1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the MemorySSA class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/MemorySSA.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/iterator.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/IteratedDominanceFrontier.h"
29 #include "llvm/Analysis/MemoryLocation.h"
30 #include "llvm/Config/llvm-config.h"
31 #include "llvm/IR/AssemblyAnnotationWriter.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/PassManager.h"
42 #include "llvm/IR/Use.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/AtomicOrdering.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Compiler.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/FormattedStream.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <iterator>
55 #include <memory>
56 #include <utility>
57 
58 using namespace llvm;
59 
60 #define DEBUG_TYPE "memoryssa"
61 
62 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
63                       true)
64 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
65 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
66 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
67                     true)
68 
69 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
70                       "Memory SSA Printer", false, false)
71 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
72 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
73                     "Memory SSA Printer", false, false)
74 
75 static cl::opt<unsigned> MaxCheckLimit(
76     "memssa-check-limit", cl::Hidden, cl::init(100),
77     cl::desc("The maximum number of stores/phis MemorySSA"
78              "will consider trying to walk past (default = 100)"));
79 
80 static cl::opt<bool>
81     VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden,
82                     cl::desc("Verify MemorySSA in legacy printer pass."));
83 
84 namespace llvm {
85 
86 /// An assembly annotator class to print Memory SSA information in
87 /// comments.
88 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
89   friend class MemorySSA;
90 
91   const MemorySSA *MSSA;
92 
93 public:
MemorySSAAnnotatedWriter(const MemorySSA * M)94   MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
95 
emitBasicBlockStartAnnot(const BasicBlock * BB,formatted_raw_ostream & OS)96   void emitBasicBlockStartAnnot(const BasicBlock *BB,
97                                 formatted_raw_ostream &OS) override {
98     if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
99       OS << "; " << *MA << "\n";
100   }
101 
emitInstructionAnnot(const Instruction * I,formatted_raw_ostream & OS)102   void emitInstructionAnnot(const Instruction *I,
103                             formatted_raw_ostream &OS) override {
104     if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
105       OS << "; " << *MA << "\n";
106   }
107 };
108 
109 } // end namespace llvm
110 
111 namespace {
112 
113 /// Our current alias analysis API differentiates heavily between calls and
114 /// non-calls, and functions called on one usually assert on the other.
115 /// This class encapsulates the distinction to simplify other code that wants
116 /// "Memory affecting instructions and related data" to use as a key.
117 /// For example, this class is used as a densemap key in the use optimizer.
118 class MemoryLocOrCall {
119 public:
120   bool IsCall = false;
121 
MemoryLocOrCall(MemoryUseOrDef * MUD)122   MemoryLocOrCall(MemoryUseOrDef *MUD)
123       : MemoryLocOrCall(MUD->getMemoryInst()) {}
MemoryLocOrCall(const MemoryUseOrDef * MUD)124   MemoryLocOrCall(const MemoryUseOrDef *MUD)
125       : MemoryLocOrCall(MUD->getMemoryInst()) {}
126 
MemoryLocOrCall(Instruction * Inst)127   MemoryLocOrCall(Instruction *Inst) {
128     if (ImmutableCallSite(Inst)) {
129       IsCall = true;
130       CS = ImmutableCallSite(Inst);
131     } else {
132       IsCall = false;
133       // There is no such thing as a memorylocation for a fence inst, and it is
134       // unique in that regard.
135       if (!isa<FenceInst>(Inst))
136         Loc = MemoryLocation::get(Inst);
137     }
138   }
139 
MemoryLocOrCall(const MemoryLocation & Loc)140   explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
141 
getCS() const142   ImmutableCallSite getCS() const {
143     assert(IsCall);
144     return CS;
145   }
146 
getLoc() const147   MemoryLocation getLoc() const {
148     assert(!IsCall);
149     return Loc;
150   }
151 
operator ==(const MemoryLocOrCall & Other) const152   bool operator==(const MemoryLocOrCall &Other) const {
153     if (IsCall != Other.IsCall)
154       return false;
155 
156     if (!IsCall)
157       return Loc == Other.Loc;
158 
159     if (CS.getCalledValue() != Other.CS.getCalledValue())
160       return false;
161 
162     return CS.arg_size() == Other.CS.arg_size() &&
163            std::equal(CS.arg_begin(), CS.arg_end(), Other.CS.arg_begin());
164   }
165 
166 private:
167   union {
168     ImmutableCallSite CS;
169     MemoryLocation Loc;
170   };
171 };
172 
173 } // end anonymous namespace
174 
175 namespace llvm {
176 
177 template <> struct DenseMapInfo<MemoryLocOrCall> {
getEmptyKeyllvm::DenseMapInfo178   static inline MemoryLocOrCall getEmptyKey() {
179     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
180   }
181 
getTombstoneKeyllvm::DenseMapInfo182   static inline MemoryLocOrCall getTombstoneKey() {
183     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
184   }
185 
getHashValuellvm::DenseMapInfo186   static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
187     if (!MLOC.IsCall)
188       return hash_combine(
189           MLOC.IsCall,
190           DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
191 
192     hash_code hash =
193         hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
194                                       MLOC.getCS().getCalledValue()));
195 
196     for (const Value *Arg : MLOC.getCS().args())
197       hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
198     return hash;
199   }
200 
isEqualllvm::DenseMapInfo201   static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
202     return LHS == RHS;
203   }
204 };
205 
206 } // end namespace llvm
207 
208 /// This does one-way checks to see if Use could theoretically be hoisted above
209 /// MayClobber. This will not check the other way around.
210 ///
211 /// This assumes that, for the purposes of MemorySSA, Use comes directly after
212 /// MayClobber, with no potentially clobbering operations in between them.
213 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
areLoadsReorderable(const LoadInst * Use,const LoadInst * MayClobber)214 static bool areLoadsReorderable(const LoadInst *Use,
215                                 const LoadInst *MayClobber) {
216   bool VolatileUse = Use->isVolatile();
217   bool VolatileClobber = MayClobber->isVolatile();
218   // Volatile operations may never be reordered with other volatile operations.
219   if (VolatileUse && VolatileClobber)
220     return false;
221   // Otherwise, volatile doesn't matter here. From the language reference:
222   // 'optimizers may change the order of volatile operations relative to
223   // non-volatile operations.'"
224 
225   // If a load is seq_cst, it cannot be moved above other loads. If its ordering
226   // is weaker, it can be moved above other loads. We just need to be sure that
227   // MayClobber isn't an acquire load, because loads can't be moved above
228   // acquire loads.
229   //
230   // Note that this explicitly *does* allow the free reordering of monotonic (or
231   // weaker) loads of the same address.
232   bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
233   bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
234                                                      AtomicOrdering::Acquire);
235   return !(SeqCstUse || MayClobberIsAcquire);
236 }
237 
238 namespace {
239 
240 struct ClobberAlias {
241   bool IsClobber;
242   Optional<AliasResult> AR;
243 };
244 
245 } // end anonymous namespace
246 
247 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
248 // ignored if IsClobber = false.
instructionClobbersQuery(MemoryDef * MD,const MemoryLocation & UseLoc,const Instruction * UseInst,AliasAnalysis & AA)249 static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
250                                              const MemoryLocation &UseLoc,
251                                              const Instruction *UseInst,
252                                              AliasAnalysis &AA) {
253   Instruction *DefInst = MD->getMemoryInst();
254   assert(DefInst && "Defining instruction not actually an instruction");
255   ImmutableCallSite UseCS(UseInst);
256   Optional<AliasResult> AR;
257 
258   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
259     // These intrinsics will show up as affecting memory, but they are just
260     // markers, mostly.
261     //
262     // FIXME: We probably don't actually want MemorySSA to model these at all
263     // (including creating MemoryAccesses for them): we just end up inventing
264     // clobbers where they don't really exist at all. Please see D43269 for
265     // context.
266     switch (II->getIntrinsicID()) {
267     case Intrinsic::lifetime_start:
268       if (UseCS)
269         return {false, NoAlias};
270       AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
271       return {AR != NoAlias, AR};
272     case Intrinsic::lifetime_end:
273     case Intrinsic::invariant_start:
274     case Intrinsic::invariant_end:
275     case Intrinsic::assume:
276       return {false, NoAlias};
277     default:
278       break;
279     }
280   }
281 
282   if (UseCS) {
283     ModRefInfo I = AA.getModRefInfo(DefInst, UseCS);
284     AR = isMustSet(I) ? MustAlias : MayAlias;
285     return {isModOrRefSet(I), AR};
286   }
287 
288   if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
289     if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
290       return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};
291 
292   ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
293   AR = isMustSet(I) ? MustAlias : MayAlias;
294   return {isModSet(I), AR};
295 }
296 
instructionClobbersQuery(MemoryDef * MD,const MemoryUseOrDef * MU,const MemoryLocOrCall & UseMLOC,AliasAnalysis & AA)297 static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
298                                              const MemoryUseOrDef *MU,
299                                              const MemoryLocOrCall &UseMLOC,
300                                              AliasAnalysis &AA) {
301   // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
302   // to exist while MemoryLocOrCall is pushed through places.
303   if (UseMLOC.IsCall)
304     return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
305                                     AA);
306   return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
307                                   AA);
308 }
309 
310 // Return true when MD may alias MU, return false otherwise.
defClobbersUseOrDef(MemoryDef * MD,const MemoryUseOrDef * MU,AliasAnalysis & AA)311 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
312                                         AliasAnalysis &AA) {
313   return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
314 }
315 
316 namespace {
317 
318 struct UpwardsMemoryQuery {
319   // True if our original query started off as a call
320   bool IsCall = false;
321   // The pointer location we started the query with. This will be empty if
322   // IsCall is true.
323   MemoryLocation StartingLoc;
324   // This is the instruction we were querying about.
325   const Instruction *Inst = nullptr;
326   // The MemoryAccess we actually got called with, used to test local domination
327   const MemoryAccess *OriginalAccess = nullptr;
328   Optional<AliasResult> AR = MayAlias;
329 
330   UpwardsMemoryQuery() = default;
331 
UpwardsMemoryQuery__anon96f7eebd0411::UpwardsMemoryQuery332   UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
333       : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) {
334     if (!IsCall)
335       StartingLoc = MemoryLocation::get(Inst);
336   }
337 };
338 
339 } // end anonymous namespace
340 
lifetimeEndsAt(MemoryDef * MD,const MemoryLocation & Loc,AliasAnalysis & AA)341 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
342                            AliasAnalysis &AA) {
343   Instruction *Inst = MD->getMemoryInst();
344   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
345     switch (II->getIntrinsicID()) {
346     case Intrinsic::lifetime_end:
347       return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
348     default:
349       return false;
350     }
351   }
352   return false;
353 }
354 
isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis & AA,const Instruction * I)355 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA,
356                                                    const Instruction *I) {
357   // If the memory can't be changed, then loads of the memory can't be
358   // clobbered.
359   return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
360                               AA.pointsToConstantMemory(cast<LoadInst>(I)->
361                                                           getPointerOperand()));
362 }
363 
364 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
365 /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
366 ///
367 /// This is meant to be as simple and self-contained as possible. Because it
368 /// uses no cache, etc., it can be relatively expensive.
369 ///
370 /// \param Start     The MemoryAccess that we want to walk from.
371 /// \param ClobberAt A clobber for Start.
372 /// \param StartLoc  The MemoryLocation for Start.
373 /// \param MSSA      The MemorySSA isntance that Start and ClobberAt belong to.
374 /// \param Query     The UpwardsMemoryQuery we used for our search.
375 /// \param AA        The AliasAnalysis we used for our search.
376 static void LLVM_ATTRIBUTE_UNUSED
checkClobberSanity(MemoryAccess * Start,MemoryAccess * ClobberAt,const MemoryLocation & StartLoc,const MemorySSA & MSSA,const UpwardsMemoryQuery & Query,AliasAnalysis & AA)377 checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt,
378                    const MemoryLocation &StartLoc, const MemorySSA &MSSA,
379                    const UpwardsMemoryQuery &Query, AliasAnalysis &AA) {
380   assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
381 
382   if (MSSA.isLiveOnEntryDef(Start)) {
383     assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
384            "liveOnEntry must clobber itself");
385     return;
386   }
387 
388   bool FoundClobber = false;
389   DenseSet<MemoryAccessPair> VisitedPhis;
390   SmallVector<MemoryAccessPair, 8> Worklist;
391   Worklist.emplace_back(Start, StartLoc);
392   // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
393   // is found, complain.
394   while (!Worklist.empty()) {
395     MemoryAccessPair MAP = Worklist.pop_back_val();
396     // All we care about is that nothing from Start to ClobberAt clobbers Start.
397     // We learn nothing from revisiting nodes.
398     if (!VisitedPhis.insert(MAP).second)
399       continue;
400 
401     for (MemoryAccess *MA : def_chain(MAP.first)) {
402       if (MA == ClobberAt) {
403         if (auto *MD = dyn_cast<MemoryDef>(MA)) {
404           // instructionClobbersQuery isn't essentially free, so don't use `|=`,
405           // since it won't let us short-circuit.
406           //
407           // Also, note that this can't be hoisted out of the `Worklist` loop,
408           // since MD may only act as a clobber for 1 of N MemoryLocations.
409           FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
410           if (!FoundClobber) {
411             ClobberAlias CA =
412                 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
413             if (CA.IsClobber) {
414               FoundClobber = true;
415               // Not used: CA.AR;
416             }
417           }
418         }
419         break;
420       }
421 
422       // We should never hit liveOnEntry, unless it's the clobber.
423       assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
424 
425       if (auto *MD = dyn_cast<MemoryDef>(MA)) {
426         (void)MD;
427         assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
428                     .IsClobber &&
429                "Found clobber before reaching ClobberAt!");
430         continue;
431       }
432 
433       assert(isa<MemoryPhi>(MA));
434       Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end());
435     }
436   }
437 
438   // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
439   // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
440   assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
441          "ClobberAt never acted as a clobber");
442 }
443 
444 namespace {
445 
446 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
447 /// in one class.
448 class ClobberWalker {
449   /// Save a few bytes by using unsigned instead of size_t.
450   using ListIndex = unsigned;
451 
452   /// Represents a span of contiguous MemoryDefs, potentially ending in a
453   /// MemoryPhi.
454   struct DefPath {
455     MemoryLocation Loc;
456     // Note that, because we always walk in reverse, Last will always dominate
457     // First. Also note that First and Last are inclusive.
458     MemoryAccess *First;
459     MemoryAccess *Last;
460     Optional<ListIndex> Previous;
461 
DefPath__anon96f7eebd0511::ClobberWalker::DefPath462     DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
463             Optional<ListIndex> Previous)
464         : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
465 
DefPath__anon96f7eebd0511::ClobberWalker::DefPath466     DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
467             Optional<ListIndex> Previous)
468         : DefPath(Loc, Init, Init, Previous) {}
469   };
470 
471   const MemorySSA &MSSA;
472   AliasAnalysis &AA;
473   DominatorTree &DT;
474   UpwardsMemoryQuery *Query;
475 
476   // Phi optimization bookkeeping
477   SmallVector<DefPath, 32> Paths;
478   DenseSet<ConstMemoryAccessPair> VisitedPhis;
479 
480   /// Find the nearest def or phi that `From` can legally be optimized to.
getWalkTarget(const MemoryPhi * From) const481   const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
482     assert(From->getNumOperands() && "Phi with no operands?");
483 
484     BasicBlock *BB = From->getBlock();
485     MemoryAccess *Result = MSSA.getLiveOnEntryDef();
486     DomTreeNode *Node = DT.getNode(BB);
487     while ((Node = Node->getIDom())) {
488       auto *Defs = MSSA.getBlockDefs(Node->getBlock());
489       if (Defs)
490         return &*Defs->rbegin();
491     }
492     return Result;
493   }
494 
495   /// Result of calling walkToPhiOrClobber.
496   struct UpwardsWalkResult {
497     /// The "Result" of the walk. Either a clobber, the last thing we walked, or
498     /// both. Include alias info when clobber found.
499     MemoryAccess *Result;
500     bool IsKnownClobber;
501     Optional<AliasResult> AR;
502   };
503 
504   /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
505   /// This will update Desc.Last as it walks. It will (optionally) also stop at
506   /// StopAt.
507   ///
508   /// This does not test for whether StopAt is a clobber
509   UpwardsWalkResult
walkToPhiOrClobber(DefPath & Desc,const MemoryAccess * StopAt=nullptr) const510   walkToPhiOrClobber(DefPath &Desc,
511                      const MemoryAccess *StopAt = nullptr) const {
512     assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
513 
514     for (MemoryAccess *Current : def_chain(Desc.Last)) {
515       Desc.Last = Current;
516       if (Current == StopAt)
517         return {Current, false, MayAlias};
518 
519       if (auto *MD = dyn_cast<MemoryDef>(Current)) {
520         if (MSSA.isLiveOnEntryDef(MD))
521           return {MD, true, MustAlias};
522         ClobberAlias CA =
523             instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
524         if (CA.IsClobber)
525           return {MD, true, CA.AR};
526       }
527     }
528 
529     assert(isa<MemoryPhi>(Desc.Last) &&
530            "Ended at a non-clobber that's not a phi?");
531     return {Desc.Last, false, MayAlias};
532   }
533 
addSearches(MemoryPhi * Phi,SmallVectorImpl<ListIndex> & PausedSearches,ListIndex PriorNode)534   void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
535                    ListIndex PriorNode) {
536     auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
537                                  upward_defs_end());
538     for (const MemoryAccessPair &P : UpwardDefs) {
539       PausedSearches.push_back(Paths.size());
540       Paths.emplace_back(P.second, P.first, PriorNode);
541     }
542   }
543 
544   /// Represents a search that terminated after finding a clobber. This clobber
545   /// may or may not be present in the path of defs from LastNode..SearchStart,
546   /// since it may have been retrieved from cache.
547   struct TerminatedPath {
548     MemoryAccess *Clobber;
549     ListIndex LastNode;
550   };
551 
552   /// Get an access that keeps us from optimizing to the given phi.
553   ///
554   /// PausedSearches is an array of indices into the Paths array. Its incoming
555   /// value is the indices of searches that stopped at the last phi optimization
556   /// target. It's left in an unspecified state.
557   ///
558   /// If this returns None, NewPaused is a vector of searches that terminated
559   /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
560   Optional<TerminatedPath>
getBlockingAccess(const MemoryAccess * StopWhere,SmallVectorImpl<ListIndex> & PausedSearches,SmallVectorImpl<ListIndex> & NewPaused,SmallVectorImpl<TerminatedPath> & Terminated)561   getBlockingAccess(const MemoryAccess *StopWhere,
562                     SmallVectorImpl<ListIndex> &PausedSearches,
563                     SmallVectorImpl<ListIndex> &NewPaused,
564                     SmallVectorImpl<TerminatedPath> &Terminated) {
565     assert(!PausedSearches.empty() && "No searches to continue?");
566 
567     // BFS vs DFS really doesn't make a difference here, so just do a DFS with
568     // PausedSearches as our stack.
569     while (!PausedSearches.empty()) {
570       ListIndex PathIndex = PausedSearches.pop_back_val();
571       DefPath &Node = Paths[PathIndex];
572 
573       // If we've already visited this path with this MemoryLocation, we don't
574       // need to do so again.
575       //
576       // NOTE: That we just drop these paths on the ground makes caching
577       // behavior sporadic. e.g. given a diamond:
578       //  A
579       // B C
580       //  D
581       //
582       // ...If we walk D, B, A, C, we'll only cache the result of phi
583       // optimization for A, B, and D; C will be skipped because it dies here.
584       // This arguably isn't the worst thing ever, since:
585       //   - We generally query things in a top-down order, so if we got below D
586       //     without needing cache entries for {C, MemLoc}, then chances are
587       //     that those cache entries would end up ultimately unused.
588       //   - We still cache things for A, so C only needs to walk up a bit.
589       // If this behavior becomes problematic, we can fix without a ton of extra
590       // work.
591       if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
592         continue;
593 
594       UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere);
595       if (Res.IsKnownClobber) {
596         assert(Res.Result != StopWhere);
597         // If this wasn't a cache hit, we hit a clobber when walking. That's a
598         // failure.
599         TerminatedPath Term{Res.Result, PathIndex};
600         if (!MSSA.dominates(Res.Result, StopWhere))
601           return Term;
602 
603         // Otherwise, it's a valid thing to potentially optimize to.
604         Terminated.push_back(Term);
605         continue;
606       }
607 
608       if (Res.Result == StopWhere) {
609         // We've hit our target. Save this path off for if we want to continue
610         // walking.
611         NewPaused.push_back(PathIndex);
612         continue;
613       }
614 
615       assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
616       addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
617     }
618 
619     return None;
620   }
621 
622   template <typename T, typename Walker>
623   struct generic_def_path_iterator
624       : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
625                                     std::forward_iterator_tag, T *> {
626     generic_def_path_iterator() = default;
generic_def_path_iterator__anon96f7eebd0511::ClobberWalker::generic_def_path_iterator627     generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
628 
operator *__anon96f7eebd0511::ClobberWalker::generic_def_path_iterator629     T &operator*() const { return curNode(); }
630 
operator ++__anon96f7eebd0511::ClobberWalker::generic_def_path_iterator631     generic_def_path_iterator &operator++() {
632       N = curNode().Previous;
633       return *this;
634     }
635 
operator ==__anon96f7eebd0511::ClobberWalker::generic_def_path_iterator636     bool operator==(const generic_def_path_iterator &O) const {
637       if (N.hasValue() != O.N.hasValue())
638         return false;
639       return !N.hasValue() || *N == *O.N;
640     }
641 
642   private:
curNode__anon96f7eebd0511::ClobberWalker::generic_def_path_iterator643     T &curNode() const { return W->Paths[*N]; }
644 
645     Walker *W = nullptr;
646     Optional<ListIndex> N = None;
647   };
648 
649   using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
650   using const_def_path_iterator =
651       generic_def_path_iterator<const DefPath, const ClobberWalker>;
652 
def_path(ListIndex From)653   iterator_range<def_path_iterator> def_path(ListIndex From) {
654     return make_range(def_path_iterator(this, From), def_path_iterator());
655   }
656 
const_def_path(ListIndex From) const657   iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
658     return make_range(const_def_path_iterator(this, From),
659                       const_def_path_iterator());
660   }
661 
662   struct OptznResult {
663     /// The path that contains our result.
664     TerminatedPath PrimaryClobber;
665     /// The paths that we can legally cache back from, but that aren't
666     /// necessarily the result of the Phi optimization.
667     SmallVector<TerminatedPath, 4> OtherClobbers;
668   };
669 
defPathIndex(const DefPath & N) const670   ListIndex defPathIndex(const DefPath &N) const {
671     // The assert looks nicer if we don't need to do &N
672     const DefPath *NP = &N;
673     assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
674            "Out of bounds DefPath!");
675     return NP - &Paths.front();
676   }
677 
678   /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
679   /// that act as legal clobbers. Note that this won't return *all* clobbers.
680   ///
681   /// Phi optimization algorithm tl;dr:
682   ///   - Find the earliest def/phi, A, we can optimize to
683   ///   - Find if all paths from the starting memory access ultimately reach A
684   ///     - If not, optimization isn't possible.
685   ///     - Otherwise, walk from A to another clobber or phi, A'.
686   ///       - If A' is a def, we're done.
687   ///       - If A' is a phi, try to optimize it.
688   ///
689   /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
690   /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
tryOptimizePhi(MemoryPhi * Phi,MemoryAccess * Start,const MemoryLocation & Loc)691   OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
692                              const MemoryLocation &Loc) {
693     assert(Paths.empty() && VisitedPhis.empty() &&
694            "Reset the optimization state.");
695 
696     Paths.emplace_back(Loc, Start, Phi, None);
697     // Stores how many "valid" optimization nodes we had prior to calling
698     // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
699     auto PriorPathsSize = Paths.size();
700 
701     SmallVector<ListIndex, 16> PausedSearches;
702     SmallVector<ListIndex, 8> NewPaused;
703     SmallVector<TerminatedPath, 4> TerminatedPaths;
704 
705     addSearches(Phi, PausedSearches, 0);
706 
707     // Moves the TerminatedPath with the "most dominated" Clobber to the end of
708     // Paths.
709     auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
710       assert(!Paths.empty() && "Need a path to move");
711       auto Dom = Paths.begin();
712       for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
713         if (!MSSA.dominates(I->Clobber, Dom->Clobber))
714           Dom = I;
715       auto Last = Paths.end() - 1;
716       if (Last != Dom)
717         std::iter_swap(Last, Dom);
718     };
719 
720     MemoryPhi *Current = Phi;
721     while (true) {
722       assert(!MSSA.isLiveOnEntryDef(Current) &&
723              "liveOnEntry wasn't treated as a clobber?");
724 
725       const auto *Target = getWalkTarget(Current);
726       // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
727       // optimization for the prior phi.
728       assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
729         return MSSA.dominates(P.Clobber, Target);
730       }));
731 
732       // FIXME: This is broken, because the Blocker may be reported to be
733       // liveOnEntry, and we'll happily wait for that to disappear (read: never)
734       // For the moment, this is fine, since we do nothing with blocker info.
735       if (Optional<TerminatedPath> Blocker = getBlockingAccess(
736               Target, PausedSearches, NewPaused, TerminatedPaths)) {
737 
738         // Find the node we started at. We can't search based on N->Last, since
739         // we may have gone around a loop with a different MemoryLocation.
740         auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
741           return defPathIndex(N) < PriorPathsSize;
742         });
743         assert(Iter != def_path_iterator());
744 
745         DefPath &CurNode = *Iter;
746         assert(CurNode.Last == Current);
747 
748         // Two things:
749         // A. We can't reliably cache all of NewPaused back. Consider a case
750         //    where we have two paths in NewPaused; one of which can't optimize
751         //    above this phi, whereas the other can. If we cache the second path
752         //    back, we'll end up with suboptimal cache entries. We can handle
753         //    cases like this a bit better when we either try to find all
754         //    clobbers that block phi optimization, or when our cache starts
755         //    supporting unfinished searches.
756         // B. We can't reliably cache TerminatedPaths back here without doing
757         //    extra checks; consider a case like:
758         //       T
759         //      / \
760         //     D   C
761         //      \ /
762         //       S
763         //    Where T is our target, C is a node with a clobber on it, D is a
764         //    diamond (with a clobber *only* on the left or right node, N), and
765         //    S is our start. Say we walk to D, through the node opposite N
766         //    (read: ignoring the clobber), and see a cache entry in the top
767         //    node of D. That cache entry gets put into TerminatedPaths. We then
768         //    walk up to C (N is later in our worklist), find the clobber, and
769         //    quit. If we append TerminatedPaths to OtherClobbers, we'll cache
770         //    the bottom part of D to the cached clobber, ignoring the clobber
771         //    in N. Again, this problem goes away if we start tracking all
772         //    blockers for a given phi optimization.
773         TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
774         return {Result, {}};
775       }
776 
777       // If there's nothing left to search, then all paths led to valid clobbers
778       // that we got from our cache; pick the nearest to the start, and allow
779       // the rest to be cached back.
780       if (NewPaused.empty()) {
781         MoveDominatedPathToEnd(TerminatedPaths);
782         TerminatedPath Result = TerminatedPaths.pop_back_val();
783         return {Result, std::move(TerminatedPaths)};
784       }
785 
786       MemoryAccess *DefChainEnd = nullptr;
787       SmallVector<TerminatedPath, 4> Clobbers;
788       for (ListIndex Paused : NewPaused) {
789         UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
790         if (WR.IsKnownClobber)
791           Clobbers.push_back({WR.Result, Paused});
792         else
793           // Micro-opt: If we hit the end of the chain, save it.
794           DefChainEnd = WR.Result;
795       }
796 
797       if (!TerminatedPaths.empty()) {
798         // If we couldn't find the dominating phi/liveOnEntry in the above loop,
799         // do it now.
800         if (!DefChainEnd)
801           for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
802             DefChainEnd = MA;
803 
804         // If any of the terminated paths don't dominate the phi we'll try to
805         // optimize, we need to figure out what they are and quit.
806         const BasicBlock *ChainBB = DefChainEnd->getBlock();
807         for (const TerminatedPath &TP : TerminatedPaths) {
808           // Because we know that DefChainEnd is as "high" as we can go, we
809           // don't need local dominance checks; BB dominance is sufficient.
810           if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
811             Clobbers.push_back(TP);
812         }
813       }
814 
815       // If we have clobbers in the def chain, find the one closest to Current
816       // and quit.
817       if (!Clobbers.empty()) {
818         MoveDominatedPathToEnd(Clobbers);
819         TerminatedPath Result = Clobbers.pop_back_val();
820         return {Result, std::move(Clobbers)};
821       }
822 
823       assert(all_of(NewPaused,
824                     [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
825 
826       // Because liveOnEntry is a clobber, this must be a phi.
827       auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
828 
829       PriorPathsSize = Paths.size();
830       PausedSearches.clear();
831       for (ListIndex I : NewPaused)
832         addSearches(DefChainPhi, PausedSearches, I);
833       NewPaused.clear();
834 
835       Current = DefChainPhi;
836     }
837   }
838 
verifyOptResult(const OptznResult & R) const839   void verifyOptResult(const OptznResult &R) const {
840     assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
841       return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
842     }));
843   }
844 
resetPhiOptznState()845   void resetPhiOptznState() {
846     Paths.clear();
847     VisitedPhis.clear();
848   }
849 
850 public:
ClobberWalker(const MemorySSA & MSSA,AliasAnalysis & AA,DominatorTree & DT)851   ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT)
852       : MSSA(MSSA), AA(AA), DT(DT) {}
853 
854   /// Finds the nearest clobber for the given query, optimizing phis if
855   /// possible.
findClobber(MemoryAccess * Start,UpwardsMemoryQuery & Q)856   MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
857     Query = &Q;
858 
859     MemoryAccess *Current = Start;
860     // This walker pretends uses don't exist. If we're handed one, silently grab
861     // its def. (This has the nice side-effect of ensuring we never cache uses)
862     if (auto *MU = dyn_cast<MemoryUse>(Start))
863       Current = MU->getDefiningAccess();
864 
865     DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
866     // Fast path for the overly-common case (no crazy phi optimization
867     // necessary)
868     UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
869     MemoryAccess *Result;
870     if (WalkResult.IsKnownClobber) {
871       Result = WalkResult.Result;
872       Q.AR = WalkResult.AR;
873     } else {
874       OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
875                                           Current, Q.StartingLoc);
876       verifyOptResult(OptRes);
877       resetPhiOptznState();
878       Result = OptRes.PrimaryClobber.Clobber;
879     }
880 
881 #ifdef EXPENSIVE_CHECKS
882     checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
883 #endif
884     return Result;
885   }
886 
verify(const MemorySSA * MSSA)887   void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
888 };
889 
890 struct RenamePassData {
891   DomTreeNode *DTN;
892   DomTreeNode::const_iterator ChildIt;
893   MemoryAccess *IncomingVal;
894 
RenamePassData__anon96f7eebd0511::RenamePassData895   RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
896                  MemoryAccess *M)
897       : DTN(D), ChildIt(It), IncomingVal(M) {}
898 
swap__anon96f7eebd0511::RenamePassData899   void swap(RenamePassData &RHS) {
900     std::swap(DTN, RHS.DTN);
901     std::swap(ChildIt, RHS.ChildIt);
902     std::swap(IncomingVal, RHS.IncomingVal);
903   }
904 };
905 
906 } // end anonymous namespace
907 
908 namespace llvm {
909 
910 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
911 /// longer does caching on its own, but the name has been retained for the
912 /// moment.
913 class MemorySSA::CachingWalker final : public MemorySSAWalker {
914   ClobberWalker Walker;
915 
916   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &);
917 
918 public:
919   CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *);
920   ~CachingWalker() override = default;
921 
922   using MemorySSAWalker::getClobberingMemoryAccess;
923 
924   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
925   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
926                                           const MemoryLocation &) override;
927   void invalidateInfo(MemoryAccess *) override;
928 
verify(const MemorySSA * MSSA)929   void verify(const MemorySSA *MSSA) override {
930     MemorySSAWalker::verify(MSSA);
931     Walker.verify(MSSA);
932   }
933 };
934 
935 } // end namespace llvm
936 
renameSuccessorPhis(BasicBlock * BB,MemoryAccess * IncomingVal,bool RenameAllUses)937 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
938                                     bool RenameAllUses) {
939   // Pass through values to our successors
940   for (const BasicBlock *S : successors(BB)) {
941     auto It = PerBlockAccesses.find(S);
942     // Rename the phi nodes in our successor block
943     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
944       continue;
945     AccessList *Accesses = It->second.get();
946     auto *Phi = cast<MemoryPhi>(&Accesses->front());
947     if (RenameAllUses) {
948       int PhiIndex = Phi->getBasicBlockIndex(BB);
949       assert(PhiIndex != -1 && "Incomplete phi during partial rename");
950       Phi->setIncomingValue(PhiIndex, IncomingVal);
951     } else
952       Phi->addIncoming(IncomingVal, BB);
953   }
954 }
955 
956 /// Rename a single basic block into MemorySSA form.
957 /// Uses the standard SSA renaming algorithm.
958 /// \returns The new incoming value.
renameBlock(BasicBlock * BB,MemoryAccess * IncomingVal,bool RenameAllUses)959 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
960                                      bool RenameAllUses) {
961   auto It = PerBlockAccesses.find(BB);
962   // Skip most processing if the list is empty.
963   if (It != PerBlockAccesses.end()) {
964     AccessList *Accesses = It->second.get();
965     for (MemoryAccess &L : *Accesses) {
966       if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
967         if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
968           MUD->setDefiningAccess(IncomingVal);
969         if (isa<MemoryDef>(&L))
970           IncomingVal = &L;
971       } else {
972         IncomingVal = &L;
973       }
974     }
975   }
976   return IncomingVal;
977 }
978 
979 /// This is the standard SSA renaming algorithm.
980 ///
981 /// We walk the dominator tree in preorder, renaming accesses, and then filling
982 /// in phi nodes in our successors.
renamePass(DomTreeNode * Root,MemoryAccess * IncomingVal,SmallPtrSetImpl<BasicBlock * > & Visited,bool SkipVisited,bool RenameAllUses)983 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
984                            SmallPtrSetImpl<BasicBlock *> &Visited,
985                            bool SkipVisited, bool RenameAllUses) {
986   SmallVector<RenamePassData, 32> WorkStack;
987   // Skip everything if we already renamed this block and we are skipping.
988   // Note: You can't sink this into the if, because we need it to occur
989   // regardless of whether we skip blocks or not.
990   bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
991   if (SkipVisited && AlreadyVisited)
992     return;
993 
994   IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
995   renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
996   WorkStack.push_back({Root, Root->begin(), IncomingVal});
997 
998   while (!WorkStack.empty()) {
999     DomTreeNode *Node = WorkStack.back().DTN;
1000     DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1001     IncomingVal = WorkStack.back().IncomingVal;
1002 
1003     if (ChildIt == Node->end()) {
1004       WorkStack.pop_back();
1005     } else {
1006       DomTreeNode *Child = *ChildIt;
1007       ++WorkStack.back().ChildIt;
1008       BasicBlock *BB = Child->getBlock();
1009       // Note: You can't sink this into the if, because we need it to occur
1010       // regardless of whether we skip blocks or not.
1011       AlreadyVisited = !Visited.insert(BB).second;
1012       if (SkipVisited && AlreadyVisited) {
1013         // We already visited this during our renaming, which can happen when
1014         // being asked to rename multiple blocks. Figure out the incoming val,
1015         // which is the last def.
1016         // Incoming value can only change if there is a block def, and in that
1017         // case, it's the last block def in the list.
1018         if (auto *BlockDefs = getWritableBlockDefs(BB))
1019           IncomingVal = &*BlockDefs->rbegin();
1020       } else
1021         IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1022       renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
1023       WorkStack.push_back({Child, Child->begin(), IncomingVal});
1024     }
1025   }
1026 }
1027 
1028 /// This handles unreachable block accesses by deleting phi nodes in
1029 /// unreachable blocks, and marking all other unreachable MemoryAccess's as
1030 /// being uses of the live on entry definition.
markUnreachableAsLiveOnEntry(BasicBlock * BB)1031 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1032   assert(!DT->isReachableFromEntry(BB) &&
1033          "Reachable block found while handling unreachable blocks");
1034 
1035   // Make sure phi nodes in our reachable successors end up with a
1036   // LiveOnEntryDef for our incoming edge, even though our block is forward
1037   // unreachable.  We could just disconnect these blocks from the CFG fully,
1038   // but we do not right now.
1039   for (const BasicBlock *S : successors(BB)) {
1040     if (!DT->isReachableFromEntry(S))
1041       continue;
1042     auto It = PerBlockAccesses.find(S);
1043     // Rename the phi nodes in our successor block
1044     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1045       continue;
1046     AccessList *Accesses = It->second.get();
1047     auto *Phi = cast<MemoryPhi>(&Accesses->front());
1048     Phi->addIncoming(LiveOnEntryDef.get(), BB);
1049   }
1050 
1051   auto It = PerBlockAccesses.find(BB);
1052   if (It == PerBlockAccesses.end())
1053     return;
1054 
1055   auto &Accesses = It->second;
1056   for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1057     auto Next = std::next(AI);
1058     // If we have a phi, just remove it. We are going to replace all
1059     // users with live on entry.
1060     if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1061       UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1062     else
1063       Accesses->erase(AI);
1064     AI = Next;
1065   }
1066 }
1067 
MemorySSA(Function & Func,AliasAnalysis * AA,DominatorTree * DT)1068 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1069     : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
1070       NextID(0) {
1071   buildMemorySSA();
1072 }
1073 
~MemorySSA()1074 MemorySSA::~MemorySSA() {
1075   // Drop all our references
1076   for (const auto &Pair : PerBlockAccesses)
1077     for (MemoryAccess &MA : *Pair.second)
1078       MA.dropAllReferences();
1079 }
1080 
getOrCreateAccessList(const BasicBlock * BB)1081 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
1082   auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1083 
1084   if (Res.second)
1085     Res.first->second = llvm::make_unique<AccessList>();
1086   return Res.first->second.get();
1087 }
1088 
getOrCreateDefsList(const BasicBlock * BB)1089 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1090   auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1091 
1092   if (Res.second)
1093     Res.first->second = llvm::make_unique<DefsList>();
1094   return Res.first->second.get();
1095 }
1096 
1097 namespace llvm {
1098 
1099 /// This class is a batch walker of all MemoryUse's in the program, and points
1100 /// their defining access at the thing that actually clobbers them.  Because it
1101 /// is a batch walker that touches everything, it does not operate like the
1102 /// other walkers.  This walker is basically performing a top-down SSA renaming
1103 /// pass, where the version stack is used as the cache.  This enables it to be
1104 /// significantly more time and memory efficient than using the regular walker,
1105 /// which is walking bottom-up.
1106 class MemorySSA::OptimizeUses {
1107 public:
OptimizeUses(MemorySSA * MSSA,MemorySSAWalker * Walker,AliasAnalysis * AA,DominatorTree * DT)1108   OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA,
1109                DominatorTree *DT)
1110       : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
1111     Walker = MSSA->getWalker();
1112   }
1113 
1114   void optimizeUses();
1115 
1116 private:
1117   /// This represents where a given memorylocation is in the stack.
1118   struct MemlocStackInfo {
1119     // This essentially is keeping track of versions of the stack. Whenever
1120     // the stack changes due to pushes or pops, these versions increase.
1121     unsigned long StackEpoch;
1122     unsigned long PopEpoch;
1123     // This is the lower bound of places on the stack to check. It is equal to
1124     // the place the last stack walk ended.
1125     // Note: Correctness depends on this being initialized to 0, which densemap
1126     // does
1127     unsigned long LowerBound;
1128     const BasicBlock *LowerBoundBlock;
1129     // This is where the last walk for this memory location ended.
1130     unsigned long LastKill;
1131     bool LastKillValid;
1132     Optional<AliasResult> AR;
1133   };
1134 
1135   void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1136                            SmallVectorImpl<MemoryAccess *> &,
1137                            DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
1138 
1139   MemorySSA *MSSA;
1140   MemorySSAWalker *Walker;
1141   AliasAnalysis *AA;
1142   DominatorTree *DT;
1143 };
1144 
1145 } // end namespace llvm
1146 
1147 /// Optimize the uses in a given block This is basically the SSA renaming
1148 /// algorithm, with one caveat: We are able to use a single stack for all
1149 /// MemoryUses.  This is because the set of *possible* reaching MemoryDefs is
1150 /// the same for every MemoryUse.  The *actual* clobbering MemoryDef is just
1151 /// going to be some position in that stack of possible ones.
1152 ///
1153 /// We track the stack positions that each MemoryLocation needs
1154 /// to check, and last ended at.  This is because we only want to check the
1155 /// things that changed since last time.  The same MemoryLocation should
1156 /// get clobbered by the same store (getModRefInfo does not use invariantness or
1157 /// things like this, and if they start, we can modify MemoryLocOrCall to
1158 /// include relevant data)
optimizeUsesInBlock(const BasicBlock * BB,unsigned long & StackEpoch,unsigned long & PopEpoch,SmallVectorImpl<MemoryAccess * > & VersionStack,DenseMap<MemoryLocOrCall,MemlocStackInfo> & LocStackInfo)1159 void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1160     const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1161     SmallVectorImpl<MemoryAccess *> &VersionStack,
1162     DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1163 
1164   /// If no accesses, nothing to do.
1165   MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1166   if (Accesses == nullptr)
1167     return;
1168 
1169   // Pop everything that doesn't dominate the current block off the stack,
1170   // increment the PopEpoch to account for this.
1171   while (true) {
1172     assert(
1173         !VersionStack.empty() &&
1174         "Version stack should have liveOnEntry sentinel dominating everything");
1175     BasicBlock *BackBlock = VersionStack.back()->getBlock();
1176     if (DT->dominates(BackBlock, BB))
1177       break;
1178     while (VersionStack.back()->getBlock() == BackBlock)
1179       VersionStack.pop_back();
1180     ++PopEpoch;
1181   }
1182 
1183   for (MemoryAccess &MA : *Accesses) {
1184     auto *MU = dyn_cast<MemoryUse>(&MA);
1185     if (!MU) {
1186       VersionStack.push_back(&MA);
1187       ++StackEpoch;
1188       continue;
1189     }
1190 
1191     if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
1192       MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
1193       continue;
1194     }
1195 
1196     MemoryLocOrCall UseMLOC(MU);
1197     auto &LocInfo = LocStackInfo[UseMLOC];
1198     // If the pop epoch changed, it means we've removed stuff from top of
1199     // stack due to changing blocks. We may have to reset the lower bound or
1200     // last kill info.
1201     if (LocInfo.PopEpoch != PopEpoch) {
1202       LocInfo.PopEpoch = PopEpoch;
1203       LocInfo.StackEpoch = StackEpoch;
1204       // If the lower bound was in something that no longer dominates us, we
1205       // have to reset it.
1206       // We can't simply track stack size, because the stack may have had
1207       // pushes/pops in the meantime.
1208       // XXX: This is non-optimal, but only is slower cases with heavily
1209       // branching dominator trees.  To get the optimal number of queries would
1210       // be to make lowerbound and lastkill a per-loc stack, and pop it until
1211       // the top of that stack dominates us.  This does not seem worth it ATM.
1212       // A much cheaper optimization would be to always explore the deepest
1213       // branch of the dominator tree first. This will guarantee this resets on
1214       // the smallest set of blocks.
1215       if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
1216           !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
1217         // Reset the lower bound of things to check.
1218         // TODO: Some day we should be able to reset to last kill, rather than
1219         // 0.
1220         LocInfo.LowerBound = 0;
1221         LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
1222         LocInfo.LastKillValid = false;
1223       }
1224     } else if (LocInfo.StackEpoch != StackEpoch) {
1225       // If all that has changed is the StackEpoch, we only have to check the
1226       // new things on the stack, because we've checked everything before.  In
1227       // this case, the lower bound of things to check remains the same.
1228       LocInfo.PopEpoch = PopEpoch;
1229       LocInfo.StackEpoch = StackEpoch;
1230     }
1231     if (!LocInfo.LastKillValid) {
1232       LocInfo.LastKill = VersionStack.size() - 1;
1233       LocInfo.LastKillValid = true;
1234       LocInfo.AR = MayAlias;
1235     }
1236 
1237     // At this point, we should have corrected last kill and LowerBound to be
1238     // in bounds.
1239     assert(LocInfo.LowerBound < VersionStack.size() &&
1240            "Lower bound out of range");
1241     assert(LocInfo.LastKill < VersionStack.size() &&
1242            "Last kill info out of range");
1243     // In any case, the new upper bound is the top of the stack.
1244     unsigned long UpperBound = VersionStack.size() - 1;
1245 
1246     if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
1247       LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1248                         << *(MU->getMemoryInst()) << ")"
1249                         << " because there are "
1250                         << UpperBound - LocInfo.LowerBound
1251                         << " stores to disambiguate\n");
1252       // Because we did not walk, LastKill is no longer valid, as this may
1253       // have been a kill.
1254       LocInfo.LastKillValid = false;
1255       continue;
1256     }
1257     bool FoundClobberResult = false;
1258     while (UpperBound > LocInfo.LowerBound) {
1259       if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1260         // For phis, use the walker, see where we ended up, go there
1261         Instruction *UseInst = MU->getMemoryInst();
1262         MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
1263         // We are guaranteed to find it or something is wrong
1264         while (VersionStack[UpperBound] != Result) {
1265           assert(UpperBound != 0);
1266           --UpperBound;
1267         }
1268         FoundClobberResult = true;
1269         break;
1270       }
1271 
1272       MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
1273       // If the lifetime of the pointer ends at this instruction, it's live on
1274       // entry.
1275       if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1276         // Reset UpperBound to liveOnEntryDef's place in the stack
1277         UpperBound = 0;
1278         FoundClobberResult = true;
1279         LocInfo.AR = MustAlias;
1280         break;
1281       }
1282       ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1283       if (CA.IsClobber) {
1284         FoundClobberResult = true;
1285         LocInfo.AR = CA.AR;
1286         break;
1287       }
1288       --UpperBound;
1289     }
1290 
1291     // Note: Phis always have AliasResult AR set to MayAlias ATM.
1292 
1293     // At the end of this loop, UpperBound is either a clobber, or lower bound
1294     // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1295     if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
1296       // We were last killed now by where we got to
1297       if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1298         LocInfo.AR = None;
1299       MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
1300       LocInfo.LastKill = UpperBound;
1301     } else {
1302       // Otherwise, we checked all the new ones, and now we know we can get to
1303       // LastKill.
1304       MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
1305     }
1306     LocInfo.LowerBound = VersionStack.size() - 1;
1307     LocInfo.LowerBoundBlock = BB;
1308   }
1309 }
1310 
1311 /// Optimize uses to point to their actual clobbering definitions.
optimizeUses()1312 void MemorySSA::OptimizeUses::optimizeUses() {
1313   SmallVector<MemoryAccess *, 16> VersionStack;
1314   DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
1315   VersionStack.push_back(MSSA->getLiveOnEntryDef());
1316 
1317   unsigned long StackEpoch = 1;
1318   unsigned long PopEpoch = 1;
1319   // We perform a non-recursive top-down dominator tree walk.
1320   for (const auto *DomNode : depth_first(DT->getRootNode()))
1321     optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1322                         LocStackInfo);
1323 }
1324 
placePHINodes(const SmallPtrSetImpl<BasicBlock * > & DefiningBlocks)1325 void MemorySSA::placePHINodes(
1326     const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
1327   // Determine where our MemoryPhi's should go
1328   ForwardIDFCalculator IDFs(*DT);
1329   IDFs.setDefiningBlocks(DefiningBlocks);
1330   SmallVector<BasicBlock *, 32> IDFBlocks;
1331   IDFs.calculate(IDFBlocks);
1332 
1333   // Now place MemoryPhi nodes.
1334   for (auto &BB : IDFBlocks)
1335     createMemoryPhi(BB);
1336 }
1337 
buildMemorySSA()1338 void MemorySSA::buildMemorySSA() {
1339   // We create an access to represent "live on entry", for things like
1340   // arguments or users of globals, where the memory they use is defined before
1341   // the beginning of the function. We do not actually insert it into the IR.
1342   // We do not define a live on exit for the immediate uses, and thus our
1343   // semantics do *not* imply that something with no immediate uses can simply
1344   // be removed.
1345   BasicBlock &StartingPoint = F.getEntryBlock();
1346   LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1347                                      &StartingPoint, NextID++));
1348 
1349   // We maintain lists of memory accesses per-block, trading memory for time. We
1350   // could just look up the memory access for every possible instruction in the
1351   // stream.
1352   SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
1353   // Go through each block, figure out where defs occur, and chain together all
1354   // the accesses.
1355   for (BasicBlock &B : F) {
1356     bool InsertIntoDef = false;
1357     AccessList *Accesses = nullptr;
1358     DefsList *Defs = nullptr;
1359     for (Instruction &I : B) {
1360       MemoryUseOrDef *MUD = createNewAccess(&I);
1361       if (!MUD)
1362         continue;
1363 
1364       if (!Accesses)
1365         Accesses = getOrCreateAccessList(&B);
1366       Accesses->push_back(MUD);
1367       if (isa<MemoryDef>(MUD)) {
1368         InsertIntoDef = true;
1369         if (!Defs)
1370           Defs = getOrCreateDefsList(&B);
1371         Defs->push_back(*MUD);
1372       }
1373     }
1374     if (InsertIntoDef)
1375       DefiningBlocks.insert(&B);
1376   }
1377   placePHINodes(DefiningBlocks);
1378 
1379   // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1380   // filled in with all blocks.
1381   SmallPtrSet<BasicBlock *, 16> Visited;
1382   renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1383 
1384   CachingWalker *Walker = getWalkerImpl();
1385 
1386   OptimizeUses(this, Walker, AA, DT).optimizeUses();
1387 
1388   // Mark the uses in unreachable blocks as live on entry, so that they go
1389   // somewhere.
1390   for (auto &BB : F)
1391     if (!Visited.count(&BB))
1392       markUnreachableAsLiveOnEntry(&BB);
1393 }
1394 
getWalker()1395 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1396 
getWalkerImpl()1397 MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
1398   if (Walker)
1399     return Walker.get();
1400 
1401   Walker = llvm::make_unique<CachingWalker>(this, AA, DT);
1402   return Walker.get();
1403 }
1404 
1405 // This is a helper function used by the creation routines. It places NewAccess
1406 // into the access and defs lists for a given basic block, at the given
1407 // insertion point.
insertIntoListsForBlock(MemoryAccess * NewAccess,const BasicBlock * BB,InsertionPlace Point)1408 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1409                                         const BasicBlock *BB,
1410                                         InsertionPlace Point) {
1411   auto *Accesses = getOrCreateAccessList(BB);
1412   if (Point == Beginning) {
1413     // If it's a phi node, it goes first, otherwise, it goes after any phi
1414     // nodes.
1415     if (isa<MemoryPhi>(NewAccess)) {
1416       Accesses->push_front(NewAccess);
1417       auto *Defs = getOrCreateDefsList(BB);
1418       Defs->push_front(*NewAccess);
1419     } else {
1420       auto AI = find_if_not(
1421           *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1422       Accesses->insert(AI, NewAccess);
1423       if (!isa<MemoryUse>(NewAccess)) {
1424         auto *Defs = getOrCreateDefsList(BB);
1425         auto DI = find_if_not(
1426             *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1427         Defs->insert(DI, *NewAccess);
1428       }
1429     }
1430   } else {
1431     Accesses->push_back(NewAccess);
1432     if (!isa<MemoryUse>(NewAccess)) {
1433       auto *Defs = getOrCreateDefsList(BB);
1434       Defs->push_back(*NewAccess);
1435     }
1436   }
1437   BlockNumberingValid.erase(BB);
1438 }
1439 
insertIntoListsBefore(MemoryAccess * What,const BasicBlock * BB,AccessList::iterator InsertPt)1440 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1441                                       AccessList::iterator InsertPt) {
1442   auto *Accesses = getWritableBlockAccesses(BB);
1443   bool WasEnd = InsertPt == Accesses->end();
1444   Accesses->insert(AccessList::iterator(InsertPt), What);
1445   if (!isa<MemoryUse>(What)) {
1446     auto *Defs = getOrCreateDefsList(BB);
1447     // If we got asked to insert at the end, we have an easy job, just shove it
1448     // at the end. If we got asked to insert before an existing def, we also get
1449     // an iterator. If we got asked to insert before a use, we have to hunt for
1450     // the next def.
1451     if (WasEnd) {
1452       Defs->push_back(*What);
1453     } else if (isa<MemoryDef>(InsertPt)) {
1454       Defs->insert(InsertPt->getDefsIterator(), *What);
1455     } else {
1456       while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1457         ++InsertPt;
1458       // Either we found a def, or we are inserting at the end
1459       if (InsertPt == Accesses->end())
1460         Defs->push_back(*What);
1461       else
1462         Defs->insert(InsertPt->getDefsIterator(), *What);
1463     }
1464   }
1465   BlockNumberingValid.erase(BB);
1466 }
1467 
1468 // Move What before Where in the IR.  The end result is that What will belong to
1469 // the right lists and have the right Block set, but will not otherwise be
1470 // correct. It will not have the right defining access, and if it is a def,
1471 // things below it will not properly be updated.
moveTo(MemoryUseOrDef * What,BasicBlock * BB,AccessList::iterator Where)1472 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1473                        AccessList::iterator Where) {
1474   // Keep it in the lookup tables, remove from the lists
1475   removeFromLists(What, false);
1476   What->setBlock(BB);
1477   insertIntoListsBefore(What, BB, Where);
1478 }
1479 
moveTo(MemoryAccess * What,BasicBlock * BB,InsertionPlace Point)1480 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
1481                        InsertionPlace Point) {
1482   if (isa<MemoryPhi>(What)) {
1483     assert(Point == Beginning &&
1484            "Can only move a Phi at the beginning of the block");
1485     // Update lookup table entry
1486     ValueToMemoryAccess.erase(What->getBlock());
1487     bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
1488     (void)Inserted;
1489     assert(Inserted && "Cannot move a Phi to a block that already has one");
1490   }
1491 
1492   removeFromLists(What, false);
1493   What->setBlock(BB);
1494   insertIntoListsForBlock(What, BB, Point);
1495 }
1496 
createMemoryPhi(BasicBlock * BB)1497 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1498   assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
1499   MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
1500   // Phi's always are placed at the front of the block.
1501   insertIntoListsForBlock(Phi, BB, Beginning);
1502   ValueToMemoryAccess[BB] = Phi;
1503   return Phi;
1504 }
1505 
createDefinedAccess(Instruction * I,MemoryAccess * Definition)1506 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1507                                                MemoryAccess *Definition) {
1508   assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1509   MemoryUseOrDef *NewAccess = createNewAccess(I);
1510   assert(
1511       NewAccess != nullptr &&
1512       "Tried to create a memory access for a non-memory touching instruction");
1513   NewAccess->setDefiningAccess(Definition);
1514   return NewAccess;
1515 }
1516 
1517 // Return true if the instruction has ordering constraints.
1518 // Note specifically that this only considers stores and loads
1519 // because others are still considered ModRef by getModRefInfo.
isOrdered(const Instruction * I)1520 static inline bool isOrdered(const Instruction *I) {
1521   if (auto *SI = dyn_cast<StoreInst>(I)) {
1522     if (!SI->isUnordered())
1523       return true;
1524   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1525     if (!LI->isUnordered())
1526       return true;
1527   }
1528   return false;
1529 }
1530 
1531 /// Helper function to create new memory accesses
createNewAccess(Instruction * I)1532 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) {
1533   // The assume intrinsic has a control dependency which we model by claiming
1534   // that it writes arbitrarily. Ignore that fake memory dependency here.
1535   // FIXME: Replace this special casing with a more accurate modelling of
1536   // assume's control dependency.
1537   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1538     if (II->getIntrinsicID() == Intrinsic::assume)
1539       return nullptr;
1540 
1541   // Find out what affect this instruction has on memory.
1542   ModRefInfo ModRef = AA->getModRefInfo(I, None);
1543   // The isOrdered check is used to ensure that volatiles end up as defs
1544   // (atomics end up as ModRef right now anyway).  Until we separate the
1545   // ordering chain from the memory chain, this enables people to see at least
1546   // some relative ordering to volatiles.  Note that getClobberingMemoryAccess
1547   // will still give an answer that bypasses other volatile loads.  TODO:
1548   // Separate memory aliasing and ordering into two different chains so that we
1549   // can precisely represent both "what memory will this read/write/is clobbered
1550   // by" and "what instructions can I move this past".
1551   bool Def = isModSet(ModRef) || isOrdered(I);
1552   bool Use = isRefSet(ModRef);
1553 
1554   // It's possible for an instruction to not modify memory at all. During
1555   // construction, we ignore them.
1556   if (!Def && !Use)
1557     return nullptr;
1558 
1559   MemoryUseOrDef *MUD;
1560   if (Def)
1561     MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
1562   else
1563     MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
1564   ValueToMemoryAccess[I] = MUD;
1565   return MUD;
1566 }
1567 
1568 /// Returns true if \p Replacer dominates \p Replacee .
dominatesUse(const MemoryAccess * Replacer,const MemoryAccess * Replacee) const1569 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1570                              const MemoryAccess *Replacee) const {
1571   if (isa<MemoryUseOrDef>(Replacee))
1572     return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1573   const auto *MP = cast<MemoryPhi>(Replacee);
1574   // For a phi node, the use occurs in the predecessor block of the phi node.
1575   // Since we may occur multiple times in the phi node, we have to check each
1576   // operand to ensure Replacer dominates each operand where Replacee occurs.
1577   for (const Use &Arg : MP->operands()) {
1578     if (Arg.get() != Replacee &&
1579         !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1580       return false;
1581   }
1582   return true;
1583 }
1584 
1585 /// Properly remove \p MA from all of MemorySSA's lookup tables.
removeFromLookups(MemoryAccess * MA)1586 void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1587   assert(MA->use_empty() &&
1588          "Trying to remove memory access that still has uses");
1589   BlockNumbering.erase(MA);
1590   if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1591     MUD->setDefiningAccess(nullptr);
1592   // Invalidate our walker's cache if necessary
1593   if (!isa<MemoryUse>(MA))
1594     Walker->invalidateInfo(MA);
1595 
1596   Value *MemoryInst;
1597   if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1598     MemoryInst = MUD->getMemoryInst();
1599   else
1600     MemoryInst = MA->getBlock();
1601 
1602   auto VMA = ValueToMemoryAccess.find(MemoryInst);
1603   if (VMA->second == MA)
1604     ValueToMemoryAccess.erase(VMA);
1605 }
1606 
1607 /// Properly remove \p MA from all of MemorySSA's lists.
1608 ///
1609 /// Because of the way the intrusive list and use lists work, it is important to
1610 /// do removal in the right order.
1611 /// ShouldDelete defaults to true, and will cause the memory access to also be
1612 /// deleted, not just removed.
removeFromLists(MemoryAccess * MA,bool ShouldDelete)1613 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
1614   BasicBlock *BB = MA->getBlock();
1615   // The access list owns the reference, so we erase it from the non-owning list
1616   // first.
1617   if (!isa<MemoryUse>(MA)) {
1618     auto DefsIt = PerBlockDefs.find(BB);
1619     std::unique_ptr<DefsList> &Defs = DefsIt->second;
1620     Defs->remove(*MA);
1621     if (Defs->empty())
1622       PerBlockDefs.erase(DefsIt);
1623   }
1624 
1625   // The erase call here will delete it. If we don't want it deleted, we call
1626   // remove instead.
1627   auto AccessIt = PerBlockAccesses.find(BB);
1628   std::unique_ptr<AccessList> &Accesses = AccessIt->second;
1629   if (ShouldDelete)
1630     Accesses->erase(MA);
1631   else
1632     Accesses->remove(MA);
1633 
1634   if (Accesses->empty()) {
1635     PerBlockAccesses.erase(AccessIt);
1636     BlockNumberingValid.erase(BB);
1637   }
1638 }
1639 
print(raw_ostream & OS) const1640 void MemorySSA::print(raw_ostream &OS) const {
1641   MemorySSAAnnotatedWriter Writer(this);
1642   F.print(OS, &Writer);
1643 }
1644 
1645 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1646 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
1647 #endif
1648 
verifyMemorySSA() const1649 void MemorySSA::verifyMemorySSA() const {
1650   verifyDefUses(F);
1651   verifyDomination(F);
1652   verifyOrdering(F);
1653   verifyDominationNumbers(F);
1654   Walker->verify(this);
1655 }
1656 
1657 /// Verify that all of the blocks we believe to have valid domination numbers
1658 /// actually have valid domination numbers.
verifyDominationNumbers(const Function & F) const1659 void MemorySSA::verifyDominationNumbers(const Function &F) const {
1660 #ifndef NDEBUG
1661   if (BlockNumberingValid.empty())
1662     return;
1663 
1664   SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
1665   for (const BasicBlock &BB : F) {
1666     if (!ValidBlocks.count(&BB))
1667       continue;
1668 
1669     ValidBlocks.erase(&BB);
1670 
1671     const AccessList *Accesses = getBlockAccesses(&BB);
1672     // It's correct to say an empty block has valid numbering.
1673     if (!Accesses)
1674       continue;
1675 
1676     // Block numbering starts at 1.
1677     unsigned long LastNumber = 0;
1678     for (const MemoryAccess &MA : *Accesses) {
1679       auto ThisNumberIter = BlockNumbering.find(&MA);
1680       assert(ThisNumberIter != BlockNumbering.end() &&
1681              "MemoryAccess has no domination number in a valid block!");
1682 
1683       unsigned long ThisNumber = ThisNumberIter->second;
1684       assert(ThisNumber > LastNumber &&
1685              "Domination numbers should be strictly increasing!");
1686       LastNumber = ThisNumber;
1687     }
1688   }
1689 
1690   assert(ValidBlocks.empty() &&
1691          "All valid BasicBlocks should exist in F -- dangling pointers?");
1692 #endif
1693 }
1694 
1695 /// Verify that the order and existence of MemoryAccesses matches the
1696 /// order and existence of memory affecting instructions.
verifyOrdering(Function & F) const1697 void MemorySSA::verifyOrdering(Function &F) const {
1698   // Walk all the blocks, comparing what the lookups think and what the access
1699   // lists think, as well as the order in the blocks vs the order in the access
1700   // lists.
1701   SmallVector<MemoryAccess *, 32> ActualAccesses;
1702   SmallVector<MemoryAccess *, 32> ActualDefs;
1703   for (BasicBlock &B : F) {
1704     const AccessList *AL = getBlockAccesses(&B);
1705     const auto *DL = getBlockDefs(&B);
1706     MemoryAccess *Phi = getMemoryAccess(&B);
1707     if (Phi) {
1708       ActualAccesses.push_back(Phi);
1709       ActualDefs.push_back(Phi);
1710     }
1711 
1712     for (Instruction &I : B) {
1713       MemoryAccess *MA = getMemoryAccess(&I);
1714       assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1715              "We have memory affecting instructions "
1716              "in this block but they are not in the "
1717              "access list or defs list");
1718       if (MA) {
1719         ActualAccesses.push_back(MA);
1720         if (isa<MemoryDef>(MA))
1721           ActualDefs.push_back(MA);
1722       }
1723     }
1724     // Either we hit the assert, really have no accesses, or we have both
1725     // accesses and an access list.
1726     // Same with defs.
1727     if (!AL && !DL)
1728       continue;
1729     assert(AL->size() == ActualAccesses.size() &&
1730            "We don't have the same number of accesses in the block as on the "
1731            "access list");
1732     assert((DL || ActualDefs.size() == 0) &&
1733            "Either we should have a defs list, or we should have no defs");
1734     assert((!DL || DL->size() == ActualDefs.size()) &&
1735            "We don't have the same number of defs in the block as on the "
1736            "def list");
1737     auto ALI = AL->begin();
1738     auto AAI = ActualAccesses.begin();
1739     while (ALI != AL->end() && AAI != ActualAccesses.end()) {
1740       assert(&*ALI == *AAI && "Not the same accesses in the same order");
1741       ++ALI;
1742       ++AAI;
1743     }
1744     ActualAccesses.clear();
1745     if (DL) {
1746       auto DLI = DL->begin();
1747       auto ADI = ActualDefs.begin();
1748       while (DLI != DL->end() && ADI != ActualDefs.end()) {
1749         assert(&*DLI == *ADI && "Not the same defs in the same order");
1750         ++DLI;
1751         ++ADI;
1752       }
1753     }
1754     ActualDefs.clear();
1755   }
1756 }
1757 
1758 /// Verify the domination properties of MemorySSA by checking that each
1759 /// definition dominates all of its uses.
verifyDomination(Function & F) const1760 void MemorySSA::verifyDomination(Function &F) const {
1761 #ifndef NDEBUG
1762   for (BasicBlock &B : F) {
1763     // Phi nodes are attached to basic blocks
1764     if (MemoryPhi *MP = getMemoryAccess(&B))
1765       for (const Use &U : MP->uses())
1766         assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
1767 
1768     for (Instruction &I : B) {
1769       MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
1770       if (!MD)
1771         continue;
1772 
1773       for (const Use &U : MD->uses())
1774         assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
1775     }
1776   }
1777 #endif
1778 }
1779 
1780 /// Verify the def-use lists in MemorySSA, by verifying that \p Use
1781 /// appears in the use list of \p Def.
verifyUseInDefs(MemoryAccess * Def,MemoryAccess * Use) const1782 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
1783 #ifndef NDEBUG
1784   // The live on entry use may cause us to get a NULL def here
1785   if (!Def)
1786     assert(isLiveOnEntryDef(Use) &&
1787            "Null def but use not point to live on entry def");
1788   else
1789     assert(is_contained(Def->users(), Use) &&
1790            "Did not find use in def's use list");
1791 #endif
1792 }
1793 
1794 /// Verify the immediate use information, by walking all the memory
1795 /// accesses and verifying that, for each use, it appears in the
1796 /// appropriate def's use list
verifyDefUses(Function & F) const1797 void MemorySSA::verifyDefUses(Function &F) const {
1798   for (BasicBlock &B : F) {
1799     // Phi nodes are attached to basic blocks
1800     if (MemoryPhi *Phi = getMemoryAccess(&B)) {
1801       assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1802                                           pred_begin(&B), pred_end(&B))) &&
1803              "Incomplete MemoryPhi Node");
1804       for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1805         verifyUseInDefs(Phi->getIncomingValue(I), Phi);
1806         assert(find(predecessors(&B), Phi->getIncomingBlock(I)) !=
1807                    pred_end(&B) &&
1808                "Incoming phi block not a block predecessor");
1809       }
1810     }
1811 
1812     for (Instruction &I : B) {
1813       if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
1814         verifyUseInDefs(MA->getDefiningAccess(), MA);
1815       }
1816     }
1817   }
1818 }
1819 
getMemoryAccess(const Instruction * I) const1820 MemoryUseOrDef *MemorySSA::getMemoryAccess(const Instruction *I) const {
1821   return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I));
1822 }
1823 
getMemoryAccess(const BasicBlock * BB) const1824 MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const {
1825   return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB)));
1826 }
1827 
1828 /// Perform a local numbering on blocks so that instruction ordering can be
1829 /// determined in constant time.
1830 /// TODO: We currently just number in order.  If we numbered by N, we could
1831 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
1832 /// log2(N) sequences of mixed before and after) without needing to invalidate
1833 /// the numbering.
renumberBlock(const BasicBlock * B) const1834 void MemorySSA::renumberBlock(const BasicBlock *B) const {
1835   // The pre-increment ensures the numbers really start at 1.
1836   unsigned long CurrentNumber = 0;
1837   const AccessList *AL = getBlockAccesses(B);
1838   assert(AL != nullptr && "Asking to renumber an empty block");
1839   for (const auto &I : *AL)
1840     BlockNumbering[&I] = ++CurrentNumber;
1841   BlockNumberingValid.insert(B);
1842 }
1843 
1844 /// Determine, for two memory accesses in the same block,
1845 /// whether \p Dominator dominates \p Dominatee.
1846 /// \returns True if \p Dominator dominates \p Dominatee.
locallyDominates(const MemoryAccess * Dominator,const MemoryAccess * Dominatee) const1847 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
1848                                  const MemoryAccess *Dominatee) const {
1849   const BasicBlock *DominatorBlock = Dominator->getBlock();
1850 
1851   assert((DominatorBlock == Dominatee->getBlock()) &&
1852          "Asking for local domination when accesses are in different blocks!");
1853   // A node dominates itself.
1854   if (Dominatee == Dominator)
1855     return true;
1856 
1857   // When Dominatee is defined on function entry, it is not dominated by another
1858   // memory access.
1859   if (isLiveOnEntryDef(Dominatee))
1860     return false;
1861 
1862   // When Dominator is defined on function entry, it dominates the other memory
1863   // access.
1864   if (isLiveOnEntryDef(Dominator))
1865     return true;
1866 
1867   if (!BlockNumberingValid.count(DominatorBlock))
1868     renumberBlock(DominatorBlock);
1869 
1870   unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
1871   // All numbers start with 1
1872   assert(DominatorNum != 0 && "Block was not numbered properly");
1873   unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
1874   assert(DominateeNum != 0 && "Block was not numbered properly");
1875   return DominatorNum < DominateeNum;
1876 }
1877 
dominates(const MemoryAccess * Dominator,const MemoryAccess * Dominatee) const1878 bool MemorySSA::dominates(const MemoryAccess *Dominator,
1879                           const MemoryAccess *Dominatee) const {
1880   if (Dominator == Dominatee)
1881     return true;
1882 
1883   if (isLiveOnEntryDef(Dominatee))
1884     return false;
1885 
1886   if (Dominator->getBlock() != Dominatee->getBlock())
1887     return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
1888   return locallyDominates(Dominator, Dominatee);
1889 }
1890 
dominates(const MemoryAccess * Dominator,const Use & Dominatee) const1891 bool MemorySSA::dominates(const MemoryAccess *Dominator,
1892                           const Use &Dominatee) const {
1893   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
1894     BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
1895     // The def must dominate the incoming block of the phi.
1896     if (UseBB != Dominator->getBlock())
1897       return DT->dominates(Dominator->getBlock(), UseBB);
1898     // If the UseBB and the DefBB are the same, compare locally.
1899     return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
1900   }
1901   // If it's not a PHI node use, the normal dominates can already handle it.
1902   return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
1903 }
1904 
1905 const static char LiveOnEntryStr[] = "liveOnEntry";
1906 
print(raw_ostream & OS) const1907 void MemoryAccess::print(raw_ostream &OS) const {
1908   switch (getValueID()) {
1909   case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
1910   case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
1911   case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
1912   }
1913   llvm_unreachable("invalid value id");
1914 }
1915 
print(raw_ostream & OS) const1916 void MemoryDef::print(raw_ostream &OS) const {
1917   MemoryAccess *UO = getDefiningAccess();
1918 
1919   auto printID = [&OS](MemoryAccess *A) {
1920     if (A && A->getID())
1921       OS << A->getID();
1922     else
1923       OS << LiveOnEntryStr;
1924   };
1925 
1926   OS << getID() << " = MemoryDef(";
1927   printID(UO);
1928   OS << ")";
1929 
1930   if (isOptimized()) {
1931     OS << "->";
1932     printID(getOptimized());
1933 
1934     if (Optional<AliasResult> AR = getOptimizedAccessType())
1935       OS << " " << *AR;
1936   }
1937 }
1938 
print(raw_ostream & OS) const1939 void MemoryPhi::print(raw_ostream &OS) const {
1940   bool First = true;
1941   OS << getID() << " = MemoryPhi(";
1942   for (const auto &Op : operands()) {
1943     BasicBlock *BB = getIncomingBlock(Op);
1944     MemoryAccess *MA = cast<MemoryAccess>(Op);
1945     if (!First)
1946       OS << ',';
1947     else
1948       First = false;
1949 
1950     OS << '{';
1951     if (BB->hasName())
1952       OS << BB->getName();
1953     else
1954       BB->printAsOperand(OS, false);
1955     OS << ',';
1956     if (unsigned ID = MA->getID())
1957       OS << ID;
1958     else
1959       OS << LiveOnEntryStr;
1960     OS << '}';
1961   }
1962   OS << ')';
1963 }
1964 
print(raw_ostream & OS) const1965 void MemoryUse::print(raw_ostream &OS) const {
1966   MemoryAccess *UO = getDefiningAccess();
1967   OS << "MemoryUse(";
1968   if (UO && UO->getID())
1969     OS << UO->getID();
1970   else
1971     OS << LiveOnEntryStr;
1972   OS << ')';
1973 
1974   if (Optional<AliasResult> AR = getOptimizedAccessType())
1975     OS << " " << *AR;
1976 }
1977 
dump() const1978 void MemoryAccess::dump() const {
1979 // Cannot completely remove virtual function even in release mode.
1980 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1981   print(dbgs());
1982   dbgs() << "\n";
1983 #endif
1984 }
1985 
1986 char MemorySSAPrinterLegacyPass::ID = 0;
1987 
MemorySSAPrinterLegacyPass()1988 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
1989   initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
1990 }
1991 
getAnalysisUsage(AnalysisUsage & AU) const1992 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
1993   AU.setPreservesAll();
1994   AU.addRequired<MemorySSAWrapperPass>();
1995 }
1996 
runOnFunction(Function & F)1997 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
1998   auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
1999   MSSA.print(dbgs());
2000   if (VerifyMemorySSA)
2001     MSSA.verifyMemorySSA();
2002   return false;
2003 }
2004 
2005 AnalysisKey MemorySSAAnalysis::Key;
2006 
run(Function & F,FunctionAnalysisManager & AM)2007 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2008                                                  FunctionAnalysisManager &AM) {
2009   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2010   auto &AA = AM.getResult<AAManager>(F);
2011   return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT));
2012 }
2013 
run(Function & F,FunctionAnalysisManager & AM)2014 PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2015                                             FunctionAnalysisManager &AM) {
2016   OS << "MemorySSA for function: " << F.getName() << "\n";
2017   AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
2018 
2019   return PreservedAnalyses::all();
2020 }
2021 
run(Function & F,FunctionAnalysisManager & AM)2022 PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2023                                              FunctionAnalysisManager &AM) {
2024   AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
2025 
2026   return PreservedAnalyses::all();
2027 }
2028 
2029 char MemorySSAWrapperPass::ID = 0;
2030 
MemorySSAWrapperPass()2031 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2032   initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2033 }
2034 
releaseMemory()2035 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2036 
getAnalysisUsage(AnalysisUsage & AU) const2037 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2038   AU.setPreservesAll();
2039   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2040   AU.addRequiredTransitive<AAResultsWrapperPass>();
2041 }
2042 
runOnFunction(Function & F)2043 bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2044   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2045   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2046   MSSA.reset(new MemorySSA(F, &AA, &DT));
2047   return false;
2048 }
2049 
verifyAnalysis() const2050 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
2051 
print(raw_ostream & OS,const Module * M) const2052 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
2053   MSSA->print(OS);
2054 }
2055 
MemorySSAWalker(MemorySSA * M)2056 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2057 
CachingWalker(MemorySSA * M,AliasAnalysis * A,DominatorTree * D)2058 MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A,
2059                                         DominatorTree *D)
2060     : MemorySSAWalker(M), Walker(*M, *A, *D) {}
2061 
invalidateInfo(MemoryAccess * MA)2062 void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) {
2063   if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
2064     MUD->resetOptimized();
2065 }
2066 
2067 /// Walk the use-def chains starting at \p MA and find
2068 /// the MemoryAccess that actually clobbers Loc.
2069 ///
2070 /// \returns our clobbering memory access
getClobberingMemoryAccess(MemoryAccess * StartingAccess,UpwardsMemoryQuery & Q)2071 MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
2072     MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) {
2073   return Walker.findClobber(StartingAccess, Q);
2074 }
2075 
getClobberingMemoryAccess(MemoryAccess * StartingAccess,const MemoryLocation & Loc)2076 MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
2077     MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
2078   if (isa<MemoryPhi>(StartingAccess))
2079     return StartingAccess;
2080 
2081   auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
2082   if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2083     return StartingUseOrDef;
2084 
2085   Instruction *I = StartingUseOrDef->getMemoryInst();
2086 
2087   // Conservatively, fences are always clobbers, so don't perform the walk if we
2088   // hit a fence.
2089   if (!ImmutableCallSite(I) && I->isFenceLike())
2090     return StartingUseOrDef;
2091 
2092   UpwardsMemoryQuery Q;
2093   Q.OriginalAccess = StartingUseOrDef;
2094   Q.StartingLoc = Loc;
2095   Q.Inst = I;
2096   Q.IsCall = false;
2097 
2098   // Unlike the other function, do not walk to the def of a def, because we are
2099   // handed something we already believe is the clobbering access.
2100   MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2101                                      ? StartingUseOrDef->getDefiningAccess()
2102                                      : StartingUseOrDef;
2103 
2104   MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q);
2105   LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2106   LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n");
2107   LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2108   LLVM_DEBUG(dbgs() << *Clobber << "\n");
2109   return Clobber;
2110 }
2111 
2112 MemoryAccess *
getClobberingMemoryAccess(MemoryAccess * MA)2113 MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2114   auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2115   // If this is a MemoryPhi, we can't do anything.
2116   if (!StartingAccess)
2117     return MA;
2118 
2119   // If this is an already optimized use or def, return the optimized result.
2120   // Note: Currently, we store the optimized def result in a separate field,
2121   // since we can't use the defining access.
2122   if (StartingAccess->isOptimized())
2123     return StartingAccess->getOptimized();
2124 
2125   const Instruction *I = StartingAccess->getMemoryInst();
2126   UpwardsMemoryQuery Q(I, StartingAccess);
2127   // We can't sanely do anything with a fence, since they conservatively clobber
2128   // all memory, and have no locations to get pointers from to try to
2129   // disambiguate.
2130   if (!Q.IsCall && I->isFenceLike())
2131     return StartingAccess;
2132 
2133   if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) {
2134     MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
2135     StartingAccess->setOptimized(LiveOnEntry);
2136     StartingAccess->setOptimizedAccessType(None);
2137     return LiveOnEntry;
2138   }
2139 
2140   // Start with the thing we already think clobbers this location
2141   MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2142 
2143   // At this point, DefiningAccess may be the live on entry def.
2144   // If it is, we will not get a better result.
2145   if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
2146     StartingAccess->setOptimized(DefiningAccess);
2147     StartingAccess->setOptimizedAccessType(None);
2148     return DefiningAccess;
2149   }
2150 
2151   MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q);
2152   LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2153   LLVM_DEBUG(dbgs() << *DefiningAccess << "\n");
2154   LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2155   LLVM_DEBUG(dbgs() << *Result << "\n");
2156 
2157   StartingAccess->setOptimized(Result);
2158   if (MSSA->isLiveOnEntryDef(Result))
2159     StartingAccess->setOptimizedAccessType(None);
2160   else if (Q.AR == MustAlias)
2161     StartingAccess->setOptimizedAccessType(MustAlias);
2162 
2163   return Result;
2164 }
2165 
2166 MemoryAccess *
getClobberingMemoryAccess(MemoryAccess * MA)2167 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2168   if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2169     return Use->getDefiningAccess();
2170   return MA;
2171 }
2172 
getClobberingMemoryAccess(MemoryAccess * StartingAccess,const MemoryLocation &)2173 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
2174     MemoryAccess *StartingAccess, const MemoryLocation &) {
2175   if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2176     return Use->getDefiningAccess();
2177   return StartingAccess;
2178 }
2179 
deleteMe(DerivedUser * Self)2180 void MemoryPhi::deleteMe(DerivedUser *Self) {
2181   delete static_cast<MemoryPhi *>(Self);
2182 }
2183 
deleteMe(DerivedUser * Self)2184 void MemoryDef::deleteMe(DerivedUser *Self) {
2185   delete static_cast<MemoryDef *>(Self);
2186 }
2187 
deleteMe(DerivedUser * Self)2188 void MemoryUse::deleteMe(DerivedUser *Self) {
2189   delete static_cast<MemoryUse *>(Self);
2190 }
2191