1 // Copyright 2017, VIXL authors
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 //   * Redistributions of source code must retain the above copyright notice,
8 //     this list of conditions and the following disclaimer.
9 //   * Redistributions in binary form must reproduce the above copyright
10 //     notice, this list of conditions and the following disclaimer in the
11 //     documentation and/or other materials provided with the distribution.
12 //   * Neither the name of ARM Limited nor the names of its contributors may
13 //     be used to endorse or promote products derived from this software
14 //     without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
20 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 // POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "aarch32/macro-assembler-aarch32.h"
29 
30 #define STRINGIFY(x) #x
31 #define TOSTRING(x) STRINGIFY(x)
32 
33 #define CONTEXT_SCOPE \
34   ContextScope context(this, __FILE__ ":" TOSTRING(__LINE__))
35 
36 namespace vixl {
37 namespace aarch32 {
38 
ExactAssemblyScopeWithoutPoolsCheck(MacroAssembler * masm,size_t size,SizePolicy size_policy)39 ExactAssemblyScopeWithoutPoolsCheck::ExactAssemblyScopeWithoutPoolsCheck(
40     MacroAssembler* masm, size_t size, SizePolicy size_policy)
41     : ExactAssemblyScope(masm,
42                          size,
43                          size_policy,
44                          ExactAssemblyScope::kIgnorePools) {}
45 
Open(MacroAssembler * masm)46 void UseScratchRegisterScope::Open(MacroAssembler* masm) {
47   VIXL_ASSERT(masm_ == NULL);
48   VIXL_ASSERT(masm != NULL);
49   masm_ = masm;
50 
51   old_available_ = masm_->GetScratchRegisterList()->GetList();
52   old_available_vfp_ = masm_->GetScratchVRegisterList()->GetList();
53 
54   parent_ = masm->GetCurrentScratchRegisterScope();
55   masm->SetCurrentScratchRegisterScope(this);
56 }
57 
58 
Close()59 void UseScratchRegisterScope::Close() {
60   if (masm_ != NULL) {
61     // Ensure that scopes nest perfectly, and do not outlive their parents.
62     // This is a run-time check because the order of destruction of objects in
63     // the _same_ scope is implementation-defined, and is likely to change in
64     // optimised builds.
65     VIXL_CHECK(masm_->GetCurrentScratchRegisterScope() == this);
66     masm_->SetCurrentScratchRegisterScope(parent_);
67 
68     masm_->GetScratchRegisterList()->SetList(old_available_);
69     masm_->GetScratchVRegisterList()->SetList(old_available_vfp_);
70 
71     masm_ = NULL;
72   }
73 }
74 
75 
IsAvailable(const Register & reg) const76 bool UseScratchRegisterScope::IsAvailable(const Register& reg) const {
77   VIXL_ASSERT(masm_ != NULL);
78   VIXL_ASSERT(reg.IsValid());
79   return masm_->GetScratchRegisterList()->Includes(reg);
80 }
81 
82 
IsAvailable(const VRegister & reg) const83 bool UseScratchRegisterScope::IsAvailable(const VRegister& reg) const {
84   VIXL_ASSERT(masm_ != NULL);
85   VIXL_ASSERT(reg.IsValid());
86   return masm_->GetScratchVRegisterList()->IncludesAllOf(reg);
87 }
88 
89 
Acquire()90 Register UseScratchRegisterScope::Acquire() {
91   VIXL_ASSERT(masm_ != NULL);
92   Register reg = masm_->GetScratchRegisterList()->GetFirstAvailableRegister();
93   VIXL_CHECK(reg.IsValid());
94   masm_->GetScratchRegisterList()->Remove(reg);
95   return reg;
96 }
97 
98 
AcquireV(unsigned size_in_bits)99 VRegister UseScratchRegisterScope::AcquireV(unsigned size_in_bits) {
100   switch (size_in_bits) {
101     case kSRegSizeInBits:
102       return AcquireS();
103     case kDRegSizeInBits:
104       return AcquireD();
105     case kQRegSizeInBits:
106       return AcquireQ();
107     default:
108       VIXL_UNREACHABLE();
109       return NoVReg;
110   }
111 }
112 
113 
AcquireQ()114 QRegister UseScratchRegisterScope::AcquireQ() {
115   VIXL_ASSERT(masm_ != NULL);
116   QRegister reg =
117       masm_->GetScratchVRegisterList()->GetFirstAvailableQRegister();
118   VIXL_CHECK(reg.IsValid());
119   masm_->GetScratchVRegisterList()->Remove(reg);
120   return reg;
121 }
122 
123 
AcquireD()124 DRegister UseScratchRegisterScope::AcquireD() {
125   VIXL_ASSERT(masm_ != NULL);
126   DRegister reg =
127       masm_->GetScratchVRegisterList()->GetFirstAvailableDRegister();
128   VIXL_CHECK(reg.IsValid());
129   masm_->GetScratchVRegisterList()->Remove(reg);
130   return reg;
131 }
132 
133 
AcquireS()134 SRegister UseScratchRegisterScope::AcquireS() {
135   VIXL_ASSERT(masm_ != NULL);
136   SRegister reg =
137       masm_->GetScratchVRegisterList()->GetFirstAvailableSRegister();
138   VIXL_CHECK(reg.IsValid());
139   masm_->GetScratchVRegisterList()->Remove(reg);
140   return reg;
141 }
142 
143 
Release(const Register & reg)144 void UseScratchRegisterScope::Release(const Register& reg) {
145   VIXL_ASSERT(masm_ != NULL);
146   VIXL_ASSERT(reg.IsValid());
147   VIXL_ASSERT(!masm_->GetScratchRegisterList()->Includes(reg));
148   masm_->GetScratchRegisterList()->Combine(reg);
149 }
150 
151 
Release(const VRegister & reg)152 void UseScratchRegisterScope::Release(const VRegister& reg) {
153   VIXL_ASSERT(masm_ != NULL);
154   VIXL_ASSERT(reg.IsValid());
155   VIXL_ASSERT(!masm_->GetScratchVRegisterList()->IncludesAliasOf(reg));
156   masm_->GetScratchVRegisterList()->Combine(reg);
157 }
158 
159 
Include(const RegisterList & list)160 void UseScratchRegisterScope::Include(const RegisterList& list) {
161   VIXL_ASSERT(masm_ != NULL);
162   RegisterList excluded_registers(sp, lr, pc);
163   uint32_t mask = list.GetList() & ~excluded_registers.GetList();
164   RegisterList* available = masm_->GetScratchRegisterList();
165   available->SetList(available->GetList() | mask);
166 }
167 
168 
Include(const VRegisterList & list)169 void UseScratchRegisterScope::Include(const VRegisterList& list) {
170   VIXL_ASSERT(masm_ != NULL);
171   VRegisterList* available = masm_->GetScratchVRegisterList();
172   available->SetList(available->GetList() | list.GetList());
173 }
174 
175 
Exclude(const RegisterList & list)176 void UseScratchRegisterScope::Exclude(const RegisterList& list) {
177   VIXL_ASSERT(masm_ != NULL);
178   RegisterList* available = masm_->GetScratchRegisterList();
179   available->SetList(available->GetList() & ~list.GetList());
180 }
181 
182 
Exclude(const VRegisterList & list)183 void UseScratchRegisterScope::Exclude(const VRegisterList& list) {
184   VIXL_ASSERT(masm_ != NULL);
185   VRegisterList* available = masm_->GetScratchVRegisterList();
186   available->SetList(available->GetList() & ~list.GetList());
187 }
188 
189 
Exclude(const Operand & operand)190 void UseScratchRegisterScope::Exclude(const Operand& operand) {
191   if (operand.IsImmediateShiftedRegister()) {
192     Exclude(operand.GetBaseRegister());
193   } else if (operand.IsRegisterShiftedRegister()) {
194     Exclude(operand.GetBaseRegister(), operand.GetShiftRegister());
195   } else {
196     VIXL_ASSERT(operand.IsImmediate());
197   }
198 }
199 
200 
ExcludeAll()201 void UseScratchRegisterScope::ExcludeAll() {
202   VIXL_ASSERT(masm_ != NULL);
203   masm_->GetScratchRegisterList()->SetList(0);
204   masm_->GetScratchVRegisterList()->SetList(0);
205 }
206 
207 
EnsureEmitPoolsFor(size_t size_arg)208 void MacroAssembler::EnsureEmitPoolsFor(size_t size_arg) {
209   // We skip the check when the pools are blocked.
210   if (ArePoolsBlocked()) return;
211 
212   VIXL_ASSERT(IsUint32(size_arg));
213   uint32_t size = static_cast<uint32_t>(size_arg);
214 
215   if (pool_manager_.MustEmit(GetCursorOffset(), size)) {
216     int32_t new_pc = pool_manager_.Emit(this, GetCursorOffset(), size);
217     VIXL_ASSERT(new_pc == GetCursorOffset());
218     USE(new_pc);
219   }
220 }
221 
222 
HandleOutOfBoundsImmediate(Condition cond,Register tmp,uint32_t imm)223 void MacroAssembler::HandleOutOfBoundsImmediate(Condition cond,
224                                                 Register tmp,
225                                                 uint32_t imm) {
226   if (IsUintN(16, imm)) {
227     CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
228     mov(cond, tmp, imm & 0xffff);
229     return;
230   }
231   if (IsUsingT32()) {
232     if (ImmediateT32::IsImmediateT32(~imm)) {
233       CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
234       mvn(cond, tmp, ~imm);
235       return;
236     }
237   } else {
238     if (ImmediateA32::IsImmediateA32(~imm)) {
239       CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
240       mvn(cond, tmp, ~imm);
241       return;
242     }
243   }
244   CodeBufferCheckScope scope(this, 2 * kMaxInstructionSizeInBytes);
245   mov(cond, tmp, imm & 0xffff);
246   movt(cond, tmp, imm >> 16);
247 }
248 
249 
MemOperandComputationHelper(Condition cond,Register scratch,Register base,uint32_t offset,uint32_t extra_offset_mask)250 MemOperand MacroAssembler::MemOperandComputationHelper(
251     Condition cond,
252     Register scratch,
253     Register base,
254     uint32_t offset,
255     uint32_t extra_offset_mask) {
256   VIXL_ASSERT(!AliasesAvailableScratchRegister(scratch));
257   VIXL_ASSERT(!AliasesAvailableScratchRegister(base));
258   VIXL_ASSERT(allow_macro_instructions_);
259   VIXL_ASSERT(OutsideITBlock());
260 
261   // Check for the simple pass-through case.
262   if ((offset & extra_offset_mask) == offset) return MemOperand(base, offset);
263 
264   MacroEmissionCheckScope guard(this);
265   ITScope it_scope(this, &cond, guard);
266 
267   uint32_t load_store_offset = offset & extra_offset_mask;
268   uint32_t add_offset = offset & ~extra_offset_mask;
269   if ((add_offset != 0) &&
270       (IsModifiedImmediate(offset) || IsModifiedImmediate(-offset))) {
271     load_store_offset = 0;
272     add_offset = offset;
273   }
274 
275   if (base.IsPC()) {
276     // Special handling for PC bases. We must read the PC in the first
277     // instruction (and only in that instruction), and we must also take care to
278     // keep the same address calculation as loads and stores. For T32, that
279     // means using something like ADR, which uses AlignDown(PC, 4).
280 
281     // We don't handle positive offsets from PC because the intention is not
282     // clear; does the user expect the offset from the current
283     // GetCursorOffset(), or to allow a certain amount of space after the
284     // instruction?
285     VIXL_ASSERT((offset & 0x80000000) != 0);
286     if (IsUsingT32()) {
287       // T32: make the first instruction "SUB (immediate, from PC)" -- an alias
288       // of ADR -- to get behaviour like loads and stores. This ADR can handle
289       // at least as much offset as the load_store_offset so it can replace it.
290 
291       uint32_t sub_pc_offset = (-offset) & 0xfff;
292       load_store_offset = (offset + sub_pc_offset) & extra_offset_mask;
293       add_offset = (offset + sub_pc_offset) & ~extra_offset_mask;
294 
295       ExactAssemblyScope scope(this, k32BitT32InstructionSizeInBytes);
296       sub(cond, scratch, base, sub_pc_offset);
297 
298       if (add_offset == 0) return MemOperand(scratch, load_store_offset);
299 
300       // The rest of the offset can be generated in the usual way.
301       base = scratch;
302     }
303     // A32 can use any SUB instruction, so we don't have to do anything special
304     // here except to ensure that we read the PC first.
305   }
306 
307   add(cond, scratch, base, add_offset);
308   return MemOperand(scratch, load_store_offset);
309 }
310 
311 
GetOffsetMask(InstructionType type,AddrMode addrmode)312 uint32_t MacroAssembler::GetOffsetMask(InstructionType type,
313                                        AddrMode addrmode) {
314   switch (type) {
315     case kLdr:
316     case kLdrb:
317     case kStr:
318     case kStrb:
319       if (IsUsingA32() || (addrmode == Offset)) {
320         return 0xfff;
321       } else {
322         return 0xff;
323       }
324     case kLdrsb:
325     case kLdrh:
326     case kLdrsh:
327     case kStrh:
328       if (IsUsingT32() && (addrmode == Offset)) {
329         return 0xfff;
330       } else {
331         return 0xff;
332       }
333     case kVldr:
334     case kVstr:
335       return 0x3fc;
336     case kLdrd:
337     case kStrd:
338       if (IsUsingA32()) {
339         return 0xff;
340       } else {
341         return 0x3fc;
342       }
343     default:
344       VIXL_UNREACHABLE();
345       return 0;
346   }
347 }
348 
349 
PrintfTrampolineRRRR(const char * format,uint32_t a,uint32_t b,uint32_t c,uint32_t d)350 HARDFLOAT void PrintfTrampolineRRRR(
351     const char* format, uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
352   printf(format, a, b, c, d);
353 }
354 
355 
PrintfTrampolineRRRD(const char * format,uint32_t a,uint32_t b,uint32_t c,double d)356 HARDFLOAT void PrintfTrampolineRRRD(
357     const char* format, uint32_t a, uint32_t b, uint32_t c, double d) {
358   printf(format, a, b, c, d);
359 }
360 
361 
PrintfTrampolineRRDR(const char * format,uint32_t a,uint32_t b,double c,uint32_t d)362 HARDFLOAT void PrintfTrampolineRRDR(
363     const char* format, uint32_t a, uint32_t b, double c, uint32_t d) {
364   printf(format, a, b, c, d);
365 }
366 
367 
PrintfTrampolineRRDD(const char * format,uint32_t a,uint32_t b,double c,double d)368 HARDFLOAT void PrintfTrampolineRRDD(
369     const char* format, uint32_t a, uint32_t b, double c, double d) {
370   printf(format, a, b, c, d);
371 }
372 
373 
PrintfTrampolineRDRR(const char * format,uint32_t a,double b,uint32_t c,uint32_t d)374 HARDFLOAT void PrintfTrampolineRDRR(
375     const char* format, uint32_t a, double b, uint32_t c, uint32_t d) {
376   printf(format, a, b, c, d);
377 }
378 
379 
PrintfTrampolineRDRD(const char * format,uint32_t a,double b,uint32_t c,double d)380 HARDFLOAT void PrintfTrampolineRDRD(
381     const char* format, uint32_t a, double b, uint32_t c, double d) {
382   printf(format, a, b, c, d);
383 }
384 
385 
PrintfTrampolineRDDR(const char * format,uint32_t a,double b,double c,uint32_t d)386 HARDFLOAT void PrintfTrampolineRDDR(
387     const char* format, uint32_t a, double b, double c, uint32_t d) {
388   printf(format, a, b, c, d);
389 }
390 
391 
PrintfTrampolineRDDD(const char * format,uint32_t a,double b,double c,double d)392 HARDFLOAT void PrintfTrampolineRDDD(
393     const char* format, uint32_t a, double b, double c, double d) {
394   printf(format, a, b, c, d);
395 }
396 
397 
PrintfTrampolineDRRR(const char * format,double a,uint32_t b,uint32_t c,uint32_t d)398 HARDFLOAT void PrintfTrampolineDRRR(
399     const char* format, double a, uint32_t b, uint32_t c, uint32_t d) {
400   printf(format, a, b, c, d);
401 }
402 
403 
PrintfTrampolineDRRD(const char * format,double a,uint32_t b,uint32_t c,double d)404 HARDFLOAT void PrintfTrampolineDRRD(
405     const char* format, double a, uint32_t b, uint32_t c, double d) {
406   printf(format, a, b, c, d);
407 }
408 
409 
PrintfTrampolineDRDR(const char * format,double a,uint32_t b,double c,uint32_t d)410 HARDFLOAT void PrintfTrampolineDRDR(
411     const char* format, double a, uint32_t b, double c, uint32_t d) {
412   printf(format, a, b, c, d);
413 }
414 
415 
PrintfTrampolineDRDD(const char * format,double a,uint32_t b,double c,double d)416 HARDFLOAT void PrintfTrampolineDRDD(
417     const char* format, double a, uint32_t b, double c, double d) {
418   printf(format, a, b, c, d);
419 }
420 
421 
PrintfTrampolineDDRR(const char * format,double a,double b,uint32_t c,uint32_t d)422 HARDFLOAT void PrintfTrampolineDDRR(
423     const char* format, double a, double b, uint32_t c, uint32_t d) {
424   printf(format, a, b, c, d);
425 }
426 
427 
PrintfTrampolineDDRD(const char * format,double a,double b,uint32_t c,double d)428 HARDFLOAT void PrintfTrampolineDDRD(
429     const char* format, double a, double b, uint32_t c, double d) {
430   printf(format, a, b, c, d);
431 }
432 
433 
PrintfTrampolineDDDR(const char * format,double a,double b,double c,uint32_t d)434 HARDFLOAT void PrintfTrampolineDDDR(
435     const char* format, double a, double b, double c, uint32_t d) {
436   printf(format, a, b, c, d);
437 }
438 
439 
PrintfTrampolineDDDD(const char * format,double a,double b,double c,double d)440 HARDFLOAT void PrintfTrampolineDDDD(
441     const char* format, double a, double b, double c, double d) {
442   printf(format, a, b, c, d);
443 }
444 
445 
Printf(const char * format,CPURegister reg1,CPURegister reg2,CPURegister reg3,CPURegister reg4)446 void MacroAssembler::Printf(const char* format,
447                             CPURegister reg1,
448                             CPURegister reg2,
449                             CPURegister reg3,
450                             CPURegister reg4) {
451   // Exclude all registers from the available scratch registers, so
452   // that we are able to use ip below.
453   // TODO: Refactor this function to use UseScratchRegisterScope
454   // for temporary registers below.
455   UseScratchRegisterScope scratch(this);
456   scratch.ExcludeAll();
457   if (generate_simulator_code_) {
458     PushRegister(reg4);
459     PushRegister(reg3);
460     PushRegister(reg2);
461     PushRegister(reg1);
462     Push(RegisterList(r0, r1));
463     StringLiteral* format_literal =
464         new StringLiteral(format, RawLiteral::kDeletedOnPlacementByPool);
465     Adr(r0, format_literal);
466     uint32_t args = (reg4.GetType() << 12) | (reg3.GetType() << 8) |
467                     (reg2.GetType() << 4) | reg1.GetType();
468     Mov(r1, args);
469     Hvc(kPrintfCode);
470     Pop(RegisterList(r0, r1));
471     int size = reg4.GetRegSizeInBytes() + reg3.GetRegSizeInBytes() +
472                reg2.GetRegSizeInBytes() + reg1.GetRegSizeInBytes();
473     Drop(size);
474   } else {
475     // Generate on a native platform => 32 bit environment.
476     // Preserve core registers r0-r3, r12, r14
477     const uint32_t saved_registers_mask =
478         kCallerSavedRegistersMask | (1 << r5.GetCode());
479     Push(RegisterList(saved_registers_mask));
480     // Push VFP registers.
481     Vpush(Untyped64, DRegisterList(d0, 8));
482     if (Has32DRegs()) Vpush(Untyped64, DRegisterList(d16, 16));
483     // Search one register which has been saved and which doesn't need to be
484     // printed.
485     RegisterList available_registers(kCallerSavedRegistersMask);
486     if (reg1.GetType() == CPURegister::kRRegister) {
487       available_registers.Remove(Register(reg1.GetCode()));
488     }
489     if (reg2.GetType() == CPURegister::kRRegister) {
490       available_registers.Remove(Register(reg2.GetCode()));
491     }
492     if (reg3.GetType() == CPURegister::kRRegister) {
493       available_registers.Remove(Register(reg3.GetCode()));
494     }
495     if (reg4.GetType() == CPURegister::kRRegister) {
496       available_registers.Remove(Register(reg4.GetCode()));
497     }
498     Register tmp = available_registers.GetFirstAvailableRegister();
499     VIXL_ASSERT(tmp.GetType() == CPURegister::kRRegister);
500     // Push the flags.
501     Mrs(tmp, APSR);
502     Push(tmp);
503     Vmrs(RegisterOrAPSR_nzcv(tmp.GetCode()), FPSCR);
504     Push(tmp);
505     // Push the registers to print on the stack.
506     PushRegister(reg4);
507     PushRegister(reg3);
508     PushRegister(reg2);
509     PushRegister(reg1);
510     int core_count = 1;
511     int vfp_count = 0;
512     uint32_t printf_type = 0;
513     // Pop the registers to print and store them into r1-r3 and/or d0-d3.
514     // Reg4 may stay into the stack if all the register to print are core
515     // registers.
516     PreparePrintfArgument(reg1, &core_count, &vfp_count, &printf_type);
517     PreparePrintfArgument(reg2, &core_count, &vfp_count, &printf_type);
518     PreparePrintfArgument(reg3, &core_count, &vfp_count, &printf_type);
519     PreparePrintfArgument(reg4, &core_count, &vfp_count, &printf_type);
520     // Ensure that the stack is aligned on 8 bytes.
521     And(r5, sp, 0x7);
522     if (core_count == 5) {
523       // One 32 bit argument (reg4) has been left on the stack =>  align the
524       // stack
525       // before the argument.
526       Pop(r0);
527       Sub(sp, sp, r5);
528       Push(r0);
529     } else {
530       Sub(sp, sp, r5);
531     }
532     // Select the right trampoline depending on the arguments.
533     uintptr_t address;
534     switch (printf_type) {
535       case 0:
536         address = reinterpret_cast<uintptr_t>(PrintfTrampolineRRRR);
537         break;
538       case 1:
539         address = reinterpret_cast<uintptr_t>(PrintfTrampolineDRRR);
540         break;
541       case 2:
542         address = reinterpret_cast<uintptr_t>(PrintfTrampolineRDRR);
543         break;
544       case 3:
545         address = reinterpret_cast<uintptr_t>(PrintfTrampolineDDRR);
546         break;
547       case 4:
548         address = reinterpret_cast<uintptr_t>(PrintfTrampolineRRDR);
549         break;
550       case 5:
551         address = reinterpret_cast<uintptr_t>(PrintfTrampolineDRDR);
552         break;
553       case 6:
554         address = reinterpret_cast<uintptr_t>(PrintfTrampolineRDDR);
555         break;
556       case 7:
557         address = reinterpret_cast<uintptr_t>(PrintfTrampolineDDDR);
558         break;
559       case 8:
560         address = reinterpret_cast<uintptr_t>(PrintfTrampolineRRRD);
561         break;
562       case 9:
563         address = reinterpret_cast<uintptr_t>(PrintfTrampolineDRRD);
564         break;
565       case 10:
566         address = reinterpret_cast<uintptr_t>(PrintfTrampolineRDRD);
567         break;
568       case 11:
569         address = reinterpret_cast<uintptr_t>(PrintfTrampolineDDRD);
570         break;
571       case 12:
572         address = reinterpret_cast<uintptr_t>(PrintfTrampolineRRDD);
573         break;
574       case 13:
575         address = reinterpret_cast<uintptr_t>(PrintfTrampolineDRDD);
576         break;
577       case 14:
578         address = reinterpret_cast<uintptr_t>(PrintfTrampolineRDDD);
579         break;
580       case 15:
581         address = reinterpret_cast<uintptr_t>(PrintfTrampolineDDDD);
582         break;
583       default:
584         VIXL_UNREACHABLE();
585         address = reinterpret_cast<uintptr_t>(PrintfTrampolineRRRR);
586         break;
587     }
588     StringLiteral* format_literal =
589         new StringLiteral(format, RawLiteral::kDeletedOnPlacementByPool);
590     Adr(r0, format_literal);
591     Mov(ip, Operand::From(address));
592     Blx(ip);
593     // If register reg4 was left on the stack => skip it.
594     if (core_count == 5) Drop(kRegSizeInBytes);
595     // Restore the stack as it was before alignment.
596     Add(sp, sp, r5);
597     // Restore the flags.
598     Pop(tmp);
599     Vmsr(FPSCR, tmp);
600     Pop(tmp);
601     Msr(APSR_nzcvqg, tmp);
602     // Restore the regsisters.
603     if (Has32DRegs()) Vpop(Untyped64, DRegisterList(d16, 16));
604     Vpop(Untyped64, DRegisterList(d0, 8));
605     Pop(RegisterList(saved_registers_mask));
606   }
607 }
608 
609 
PushRegister(CPURegister reg)610 void MacroAssembler::PushRegister(CPURegister reg) {
611   switch (reg.GetType()) {
612     case CPURegister::kNoRegister:
613       break;
614     case CPURegister::kRRegister:
615       Push(Register(reg.GetCode()));
616       break;
617     case CPURegister::kSRegister:
618       Vpush(Untyped32, SRegisterList(SRegister(reg.GetCode())));
619       break;
620     case CPURegister::kDRegister:
621       Vpush(Untyped64, DRegisterList(DRegister(reg.GetCode())));
622       break;
623     case CPURegister::kQRegister:
624       VIXL_UNIMPLEMENTED();
625       break;
626   }
627 }
628 
629 
PreparePrintfArgument(CPURegister reg,int * core_count,int * vfp_count,uint32_t * printf_type)630 void MacroAssembler::PreparePrintfArgument(CPURegister reg,
631                                            int* core_count,
632                                            int* vfp_count,
633                                            uint32_t* printf_type) {
634   switch (reg.GetType()) {
635     case CPURegister::kNoRegister:
636       break;
637     case CPURegister::kRRegister:
638       VIXL_ASSERT(*core_count <= 4);
639       if (*core_count < 4) Pop(Register(*core_count));
640       *core_count += 1;
641       break;
642     case CPURegister::kSRegister:
643       VIXL_ASSERT(*vfp_count < 4);
644       *printf_type |= 1 << (*core_count + *vfp_count - 1);
645       Vpop(Untyped32, SRegisterList(SRegister(*vfp_count * 2)));
646       Vcvt(F64, F32, DRegister(*vfp_count), SRegister(*vfp_count * 2));
647       *vfp_count += 1;
648       break;
649     case CPURegister::kDRegister:
650       VIXL_ASSERT(*vfp_count < 4);
651       *printf_type |= 1 << (*core_count + *vfp_count - 1);
652       Vpop(Untyped64, DRegisterList(DRegister(*vfp_count)));
653       *vfp_count += 1;
654       break;
655     case CPURegister::kQRegister:
656       VIXL_UNIMPLEMENTED();
657       break;
658   }
659 }
660 
661 
Delegate(InstructionType type,InstructionCondROp instruction,Condition cond,Register rn,const Operand & operand)662 void MacroAssembler::Delegate(InstructionType type,
663                               InstructionCondROp instruction,
664                               Condition cond,
665                               Register rn,
666                               const Operand& operand) {
667   VIXL_ASSERT((type == kMovt) || (type == kSxtb16) || (type == kTeq) ||
668               (type == kUxtb16));
669 
670   if (type == kMovt) {
671     VIXL_ABORT_WITH_MSG("`Movt` expects a 16-bit immediate.\n");
672   }
673 
674   // This delegate only supports teq with immediates.
675   CONTEXT_SCOPE;
676   if ((type == kTeq) && operand.IsImmediate()) {
677     UseScratchRegisterScope temps(this);
678     Register scratch = temps.Acquire();
679     HandleOutOfBoundsImmediate(cond, scratch, operand.GetImmediate());
680     CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
681     teq(cond, rn, scratch);
682     return;
683   }
684   Assembler::Delegate(type, instruction, cond, rn, operand);
685 }
686 
687 
Delegate(InstructionType type,InstructionCondSizeROp instruction,Condition cond,EncodingSize size,Register rn,const Operand & operand)688 void MacroAssembler::Delegate(InstructionType type,
689                               InstructionCondSizeROp instruction,
690                               Condition cond,
691                               EncodingSize size,
692                               Register rn,
693                               const Operand& operand) {
694   CONTEXT_SCOPE;
695   VIXL_ASSERT(size.IsBest());
696   VIXL_ASSERT((type == kCmn) || (type == kCmp) || (type == kMov) ||
697               (type == kMovs) || (type == kMvn) || (type == kMvns) ||
698               (type == kSxtb) || (type == kSxth) || (type == kTst) ||
699               (type == kUxtb) || (type == kUxth));
700   if (IsUsingT32() && operand.IsRegisterShiftedRegister()) {
701     VIXL_ASSERT((type != kMov) || (type != kMovs));
702     InstructionCondRROp shiftop = NULL;
703     switch (operand.GetShift().GetType()) {
704       case LSL:
705         shiftop = &Assembler::lsl;
706         break;
707       case LSR:
708         shiftop = &Assembler::lsr;
709         break;
710       case ASR:
711         shiftop = &Assembler::asr;
712         break;
713       case RRX:
714         // A RegisterShiftedRegister operand cannot have a shift of type RRX.
715         VIXL_UNREACHABLE();
716         break;
717       case ROR:
718         shiftop = &Assembler::ror;
719         break;
720       default:
721         VIXL_UNREACHABLE();
722     }
723     if (shiftop != NULL) {
724       UseScratchRegisterScope temps(this);
725       Register scratch = temps.Acquire();
726       CodeBufferCheckScope scope(this, 2 * kMaxInstructionSizeInBytes);
727       (this->*shiftop)(cond,
728                        scratch,
729                        operand.GetBaseRegister(),
730                        operand.GetShiftRegister());
731       (this->*instruction)(cond, size, rn, scratch);
732       return;
733     }
734   }
735   if (operand.IsImmediate()) {
736     uint32_t imm = operand.GetImmediate();
737     switch (type) {
738       case kMov:
739       case kMovs:
740         if (!rn.IsPC()) {
741           // Immediate is too large, but not using PC, so handle with mov{t}.
742           HandleOutOfBoundsImmediate(cond, rn, imm);
743           if (type == kMovs) {
744             CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
745             tst(cond, rn, rn);
746           }
747           return;
748         } else if (type == kMov) {
749           VIXL_ASSERT(IsUsingA32() || cond.Is(al));
750           // Immediate is too large and using PC, so handle using a temporary
751           // register.
752           UseScratchRegisterScope temps(this);
753           Register scratch = temps.Acquire();
754           HandleOutOfBoundsImmediate(al, scratch, imm);
755           CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
756           bx(cond, scratch);
757           return;
758         }
759         break;
760       case kCmn:
761       case kCmp:
762         if (IsUsingA32() || !rn.IsPC()) {
763           UseScratchRegisterScope temps(this);
764           Register scratch = temps.Acquire();
765           HandleOutOfBoundsImmediate(cond, scratch, imm);
766           CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
767           (this->*instruction)(cond, size, rn, scratch);
768           return;
769         }
770         break;
771       case kMvn:
772       case kMvns:
773         if (!rn.IsPC()) {
774           UseScratchRegisterScope temps(this);
775           Register scratch = temps.Acquire();
776           HandleOutOfBoundsImmediate(cond, scratch, imm);
777           CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
778           (this->*instruction)(cond, size, rn, scratch);
779           return;
780         }
781         break;
782       case kTst:
783         if (IsUsingA32() || !rn.IsPC()) {
784           UseScratchRegisterScope temps(this);
785           Register scratch = temps.Acquire();
786           HandleOutOfBoundsImmediate(cond, scratch, imm);
787           CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
788           (this->*instruction)(cond, size, rn, scratch);
789           return;
790         }
791         break;
792       default:  // kSxtb, Sxth, Uxtb, Uxth
793         break;
794     }
795   }
796   Assembler::Delegate(type, instruction, cond, size, rn, operand);
797 }
798 
799 
Delegate(InstructionType type,InstructionCondRROp instruction,Condition cond,Register rd,Register rn,const Operand & operand)800 void MacroAssembler::Delegate(InstructionType type,
801                               InstructionCondRROp instruction,
802                               Condition cond,
803                               Register rd,
804                               Register rn,
805                               const Operand& operand) {
806   if ((type == kSxtab) || (type == kSxtab16) || (type == kSxtah) ||
807       (type == kUxtab) || (type == kUxtab16) || (type == kUxtah) ||
808       (type == kPkhbt) || (type == kPkhtb)) {
809     UnimplementedDelegate(type);
810     return;
811   }
812 
813   // This delegate only handles the following instructions.
814   VIXL_ASSERT((type == kOrn) || (type == kOrns) || (type == kRsc) ||
815               (type == kRscs));
816   CONTEXT_SCOPE;
817 
818   // T32 does not support register shifted register operands, emulate it.
819   if (IsUsingT32() && operand.IsRegisterShiftedRegister()) {
820     InstructionCondRROp shiftop = NULL;
821     switch (operand.GetShift().GetType()) {
822       case LSL:
823         shiftop = &Assembler::lsl;
824         break;
825       case LSR:
826         shiftop = &Assembler::lsr;
827         break;
828       case ASR:
829         shiftop = &Assembler::asr;
830         break;
831       case RRX:
832         // A RegisterShiftedRegister operand cannot have a shift of type RRX.
833         VIXL_UNREACHABLE();
834         break;
835       case ROR:
836         shiftop = &Assembler::ror;
837         break;
838       default:
839         VIXL_UNREACHABLE();
840     }
841     if (shiftop != NULL) {
842       UseScratchRegisterScope temps(this);
843       Register rm = operand.GetBaseRegister();
844       Register rs = operand.GetShiftRegister();
845       // Try to use rd as a scratch register. We can do this if it aliases rs or
846       // rm (because we read them in the first instruction), but not rn.
847       if (!rd.Is(rn)) temps.Include(rd);
848       Register scratch = temps.Acquire();
849       // TODO: The scope length was measured empirically. We should analyse the
850       // worst-case size and add targetted tests.
851       CodeBufferCheckScope scope(this, 3 * kMaxInstructionSizeInBytes);
852       (this->*shiftop)(cond, scratch, rm, rs);
853       (this->*instruction)(cond, rd, rn, scratch);
854       return;
855     }
856   }
857 
858   // T32 does not have a Rsc instruction, negate the lhs input and turn it into
859   // an Adc. Adc and Rsc are equivalent using a bitwise NOT:
860   //   adc rd, rn, operand <-> rsc rd, NOT(rn), operand
861   if (IsUsingT32() && ((type == kRsc) || (type == kRscs))) {
862     // The RegisterShiftRegister case should have been handled above.
863     VIXL_ASSERT(!operand.IsRegisterShiftedRegister());
864     UseScratchRegisterScope temps(this);
865     // Try to use rd as a scratch register. We can do this if it aliases rn
866     // (because we read it in the first instruction), but not rm.
867     temps.Include(rd);
868     temps.Exclude(operand);
869     Register negated_rn = temps.Acquire();
870     {
871       CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
872       mvn(cond, negated_rn, rn);
873     }
874     if (type == kRsc) {
875       CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
876       adc(cond, rd, negated_rn, operand);
877       return;
878     }
879     // TODO: We shouldn't have to specify how much space the next instruction
880     // needs.
881     CodeBufferCheckScope scope(this, 3 * kMaxInstructionSizeInBytes);
882     adcs(cond, rd, negated_rn, operand);
883     return;
884   }
885 
886   if (operand.IsImmediate()) {
887     // If the immediate can be encoded when inverted, turn Orn into Orr.
888     // Otherwise rely on HandleOutOfBoundsImmediate to generate a series of
889     // mov.
890     int32_t imm = operand.GetSignedImmediate();
891     if (((type == kOrn) || (type == kOrns)) && IsModifiedImmediate(~imm)) {
892       CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
893       switch (type) {
894         case kOrn:
895           orr(cond, rd, rn, ~imm);
896           return;
897         case kOrns:
898           orrs(cond, rd, rn, ~imm);
899           return;
900         default:
901           VIXL_UNREACHABLE();
902           break;
903       }
904     }
905   }
906 
907   // A32 does not have a Orn instruction, negate the rhs input and turn it into
908   // a Orr.
909   if (IsUsingA32() && ((type == kOrn) || (type == kOrns))) {
910     // TODO: orn r0, r1, imm -> orr r0, r1, neg(imm) if doable
911     //  mvn r0, r2
912     //  orr r0, r1, r0
913     Register scratch;
914     UseScratchRegisterScope temps(this);
915     // Try to use rd as a scratch register. We can do this if it aliases rs or
916     // rm (because we read them in the first instruction), but not rn.
917     if (!rd.Is(rn)) temps.Include(rd);
918     scratch = temps.Acquire();
919     {
920       // TODO: We shouldn't have to specify how much space the next instruction
921       // needs.
922       CodeBufferCheckScope scope(this, 3 * kMaxInstructionSizeInBytes);
923       mvn(cond, scratch, operand);
924     }
925     if (type == kOrns) {
926       CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
927       orrs(cond, rd, rn, scratch);
928       return;
929     }
930     CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
931     orr(cond, rd, rn, scratch);
932     return;
933   }
934 
935   if (operand.IsImmediate()) {
936     UseScratchRegisterScope temps(this);
937     // Allow using the destination as a scratch register if possible.
938     if (!rd.Is(rn)) temps.Include(rd);
939     Register scratch = temps.Acquire();
940     int32_t imm = operand.GetSignedImmediate();
941     HandleOutOfBoundsImmediate(cond, scratch, imm);
942     CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
943     (this->*instruction)(cond, rd, rn, scratch);
944     return;
945   }
946   Assembler::Delegate(type, instruction, cond, rd, rn, operand);
947 }
948 
949 
Delegate(InstructionType type,InstructionCondSizeRL instruction,Condition cond,EncodingSize size,Register rd,Location * location)950 void MacroAssembler::Delegate(InstructionType type,
951                               InstructionCondSizeRL instruction,
952                               Condition cond,
953                               EncodingSize size,
954                               Register rd,
955                               Location* location) {
956   VIXL_ASSERT((type == kLdr) || (type == kAdr));
957 
958   CONTEXT_SCOPE;
959   VIXL_ASSERT(size.IsBest());
960 
961   if ((type == kLdr) && location->IsBound()) {
962     CodeBufferCheckScope scope(this, 5 * kMaxInstructionSizeInBytes);
963     UseScratchRegisterScope temps(this);
964     temps.Include(rd);
965     uint32_t mask = GetOffsetMask(type, Offset);
966     ldr(rd, MemOperandComputationHelper(cond, temps.Acquire(), location, mask));
967     return;
968   }
969 
970   Assembler::Delegate(type, instruction, cond, size, rd, location);
971 }
972 
973 
GenerateSplitInstruction(InstructionCondSizeRROp instruction,Condition cond,Register rd,Register rn,uint32_t imm,uint32_t mask)974 bool MacroAssembler::GenerateSplitInstruction(
975     InstructionCondSizeRROp instruction,
976     Condition cond,
977     Register rd,
978     Register rn,
979     uint32_t imm,
980     uint32_t mask) {
981   uint32_t high = imm & ~mask;
982   if (!IsModifiedImmediate(high) && !rn.IsPC()) return false;
983   // If high is a modified immediate, we can perform the operation with
984   // only 2 instructions.
985   // Else, if rn is PC, we want to avoid moving PC into a temporary.
986   // Therefore, we also use the pattern even if the second call may
987   // generate 3 instructions.
988   uint32_t low = imm & mask;
989   CodeBufferCheckScope scope(this,
990                              (rn.IsPC() ? 4 : 2) * kMaxInstructionSizeInBytes);
991   (this->*instruction)(cond, Best, rd, rn, low);
992   (this->*instruction)(cond, Best, rd, rd, high);
993   return true;
994 }
995 
996 
Delegate(InstructionType type,InstructionCondSizeRROp instruction,Condition cond,EncodingSize size,Register rd,Register rn,const Operand & operand)997 void MacroAssembler::Delegate(InstructionType type,
998                               InstructionCondSizeRROp instruction,
999                               Condition cond,
1000                               EncodingSize size,
1001                               Register rd,
1002                               Register rn,
1003                               const Operand& operand) {
1004   VIXL_ASSERT(
1005       (type == kAdc) || (type == kAdcs) || (type == kAdd) || (type == kAdds) ||
1006       (type == kAnd) || (type == kAnds) || (type == kAsr) || (type == kAsrs) ||
1007       (type == kBic) || (type == kBics) || (type == kEor) || (type == kEors) ||
1008       (type == kLsl) || (type == kLsls) || (type == kLsr) || (type == kLsrs) ||
1009       (type == kOrr) || (type == kOrrs) || (type == kRor) || (type == kRors) ||
1010       (type == kRsb) || (type == kRsbs) || (type == kSbc) || (type == kSbcs) ||
1011       (type == kSub) || (type == kSubs));
1012 
1013   CONTEXT_SCOPE;
1014   VIXL_ASSERT(size.IsBest());
1015   if (IsUsingT32() && operand.IsRegisterShiftedRegister()) {
1016     InstructionCondRROp shiftop = NULL;
1017     switch (operand.GetShift().GetType()) {
1018       case LSL:
1019         shiftop = &Assembler::lsl;
1020         break;
1021       case LSR:
1022         shiftop = &Assembler::lsr;
1023         break;
1024       case ASR:
1025         shiftop = &Assembler::asr;
1026         break;
1027       case RRX:
1028         // A RegisterShiftedRegister operand cannot have a shift of type RRX.
1029         VIXL_UNREACHABLE();
1030         break;
1031       case ROR:
1032         shiftop = &Assembler::ror;
1033         break;
1034       default:
1035         VIXL_UNREACHABLE();
1036     }
1037     if (shiftop != NULL) {
1038       UseScratchRegisterScope temps(this);
1039       Register rm = operand.GetBaseRegister();
1040       Register rs = operand.GetShiftRegister();
1041       // Try to use rd as a scratch register. We can do this if it aliases rs or
1042       // rm (because we read them in the first instruction), but not rn.
1043       if (!rd.Is(rn)) temps.Include(rd);
1044       Register scratch = temps.Acquire();
1045       CodeBufferCheckScope scope(this, 2 * kMaxInstructionSizeInBytes);
1046       (this->*shiftop)(cond, scratch, rm, rs);
1047       (this->*instruction)(cond, size, rd, rn, scratch);
1048       return;
1049     }
1050   }
1051   if (operand.IsImmediate()) {
1052     int32_t imm = operand.GetSignedImmediate();
1053     if (ImmediateT32::IsImmediateT32(~imm)) {
1054       if (IsUsingT32()) {
1055         switch (type) {
1056           case kOrr:
1057             orn(cond, rd, rn, ~imm);
1058             return;
1059           case kOrrs:
1060             orns(cond, rd, rn, ~imm);
1061             return;
1062           default:
1063             break;
1064         }
1065       }
1066     }
1067     if (imm < 0) {
1068       InstructionCondSizeRROp asmcb = NULL;
1069       // Add and sub are equivalent using an arithmetic negation:
1070       //   add rd, rn, #imm <-> sub rd, rn, - #imm
1071       // Add and sub with carry are equivalent using a bitwise NOT:
1072       //   adc rd, rn, #imm <-> sbc rd, rn, NOT #imm
1073       switch (type) {
1074         case kAdd:
1075           asmcb = &Assembler::sub;
1076           imm = -imm;
1077           break;
1078         case kAdds:
1079           asmcb = &Assembler::subs;
1080           imm = -imm;
1081           break;
1082         case kSub:
1083           asmcb = &Assembler::add;
1084           imm = -imm;
1085           break;
1086         case kSubs:
1087           asmcb = &Assembler::adds;
1088           imm = -imm;
1089           break;
1090         case kAdc:
1091           asmcb = &Assembler::sbc;
1092           imm = ~imm;
1093           break;
1094         case kAdcs:
1095           asmcb = &Assembler::sbcs;
1096           imm = ~imm;
1097           break;
1098         case kSbc:
1099           asmcb = &Assembler::adc;
1100           imm = ~imm;
1101           break;
1102         case kSbcs:
1103           asmcb = &Assembler::adcs;
1104           imm = ~imm;
1105           break;
1106         default:
1107           break;
1108       }
1109       if (asmcb != NULL) {
1110         CodeBufferCheckScope scope(this, 4 * kMaxInstructionSizeInBytes);
1111         (this->*asmcb)(cond, size, rd, rn, Operand(imm));
1112         return;
1113       }
1114     }
1115 
1116     // When rn is PC, only handle negative offsets. The correct way to handle
1117     // positive offsets isn't clear; does the user want the offset from the
1118     // start of the macro, or from the end (to allow a certain amount of space)?
1119     // When type is Add or Sub, imm is always positive (imm < 0 has just been
1120     // handled and imm == 0 would have been generated without the need of a
1121     // delegate). Therefore, only add to PC is forbidden here.
1122     if ((((type == kAdd) && !rn.IsPC()) || (type == kSub)) &&
1123         (IsUsingA32() || (!rd.IsPC() && !rn.IsPC()))) {
1124       VIXL_ASSERT(imm > 0);
1125       // Try to break the constant into two modified immediates.
1126       // For T32 also try to break the constant into one imm12 and one modified
1127       // immediate. Count the trailing zeroes and get the biggest even value.
1128       int trailing_zeroes = CountTrailingZeros(imm) & ~1u;
1129       uint32_t mask = ((trailing_zeroes < 4) && IsUsingT32())
1130                           ? 0xfff
1131                           : (0xff << trailing_zeroes);
1132       if (GenerateSplitInstruction(instruction, cond, rd, rn, imm, mask)) {
1133         return;
1134       }
1135       InstructionCondSizeRROp asmcb = NULL;
1136       switch (type) {
1137         case kAdd:
1138           asmcb = &Assembler::sub;
1139           break;
1140         case kSub:
1141           asmcb = &Assembler::add;
1142           break;
1143         default:
1144           VIXL_UNREACHABLE();
1145       }
1146       if (GenerateSplitInstruction(asmcb, cond, rd, rn, -imm, mask)) {
1147         return;
1148       }
1149     }
1150 
1151     UseScratchRegisterScope temps(this);
1152     // Allow using the destination as a scratch register if possible.
1153     if (!rd.Is(rn)) temps.Include(rd);
1154     if (rn.IsPC()) {
1155       // If we're reading the PC, we need to do it in the first instruction,
1156       // otherwise we'll read the wrong value. We rely on this to handle the
1157       // long-range PC-relative MemOperands which can result from user-managed
1158       // literals.
1159 
1160       // Only handle negative offsets. The correct way to handle positive
1161       // offsets isn't clear; does the user want the offset from the start of
1162       // the macro, or from the end (to allow a certain amount of space)?
1163       bool offset_is_negative_or_zero = (imm <= 0);
1164       switch (type) {
1165         case kAdd:
1166         case kAdds:
1167           offset_is_negative_or_zero = (imm <= 0);
1168           break;
1169         case kSub:
1170         case kSubs:
1171           offset_is_negative_or_zero = (imm >= 0);
1172           break;
1173         case kAdc:
1174         case kAdcs:
1175           offset_is_negative_or_zero = (imm < 0);
1176           break;
1177         case kSbc:
1178         case kSbcs:
1179           offset_is_negative_or_zero = (imm > 0);
1180           break;
1181         default:
1182           break;
1183       }
1184       if (offset_is_negative_or_zero) {
1185         {
1186           rn = temps.Acquire();
1187           CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1188           mov(cond, rn, pc);
1189         }
1190         // Recurse rather than falling through, to try to get the immediate into
1191         // a single instruction.
1192         CodeBufferCheckScope scope(this, 3 * kMaxInstructionSizeInBytes);
1193         (this->*instruction)(cond, size, rd, rn, operand);
1194         return;
1195       }
1196     } else {
1197       Register scratch = temps.Acquire();
1198       // TODO: The scope length was measured empirically. We should analyse the
1199       // worst-case size and add targetted tests.
1200       CodeBufferCheckScope scope(this, 3 * kMaxInstructionSizeInBytes);
1201       mov(cond, scratch, operand.GetImmediate());
1202       (this->*instruction)(cond, size, rd, rn, scratch);
1203       return;
1204     }
1205   }
1206   Assembler::Delegate(type, instruction, cond, size, rd, rn, operand);
1207 }
1208 
1209 
Delegate(InstructionType type,InstructionRL instruction,Register rn,Location * location)1210 void MacroAssembler::Delegate(InstructionType type,
1211                               InstructionRL instruction,
1212                               Register rn,
1213                               Location* location) {
1214   VIXL_ASSERT((type == kCbz) || (type == kCbnz));
1215 
1216   CONTEXT_SCOPE;
1217   CodeBufferCheckScope scope(this, 2 * kMaxInstructionSizeInBytes);
1218   if (IsUsingA32()) {
1219     if (type == kCbz) {
1220       VIXL_ABORT_WITH_MSG("Cbz is only available for T32.\n");
1221     } else {
1222       VIXL_ABORT_WITH_MSG("Cbnz is only available for T32.\n");
1223     }
1224   } else if (rn.IsLow()) {
1225     switch (type) {
1226       case kCbnz: {
1227         Label done;
1228         cbz(rn, &done);
1229         b(location);
1230         Bind(&done);
1231         return;
1232       }
1233       case kCbz: {
1234         Label done;
1235         cbnz(rn, &done);
1236         b(location);
1237         Bind(&done);
1238         return;
1239       }
1240       default:
1241         break;
1242     }
1243   }
1244   Assembler::Delegate(type, instruction, rn, location);
1245 }
1246 
1247 
1248 template <typename T>
IsI64BitPattern(T imm)1249 static inline bool IsI64BitPattern(T imm) {
1250   for (T mask = 0xff << ((sizeof(T) - 1) * 8); mask != 0; mask >>= 8) {
1251     if (((imm & mask) != mask) && ((imm & mask) != 0)) return false;
1252   }
1253   return true;
1254 }
1255 
1256 
1257 template <typename T>
IsI8BitPattern(T imm)1258 static inline bool IsI8BitPattern(T imm) {
1259   uint8_t imm8 = imm & 0xff;
1260   for (unsigned rep = sizeof(T) - 1; rep > 0; rep--) {
1261     imm >>= 8;
1262     if ((imm & 0xff) != imm8) return false;
1263   }
1264   return true;
1265 }
1266 
1267 
CanBeInverted(uint32_t imm32)1268 static inline bool CanBeInverted(uint32_t imm32) {
1269   uint32_t fill8 = 0;
1270 
1271   if ((imm32 & 0xffffff00) == 0xffffff00) {
1272     //    11111111 11111111 11111111 abcdefgh
1273     return true;
1274   }
1275   if (((imm32 & 0xff) == 0) || ((imm32 & 0xff) == 0xff)) {
1276     fill8 = imm32 & 0xff;
1277     imm32 >>= 8;
1278     if ((imm32 >> 8) == 0xffff) {
1279       //    11111111 11111111 abcdefgh 00000000
1280       // or 11111111 11111111 abcdefgh 11111111
1281       return true;
1282     }
1283     if ((imm32 & 0xff) == fill8) {
1284       imm32 >>= 8;
1285       if ((imm32 >> 8) == 0xff) {
1286         //    11111111 abcdefgh 00000000 00000000
1287         // or 11111111 abcdefgh 11111111 11111111
1288         return true;
1289       }
1290       if ((fill8 == 0xff) && ((imm32 & 0xff) == 0xff)) {
1291         //    abcdefgh 11111111 11111111 11111111
1292         return true;
1293       }
1294     }
1295   }
1296   return false;
1297 }
1298 
1299 
1300 template <typename RES, typename T>
replicate(T imm)1301 static inline RES replicate(T imm) {
1302   VIXL_ASSERT((sizeof(RES) > sizeof(T)) &&
1303               (((sizeof(RES) / sizeof(T)) * sizeof(T)) == sizeof(RES)));
1304   RES res = imm;
1305   for (unsigned i = sizeof(RES) / sizeof(T) - 1; i > 0; i--) {
1306     res = (res << (sizeof(T) * 8)) | imm;
1307   }
1308   return res;
1309 }
1310 
1311 
Delegate(InstructionType type,InstructionCondDtSSop instruction,Condition cond,DataType dt,SRegister rd,const SOperand & operand)1312 void MacroAssembler::Delegate(InstructionType type,
1313                               InstructionCondDtSSop instruction,
1314                               Condition cond,
1315                               DataType dt,
1316                               SRegister rd,
1317                               const SOperand& operand) {
1318   CONTEXT_SCOPE;
1319   if (type == kVmov) {
1320     if (operand.IsImmediate() && dt.Is(F32)) {
1321       const NeonImmediate& neon_imm = operand.GetNeonImmediate();
1322       if (neon_imm.CanConvert<float>()) {
1323         // movw ip, imm16
1324         // movk ip, imm16
1325         // vmov s0, ip
1326         UseScratchRegisterScope temps(this);
1327         Register scratch = temps.Acquire();
1328         float f = neon_imm.GetImmediate<float>();
1329         // TODO: The scope length was measured empirically. We should analyse
1330         // the
1331         // worst-case size and add targetted tests.
1332         CodeBufferCheckScope scope(this, 3 * kMaxInstructionSizeInBytes);
1333         mov(cond, scratch, FloatToRawbits(f));
1334         vmov(cond, rd, scratch);
1335         return;
1336       }
1337     }
1338   }
1339   Assembler::Delegate(type, instruction, cond, dt, rd, operand);
1340 }
1341 
1342 
Delegate(InstructionType type,InstructionCondDtDDop instruction,Condition cond,DataType dt,DRegister rd,const DOperand & operand)1343 void MacroAssembler::Delegate(InstructionType type,
1344                               InstructionCondDtDDop instruction,
1345                               Condition cond,
1346                               DataType dt,
1347                               DRegister rd,
1348                               const DOperand& operand) {
1349   CONTEXT_SCOPE;
1350   if (type == kVmov) {
1351     if (operand.IsImmediate()) {
1352       const NeonImmediate& neon_imm = operand.GetNeonImmediate();
1353       switch (dt.GetValue()) {
1354         case I32:
1355           if (neon_imm.CanConvert<uint32_t>()) {
1356             uint32_t imm = neon_imm.GetImmediate<uint32_t>();
1357             // vmov.i32 d0, 0xabababab will translate into vmov.i8 d0, 0xab
1358             if (IsI8BitPattern(imm)) {
1359               CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1360               vmov(cond, I8, rd, imm & 0xff);
1361               return;
1362             }
1363             // vmov.i32 d0, 0xff0000ff will translate into
1364             // vmov.i64 d0, 0xff0000ffff0000ff
1365             if (IsI64BitPattern(imm)) {
1366               CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1367               vmov(cond, I64, rd, replicate<uint64_t>(imm));
1368               return;
1369             }
1370             // vmov.i32 d0, 0xffab0000 will translate into
1371             // vmvn.i32 d0, 0x0054ffff
1372             if (cond.Is(al) && CanBeInverted(imm)) {
1373               CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1374               vmvn(I32, rd, ~imm);
1375               return;
1376             }
1377           }
1378           break;
1379         case I16:
1380           if (neon_imm.CanConvert<uint16_t>()) {
1381             uint16_t imm = neon_imm.GetImmediate<uint16_t>();
1382             // vmov.i16 d0, 0xabab will translate into vmov.i8 d0, 0xab
1383             if (IsI8BitPattern(imm)) {
1384               CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1385               vmov(cond, I8, rd, imm & 0xff);
1386               return;
1387             }
1388           }
1389           break;
1390         case I64:
1391           if (neon_imm.CanConvert<uint64_t>()) {
1392             uint64_t imm = neon_imm.GetImmediate<uint64_t>();
1393             // vmov.i64 d0, -1 will translate into vmov.i8 d0, 0xff
1394             if (IsI8BitPattern(imm)) {
1395               CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1396               vmov(cond, I8, rd, imm & 0xff);
1397               return;
1398             }
1399             // mov ip, lo(imm64)
1400             // vdup d0, ip
1401             // vdup is prefered to 'vmov d0[0]' as d0[1] does not need to be
1402             // preserved
1403             {
1404               UseScratchRegisterScope temps(this);
1405               Register scratch = temps.Acquire();
1406               {
1407                 // TODO: The scope length was measured empirically. We should
1408                 // analyse the
1409                 // worst-case size and add targetted tests.
1410                 CodeBufferCheckScope scope(this,
1411                                            2 * kMaxInstructionSizeInBytes);
1412                 mov(cond, scratch, static_cast<uint32_t>(imm & 0xffffffff));
1413               }
1414               CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1415               vdup(cond, Untyped32, rd, scratch);
1416             }
1417             // mov ip, hi(imm64)
1418             // vmov d0[1], ip
1419             {
1420               UseScratchRegisterScope temps(this);
1421               Register scratch = temps.Acquire();
1422               {
1423                 // TODO: The scope length was measured empirically. We should
1424                 // analyse the
1425                 // worst-case size and add targetted tests.
1426                 CodeBufferCheckScope scope(this,
1427                                            2 * kMaxInstructionSizeInBytes);
1428                 mov(cond, scratch, static_cast<uint32_t>(imm >> 32));
1429               }
1430               CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1431               vmov(cond, Untyped32, DRegisterLane(rd, 1), scratch);
1432             }
1433             return;
1434           }
1435           break;
1436         default:
1437           break;
1438       }
1439       VIXL_ASSERT(!dt.Is(I8));  // I8 cases should have been handled already.
1440       if ((dt.Is(I16) || dt.Is(I32)) && neon_imm.CanConvert<uint32_t>()) {
1441         // mov ip, imm32
1442         // vdup.16 d0, ip
1443         UseScratchRegisterScope temps(this);
1444         Register scratch = temps.Acquire();
1445         {
1446           CodeBufferCheckScope scope(this, 2 * kMaxInstructionSizeInBytes);
1447           mov(cond, scratch, neon_imm.GetImmediate<uint32_t>());
1448         }
1449         DataTypeValue vdup_dt = Untyped32;
1450         switch (dt.GetValue()) {
1451           case I16:
1452             vdup_dt = Untyped16;
1453             break;
1454           case I32:
1455             vdup_dt = Untyped32;
1456             break;
1457           default:
1458             VIXL_UNREACHABLE();
1459         }
1460         CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1461         vdup(cond, vdup_dt, rd, scratch);
1462         return;
1463       }
1464       if (dt.Is(F32) && neon_imm.CanConvert<float>()) {
1465         float f = neon_imm.GetImmediate<float>();
1466         // Punt to vmov.i32
1467         // TODO: The scope length was guessed based on the double case below. We
1468         // should analyse the worst-case size and add targetted tests.
1469         CodeBufferCheckScope scope(this, 3 * kMaxInstructionSizeInBytes);
1470         vmov(cond, I32, rd, FloatToRawbits(f));
1471         return;
1472       }
1473       if (dt.Is(F64) && neon_imm.CanConvert<double>()) {
1474         // Punt to vmov.i64
1475         double d = neon_imm.GetImmediate<double>();
1476         // TODO: The scope length was measured empirically. We should analyse
1477         // the
1478         // worst-case size and add targetted tests.
1479         CodeBufferCheckScope scope(this, 6 * kMaxInstructionSizeInBytes);
1480         vmov(cond, I64, rd, DoubleToRawbits(d));
1481         return;
1482       }
1483     }
1484   }
1485   Assembler::Delegate(type, instruction, cond, dt, rd, operand);
1486 }
1487 
1488 
Delegate(InstructionType type,InstructionCondDtQQop instruction,Condition cond,DataType dt,QRegister rd,const QOperand & operand)1489 void MacroAssembler::Delegate(InstructionType type,
1490                               InstructionCondDtQQop instruction,
1491                               Condition cond,
1492                               DataType dt,
1493                               QRegister rd,
1494                               const QOperand& operand) {
1495   CONTEXT_SCOPE;
1496   if (type == kVmov) {
1497     if (operand.IsImmediate()) {
1498       const NeonImmediate& neon_imm = operand.GetNeonImmediate();
1499       switch (dt.GetValue()) {
1500         case I32:
1501           if (neon_imm.CanConvert<uint32_t>()) {
1502             uint32_t imm = neon_imm.GetImmediate<uint32_t>();
1503             // vmov.i32 d0, 0xabababab will translate into vmov.i8 d0, 0xab
1504             if (IsI8BitPattern(imm)) {
1505               CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1506               vmov(cond, I8, rd, imm & 0xff);
1507               return;
1508             }
1509             // vmov.i32 d0, 0xff0000ff will translate into
1510             // vmov.i64 d0, 0xff0000ffff0000ff
1511             if (IsI64BitPattern(imm)) {
1512               CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1513               vmov(cond, I64, rd, replicate<uint64_t>(imm));
1514               return;
1515             }
1516             // vmov.i32 d0, 0xffab0000 will translate into
1517             // vmvn.i32 d0, 0x0054ffff
1518             if (CanBeInverted(imm)) {
1519               CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1520               vmvn(cond, I32, rd, ~imm);
1521               return;
1522             }
1523           }
1524           break;
1525         case I16:
1526           if (neon_imm.CanConvert<uint16_t>()) {
1527             uint16_t imm = neon_imm.GetImmediate<uint16_t>();
1528             // vmov.i16 d0, 0xabab will translate into vmov.i8 d0, 0xab
1529             if (IsI8BitPattern(imm)) {
1530               CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1531               vmov(cond, I8, rd, imm & 0xff);
1532               return;
1533             }
1534           }
1535           break;
1536         case I64:
1537           if (neon_imm.CanConvert<uint64_t>()) {
1538             uint64_t imm = neon_imm.GetImmediate<uint64_t>();
1539             // vmov.i64 d0, -1 will translate into vmov.i8 d0, 0xff
1540             if (IsI8BitPattern(imm)) {
1541               CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1542               vmov(cond, I8, rd, imm & 0xff);
1543               return;
1544             }
1545             // mov ip, lo(imm64)
1546             // vdup q0, ip
1547             // vdup is prefered to 'vmov d0[0]' as d0[1-3] don't need to be
1548             // preserved
1549             {
1550               UseScratchRegisterScope temps(this);
1551               Register scratch = temps.Acquire();
1552               {
1553                 CodeBufferCheckScope scope(this,
1554                                            2 * kMaxInstructionSizeInBytes);
1555                 mov(cond, scratch, static_cast<uint32_t>(imm & 0xffffffff));
1556               }
1557               CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1558               vdup(cond, Untyped32, rd, scratch);
1559             }
1560             // mov ip, hi(imm64)
1561             // vmov.i32 d0[1], ip
1562             // vmov d1, d0
1563             {
1564               UseScratchRegisterScope temps(this);
1565               Register scratch = temps.Acquire();
1566               {
1567                 CodeBufferCheckScope scope(this,
1568                                            2 * kMaxInstructionSizeInBytes);
1569                 mov(cond, scratch, static_cast<uint32_t>(imm >> 32));
1570               }
1571               {
1572                 CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1573                 vmov(cond,
1574                      Untyped32,
1575                      DRegisterLane(rd.GetLowDRegister(), 1),
1576                      scratch);
1577               }
1578               CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1579               vmov(cond, F64, rd.GetHighDRegister(), rd.GetLowDRegister());
1580             }
1581             return;
1582           }
1583           break;
1584         default:
1585           break;
1586       }
1587       VIXL_ASSERT(!dt.Is(I8));  // I8 cases should have been handled already.
1588       if ((dt.Is(I16) || dt.Is(I32)) && neon_imm.CanConvert<uint32_t>()) {
1589         // mov ip, imm32
1590         // vdup.16 d0, ip
1591         UseScratchRegisterScope temps(this);
1592         Register scratch = temps.Acquire();
1593         {
1594           CodeBufferCheckScope scope(this, 2 * kMaxInstructionSizeInBytes);
1595           mov(cond, scratch, neon_imm.GetImmediate<uint32_t>());
1596         }
1597         DataTypeValue vdup_dt = Untyped32;
1598         switch (dt.GetValue()) {
1599           case I16:
1600             vdup_dt = Untyped16;
1601             break;
1602           case I32:
1603             vdup_dt = Untyped32;
1604             break;
1605           default:
1606             VIXL_UNREACHABLE();
1607         }
1608         CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1609         vdup(cond, vdup_dt, rd, scratch);
1610         return;
1611       }
1612       if (dt.Is(F32) && neon_imm.CanConvert<float>()) {
1613         // Punt to vmov.i64
1614         float f = neon_imm.GetImmediate<float>();
1615         CodeBufferCheckScope scope(this, 3 * kMaxInstructionSizeInBytes);
1616         vmov(cond, I32, rd, FloatToRawbits(f));
1617         return;
1618       }
1619       if (dt.Is(F64) && neon_imm.CanConvert<double>()) {
1620         // Use vmov to create the double in the low D register, then duplicate
1621         // it into the high D register.
1622         double d = neon_imm.GetImmediate<double>();
1623         CodeBufferCheckScope scope(this, 7 * kMaxInstructionSizeInBytes);
1624         vmov(cond, F64, rd.GetLowDRegister(), d);
1625         vmov(cond, F64, rd.GetHighDRegister(), rd.GetLowDRegister());
1626         return;
1627       }
1628     }
1629   }
1630   Assembler::Delegate(type, instruction, cond, dt, rd, operand);
1631 }
1632 
1633 
Delegate(InstructionType type,InstructionCondRL instruction,Condition cond,Register rt,Location * location)1634 void MacroAssembler::Delegate(InstructionType type,
1635                               InstructionCondRL instruction,
1636                               Condition cond,
1637                               Register rt,
1638                               Location* location) {
1639   VIXL_ASSERT((type == kLdrb) || (type == kLdrh) || (type == kLdrsb) ||
1640               (type == kLdrsh));
1641 
1642   CONTEXT_SCOPE;
1643 
1644   if (location->IsBound()) {
1645     CodeBufferCheckScope scope(this, 5 * kMaxInstructionSizeInBytes);
1646     UseScratchRegisterScope temps(this);
1647     temps.Include(rt);
1648     Register scratch = temps.Acquire();
1649     uint32_t mask = GetOffsetMask(type, Offset);
1650     switch (type) {
1651       case kLdrb:
1652         ldrb(rt, MemOperandComputationHelper(cond, scratch, location, mask));
1653         return;
1654       case kLdrh:
1655         ldrh(rt, MemOperandComputationHelper(cond, scratch, location, mask));
1656         return;
1657       case kLdrsb:
1658         ldrsb(rt, MemOperandComputationHelper(cond, scratch, location, mask));
1659         return;
1660       case kLdrsh:
1661         ldrsh(rt, MemOperandComputationHelper(cond, scratch, location, mask));
1662         return;
1663       default:
1664         VIXL_UNREACHABLE();
1665     }
1666     return;
1667   }
1668 
1669   Assembler::Delegate(type, instruction, cond, rt, location);
1670 }
1671 
1672 
Delegate(InstructionType type,InstructionCondRRL instruction,Condition cond,Register rt,Register rt2,Location * location)1673 void MacroAssembler::Delegate(InstructionType type,
1674                               InstructionCondRRL instruction,
1675                               Condition cond,
1676                               Register rt,
1677                               Register rt2,
1678                               Location* location) {
1679   VIXL_ASSERT(type == kLdrd);
1680 
1681   CONTEXT_SCOPE;
1682 
1683   if (location->IsBound()) {
1684     CodeBufferCheckScope scope(this, 6 * kMaxInstructionSizeInBytes);
1685     UseScratchRegisterScope temps(this);
1686     temps.Include(rt, rt2);
1687     Register scratch = temps.Acquire();
1688     uint32_t mask = GetOffsetMask(type, Offset);
1689     ldrd(rt, rt2, MemOperandComputationHelper(cond, scratch, location, mask));
1690     return;
1691   }
1692 
1693   Assembler::Delegate(type, instruction, cond, rt, rt2, location);
1694 }
1695 
1696 
Delegate(InstructionType type,InstructionCondSizeRMop instruction,Condition cond,EncodingSize size,Register rd,const MemOperand & operand)1697 void MacroAssembler::Delegate(InstructionType type,
1698                               InstructionCondSizeRMop instruction,
1699                               Condition cond,
1700                               EncodingSize size,
1701                               Register rd,
1702                               const MemOperand& operand) {
1703   CONTEXT_SCOPE;
1704   VIXL_ASSERT(size.IsBest());
1705   VIXL_ASSERT((type == kLdr) || (type == kLdrb) || (type == kLdrh) ||
1706               (type == kLdrsb) || (type == kLdrsh) || (type == kStr) ||
1707               (type == kStrb) || (type == kStrh));
1708   if (operand.IsImmediate()) {
1709     const Register& rn = operand.GetBaseRegister();
1710     AddrMode addrmode = operand.GetAddrMode();
1711     int32_t offset = operand.GetOffsetImmediate();
1712     uint32_t extra_offset_mask = GetOffsetMask(type, addrmode);
1713     // Try to maximize the offset used by the MemOperand (load_store_offset).
1714     // Add the part which can't be used by the MemOperand (add_offset).
1715     uint32_t load_store_offset = offset & extra_offset_mask;
1716     uint32_t add_offset = offset & ~extra_offset_mask;
1717     if ((add_offset != 0) &&
1718         (IsModifiedImmediate(offset) || IsModifiedImmediate(-offset))) {
1719       load_store_offset = 0;
1720       add_offset = offset;
1721     }
1722     switch (addrmode) {
1723       case PreIndex:
1724         // Avoid the unpredictable case 'str r0, [r0, imm]!'
1725         if (!rn.Is(rd)) {
1726           // Pre-Indexed case:
1727           // ldr r0, [r1, 12345]! will translate into
1728           //   add r1, r1, 12345
1729           //   ldr r0, [r1]
1730           {
1731             CodeBufferCheckScope scope(this, 3 * kMaxInstructionSizeInBytes);
1732             add(cond, rn, rn, add_offset);
1733           }
1734           {
1735             CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1736             (this->*instruction)(cond,
1737                                  size,
1738                                  rd,
1739                                  MemOperand(rn, load_store_offset, PreIndex));
1740           }
1741           return;
1742         }
1743         break;
1744       case Offset: {
1745         UseScratchRegisterScope temps(this);
1746         // Allow using the destination as a scratch register if possible.
1747         if ((type != kStr) && (type != kStrb) && (type != kStrh) &&
1748             !rd.Is(rn)) {
1749           temps.Include(rd);
1750         }
1751         Register scratch = temps.Acquire();
1752         // Offset case:
1753         // ldr r0, [r1, 12345] will translate into
1754         //   add r0, r1, 12345
1755         //   ldr r0, [r0]
1756         {
1757           CodeBufferCheckScope scope(this, 3 * kMaxInstructionSizeInBytes);
1758           add(cond, scratch, rn, add_offset);
1759         }
1760         {
1761           CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1762           (this->*instruction)(cond,
1763                                size,
1764                                rd,
1765                                MemOperand(scratch, load_store_offset));
1766         }
1767         return;
1768       }
1769       case PostIndex:
1770         // Avoid the unpredictable case 'ldr r0, [r0], imm'
1771         if (!rn.Is(rd)) {
1772           // Post-indexed case:
1773           // ldr r0. [r1], imm32 will translate into
1774           //   ldr r0, [r1]
1775           //   movw ip. imm32 & 0xffffffff
1776           //   movt ip, imm32 >> 16
1777           //   add r1, r1, ip
1778           {
1779             CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1780             (this->*instruction)(cond,
1781                                  size,
1782                                  rd,
1783                                  MemOperand(rn, load_store_offset, PostIndex));
1784           }
1785           {
1786             CodeBufferCheckScope scope(this, 3 * kMaxInstructionSizeInBytes);
1787             add(cond, rn, rn, add_offset);
1788           }
1789           return;
1790         }
1791         break;
1792     }
1793   } else if (operand.IsPlainRegister()) {
1794     const Register& rn = operand.GetBaseRegister();
1795     AddrMode addrmode = operand.GetAddrMode();
1796     const Register& rm = operand.GetOffsetRegister();
1797     if (rm.IsPC()) {
1798       VIXL_ABORT_WITH_MSG(
1799           "The MacroAssembler does not convert loads and stores with a PC "
1800           "offset register.\n");
1801     }
1802     if (rn.IsPC()) {
1803       if (addrmode == Offset) {
1804         if (IsUsingT32()) {
1805           VIXL_ABORT_WITH_MSG(
1806               "The MacroAssembler does not convert loads and stores with a PC "
1807               "base register for T32.\n");
1808         }
1809       } else {
1810         VIXL_ABORT_WITH_MSG(
1811             "The MacroAssembler does not convert loads and stores with a PC "
1812             "base register in pre-index or post-index mode.\n");
1813       }
1814     }
1815     switch (addrmode) {
1816       case PreIndex:
1817         // Avoid the unpredictable case 'str r0, [r0, imm]!'
1818         if (!rn.Is(rd)) {
1819           // Pre-Indexed case:
1820           // ldr r0, [r1, r2]! will translate into
1821           //   add r1, r1, r2
1822           //   ldr r0, [r1]
1823           {
1824             CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1825             if (operand.GetSign().IsPlus()) {
1826               add(cond, rn, rn, rm);
1827             } else {
1828               sub(cond, rn, rn, rm);
1829             }
1830           }
1831           {
1832             CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1833             (this->*instruction)(cond, size, rd, MemOperand(rn, Offset));
1834           }
1835           return;
1836         }
1837         break;
1838       case Offset: {
1839         UseScratchRegisterScope temps(this);
1840         // Allow using the destination as a scratch register if this is not a
1841         // store.
1842         // Avoid using PC as a temporary as this has side-effects.
1843         if ((type != kStr) && (type != kStrb) && (type != kStrh) &&
1844             !rd.IsPC()) {
1845           temps.Include(rd);
1846         }
1847         Register scratch = temps.Acquire();
1848         // Offset case:
1849         // ldr r0, [r1, r2] will translate into
1850         //   add r0, r1, r2
1851         //   ldr r0, [r0]
1852         {
1853           CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1854           if (operand.GetSign().IsPlus()) {
1855             add(cond, scratch, rn, rm);
1856           } else {
1857             sub(cond, scratch, rn, rm);
1858           }
1859         }
1860         {
1861           CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1862           (this->*instruction)(cond, size, rd, MemOperand(scratch, Offset));
1863         }
1864         return;
1865       }
1866       case PostIndex:
1867         // Avoid the unpredictable case 'ldr r0, [r0], imm'
1868         if (!rn.Is(rd)) {
1869           // Post-indexed case:
1870           // ldr r0. [r1], r2 will translate into
1871           //   ldr r0, [r1]
1872           //   add r1, r1, r2
1873           {
1874             CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1875             (this->*instruction)(cond, size, rd, MemOperand(rn, Offset));
1876           }
1877           {
1878             CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1879             if (operand.GetSign().IsPlus()) {
1880               add(cond, rn, rn, rm);
1881             } else {
1882               sub(cond, rn, rn, rm);
1883             }
1884           }
1885           return;
1886         }
1887         break;
1888     }
1889   }
1890   Assembler::Delegate(type, instruction, cond, size, rd, operand);
1891 }
1892 
1893 
Delegate(InstructionType type,InstructionCondRRMop instruction,Condition cond,Register rt,Register rt2,const MemOperand & operand)1894 void MacroAssembler::Delegate(InstructionType type,
1895                               InstructionCondRRMop instruction,
1896                               Condition cond,
1897                               Register rt,
1898                               Register rt2,
1899                               const MemOperand& operand) {
1900   if ((type == kLdaexd) || (type == kLdrexd) || (type == kStlex) ||
1901       (type == kStlexb) || (type == kStlexh) || (type == kStrex) ||
1902       (type == kStrexb) || (type == kStrexh)) {
1903     UnimplementedDelegate(type);
1904     return;
1905   }
1906 
1907   VIXL_ASSERT((type == kLdrd) || (type == kStrd));
1908 
1909   CONTEXT_SCOPE;
1910 
1911   // TODO: Should we allow these cases?
1912   if (IsUsingA32()) {
1913     // The first register needs to be even.
1914     if ((rt.GetCode() & 1) != 0) {
1915       UnimplementedDelegate(type);
1916       return;
1917     }
1918     // Registers need to be adjacent.
1919     if (((rt.GetCode() + 1) % kNumberOfRegisters) != rt2.GetCode()) {
1920       UnimplementedDelegate(type);
1921       return;
1922     }
1923     // LDRD lr, pc [...] is not allowed.
1924     if (rt.Is(lr)) {
1925       UnimplementedDelegate(type);
1926       return;
1927     }
1928   }
1929 
1930   if (operand.IsImmediate()) {
1931     const Register& rn = operand.GetBaseRegister();
1932     AddrMode addrmode = operand.GetAddrMode();
1933     int32_t offset = operand.GetOffsetImmediate();
1934     uint32_t extra_offset_mask = GetOffsetMask(type, addrmode);
1935     // Try to maximize the offset used by the MemOperand (load_store_offset).
1936     // Add the part which can't be used by the MemOperand (add_offset).
1937     uint32_t load_store_offset = offset & extra_offset_mask;
1938     uint32_t add_offset = offset & ~extra_offset_mask;
1939     if ((add_offset != 0) &&
1940         (IsModifiedImmediate(offset) || IsModifiedImmediate(-offset))) {
1941       load_store_offset = 0;
1942       add_offset = offset;
1943     }
1944     switch (addrmode) {
1945       case PreIndex: {
1946         // Allow using the destinations as a scratch registers if possible.
1947         UseScratchRegisterScope temps(this);
1948         if (type == kLdrd) {
1949           if (!rt.Is(rn)) temps.Include(rt);
1950           if (!rt2.Is(rn)) temps.Include(rt2);
1951         }
1952 
1953         // Pre-Indexed case:
1954         // ldrd r0, r1, [r2, 12345]! will translate into
1955         //   add r2, 12345
1956         //   ldrd r0, r1, [r2]
1957         {
1958           CodeBufferCheckScope scope(this, 3 * kMaxInstructionSizeInBytes);
1959           add(cond, rn, rn, add_offset);
1960         }
1961         {
1962           CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1963           (this->*instruction)(cond,
1964                                rt,
1965                                rt2,
1966                                MemOperand(rn, load_store_offset, PreIndex));
1967         }
1968         return;
1969       }
1970       case Offset: {
1971         UseScratchRegisterScope temps(this);
1972         // Allow using the destinations as a scratch registers if possible.
1973         if (type == kLdrd) {
1974           if (!rt.Is(rn)) temps.Include(rt);
1975           if (!rt2.Is(rn)) temps.Include(rt2);
1976         }
1977         Register scratch = temps.Acquire();
1978         // Offset case:
1979         // ldrd r0, r1, [r2, 12345] will translate into
1980         //   add r0, r2, 12345
1981         //   ldrd r0, r1, [r0]
1982         {
1983           CodeBufferCheckScope scope(this, 3 * kMaxInstructionSizeInBytes);
1984           add(cond, scratch, rn, add_offset);
1985         }
1986         {
1987           CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
1988           (this->*instruction)(cond,
1989                                rt,
1990                                rt2,
1991                                MemOperand(scratch, load_store_offset));
1992         }
1993         return;
1994       }
1995       case PostIndex:
1996         // Avoid the unpredictable case 'ldrd r0, r1, [r0], imm'
1997         if (!rn.Is(rt) && !rn.Is(rt2)) {
1998           // Post-indexed case:
1999           // ldrd r0, r1, [r2], imm32 will translate into
2000           //   ldrd r0, r1, [r2]
2001           //   movw ip. imm32 & 0xffffffff
2002           //   movt ip, imm32 >> 16
2003           //   add r2, ip
2004           {
2005             CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
2006             (this->*instruction)(cond,
2007                                  rt,
2008                                  rt2,
2009                                  MemOperand(rn, load_store_offset, PostIndex));
2010           }
2011           {
2012             CodeBufferCheckScope scope(this, 3 * kMaxInstructionSizeInBytes);
2013             add(cond, rn, rn, add_offset);
2014           }
2015           return;
2016         }
2017         break;
2018     }
2019   }
2020   if (operand.IsPlainRegister()) {
2021     const Register& rn = operand.GetBaseRegister();
2022     const Register& rm = operand.GetOffsetRegister();
2023     AddrMode addrmode = operand.GetAddrMode();
2024     switch (addrmode) {
2025       case PreIndex:
2026         // ldrd r0, r1, [r2, r3]! will translate into
2027         //   add r2, r3
2028         //   ldrd r0, r1, [r2]
2029         {
2030           CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
2031           if (operand.GetSign().IsPlus()) {
2032             add(cond, rn, rn, rm);
2033           } else {
2034             sub(cond, rn, rn, rm);
2035           }
2036         }
2037         {
2038           CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
2039           (this->*instruction)(cond, rt, rt2, MemOperand(rn, Offset));
2040         }
2041         return;
2042       case PostIndex:
2043         // ldrd r0, r1, [r2], r3 will translate into
2044         //   ldrd r0, r1, [r2]
2045         //   add r2, r3
2046         {
2047           CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
2048           (this->*instruction)(cond, rt, rt2, MemOperand(rn, Offset));
2049         }
2050         {
2051           CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
2052           if (operand.GetSign().IsPlus()) {
2053             add(cond, rn, rn, rm);
2054           } else {
2055             sub(cond, rn, rn, rm);
2056           }
2057         }
2058         return;
2059       case Offset: {
2060         UseScratchRegisterScope temps(this);
2061         // Allow using the destinations as a scratch registers if possible.
2062         if (type == kLdrd) {
2063           if (!rt.Is(rn)) temps.Include(rt);
2064           if (!rt2.Is(rn)) temps.Include(rt2);
2065         }
2066         Register scratch = temps.Acquire();
2067         // Offset case:
2068         // ldrd r0, r1, [r2, r3] will translate into
2069         //   add r0, r2, r3
2070         //   ldrd r0, r1, [r0]
2071         {
2072           CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
2073           if (operand.GetSign().IsPlus()) {
2074             add(cond, scratch, rn, rm);
2075           } else {
2076             sub(cond, scratch, rn, rm);
2077           }
2078         }
2079         {
2080           CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
2081           (this->*instruction)(cond, rt, rt2, MemOperand(scratch, Offset));
2082         }
2083         return;
2084       }
2085     }
2086   }
2087   Assembler::Delegate(type, instruction, cond, rt, rt2, operand);
2088 }
2089 
2090 
Delegate(InstructionType type,InstructionCondDtSMop instruction,Condition cond,DataType dt,SRegister rd,const MemOperand & operand)2091 void MacroAssembler::Delegate(InstructionType type,
2092                               InstructionCondDtSMop instruction,
2093                               Condition cond,
2094                               DataType dt,
2095                               SRegister rd,
2096                               const MemOperand& operand) {
2097   CONTEXT_SCOPE;
2098   if (operand.IsImmediate()) {
2099     const Register& rn = operand.GetBaseRegister();
2100     AddrMode addrmode = operand.GetAddrMode();
2101     int32_t offset = operand.GetOffsetImmediate();
2102     VIXL_ASSERT(((offset > 0) && operand.GetSign().IsPlus()) ||
2103                 ((offset < 0) && operand.GetSign().IsMinus()) || (offset == 0));
2104     if (rn.IsPC()) {
2105       VIXL_ABORT_WITH_MSG(
2106           "The MacroAssembler does not convert vldr or vstr with a PC base "
2107           "register.\n");
2108     }
2109     switch (addrmode) {
2110       case PreIndex:
2111         // Pre-Indexed case:
2112         // vldr.32 s0, [r1, 12345]! will translate into
2113         //   add r1, 12345
2114         //   vldr.32 s0, [r1]
2115         if (offset != 0) {
2116           CodeBufferCheckScope scope(this, 3 * kMaxInstructionSizeInBytes);
2117           add(cond, rn, rn, offset);
2118         }
2119         {
2120           CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
2121           (this->*instruction)(cond, dt, rd, MemOperand(rn, Offset));
2122         }
2123         return;
2124       case Offset: {
2125         UseScratchRegisterScope temps(this);
2126         Register scratch = temps.Acquire();
2127         // Offset case:
2128         // vldr.32 s0, [r1, 12345] will translate into
2129         //   add ip, r1, 12345
2130         //   vldr.32 s0, [ip]
2131         {
2132           VIXL_ASSERT(offset != 0);
2133           CodeBufferCheckScope scope(this, 3 * kMaxInstructionSizeInBytes);
2134           add(cond, scratch, rn, offset);
2135         }
2136         {
2137           CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
2138           (this->*instruction)(cond, dt, rd, MemOperand(scratch, Offset));
2139         }
2140         return;
2141       }
2142       case PostIndex:
2143         // Post-indexed case:
2144         // vldr.32 s0, [r1], imm32 will translate into
2145         //   vldr.32 s0, [r1]
2146         //   movw ip. imm32 & 0xffffffff
2147         //   movt ip, imm32 >> 16
2148         //   add r1, ip
2149         {
2150           CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
2151           (this->*instruction)(cond, dt, rd, MemOperand(rn, Offset));
2152         }
2153         if (offset != 0) {
2154           CodeBufferCheckScope scope(this, 3 * kMaxInstructionSizeInBytes);
2155           add(cond, rn, rn, offset);
2156         }
2157         return;
2158     }
2159   }
2160   Assembler::Delegate(type, instruction, cond, dt, rd, operand);
2161 }
2162 
2163 
Delegate(InstructionType type,InstructionCondDtDMop instruction,Condition cond,DataType dt,DRegister rd,const MemOperand & operand)2164 void MacroAssembler::Delegate(InstructionType type,
2165                               InstructionCondDtDMop instruction,
2166                               Condition cond,
2167                               DataType dt,
2168                               DRegister rd,
2169                               const MemOperand& operand) {
2170   CONTEXT_SCOPE;
2171   if (operand.IsImmediate()) {
2172     const Register& rn = operand.GetBaseRegister();
2173     AddrMode addrmode = operand.GetAddrMode();
2174     int32_t offset = operand.GetOffsetImmediate();
2175     VIXL_ASSERT(((offset > 0) && operand.GetSign().IsPlus()) ||
2176                 ((offset < 0) && operand.GetSign().IsMinus()) || (offset == 0));
2177     if (rn.IsPC()) {
2178       VIXL_ABORT_WITH_MSG(
2179           "The MacroAssembler does not convert vldr or vstr with a PC base "
2180           "register.\n");
2181     }
2182     switch (addrmode) {
2183       case PreIndex:
2184         // Pre-Indexed case:
2185         // vldr.64 d0, [r1, 12345]! will translate into
2186         //   add r1, 12345
2187         //   vldr.64 d0, [r1]
2188         if (offset != 0) {
2189           CodeBufferCheckScope scope(this, 3 * kMaxInstructionSizeInBytes);
2190           add(cond, rn, rn, offset);
2191         }
2192         {
2193           CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
2194           (this->*instruction)(cond, dt, rd, MemOperand(rn, Offset));
2195         }
2196         return;
2197       case Offset: {
2198         UseScratchRegisterScope temps(this);
2199         Register scratch = temps.Acquire();
2200         // Offset case:
2201         // vldr.64 d0, [r1, 12345] will translate into
2202         //   add ip, r1, 12345
2203         //   vldr.32 s0, [ip]
2204         {
2205           VIXL_ASSERT(offset != 0);
2206           CodeBufferCheckScope scope(this, 3 * kMaxInstructionSizeInBytes);
2207           add(cond, scratch, rn, offset);
2208         }
2209         {
2210           CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
2211           (this->*instruction)(cond, dt, rd, MemOperand(scratch, Offset));
2212         }
2213         return;
2214       }
2215       case PostIndex:
2216         // Post-indexed case:
2217         // vldr.64 d0. [r1], imm32 will translate into
2218         //   vldr.64 d0, [r1]
2219         //   movw ip. imm32 & 0xffffffff
2220         //   movt ip, imm32 >> 16
2221         //   add r1, ip
2222         {
2223           CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
2224           (this->*instruction)(cond, dt, rd, MemOperand(rn, Offset));
2225         }
2226         if (offset != 0) {
2227           CodeBufferCheckScope scope(this, 3 * kMaxInstructionSizeInBytes);
2228           add(cond, rn, rn, offset);
2229         }
2230         return;
2231     }
2232   }
2233   Assembler::Delegate(type, instruction, cond, dt, rd, operand);
2234 }
2235 
2236 
Delegate(InstructionType type,InstructionCondMsrOp instruction,Condition cond,MaskedSpecialRegister spec_reg,const Operand & operand)2237 void MacroAssembler::Delegate(InstructionType type,
2238                               InstructionCondMsrOp instruction,
2239                               Condition cond,
2240                               MaskedSpecialRegister spec_reg,
2241                               const Operand& operand) {
2242   USE(type);
2243   VIXL_ASSERT(type == kMsr);
2244   if (operand.IsImmediate()) {
2245     UseScratchRegisterScope temps(this);
2246     Register scratch = temps.Acquire();
2247     {
2248       CodeBufferCheckScope scope(this, 2 * kMaxInstructionSizeInBytes);
2249       mov(cond, scratch, operand);
2250     }
2251     CodeBufferCheckScope scope(this, kMaxInstructionSizeInBytes);
2252     msr(cond, spec_reg, scratch);
2253     return;
2254   }
2255   Assembler::Delegate(type, instruction, cond, spec_reg, operand);
2256 }
2257 
2258 
Delegate(InstructionType type,InstructionCondDtDL instruction,Condition cond,DataType dt,DRegister rd,Location * location)2259 void MacroAssembler::Delegate(InstructionType type,
2260                               InstructionCondDtDL instruction,
2261                               Condition cond,
2262                               DataType dt,
2263                               DRegister rd,
2264                               Location* location) {
2265   VIXL_ASSERT(type == kVldr);
2266 
2267   CONTEXT_SCOPE;
2268 
2269   if (location->IsBound()) {
2270     CodeBufferCheckScope scope(this, 5 * kMaxInstructionSizeInBytes);
2271     UseScratchRegisterScope temps(this);
2272     Register scratch = temps.Acquire();
2273     uint32_t mask = GetOffsetMask(type, Offset);
2274     vldr(dt, rd, MemOperandComputationHelper(cond, scratch, location, mask));
2275     return;
2276   }
2277 
2278   Assembler::Delegate(type, instruction, cond, dt, rd, location);
2279 }
2280 
2281 
Delegate(InstructionType type,InstructionCondDtSL instruction,Condition cond,DataType dt,SRegister rd,Location * location)2282 void MacroAssembler::Delegate(InstructionType type,
2283                               InstructionCondDtSL instruction,
2284                               Condition cond,
2285                               DataType dt,
2286                               SRegister rd,
2287                               Location* location) {
2288   VIXL_ASSERT(type == kVldr);
2289 
2290   CONTEXT_SCOPE;
2291 
2292   if (location->IsBound()) {
2293     CodeBufferCheckScope scope(this, 5 * kMaxInstructionSizeInBytes);
2294     UseScratchRegisterScope temps(this);
2295     Register scratch = temps.Acquire();
2296     uint32_t mask = GetOffsetMask(type, Offset);
2297     vldr(dt, rd, MemOperandComputationHelper(cond, scratch, location, mask));
2298     return;
2299   }
2300 
2301   Assembler::Delegate(type, instruction, cond, dt, rd, location);
2302 }
2303 
2304 
2305 #undef CONTEXT_SCOPE
2306 #undef TOSTRING
2307 #undef STRINGIFY
2308 
2309 // Start of generated code.
2310 // End of generated code.
2311 }  // namespace aarch32
2312 }  // namespace vixl
2313