unsigned NumRegs)3361 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
3362 unsigned NumRegs) {
3363 unsigned UOps = 1 + NumRegs; // 1 for address computation.
3364 switch (Opc) {
3365 default:
3366 break;
3367 case ARM::VLDMDIA_UPD:
3368 case ARM::VLDMDDB_UPD:
3369 case ARM::VLDMSIA_UPD:
3370 case ARM::VLDMSDB_UPD:
3371 case ARM::VSTMDIA_UPD:
3372 case ARM::VSTMDDB_UPD:
3373 case ARM::VSTMSIA_UPD:
3374 case ARM::VSTMSDB_UPD:
3375 case ARM::LDMIA_UPD:
3376 case ARM::LDMDA_UPD:
3377 case ARM::LDMDB_UPD:
3378 case ARM::LDMIB_UPD:
3379 case ARM::STMIA_UPD:
3380 case ARM::STMDA_UPD:
3381 case ARM::STMDB_UPD:
3382 case ARM::STMIB_UPD:
3383 case ARM::tLDMIA_UPD:
3384 case ARM::tSTMIA_UPD:
3385 case ARM::t2LDMIA_UPD:
3386 case ARM::t2LDMDB_UPD:
3387 case ARM::t2STMIA_UPD:
3388 case ARM::t2STMDB_UPD:
3389 ++UOps; // One for base register writeback.
3390 break;
3391 case ARM::LDMIA_RET:
3392 case ARM::tPOP_RET:
3393 case ARM::t2LDMIA_RET:
3394 UOps += 2; // One for base reg wb, one for write to pc.
3395 break;
3396 }
3397 return UOps;
3398 }
3399
getNumMicroOps(const InstrItineraryData * ItinData,const MachineInstr & MI) const3400 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
3401 const MachineInstr &MI) const {
3402 if (!ItinData || ItinData->isEmpty())
3403 return 1;
3404
3405 const MCInstrDesc &Desc = MI.getDesc();
3406 unsigned Class = Desc.getSchedClass();
3407 int ItinUOps = ItinData->getNumMicroOps(Class);
3408 if (ItinUOps >= 0) {
3409 if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
3410 return getNumMicroOpsSwiftLdSt(ItinData, MI);
3411
3412 return ItinUOps;
3413 }
3414
3415 unsigned Opc = MI.getOpcode();
3416 switch (Opc) {
3417 default:
3418 llvm_unreachable("Unexpected multi-uops instruction!");
3419 case ARM::VLDMQIA:
3420 case ARM::VSTMQIA:
3421 return 2;
3422
3423 // The number of uOps for load / store multiple are determined by the number
3424 // registers.
3425 //
3426 // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3427 // same cycle. The scheduling for the first load / store must be done
3428 // separately by assuming the address is not 64-bit aligned.
3429 //
3430 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3431 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON
3432 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3433 case ARM::VLDMDIA:
3434 case ARM::VLDMDIA_UPD:
3435 case ARM::VLDMDDB_UPD:
3436 case ARM::VLDMSIA:
3437 case ARM::VLDMSIA_UPD:
3438 case ARM::VLDMSDB_UPD:
3439 case ARM::VSTMDIA:
3440 case ARM::VSTMDIA_UPD:
3441 case ARM::VSTMDDB_UPD:
3442 case ARM::VSTMSIA:
3443 case ARM::VSTMSIA_UPD:
3444 case ARM::VSTMSDB_UPD: {
3445 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
3446 return (NumRegs / 2) + (NumRegs % 2) + 1;
3447 }
3448
3449 case ARM::LDMIA_RET:
3450 case ARM::LDMIA:
3451 case ARM::LDMDA:
3452 case ARM::LDMDB:
3453 case ARM::LDMIB:
3454 case ARM::LDMIA_UPD:
3455 case ARM::LDMDA_UPD:
3456 case ARM::LDMDB_UPD:
3457 case ARM::LDMIB_UPD:
3458 case ARM::STMIA:
3459 case ARM::STMDA:
3460 case ARM::STMDB:
3461 case ARM::STMIB:
3462 case ARM::STMIA_UPD:
3463 case ARM::STMDA_UPD:
3464 case ARM::STMDB_UPD:
3465 case ARM::STMIB_UPD:
3466 case ARM::tLDMIA:
3467 case ARM::tLDMIA_UPD:
3468 case ARM::tSTMIA_UPD:
3469 case ARM::tPOP_RET:
3470 case ARM::tPOP:
3471 case ARM::tPUSH:
3472 case ARM::t2LDMIA_RET:
3473 case ARM::t2LDMIA:
3474 case ARM::t2LDMDB:
3475 case ARM::t2LDMIA_UPD:
3476 case ARM::t2LDMDB_UPD:
3477 case ARM::t2STMIA:
3478 case ARM::t2STMDB:
3479 case ARM::t2STMIA_UPD:
3480 case ARM::t2STMDB_UPD: {
3481 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
3482 switch (Subtarget.getLdStMultipleTiming()) {
3483 case ARMSubtarget::SingleIssuePlusExtras:
3484 return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
3485 case ARMSubtarget::SingleIssue:
3486 // Assume the worst.
3487 return NumRegs;
3488 case ARMSubtarget::DoubleIssue: {
3489 if (NumRegs < 4)
3490 return 2;
3491 // 4 registers would be issued: 2, 2.
3492 // 5 registers would be issued: 2, 2, 1.
3493 unsigned UOps = (NumRegs / 2);
3494 if (NumRegs % 2)
3495 ++UOps;
3496 return UOps;
3497 }
3498 case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
3499 unsigned UOps = (NumRegs / 2);
3500 // If there are odd number of registers or if it's not 64-bit aligned,
3501 // then it takes an extra AGU (Address Generation Unit) cycle.
3502 if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
3503 (*MI.memoperands_begin())->getAlignment() < 8)
3504 ++UOps;
3505 return UOps;
3506 }
3507 }
3508 }
3509 }
3510 llvm_unreachable("Didn't find the number of microops");
3511 }
3512
3513 int
getVLDMDefCycle(const InstrItineraryData * ItinData,const MCInstrDesc & DefMCID,unsigned DefClass,unsigned DefIdx,unsigned DefAlign) const3514 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3515 const MCInstrDesc &DefMCID,
3516 unsigned DefClass,
3517 unsigned DefIdx, unsigned DefAlign) const {
3518 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3519 if (RegNo <= 0)
3520 // Def is the address writeback.
3521 return ItinData->getOperandCycle(DefClass, DefIdx);
3522
3523 int DefCycle;
3524 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3525 // (regno / 2) + (regno % 2) + 1
3526 DefCycle = RegNo / 2 + 1;
3527 if (RegNo % 2)
3528 ++DefCycle;
3529 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3530 DefCycle = RegNo;
3531 bool isSLoad = false;
3532
3533 switch (DefMCID.getOpcode()) {
3534 default: break;
3535 case ARM::VLDMSIA:
3536 case ARM::VLDMSIA_UPD:
3537 case ARM::VLDMSDB_UPD:
3538 isSLoad = true;
3539 break;
3540 }
3541
3542 // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3543 // then it takes an extra cycle.
3544 if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3545 ++DefCycle;
3546 } else {
3547 // Assume the worst.
3548 DefCycle = RegNo + 2;
3549 }
3550
3551 return DefCycle;
3552 }
3553
isLDMBaseRegInList(const MachineInstr & MI) const3554 bool ARMBaseInstrInfo::isLDMBaseRegInList(const MachineInstr &MI) const {
3555 unsigned BaseReg = MI.getOperand(0).getReg();
3556 for (unsigned i = 1, sz = MI.getNumOperands(); i < sz; ++i) {
3557 const auto &Op = MI.getOperand(i);
3558 if (Op.isReg() && Op.getReg() == BaseReg)
3559 return true;
3560 }
3561 return false;
3562 }
3563 unsigned
getLDMVariableDefsSize(const MachineInstr & MI) const3564 ARMBaseInstrInfo::getLDMVariableDefsSize(const MachineInstr &MI) const {
3565 // ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops
3566 // (outs GPR:$wb), (ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops)
3567 return MI.getNumOperands() + 1 - MI.getDesc().getNumOperands();
3568 }
3569
3570 int
getLDMDefCycle(const InstrItineraryData * ItinData,const MCInstrDesc & DefMCID,unsigned DefClass,unsigned DefIdx,unsigned DefAlign) const3571 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3572 const MCInstrDesc &DefMCID,
3573 unsigned DefClass,
3574 unsigned DefIdx, unsigned DefAlign) const {
3575 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3576 if (RegNo <= 0)
3577 // Def is the address writeback.
3578 return ItinData->getOperandCycle(DefClass, DefIdx);
3579
3580 int DefCycle;
3581 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3582 // 4 registers would be issued: 1, 2, 1.
3583 // 5 registers would be issued: 1, 2, 2.
3584 DefCycle = RegNo / 2;
3585 if (DefCycle < 1)
3586 DefCycle = 1;
3587 // Result latency is issue cycle + 2: E2.
3588 DefCycle += 2;
3589 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3590 DefCycle = (RegNo / 2);
3591 // If there are odd number of registers or if it's not 64-bit aligned,
3592 // then it takes an extra AGU (Address Generation Unit) cycle.
3593 if ((RegNo % 2) || DefAlign < 8)
3594 ++DefCycle;
3595 // Result latency is AGU cycles + 2.
3596 DefCycle += 2;
3597 } else {
3598 // Assume the worst.
3599 DefCycle = RegNo + 2;
3600 }
3601
3602 return DefCycle;
3603 }
3604
3605 int
getVSTMUseCycle(const InstrItineraryData * ItinData,const MCInstrDesc & UseMCID,unsigned UseClass,unsigned UseIdx,unsigned UseAlign) const3606 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3607 const MCInstrDesc &UseMCID,
3608 unsigned UseClass,
3609 unsigned UseIdx, unsigned UseAlign) const {
3610 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3611 if (RegNo <= 0)
3612 return ItinData->getOperandCycle(UseClass, UseIdx);
3613
3614 int UseCycle;
3615 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3616 // (regno / 2) + (regno % 2) + 1
3617 UseCycle = RegNo / 2 + 1;
3618 if (RegNo % 2)
3619 ++UseCycle;
3620 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3621 UseCycle = RegNo;
3622 bool isSStore = false;
3623
3624 switch (UseMCID.getOpcode()) {
3625 default: break;
3626 case ARM::VSTMSIA:
3627 case ARM::VSTMSIA_UPD:
3628 case ARM::VSTMSDB_UPD:
3629 isSStore = true;
3630 break;
3631 }
3632
3633 // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3634 // then it takes an extra cycle.
3635 if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3636 ++UseCycle;
3637 } else {
3638 // Assume the worst.
3639 UseCycle = RegNo + 2;
3640 }
3641
3642 return UseCycle;
3643 }
3644
3645 int
getSTMUseCycle(const InstrItineraryData * ItinData,const MCInstrDesc & UseMCID,unsigned UseClass,unsigned UseIdx,unsigned UseAlign) const3646 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3647 const MCInstrDesc &UseMCID,
3648 unsigned UseClass,
3649 unsigned UseIdx, unsigned UseAlign) const {
3650 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3651 if (RegNo <= 0)
3652 return ItinData->getOperandCycle(UseClass, UseIdx);
3653
3654 int UseCycle;
3655 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3656 UseCycle = RegNo / 2;
3657 if (UseCycle < 2)
3658 UseCycle = 2;
3659 // Read in E3.
3660 UseCycle += 2;
3661 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3662 UseCycle = (RegNo / 2);
3663 // If there are odd number of registers or if it's not 64-bit aligned,
3664 // then it takes an extra AGU (Address Generation Unit) cycle.
3665 if ((RegNo % 2) || UseAlign < 8)
3666 ++UseCycle;
3667 } else {
3668 // Assume the worst.
3669 UseCycle = 1;
3670 }
3671 return UseCycle;
3672 }
3673
3674 int
getOperandLatency(const InstrItineraryData * ItinData,const MCInstrDesc & DefMCID,unsigned DefIdx,unsigned DefAlign,const MCInstrDesc & UseMCID,unsigned UseIdx,unsigned UseAlign) const3675 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3676 const MCInstrDesc &DefMCID,
3677 unsigned DefIdx, unsigned DefAlign,
3678 const MCInstrDesc &UseMCID,
3679 unsigned UseIdx, unsigned UseAlign) const {
3680 unsigned DefClass = DefMCID.getSchedClass();
3681 unsigned UseClass = UseMCID.getSchedClass();
3682
3683 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
3684 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
3685
3686 // This may be a def / use of a variable_ops instruction, the operand
3687 // latency might be determinable dynamically. Let the target try to
3688 // figure it out.
3689 int DefCycle = -1;
3690 bool LdmBypass = false;
3691 switch (DefMCID.getOpcode()) {
3692 default:
3693 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
3694 break;
3695
3696 case ARM::VLDMDIA:
3697 case ARM::VLDMDIA_UPD:
3698 case ARM::VLDMDDB_UPD:
3699 case ARM::VLDMSIA:
3700 case ARM::VLDMSIA_UPD:
3701 case ARM::VLDMSDB_UPD:
3702 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3703 break;
3704
3705 case ARM::LDMIA_RET:
3706 case ARM::LDMIA:
3707 case ARM::LDMDA:
3708 case ARM::LDMDB:
3709 case ARM::LDMIB:
3710 case ARM::LDMIA_UPD:
3711 case ARM::LDMDA_UPD:
3712 case ARM::LDMDB_UPD:
3713 case ARM::LDMIB_UPD:
3714 case ARM::tLDMIA:
3715 case ARM::tLDMIA_UPD:
3716 case ARM::tPUSH:
3717 case ARM::t2LDMIA_RET:
3718 case ARM::t2LDMIA:
3719 case ARM::t2LDMDB:
3720 case ARM::t2LDMIA_UPD:
3721 case ARM::t2LDMDB_UPD:
3722 LdmBypass = true;
3723 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3724 break;
3725 }
3726
3727 if (DefCycle == -1)
3728 // We can't seem to determine the result latency of the def, assume it's 2.
3729 DefCycle = 2;
3730
3731 int UseCycle = -1;
3732 switch (UseMCID.getOpcode()) {
3733 default:
3734 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
3735 break;
3736
3737 case ARM::VSTMDIA:
3738 case ARM::VSTMDIA_UPD:
3739 case ARM::VSTMDDB_UPD:
3740 case ARM::VSTMSIA:
3741 case ARM::VSTMSIA_UPD:
3742 case ARM::VSTMSDB_UPD:
3743 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3744 break;
3745
3746 case ARM::STMIA:
3747 case ARM::STMDA:
3748 case ARM::STMDB:
3749 case ARM::STMIB:
3750 case ARM::STMIA_UPD:
3751 case ARM::STMDA_UPD:
3752 case ARM::STMDB_UPD:
3753 case ARM::STMIB_UPD:
3754 case ARM::tSTMIA_UPD:
3755 case ARM::tPOP_RET:
3756 case ARM::tPOP:
3757 case ARM::t2STMIA:
3758 case ARM::t2STMDB:
3759 case ARM::t2STMIA_UPD:
3760 case ARM::t2STMDB_UPD:
3761 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3762 break;
3763 }
3764
3765 if (UseCycle == -1)
3766 // Assume it's read in the first stage.
3767 UseCycle = 1;
3768
3769 UseCycle = DefCycle - UseCycle + 1;
3770 if (UseCycle > 0) {
3771 if (LdmBypass) {
3772 // It's a variable_ops instruction so we can't use DefIdx here. Just use
3773 // first def operand.
3774 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
3775 UseClass, UseIdx))
3776 --UseCycle;
3777 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
3778 UseClass, UseIdx)) {
3779 --UseCycle;
3780 }
3781 }
3782
3783 return UseCycle;
3784 }
3785
getBundledDefMI(const TargetRegisterInfo * TRI,const MachineInstr * MI,unsigned Reg,unsigned & DefIdx,unsigned & Dist)3786 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
3787 const MachineInstr *MI, unsigned Reg,
3788 unsigned &DefIdx, unsigned &Dist) {
3789 Dist = 0;
3790
3791 MachineBasicBlock::const_iterator I = MI; ++I;
3792 MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
3793 assert(II->isInsideBundle() && "Empty bundle?");
3794
3795 int Idx = -1;
3796 while (II->isInsideBundle()) {
3797 Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
3798 if (Idx != -1)
3799 break;
3800 --II;
3801 ++Dist;
3802 }
3803
3804 assert(Idx != -1 && "Cannot find bundled definition!");
3805 DefIdx = Idx;
3806 return &*II;
3807 }
3808
getBundledUseMI(const TargetRegisterInfo * TRI,const MachineInstr & MI,unsigned Reg,unsigned & UseIdx,unsigned & Dist)3809 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
3810 const MachineInstr &MI, unsigned Reg,
3811 unsigned &UseIdx, unsigned &Dist) {
3812 Dist = 0;
3813
3814 MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
3815 assert(II->isInsideBundle() && "Empty bundle?");
3816 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
3817
3818 // FIXME: This doesn't properly handle multiple uses.
3819 int Idx = -1;
3820 while (II != E && II->isInsideBundle()) {
3821 Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
3822 if (Idx != -1)
3823 break;
3824 if (II->getOpcode() != ARM::t2IT)
3825 ++Dist;
3826 ++II;
3827 }
3828
3829 if (Idx == -1) {
3830 Dist = 0;
3831 return nullptr;
3832 }
3833
3834 UseIdx = Idx;
3835 return &*II;
3836 }
3837
3838 /// Return the number of cycles to add to (or subtract from) the static
3839 /// itinerary based on the def opcode and alignment. The caller will ensure that
3840 /// adjusted latency is at least one cycle.
adjustDefLatency(const ARMSubtarget & Subtarget,const MachineInstr & DefMI,const MCInstrDesc & DefMCID,unsigned DefAlign)3841 static int adjustDefLatency(const ARMSubtarget &Subtarget,
3842 const MachineInstr &DefMI,
3843 const MCInstrDesc &DefMCID, unsigned DefAlign) {
3844 int Adjust = 0;
3845 if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
3846 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
3847 // variants are one cycle cheaper.
3848 switch (DefMCID.getOpcode()) {
3849 default: break;
3850 case ARM::LDRrs:
3851 case ARM::LDRBrs: {
3852 unsigned ShOpVal = DefMI.getOperand(3).getImm();
3853 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3854 if (ShImm == 0 ||
3855 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3856 --Adjust;
3857 break;
3858 }
3859 case ARM::t2LDRs:
3860 case ARM::t2LDRBs:
3861 case ARM::t2LDRHs:
3862 case ARM::t2LDRSHs: {
3863 // Thumb2 mode: lsl only.
3864 unsigned ShAmt = DefMI.getOperand(3).getImm();
3865 if (ShAmt == 0 || ShAmt == 2)
3866 --Adjust;
3867 break;
3868 }
3869 }
3870 } else if (Subtarget.isSwift()) {
3871 // FIXME: Properly handle all of the latency adjustments for address
3872 // writeback.
3873 switch (DefMCID.getOpcode()) {
3874 default: break;
3875 case ARM::LDRrs:
3876 case ARM::LDRBrs: {
3877 unsigned ShOpVal = DefMI.getOperand(3).getImm();
3878 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3879 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3880 if (!isSub &&
3881 (ShImm == 0 ||
3882 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3883 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3884 Adjust -= 2;
3885 else if (!isSub &&
3886 ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
3887 --Adjust;
3888 break;
3889 }
3890 case ARM::t2LDRs:
3891 case ARM::t2LDRBs:
3892 case ARM::t2LDRHs:
3893 case ARM::t2LDRSHs: {
3894 // Thumb2 mode: lsl only.
3895 unsigned ShAmt = DefMI.getOperand(3).getImm();
3896 if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
3897 Adjust -= 2;
3898 break;
3899 }
3900 }
3901 }
3902
3903 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
3904 switch (DefMCID.getOpcode()) {
3905 default: break;
3906 case ARM::VLD1q8:
3907 case ARM::VLD1q16:
3908 case ARM::VLD1q32:
3909 case ARM::VLD1q64:
3910 case ARM::VLD1q8wb_fixed:
3911 case ARM::VLD1q16wb_fixed:
3912 case ARM::VLD1q32wb_fixed:
3913 case ARM::VLD1q64wb_fixed:
3914 case ARM::VLD1q8wb_register:
3915 case ARM::VLD1q16wb_register:
3916 case ARM::VLD1q32wb_register:
3917 case ARM::VLD1q64wb_register:
3918 case ARM::VLD2d8:
3919 case ARM::VLD2d16:
3920 case ARM::VLD2d32:
3921 case ARM::VLD2q8:
3922 case ARM::VLD2q16:
3923 case ARM::VLD2q32:
3924 case ARM::VLD2d8wb_fixed:
3925 case ARM::VLD2d16wb_fixed:
3926 case ARM::VLD2d32wb_fixed:
3927 case ARM::VLD2q8wb_fixed:
3928 case ARM::VLD2q16wb_fixed:
3929 case ARM::VLD2q32wb_fixed:
3930 case ARM::VLD2d8wb_register:
3931 case ARM::VLD2d16wb_register:
3932 case ARM::VLD2d32wb_register:
3933 case ARM::VLD2q8wb_register:
3934 case ARM::VLD2q16wb_register:
3935 case ARM::VLD2q32wb_register:
3936 case ARM::VLD3d8:
3937 case ARM::VLD3d16:
3938 case ARM::VLD3d32:
3939 case ARM::VLD1d64T:
3940 case ARM::VLD3d8_UPD:
3941 case ARM::VLD3d16_UPD:
3942 case ARM::VLD3d32_UPD:
3943 case ARM::VLD1d64Twb_fixed:
3944 case ARM::VLD1d64Twb_register:
3945 case ARM::VLD3q8_UPD:
3946 case ARM::VLD3q16_UPD:
3947 case ARM::VLD3q32_UPD:
3948 case ARM::VLD4d8:
3949 case ARM::VLD4d16:
3950 case ARM::VLD4d32:
3951 case ARM::VLD1d64Q:
3952 case ARM::VLD4d8_UPD:
3953 case ARM::VLD4d16_UPD:
3954 case ARM::VLD4d32_UPD:
3955 case ARM::VLD1d64Qwb_fixed:
3956 case ARM::VLD1d64Qwb_register:
3957 case ARM::VLD4q8_UPD:
3958 case ARM::VLD4q16_UPD:
3959 case ARM::VLD4q32_UPD:
3960 case ARM::VLD1DUPq8:
3961 case ARM::VLD1DUPq16:
3962 case ARM::VLD1DUPq32:
3963 case ARM::VLD1DUPq8wb_fixed:
3964 case ARM::VLD1DUPq16wb_fixed:
3965 case ARM::VLD1DUPq32wb_fixed:
3966 case ARM::VLD1DUPq8wb_register:
3967 case ARM::VLD1DUPq16wb_register:
3968 case ARM::VLD1DUPq32wb_register:
3969 case ARM::VLD2DUPd8:
3970 case ARM::VLD2DUPd16:
3971 case ARM::VLD2DUPd32:
3972 case ARM::VLD2DUPd8wb_fixed:
3973 case ARM::VLD2DUPd16wb_fixed:
3974 case ARM::VLD2DUPd32wb_fixed:
3975 case ARM::VLD2DUPd8wb_register:
3976 case ARM::VLD2DUPd16wb_register:
3977 case ARM::VLD2DUPd32wb_register:
3978 case ARM::VLD4DUPd8:
3979 case ARM::VLD4DUPd16:
3980 case ARM::VLD4DUPd32:
3981 case ARM::VLD4DUPd8_UPD:
3982 case ARM::VLD4DUPd16_UPD:
3983 case ARM::VLD4DUPd32_UPD:
3984 case ARM::VLD1LNd8:
3985 case ARM::VLD1LNd16:
3986 case ARM::VLD1LNd32:
3987 case ARM::VLD1LNd8_UPD:
3988 case ARM::VLD1LNd16_UPD:
3989 case ARM::VLD1LNd32_UPD:
3990 case ARM::VLD2LNd8:
3991 case ARM::VLD2LNd16:
3992 case ARM::VLD2LNd32:
3993 case ARM::VLD2LNq16:
3994 case ARM::VLD2LNq32:
3995 case ARM::VLD2LNd8_UPD:
3996 case ARM::VLD2LNd16_UPD:
3997 case ARM::VLD2LNd32_UPD:
3998 case ARM::VLD2LNq16_UPD:
3999 case ARM::VLD2LNq32_UPD:
4000 case ARM::VLD4LNd8:
4001 case ARM::VLD4LNd16:
4002 case ARM::VLD4LNd32:
4003 case ARM::VLD4LNq16:
4004 case ARM::VLD4LNq32:
4005 case ARM::VLD4LNd8_UPD:
4006 case ARM::VLD4LNd16_UPD:
4007 case ARM::VLD4LNd32_UPD:
4008 case ARM::VLD4LNq16_UPD:
4009 case ARM::VLD4LNq32_UPD:
4010 // If the address is not 64-bit aligned, the latencies of these
4011 // instructions increases by one.
4012 ++Adjust;
4013 break;
4014 }
4015 }
4016 return Adjust;
4017 }
4018
getOperandLatency(const InstrItineraryData * ItinData,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx) const4019 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4020 const MachineInstr &DefMI,
4021 unsigned DefIdx,
4022 const MachineInstr &UseMI,
4023 unsigned UseIdx) const {
4024 // No operand latency. The caller may fall back to getInstrLatency.
4025 if (!ItinData || ItinData->isEmpty())
4026 return -1;
4027
4028 const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4029 unsigned Reg = DefMO.getReg();
4030
4031 const MachineInstr *ResolvedDefMI = &DefMI;
4032 unsigned DefAdj = 0;
4033 if (DefMI.isBundle())
4034 ResolvedDefMI =
4035 getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
4036 if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
4037 ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
4038 return 1;
4039 }
4040
4041 const MachineInstr *ResolvedUseMI = &UseMI;
4042 unsigned UseAdj = 0;
4043 if (UseMI.isBundle()) {
4044 ResolvedUseMI =
4045 getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
4046 if (!ResolvedUseMI)
4047 return -1;
4048 }
4049
4050 return getOperandLatencyImpl(
4051 ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
4052 Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
4053 }
4054
getOperandLatencyImpl(const InstrItineraryData * ItinData,const MachineInstr & DefMI,unsigned DefIdx,const MCInstrDesc & DefMCID,unsigned DefAdj,const MachineOperand & DefMO,unsigned Reg,const MachineInstr & UseMI,unsigned UseIdx,const MCInstrDesc & UseMCID,unsigned UseAdj) const4055 int ARMBaseInstrInfo::getOperandLatencyImpl(
4056 const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4057 unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
4058 const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
4059 unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
4060 if (Reg == ARM::CPSR) {
4061 if (DefMI.getOpcode() == ARM::FMSTAT) {
4062 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
4063 return Subtarget.isLikeA9() ? 1 : 20;
4064 }
4065
4066 // CPSR set and branch can be paired in the same cycle.
4067 if (UseMI.isBranch())
4068 return 0;
4069
4070 // Otherwise it takes the instruction latency (generally one).
4071 unsigned Latency = getInstrLatency(ItinData, DefMI);
4072
4073 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
4074 // its uses. Instructions which are otherwise scheduled between them may
4075 // incur a code size penalty (not able to use the CPSR setting 16-bit
4076 // instructions).
4077 if (Latency > 0 && Subtarget.isThumb2()) {
4078 const MachineFunction *MF = DefMI.getParent()->getParent();
4079 // FIXME: Use Function::optForSize().
4080 if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize))
4081 --Latency;
4082 }
4083 return Latency;
4084 }
4085
4086 if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
4087 return -1;
4088
4089 unsigned DefAlign = DefMI.hasOneMemOperand()
4090 ? (*DefMI.memoperands_begin())->getAlignment()
4091 : 0;
4092 unsigned UseAlign = UseMI.hasOneMemOperand()
4093 ? (*UseMI.memoperands_begin())->getAlignment()
4094 : 0;
4095
4096 // Get the itinerary's latency if possible, and handle variable_ops.
4097 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID,
4098 UseIdx, UseAlign);
4099 // Unable to find operand latency. The caller may resort to getInstrLatency.
4100 if (Latency < 0)
4101 return Latency;
4102
4103 // Adjust for IT block position.
4104 int Adj = DefAdj + UseAdj;
4105
4106 // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4107 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
4108 if (Adj >= 0 || (int)Latency > -Adj) {
4109 return Latency + Adj;
4110 }
4111 // Return the itinerary latency, which may be zero but not less than zero.
4112 return Latency;
4113 }
4114
4115 int
getOperandLatency(const InstrItineraryData * ItinData,SDNode * DefNode,unsigned DefIdx,SDNode * UseNode,unsigned UseIdx) const4116 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4117 SDNode *DefNode, unsigned DefIdx,
4118 SDNode *UseNode, unsigned UseIdx) const {
4119 if (!DefNode->isMachineOpcode())
4120 return 1;
4121
4122 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
4123
4124 if (isZeroCost(DefMCID.Opcode))
4125 return 0;
4126
4127 if (!ItinData || ItinData->isEmpty())
4128 return DefMCID.mayLoad() ? 3 : 1;
4129
4130 if (!UseNode->isMachineOpcode()) {
4131 int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
4132 int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
4133 int Threshold = 1 + Adj;
4134 return Latency <= Threshold ? 1 : Latency - Adj;
4135 }
4136
4137 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
4138 const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
4139 unsigned DefAlign = !DefMN->memoperands_empty()
4140 ? (*DefMN->memoperands_begin())->getAlignment() : 0;
4141 const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
4142 unsigned UseAlign = !UseMN->memoperands_empty()
4143 ? (*UseMN->memoperands_begin())->getAlignment() : 0;
4144 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
4145 UseMCID, UseIdx, UseAlign);
4146
4147 if (Latency > 1 &&
4148 (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
4149 Subtarget.isCortexA7())) {
4150 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4151 // variants are one cycle cheaper.
4152 switch (DefMCID.getOpcode()) {
4153 default: break;
4154 case ARM::LDRrs:
4155 case ARM::LDRBrs: {
4156 unsigned ShOpVal =
4157 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4158 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4159 if (ShImm == 0 ||
4160 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4161 --Latency;
4162 break;
4163 }
4164 case ARM::t2LDRs:
4165 case ARM::t2LDRBs:
4166 case ARM::t2LDRHs:
4167 case ARM::t2LDRSHs: {
4168 // Thumb2 mode: lsl only.
4169 unsigned ShAmt =
4170 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4171 if (ShAmt == 0 || ShAmt == 2)
4172 --Latency;
4173 break;
4174 }
4175 }
4176 } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
4177 // FIXME: Properly handle all of the latency adjustments for address
4178 // writeback.
4179 switch (DefMCID.getOpcode()) {
4180 default: break;
4181 case ARM::LDRrs:
4182 case ARM::LDRBrs: {
4183 unsigned ShOpVal =
4184 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4185 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4186 if (ShImm == 0 ||
4187 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4188 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4189 Latency -= 2;
4190 else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4191 --Latency;
4192 break;
4193 }
4194 case ARM::t2LDRs:
4195 case ARM::t2LDRBs:
4196 case ARM::t2LDRHs:
4197 case ARM::t2LDRSHs:
4198 // Thumb2 mode: lsl 0-3 only.
4199 Latency -= 2;
4200 break;
4201 }
4202 }
4203
4204 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
4205 switch (DefMCID.getOpcode()) {
4206 default: break;
4207 case ARM::VLD1q8:
4208 case ARM::VLD1q16:
4209 case ARM::VLD1q32:
4210 case ARM::VLD1q64:
4211 case ARM::VLD1q8wb_register:
4212 case ARM::VLD1q16wb_register:
4213 case ARM::VLD1q32wb_register:
4214 case ARM::VLD1q64wb_register:
4215 case ARM::VLD1q8wb_fixed:
4216 case ARM::VLD1q16wb_fixed:
4217 case ARM::VLD1q32wb_fixed:
4218 case ARM::VLD1q64wb_fixed:
4219 case ARM::VLD2d8:
4220 case ARM::VLD2d16:
4221 case ARM::VLD2d32:
4222 case ARM::VLD2q8Pseudo:
4223 case ARM::VLD2q16Pseudo:
4224 case ARM::VLD2q32Pseudo:
4225 case ARM::VLD2d8wb_fixed:
4226 case ARM::VLD2d16wb_fixed:
4227 case ARM::VLD2d32wb_fixed:
4228 case ARM::VLD2q8PseudoWB_fixed:
4229 case ARM::VLD2q16PseudoWB_fixed:
4230 case ARM::VLD2q32PseudoWB_fixed:
4231 case ARM::VLD2d8wb_register:
4232 case ARM::VLD2d16wb_register:
4233 case ARM::VLD2d32wb_register:
4234 case ARM::VLD2q8PseudoWB_register:
4235 case ARM::VLD2q16PseudoWB_register:
4236 case ARM::VLD2q32PseudoWB_register:
4237 case ARM::VLD3d8Pseudo:
4238 case ARM::VLD3d16Pseudo:
4239 case ARM::VLD3d32Pseudo:
4240 case ARM::VLD1d8TPseudo:
4241 case ARM::VLD1d16TPseudo:
4242 case ARM::VLD1d32TPseudo:
4243 case ARM::VLD1d64TPseudo:
4244 case ARM::VLD1d64TPseudoWB_fixed:
4245 case ARM::VLD1d64TPseudoWB_register:
4246 case ARM::VLD3d8Pseudo_UPD:
4247 case ARM::VLD3d16Pseudo_UPD:
4248 case ARM::VLD3d32Pseudo_UPD:
4249 case ARM::VLD3q8Pseudo_UPD:
4250 case ARM::VLD3q16Pseudo_UPD:
4251 case ARM::VLD3q32Pseudo_UPD:
4252 case ARM::VLD3q8oddPseudo:
4253 case ARM::VLD3q16oddPseudo:
4254 case ARM::VLD3q32oddPseudo:
4255 case ARM::VLD3q8oddPseudo_UPD:
4256 case ARM::VLD3q16oddPseudo_UPD:
4257 case ARM::VLD3q32oddPseudo_UPD:
4258 case ARM::VLD4d8Pseudo:
4259 case ARM::VLD4d16Pseudo:
4260 case ARM::VLD4d32Pseudo:
4261 case ARM::VLD1d8QPseudo:
4262 case ARM::VLD1d16QPseudo:
4263 case ARM::VLD1d32QPseudo:
4264 case ARM::VLD1d64QPseudo:
4265 case ARM::VLD1d64QPseudoWB_fixed:
4266 case ARM::VLD1d64QPseudoWB_register:
4267 case ARM::VLD1q8HighQPseudo:
4268 case ARM::VLD1q8LowQPseudo_UPD:
4269 case ARM::VLD1q8HighTPseudo:
4270 case ARM::VLD1q8LowTPseudo_UPD:
4271 case ARM::VLD1q16HighQPseudo:
4272 case ARM::VLD1q16LowQPseudo_UPD:
4273 case ARM::VLD1q16HighTPseudo:
4274 case ARM::VLD1q16LowTPseudo_UPD:
4275 case ARM::VLD1q32HighQPseudo:
4276 case ARM::VLD1q32LowQPseudo_UPD:
4277 case ARM::VLD1q32HighTPseudo:
4278 case ARM::VLD1q32LowTPseudo_UPD:
4279 case ARM::VLD1q64HighQPseudo:
4280 case ARM::VLD1q64LowQPseudo_UPD:
4281 case ARM::VLD1q64HighTPseudo:
4282 case ARM::VLD1q64LowTPseudo_UPD:
4283 case ARM::VLD4d8Pseudo_UPD:
4284 case ARM::VLD4d16Pseudo_UPD:
4285 case ARM::VLD4d32Pseudo_UPD:
4286 case ARM::VLD4q8Pseudo_UPD:
4287 case ARM::VLD4q16Pseudo_UPD:
4288 case ARM::VLD4q32Pseudo_UPD:
4289 case ARM::VLD4q8oddPseudo:
4290 case ARM::VLD4q16oddPseudo:
4291 case ARM::VLD4q32oddPseudo:
4292 case ARM::VLD4q8oddPseudo_UPD:
4293 case ARM::VLD4q16oddPseudo_UPD:
4294 case ARM::VLD4q32oddPseudo_UPD:
4295 case ARM::VLD1DUPq8:
4296 case ARM::VLD1DUPq16:
4297 case ARM::VLD1DUPq32:
4298 case ARM::VLD1DUPq8wb_fixed:
4299 case ARM::VLD1DUPq16wb_fixed:
4300 case ARM::VLD1DUPq32wb_fixed:
4301 case ARM::VLD1DUPq8wb_register:
4302 case ARM::VLD1DUPq16wb_register:
4303 case ARM::VLD1DUPq32wb_register:
4304 case ARM::VLD2DUPd8:
4305 case ARM::VLD2DUPd16:
4306 case ARM::VLD2DUPd32:
4307 case ARM::VLD2DUPd8wb_fixed:
4308 case ARM::VLD2DUPd16wb_fixed:
4309 case ARM::VLD2DUPd32wb_fixed:
4310 case ARM::VLD2DUPd8wb_register:
4311 case ARM::VLD2DUPd16wb_register:
4312 case ARM::VLD2DUPd32wb_register:
4313 case ARM::VLD2DUPq8EvenPseudo:
4314 case ARM::VLD2DUPq8OddPseudo:
4315 case ARM::VLD2DUPq16EvenPseudo:
4316 case ARM::VLD2DUPq16OddPseudo:
4317 case ARM::VLD2DUPq32EvenPseudo:
4318 case ARM::VLD2DUPq32OddPseudo:
4319 case ARM::VLD3DUPq8EvenPseudo:
4320 case ARM::VLD3DUPq8OddPseudo:
4321 case ARM::VLD3DUPq16EvenPseudo:
4322 case ARM::VLD3DUPq16OddPseudo:
4323 case ARM::VLD3DUPq32EvenPseudo:
4324 case ARM::VLD3DUPq32OddPseudo:
4325 case ARM::VLD4DUPd8Pseudo:
4326 case ARM::VLD4DUPd16Pseudo:
4327 case ARM::VLD4DUPd32Pseudo:
4328 case ARM::VLD4DUPd8Pseudo_UPD:
4329 case ARM::VLD4DUPd16Pseudo_UPD:
4330 case ARM::VLD4DUPd32Pseudo_UPD:
4331 case ARM::VLD4DUPq8EvenPseudo:
4332 case ARM::VLD4DUPq8OddPseudo:
4333 case ARM::VLD4DUPq16EvenPseudo:
4334 case ARM::VLD4DUPq16OddPseudo:
4335 case ARM::VLD4DUPq32EvenPseudo:
4336 case ARM::VLD4DUPq32OddPseudo:
4337 case ARM::VLD1LNq8Pseudo:
4338 case ARM::VLD1LNq16Pseudo:
4339 case ARM::VLD1LNq32Pseudo:
4340 case ARM::VLD1LNq8Pseudo_UPD:
4341 case ARM::VLD1LNq16Pseudo_UPD:
4342 case ARM::VLD1LNq32Pseudo_UPD:
4343 case ARM::VLD2LNd8Pseudo:
4344 case ARM::VLD2LNd16Pseudo:
4345 case ARM::VLD2LNd32Pseudo:
4346 case ARM::VLD2LNq16Pseudo:
4347 case ARM::VLD2LNq32Pseudo:
4348 case ARM::VLD2LNd8Pseudo_UPD:
4349 case ARM::VLD2LNd16Pseudo_UPD:
4350 case ARM::VLD2LNd32Pseudo_UPD:
4351 case ARM::VLD2LNq16Pseudo_UPD:
4352 case ARM::VLD2LNq32Pseudo_UPD:
4353 case ARM::VLD4LNd8Pseudo:
4354 case ARM::VLD4LNd16Pseudo:
4355 case ARM::VLD4LNd32Pseudo:
4356 case ARM::VLD4LNq16Pseudo:
4357 case ARM::VLD4LNq32Pseudo:
4358 case ARM::VLD4LNd8Pseudo_UPD:
4359 case ARM::VLD4LNd16Pseudo_UPD:
4360 case ARM::VLD4LNd32Pseudo_UPD:
4361 case ARM::VLD4LNq16Pseudo_UPD:
4362 case ARM::VLD4LNq32Pseudo_UPD:
4363 // If the address is not 64-bit aligned, the latencies of these
4364 // instructions increases by one.
4365 ++Latency;
4366 break;
4367 }
4368
4369 return Latency;
4370 }
4371
getPredicationCost(const MachineInstr & MI) const4372 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
4373 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4374 MI.isImplicitDef())
4375 return 0;
4376
4377 if (MI.isBundle())
4378 return 0;
4379
4380 const MCInstrDesc &MCID = MI.getDesc();
4381
4382 if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4383 !Subtarget.cheapPredicableCPSRDef())) {
4384 // When predicated, CPSR is an additional source operand for CPSR updating
4385 // instructions, this apparently increases their latencies.
4386 return 1;
4387 }
4388 return 0;
4389 }
4390
getInstrLatency(const InstrItineraryData * ItinData,const MachineInstr & MI,unsigned * PredCost) const4391 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4392 const MachineInstr &MI,
4393 unsigned *PredCost) const {
4394 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4395 MI.isImplicitDef())
4396 return 1;
4397
4398 // An instruction scheduler typically runs on unbundled instructions, however
4399 // other passes may query the latency of a bundled instruction.
4400 if (MI.isBundle()) {
4401 unsigned Latency = 0;
4402 MachineBasicBlock::const_instr_iterator I = MI.getIterator();
4403 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4404 while (++I != E && I->isInsideBundle()) {
4405 if (I->getOpcode() != ARM::t2IT)
4406 Latency += getInstrLatency(ItinData, *I, PredCost);
4407 }
4408 return Latency;
4409 }
4410
4411 const MCInstrDesc &MCID = MI.getDesc();
4412 if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4413 !Subtarget.cheapPredicableCPSRDef()))) {
4414 // When predicated, CPSR is an additional source operand for CPSR updating
4415 // instructions, this apparently increases their latencies.
4416 *PredCost = 1;
4417 }
4418 // Be sure to call getStageLatency for an empty itinerary in case it has a
4419 // valid MinLatency property.
4420 if (!ItinData)
4421 return MI.mayLoad() ? 3 : 1;
4422
4423 unsigned Class = MCID.getSchedClass();
4424
4425 // For instructions with variable uops, use uops as latency.
4426 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
4427 return getNumMicroOps(ItinData, MI);
4428
4429 // For the common case, fall back on the itinerary's latency.
4430 unsigned Latency = ItinData->getStageLatency(Class);
4431
4432 // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4433 unsigned DefAlign =
4434 MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlignment() : 0;
4435 int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
4436 if (Adj >= 0 || (int)Latency > -Adj) {
4437 return Latency + Adj;
4438 }
4439 return Latency;
4440 }
4441
getInstrLatency(const InstrItineraryData * ItinData,SDNode * Node) const4442 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4443 SDNode *Node) const {
4444 if (!Node->isMachineOpcode())
4445 return 1;
4446
4447 if (!ItinData || ItinData->isEmpty())
4448 return 1;
4449
4450 unsigned Opcode = Node->getMachineOpcode();
4451 switch (Opcode) {
4452 default:
4453 return ItinData->getStageLatency(get(Opcode).getSchedClass());
4454 case ARM::VLDMQIA:
4455 case ARM::VSTMQIA:
4456 return 2;
4457 }
4458 }
4459
hasHighOperandLatency(const TargetSchedModel & SchedModel,const MachineRegisterInfo * MRI,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx) const4460 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
4461 const MachineRegisterInfo *MRI,
4462 const MachineInstr &DefMI,
4463 unsigned DefIdx,
4464 const MachineInstr &UseMI,
4465 unsigned UseIdx) const {
4466 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4467 unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
4468 if (Subtarget.nonpipelinedVFP() &&
4469 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4470 return true;
4471
4472 // Hoist VFP / NEON instructions with 4 or higher latency.
4473 unsigned Latency =
4474 SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
4475 if (Latency <= 3)
4476 return false;
4477 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4478 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4479 }
4480
hasLowDefLatency(const TargetSchedModel & SchedModel,const MachineInstr & DefMI,unsigned DefIdx) const4481 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
4482 const MachineInstr &DefMI,
4483 unsigned DefIdx) const {
4484 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
4485 if (!ItinData || ItinData->isEmpty())
4486 return false;
4487
4488 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4489 if (DDomain == ARMII::DomainGeneral) {
4490 unsigned DefClass = DefMI.getDesc().getSchedClass();
4491 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4492 return (DefCycle != -1 && DefCycle <= 2);
4493 }
4494 return false;
4495 }
4496
verifyInstruction(const MachineInstr & MI,StringRef & ErrInfo) const4497 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
4498 StringRef &ErrInfo) const {
4499 if (convertAddSubFlagsOpcode(MI.getOpcode())) {
4500 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4501 return false;
4502 }
4503 return true;
4504 }
4505
4506 // LoadStackGuard has so far only been implemented for MachO. Different code
4507 // sequence is needed for other targets.
expandLoadStackGuardBase(MachineBasicBlock::iterator MI,unsigned LoadImmOpc,unsigned LoadOpc) const4508 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4509 unsigned LoadImmOpc,
4510 unsigned LoadOpc) const {
4511 assert(!Subtarget.isROPI() && !Subtarget.isRWPI() &&
4512 "ROPI/RWPI not currently supported with stack guard");
4513
4514 MachineBasicBlock &MBB = *MI->getParent();
4515 DebugLoc DL = MI->getDebugLoc();
4516 unsigned Reg = MI->getOperand(0).getReg();
4517 const GlobalValue *GV =
4518 cast<GlobalValue>((*MI->memoperands_begin())->getValue());
4519 MachineInstrBuilder MIB;
4520
4521 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4522 .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY);
4523
4524 if (Subtarget.isGVIndirectSymbol(GV)) {
4525 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4526 MIB.addReg(Reg, RegState::Kill).addImm(0);
4527 auto Flags = MachineMemOperand::MOLoad |
4528 MachineMemOperand::MODereferenceable |
4529 MachineMemOperand::MOInvariant;
4530 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4531 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, 4);
4532 MIB.addMemOperand(MMO).add(predOps(ARMCC::AL));
4533 }
4534
4535 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4536 MIB.addReg(Reg, RegState::Kill)
4537 .addImm(0)
4538 .setMemRefs(MI->memoperands_begin(), MI->memoperands_end())
4539 .add(predOps(ARMCC::AL));
4540 }
4541
4542 bool
isFpMLxInstruction(unsigned Opcode,unsigned & MulOpc,unsigned & AddSubOpc,bool & NegAcc,bool & HasLane) const4543 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
4544 unsigned &AddSubOpc,
4545 bool &NegAcc, bool &HasLane) const {
4546 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
4547 if (I == MLxEntryMap.end())
4548 return false;
4549
4550 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
4551 MulOpc = Entry.MulOpc;
4552 AddSubOpc = Entry.AddSubOpc;
4553 NegAcc = Entry.NegAcc;
4554 HasLane = Entry.HasLane;
4555 return true;
4556 }
4557
4558 //===----------------------------------------------------------------------===//
4559 // Execution domains.
4560 //===----------------------------------------------------------------------===//
4561 //
4562 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
4563 // and some can go down both. The vmov instructions go down the VFP pipeline,
4564 // but they can be changed to vorr equivalents that are executed by the NEON
4565 // pipeline.
4566 //
4567 // We use the following execution domain numbering:
4568 //
4569 enum ARMExeDomain {
4570 ExeGeneric = 0,
4571 ExeVFP = 1,
4572 ExeNEON = 2
4573 };
4574
4575 //
4576 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
4577 //
4578 std::pair<uint16_t, uint16_t>
getExecutionDomain(const MachineInstr & MI) const4579 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
4580 // If we don't have access to NEON instructions then we won't be able
4581 // to swizzle anything to the NEON domain. Check to make sure.
4582 if (Subtarget.hasNEON()) {
4583 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
4584 // if they are not predicated.
4585 if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
4586 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4587
4588 // CortexA9 is particularly picky about mixing the two and wants these
4589 // converted.
4590 if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
4591 (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
4592 MI.getOpcode() == ARM::VMOVS))
4593 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4594 }
4595 // No other instructions can be swizzled, so just determine their domain.
4596 unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
4597
4598 if (Domain & ARMII::DomainNEON)
4599 return std::make_pair(ExeNEON, 0);
4600
4601 // Certain instructions can go either way on Cortex-A8.
4602 // Treat them as NEON instructions.
4603 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
4604 return std::make_pair(ExeNEON, 0);
4605
4606 if (Domain & ARMII::DomainVFP)
4607 return std::make_pair(ExeVFP, 0);
4608
4609 return std::make_pair(ExeGeneric, 0);
4610 }
4611
getCorrespondingDRegAndLane(const TargetRegisterInfo * TRI,unsigned SReg,unsigned & Lane)4612 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
4613 unsigned SReg, unsigned &Lane) {
4614 unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
4615 Lane = 0;
4616
4617 if (DReg != ARM::NoRegister)
4618 return DReg;
4619
4620 Lane = 1;
4621 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
4622
4623 assert(DReg && "S-register with no D super-register?");
4624 return DReg;
4625 }
4626
4627 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
4628 /// set ImplicitSReg to a register number that must be marked as implicit-use or
4629 /// zero if no register needs to be defined as implicit-use.
4630 ///
4631 /// If the function cannot determine if an SPR should be marked implicit use or
4632 /// not, it returns false.
4633 ///
4634 /// This function handles cases where an instruction is being modified from taking
4635 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
4636 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
4637 /// lane of the DPR).
4638 ///
4639 /// If the other SPR is defined, an implicit-use of it should be added. Else,
4640 /// (including the case where the DPR itself is defined), it should not.
4641 ///
getImplicitSPRUseForDPRUse(const TargetRegisterInfo * TRI,MachineInstr & MI,unsigned DReg,unsigned Lane,unsigned & ImplicitSReg)4642 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
4643 MachineInstr &MI, unsigned DReg,
4644 unsigned Lane, unsigned &ImplicitSReg) {
4645 // If the DPR is defined or used already, the other SPR lane will be chained
4646 // correctly, so there is nothing to be done.
4647 if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
4648 ImplicitSReg = 0;
4649 return true;
4650 }
4651
4652 // Otherwise we need to go searching to see if the SPR is set explicitly.
4653 ImplicitSReg = TRI->getSubReg(DReg,
4654 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
4655 MachineBasicBlock::LivenessQueryResult LQR =
4656 MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
4657
4658 if (LQR == MachineBasicBlock::LQR_Live)
4659 return true;
4660 else if (LQR == MachineBasicBlock::LQR_Unknown)
4661 return false;
4662
4663 // If the register is known not to be live, there is no need to add an
4664 // implicit-use.
4665 ImplicitSReg = 0;
4666 return true;
4667 }
4668
setExecutionDomain(MachineInstr & MI,unsigned Domain) const4669 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
4670 unsigned Domain) const {
4671 unsigned DstReg, SrcReg, DReg;
4672 unsigned Lane;
4673 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4674 const TargetRegisterInfo *TRI = &getRegisterInfo();
4675 switch (MI.getOpcode()) {
4676 default:
4677 llvm_unreachable("cannot handle opcode!");
4678 break;
4679 case ARM::VMOVD:
4680 if (Domain != ExeNEON)
4681 break;
4682
4683 // Zap the predicate operands.
4684 assert(!isPredicated(MI) && "Cannot predicate a VORRd");
4685
4686 // Make sure we've got NEON instructions.
4687 assert(Subtarget.hasNEON() && "VORRd requires NEON");
4688
4689 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
4690 DstReg = MI.getOperand(0).getReg();
4691 SrcReg = MI.getOperand(1).getReg();
4692
4693 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4694 MI.RemoveOperand(i - 1);
4695
4696 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
4697 MI.setDesc(get(ARM::VORRd));
4698 MIB.addReg(DstReg, RegState::Define)
4699 .addReg(SrcReg)
4700 .addReg(SrcReg)
4701 .add(predOps(ARMCC::AL));
4702 break;
4703 case ARM::VMOVRS:
4704 if (Domain != ExeNEON)
4705 break;
4706 assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
4707
4708 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
4709 DstReg = MI.getOperand(0).getReg();
4710 SrcReg = MI.getOperand(1).getReg();
4711
4712 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4713 MI.RemoveOperand(i - 1);
4714
4715 DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
4716
4717 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
4718 // Note that DSrc has been widened and the other lane may be undef, which
4719 // contaminates the entire register.
4720 MI.setDesc(get(ARM::VGETLNi32));
4721 MIB.addReg(DstReg, RegState::Define)
4722 .addReg(DReg, RegState::Undef)
4723 .addImm(Lane)
4724 .add(predOps(ARMCC::AL));
4725
4726 // The old source should be an implicit use, otherwise we might think it
4727 // was dead before here.
4728 MIB.addReg(SrcReg, RegState::Implicit);
4729 break;
4730 case ARM::VMOVSR: {
4731 if (Domain != ExeNEON)
4732 break;
4733 assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
4734
4735 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
4736 DstReg = MI.getOperand(0).getReg();
4737 SrcReg = MI.getOperand(1).getReg();
4738
4739 DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
4740
4741 unsigned ImplicitSReg;
4742 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
4743 break;
4744
4745 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4746 MI.RemoveOperand(i - 1);
4747
4748 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
4749 // Again DDst may be undefined at the beginning of this instruction.
4750 MI.setDesc(get(ARM::VSETLNi32));
4751 MIB.addReg(DReg, RegState::Define)
4752 .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
4753 .addReg(SrcReg)
4754 .addImm(Lane)
4755 .add(predOps(ARMCC::AL));
4756
4757 // The narrower destination must be marked as set to keep previous chains
4758 // in place.
4759 MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
4760 if (ImplicitSReg != 0)
4761 MIB.addReg(ImplicitSReg, RegState::Implicit);
4762 break;
4763 }
4764 case ARM::VMOVS: {
4765 if (Domain != ExeNEON)
4766 break;
4767
4768 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
4769 DstReg = MI.getOperand(0).getReg();
4770 SrcReg = MI.getOperand(1).getReg();
4771
4772 unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
4773 DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
4774 DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
4775
4776 unsigned ImplicitSReg;
4777 if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
4778 break;
4779
4780 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4781 MI.RemoveOperand(i - 1);
4782
4783 if (DSrc == DDst) {
4784 // Destination can be:
4785 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
4786 MI.setDesc(get(ARM::VDUPLN32d));
4787 MIB.addReg(DDst, RegState::Define)
4788 .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
4789 .addImm(SrcLane)
4790 .add(predOps(ARMCC::AL));
4791
4792 // Neither the source or the destination are naturally represented any
4793 // more, so add them in manually.
4794 MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
4795 MIB.addReg(SrcReg, RegState::Implicit);
4796 if (ImplicitSReg != 0)
4797 MIB.addReg(ImplicitSReg, RegState::Implicit);
4798 break;
4799 }
4800
4801 // In general there's no single instruction that can perform an S <-> S
4802 // move in NEON space, but a pair of VEXT instructions *can* do the
4803 // job. It turns out that the VEXTs needed will only use DSrc once, with
4804 // the position based purely on the combination of lane-0 and lane-1
4805 // involved. For example
4806 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1
4807 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1
4808 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1
4809 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1
4810 //
4811 // Pattern of the MachineInstrs is:
4812 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
4813 MachineInstrBuilder NewMIB;
4814 NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
4815 DDst);
4816
4817 // On the first instruction, both DSrc and DDst may be undef if present.
4818 // Specifically when the original instruction didn't have them as an
4819 // <imp-use>.
4820 unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
4821 bool CurUndef = !MI.readsRegister(CurReg, TRI);
4822 NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
4823
4824 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
4825 CurUndef = !MI.readsRegister(CurReg, TRI);
4826 NewMIB.addReg(CurReg, getUndefRegState(CurUndef))
4827 .addImm(1)
4828 .add(predOps(ARMCC::AL));
4829
4830 if (SrcLane == DstLane)
4831 NewMIB.addReg(SrcReg, RegState::Implicit);
4832
4833 MI.setDesc(get(ARM::VEXTd32));
4834 MIB.addReg(DDst, RegState::Define);
4835
4836 // On the second instruction, DDst has definitely been defined above, so
4837 // it is not undef. DSrc, if present, can be undef as above.
4838 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
4839 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
4840 MIB.addReg(CurReg, getUndefRegState(CurUndef));
4841
4842 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
4843 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
4844 MIB.addReg(CurReg, getUndefRegState(CurUndef))
4845 .addImm(1)
4846 .add(predOps(ARMCC::AL));
4847
4848 if (SrcLane != DstLane)
4849 MIB.addReg(SrcReg, RegState::Implicit);
4850
4851 // As before, the original destination is no longer represented, add it
4852 // implicitly.
4853 MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
4854 if (ImplicitSReg != 0)
4855 MIB.addReg(ImplicitSReg, RegState::Implicit);
4856 break;
4857 }
4858 }
4859 }
4860
4861 //===----------------------------------------------------------------------===//
4862 // Partial register updates
4863 //===----------------------------------------------------------------------===//
4864 //
4865 // Swift renames NEON registers with 64-bit granularity. That means any
4866 // instruction writing an S-reg implicitly reads the containing D-reg. The
4867 // problem is mostly avoided by translating f32 operations to v2f32 operations
4868 // on D-registers, but f32 loads are still a problem.
4869 //
4870 // These instructions can load an f32 into a NEON register:
4871 //
4872 // VLDRS - Only writes S, partial D update.
4873 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
4874 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
4875 //
4876 // FCONSTD can be used as a dependency-breaking instruction.
getPartialRegUpdateClearance(const MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const4877 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
4878 const MachineInstr &MI, unsigned OpNum,
4879 const TargetRegisterInfo *TRI) const {
4880 auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
4881 if (!PartialUpdateClearance)
4882 return 0;
4883
4884 assert(TRI && "Need TRI instance");
4885
4886 const MachineOperand &MO = MI.getOperand(OpNum);
4887 if (MO.readsReg())
4888 return 0;
4889 unsigned Reg = MO.getReg();
4890 int UseOp = -1;
4891
4892 switch (MI.getOpcode()) {
4893 // Normal instructions writing only an S-register.
4894 case ARM::VLDRS:
4895 case ARM::FCONSTS:
4896 case ARM::VMOVSR:
4897 case ARM::VMOVv8i8:
4898 case ARM::VMOVv4i16:
4899 case ARM::VMOVv2i32:
4900 case ARM::VMOVv2f32:
4901 case ARM::VMOVv1i64:
4902 UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI);
4903 break;
4904
4905 // Explicitly reads the dependency.
4906 case ARM::VLD1LNd32:
4907 UseOp = 3;
4908 break;
4909 default:
4910 return 0;
4911 }
4912
4913 // If this instruction actually reads a value from Reg, there is no unwanted
4914 // dependency.
4915 if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
4916 return 0;
4917
4918 // We must be able to clobber the whole D-reg.
4919 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4920 // Virtual register must be a def undef foo:ssub_0 operand.
4921 if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
4922 return 0;
4923 } else if (ARM::SPRRegClass.contains(Reg)) {
4924 // Physical register: MI must define the full D-reg.
4925 unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
4926 &ARM::DPRRegClass);
4927 if (!DReg || !MI.definesRegister(DReg, TRI))
4928 return 0;
4929 }
4930
4931 // MI has an unwanted D-register dependency.
4932 // Avoid defs in the previous N instructrions.
4933 return PartialUpdateClearance;
4934 }
4935
4936 // Break a partial register dependency after getPartialRegUpdateClearance
4937 // returned non-zero.
breakPartialRegDependency(MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const4938 void ARMBaseInstrInfo::breakPartialRegDependency(
4939 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
4940 assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
4941 assert(TRI && "Need TRI instance");
4942
4943 const MachineOperand &MO = MI.getOperand(OpNum);
4944 unsigned Reg = MO.getReg();
4945 assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
4946 "Can't break virtual register dependencies.");
4947 unsigned DReg = Reg;
4948
4949 // If MI defines an S-reg, find the corresponding D super-register.
4950 if (ARM::SPRRegClass.contains(Reg)) {
4951 DReg = ARM::D0 + (Reg - ARM::S0) / 2;
4952 assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
4953 }
4954
4955 assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
4956 assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
4957
4958 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
4959 // the full D-register by loading the same value to both lanes. The
4960 // instruction is micro-coded with 2 uops, so don't do this until we can
4961 // properly schedule micro-coded instructions. The dispatcher stalls cause
4962 // too big regressions.
4963
4964 // Insert the dependency-breaking FCONSTD before MI.
4965 // 96 is the encoding of 0.5, but the actual value doesn't matter here.
4966 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
4967 .addImm(96)
4968 .add(predOps(ARMCC::AL));
4969 MI.addRegisterKilled(DReg, TRI, true);
4970 }
4971
hasNOP() const4972 bool ARMBaseInstrInfo::hasNOP() const {
4973 return Subtarget.getFeatureBits()[ARM::HasV6KOps];
4974 }
4975
isSwiftFastImmShift(const MachineInstr * MI) const4976 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
4977 if (MI->getNumOperands() < 4)
4978 return true;
4979 unsigned ShOpVal = MI->getOperand(3).getImm();
4980 unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
4981 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
4982 if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
4983 ((ShImm == 1 || ShImm == 2) &&
4984 ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
4985 return true;
4986
4987 return false;
4988 }
4989
getRegSequenceLikeInputs(const MachineInstr & MI,unsigned DefIdx,SmallVectorImpl<RegSubRegPairAndIdx> & InputRegs) const4990 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
4991 const MachineInstr &MI, unsigned DefIdx,
4992 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
4993 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
4994 assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
4995
4996 switch (MI.getOpcode()) {
4997 case ARM::VMOVDRR:
4998 // dX = VMOVDRR rY, rZ
4999 // is the same as:
5000 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
5001 // Populate the InputRegs accordingly.
5002 // rY
5003 const MachineOperand *MOReg = &MI.getOperand(1);
5004 if (!MOReg->isUndef())
5005 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5006 MOReg->getSubReg(), ARM::ssub_0));
5007 // rZ
5008 MOReg = &MI.getOperand(2);
5009 if (!MOReg->isUndef())
5010 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5011 MOReg->getSubReg(), ARM::ssub_1));
5012 return true;
5013 }
5014 llvm_unreachable("Target dependent opcode missing");
5015 }
5016
getExtractSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPairAndIdx & InputReg) const5017 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
5018 const MachineInstr &MI, unsigned DefIdx,
5019 RegSubRegPairAndIdx &InputReg) const {
5020 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5021 assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
5022
5023 switch (MI.getOpcode()) {
5024 case ARM::VMOVRRD:
5025 // rX, rY = VMOVRRD dZ
5026 // is the same as:
5027 // rX = EXTRACT_SUBREG dZ, ssub_0
5028 // rY = EXTRACT_SUBREG dZ, ssub_1
5029 const MachineOperand &MOReg = MI.getOperand(2);
5030 if (MOReg.isUndef())
5031 return false;
5032 InputReg.Reg = MOReg.getReg();
5033 InputReg.SubReg = MOReg.getSubReg();
5034 InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
5035 return true;
5036 }
5037 llvm_unreachable("Target dependent opcode missing");
5038 }
5039
getInsertSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPair & BaseReg,RegSubRegPairAndIdx & InsertedReg) const5040 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
5041 const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
5042 RegSubRegPairAndIdx &InsertedReg) const {
5043 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5044 assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
5045
5046 switch (MI.getOpcode()) {
5047 case ARM::VSETLNi32:
5048 // dX = VSETLNi32 dY, rZ, imm
5049 const MachineOperand &MOBaseReg = MI.getOperand(1);
5050 const MachineOperand &MOInsertedReg = MI.getOperand(2);
5051 if (MOInsertedReg.isUndef())
5052 return false;
5053 const MachineOperand &MOIndex = MI.getOperand(3);
5054 BaseReg.Reg = MOBaseReg.getReg();
5055 BaseReg.SubReg = MOBaseReg.getSubReg();
5056
5057 InsertedReg.Reg = MOInsertedReg.getReg();
5058 InsertedReg.SubReg = MOInsertedReg.getSubReg();
5059 InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1;
5060 return true;
5061 }
5062 llvm_unreachable("Target dependent opcode missing");
5063 }
5064