1 /* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #include "tensorflow/python/lib/core/ndarray_tensor.h"
17 
18 #include <cstring>
19 
20 #include "tensorflow/core/lib/core/coding.h"
21 #include "tensorflow/core/lib/core/errors.h"
22 #include "tensorflow/core/lib/gtl/inlined_vector.h"
23 #include "tensorflow/core/platform/types.h"
24 #include "tensorflow/python/lib/core/bfloat16.h"
25 #include "tensorflow/python/lib/core/ndarray_tensor_bridge.h"
26 
27 namespace tensorflow {
28 namespace {
29 
PyArrayDescr_to_TF_DataType(PyArray_Descr * descr,TF_DataType * out_tf_datatype)30 Status PyArrayDescr_to_TF_DataType(PyArray_Descr* descr,
31                                    TF_DataType* out_tf_datatype) {
32   PyObject* key;
33   PyObject* value;
34   Py_ssize_t pos = 0;
35   if (PyDict_Next(descr->fields, &pos, &key, &value)) {
36     // In Python 3, the keys of numpy custom struct types are unicode, unlike
37     // Python 2, where the keys are bytes.
38     const char* key_string =
39         PyBytes_Check(key) ? PyBytes_AsString(key)
40                            : PyBytes_AsString(PyUnicode_AsASCIIString(key));
41     if (!key_string) {
42       return errors::Internal("Corrupt numpy type descriptor");
43     }
44     tensorflow::string key = key_string;
45     // The typenames here should match the field names in the custom struct
46     // types constructed in test_util.py.
47     // TODO(mrry,keveman): Investigate Numpy type registration to replace this
48     // hard-coding of names.
49     if (key == "quint8") {
50       *out_tf_datatype = TF_QUINT8;
51     } else if (key == "qint8") {
52       *out_tf_datatype = TF_QINT8;
53     } else if (key == "qint16") {
54       *out_tf_datatype = TF_QINT16;
55     } else if (key == "quint16") {
56       *out_tf_datatype = TF_QUINT16;
57     } else if (key == "qint32") {
58       *out_tf_datatype = TF_QINT32;
59     } else if (key == "resource") {
60       *out_tf_datatype = TF_RESOURCE;
61     } else {
62       return errors::Internal("Unsupported numpy data type");
63     }
64     return Status::OK();
65   }
66   return errors::Internal("Unsupported numpy data type");
67 }
68 
PyArray_TYPE_to_TF_DataType(PyArrayObject * array,TF_DataType * out_tf_datatype)69 Status PyArray_TYPE_to_TF_DataType(PyArrayObject* array,
70                                    TF_DataType* out_tf_datatype) {
71   int pyarray_type = PyArray_TYPE(array);
72   PyArray_Descr* descr = PyArray_DESCR(array);
73   switch (pyarray_type) {
74     case NPY_FLOAT16:
75       *out_tf_datatype = TF_HALF;
76       break;
77     case NPY_FLOAT32:
78       *out_tf_datatype = TF_FLOAT;
79       break;
80     case NPY_FLOAT64:
81       *out_tf_datatype = TF_DOUBLE;
82       break;
83     case NPY_INT32:
84       *out_tf_datatype = TF_INT32;
85       break;
86     case NPY_UINT8:
87       *out_tf_datatype = TF_UINT8;
88       break;
89     case NPY_UINT16:
90       *out_tf_datatype = TF_UINT16;
91       break;
92     case NPY_UINT32:
93       *out_tf_datatype = TF_UINT32;
94       break;
95     case NPY_UINT64:
96       *out_tf_datatype = TF_UINT64;
97       break;
98     case NPY_INT8:
99       *out_tf_datatype = TF_INT8;
100       break;
101     case NPY_INT16:
102       *out_tf_datatype = TF_INT16;
103       break;
104     case NPY_INT64:
105       *out_tf_datatype = TF_INT64;
106       break;
107     case NPY_BOOL:
108       *out_tf_datatype = TF_BOOL;
109       break;
110     case NPY_COMPLEX64:
111       *out_tf_datatype = TF_COMPLEX64;
112       break;
113     case NPY_COMPLEX128:
114       *out_tf_datatype = TF_COMPLEX128;
115       break;
116     case NPY_OBJECT:
117     case NPY_STRING:
118     case NPY_UNICODE:
119       *out_tf_datatype = TF_STRING;
120       break;
121     case NPY_VOID:
122       // Quantized types are currently represented as custom struct types.
123       // PyArray_TYPE returns NPY_VOID for structs, and we should look into
124       // descr to derive the actual type.
125       // Direct feeds of certain types of ResourceHandles are represented as a
126       // custom struct type.
127       return PyArrayDescr_to_TF_DataType(descr, out_tf_datatype);
128     default:
129       if (pyarray_type == Bfloat16NumpyType()) {
130         *out_tf_datatype = TF_BFLOAT16;
131         break;
132       }
133       // TODO(mrry): Support these.
134       return errors::Internal("Unsupported feed type");
135   }
136   return Status::OK();
137 }
138 
PyObjectToString(PyObject * obj,const char ** ptr,Py_ssize_t * len,PyObject ** ptr_owner)139 Status PyObjectToString(PyObject* obj, const char** ptr, Py_ssize_t* len,
140                         PyObject** ptr_owner) {
141   *ptr_owner = nullptr;
142   if (!PyUnicode_Check(obj)) {
143     char* buf;
144     if (PyBytes_AsStringAndSize(obj, &buf, len) != 0) {
145       return errors::Internal("Unable to get element as bytes.");
146     }
147     *ptr = buf;
148     return Status::OK();
149   }
150 #if (PY_MAJOR_VERSION > 3 || (PY_MAJOR_VERSION == 3 && PY_MINOR_VERSION >= 3))
151   *ptr = PyUnicode_AsUTF8AndSize(obj, len);
152   if (*ptr != nullptr) return Status::OK();
153 #else
154   PyObject* utemp = PyUnicode_AsUTF8String(obj);
155   char* buf;
156   if (utemp != nullptr && PyBytes_AsStringAndSize(utemp, &buf, len) != -1) {
157     *ptr = buf;
158     *ptr_owner = utemp;
159     return Status::OK();
160   }
161   Py_XDECREF(utemp);
162 #endif
163   return errors::Internal("Unable to convert element to UTF-8.");
164 }
165 
166 // Iterate over the string array 'array', extract the ptr and len of each string
167 // element and call f(ptr, len).
168 template <typename F>
PyBytesArrayMap(PyArrayObject * array,F f)169 Status PyBytesArrayMap(PyArrayObject* array, F f) {
170   Safe_PyObjectPtr iter = tensorflow::make_safe(
171       PyArray_IterNew(reinterpret_cast<PyObject*>(array)));
172   while (PyArray_ITER_NOTDONE(iter.get())) {
173     auto item = tensorflow::make_safe(PyArray_GETITEM(
174         array, static_cast<char*>(PyArray_ITER_DATA(iter.get()))));
175     if (!item) {
176       return errors::Internal("Unable to get element from the feed - no item.");
177     }
178     Py_ssize_t len;
179     const char* ptr;
180     PyObject* ptr_owner;
181     TF_RETURN_IF_ERROR(PyObjectToString(item.get(), &ptr, &len, &ptr_owner));
182     f(ptr, len);
183     Py_XDECREF(ptr_owner);
184     PyArray_ITER_NEXT(iter.get());
185   }
186   return Status::OK();
187 }
188 
189 // Encode the strings in 'array' into a contiguous buffer and return the base of
190 // the buffer. The caller takes ownership of the buffer.
EncodePyBytesArray(PyArrayObject * array,tensorflow::int64 nelems,size_t * size,void ** buffer)191 Status EncodePyBytesArray(PyArrayObject* array, tensorflow::int64 nelems,
192                           size_t* size, void** buffer) {
193   // Compute bytes needed for encoding.
194   *size = 0;
195   TF_RETURN_IF_ERROR(
196       PyBytesArrayMap(array, [&size](const char* ptr, Py_ssize_t len) {
197         *size += sizeof(tensorflow::uint64) +
198                  tensorflow::core::VarintLength(len) + len;
199       }));
200   // Encode all strings.
201   std::unique_ptr<char[]> base_ptr(new char[*size]);
202   char* base = base_ptr.get();
203   char* data_start = base + sizeof(tensorflow::uint64) * nelems;
204   char* dst = data_start;  // Where next string is encoded.
205   tensorflow::uint64* offsets = reinterpret_cast<tensorflow::uint64*>(base);
206 
207   TF_RETURN_IF_ERROR(PyBytesArrayMap(
208       array, [&data_start, &dst, &offsets](const char* ptr, Py_ssize_t len) {
209         *offsets = (dst - data_start);
210         offsets++;
211         dst = tensorflow::core::EncodeVarint64(dst, len);
212         memcpy(dst, ptr, len);
213         dst += len;
214       }));
215   CHECK_EQ(dst, base + *size);
216   *buffer = base_ptr.release();
217   return Status::OK();
218 }
219 
CopyTF_TensorStringsToPyArray(const TF_Tensor * src,uint64 nelems,PyArrayObject * dst)220 Status CopyTF_TensorStringsToPyArray(const TF_Tensor* src, uint64 nelems,
221                                      PyArrayObject* dst) {
222   const void* tensor_data = TF_TensorData(src);
223   const size_t tensor_size = TF_TensorByteSize(src);
224   const char* limit = static_cast<const char*>(tensor_data) + tensor_size;
225   DCHECK(tensor_data != nullptr);
226   DCHECK_EQ(TF_STRING, TF_TensorType(src));
227 
228   const uint64* offsets = static_cast<const uint64*>(tensor_data);
229   const size_t offsets_size = sizeof(uint64) * nelems;
230   const char* data = static_cast<const char*>(tensor_data) + offsets_size;
231 
232   const size_t expected_tensor_size =
233       (limit - static_cast<const char*>(tensor_data));
234   if (expected_tensor_size - tensor_size) {
235     return errors::InvalidArgument(
236         "Invalid/corrupt TF_STRING tensor: expected ", expected_tensor_size,
237         " bytes of encoded strings for the tensor containing ", nelems,
238         " strings, but the tensor is encoded in ", tensor_size, " bytes");
239   }
240   std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status(
241       TF_NewStatus(), TF_DeleteStatus);
242   auto iter = make_safe(PyArray_IterNew(reinterpret_cast<PyObject*>(dst)));
243   for (int64 i = 0; i < nelems; ++i) {
244     const char* start = data + offsets[i];
245     const char* ptr = nullptr;
246     size_t len = 0;
247 
248     TF_StringDecode(start, limit - start, &ptr, &len, status.get());
249     if (TF_GetCode(status.get()) != TF_OK) {
250       return errors::InvalidArgument(TF_Message(status.get()));
251     }
252 
253     auto py_string = make_safe(PyBytes_FromStringAndSize(ptr, len));
254     if (py_string == nullptr) {
255       return errors::Internal(
256           "failed to create a python byte array when converting element #", i,
257           " of a TF_STRING tensor to a numpy ndarray");
258     }
259 
260     if (PyArray_SETITEM(dst, static_cast<char*>(PyArray_ITER_DATA(iter.get())),
261                         py_string.get()) != 0) {
262       return errors::Internal("Error settings element #", i,
263                               " in the numpy ndarray");
264     }
265     PyArray_ITER_NEXT(iter.get());
266   }
267   return Status::OK();
268 }
269 
270 // Determine the dimensions of a numpy ndarray to be created to represent an
271 // output Tensor.
GetPyArrayDimensionsForTensor(const TF_Tensor * tensor,tensorflow::int64 * nelems)272 gtl::InlinedVector<npy_intp, 4> GetPyArrayDimensionsForTensor(
273     const TF_Tensor* tensor, tensorflow::int64* nelems) {
274   const int ndims = TF_NumDims(tensor);
275   gtl::InlinedVector<npy_intp, 4> dims(ndims);
276   if (TF_TensorType(tensor) == TF_RESOURCE) {
277     CHECK_EQ(ndims, 0)
278         << "Fetching of non-scalar resource tensors is not supported.";
279     dims.push_back(TF_TensorByteSize(tensor));
280     *nelems = dims[0];
281   } else {
282     *nelems = 1;
283     for (int i = 0; i < ndims; ++i) {
284       dims[i] = TF_Dim(tensor, i);
285       *nelems *= dims[i];
286     }
287   }
288   return dims;
289 }
290 
291 // Determine the type description (PyArray_Descr) of a numpy ndarray to be
292 // created to represent an output Tensor.
GetPyArrayDescrForTensor(const TF_Tensor * tensor,PyArray_Descr ** descr)293 Status GetPyArrayDescrForTensor(const TF_Tensor* tensor,
294                                 PyArray_Descr** descr) {
295   if (TF_TensorType(tensor) == TF_RESOURCE) {
296     PyObject* field = PyTuple_New(3);
297 #if PY_MAJOR_VERSION < 3
298     PyTuple_SetItem(field, 0, PyBytes_FromString("resource"));
299 #else
300     PyTuple_SetItem(field, 0, PyUnicode_FromString("resource"));
301 #endif
302     PyTuple_SetItem(field, 1, PyArray_TypeObjectFromType(NPY_UBYTE));
303     PyTuple_SetItem(field, 2, PyLong_FromLong(1));
304     PyObject* fields = PyList_New(1);
305     PyList_SetItem(fields, 0, field);
306     int convert_result = PyArray_DescrConverter(fields, descr);
307     Py_CLEAR(field);
308     Py_CLEAR(fields);
309     if (convert_result != 1) {
310       return errors::Internal("Failed to create numpy array description for ",
311                               "TF_RESOURCE-type tensor");
312     }
313   } else {
314     int type_num = -1;
315     TF_RETURN_IF_ERROR(
316         TF_DataType_to_PyArray_TYPE(TF_TensorType(tensor), &type_num));
317     *descr = PyArray_DescrFromType(type_num);
318   }
319 
320   return Status::OK();
321 }
322 
FastMemcpy(void * dst,const void * src,size_t size)323 inline void FastMemcpy(void* dst, const void* src, size_t size) {
324   // clang-format off
325   switch (size) {
326     // Most compilers will generate inline code for fixed sizes,
327     // which is significantly faster for small copies.
328     case  1: memcpy(dst, src, 1); break;
329     case  2: memcpy(dst, src, 2); break;
330     case  3: memcpy(dst, src, 3); break;
331     case  4: memcpy(dst, src, 4); break;
332     case  5: memcpy(dst, src, 5); break;
333     case  6: memcpy(dst, src, 6); break;
334     case  7: memcpy(dst, src, 7); break;
335     case  8: memcpy(dst, src, 8); break;
336     case  9: memcpy(dst, src, 9); break;
337     case 10: memcpy(dst, src, 10); break;
338     case 11: memcpy(dst, src, 11); break;
339     case 12: memcpy(dst, src, 12); break;
340     case 13: memcpy(dst, src, 13); break;
341     case 14: memcpy(dst, src, 14); break;
342     case 15: memcpy(dst, src, 15); break;
343     case 16: memcpy(dst, src, 16); break;
344 #if defined(PLATFORM_GOOGLE) || defined(PLATFORM_POSIX) && \
345     !defined(IS_MOBILE_PLATFORM)
346     // On Linux, memmove appears to be faster than memcpy for
347     // large sizes, strangely enough.
348     default: memmove(dst, src, size); break;
349 #else
350     default: memcpy(dst, src, size); break;
351 #endif
352   }
353   // clang-format on
354 }
355 
356 }  // namespace
357 
358 // Converts the given TF_Tensor to a numpy ndarray.
359 // If the returned status is OK, the caller becomes the owner of *out_array.
TF_TensorToPyArray(Safe_TF_TensorPtr tensor,PyObject ** out_ndarray)360 Status TF_TensorToPyArray(Safe_TF_TensorPtr tensor, PyObject** out_ndarray) {
361   // A fetched operation will correspond to a null tensor, and a None
362   // in Python.
363   if (tensor == nullptr) {
364     Py_INCREF(Py_None);
365     *out_ndarray = Py_None;
366     return Status::OK();
367   }
368   int64 nelems = -1;
369   gtl::InlinedVector<npy_intp, 4> dims =
370       GetPyArrayDimensionsForTensor(tensor.get(), &nelems);
371 
372   // If the type is neither string nor resource we can reuse the Tensor memory.
373   TF_Tensor* original = tensor.get();
374   TF_Tensor* moved = TF_TensorMaybeMove(tensor.release());
375   if (moved != nullptr) {
376     if (ArrayFromMemory(dims.size(), dims.data(), TF_TensorData(moved),
377                         static_cast<DataType>(TF_TensorType(moved)),
378                         [moved] { TF_DeleteTensor(moved); }, out_ndarray)
379             .ok()) {
380       return Status::OK();
381     }
382   }
383   tensor.reset(original);
384 
385   // Copy the TF_TensorData into a newly-created ndarray and return it.
386   PyArray_Descr* descr = nullptr;
387   TF_RETURN_IF_ERROR(GetPyArrayDescrForTensor(tensor.get(), &descr));
388   Safe_PyObjectPtr safe_out_array =
389       tensorflow::make_safe(PyArray_Empty(dims.size(), dims.data(), descr, 0));
390   if (!safe_out_array) {
391     return errors::Internal("Could not allocate ndarray");
392   }
393   PyArrayObject* py_array =
394       reinterpret_cast<PyArrayObject*>(safe_out_array.get());
395   if (TF_TensorType(tensor.get()) == TF_STRING) {
396     Status s = CopyTF_TensorStringsToPyArray(tensor.get(), nelems, py_array);
397     if (!s.ok()) {
398       return s;
399     }
400   } else if (static_cast<size_t>(PyArray_NBYTES(py_array)) !=
401              TF_TensorByteSize(tensor.get())) {
402     return errors::Internal("ndarray was ", PyArray_NBYTES(py_array),
403                             " bytes but TF_Tensor was ",
404                             TF_TensorByteSize(tensor.get()), " bytes");
405   } else {
406     FastMemcpy(PyArray_DATA(py_array), TF_TensorData(tensor.get()),
407                PyArray_NBYTES(py_array));
408   }
409 
410   // PyArray_Return turns rank 0 arrays into numpy scalars
411   *out_ndarray = PyArray_Return(
412       reinterpret_cast<PyArrayObject*>(safe_out_array.release()));
413   return Status::OK();
414 }
415 
PyArrayToTF_Tensor(PyObject * ndarray,Safe_TF_TensorPtr * out_tensor)416 Status PyArrayToTF_Tensor(PyObject* ndarray, Safe_TF_TensorPtr* out_tensor) {
417   DCHECK(out_tensor != nullptr);
418 
419   // Make sure we dereference this array object in case of error, etc.
420   Safe_PyObjectPtr array_safe(make_safe(
421       PyArray_FromAny(ndarray, nullptr, 0, 0, NPY_ARRAY_CARRAY_RO, nullptr)));
422   if (!array_safe) return errors::InvalidArgument("Not a ndarray.");
423   PyArrayObject* array = reinterpret_cast<PyArrayObject*>(array_safe.get());
424 
425   // Convert numpy dtype to TensorFlow dtype.
426   TF_DataType dtype = TF_FLOAT;
427   TF_RETURN_IF_ERROR(PyArray_TYPE_to_TF_DataType(array, &dtype));
428 
429   tensorflow::int64 nelems = 1;
430   gtl::InlinedVector<int64_t, 4> dims;
431   for (int i = 0; i < PyArray_NDIM(array); ++i) {
432     dims.push_back(PyArray_SHAPE(array)[i]);
433     nelems *= dims[i];
434   }
435 
436   // Create a TF_Tensor based on the fed data. In the case of non-string data
437   // type, this steals a reference to array, which will be relinquished when
438   // the underlying buffer is deallocated. For string, a new temporary buffer
439   // is allocated into which the strings are encoded.
440   if (dtype == TF_RESOURCE) {
441     size_t size = PyArray_NBYTES(array);
442     array_safe.release();
443     *out_tensor = make_safe(TF_NewTensor(dtype, {}, 0, PyArray_DATA(array),
444                                          size, &DelayedNumpyDecref, array));
445 
446   } else if (dtype != TF_STRING) {
447     size_t size = PyArray_NBYTES(array);
448     array_safe.release();
449     *out_tensor = make_safe(TF_NewTensor(dtype, dims.data(), dims.size(),
450                                          PyArray_DATA(array), size,
451                                          &DelayedNumpyDecref, array));
452   } else {
453     size_t size = 0;
454     void* encoded = nullptr;
455     TF_RETURN_IF_ERROR(EncodePyBytesArray(array, nelems, &size, &encoded));
456     *out_tensor =
457         make_safe(TF_NewTensor(dtype, dims.data(), dims.size(), encoded, size,
458                                [](void* data, size_t len, void* arg) {
459                                  delete[] reinterpret_cast<char*>(data);
460                                },
461                                nullptr));
462   }
463   return Status::OK();
464 }
465 
466 Status TF_TensorToTensor(const TF_Tensor* src, Tensor* dst);
467 TF_Tensor* TF_TensorFromTensor(const tensorflow::Tensor& src,
468                                TF_Status* status);
469 
NdarrayToTensor(PyObject * obj,Tensor * ret)470 Status NdarrayToTensor(PyObject* obj, Tensor* ret) {
471   Safe_TF_TensorPtr tf_tensor = make_safe(static_cast<TF_Tensor*>(nullptr));
472   Status s = PyArrayToTF_Tensor(obj, &tf_tensor);
473   if (!s.ok()) {
474     return s;
475   }
476   return TF_TensorToTensor(tf_tensor.get(), ret);
477 }
478 
TensorToNdarray(const Tensor & t,PyObject ** ret)479 Status TensorToNdarray(const Tensor& t, PyObject** ret) {
480   TF_Status* status = TF_NewStatus();
481   Safe_TF_TensorPtr tf_tensor = make_safe(TF_TensorFromTensor(t, status));
482   Status tf_status = StatusFromTF_Status(status);
483   TF_DeleteStatus(status);
484   if (!tf_status.ok()) {
485     return tf_status;
486   }
487   return TF_TensorToPyArray(std::move(tf_tensor), ret);
488 }
489 
490 }  // namespace tensorflow
491