1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/heap/spaces.h"
6 
7 #include <utility>
8 
9 #include "src/base/bits.h"
10 #include "src/base/macros.h"
11 #include "src/base/platform/semaphore.h"
12 #include "src/base/template-utils.h"
13 #include "src/counters.h"
14 #include "src/heap/array-buffer-tracker.h"
15 #include "src/heap/concurrent-marking.h"
16 #include "src/heap/gc-tracer.h"
17 #include "src/heap/heap-controller.h"
18 #include "src/heap/incremental-marking.h"
19 #include "src/heap/mark-compact.h"
20 #include "src/heap/remembered-set.h"
21 #include "src/heap/slot-set.h"
22 #include "src/heap/sweeper.h"
23 #include "src/msan.h"
24 #include "src/objects-inl.h"
25 #include "src/objects/js-array-buffer-inl.h"
26 #include "src/objects/js-array-inl.h"
27 #include "src/snapshot/snapshot.h"
28 #include "src/v8.h"
29 #include "src/vm-state-inl.h"
30 
31 namespace v8 {
32 namespace internal {
33 
34 // ----------------------------------------------------------------------------
35 // HeapObjectIterator
36 
HeapObjectIterator(PagedSpace * space)37 HeapObjectIterator::HeapObjectIterator(PagedSpace* space)
38     : cur_addr_(kNullAddress),
39       cur_end_(kNullAddress),
40       space_(space),
41       page_range_(space->first_page(), nullptr),
42       current_page_(page_range_.begin()) {}
43 
HeapObjectIterator(Page * page)44 HeapObjectIterator::HeapObjectIterator(Page* page)
45     : cur_addr_(kNullAddress),
46       cur_end_(kNullAddress),
47       space_(reinterpret_cast<PagedSpace*>(page->owner())),
48       page_range_(page),
49       current_page_(page_range_.begin()) {
50 #ifdef DEBUG
51   Space* owner = page->owner();
52   DCHECK(owner == page->heap()->old_space() ||
53          owner == page->heap()->map_space() ||
54          owner == page->heap()->code_space() ||
55          owner == page->heap()->read_only_space());
56 #endif  // DEBUG
57 }
58 
59 // We have hit the end of the page and should advance to the next block of
60 // objects.  This happens at the end of the page.
AdvanceToNextPage()61 bool HeapObjectIterator::AdvanceToNextPage() {
62   DCHECK_EQ(cur_addr_, cur_end_);
63   if (current_page_ == page_range_.end()) return false;
64   Page* cur_page = *(current_page_++);
65   Heap* heap = space_->heap();
66 
67   heap->mark_compact_collector()->sweeper()->EnsurePageIsIterable(cur_page);
68 #ifdef ENABLE_MINOR_MC
69   if (cur_page->IsFlagSet(Page::SWEEP_TO_ITERATE))
70     heap->minor_mark_compact_collector()->MakeIterable(
71         cur_page, MarkingTreatmentMode::CLEAR,
72         FreeSpaceTreatmentMode::IGNORE_FREE_SPACE);
73 #else
74   DCHECK(!cur_page->IsFlagSet(Page::SWEEP_TO_ITERATE));
75 #endif  // ENABLE_MINOR_MC
76   cur_addr_ = cur_page->area_start();
77   cur_end_ = cur_page->area_end();
78   DCHECK(cur_page->SweepingDone());
79   return true;
80 }
81 
PauseAllocationObserversScope(Heap * heap)82 PauseAllocationObserversScope::PauseAllocationObserversScope(Heap* heap)
83     : heap_(heap) {
84   DCHECK_EQ(heap->gc_state(), Heap::NOT_IN_GC);
85 
86   for (SpaceIterator it(heap_); it.has_next();) {
87     it.next()->PauseAllocationObservers();
88   }
89 }
90 
~PauseAllocationObserversScope()91 PauseAllocationObserversScope::~PauseAllocationObserversScope() {
92   for (SpaceIterator it(heap_); it.has_next();) {
93     it.next()->ResumeAllocationObservers();
94   }
95 }
96 
97 // -----------------------------------------------------------------------------
98 // CodeRange
99 
100 static base::LazyInstance<CodeRangeAddressHint>::type code_range_address_hint =
101     LAZY_INSTANCE_INITIALIZER;
102 
CodeRange(Isolate * isolate,size_t requested)103 CodeRange::CodeRange(Isolate* isolate, size_t requested)
104     : isolate_(isolate),
105       free_list_(0),
106       allocation_list_(0),
107       current_allocation_block_index_(0),
108       requested_code_range_size_(0) {
109   DCHECK(!virtual_memory_.IsReserved());
110 
111   if (requested == 0) {
112     // When a target requires the code range feature, we put all code objects
113     // in a kMaximalCodeRangeSize range of virtual address space, so that
114     // they can call each other with near calls.
115     if (kRequiresCodeRange) {
116       requested = kMaximalCodeRangeSize;
117     } else {
118       return;
119     }
120   }
121 
122   if (requested <= kMinimumCodeRangeSize) {
123     requested = kMinimumCodeRangeSize;
124   }
125 
126   const size_t reserved_area =
127       kReservedCodeRangePages * MemoryAllocator::GetCommitPageSize();
128   if (requested < (kMaximalCodeRangeSize - reserved_area))
129     requested += reserved_area;
130 
131   DCHECK(!kRequiresCodeRange || requested <= kMaximalCodeRangeSize);
132 
133   requested_code_range_size_ = requested;
134 
135   VirtualMemory reservation;
136   void* hint = code_range_address_hint.Pointer()->GetAddressHint(requested);
137   if (!AlignedAllocVirtualMemory(
138           requested, Max(kCodeRangeAreaAlignment, AllocatePageSize()), hint,
139           &reservation)) {
140     V8::FatalProcessOutOfMemory(isolate,
141                                 "CodeRange setup: allocate virtual memory");
142   }
143 
144   // We are sure that we have mapped a block of requested addresses.
145   DCHECK_GE(reservation.size(), requested);
146   Address base = reservation.address();
147 
148   // On some platforms, specifically Win64, we need to reserve some pages at
149   // the beginning of an executable space.
150   if (reserved_area > 0) {
151     if (!reservation.SetPermissions(base, reserved_area,
152                                     PageAllocator::kReadWrite))
153       V8::FatalProcessOutOfMemory(isolate, "CodeRange setup: set permissions");
154 
155     base += reserved_area;
156   }
157   Address aligned_base = ::RoundUp(base, MemoryChunk::kAlignment);
158   size_t size = reservation.size() - (aligned_base - base) - reserved_area;
159   allocation_list_.emplace_back(aligned_base, size);
160   current_allocation_block_index_ = 0;
161 
162   LOG(isolate_,
163       NewEvent("CodeRange", reinterpret_cast<void*>(reservation.address()),
164                requested));
165   virtual_memory_.TakeControl(&reservation);
166 }
167 
~CodeRange()168 CodeRange::~CodeRange() {
169   if (virtual_memory_.IsReserved()) {
170     Address addr = start();
171     virtual_memory_.Free();
172     code_range_address_hint.Pointer()->NotifyFreedCodeRange(
173         reinterpret_cast<void*>(addr), requested_code_range_size_);
174   }
175 }
176 
CompareFreeBlockAddress(const FreeBlock & left,const FreeBlock & right)177 bool CodeRange::CompareFreeBlockAddress(const FreeBlock& left,
178                                         const FreeBlock& right) {
179   return left.start < right.start;
180 }
181 
182 
GetNextAllocationBlock(size_t requested)183 bool CodeRange::GetNextAllocationBlock(size_t requested) {
184   for (current_allocation_block_index_++;
185        current_allocation_block_index_ < allocation_list_.size();
186        current_allocation_block_index_++) {
187     if (requested <= allocation_list_[current_allocation_block_index_].size) {
188       return true;  // Found a large enough allocation block.
189     }
190   }
191 
192   // Sort and merge the free blocks on the free list and the allocation list.
193   free_list_.insert(free_list_.end(), allocation_list_.begin(),
194                     allocation_list_.end());
195   allocation_list_.clear();
196   std::sort(free_list_.begin(), free_list_.end(), &CompareFreeBlockAddress);
197   for (size_t i = 0; i < free_list_.size();) {
198     FreeBlock merged = free_list_[i];
199     i++;
200     // Add adjacent free blocks to the current merged block.
201     while (i < free_list_.size() &&
202            free_list_[i].start == merged.start + merged.size) {
203       merged.size += free_list_[i].size;
204       i++;
205     }
206     if (merged.size > 0) {
207       allocation_list_.push_back(merged);
208     }
209   }
210   free_list_.clear();
211 
212   for (current_allocation_block_index_ = 0;
213        current_allocation_block_index_ < allocation_list_.size();
214        current_allocation_block_index_++) {
215     if (requested <= allocation_list_[current_allocation_block_index_].size) {
216       return true;  // Found a large enough allocation block.
217     }
218   }
219   current_allocation_block_index_ = 0;
220   // Code range is full or too fragmented.
221   return false;
222 }
223 
224 
AllocateRawMemory(const size_t requested_size,const size_t commit_size,size_t * allocated)225 Address CodeRange::AllocateRawMemory(const size_t requested_size,
226                                      const size_t commit_size,
227                                      size_t* allocated) {
228   // requested_size includes the header and two guard regions, while commit_size
229   // only includes the header.
230   DCHECK_LE(commit_size,
231             requested_size - 2 * MemoryAllocator::CodePageGuardSize());
232   FreeBlock current;
233   if (!ReserveBlock(requested_size, &current)) {
234     *allocated = 0;
235     return kNullAddress;
236   }
237   *allocated = current.size;
238   DCHECK(IsAddressAligned(current.start, MemoryChunk::kAlignment));
239   if (!isolate_->heap()->memory_allocator()->CommitExecutableMemory(
240           &virtual_memory_, current.start, commit_size, *allocated)) {
241     *allocated = 0;
242     ReleaseBlock(&current);
243     return kNullAddress;
244   }
245   return current.start;
246 }
247 
FreeRawMemory(Address address,size_t length)248 void CodeRange::FreeRawMemory(Address address, size_t length) {
249   DCHECK(IsAddressAligned(address, MemoryChunk::kAlignment));
250   base::LockGuard<base::Mutex> guard(&code_range_mutex_);
251   free_list_.emplace_back(address, length);
252   virtual_memory_.SetPermissions(address, length, PageAllocator::kNoAccess);
253 }
254 
ReserveBlock(const size_t requested_size,FreeBlock * block)255 bool CodeRange::ReserveBlock(const size_t requested_size, FreeBlock* block) {
256   base::LockGuard<base::Mutex> guard(&code_range_mutex_);
257   DCHECK(allocation_list_.empty() ||
258          current_allocation_block_index_ < allocation_list_.size());
259   if (allocation_list_.empty() ||
260       requested_size > allocation_list_[current_allocation_block_index_].size) {
261     // Find an allocation block large enough.
262     if (!GetNextAllocationBlock(requested_size)) return false;
263   }
264   // Commit the requested memory at the start of the current allocation block.
265   size_t aligned_requested = ::RoundUp(requested_size, MemoryChunk::kAlignment);
266   *block = allocation_list_[current_allocation_block_index_];
267   // Don't leave a small free block, useless for a large object or chunk.
268   if (aligned_requested < (block->size - Page::kPageSize)) {
269     block->size = aligned_requested;
270   }
271   DCHECK(IsAddressAligned(block->start, MemoryChunk::kAlignment));
272   allocation_list_[current_allocation_block_index_].start += block->size;
273   allocation_list_[current_allocation_block_index_].size -= block->size;
274   return true;
275 }
276 
277 
ReleaseBlock(const FreeBlock * block)278 void CodeRange::ReleaseBlock(const FreeBlock* block) {
279   base::LockGuard<base::Mutex> guard(&code_range_mutex_);
280   free_list_.push_back(*block);
281 }
282 
GetAddressHint(size_t code_range_size)283 void* CodeRangeAddressHint::GetAddressHint(size_t code_range_size) {
284   base::LockGuard<base::Mutex> guard(&mutex_);
285   auto it = recently_freed_.find(code_range_size);
286   if (it == recently_freed_.end() || it->second.empty()) {
287     return GetRandomMmapAddr();
288   }
289   void* result = it->second.back();
290   it->second.pop_back();
291   return result;
292 }
293 
NotifyFreedCodeRange(void * code_range_start,size_t code_range_size)294 void CodeRangeAddressHint::NotifyFreedCodeRange(void* code_range_start,
295                                                 size_t code_range_size) {
296   base::LockGuard<base::Mutex> guard(&mutex_);
297   recently_freed_[code_range_size].push_back(code_range_start);
298 }
299 
300 // -----------------------------------------------------------------------------
301 // MemoryAllocator
302 //
303 
MemoryAllocator(Isolate * isolate,size_t capacity,size_t code_range_size)304 MemoryAllocator::MemoryAllocator(Isolate* isolate, size_t capacity,
305                                  size_t code_range_size)
306     : isolate_(isolate),
307       code_range_(nullptr),
308       capacity_(RoundUp(capacity, Page::kPageSize)),
309       size_(0),
310       size_executable_(0),
311       lowest_ever_allocated_(static_cast<Address>(-1ll)),
312       highest_ever_allocated_(kNullAddress),
313       unmapper_(isolate->heap(), this) {
314   code_range_ = new CodeRange(isolate_, code_range_size);
315 }
316 
317 
TearDown()318 void MemoryAllocator::TearDown() {
319   unmapper()->TearDown();
320 
321   // Check that spaces were torn down before MemoryAllocator.
322   DCHECK_EQ(size_, 0u);
323   // TODO(gc) this will be true again when we fix FreeMemory.
324   // DCHECK_EQ(0, size_executable_);
325   capacity_ = 0;
326 
327   if (last_chunk_.IsReserved()) {
328     last_chunk_.Free();
329   }
330 
331   delete code_range_;
332   code_range_ = nullptr;
333 }
334 
335 class MemoryAllocator::Unmapper::UnmapFreeMemoryTask : public CancelableTask {
336  public:
UnmapFreeMemoryTask(Isolate * isolate,Unmapper * unmapper)337   explicit UnmapFreeMemoryTask(Isolate* isolate, Unmapper* unmapper)
338       : CancelableTask(isolate),
339         unmapper_(unmapper),
340         tracer_(isolate->heap()->tracer()) {}
341 
342  private:
RunInternal()343   void RunInternal() override {
344     TRACE_BACKGROUND_GC(tracer_,
345                         GCTracer::BackgroundScope::BACKGROUND_UNMAPPER);
346     unmapper_->PerformFreeMemoryOnQueuedChunks<FreeMode::kUncommitPooled>();
347     unmapper_->active_unmapping_tasks_--;
348     unmapper_->pending_unmapping_tasks_semaphore_.Signal();
349     if (FLAG_trace_unmapper) {
350       PrintIsolate(unmapper_->heap_->isolate(),
351                    "UnmapFreeMemoryTask Done: id=%" PRIu64 "\n", id());
352     }
353   }
354 
355   Unmapper* const unmapper_;
356   GCTracer* const tracer_;
357   DISALLOW_COPY_AND_ASSIGN(UnmapFreeMemoryTask);
358 };
359 
FreeQueuedChunks()360 void MemoryAllocator::Unmapper::FreeQueuedChunks() {
361   if (!heap_->IsTearingDown() && FLAG_concurrent_sweeping) {
362     if (!MakeRoomForNewTasks()) {
363       // kMaxUnmapperTasks are already running. Avoid creating any more.
364       if (FLAG_trace_unmapper) {
365         PrintIsolate(heap_->isolate(),
366                      "Unmapper::FreeQueuedChunks: reached task limit (%d)\n",
367                      kMaxUnmapperTasks);
368       }
369       return;
370     }
371     auto task = base::make_unique<UnmapFreeMemoryTask>(heap_->isolate(), this);
372     if (FLAG_trace_unmapper) {
373       PrintIsolate(heap_->isolate(),
374                    "Unmapper::FreeQueuedChunks: new task id=%" PRIu64 "\n",
375                    task->id());
376     }
377     DCHECK_LT(pending_unmapping_tasks_, kMaxUnmapperTasks);
378     DCHECK_LE(active_unmapping_tasks_, pending_unmapping_tasks_);
379     DCHECK_GE(active_unmapping_tasks_, 0);
380     active_unmapping_tasks_++;
381     task_ids_[pending_unmapping_tasks_++] = task->id();
382     V8::GetCurrentPlatform()->CallOnWorkerThread(std::move(task));
383   } else {
384     PerformFreeMemoryOnQueuedChunks<FreeMode::kUncommitPooled>();
385   }
386 }
387 
CancelAndWaitForPendingTasks()388 void MemoryAllocator::Unmapper::CancelAndWaitForPendingTasks() {
389   for (int i = 0; i < pending_unmapping_tasks_; i++) {
390     if (heap_->isolate()->cancelable_task_manager()->TryAbort(task_ids_[i]) !=
391         CancelableTaskManager::kTaskAborted) {
392       pending_unmapping_tasks_semaphore_.Wait();
393     }
394   }
395   pending_unmapping_tasks_ = 0;
396   active_unmapping_tasks_ = 0;
397 
398   if (FLAG_trace_unmapper) {
399     PrintIsolate(
400         heap_->isolate(),
401         "Unmapper::CancelAndWaitForPendingTasks: no tasks remaining\n");
402   }
403 }
404 
PrepareForMarkCompact()405 void MemoryAllocator::Unmapper::PrepareForMarkCompact() {
406   CancelAndWaitForPendingTasks();
407   // Free non-regular chunks because they cannot be re-used.
408   PerformFreeMemoryOnQueuedNonRegularChunks();
409 }
410 
EnsureUnmappingCompleted()411 void MemoryAllocator::Unmapper::EnsureUnmappingCompleted() {
412   CancelAndWaitForPendingTasks();
413   PerformFreeMemoryOnQueuedChunks<FreeMode::kReleasePooled>();
414 }
415 
MakeRoomForNewTasks()416 bool MemoryAllocator::Unmapper::MakeRoomForNewTasks() {
417   DCHECK_LE(pending_unmapping_tasks_, kMaxUnmapperTasks);
418 
419   if (active_unmapping_tasks_ == 0 && pending_unmapping_tasks_ > 0) {
420     // All previous unmapping tasks have been run to completion.
421     // Finalize those tasks to make room for new ones.
422     CancelAndWaitForPendingTasks();
423   }
424   return pending_unmapping_tasks_ != kMaxUnmapperTasks;
425 }
426 
PerformFreeMemoryOnQueuedNonRegularChunks()427 void MemoryAllocator::Unmapper::PerformFreeMemoryOnQueuedNonRegularChunks() {
428   MemoryChunk* chunk = nullptr;
429   while ((chunk = GetMemoryChunkSafe<kNonRegular>()) != nullptr) {
430     allocator_->PerformFreeMemory(chunk);
431   }
432 }
433 
434 template <MemoryAllocator::Unmapper::FreeMode mode>
PerformFreeMemoryOnQueuedChunks()435 void MemoryAllocator::Unmapper::PerformFreeMemoryOnQueuedChunks() {
436   MemoryChunk* chunk = nullptr;
437   if (FLAG_trace_unmapper) {
438     PrintIsolate(
439         heap_->isolate(),
440         "Unmapper::PerformFreeMemoryOnQueuedChunks: %d queued chunks\n",
441         NumberOfChunks());
442   }
443   // Regular chunks.
444   while ((chunk = GetMemoryChunkSafe<kRegular>()) != nullptr) {
445     bool pooled = chunk->IsFlagSet(MemoryChunk::POOLED);
446     allocator_->PerformFreeMemory(chunk);
447     if (pooled) AddMemoryChunkSafe<kPooled>(chunk);
448   }
449   if (mode == MemoryAllocator::Unmapper::FreeMode::kReleasePooled) {
450     // The previous loop uncommitted any pages marked as pooled and added them
451     // to the pooled list. In case of kReleasePooled we need to free them
452     // though.
453     while ((chunk = GetMemoryChunkSafe<kPooled>()) != nullptr) {
454       allocator_->Free<MemoryAllocator::kAlreadyPooled>(chunk);
455     }
456   }
457   PerformFreeMemoryOnQueuedNonRegularChunks();
458 }
459 
TearDown()460 void MemoryAllocator::Unmapper::TearDown() {
461   CHECK_EQ(0, pending_unmapping_tasks_);
462   PerformFreeMemoryOnQueuedChunks<FreeMode::kReleasePooled>();
463   for (int i = 0; i < kNumberOfChunkQueues; i++) {
464     DCHECK(chunks_[i].empty());
465   }
466 }
467 
NumberOfChunks()468 int MemoryAllocator::Unmapper::NumberOfChunks() {
469   base::LockGuard<base::Mutex> guard(&mutex_);
470   size_t result = 0;
471   for (int i = 0; i < kNumberOfChunkQueues; i++) {
472     result += chunks_[i].size();
473   }
474   return static_cast<int>(result);
475 }
476 
CommittedBufferedMemory()477 size_t MemoryAllocator::Unmapper::CommittedBufferedMemory() {
478   base::LockGuard<base::Mutex> guard(&mutex_);
479 
480   size_t sum = 0;
481   // kPooled chunks are already uncommited. We only have to account for
482   // kRegular and kNonRegular chunks.
483   for (auto& chunk : chunks_[kRegular]) {
484     sum += chunk->size();
485   }
486   for (auto& chunk : chunks_[kNonRegular]) {
487     sum += chunk->size();
488   }
489   return sum;
490 }
491 
CommitMemory(Address base,size_t size)492 bool MemoryAllocator::CommitMemory(Address base, size_t size) {
493   if (!SetPermissions(base, size, PageAllocator::kReadWrite)) {
494     return false;
495   }
496   UpdateAllocatedSpaceLimits(base, base + size);
497   return true;
498 }
499 
FreeMemory(VirtualMemory * reservation,Executability executable)500 void MemoryAllocator::FreeMemory(VirtualMemory* reservation,
501                                  Executability executable) {
502   // TODO(gc) make code_range part of memory allocator?
503   // Code which is part of the code-range does not have its own VirtualMemory.
504   DCHECK(code_range() == nullptr ||
505          !code_range()->contains(reservation->address()));
506   DCHECK(executable == NOT_EXECUTABLE || !code_range()->valid() ||
507          reservation->size() <= Page::kPageSize);
508 
509   reservation->Free();
510 }
511 
512 
FreeMemory(Address base,size_t size,Executability executable)513 void MemoryAllocator::FreeMemory(Address base, size_t size,
514                                  Executability executable) {
515   // TODO(gc) make code_range part of memory allocator?
516   if (code_range() != nullptr && code_range()->contains(base)) {
517     DCHECK(executable == EXECUTABLE);
518     code_range()->FreeRawMemory(base, size);
519   } else {
520     DCHECK(executable == NOT_EXECUTABLE || !code_range()->valid());
521     CHECK(FreePages(reinterpret_cast<void*>(base), size));
522   }
523 }
524 
ReserveAlignedMemory(size_t size,size_t alignment,void * hint,VirtualMemory * controller)525 Address MemoryAllocator::ReserveAlignedMemory(size_t size, size_t alignment,
526                                               void* hint,
527                                               VirtualMemory* controller) {
528   VirtualMemory reservation;
529   if (!AlignedAllocVirtualMemory(size, alignment, hint, &reservation)) {
530     return kNullAddress;
531   }
532 
533   Address result = reservation.address();
534   size_ += reservation.size();
535   controller->TakeControl(&reservation);
536   return result;
537 }
538 
AllocateAlignedMemory(size_t reserve_size,size_t commit_size,size_t alignment,Executability executable,void * hint,VirtualMemory * controller)539 Address MemoryAllocator::AllocateAlignedMemory(
540     size_t reserve_size, size_t commit_size, size_t alignment,
541     Executability executable, void* hint, VirtualMemory* controller) {
542   DCHECK(commit_size <= reserve_size);
543   VirtualMemory reservation;
544   Address base =
545       ReserveAlignedMemory(reserve_size, alignment, hint, &reservation);
546   if (base == kNullAddress) return kNullAddress;
547 
548   if (executable == EXECUTABLE) {
549     if (!CommitExecutableMemory(&reservation, base, commit_size,
550                                 reserve_size)) {
551       base = kNullAddress;
552     }
553   } else {
554     if (reservation.SetPermissions(base, commit_size,
555                                    PageAllocator::kReadWrite)) {
556       UpdateAllocatedSpaceLimits(base, base + commit_size);
557     } else {
558       base = kNullAddress;
559     }
560   }
561 
562   if (base == kNullAddress) {
563     // Failed to commit the body. Free the mapping and any partially committed
564     // regions inside it.
565     reservation.Free();
566     size_ -= reserve_size;
567     return kNullAddress;
568   }
569 
570   controller->TakeControl(&reservation);
571   return base;
572 }
573 
synchronized_heap()574 Heap* MemoryChunk::synchronized_heap() {
575   return reinterpret_cast<Heap*>(
576       base::Acquire_Load(reinterpret_cast<base::AtomicWord*>(&heap_)));
577 }
578 
InitializationMemoryFence()579 void MemoryChunk::InitializationMemoryFence() {
580   base::SeqCst_MemoryFence();
581 #ifdef THREAD_SANITIZER
582   // Since TSAN does not process memory fences, we use the following annotation
583   // to tell TSAN that there is no data race when emitting a
584   // InitializationMemoryFence. Note that the other thread still needs to
585   // perform MemoryChunk::synchronized_heap().
586   base::Release_Store(reinterpret_cast<base::AtomicWord*>(&heap_),
587                       reinterpret_cast<base::AtomicWord>(heap_));
588 #endif
589 }
590 
SetReadAndExecutable()591 void MemoryChunk::SetReadAndExecutable() {
592   DCHECK(IsFlagSet(MemoryChunk::IS_EXECUTABLE));
593   DCHECK(owner()->identity() == CODE_SPACE || owner()->identity() == LO_SPACE);
594   // Decrementing the write_unprotect_counter_ and changing the page
595   // protection mode has to be atomic.
596   base::LockGuard<base::Mutex> guard(page_protection_change_mutex_);
597   if (write_unprotect_counter_ == 0) {
598     // This is a corner case that may happen when we have a
599     // CodeSpaceMemoryModificationScope open and this page was newly
600     // added.
601     return;
602   }
603   write_unprotect_counter_--;
604   DCHECK_LT(write_unprotect_counter_, kMaxWriteUnprotectCounter);
605   if (write_unprotect_counter_ == 0) {
606     Address protect_start =
607         address() + MemoryAllocator::CodePageAreaStartOffset();
608     size_t page_size = MemoryAllocator::GetCommitPageSize();
609     DCHECK(IsAddressAligned(protect_start, page_size));
610     size_t protect_size = RoundUp(area_size(), page_size);
611     CHECK(SetPermissions(protect_start, protect_size,
612                          PageAllocator::kReadExecute));
613   }
614 }
615 
SetReadAndWritable()616 void MemoryChunk::SetReadAndWritable() {
617   DCHECK(IsFlagSet(MemoryChunk::IS_EXECUTABLE));
618   DCHECK(owner()->identity() == CODE_SPACE || owner()->identity() == LO_SPACE);
619   // Incrementing the write_unprotect_counter_ and changing the page
620   // protection mode has to be atomic.
621   base::LockGuard<base::Mutex> guard(page_protection_change_mutex_);
622   write_unprotect_counter_++;
623   DCHECK_LE(write_unprotect_counter_, kMaxWriteUnprotectCounter);
624   if (write_unprotect_counter_ == 1) {
625     Address unprotect_start =
626         address() + MemoryAllocator::CodePageAreaStartOffset();
627     size_t page_size = MemoryAllocator::GetCommitPageSize();
628     DCHECK(IsAddressAligned(unprotect_start, page_size));
629     size_t unprotect_size = RoundUp(area_size(), page_size);
630     CHECK(SetPermissions(unprotect_start, unprotect_size,
631                          PageAllocator::kReadWrite));
632   }
633 }
634 
Initialize(Heap * heap,Address base,size_t size,Address area_start,Address area_end,Executability executable,Space * owner,VirtualMemory * reservation)635 MemoryChunk* MemoryChunk::Initialize(Heap* heap, Address base, size_t size,
636                                      Address area_start, Address area_end,
637                                      Executability executable, Space* owner,
638                                      VirtualMemory* reservation) {
639   MemoryChunk* chunk = FromAddress(base);
640 
641   DCHECK(base == chunk->address());
642 
643   chunk->heap_ = heap;
644   chunk->size_ = size;
645   chunk->area_start_ = area_start;
646   chunk->area_end_ = area_end;
647   chunk->flags_ = Flags(NO_FLAGS);
648   chunk->set_owner(owner);
649   chunk->InitializeReservedMemory();
650   base::AsAtomicPointer::Release_Store(&chunk->slot_set_[OLD_TO_NEW], nullptr);
651   base::AsAtomicPointer::Release_Store(&chunk->slot_set_[OLD_TO_OLD], nullptr);
652   base::AsAtomicPointer::Release_Store(&chunk->typed_slot_set_[OLD_TO_NEW],
653                                        nullptr);
654   base::AsAtomicPointer::Release_Store(&chunk->typed_slot_set_[OLD_TO_OLD],
655                                        nullptr);
656   chunk->invalidated_slots_ = nullptr;
657   chunk->skip_list_ = nullptr;
658   chunk->progress_bar_ = 0;
659   chunk->high_water_mark_ = static_cast<intptr_t>(area_start - base);
660   chunk->set_concurrent_sweeping_state(kSweepingDone);
661   chunk->page_protection_change_mutex_ = new base::Mutex();
662   chunk->write_unprotect_counter_ = 0;
663   chunk->mutex_ = new base::Mutex();
664   chunk->allocated_bytes_ = chunk->area_size();
665   chunk->wasted_memory_ = 0;
666   chunk->young_generation_bitmap_ = nullptr;
667   chunk->local_tracker_ = nullptr;
668 
669   chunk->external_backing_store_bytes_[ExternalBackingStoreType::kArrayBuffer] =
670       0;
671   chunk->external_backing_store_bytes_
672       [ExternalBackingStoreType::kExternalString] = 0;
673 
674   for (int i = kFirstCategory; i < kNumberOfCategories; i++) {
675     chunk->categories_[i] = nullptr;
676   }
677 
678   if (owner->identity() == RO_SPACE) {
679     heap->incremental_marking()
680         ->non_atomic_marking_state()
681         ->bitmap(chunk)
682         ->MarkAllBits();
683   } else {
684     heap->incremental_marking()->non_atomic_marking_state()->ClearLiveness(
685         chunk);
686   }
687 
688   DCHECK_EQ(kFlagsOffset, OFFSET_OF(MemoryChunk, flags_));
689 
690   if (executable == EXECUTABLE) {
691     chunk->SetFlag(IS_EXECUTABLE);
692     if (heap->write_protect_code_memory()) {
693       chunk->write_unprotect_counter_ =
694           heap->code_space_memory_modification_scope_depth();
695     } else {
696       size_t page_size = MemoryAllocator::GetCommitPageSize();
697       DCHECK(IsAddressAligned(area_start, page_size));
698       size_t area_size = RoundUp(area_end - area_start, page_size);
699       CHECK(SetPermissions(area_start, area_size,
700                            PageAllocator::kReadWriteExecute));
701     }
702   }
703 
704   if (reservation != nullptr) {
705     chunk->reservation_.TakeControl(reservation);
706   }
707 
708   return chunk;
709 }
710 
InitializePage(MemoryChunk * chunk,Executability executable)711 Page* PagedSpace::InitializePage(MemoryChunk* chunk, Executability executable) {
712   Page* page = static_cast<Page*>(chunk);
713   DCHECK_GE(Page::kAllocatableMemory, page->area_size());
714   // Make sure that categories are initialized before freeing the area.
715   page->ResetAllocatedBytes();
716   page->SetOldGenerationPageFlags(heap()->incremental_marking()->IsMarking());
717   page->AllocateFreeListCategories();
718   page->InitializeFreeListCategories();
719   page->list_node().Initialize();
720   page->InitializationMemoryFence();
721   return page;
722 }
723 
InitializePage(MemoryChunk * chunk,Executability executable)724 Page* SemiSpace::InitializePage(MemoryChunk* chunk, Executability executable) {
725   DCHECK_EQ(executable, Executability::NOT_EXECUTABLE);
726   bool in_to_space = (id() != kFromSpace);
727   chunk->SetFlag(in_to_space ? MemoryChunk::IN_TO_SPACE
728                              : MemoryChunk::IN_FROM_SPACE);
729   DCHECK(!chunk->IsFlagSet(in_to_space ? MemoryChunk::IN_FROM_SPACE
730                                        : MemoryChunk::IN_TO_SPACE));
731   Page* page = static_cast<Page*>(chunk);
732   page->SetYoungGenerationPageFlags(heap()->incremental_marking()->IsMarking());
733   page->AllocateLocalTracker();
734   page->list_node().Initialize();
735 #ifdef ENABLE_MINOR_MC
736   if (FLAG_minor_mc) {
737     page->AllocateYoungGenerationBitmap();
738     heap()
739         ->minor_mark_compact_collector()
740         ->non_atomic_marking_state()
741         ->ClearLiveness(page);
742   }
743 #endif  // ENABLE_MINOR_MC
744   page->InitializationMemoryFence();
745   return page;
746 }
747 
Initialize(Heap * heap,MemoryChunk * chunk,Executability executable)748 LargePage* LargePage::Initialize(Heap* heap, MemoryChunk* chunk,
749                                  Executability executable) {
750   if (executable && chunk->size() > LargePage::kMaxCodePageSize) {
751     STATIC_ASSERT(LargePage::kMaxCodePageSize <= TypedSlotSet::kMaxOffset);
752     FATAL("Code page is too large.");
753   }
754 
755   MSAN_ALLOCATED_UNINITIALIZED_MEMORY(chunk->area_start(), chunk->area_size());
756 
757   LargePage* page = static_cast<LargePage*>(chunk);
758   page->list_node().Initialize();
759   return page;
760 }
761 
AllocateFreeListCategories()762 void Page::AllocateFreeListCategories() {
763   for (int i = kFirstCategory; i < kNumberOfCategories; i++) {
764     categories_[i] = new FreeListCategory(
765         reinterpret_cast<PagedSpace*>(owner())->free_list(), this);
766   }
767 }
768 
InitializeFreeListCategories()769 void Page::InitializeFreeListCategories() {
770   for (int i = kFirstCategory; i < kNumberOfCategories; i++) {
771     categories_[i]->Initialize(static_cast<FreeListCategoryType>(i));
772   }
773 }
774 
ReleaseFreeListCategories()775 void Page::ReleaseFreeListCategories() {
776   for (int i = kFirstCategory; i < kNumberOfCategories; i++) {
777     if (categories_[i] != nullptr) {
778       delete categories_[i];
779       categories_[i] = nullptr;
780     }
781   }
782 }
783 
ConvertNewToOld(Page * old_page)784 Page* Page::ConvertNewToOld(Page* old_page) {
785   DCHECK(old_page);
786   DCHECK(old_page->InNewSpace());
787   OldSpace* old_space = old_page->heap()->old_space();
788   old_page->set_owner(old_space);
789   old_page->SetFlags(0, static_cast<uintptr_t>(~0));
790   Page* new_page = old_space->InitializePage(old_page, NOT_EXECUTABLE);
791   old_space->AddPage(new_page);
792   return new_page;
793 }
794 
CommittedPhysicalMemory()795 size_t MemoryChunk::CommittedPhysicalMemory() {
796   if (!base::OS::HasLazyCommits() || owner()->identity() == LO_SPACE)
797     return size();
798   return high_water_mark_;
799 }
800 
IsPagedSpace() const801 bool MemoryChunk::IsPagedSpace() const {
802   return owner()->identity() != LO_SPACE;
803 }
804 
InOldSpace() const805 bool MemoryChunk::InOldSpace() const {
806   return owner()->identity() == OLD_SPACE;
807 }
808 
InLargeObjectSpace() const809 bool MemoryChunk::InLargeObjectSpace() const {
810   return owner()->identity() == LO_SPACE;
811 }
812 
AllocateChunk(size_t reserve_area_size,size_t commit_area_size,Executability executable,Space * owner)813 MemoryChunk* MemoryAllocator::AllocateChunk(size_t reserve_area_size,
814                                             size_t commit_area_size,
815                                             Executability executable,
816                                             Space* owner) {
817   DCHECK_LE(commit_area_size, reserve_area_size);
818 
819   size_t chunk_size;
820   Heap* heap = isolate_->heap();
821   Address base = kNullAddress;
822   VirtualMemory reservation;
823   Address area_start = kNullAddress;
824   Address area_end = kNullAddress;
825   void* address_hint =
826       AlignedAddress(heap->GetRandomMmapAddr(), MemoryChunk::kAlignment);
827 
828   //
829   // MemoryChunk layout:
830   //
831   //             Executable
832   // +----------------------------+<- base aligned with MemoryChunk::kAlignment
833   // |           Header           |
834   // +----------------------------+<- base + CodePageGuardStartOffset
835   // |           Guard            |
836   // +----------------------------+<- area_start_
837   // |           Area             |
838   // +----------------------------+<- area_end_ (area_start + commit_area_size)
839   // |   Committed but not used   |
840   // +----------------------------+<- aligned at OS page boundary
841   // | Reserved but not committed |
842   // +----------------------------+<- aligned at OS page boundary
843   // |           Guard            |
844   // +----------------------------+<- base + chunk_size
845   //
846   //           Non-executable
847   // +----------------------------+<- base aligned with MemoryChunk::kAlignment
848   // |          Header            |
849   // +----------------------------+<- area_start_ (base + kObjectStartOffset)
850   // |           Area             |
851   // +----------------------------+<- area_end_ (area_start + commit_area_size)
852   // |  Committed but not used    |
853   // +----------------------------+<- aligned at OS page boundary
854   // | Reserved but not committed |
855   // +----------------------------+<- base + chunk_size
856   //
857 
858   if (executable == EXECUTABLE) {
859     chunk_size = ::RoundUp(
860         CodePageAreaStartOffset() + reserve_area_size + CodePageGuardSize(),
861         GetCommitPageSize());
862 
863     // Size of header (not executable) plus area (executable).
864     size_t commit_size = ::RoundUp(
865         CodePageGuardStartOffset() + commit_area_size, GetCommitPageSize());
866 // Allocate executable memory either from code range or from the OS.
867 #ifdef V8_TARGET_ARCH_MIPS64
868     // Use code range only for large object space on mips64 to keep address
869     // range within 256-MB memory region.
870     if (code_range()->valid() && reserve_area_size > CodePageAreaSize()) {
871 #else
872     if (code_range()->valid()) {
873 #endif
874       base =
875           code_range()->AllocateRawMemory(chunk_size, commit_size, &chunk_size);
876       DCHECK(IsAligned(base, MemoryChunk::kAlignment));
877       if (base == kNullAddress) return nullptr;
878       size_ += chunk_size;
879       // Update executable memory size.
880       size_executable_ += chunk_size;
881     } else {
882       base = AllocateAlignedMemory(chunk_size, commit_size,
883                                    MemoryChunk::kAlignment, executable,
884                                    address_hint, &reservation);
885       if (base == kNullAddress) return nullptr;
886       // Update executable memory size.
887       size_executable_ += reservation.size();
888     }
889 
890     if (Heap::ShouldZapGarbage()) {
891       ZapBlock(base, CodePageGuardStartOffset(), kZapValue);
892       ZapBlock(base + CodePageAreaStartOffset(), commit_area_size, kZapValue);
893     }
894 
895     area_start = base + CodePageAreaStartOffset();
896     area_end = area_start + commit_area_size;
897   } else {
898     chunk_size = ::RoundUp(MemoryChunk::kObjectStartOffset + reserve_area_size,
899                            GetCommitPageSize());
900     size_t commit_size =
901         ::RoundUp(MemoryChunk::kObjectStartOffset + commit_area_size,
902                   GetCommitPageSize());
903     base =
904         AllocateAlignedMemory(chunk_size, commit_size, MemoryChunk::kAlignment,
905                               executable, address_hint, &reservation);
906 
907     if (base == kNullAddress) return nullptr;
908 
909     if (Heap::ShouldZapGarbage()) {
910       ZapBlock(base, Page::kObjectStartOffset + commit_area_size, kZapValue);
911     }
912 
913     area_start = base + Page::kObjectStartOffset;
914     area_end = area_start + commit_area_size;
915   }
916 
917   // Use chunk_size for statistics and callbacks because we assume that they
918   // treat reserved but not-yet committed memory regions of chunks as allocated.
919   isolate_->counters()->memory_allocated()->Increment(
920       static_cast<int>(chunk_size));
921 
922   LOG(isolate_,
923       NewEvent("MemoryChunk", reinterpret_cast<void*>(base), chunk_size));
924 
925   // We cannot use the last chunk in the address space because we would
926   // overflow when comparing top and limit if this chunk is used for a
927   // linear allocation area.
928   if ((base + chunk_size) == 0u) {
929     CHECK(!last_chunk_.IsReserved());
930     last_chunk_.TakeControl(&reservation);
931     UncommitBlock(last_chunk_.address(), last_chunk_.size());
932     size_ -= chunk_size;
933     if (executable == EXECUTABLE) {
934       size_executable_ -= chunk_size;
935     }
936     CHECK(last_chunk_.IsReserved());
937     return AllocateChunk(reserve_area_size, commit_area_size, executable,
938                          owner);
939   }
940 
941   MemoryChunk* chunk =
942       MemoryChunk::Initialize(heap, base, chunk_size, area_start, area_end,
943                               executable, owner, &reservation);
944 
945   if (chunk->executable()) RegisterExecutableMemoryChunk(chunk);
946   return chunk;
947 }
948 
949 void MemoryChunk::SetOldGenerationPageFlags(bool is_marking) {
950   if (is_marking) {
951     SetFlag(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING);
952     SetFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING);
953     SetFlag(MemoryChunk::INCREMENTAL_MARKING);
954   } else {
955     ClearFlag(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING);
956     SetFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING);
957     ClearFlag(MemoryChunk::INCREMENTAL_MARKING);
958   }
959 }
960 
961 void MemoryChunk::SetYoungGenerationPageFlags(bool is_marking) {
962   SetFlag(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING);
963   if (is_marking) {
964     SetFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING);
965     SetFlag(MemoryChunk::INCREMENTAL_MARKING);
966   } else {
967     ClearFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING);
968     ClearFlag(MemoryChunk::INCREMENTAL_MARKING);
969   }
970 }
971 
972 void Page::ResetAllocatedBytes() { allocated_bytes_ = area_size(); }
973 
974 void Page::AllocateLocalTracker() {
975   DCHECK_NULL(local_tracker_);
976   local_tracker_ = new LocalArrayBufferTracker(this);
977 }
978 
979 bool Page::contains_array_buffers() {
980   return local_tracker_ != nullptr && !local_tracker_->IsEmpty();
981 }
982 
983 void Page::ResetFreeListStatistics() {
984   wasted_memory_ = 0;
985 }
986 
987 size_t Page::AvailableInFreeList() {
988   size_t sum = 0;
989   ForAllFreeListCategories([&sum](FreeListCategory* category) {
990     sum += category->available();
991   });
992   return sum;
993 }
994 
995 #ifdef DEBUG
996 namespace {
997 // Skips filler starting from the given filler until the end address.
998 // Returns the first address after the skipped fillers.
999 Address SkipFillers(HeapObject* filler, Address end) {
1000   Address addr = filler->address();
1001   while (addr < end) {
1002     filler = HeapObject::FromAddress(addr);
1003     CHECK(filler->IsFiller());
1004     addr = filler->address() + filler->Size();
1005   }
1006   return addr;
1007 }
1008 }  // anonymous namespace
1009 #endif  // DEBUG
1010 
1011 size_t Page::ShrinkToHighWaterMark() {
1012   // Shrinking only makes sense outside of the CodeRange, where we don't care
1013   // about address space fragmentation.
1014   VirtualMemory* reservation = reserved_memory();
1015   if (!reservation->IsReserved()) return 0;
1016 
1017   // Shrink pages to high water mark. The water mark points either to a filler
1018   // or the area_end.
1019   HeapObject* filler = HeapObject::FromAddress(HighWaterMark());
1020   if (filler->address() == area_end()) return 0;
1021   CHECK(filler->IsFiller());
1022   // Ensure that no objects were allocated in [filler, area_end) region.
1023   DCHECK_EQ(area_end(), SkipFillers(filler, area_end()));
1024   // Ensure that no objects will be allocated on this page.
1025   DCHECK_EQ(0u, AvailableInFreeList());
1026 
1027   size_t unused = RoundDown(static_cast<size_t>(area_end() - filler->address()),
1028                             MemoryAllocator::GetCommitPageSize());
1029   if (unused > 0) {
1030     DCHECK_EQ(0u, unused % MemoryAllocator::GetCommitPageSize());
1031     if (FLAG_trace_gc_verbose) {
1032       PrintIsolate(heap()->isolate(), "Shrinking page %p: end %p -> %p\n",
1033                    reinterpret_cast<void*>(this),
1034                    reinterpret_cast<void*>(area_end()),
1035                    reinterpret_cast<void*>(area_end() - unused));
1036     }
1037     heap()->CreateFillerObjectAt(
1038         filler->address(),
1039         static_cast<int>(area_end() - filler->address() - unused),
1040         ClearRecordedSlots::kNo);
1041     heap()->memory_allocator()->PartialFreeMemory(
1042         this, address() + size() - unused, unused, area_end() - unused);
1043     if (filler->address() != area_end()) {
1044       CHECK(filler->IsFiller());
1045       CHECK_EQ(filler->address() + filler->Size(), area_end());
1046     }
1047   }
1048   return unused;
1049 }
1050 
1051 void Page::CreateBlackArea(Address start, Address end) {
1052   DCHECK(heap()->incremental_marking()->black_allocation());
1053   DCHECK_EQ(Page::FromAddress(start), this);
1054   DCHECK_NE(start, end);
1055   DCHECK_EQ(Page::FromAddress(end - 1), this);
1056   IncrementalMarking::MarkingState* marking_state =
1057       heap()->incremental_marking()->marking_state();
1058   marking_state->bitmap(this)->SetRange(AddressToMarkbitIndex(start),
1059                                         AddressToMarkbitIndex(end));
1060   marking_state->IncrementLiveBytes(this, static_cast<intptr_t>(end - start));
1061 }
1062 
1063 void Page::DestroyBlackArea(Address start, Address end) {
1064   DCHECK(heap()->incremental_marking()->black_allocation());
1065   DCHECK_EQ(Page::FromAddress(start), this);
1066   DCHECK_NE(start, end);
1067   DCHECK_EQ(Page::FromAddress(end - 1), this);
1068   IncrementalMarking::MarkingState* marking_state =
1069       heap()->incremental_marking()->marking_state();
1070   marking_state->bitmap(this)->ClearRange(AddressToMarkbitIndex(start),
1071                                           AddressToMarkbitIndex(end));
1072   marking_state->IncrementLiveBytes(this, -static_cast<intptr_t>(end - start));
1073 }
1074 
1075 void MemoryAllocator::PartialFreeMemory(MemoryChunk* chunk, Address start_free,
1076                                         size_t bytes_to_free,
1077                                         Address new_area_end) {
1078   VirtualMemory* reservation = chunk->reserved_memory();
1079   DCHECK(reservation->IsReserved());
1080   chunk->size_ -= bytes_to_free;
1081   chunk->area_end_ = new_area_end;
1082   if (chunk->IsFlagSet(MemoryChunk::IS_EXECUTABLE)) {
1083     // Add guard page at the end.
1084     size_t page_size = GetCommitPageSize();
1085     DCHECK_EQ(0, chunk->area_end_ % static_cast<Address>(page_size));
1086     DCHECK_EQ(chunk->address() + chunk->size(),
1087               chunk->area_end() + CodePageGuardSize());
1088     reservation->SetPermissions(chunk->area_end_, page_size,
1089                                 PageAllocator::kNoAccess);
1090   }
1091   // On e.g. Windows, a reservation may be larger than a page and releasing
1092   // partially starting at |start_free| will also release the potentially
1093   // unused part behind the current page.
1094   const size_t released_bytes = reservation->Release(start_free);
1095   DCHECK_GE(size_, released_bytes);
1096   size_ -= released_bytes;
1097   isolate_->counters()->memory_allocated()->Decrement(
1098       static_cast<int>(released_bytes));
1099 }
1100 
1101 void MemoryAllocator::PreFreeMemory(MemoryChunk* chunk) {
1102   DCHECK(!chunk->IsFlagSet(MemoryChunk::PRE_FREED));
1103   LOG(isolate_, DeleteEvent("MemoryChunk", chunk));
1104 
1105   isolate_->heap()->RememberUnmappedPage(reinterpret_cast<Address>(chunk),
1106                                          chunk->IsEvacuationCandidate());
1107 
1108   VirtualMemory* reservation = chunk->reserved_memory();
1109   const size_t size =
1110       reservation->IsReserved() ? reservation->size() : chunk->size();
1111   DCHECK_GE(size_, static_cast<size_t>(size));
1112   size_ -= size;
1113   isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
1114   if (chunk->executable() == EXECUTABLE) {
1115     DCHECK_GE(size_executable_, size);
1116     size_executable_ -= size;
1117   }
1118 
1119   chunk->SetFlag(MemoryChunk::PRE_FREED);
1120 
1121   if (chunk->executable()) UnregisterExecutableMemoryChunk(chunk);
1122 }
1123 
1124 
1125 void MemoryAllocator::PerformFreeMemory(MemoryChunk* chunk) {
1126   DCHECK(chunk->IsFlagSet(MemoryChunk::PRE_FREED));
1127   chunk->ReleaseAllocatedMemory();
1128 
1129   VirtualMemory* reservation = chunk->reserved_memory();
1130   if (chunk->IsFlagSet(MemoryChunk::POOLED)) {
1131     UncommitBlock(reinterpret_cast<Address>(chunk), MemoryChunk::kPageSize);
1132   } else {
1133     if (reservation->IsReserved()) {
1134       FreeMemory(reservation, chunk->executable());
1135     } else {
1136       FreeMemory(chunk->address(), chunk->size(), chunk->executable());
1137     }
1138   }
1139 }
1140 
1141 template <MemoryAllocator::FreeMode mode>
1142 void MemoryAllocator::Free(MemoryChunk* chunk) {
1143   switch (mode) {
1144     case kFull:
1145       PreFreeMemory(chunk);
1146       PerformFreeMemory(chunk);
1147       break;
1148     case kAlreadyPooled:
1149       // Pooled pages cannot be touched anymore as their memory is uncommitted.
1150       FreeMemory(chunk->address(), static_cast<size_t>(MemoryChunk::kPageSize),
1151                  Executability::NOT_EXECUTABLE);
1152       break;
1153     case kPooledAndQueue:
1154       DCHECK_EQ(chunk->size(), static_cast<size_t>(MemoryChunk::kPageSize));
1155       DCHECK_EQ(chunk->executable(), NOT_EXECUTABLE);
1156       chunk->SetFlag(MemoryChunk::POOLED);
1157       V8_FALLTHROUGH;
1158     case kPreFreeAndQueue:
1159       PreFreeMemory(chunk);
1160       // The chunks added to this queue will be freed by a concurrent thread.
1161       unmapper()->AddMemoryChunkSafe(chunk);
1162       break;
1163   }
1164 }
1165 
1166 template void MemoryAllocator::Free<MemoryAllocator::kFull>(MemoryChunk* chunk);
1167 
1168 template void MemoryAllocator::Free<MemoryAllocator::kAlreadyPooled>(
1169     MemoryChunk* chunk);
1170 
1171 template void MemoryAllocator::Free<MemoryAllocator::kPreFreeAndQueue>(
1172     MemoryChunk* chunk);
1173 
1174 template void MemoryAllocator::Free<MemoryAllocator::kPooledAndQueue>(
1175     MemoryChunk* chunk);
1176 
1177 template <MemoryAllocator::AllocationMode alloc_mode, typename SpaceType>
1178 Page* MemoryAllocator::AllocatePage(size_t size, SpaceType* owner,
1179                                     Executability executable) {
1180   MemoryChunk* chunk = nullptr;
1181   if (alloc_mode == kPooled) {
1182     DCHECK_EQ(size, static_cast<size_t>(MemoryChunk::kAllocatableMemory));
1183     DCHECK_EQ(executable, NOT_EXECUTABLE);
1184     chunk = AllocatePagePooled(owner);
1185   }
1186   if (chunk == nullptr) {
1187     chunk = AllocateChunk(size, size, executable, owner);
1188   }
1189   if (chunk == nullptr) return nullptr;
1190   return owner->InitializePage(chunk, executable);
1191 }
1192 
1193 template Page*
1194 MemoryAllocator::AllocatePage<MemoryAllocator::kRegular, PagedSpace>(
1195     size_t size, PagedSpace* owner, Executability executable);
1196 template Page*
1197 MemoryAllocator::AllocatePage<MemoryAllocator::kRegular, SemiSpace>(
1198     size_t size, SemiSpace* owner, Executability executable);
1199 template Page*
1200 MemoryAllocator::AllocatePage<MemoryAllocator::kPooled, SemiSpace>(
1201     size_t size, SemiSpace* owner, Executability executable);
1202 
1203 LargePage* MemoryAllocator::AllocateLargePage(size_t size,
1204                                               LargeObjectSpace* owner,
1205                                               Executability executable) {
1206   MemoryChunk* chunk = AllocateChunk(size, size, executable, owner);
1207   if (chunk == nullptr) return nullptr;
1208   return LargePage::Initialize(isolate_->heap(), chunk, executable);
1209 }
1210 
1211 template <typename SpaceType>
1212 MemoryChunk* MemoryAllocator::AllocatePagePooled(SpaceType* owner) {
1213   MemoryChunk* chunk = unmapper()->TryGetPooledMemoryChunkSafe();
1214   if (chunk == nullptr) return nullptr;
1215   const int size = MemoryChunk::kPageSize;
1216   const Address start = reinterpret_cast<Address>(chunk);
1217   const Address area_start = start + MemoryChunk::kObjectStartOffset;
1218   const Address area_end = start + size;
1219   if (!CommitBlock(start, size)) {
1220     return nullptr;
1221   }
1222   VirtualMemory reservation(start, size);
1223   MemoryChunk::Initialize(isolate_->heap(), start, size, area_start, area_end,
1224                           NOT_EXECUTABLE, owner, &reservation);
1225   size_ += size;
1226   return chunk;
1227 }
1228 
1229 bool MemoryAllocator::CommitBlock(Address start, size_t size) {
1230   if (!CommitMemory(start, size)) return false;
1231 
1232   if (Heap::ShouldZapGarbage()) {
1233     ZapBlock(start, size, kZapValue);
1234   }
1235 
1236   isolate_->counters()->memory_allocated()->Increment(static_cast<int>(size));
1237   return true;
1238 }
1239 
1240 
1241 bool MemoryAllocator::UncommitBlock(Address start, size_t size) {
1242   if (!SetPermissions(start, size, PageAllocator::kNoAccess)) return false;
1243   isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
1244   return true;
1245 }
1246 
1247 void MemoryAllocator::ZapBlock(Address start, size_t size,
1248                                uintptr_t zap_value) {
1249   DCHECK_EQ(start % kPointerSize, 0);
1250   DCHECK_EQ(size % kPointerSize, 0);
1251   for (size_t s = 0; s + kPointerSize <= size; s += kPointerSize) {
1252     Memory<Address>(start + s) = static_cast<Address>(zap_value);
1253   }
1254 }
1255 
1256 size_t MemoryAllocator::CodePageGuardStartOffset() {
1257   // We are guarding code pages: the first OS page after the header
1258   // will be protected as non-writable.
1259   return ::RoundUp(Page::kObjectStartOffset, GetCommitPageSize());
1260 }
1261 
1262 size_t MemoryAllocator::CodePageGuardSize() { return GetCommitPageSize(); }
1263 
1264 size_t MemoryAllocator::CodePageAreaStartOffset() {
1265   // We are guarding code pages: the first OS page after the header
1266   // will be protected as non-writable.
1267   return CodePageGuardStartOffset() + CodePageGuardSize();
1268 }
1269 
1270 size_t MemoryAllocator::CodePageAreaEndOffset() {
1271   // We are guarding code pages: the last OS page will be protected as
1272   // non-writable.
1273   return Page::kPageSize - static_cast<int>(GetCommitPageSize());
1274 }
1275 
1276 intptr_t MemoryAllocator::GetCommitPageSize() {
1277   if (FLAG_v8_os_page_size != 0) {
1278     DCHECK(base::bits::IsPowerOfTwo(FLAG_v8_os_page_size));
1279     return FLAG_v8_os_page_size * KB;
1280   } else {
1281     return CommitPageSize();
1282   }
1283 }
1284 
1285 bool MemoryAllocator::CommitExecutableMemory(VirtualMemory* vm, Address start,
1286                                              size_t commit_size,
1287                                              size_t reserved_size) {
1288   const size_t page_size = GetCommitPageSize();
1289   // All addresses and sizes must be aligned to the commit page size.
1290   DCHECK(IsAddressAligned(start, page_size));
1291   DCHECK_EQ(0, commit_size % page_size);
1292   DCHECK_EQ(0, reserved_size % page_size);
1293   const size_t guard_size = CodePageGuardSize();
1294   const size_t pre_guard_offset = CodePageGuardStartOffset();
1295   const size_t code_area_offset = CodePageAreaStartOffset();
1296   // reserved_size includes two guard regions, commit_size does not.
1297   DCHECK_LE(commit_size, reserved_size - 2 * guard_size);
1298   const Address pre_guard_page = start + pre_guard_offset;
1299   const Address code_area = start + code_area_offset;
1300   const Address post_guard_page = start + reserved_size - guard_size;
1301   // Commit the non-executable header, from start to pre-code guard page.
1302   if (vm->SetPermissions(start, pre_guard_offset, PageAllocator::kReadWrite)) {
1303     // Create the pre-code guard page, following the header.
1304     if (vm->SetPermissions(pre_guard_page, page_size,
1305                            PageAllocator::kNoAccess)) {
1306       // Commit the executable code body.
1307       if (vm->SetPermissions(code_area, commit_size - pre_guard_offset,
1308                              PageAllocator::kReadWrite)) {
1309         // Create the post-code guard page.
1310         if (vm->SetPermissions(post_guard_page, page_size,
1311                                PageAllocator::kNoAccess)) {
1312           UpdateAllocatedSpaceLimits(start, code_area + commit_size);
1313           return true;
1314         }
1315         vm->SetPermissions(code_area, commit_size, PageAllocator::kNoAccess);
1316       }
1317     }
1318     vm->SetPermissions(start, pre_guard_offset, PageAllocator::kNoAccess);
1319   }
1320   return false;
1321 }
1322 
1323 
1324 // -----------------------------------------------------------------------------
1325 // MemoryChunk implementation
1326 
1327 void MemoryChunk::ReleaseAllocatedMemory() {
1328   if (skip_list_ != nullptr) {
1329     delete skip_list_;
1330     skip_list_ = nullptr;
1331   }
1332   if (mutex_ != nullptr) {
1333     delete mutex_;
1334     mutex_ = nullptr;
1335   }
1336   if (page_protection_change_mutex_ != nullptr) {
1337     delete page_protection_change_mutex_;
1338     page_protection_change_mutex_ = nullptr;
1339   }
1340   ReleaseSlotSet<OLD_TO_NEW>();
1341   ReleaseSlotSet<OLD_TO_OLD>();
1342   ReleaseTypedSlotSet<OLD_TO_NEW>();
1343   ReleaseTypedSlotSet<OLD_TO_OLD>();
1344   ReleaseInvalidatedSlots();
1345   if (local_tracker_ != nullptr) ReleaseLocalTracker();
1346   if (young_generation_bitmap_ != nullptr) ReleaseYoungGenerationBitmap();
1347 
1348   if (IsPagedSpace()) {
1349     Page* page = static_cast<Page*>(this);
1350     page->ReleaseFreeListCategories();
1351   }
1352 }
1353 
1354 static SlotSet* AllocateAndInitializeSlotSet(size_t size, Address page_start) {
1355   size_t pages = (size + Page::kPageSize - 1) / Page::kPageSize;
1356   DCHECK_LT(0, pages);
1357   SlotSet* slot_set = new SlotSet[pages];
1358   for (size_t i = 0; i < pages; i++) {
1359     slot_set[i].SetPageStart(page_start + i * Page::kPageSize);
1360   }
1361   return slot_set;
1362 }
1363 
1364 template SlotSet* MemoryChunk::AllocateSlotSet<OLD_TO_NEW>();
1365 template SlotSet* MemoryChunk::AllocateSlotSet<OLD_TO_OLD>();
1366 
1367 template <RememberedSetType type>
1368 SlotSet* MemoryChunk::AllocateSlotSet() {
1369   SlotSet* slot_set = AllocateAndInitializeSlotSet(size_, address());
1370   SlotSet* old_slot_set = base::AsAtomicPointer::Release_CompareAndSwap(
1371       &slot_set_[type], nullptr, slot_set);
1372   if (old_slot_set != nullptr) {
1373     delete[] slot_set;
1374     slot_set = old_slot_set;
1375   }
1376   DCHECK(slot_set);
1377   return slot_set;
1378 }
1379 
1380 template void MemoryChunk::ReleaseSlotSet<OLD_TO_NEW>();
1381 template void MemoryChunk::ReleaseSlotSet<OLD_TO_OLD>();
1382 
1383 template <RememberedSetType type>
1384 void MemoryChunk::ReleaseSlotSet() {
1385   SlotSet* slot_set = slot_set_[type];
1386   if (slot_set) {
1387     slot_set_[type] = nullptr;
1388     delete[] slot_set;
1389   }
1390 }
1391 
1392 template TypedSlotSet* MemoryChunk::AllocateTypedSlotSet<OLD_TO_NEW>();
1393 template TypedSlotSet* MemoryChunk::AllocateTypedSlotSet<OLD_TO_OLD>();
1394 
1395 template <RememberedSetType type>
1396 TypedSlotSet* MemoryChunk::AllocateTypedSlotSet() {
1397   TypedSlotSet* typed_slot_set = new TypedSlotSet(address());
1398   TypedSlotSet* old_value = base::AsAtomicPointer::Release_CompareAndSwap(
1399       &typed_slot_set_[type], nullptr, typed_slot_set);
1400   if (old_value != nullptr) {
1401     delete typed_slot_set;
1402     typed_slot_set = old_value;
1403   }
1404   DCHECK(typed_slot_set);
1405   return typed_slot_set;
1406 }
1407 
1408 template void MemoryChunk::ReleaseTypedSlotSet<OLD_TO_NEW>();
1409 template void MemoryChunk::ReleaseTypedSlotSet<OLD_TO_OLD>();
1410 
1411 template <RememberedSetType type>
1412 void MemoryChunk::ReleaseTypedSlotSet() {
1413   TypedSlotSet* typed_slot_set = typed_slot_set_[type];
1414   if (typed_slot_set) {
1415     typed_slot_set_[type] = nullptr;
1416     delete typed_slot_set;
1417   }
1418 }
1419 
1420 InvalidatedSlots* MemoryChunk::AllocateInvalidatedSlots() {
1421   DCHECK_NULL(invalidated_slots_);
1422   invalidated_slots_ = new InvalidatedSlots();
1423   return invalidated_slots_;
1424 }
1425 
1426 void MemoryChunk::ReleaseInvalidatedSlots() {
1427   if (invalidated_slots_) {
1428     delete invalidated_slots_;
1429     invalidated_slots_ = nullptr;
1430   }
1431 }
1432 
1433 void MemoryChunk::RegisterObjectWithInvalidatedSlots(HeapObject* object,
1434                                                      int size) {
1435   if (!ShouldSkipEvacuationSlotRecording()) {
1436     if (invalidated_slots() == nullptr) {
1437       AllocateInvalidatedSlots();
1438     }
1439     int old_size = (*invalidated_slots())[object];
1440     (*invalidated_slots())[object] = std::max(old_size, size);
1441   }
1442 }
1443 
1444 void MemoryChunk::MoveObjectWithInvalidatedSlots(HeapObject* old_start,
1445                                                  HeapObject* new_start) {
1446   DCHECK_LT(old_start, new_start);
1447   DCHECK_EQ(MemoryChunk::FromHeapObject(old_start),
1448             MemoryChunk::FromHeapObject(new_start));
1449   if (!ShouldSkipEvacuationSlotRecording() && invalidated_slots()) {
1450     auto it = invalidated_slots()->find(old_start);
1451     if (it != invalidated_slots()->end()) {
1452       int old_size = it->second;
1453       int delta = static_cast<int>(new_start->address() - old_start->address());
1454       invalidated_slots()->erase(it);
1455       (*invalidated_slots())[new_start] = old_size - delta;
1456     }
1457   }
1458 }
1459 
1460 void MemoryChunk::ReleaseLocalTracker() {
1461   DCHECK_NOT_NULL(local_tracker_);
1462   delete local_tracker_;
1463   local_tracker_ = nullptr;
1464 }
1465 
1466 void MemoryChunk::AllocateYoungGenerationBitmap() {
1467   DCHECK_NULL(young_generation_bitmap_);
1468   young_generation_bitmap_ = static_cast<Bitmap*>(calloc(1, Bitmap::kSize));
1469 }
1470 
1471 void MemoryChunk::ReleaseYoungGenerationBitmap() {
1472   DCHECK_NOT_NULL(young_generation_bitmap_);
1473   free(young_generation_bitmap_);
1474   young_generation_bitmap_ = nullptr;
1475 }
1476 
1477 void MemoryChunk::IncrementExternalBackingStoreBytes(
1478     ExternalBackingStoreType type, size_t amount) {
1479   external_backing_store_bytes_[type] += amount;
1480   owner()->IncrementExternalBackingStoreBytes(type, amount);
1481 }
1482 
1483 void MemoryChunk::DecrementExternalBackingStoreBytes(
1484     ExternalBackingStoreType type, size_t amount) {
1485   DCHECK_GE(external_backing_store_bytes_[type], amount);
1486   external_backing_store_bytes_[type] -= amount;
1487   owner()->DecrementExternalBackingStoreBytes(type, amount);
1488 }
1489 
1490 // -----------------------------------------------------------------------------
1491 // PagedSpace implementation
1492 
1493 void Space::AddAllocationObserver(AllocationObserver* observer) {
1494   allocation_observers_.push_back(observer);
1495   StartNextInlineAllocationStep();
1496 }
1497 
1498 void Space::RemoveAllocationObserver(AllocationObserver* observer) {
1499   auto it = std::find(allocation_observers_.begin(),
1500                       allocation_observers_.end(), observer);
1501   DCHECK(allocation_observers_.end() != it);
1502   allocation_observers_.erase(it);
1503   StartNextInlineAllocationStep();
1504 }
1505 
1506 void Space::PauseAllocationObservers() { allocation_observers_paused_ = true; }
1507 
1508 void Space::ResumeAllocationObservers() {
1509   allocation_observers_paused_ = false;
1510 }
1511 
1512 void Space::AllocationStep(int bytes_since_last, Address soon_object,
1513                            int size) {
1514   if (!AllocationObserversActive()) {
1515     return;
1516   }
1517 
1518   DCHECK(!heap()->allocation_step_in_progress());
1519   heap()->set_allocation_step_in_progress(true);
1520   heap()->CreateFillerObjectAt(soon_object, size, ClearRecordedSlots::kNo);
1521   for (AllocationObserver* observer : allocation_observers_) {
1522     observer->AllocationStep(bytes_since_last, soon_object, size);
1523   }
1524   heap()->set_allocation_step_in_progress(false);
1525 }
1526 
1527 intptr_t Space::GetNextInlineAllocationStepSize() {
1528   intptr_t next_step = 0;
1529   for (AllocationObserver* observer : allocation_observers_) {
1530     next_step = next_step ? Min(next_step, observer->bytes_to_next_step())
1531                           : observer->bytes_to_next_step();
1532   }
1533   DCHECK(allocation_observers_.size() == 0 || next_step > 0);
1534   return next_step;
1535 }
1536 
1537 PagedSpace::PagedSpace(Heap* heap, AllocationSpace space,
1538                        Executability executable)
1539     : SpaceWithLinearArea(heap, space), executable_(executable) {
1540   area_size_ = MemoryAllocator::PageAreaSize(space);
1541   accounting_stats_.Clear();
1542 }
1543 
1544 void PagedSpace::TearDown() {
1545   while (!memory_chunk_list_.Empty()) {
1546     MemoryChunk* chunk = memory_chunk_list_.front();
1547     memory_chunk_list_.Remove(chunk);
1548     heap()->memory_allocator()->Free<MemoryAllocator::kFull>(chunk);
1549   }
1550   accounting_stats_.Clear();
1551 }
1552 
1553 void PagedSpace::RefillFreeList() {
1554   // Any PagedSpace might invoke RefillFreeList. We filter all but our old
1555   // generation spaces out.
1556   if (identity() != OLD_SPACE && identity() != CODE_SPACE &&
1557       identity() != MAP_SPACE && identity() != RO_SPACE) {
1558     return;
1559   }
1560   MarkCompactCollector* collector = heap()->mark_compact_collector();
1561   size_t added = 0;
1562   {
1563     Page* p = nullptr;
1564     while ((p = collector->sweeper()->GetSweptPageSafe(this)) != nullptr) {
1565       // Only during compaction pages can actually change ownership. This is
1566       // safe because there exists no other competing action on the page links
1567       // during compaction.
1568       if (is_local()) {
1569         DCHECK_NE(this, p->owner());
1570         PagedSpace* owner = reinterpret_cast<PagedSpace*>(p->owner());
1571         base::LockGuard<base::Mutex> guard(owner->mutex());
1572         owner->RefineAllocatedBytesAfterSweeping(p);
1573         owner->RemovePage(p);
1574         added += AddPage(p);
1575       } else {
1576         base::LockGuard<base::Mutex> guard(mutex());
1577         DCHECK_EQ(this, p->owner());
1578         RefineAllocatedBytesAfterSweeping(p);
1579         added += RelinkFreeListCategories(p);
1580       }
1581       added += p->wasted_memory();
1582       if (is_local() && (added > kCompactionMemoryWanted)) break;
1583     }
1584   }
1585 }
1586 
1587 void PagedSpace::MergeCompactionSpace(CompactionSpace* other) {
1588   base::LockGuard<base::Mutex> guard(mutex());
1589 
1590   DCHECK(identity() == other->identity());
1591   // Unmerged fields:
1592   //   area_size_
1593   other->FreeLinearAllocationArea();
1594 
1595   // The linear allocation area of {other} should be destroyed now.
1596   DCHECK_EQ(kNullAddress, other->top());
1597   DCHECK_EQ(kNullAddress, other->limit());
1598 
1599   // Move over pages.
1600   for (auto it = other->begin(); it != other->end();) {
1601     Page* p = *(it++);
1602     // Relinking requires the category to be unlinked.
1603     other->RemovePage(p);
1604     AddPage(p);
1605     DCHECK_EQ(p->AvailableInFreeList(),
1606               p->AvailableInFreeListFromAllocatedBytes());
1607   }
1608   DCHECK_EQ(0u, other->Size());
1609   DCHECK_EQ(0u, other->Capacity());
1610 }
1611 
1612 
1613 size_t PagedSpace::CommittedPhysicalMemory() {
1614   if (!base::OS::HasLazyCommits()) return CommittedMemory();
1615   MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
1616   size_t size = 0;
1617   for (Page* page : *this) {
1618     size += page->CommittedPhysicalMemory();
1619   }
1620   return size;
1621 }
1622 
1623 bool PagedSpace::ContainsSlow(Address addr) {
1624   Page* p = Page::FromAddress(addr);
1625   for (Page* page : *this) {
1626     if (page == p) return true;
1627   }
1628   return false;
1629 }
1630 
1631 void PagedSpace::RefineAllocatedBytesAfterSweeping(Page* page) {
1632   CHECK(page->SweepingDone());
1633   auto marking_state =
1634       heap()->incremental_marking()->non_atomic_marking_state();
1635   // The live_byte on the page was accounted in the space allocated
1636   // bytes counter. After sweeping allocated_bytes() contains the
1637   // accurate live byte count on the page.
1638   size_t old_counter = marking_state->live_bytes(page);
1639   size_t new_counter = page->allocated_bytes();
1640   DCHECK_GE(old_counter, new_counter);
1641   if (old_counter > new_counter) {
1642     DecreaseAllocatedBytes(old_counter - new_counter, page);
1643     // Give the heap a chance to adjust counters in response to the
1644     // more precise and smaller old generation size.
1645     heap()->NotifyRefinedOldGenerationSize(old_counter - new_counter);
1646   }
1647   marking_state->SetLiveBytes(page, 0);
1648 }
1649 
1650 Page* PagedSpace::RemovePageSafe(int size_in_bytes) {
1651   base::LockGuard<base::Mutex> guard(mutex());
1652   // Check for pages that still contain free list entries. Bail out for smaller
1653   // categories.
1654   const int minimum_category =
1655       static_cast<int>(FreeList::SelectFreeListCategoryType(size_in_bytes));
1656   Page* page = free_list()->GetPageForCategoryType(kHuge);
1657   if (!page && static_cast<int>(kLarge) >= minimum_category)
1658     page = free_list()->GetPageForCategoryType(kLarge);
1659   if (!page && static_cast<int>(kMedium) >= minimum_category)
1660     page = free_list()->GetPageForCategoryType(kMedium);
1661   if (!page && static_cast<int>(kSmall) >= minimum_category)
1662     page = free_list()->GetPageForCategoryType(kSmall);
1663   if (!page && static_cast<int>(kTiny) >= minimum_category)
1664     page = free_list()->GetPageForCategoryType(kTiny);
1665   if (!page && static_cast<int>(kTiniest) >= minimum_category)
1666     page = free_list()->GetPageForCategoryType(kTiniest);
1667   if (!page) return nullptr;
1668   RemovePage(page);
1669   return page;
1670 }
1671 
1672 size_t PagedSpace::AddPage(Page* page) {
1673   CHECK(page->SweepingDone());
1674   page->set_owner(this);
1675   memory_chunk_list_.PushBack(page);
1676   AccountCommitted(page->size());
1677   IncreaseCapacity(page->area_size());
1678   IncreaseAllocatedBytes(page->allocated_bytes(), page);
1679   for (size_t i = 0; i < ExternalBackingStoreType::kNumTypes; i++) {
1680     ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
1681     IncrementExternalBackingStoreBytes(t, page->ExternalBackingStoreBytes(t));
1682   }
1683   return RelinkFreeListCategories(page);
1684 }
1685 
1686 void PagedSpace::RemovePage(Page* page) {
1687   CHECK(page->SweepingDone());
1688   memory_chunk_list_.Remove(page);
1689   UnlinkFreeListCategories(page);
1690   DecreaseAllocatedBytes(page->allocated_bytes(), page);
1691   DecreaseCapacity(page->area_size());
1692   AccountUncommitted(page->size());
1693   for (size_t i = 0; i < ExternalBackingStoreType::kNumTypes; i++) {
1694     ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
1695     DecrementExternalBackingStoreBytes(t, page->ExternalBackingStoreBytes(t));
1696   }
1697 }
1698 
1699 size_t PagedSpace::ShrinkPageToHighWaterMark(Page* page) {
1700   size_t unused = page->ShrinkToHighWaterMark();
1701   accounting_stats_.DecreaseCapacity(static_cast<intptr_t>(unused));
1702   AccountUncommitted(unused);
1703   return unused;
1704 }
1705 
1706 void PagedSpace::ResetFreeList() {
1707   for (Page* page : *this) {
1708     free_list_.EvictFreeListItems(page);
1709   }
1710   DCHECK(free_list_.IsEmpty());
1711 }
1712 
1713 void PagedSpace::ShrinkImmortalImmovablePages() {
1714   DCHECK(!heap()->deserialization_complete());
1715   MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
1716   FreeLinearAllocationArea();
1717   ResetFreeList();
1718   for (Page* page : *this) {
1719     DCHECK(page->IsFlagSet(Page::NEVER_EVACUATE));
1720     ShrinkPageToHighWaterMark(page);
1721   }
1722 }
1723 
1724 bool PagedSpace::Expand() {
1725   // Always lock against the main space as we can only adjust capacity and
1726   // pages concurrently for the main paged space.
1727   base::LockGuard<base::Mutex> guard(heap()->paged_space(identity())->mutex());
1728 
1729   const int size = AreaSize();
1730 
1731   if (!heap()->CanExpandOldGeneration(size)) return false;
1732 
1733   Page* page =
1734       heap()->memory_allocator()->AllocatePage(size, this, executable());
1735   if (page == nullptr) return false;
1736   // Pages created during bootstrapping may contain immortal immovable objects.
1737   if (!heap()->deserialization_complete()) page->MarkNeverEvacuate();
1738   AddPage(page);
1739   Free(page->area_start(), page->area_size(),
1740        SpaceAccountingMode::kSpaceAccounted);
1741   return true;
1742 }
1743 
1744 
1745 int PagedSpace::CountTotalPages() {
1746   int count = 0;
1747   for (Page* page : *this) {
1748     count++;
1749     USE(page);
1750   }
1751   return count;
1752 }
1753 
1754 
1755 void PagedSpace::ResetFreeListStatistics() {
1756   for (Page* page : *this) {
1757     page->ResetFreeListStatistics();
1758   }
1759 }
1760 
1761 void PagedSpace::SetLinearAllocationArea(Address top, Address limit) {
1762   SetTopAndLimit(top, limit);
1763   if (top != kNullAddress && top != limit &&
1764       heap()->incremental_marking()->black_allocation()) {
1765     Page::FromAllocationAreaAddress(top)->CreateBlackArea(top, limit);
1766   }
1767 }
1768 
1769 void PagedSpace::DecreaseLimit(Address new_limit) {
1770   Address old_limit = limit();
1771   DCHECK_LE(top(), new_limit);
1772   DCHECK_GE(old_limit, new_limit);
1773   if (new_limit != old_limit) {
1774     SetTopAndLimit(top(), new_limit);
1775     Free(new_limit, old_limit - new_limit,
1776          SpaceAccountingMode::kSpaceAccounted);
1777     if (heap()->incremental_marking()->black_allocation()) {
1778       Page::FromAllocationAreaAddress(new_limit)->DestroyBlackArea(new_limit,
1779                                                                    old_limit);
1780     }
1781   }
1782 }
1783 
1784 Address SpaceWithLinearArea::ComputeLimit(Address start, Address end,
1785                                           size_t min_size) {
1786   DCHECK_GE(end - start, min_size);
1787 
1788   if (heap()->inline_allocation_disabled()) {
1789     // Fit the requested area exactly.
1790     return start + min_size;
1791   } else if (SupportsInlineAllocation() && AllocationObserversActive()) {
1792     // Generated code may allocate inline from the linear allocation area for.
1793     // To make sure we can observe these allocations, we use a lower limit.
1794     size_t step = GetNextInlineAllocationStepSize();
1795 
1796     // TODO(ofrobots): there is subtle difference between old space and new
1797     // space here. Any way to avoid it? `step - 1` makes more sense as we would
1798     // like to sample the object that straddles the `start + step` boundary.
1799     // Rounding down further would introduce a small statistical error in
1800     // sampling. However, presently PagedSpace requires limit to be aligned.
1801     size_t rounded_step;
1802     if (identity() == NEW_SPACE) {
1803       DCHECK_GE(step, 1);
1804       rounded_step = step - 1;
1805     } else {
1806       rounded_step = RoundSizeDownToObjectAlignment(static_cast<int>(step));
1807     }
1808     return Min(static_cast<Address>(start + min_size + rounded_step), end);
1809   } else {
1810     // The entire node can be used as the linear allocation area.
1811     return end;
1812   }
1813 }
1814 
1815 void PagedSpace::MarkLinearAllocationAreaBlack() {
1816   DCHECK(heap()->incremental_marking()->black_allocation());
1817   Address current_top = top();
1818   Address current_limit = limit();
1819   if (current_top != kNullAddress && current_top != current_limit) {
1820     Page::FromAllocationAreaAddress(current_top)
1821         ->CreateBlackArea(current_top, current_limit);
1822   }
1823 }
1824 
1825 void PagedSpace::UnmarkLinearAllocationArea() {
1826   Address current_top = top();
1827   Address current_limit = limit();
1828   if (current_top != kNullAddress && current_top != current_limit) {
1829     Page::FromAllocationAreaAddress(current_top)
1830         ->DestroyBlackArea(current_top, current_limit);
1831   }
1832 }
1833 
1834 void PagedSpace::FreeLinearAllocationArea() {
1835   // Mark the old linear allocation area with a free space map so it can be
1836   // skipped when scanning the heap.
1837   Address current_top = top();
1838   Address current_limit = limit();
1839   if (current_top == kNullAddress) {
1840     DCHECK_EQ(kNullAddress, current_limit);
1841     return;
1842   }
1843 
1844   if (heap()->incremental_marking()->black_allocation()) {
1845     Page* page = Page::FromAllocationAreaAddress(current_top);
1846 
1847     // Clear the bits in the unused black area.
1848     if (current_top != current_limit) {
1849       IncrementalMarking::MarkingState* marking_state =
1850           heap()->incremental_marking()->marking_state();
1851       marking_state->bitmap(page)->ClearRange(
1852           page->AddressToMarkbitIndex(current_top),
1853           page->AddressToMarkbitIndex(current_limit));
1854       marking_state->IncrementLiveBytes(
1855           page, -static_cast<int>(current_limit - current_top));
1856     }
1857   }
1858 
1859   InlineAllocationStep(current_top, kNullAddress, kNullAddress, 0);
1860   SetTopAndLimit(kNullAddress, kNullAddress);
1861   DCHECK_GE(current_limit, current_top);
1862 
1863   // The code page of the linear allocation area needs to be unprotected
1864   // because we are going to write a filler into that memory area below.
1865   if (identity() == CODE_SPACE) {
1866     heap()->UnprotectAndRegisterMemoryChunk(
1867         MemoryChunk::FromAddress(current_top));
1868   }
1869   Free(current_top, current_limit - current_top,
1870        SpaceAccountingMode::kSpaceAccounted);
1871 }
1872 
1873 void PagedSpace::ReleasePage(Page* page) {
1874   DCHECK_EQ(
1875       0, heap()->incremental_marking()->non_atomic_marking_state()->live_bytes(
1876              page));
1877   DCHECK_EQ(page->owner(), this);
1878 
1879   free_list_.EvictFreeListItems(page);
1880   DCHECK(!free_list_.ContainsPageFreeListItems(page));
1881 
1882   if (Page::FromAllocationAreaAddress(allocation_info_.top()) == page) {
1883     DCHECK(!top_on_previous_step_);
1884     allocation_info_.Reset(kNullAddress, kNullAddress);
1885   }
1886 
1887   AccountUncommitted(page->size());
1888   accounting_stats_.DecreaseCapacity(page->area_size());
1889   heap()->memory_allocator()->Free<MemoryAllocator::kPreFreeAndQueue>(page);
1890 }
1891 
1892 void PagedSpace::SetReadAndExecutable() {
1893   DCHECK(identity() == CODE_SPACE);
1894   for (Page* page : *this) {
1895     CHECK(heap()->memory_allocator()->IsMemoryChunkExecutable(page));
1896     page->SetReadAndExecutable();
1897   }
1898 }
1899 
1900 void PagedSpace::SetReadAndWritable() {
1901   DCHECK(identity() == CODE_SPACE);
1902   for (Page* page : *this) {
1903     CHECK(heap()->memory_allocator()->IsMemoryChunkExecutable(page));
1904     page->SetReadAndWritable();
1905   }
1906 }
1907 
1908 std::unique_ptr<ObjectIterator> PagedSpace::GetObjectIterator() {
1909   return std::unique_ptr<ObjectIterator>(new HeapObjectIterator(this));
1910 }
1911 
1912 bool PagedSpace::RefillLinearAllocationAreaFromFreeList(size_t size_in_bytes) {
1913   DCHECK(IsAligned(size_in_bytes, kPointerSize));
1914   DCHECK_LE(top(), limit());
1915 #ifdef DEBUG
1916   if (top() != limit()) {
1917     DCHECK_EQ(Page::FromAddress(top()), Page::FromAddress(limit() - 1));
1918   }
1919 #endif
1920   // Don't free list allocate if there is linear space available.
1921   DCHECK_LT(static_cast<size_t>(limit() - top()), size_in_bytes);
1922 
1923   // Mark the old linear allocation area with a free space map so it can be
1924   // skipped when scanning the heap.  This also puts it back in the free list
1925   // if it is big enough.
1926   FreeLinearAllocationArea();
1927 
1928   if (!is_local()) {
1929     heap()->StartIncrementalMarkingIfAllocationLimitIsReached(
1930         heap()->GCFlagsForIncrementalMarking(),
1931         kGCCallbackScheduleIdleGarbageCollection);
1932   }
1933 
1934   size_t new_node_size = 0;
1935   FreeSpace* new_node = free_list_.Allocate(size_in_bytes, &new_node_size);
1936   if (new_node == nullptr) return false;
1937 
1938   DCHECK_GE(new_node_size, size_in_bytes);
1939 
1940   // The old-space-step might have finished sweeping and restarted marking.
1941   // Verify that it did not turn the page of the new node into an evacuation
1942   // candidate.
1943   DCHECK(!MarkCompactCollector::IsOnEvacuationCandidate(new_node));
1944 
1945   // Memory in the linear allocation area is counted as allocated.  We may free
1946   // a little of this again immediately - see below.
1947   Page* page = Page::FromAddress(new_node->address());
1948   IncreaseAllocatedBytes(new_node_size, page);
1949 
1950   Address start = new_node->address();
1951   Address end = new_node->address() + new_node_size;
1952   Address limit = ComputeLimit(start, end, size_in_bytes);
1953   DCHECK_LE(limit, end);
1954   DCHECK_LE(size_in_bytes, limit - start);
1955   if (limit != end) {
1956     if (identity() == CODE_SPACE) {
1957       heap()->UnprotectAndRegisterMemoryChunk(page);
1958     }
1959     Free(limit, end - limit, SpaceAccountingMode::kSpaceAccounted);
1960   }
1961   SetLinearAllocationArea(start, limit);
1962 
1963   return true;
1964 }
1965 
1966 #ifdef DEBUG
1967 void PagedSpace::Print() {}
1968 #endif
1969 
1970 #ifdef VERIFY_HEAP
1971 void PagedSpace::Verify(Isolate* isolate, ObjectVisitor* visitor) {
1972   bool allocation_pointer_found_in_space =
1973       (allocation_info_.top() == allocation_info_.limit());
1974   size_t external_space_bytes[kNumTypes];
1975   size_t external_page_bytes[kNumTypes];
1976 
1977   for (int i = 0; i < kNumTypes; i++) {
1978     external_space_bytes[static_cast<ExternalBackingStoreType>(i)] = 0;
1979   }
1980 
1981   for (Page* page : *this) {
1982     CHECK(page->owner() == this);
1983 
1984     for (int i = 0; i < kNumTypes; i++) {
1985       external_page_bytes[static_cast<ExternalBackingStoreType>(i)] = 0;
1986     }
1987 
1988     if (page == Page::FromAllocationAreaAddress(allocation_info_.top())) {
1989       allocation_pointer_found_in_space = true;
1990     }
1991     CHECK(page->SweepingDone());
1992     HeapObjectIterator it(page);
1993     Address end_of_previous_object = page->area_start();
1994     Address top = page->area_end();
1995 
1996     for (HeapObject* object = it.Next(); object != nullptr;
1997          object = it.Next()) {
1998       CHECK(end_of_previous_object <= object->address());
1999 
2000       // The first word should be a map, and we expect all map pointers to
2001       // be in map space.
2002       Map* map = object->map();
2003       CHECK(map->IsMap());
2004       CHECK(heap()->map_space()->Contains(map) ||
2005             heap()->read_only_space()->Contains(map));
2006 
2007       // Perform space-specific object verification.
2008       VerifyObject(object);
2009 
2010       // The object itself should look OK.
2011       object->ObjectVerify(isolate);
2012 
2013       if (!FLAG_verify_heap_skip_remembered_set) {
2014         heap()->VerifyRememberedSetFor(object);
2015       }
2016 
2017       // All the interior pointers should be contained in the heap.
2018       int size = object->Size();
2019       object->IterateBody(map, size, visitor);
2020       CHECK(object->address() + size <= top);
2021       end_of_previous_object = object->address() + size;
2022 
2023       if (object->IsExternalString()) {
2024         ExternalString* external_string = ExternalString::cast(object);
2025         size_t size = external_string->ExternalPayloadSize();
2026         external_page_bytes[ExternalBackingStoreType::kExternalString] += size;
2027       } else if (object->IsJSArrayBuffer()) {
2028         JSArrayBuffer* array_buffer = JSArrayBuffer::cast(object);
2029         if (ArrayBufferTracker::IsTracked(array_buffer)) {
2030           size_t size = NumberToSize(array_buffer->byte_length());
2031           external_page_bytes[ExternalBackingStoreType::kArrayBuffer] += size;
2032         }
2033       }
2034     }
2035     for (int i = 0; i < kNumTypes; i++) {
2036       ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
2037       CHECK_EQ(external_page_bytes[t], page->ExternalBackingStoreBytes(t));
2038       external_space_bytes[t] += external_page_bytes[t];
2039     }
2040   }
2041   for (int i = 0; i < kNumTypes; i++) {
2042     ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
2043     CHECK_EQ(external_space_bytes[t], ExternalBackingStoreBytes(t));
2044   }
2045   CHECK(allocation_pointer_found_in_space);
2046 #ifdef DEBUG
2047   VerifyCountersAfterSweeping();
2048 #endif
2049 }
2050 
2051 void PagedSpace::VerifyLiveBytes() {
2052   IncrementalMarking::MarkingState* marking_state =
2053       heap()->incremental_marking()->marking_state();
2054   for (Page* page : *this) {
2055     CHECK(page->SweepingDone());
2056     HeapObjectIterator it(page);
2057     int black_size = 0;
2058     for (HeapObject* object = it.Next(); object != nullptr;
2059          object = it.Next()) {
2060       // All the interior pointers should be contained in the heap.
2061       if (marking_state->IsBlack(object)) {
2062         black_size += object->Size();
2063       }
2064     }
2065     CHECK_LE(black_size, marking_state->live_bytes(page));
2066   }
2067 }
2068 #endif  // VERIFY_HEAP
2069 
2070 #ifdef DEBUG
2071 void PagedSpace::VerifyCountersAfterSweeping() {
2072   size_t total_capacity = 0;
2073   size_t total_allocated = 0;
2074   for (Page* page : *this) {
2075     DCHECK(page->SweepingDone());
2076     total_capacity += page->area_size();
2077     HeapObjectIterator it(page);
2078     size_t real_allocated = 0;
2079     for (HeapObject* object = it.Next(); object != nullptr;
2080          object = it.Next()) {
2081       if (!object->IsFiller()) {
2082         real_allocated += object->Size();
2083       }
2084     }
2085     total_allocated += page->allocated_bytes();
2086     // The real size can be smaller than the accounted size if array trimming,
2087     // object slack tracking happened after sweeping.
2088     DCHECK_LE(real_allocated, accounting_stats_.AllocatedOnPage(page));
2089     DCHECK_EQ(page->allocated_bytes(), accounting_stats_.AllocatedOnPage(page));
2090   }
2091   DCHECK_EQ(total_capacity, accounting_stats_.Capacity());
2092   DCHECK_EQ(total_allocated, accounting_stats_.Size());
2093 }
2094 
2095 void PagedSpace::VerifyCountersBeforeConcurrentSweeping() {
2096   // We need to refine the counters on pages that are already swept and have
2097   // not been moved over to the actual space. Otherwise, the AccountingStats
2098   // are just an over approximation.
2099   RefillFreeList();
2100 
2101   size_t total_capacity = 0;
2102   size_t total_allocated = 0;
2103   auto marking_state =
2104       heap()->incremental_marking()->non_atomic_marking_state();
2105   for (Page* page : *this) {
2106     size_t page_allocated =
2107         page->SweepingDone()
2108             ? page->allocated_bytes()
2109             : static_cast<size_t>(marking_state->live_bytes(page));
2110     total_capacity += page->area_size();
2111     total_allocated += page_allocated;
2112     DCHECK_EQ(page_allocated, accounting_stats_.AllocatedOnPage(page));
2113   }
2114   DCHECK_EQ(total_capacity, accounting_stats_.Capacity());
2115   DCHECK_EQ(total_allocated, accounting_stats_.Size());
2116 }
2117 #endif
2118 
2119 // -----------------------------------------------------------------------------
2120 // NewSpace implementation
2121 
2122 NewSpace::NewSpace(Heap* heap, size_t initial_semispace_capacity,
2123                    size_t max_semispace_capacity)
2124     : SpaceWithLinearArea(heap, NEW_SPACE),
2125       to_space_(heap, kToSpace),
2126       from_space_(heap, kFromSpace),
2127       reservation_() {
2128   DCHECK(initial_semispace_capacity <= max_semispace_capacity);
2129   DCHECK(
2130       base::bits::IsPowerOfTwo(static_cast<uint32_t>(max_semispace_capacity)));
2131 
2132   to_space_.SetUp(initial_semispace_capacity, max_semispace_capacity);
2133   from_space_.SetUp(initial_semispace_capacity, max_semispace_capacity);
2134   if (!to_space_.Commit()) {
2135     V8::FatalProcessOutOfMemory(heap->isolate(), "New space setup");
2136   }
2137   DCHECK(!from_space_.is_committed());  // No need to use memory yet.
2138   ResetLinearAllocationArea();
2139 }
2140 
2141 void NewSpace::TearDown() {
2142   allocation_info_.Reset(kNullAddress, kNullAddress);
2143 
2144   to_space_.TearDown();
2145   from_space_.TearDown();
2146 }
2147 
2148 void NewSpace::Flip() { SemiSpace::Swap(&from_space_, &to_space_); }
2149 
2150 
2151 void NewSpace::Grow() {
2152   // Double the semispace size but only up to maximum capacity.
2153   DCHECK(TotalCapacity() < MaximumCapacity());
2154   size_t new_capacity =
2155       Min(MaximumCapacity(),
2156           static_cast<size_t>(FLAG_semi_space_growth_factor) * TotalCapacity());
2157   if (to_space_.GrowTo(new_capacity)) {
2158     // Only grow from space if we managed to grow to-space.
2159     if (!from_space_.GrowTo(new_capacity)) {
2160       // If we managed to grow to-space but couldn't grow from-space,
2161       // attempt to shrink to-space.
2162       if (!to_space_.ShrinkTo(from_space_.current_capacity())) {
2163         // We are in an inconsistent state because we could not
2164         // commit/uncommit memory from new space.
2165         FATAL("inconsistent state");
2166       }
2167     }
2168   }
2169   DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
2170 }
2171 
2172 
2173 void NewSpace::Shrink() {
2174   size_t new_capacity = Max(InitialTotalCapacity(), 2 * Size());
2175   size_t rounded_new_capacity = ::RoundUp(new_capacity, Page::kPageSize);
2176   if (rounded_new_capacity < TotalCapacity() &&
2177       to_space_.ShrinkTo(rounded_new_capacity)) {
2178     // Only shrink from-space if we managed to shrink to-space.
2179     from_space_.Reset();
2180     if (!from_space_.ShrinkTo(rounded_new_capacity)) {
2181       // If we managed to shrink to-space but couldn't shrink from
2182       // space, attempt to grow to-space again.
2183       if (!to_space_.GrowTo(from_space_.current_capacity())) {
2184         // We are in an inconsistent state because we could not
2185         // commit/uncommit memory from new space.
2186         FATAL("inconsistent state");
2187       }
2188     }
2189   }
2190   DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
2191 }
2192 
2193 bool NewSpace::Rebalance() {
2194   // Order here is important to make use of the page pool.
2195   return to_space_.EnsureCurrentCapacity() &&
2196          from_space_.EnsureCurrentCapacity();
2197 }
2198 
2199 bool SemiSpace::EnsureCurrentCapacity() {
2200   if (is_committed()) {
2201     const int expected_pages =
2202         static_cast<int>(current_capacity_ / Page::kPageSize);
2203     MemoryChunk* current_page = first_page();
2204     int actual_pages = 0;
2205 
2206     // First iterate through the pages list until expected pages if so many
2207     // pages exist.
2208     while (current_page != nullptr && actual_pages < expected_pages) {
2209       actual_pages++;
2210       current_page = current_page->list_node().next();
2211     }
2212 
2213     // Free all overallocated pages which are behind current_page.
2214     while (current_page) {
2215       MemoryChunk* next_current = current_page->list_node().next();
2216       memory_chunk_list_.Remove(current_page);
2217       // Clear new space flags to avoid this page being treated as a new
2218       // space page that is potentially being swept.
2219       current_page->SetFlags(0, Page::kIsInNewSpaceMask);
2220       heap()->memory_allocator()->Free<MemoryAllocator::kPooledAndQueue>(
2221           current_page);
2222       current_page = next_current;
2223     }
2224 
2225     // Add more pages if we have less than expected_pages.
2226     IncrementalMarking::NonAtomicMarkingState* marking_state =
2227         heap()->incremental_marking()->non_atomic_marking_state();
2228     while (actual_pages < expected_pages) {
2229       actual_pages++;
2230       current_page =
2231           heap()->memory_allocator()->AllocatePage<MemoryAllocator::kPooled>(
2232               Page::kAllocatableMemory, this, NOT_EXECUTABLE);
2233       if (current_page == nullptr) return false;
2234       DCHECK_NOT_NULL(current_page);
2235       memory_chunk_list_.PushBack(current_page);
2236       marking_state->ClearLiveness(current_page);
2237       current_page->SetFlags(first_page()->GetFlags(),
2238                              static_cast<uintptr_t>(Page::kCopyAllFlags));
2239       heap()->CreateFillerObjectAt(current_page->area_start(),
2240                                    static_cast<int>(current_page->area_size()),
2241                                    ClearRecordedSlots::kNo);
2242     }
2243   }
2244   return true;
2245 }
2246 
2247 LinearAllocationArea LocalAllocationBuffer::Close() {
2248   if (IsValid()) {
2249     heap_->CreateFillerObjectAt(
2250         allocation_info_.top(),
2251         static_cast<int>(allocation_info_.limit() - allocation_info_.top()),
2252         ClearRecordedSlots::kNo);
2253     const LinearAllocationArea old_info = allocation_info_;
2254     allocation_info_ = LinearAllocationArea(kNullAddress, kNullAddress);
2255     return old_info;
2256   }
2257   return LinearAllocationArea(kNullAddress, kNullAddress);
2258 }
2259 
2260 LocalAllocationBuffer::LocalAllocationBuffer(
2261     Heap* heap, LinearAllocationArea allocation_info)
2262     : heap_(heap), allocation_info_(allocation_info) {
2263   if (IsValid()) {
2264     heap_->CreateFillerObjectAt(
2265         allocation_info_.top(),
2266         static_cast<int>(allocation_info_.limit() - allocation_info_.top()),
2267         ClearRecordedSlots::kNo);
2268   }
2269 }
2270 
2271 
2272 LocalAllocationBuffer::LocalAllocationBuffer(
2273     const LocalAllocationBuffer& other) {
2274   *this = other;
2275 }
2276 
2277 
2278 LocalAllocationBuffer& LocalAllocationBuffer::operator=(
2279     const LocalAllocationBuffer& other) {
2280   Close();
2281   heap_ = other.heap_;
2282   allocation_info_ = other.allocation_info_;
2283 
2284   // This is needed since we (a) cannot yet use move-semantics, and (b) want
2285   // to make the use of the class easy by it as value and (c) implicitly call
2286   // {Close} upon copy.
2287   const_cast<LocalAllocationBuffer&>(other).allocation_info_.Reset(
2288       kNullAddress, kNullAddress);
2289   return *this;
2290 }
2291 
2292 void NewSpace::UpdateLinearAllocationArea() {
2293   // Make sure there is no unaccounted allocations.
2294   DCHECK(!AllocationObserversActive() || top_on_previous_step_ == top());
2295 
2296   Address new_top = to_space_.page_low();
2297   MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
2298   allocation_info_.Reset(new_top, to_space_.page_high());
2299   original_top_ = top();
2300   original_limit_ = limit();
2301   StartNextInlineAllocationStep();
2302   DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
2303 }
2304 
2305 void NewSpace::ResetLinearAllocationArea() {
2306   // Do a step to account for memory allocated so far before resetting.
2307   InlineAllocationStep(top(), top(), kNullAddress, 0);
2308   to_space_.Reset();
2309   UpdateLinearAllocationArea();
2310   // Clear all mark-bits in the to-space.
2311   IncrementalMarking::NonAtomicMarkingState* marking_state =
2312       heap()->incremental_marking()->non_atomic_marking_state();
2313   for (Page* p : to_space_) {
2314     marking_state->ClearLiveness(p);
2315     // Concurrent marking may have local live bytes for this page.
2316     heap()->concurrent_marking()->ClearLiveness(p);
2317   }
2318 }
2319 
2320 void NewSpace::UpdateInlineAllocationLimit(size_t min_size) {
2321   Address new_limit = ComputeLimit(top(), to_space_.page_high(), min_size);
2322   allocation_info_.set_limit(new_limit);
2323   DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
2324 }
2325 
2326 void PagedSpace::UpdateInlineAllocationLimit(size_t min_size) {
2327   Address new_limit = ComputeLimit(top(), limit(), min_size);
2328   DCHECK_LE(new_limit, limit());
2329   DecreaseLimit(new_limit);
2330 }
2331 
2332 bool NewSpace::AddFreshPage() {
2333   Address top = allocation_info_.top();
2334   DCHECK(!Page::IsAtObjectStart(top));
2335 
2336   // Do a step to account for memory allocated on previous page.
2337   InlineAllocationStep(top, top, kNullAddress, 0);
2338 
2339   if (!to_space_.AdvancePage()) {
2340     // No more pages left to advance.
2341     return false;
2342   }
2343 
2344   // Clear remainder of current page.
2345   Address limit = Page::FromAllocationAreaAddress(top)->area_end();
2346   int remaining_in_page = static_cast<int>(limit - top);
2347   heap()->CreateFillerObjectAt(top, remaining_in_page, ClearRecordedSlots::kNo);
2348   UpdateLinearAllocationArea();
2349 
2350   return true;
2351 }
2352 
2353 
2354 bool NewSpace::AddFreshPageSynchronized() {
2355   base::LockGuard<base::Mutex> guard(&mutex_);
2356   return AddFreshPage();
2357 }
2358 
2359 
2360 bool NewSpace::EnsureAllocation(int size_in_bytes,
2361                                 AllocationAlignment alignment) {
2362   Address old_top = allocation_info_.top();
2363   Address high = to_space_.page_high();
2364   int filler_size = Heap::GetFillToAlign(old_top, alignment);
2365   int aligned_size_in_bytes = size_in_bytes + filler_size;
2366 
2367   if (old_top + aligned_size_in_bytes > high) {
2368     // Not enough room in the page, try to allocate a new one.
2369     if (!AddFreshPage()) {
2370       return false;
2371     }
2372 
2373     old_top = allocation_info_.top();
2374     high = to_space_.page_high();
2375     filler_size = Heap::GetFillToAlign(old_top, alignment);
2376   }
2377 
2378   DCHECK(old_top + aligned_size_in_bytes <= high);
2379 
2380   if (allocation_info_.limit() < high) {
2381     // Either the limit has been lowered because linear allocation was disabled
2382     // or because incremental marking wants to get a chance to do a step,
2383     // or because idle scavenge job wants to get a chance to post a task.
2384     // Set the new limit accordingly.
2385     Address new_top = old_top + aligned_size_in_bytes;
2386     Address soon_object = old_top + filler_size;
2387     InlineAllocationStep(new_top, new_top, soon_object, size_in_bytes);
2388     UpdateInlineAllocationLimit(aligned_size_in_bytes);
2389   }
2390   return true;
2391 }
2392 
2393 size_t LargeObjectSpace::Available() {
2394   return ObjectSizeFor(heap()->memory_allocator()->Available());
2395 }
2396 
2397 void SpaceWithLinearArea::StartNextInlineAllocationStep() {
2398   if (heap()->allocation_step_in_progress()) {
2399     // If we are mid-way through an existing step, don't start a new one.
2400     return;
2401   }
2402 
2403   if (AllocationObserversActive()) {
2404     top_on_previous_step_ = top();
2405     UpdateInlineAllocationLimit(0);
2406   } else {
2407     DCHECK_EQ(kNullAddress, top_on_previous_step_);
2408   }
2409 }
2410 
2411 void SpaceWithLinearArea::AddAllocationObserver(AllocationObserver* observer) {
2412   InlineAllocationStep(top(), top(), kNullAddress, 0);
2413   Space::AddAllocationObserver(observer);
2414   DCHECK_IMPLIES(top_on_previous_step_, AllocationObserversActive());
2415 }
2416 
2417 void SpaceWithLinearArea::RemoveAllocationObserver(
2418     AllocationObserver* observer) {
2419   Address top_for_next_step =
2420       allocation_observers_.size() == 1 ? kNullAddress : top();
2421   InlineAllocationStep(top(), top_for_next_step, kNullAddress, 0);
2422   Space::RemoveAllocationObserver(observer);
2423   DCHECK_IMPLIES(top_on_previous_step_, AllocationObserversActive());
2424 }
2425 
2426 void SpaceWithLinearArea::PauseAllocationObservers() {
2427   // Do a step to account for memory allocated so far.
2428   InlineAllocationStep(top(), kNullAddress, kNullAddress, 0);
2429   Space::PauseAllocationObservers();
2430   DCHECK_EQ(kNullAddress, top_on_previous_step_);
2431   UpdateInlineAllocationLimit(0);
2432 }
2433 
2434 void SpaceWithLinearArea::ResumeAllocationObservers() {
2435   DCHECK_EQ(kNullAddress, top_on_previous_step_);
2436   Space::ResumeAllocationObservers();
2437   StartNextInlineAllocationStep();
2438 }
2439 
2440 void SpaceWithLinearArea::InlineAllocationStep(Address top,
2441                                                Address top_for_next_step,
2442                                                Address soon_object,
2443                                                size_t size) {
2444   if (heap()->allocation_step_in_progress()) {
2445     // Avoid starting a new step if we are mid-way through an existing one.
2446     return;
2447   }
2448 
2449   if (top_on_previous_step_) {
2450     if (top < top_on_previous_step_) {
2451       // Generated code decreased the top pointer to do folded allocations.
2452       DCHECK_NE(top, kNullAddress);
2453       DCHECK_EQ(Page::FromAllocationAreaAddress(top),
2454                 Page::FromAllocationAreaAddress(top_on_previous_step_));
2455       top_on_previous_step_ = top;
2456     }
2457     int bytes_allocated = static_cast<int>(top - top_on_previous_step_);
2458     AllocationStep(bytes_allocated, soon_object, static_cast<int>(size));
2459     top_on_previous_step_ = top_for_next_step;
2460   }
2461 }
2462 
2463 std::unique_ptr<ObjectIterator> NewSpace::GetObjectIterator() {
2464   return std::unique_ptr<ObjectIterator>(new SemiSpaceIterator(this));
2465 }
2466 
2467 #ifdef VERIFY_HEAP
2468 // We do not use the SemiSpaceIterator because verification doesn't assume
2469 // that it works (it depends on the invariants we are checking).
2470 void NewSpace::Verify(Isolate* isolate) {
2471   // The allocation pointer should be in the space or at the very end.
2472   DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
2473 
2474   // There should be objects packed in from the low address up to the
2475   // allocation pointer.
2476   Address current = to_space_.first_page()->area_start();
2477   CHECK_EQ(current, to_space_.space_start());
2478 
2479   size_t external_space_bytes[kNumTypes];
2480   for (int i = 0; i < kNumTypes; i++) {
2481     external_space_bytes[static_cast<ExternalBackingStoreType>(i)] = 0;
2482   }
2483 
2484   while (current != top()) {
2485     if (!Page::IsAlignedToPageSize(current)) {
2486       // The allocation pointer should not be in the middle of an object.
2487       CHECK(!Page::FromAllocationAreaAddress(current)->ContainsLimit(top()) ||
2488             current < top());
2489 
2490       HeapObject* object = HeapObject::FromAddress(current);
2491 
2492       // The first word should be a map, and we expect all map pointers to
2493       // be in map space or read-only space.
2494       Map* map = object->map();
2495       CHECK(map->IsMap());
2496       CHECK(heap()->map_space()->Contains(map) ||
2497             heap()->read_only_space()->Contains(map));
2498 
2499       // The object should not be code or a map.
2500       CHECK(!object->IsMap());
2501       CHECK(!object->IsAbstractCode());
2502 
2503       // The object itself should look OK.
2504       object->ObjectVerify(isolate);
2505 
2506       // All the interior pointers should be contained in the heap.
2507       VerifyPointersVisitor visitor(heap());
2508       int size = object->Size();
2509       object->IterateBody(map, size, &visitor);
2510 
2511       if (object->IsExternalString()) {
2512         ExternalString* external_string = ExternalString::cast(object);
2513         size_t size = external_string->ExternalPayloadSize();
2514         external_space_bytes[ExternalBackingStoreType::kExternalString] += size;
2515       } else if (object->IsJSArrayBuffer()) {
2516         JSArrayBuffer* array_buffer = JSArrayBuffer::cast(object);
2517         if (ArrayBufferTracker::IsTracked(array_buffer)) {
2518           size_t size = NumberToSize(array_buffer->byte_length());
2519           external_space_bytes[ExternalBackingStoreType::kArrayBuffer] += size;
2520         }
2521       }
2522 
2523       current += size;
2524     } else {
2525       // At end of page, switch to next page.
2526       Page* page = Page::FromAllocationAreaAddress(current)->next_page();
2527       current = page->area_start();
2528     }
2529   }
2530 
2531   for (int i = 0; i < kNumTypes; i++) {
2532     ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
2533     CHECK_EQ(external_space_bytes[t], ExternalBackingStoreBytes(t));
2534   }
2535 
2536   // Check semi-spaces.
2537   CHECK_EQ(from_space_.id(), kFromSpace);
2538   CHECK_EQ(to_space_.id(), kToSpace);
2539   from_space_.Verify();
2540   to_space_.Verify();
2541 }
2542 #endif
2543 
2544 // -----------------------------------------------------------------------------
2545 // SemiSpace implementation
2546 
2547 void SemiSpace::SetUp(size_t initial_capacity, size_t maximum_capacity) {
2548   DCHECK_GE(maximum_capacity, static_cast<size_t>(Page::kPageSize));
2549   minimum_capacity_ = RoundDown(initial_capacity, Page::kPageSize);
2550   current_capacity_ = minimum_capacity_;
2551   maximum_capacity_ = RoundDown(maximum_capacity, Page::kPageSize);
2552   committed_ = false;
2553 }
2554 
2555 
2556 void SemiSpace::TearDown() {
2557   // Properly uncommit memory to keep the allocator counters in sync.
2558   if (is_committed()) {
2559     Uncommit();
2560   }
2561   current_capacity_ = maximum_capacity_ = 0;
2562 }
2563 
2564 
2565 bool SemiSpace::Commit() {
2566   DCHECK(!is_committed());
2567   const int num_pages = static_cast<int>(current_capacity_ / Page::kPageSize);
2568   for (int pages_added = 0; pages_added < num_pages; pages_added++) {
2569     Page* new_page =
2570         heap()->memory_allocator()->AllocatePage<MemoryAllocator::kPooled>(
2571             Page::kAllocatableMemory, this, NOT_EXECUTABLE);
2572     if (new_page == nullptr) {
2573       if (pages_added) RewindPages(pages_added);
2574       return false;
2575     }
2576     memory_chunk_list_.PushBack(new_page);
2577   }
2578   Reset();
2579   AccountCommitted(current_capacity_);
2580   if (age_mark_ == kNullAddress) {
2581     age_mark_ = first_page()->area_start();
2582   }
2583   committed_ = true;
2584   return true;
2585 }
2586 
2587 
2588 bool SemiSpace::Uncommit() {
2589   DCHECK(is_committed());
2590   while (!memory_chunk_list_.Empty()) {
2591     MemoryChunk* chunk = memory_chunk_list_.front();
2592     memory_chunk_list_.Remove(chunk);
2593     heap()->memory_allocator()->Free<MemoryAllocator::kPooledAndQueue>(chunk);
2594   }
2595   current_page_ = nullptr;
2596   AccountUncommitted(current_capacity_);
2597   committed_ = false;
2598   heap()->memory_allocator()->unmapper()->FreeQueuedChunks();
2599   return true;
2600 }
2601 
2602 
2603 size_t SemiSpace::CommittedPhysicalMemory() {
2604   if (!is_committed()) return 0;
2605   size_t size = 0;
2606   for (Page* p : *this) {
2607     size += p->CommittedPhysicalMemory();
2608   }
2609   return size;
2610 }
2611 
2612 bool SemiSpace::GrowTo(size_t new_capacity) {
2613   if (!is_committed()) {
2614     if (!Commit()) return false;
2615   }
2616   DCHECK_EQ(new_capacity & kPageAlignmentMask, 0u);
2617   DCHECK_LE(new_capacity, maximum_capacity_);
2618   DCHECK_GT(new_capacity, current_capacity_);
2619   const size_t delta = new_capacity - current_capacity_;
2620   DCHECK(IsAligned(delta, AllocatePageSize()));
2621   const int delta_pages = static_cast<int>(delta / Page::kPageSize);
2622   DCHECK(last_page());
2623   IncrementalMarking::NonAtomicMarkingState* marking_state =
2624       heap()->incremental_marking()->non_atomic_marking_state();
2625   for (int pages_added = 0; pages_added < delta_pages; pages_added++) {
2626     Page* new_page =
2627         heap()->memory_allocator()->AllocatePage<MemoryAllocator::kPooled>(
2628             Page::kAllocatableMemory, this, NOT_EXECUTABLE);
2629     if (new_page == nullptr) {
2630       if (pages_added) RewindPages(pages_added);
2631       return false;
2632     }
2633     memory_chunk_list_.PushBack(new_page);
2634     marking_state->ClearLiveness(new_page);
2635     // Duplicate the flags that was set on the old page.
2636     new_page->SetFlags(last_page()->GetFlags(), Page::kCopyOnFlipFlagsMask);
2637   }
2638   AccountCommitted(delta);
2639   current_capacity_ = new_capacity;
2640   return true;
2641 }
2642 
2643 void SemiSpace::RewindPages(int num_pages) {
2644   DCHECK_GT(num_pages, 0);
2645   DCHECK(last_page());
2646   while (num_pages > 0) {
2647     MemoryChunk* last = last_page();
2648     memory_chunk_list_.Remove(last);
2649     heap()->memory_allocator()->Free<MemoryAllocator::kPooledAndQueue>(last);
2650     num_pages--;
2651   }
2652 }
2653 
2654 bool SemiSpace::ShrinkTo(size_t new_capacity) {
2655   DCHECK_EQ(new_capacity & kPageAlignmentMask, 0u);
2656   DCHECK_GE(new_capacity, minimum_capacity_);
2657   DCHECK_LT(new_capacity, current_capacity_);
2658   if (is_committed()) {
2659     const size_t delta = current_capacity_ - new_capacity;
2660     DCHECK(IsAligned(delta, Page::kPageSize));
2661     int delta_pages = static_cast<int>(delta / Page::kPageSize);
2662     RewindPages(delta_pages);
2663     AccountUncommitted(delta);
2664     heap()->memory_allocator()->unmapper()->FreeQueuedChunks();
2665   }
2666   current_capacity_ = new_capacity;
2667   return true;
2668 }
2669 
2670 void SemiSpace::FixPagesFlags(intptr_t flags, intptr_t mask) {
2671   for (Page* page : *this) {
2672     page->set_owner(this);
2673     page->SetFlags(flags, mask);
2674     if (id_ == kToSpace) {
2675       page->ClearFlag(MemoryChunk::IN_FROM_SPACE);
2676       page->SetFlag(MemoryChunk::IN_TO_SPACE);
2677       page->ClearFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK);
2678       heap()->incremental_marking()->non_atomic_marking_state()->SetLiveBytes(
2679           page, 0);
2680     } else {
2681       page->SetFlag(MemoryChunk::IN_FROM_SPACE);
2682       page->ClearFlag(MemoryChunk::IN_TO_SPACE);
2683     }
2684     DCHECK(page->IsFlagSet(MemoryChunk::IN_TO_SPACE) ||
2685            page->IsFlagSet(MemoryChunk::IN_FROM_SPACE));
2686   }
2687 }
2688 
2689 
2690 void SemiSpace::Reset() {
2691   DCHECK(first_page());
2692   DCHECK(last_page());
2693   current_page_ = first_page();
2694   pages_used_ = 0;
2695 }
2696 
2697 void SemiSpace::RemovePage(Page* page) {
2698   if (current_page_ == page) {
2699     if (page->prev_page()) {
2700       current_page_ = page->prev_page();
2701     }
2702   }
2703   memory_chunk_list_.Remove(page);
2704   for (size_t i = 0; i < ExternalBackingStoreType::kNumTypes; i++) {
2705     ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
2706     DecrementExternalBackingStoreBytes(t, page->ExternalBackingStoreBytes(t));
2707   }
2708 }
2709 
2710 void SemiSpace::PrependPage(Page* page) {
2711   page->SetFlags(current_page()->GetFlags(),
2712                  static_cast<uintptr_t>(Page::kCopyAllFlags));
2713   page->set_owner(this);
2714   memory_chunk_list_.PushFront(page);
2715   pages_used_++;
2716   for (size_t i = 0; i < ExternalBackingStoreType::kNumTypes; i++) {
2717     ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
2718     IncrementExternalBackingStoreBytes(t, page->ExternalBackingStoreBytes(t));
2719   }
2720 }
2721 
2722 void SemiSpace::Swap(SemiSpace* from, SemiSpace* to) {
2723   // We won't be swapping semispaces without data in them.
2724   DCHECK(from->first_page());
2725   DCHECK(to->first_page());
2726 
2727   intptr_t saved_to_space_flags = to->current_page()->GetFlags();
2728 
2729   // We swap all properties but id_.
2730   std::swap(from->current_capacity_, to->current_capacity_);
2731   std::swap(from->maximum_capacity_, to->maximum_capacity_);
2732   std::swap(from->minimum_capacity_, to->minimum_capacity_);
2733   std::swap(from->age_mark_, to->age_mark_);
2734   std::swap(from->committed_, to->committed_);
2735   std::swap(from->memory_chunk_list_, to->memory_chunk_list_);
2736   std::swap(from->current_page_, to->current_page_);
2737   std::swap(from->external_backing_store_bytes_,
2738             to->external_backing_store_bytes_);
2739 
2740   to->FixPagesFlags(saved_to_space_flags, Page::kCopyOnFlipFlagsMask);
2741   from->FixPagesFlags(0, 0);
2742 }
2743 
2744 void SemiSpace::set_age_mark(Address mark) {
2745   DCHECK_EQ(Page::FromAllocationAreaAddress(mark)->owner(), this);
2746   age_mark_ = mark;
2747   // Mark all pages up to the one containing mark.
2748   for (Page* p : PageRange(space_start(), mark)) {
2749     p->SetFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK);
2750   }
2751 }
2752 
2753 std::unique_ptr<ObjectIterator> SemiSpace::GetObjectIterator() {
2754   // Use the NewSpace::NewObjectIterator to iterate the ToSpace.
2755   UNREACHABLE();
2756 }
2757 
2758 #ifdef DEBUG
2759 void SemiSpace::Print() {}
2760 #endif
2761 
2762 #ifdef VERIFY_HEAP
2763 void SemiSpace::Verify() {
2764   bool is_from_space = (id_ == kFromSpace);
2765   size_t external_backing_store_bytes[kNumTypes];
2766 
2767   for (int i = 0; i < kNumTypes; i++) {
2768     external_backing_store_bytes[static_cast<ExternalBackingStoreType>(i)] = 0;
2769   }
2770 
2771   for (Page* page : *this) {
2772     CHECK_EQ(page->owner(), this);
2773     CHECK(page->InNewSpace());
2774     CHECK(page->IsFlagSet(is_from_space ? MemoryChunk::IN_FROM_SPACE
2775                                         : MemoryChunk::IN_TO_SPACE));
2776     CHECK(!page->IsFlagSet(is_from_space ? MemoryChunk::IN_TO_SPACE
2777                                          : MemoryChunk::IN_FROM_SPACE));
2778     CHECK(page->IsFlagSet(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING));
2779     if (!is_from_space) {
2780       // The pointers-from-here-are-interesting flag isn't updated dynamically
2781       // on from-space pages, so it might be out of sync with the marking state.
2782       if (page->heap()->incremental_marking()->IsMarking()) {
2783         CHECK(page->IsFlagSet(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING));
2784       } else {
2785         CHECK(
2786             !page->IsFlagSet(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING));
2787       }
2788     }
2789     for (int i = 0; i < kNumTypes; i++) {
2790       ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
2791       external_backing_store_bytes[t] += page->ExternalBackingStoreBytes(t);
2792     }
2793 
2794     CHECK_IMPLIES(page->list_node().prev(),
2795                   page->list_node().prev()->list_node().next() == page);
2796   }
2797   for (int i = 0; i < kNumTypes; i++) {
2798     ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
2799     CHECK_EQ(external_backing_store_bytes[t], ExternalBackingStoreBytes(t));
2800   }
2801 }
2802 #endif
2803 
2804 #ifdef DEBUG
2805 void SemiSpace::AssertValidRange(Address start, Address end) {
2806   // Addresses belong to same semi-space
2807   Page* page = Page::FromAllocationAreaAddress(start);
2808   Page* end_page = Page::FromAllocationAreaAddress(end);
2809   SemiSpace* space = reinterpret_cast<SemiSpace*>(page->owner());
2810   DCHECK_EQ(space, end_page->owner());
2811   // Start address is before end address, either on same page,
2812   // or end address is on a later page in the linked list of
2813   // semi-space pages.
2814   if (page == end_page) {
2815     DCHECK_LE(start, end);
2816   } else {
2817     while (page != end_page) {
2818       page = page->next_page();
2819     }
2820     DCHECK(page);
2821   }
2822 }
2823 #endif
2824 
2825 
2826 // -----------------------------------------------------------------------------
2827 // SemiSpaceIterator implementation.
2828 
2829 SemiSpaceIterator::SemiSpaceIterator(NewSpace* space) {
2830   Initialize(space->first_allocatable_address(), space->top());
2831 }
2832 
2833 
2834 void SemiSpaceIterator::Initialize(Address start, Address end) {
2835   SemiSpace::AssertValidRange(start, end);
2836   current_ = start;
2837   limit_ = end;
2838 }
2839 
2840 size_t NewSpace::CommittedPhysicalMemory() {
2841   if (!base::OS::HasLazyCommits()) return CommittedMemory();
2842   MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
2843   size_t size = to_space_.CommittedPhysicalMemory();
2844   if (from_space_.is_committed()) {
2845     size += from_space_.CommittedPhysicalMemory();
2846   }
2847   return size;
2848 }
2849 
2850 
2851 // -----------------------------------------------------------------------------
2852 // Free lists for old object spaces implementation
2853 
2854 
2855 void FreeListCategory::Reset() {
2856   set_top(nullptr);
2857   set_prev(nullptr);
2858   set_next(nullptr);
2859   available_ = 0;
2860 }
2861 
2862 FreeSpace* FreeListCategory::PickNodeFromList(size_t minimum_size,
2863                                               size_t* node_size) {
2864   DCHECK(page()->CanAllocate());
2865   FreeSpace* node = top();
2866   if (node == nullptr || static_cast<size_t>(node->Size()) < minimum_size) {
2867     *node_size = 0;
2868     return nullptr;
2869   }
2870   set_top(node->next());
2871   *node_size = node->Size();
2872   available_ -= *node_size;
2873   return node;
2874 }
2875 
2876 FreeSpace* FreeListCategory::SearchForNodeInList(size_t minimum_size,
2877                                                  size_t* node_size) {
2878   DCHECK(page()->CanAllocate());
2879   FreeSpace* prev_non_evac_node = nullptr;
2880   for (FreeSpace* cur_node = top(); cur_node != nullptr;
2881        cur_node = cur_node->next()) {
2882     size_t size = cur_node->size();
2883     if (size >= minimum_size) {
2884       DCHECK_GE(available_, size);
2885       available_ -= size;
2886       if (cur_node == top()) {
2887         set_top(cur_node->next());
2888       }
2889       if (prev_non_evac_node != nullptr) {
2890         MemoryChunk* chunk =
2891             MemoryChunk::FromAddress(prev_non_evac_node->address());
2892         if (chunk->owner()->identity() == CODE_SPACE) {
2893           chunk->heap()->UnprotectAndRegisterMemoryChunk(chunk);
2894         }
2895         prev_non_evac_node->set_next(cur_node->next());
2896       }
2897       *node_size = size;
2898       return cur_node;
2899     }
2900 
2901     prev_non_evac_node = cur_node;
2902   }
2903   return nullptr;
2904 }
2905 
2906 void FreeListCategory::Free(Address start, size_t size_in_bytes,
2907                             FreeMode mode) {
2908   DCHECK(page()->CanAllocate());
2909   FreeSpace* free_space = FreeSpace::cast(HeapObject::FromAddress(start));
2910   free_space->set_next(top());
2911   set_top(free_space);
2912   available_ += size_in_bytes;
2913   if ((mode == kLinkCategory) && (prev() == nullptr) && (next() == nullptr)) {
2914     owner()->AddCategory(this);
2915   }
2916 }
2917 
2918 
2919 void FreeListCategory::RepairFreeList(Heap* heap) {
2920   FreeSpace* n = top();
2921   while (n != nullptr) {
2922     Map** map_location = reinterpret_cast<Map**>(n->address());
2923     if (*map_location == nullptr) {
2924       *map_location = ReadOnlyRoots(heap).free_space_map();
2925     } else {
2926       DCHECK(*map_location == ReadOnlyRoots(heap).free_space_map());
2927     }
2928     n = n->next();
2929   }
2930 }
2931 
2932 void FreeListCategory::Relink() {
2933   DCHECK(!is_linked());
2934   owner()->AddCategory(this);
2935 }
2936 
2937 FreeList::FreeList() : wasted_bytes_(0) {
2938   for (int i = kFirstCategory; i < kNumberOfCategories; i++) {
2939     categories_[i] = nullptr;
2940   }
2941   Reset();
2942 }
2943 
2944 
2945 void FreeList::Reset() {
2946   ForAllFreeListCategories(
2947       [](FreeListCategory* category) { category->Reset(); });
2948   for (int i = kFirstCategory; i < kNumberOfCategories; i++) {
2949     categories_[i] = nullptr;
2950   }
2951   ResetStats();
2952 }
2953 
2954 size_t FreeList::Free(Address start, size_t size_in_bytes, FreeMode mode) {
2955   Page* page = Page::FromAddress(start);
2956   page->DecreaseAllocatedBytes(size_in_bytes);
2957 
2958   // Blocks have to be a minimum size to hold free list items.
2959   if (size_in_bytes < kMinBlockSize) {
2960     page->add_wasted_memory(size_in_bytes);
2961     wasted_bytes_ += size_in_bytes;
2962     return size_in_bytes;
2963   }
2964 
2965   // Insert other blocks at the head of a free list of the appropriate
2966   // magnitude.
2967   FreeListCategoryType type = SelectFreeListCategoryType(size_in_bytes);
2968   page->free_list_category(type)->Free(start, size_in_bytes, mode);
2969   DCHECK_EQ(page->AvailableInFreeList(),
2970             page->AvailableInFreeListFromAllocatedBytes());
2971   return 0;
2972 }
2973 
2974 FreeSpace* FreeList::FindNodeIn(FreeListCategoryType type, size_t minimum_size,
2975                                 size_t* node_size) {
2976   FreeListCategoryIterator it(this, type);
2977   FreeSpace* node = nullptr;
2978   while (it.HasNext()) {
2979     FreeListCategory* current = it.Next();
2980     node = current->PickNodeFromList(minimum_size, node_size);
2981     if (node != nullptr) {
2982       DCHECK(IsVeryLong() || Available() == SumFreeLists());
2983       return node;
2984     }
2985     RemoveCategory(current);
2986   }
2987   return node;
2988 }
2989 
2990 FreeSpace* FreeList::TryFindNodeIn(FreeListCategoryType type,
2991                                    size_t minimum_size, size_t* node_size) {
2992   if (categories_[type] == nullptr) return nullptr;
2993   FreeSpace* node =
2994       categories_[type]->PickNodeFromList(minimum_size, node_size);
2995   if (node != nullptr) {
2996     DCHECK(IsVeryLong() || Available() == SumFreeLists());
2997   }
2998   return node;
2999 }
3000 
3001 FreeSpace* FreeList::SearchForNodeInList(FreeListCategoryType type,
3002                                          size_t* node_size,
3003                                          size_t minimum_size) {
3004   FreeListCategoryIterator it(this, type);
3005   FreeSpace* node = nullptr;
3006   while (it.HasNext()) {
3007     FreeListCategory* current = it.Next();
3008     node = current->SearchForNodeInList(minimum_size, node_size);
3009     if (node != nullptr) {
3010       DCHECK(IsVeryLong() || Available() == SumFreeLists());
3011       return node;
3012     }
3013     if (current->is_empty()) {
3014       RemoveCategory(current);
3015     }
3016   }
3017   return node;
3018 }
3019 
3020 FreeSpace* FreeList::Allocate(size_t size_in_bytes, size_t* node_size) {
3021   DCHECK_GE(kMaxBlockSize, size_in_bytes);
3022   FreeSpace* node = nullptr;
3023   // First try the allocation fast path: try to allocate the minimum element
3024   // size of a free list category. This operation is constant time.
3025   FreeListCategoryType type =
3026       SelectFastAllocationFreeListCategoryType(size_in_bytes);
3027   for (int i = type; i < kHuge && node == nullptr; i++) {
3028     node = FindNodeIn(static_cast<FreeListCategoryType>(i), size_in_bytes,
3029                       node_size);
3030   }
3031 
3032   if (node == nullptr) {
3033     // Next search the huge list for free list nodes. This takes linear time in
3034     // the number of huge elements.
3035     node = SearchForNodeInList(kHuge, node_size, size_in_bytes);
3036   }
3037 
3038   if (node == nullptr && type != kHuge) {
3039     // We didn't find anything in the huge list. Now search the best fitting
3040     // free list for a node that has at least the requested size.
3041     type = SelectFreeListCategoryType(size_in_bytes);
3042     node = TryFindNodeIn(type, size_in_bytes, node_size);
3043   }
3044 
3045   if (node != nullptr) {
3046     Page::FromAddress(node->address())->IncreaseAllocatedBytes(*node_size);
3047   }
3048 
3049   DCHECK(IsVeryLong() || Available() == SumFreeLists());
3050   return node;
3051 }
3052 
3053 size_t FreeList::EvictFreeListItems(Page* page) {
3054   size_t sum = 0;
3055   page->ForAllFreeListCategories([this, &sum](FreeListCategory* category) {
3056     DCHECK_EQ(this, category->owner());
3057     sum += category->available();
3058     RemoveCategory(category);
3059     category->Reset();
3060   });
3061   return sum;
3062 }
3063 
3064 bool FreeList::ContainsPageFreeListItems(Page* page) {
3065   bool contained = false;
3066   page->ForAllFreeListCategories(
3067       [this, &contained](FreeListCategory* category) {
3068         if (category->owner() == this && category->is_linked()) {
3069           contained = true;
3070         }
3071       });
3072   return contained;
3073 }
3074 
3075 void FreeList::RepairLists(Heap* heap) {
3076   ForAllFreeListCategories(
3077       [heap](FreeListCategory* category) { category->RepairFreeList(heap); });
3078 }
3079 
3080 bool FreeList::AddCategory(FreeListCategory* category) {
3081   FreeListCategoryType type = category->type_;
3082   DCHECK_LT(type, kNumberOfCategories);
3083   FreeListCategory* top = categories_[type];
3084 
3085   if (category->is_empty()) return false;
3086   if (top == category) return false;
3087 
3088   // Common double-linked list insertion.
3089   if (top != nullptr) {
3090     top->set_prev(category);
3091   }
3092   category->set_next(top);
3093   categories_[type] = category;
3094   return true;
3095 }
3096 
3097 void FreeList::RemoveCategory(FreeListCategory* category) {
3098   FreeListCategoryType type = category->type_;
3099   DCHECK_LT(type, kNumberOfCategories);
3100   FreeListCategory* top = categories_[type];
3101 
3102   // Common double-linked list removal.
3103   if (top == category) {
3104     categories_[type] = category->next();
3105   }
3106   if (category->prev() != nullptr) {
3107     category->prev()->set_next(category->next());
3108   }
3109   if (category->next() != nullptr) {
3110     category->next()->set_prev(category->prev());
3111   }
3112   category->set_next(nullptr);
3113   category->set_prev(nullptr);
3114 }
3115 
3116 void FreeList::PrintCategories(FreeListCategoryType type) {
3117   FreeListCategoryIterator it(this, type);
3118   PrintF("FreeList[%p, top=%p, %d] ", static_cast<void*>(this),
3119          static_cast<void*>(categories_[type]), type);
3120   while (it.HasNext()) {
3121     FreeListCategory* current = it.Next();
3122     PrintF("%p -> ", static_cast<void*>(current));
3123   }
3124   PrintF("null\n");
3125 }
3126 
3127 
3128 #ifdef DEBUG
3129 size_t FreeListCategory::SumFreeList() {
3130   size_t sum = 0;
3131   FreeSpace* cur = top();
3132   while (cur != nullptr) {
3133     DCHECK(cur->map() == page()->heap()->root(Heap::kFreeSpaceMapRootIndex));
3134     sum += cur->relaxed_read_size();
3135     cur = cur->next();
3136   }
3137   return sum;
3138 }
3139 
3140 int FreeListCategory::FreeListLength() {
3141   int length = 0;
3142   FreeSpace* cur = top();
3143   while (cur != nullptr) {
3144     length++;
3145     cur = cur->next();
3146     if (length == kVeryLongFreeList) return length;
3147   }
3148   return length;
3149 }
3150 
3151 bool FreeList::IsVeryLong() {
3152   int len = 0;
3153   for (int i = kFirstCategory; i < kNumberOfCategories; i++) {
3154     FreeListCategoryIterator it(this, static_cast<FreeListCategoryType>(i));
3155     while (it.HasNext()) {
3156       len += it.Next()->FreeListLength();
3157       if (len >= FreeListCategory::kVeryLongFreeList) return true;
3158     }
3159   }
3160   return false;
3161 }
3162 
3163 
3164 // This can take a very long time because it is linear in the number of entries
3165 // on the free list, so it should not be called if FreeListLength returns
3166 // kVeryLongFreeList.
3167 size_t FreeList::SumFreeLists() {
3168   size_t sum = 0;
3169   ForAllFreeListCategories(
3170       [&sum](FreeListCategory* category) { sum += category->SumFreeList(); });
3171   return sum;
3172 }
3173 #endif
3174 
3175 
3176 // -----------------------------------------------------------------------------
3177 // OldSpace implementation
3178 
3179 void PagedSpace::PrepareForMarkCompact() {
3180   // We don't have a linear allocation area while sweeping.  It will be restored
3181   // on the first allocation after the sweep.
3182   FreeLinearAllocationArea();
3183 
3184   // Clear the free list before a full GC---it will be rebuilt afterward.
3185   free_list_.Reset();
3186 }
3187 
3188 size_t PagedSpace::SizeOfObjects() {
3189   CHECK_GE(limit(), top());
3190   DCHECK_GE(Size(), static_cast<size_t>(limit() - top()));
3191   return Size() - (limit() - top());
3192 }
3193 
3194 // After we have booted, we have created a map which represents free space
3195 // on the heap.  If there was already a free list then the elements on it
3196 // were created with the wrong FreeSpaceMap (normally nullptr), so we need to
3197 // fix them.
3198 void PagedSpace::RepairFreeListsAfterDeserialization() {
3199   free_list_.RepairLists(heap());
3200   // Each page may have a small free space that is not tracked by a free list.
3201   // Those free spaces still contain null as their map pointer.
3202   // Overwrite them with new fillers.
3203   for (Page* page : *this) {
3204     int size = static_cast<int>(page->wasted_memory());
3205     if (size == 0) {
3206       // If there is no wasted memory then all free space is in the free list.
3207       continue;
3208     }
3209     Address start = page->HighWaterMark();
3210     Address end = page->area_end();
3211     if (start < end - size) {
3212       // A region at the high watermark is already in free list.
3213       HeapObject* filler = HeapObject::FromAddress(start);
3214       CHECK(filler->IsFiller());
3215       start += filler->Size();
3216     }
3217     CHECK_EQ(size, static_cast<int>(end - start));
3218     heap()->CreateFillerObjectAt(start, size, ClearRecordedSlots::kNo);
3219   }
3220 }
3221 
3222 bool PagedSpace::SweepAndRetryAllocation(int size_in_bytes) {
3223   MarkCompactCollector* collector = heap()->mark_compact_collector();
3224   if (collector->sweeping_in_progress()) {
3225     // Wait for the sweeper threads here and complete the sweeping phase.
3226     collector->EnsureSweepingCompleted();
3227 
3228     // After waiting for the sweeper threads, there may be new free-list
3229     // entries.
3230     return RefillLinearAllocationAreaFromFreeList(size_in_bytes);
3231   }
3232   return false;
3233 }
3234 
3235 bool CompactionSpace::SweepAndRetryAllocation(int size_in_bytes) {
3236   MarkCompactCollector* collector = heap()->mark_compact_collector();
3237   if (FLAG_concurrent_sweeping && collector->sweeping_in_progress()) {
3238     collector->sweeper()->ParallelSweepSpace(identity(), 0);
3239     RefillFreeList();
3240     return RefillLinearAllocationAreaFromFreeList(size_in_bytes);
3241   }
3242   return false;
3243 }
3244 
3245 bool PagedSpace::SlowRefillLinearAllocationArea(int size_in_bytes) {
3246   VMState<GC> state(heap()->isolate());
3247   RuntimeCallTimerScope runtime_timer(
3248       heap()->isolate(), RuntimeCallCounterId::kGC_Custom_SlowAllocateRaw);
3249   return RawSlowRefillLinearAllocationArea(size_in_bytes);
3250 }
3251 
3252 bool CompactionSpace::SlowRefillLinearAllocationArea(int size_in_bytes) {
3253   return RawSlowRefillLinearAllocationArea(size_in_bytes);
3254 }
3255 
3256 bool PagedSpace::RawSlowRefillLinearAllocationArea(int size_in_bytes) {
3257   // Allocation in this space has failed.
3258   DCHECK_GE(size_in_bytes, 0);
3259   const int kMaxPagesToSweep = 1;
3260 
3261   if (RefillLinearAllocationAreaFromFreeList(size_in_bytes)) return true;
3262 
3263   MarkCompactCollector* collector = heap()->mark_compact_collector();
3264   // Sweeping is still in progress.
3265   if (collector->sweeping_in_progress()) {
3266     if (FLAG_concurrent_sweeping && !is_local() &&
3267         !collector->sweeper()->AreSweeperTasksRunning()) {
3268       collector->EnsureSweepingCompleted();
3269     }
3270 
3271     // First try to refill the free-list, concurrent sweeper threads
3272     // may have freed some objects in the meantime.
3273     RefillFreeList();
3274 
3275     // Retry the free list allocation.
3276     if (RefillLinearAllocationAreaFromFreeList(
3277             static_cast<size_t>(size_in_bytes)))
3278       return true;
3279 
3280     // If sweeping is still in progress try to sweep pages.
3281     int max_freed = collector->sweeper()->ParallelSweepSpace(
3282         identity(), size_in_bytes, kMaxPagesToSweep);
3283     RefillFreeList();
3284     if (max_freed >= size_in_bytes) {
3285       if (RefillLinearAllocationAreaFromFreeList(
3286               static_cast<size_t>(size_in_bytes)))
3287         return true;
3288     }
3289   } else if (is_local()) {
3290     // Sweeping not in progress and we are on a {CompactionSpace}. This can
3291     // only happen when we are evacuating for the young generation.
3292     PagedSpace* main_space = heap()->paged_space(identity());
3293     Page* page = main_space->RemovePageSafe(size_in_bytes);
3294     if (page != nullptr) {
3295       AddPage(page);
3296       if (RefillLinearAllocationAreaFromFreeList(
3297               static_cast<size_t>(size_in_bytes)))
3298         return true;
3299     }
3300   }
3301 
3302   if (heap()->ShouldExpandOldGenerationOnSlowAllocation() && Expand()) {
3303     DCHECK((CountTotalPages() > 1) ||
3304            (static_cast<size_t>(size_in_bytes) <= free_list_.Available()));
3305     return RefillLinearAllocationAreaFromFreeList(
3306         static_cast<size_t>(size_in_bytes));
3307   }
3308 
3309   // If sweeper threads are active, wait for them at that point and steal
3310   // elements form their free-lists. Allocation may still fail their which
3311   // would indicate that there is not enough memory for the given allocation.
3312   return SweepAndRetryAllocation(size_in_bytes);
3313 }
3314 
3315 // -----------------------------------------------------------------------------
3316 // MapSpace implementation
3317 
3318 #ifdef VERIFY_HEAP
3319 void MapSpace::VerifyObject(HeapObject* object) { CHECK(object->IsMap()); }
3320 #endif
3321 
3322 ReadOnlySpace::ReadOnlySpace(Heap* heap)
3323     : PagedSpace(heap, RO_SPACE, NOT_EXECUTABLE),
3324       is_string_padding_cleared_(heap->isolate()->initialized_from_snapshot()) {
3325 }
3326 
3327 void ReadOnlyPage::MakeHeaderRelocatable() {
3328   if (mutex_ != nullptr) {
3329     // TODO(v8:7464): heap_ and owner_ need to be cleared as well.
3330     delete mutex_;
3331     mutex_ = nullptr;
3332     local_tracker_ = nullptr;
3333     reservation_.Reset();
3334   }
3335 }
3336 
3337 void ReadOnlySpace::SetPermissionsForPages(PageAllocator::Permission access) {
3338   const size_t page_size = MemoryAllocator::GetCommitPageSize();
3339   const size_t area_start_offset = RoundUp(Page::kObjectStartOffset, page_size);
3340   for (Page* p : *this) {
3341     ReadOnlyPage* page = static_cast<ReadOnlyPage*>(p);
3342     if (access == PageAllocator::kRead) {
3343       page->MakeHeaderRelocatable();
3344     }
3345     CHECK(SetPermissions(page->address() + area_start_offset,
3346                          page->size() - area_start_offset, access));
3347   }
3348 }
3349 
3350 void ReadOnlySpace::ClearStringPaddingIfNeeded() {
3351   if (is_string_padding_cleared_) return;
3352 
3353   WritableScope writable_scope(this);
3354   for (Page* page : *this) {
3355     HeapObjectIterator iterator(page);
3356     for (HeapObject* o = iterator.Next(); o != nullptr; o = iterator.Next()) {
3357       if (o->IsSeqOneByteString()) {
3358         SeqOneByteString::cast(o)->clear_padding();
3359       } else if (o->IsSeqTwoByteString()) {
3360         SeqTwoByteString::cast(o)->clear_padding();
3361       }
3362     }
3363   }
3364   is_string_padding_cleared_ = true;
3365 }
3366 
3367 void ReadOnlySpace::MarkAsReadOnly() {
3368   DCHECK(!is_marked_read_only_);
3369   FreeLinearAllocationArea();
3370   is_marked_read_only_ = true;
3371   SetPermissionsForPages(PageAllocator::kRead);
3372 }
3373 
3374 void ReadOnlySpace::MarkAsReadWrite() {
3375   DCHECK(is_marked_read_only_);
3376   SetPermissionsForPages(PageAllocator::kReadWrite);
3377   is_marked_read_only_ = false;
3378 }
3379 
3380 Address LargePage::GetAddressToShrink(Address object_address,
3381                                       size_t object_size) {
3382   if (executable() == EXECUTABLE) {
3383     return 0;
3384   }
3385   size_t used_size = ::RoundUp((object_address - address()) + object_size,
3386                                MemoryAllocator::GetCommitPageSize());
3387   if (used_size < CommittedPhysicalMemory()) {
3388     return address() + used_size;
3389   }
3390   return 0;
3391 }
3392 
3393 void LargePage::ClearOutOfLiveRangeSlots(Address free_start) {
3394   RememberedSet<OLD_TO_NEW>::RemoveRange(this, free_start, area_end(),
3395                                          SlotSet::FREE_EMPTY_BUCKETS);
3396   RememberedSet<OLD_TO_OLD>::RemoveRange(this, free_start, area_end(),
3397                                          SlotSet::FREE_EMPTY_BUCKETS);
3398   RememberedSet<OLD_TO_NEW>::RemoveRangeTyped(this, free_start, area_end());
3399   RememberedSet<OLD_TO_OLD>::RemoveRangeTyped(this, free_start, area_end());
3400 }
3401 
3402 // -----------------------------------------------------------------------------
3403 // LargeObjectIterator
3404 
3405 LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space) {
3406   current_ = space->first_page();
3407 }
3408 
3409 
3410 HeapObject* LargeObjectIterator::Next() {
3411   if (current_ == nullptr) return nullptr;
3412 
3413   HeapObject* object = current_->GetObject();
3414   current_ = current_->next_page();
3415   return object;
3416 }
3417 
3418 
3419 // -----------------------------------------------------------------------------
3420 // LargeObjectSpace
3421 
3422 LargeObjectSpace::LargeObjectSpace(Heap* heap)
3423     : LargeObjectSpace(heap, LO_SPACE) {}
3424 
3425 LargeObjectSpace::LargeObjectSpace(Heap* heap, AllocationSpace id)
3426     : Space(heap, id),
3427       size_(0),
3428       page_count_(0),
3429       objects_size_(0),
3430       chunk_map_(1024) {}
3431 
3432 void LargeObjectSpace::TearDown() {
3433   while (!memory_chunk_list_.Empty()) {
3434     LargePage* page = first_page();
3435     LOG(heap()->isolate(),
3436         DeleteEvent("LargeObjectChunk",
3437                     reinterpret_cast<void*>(page->address())));
3438     memory_chunk_list_.Remove(page);
3439     heap()->memory_allocator()->Free<MemoryAllocator::kFull>(page);
3440   }
3441 }
3442 
3443 AllocationResult LargeObjectSpace::AllocateRaw(int object_size,
3444                                                Executability executable) {
3445   // Check if we want to force a GC before growing the old space further.
3446   // If so, fail the allocation.
3447   if (!heap()->CanExpandOldGeneration(object_size) ||
3448       !heap()->ShouldExpandOldGenerationOnSlowAllocation()) {
3449     return AllocationResult::Retry(identity());
3450   }
3451 
3452   LargePage* page = AllocateLargePage(object_size, executable);
3453   if (page == nullptr) return AllocationResult::Retry(identity());
3454   page->SetOldGenerationPageFlags(heap()->incremental_marking()->IsMarking());
3455   HeapObject* object = page->GetObject();
3456   heap()->StartIncrementalMarkingIfAllocationLimitIsReached(
3457       heap()->GCFlagsForIncrementalMarking(),
3458       kGCCallbackScheduleIdleGarbageCollection);
3459   if (heap()->incremental_marking()->black_allocation()) {
3460     heap()->incremental_marking()->marking_state()->WhiteToBlack(object);
3461   }
3462   DCHECK_IMPLIES(
3463       heap()->incremental_marking()->black_allocation(),
3464       heap()->incremental_marking()->marking_state()->IsBlack(object));
3465   page->InitializationMemoryFence();
3466   return object;
3467 }
3468 
3469 LargePage* LargeObjectSpace::AllocateLargePage(int object_size,
3470                                                Executability executable) {
3471   LargePage* page = heap()->memory_allocator()->AllocateLargePage(
3472       object_size, this, executable);
3473   if (page == nullptr) return nullptr;
3474   DCHECK_GE(page->area_size(), static_cast<size_t>(object_size));
3475 
3476   size_ += static_cast<int>(page->size());
3477   AccountCommitted(page->size());
3478   objects_size_ += object_size;
3479   page_count_++;
3480   memory_chunk_list_.PushBack(page);
3481 
3482   InsertChunkMapEntries(page);
3483 
3484   HeapObject* object = page->GetObject();
3485 
3486   if (Heap::ShouldZapGarbage()) {
3487     // Make the object consistent so the heap can be verified in OldSpaceStep.
3488     // We only need to do this in debug builds or if verify_heap is on.
3489     reinterpret_cast<Object**>(object->address())[0] =
3490         ReadOnlyRoots(heap()).fixed_array_map();
3491     reinterpret_cast<Object**>(object->address())[1] = Smi::kZero;
3492   }
3493   heap()->CreateFillerObjectAt(object->address(), object_size,
3494                                ClearRecordedSlots::kNo);
3495   AllocationStep(object_size, object->address(), object_size);
3496   return page;
3497 }
3498 
3499 
3500 size_t LargeObjectSpace::CommittedPhysicalMemory() {
3501   // On a platform that provides lazy committing of memory, we over-account
3502   // the actually committed memory. There is no easy way right now to support
3503   // precise accounting of committed memory in large object space.
3504   return CommittedMemory();
3505 }
3506 
3507 
3508 // GC support
3509 Object* LargeObjectSpace::FindObject(Address a) {
3510   LargePage* page = FindPage(a);
3511   if (page != nullptr) {
3512     return page->GetObject();
3513   }
3514   return Smi::kZero;  // Signaling not found.
3515 }
3516 
3517 LargePage* LargeObjectSpace::FindPageThreadSafe(Address a) {
3518   base::LockGuard<base::Mutex> guard(&chunk_map_mutex_);
3519   return FindPage(a);
3520 }
3521 
3522 LargePage* LargeObjectSpace::FindPage(Address a) {
3523   const Address key = MemoryChunk::FromAddress(a)->address();
3524   auto it = chunk_map_.find(key);
3525   if (it != chunk_map_.end()) {
3526     LargePage* page = it->second;
3527     if (page->Contains(a)) {
3528       return page;
3529     }
3530   }
3531   return nullptr;
3532 }
3533 
3534 
3535 void LargeObjectSpace::ClearMarkingStateOfLiveObjects() {
3536   IncrementalMarking::NonAtomicMarkingState* marking_state =
3537       heap()->incremental_marking()->non_atomic_marking_state();
3538   LargeObjectIterator it(this);
3539   for (HeapObject* obj = it.Next(); obj != nullptr; obj = it.Next()) {
3540     if (marking_state->IsBlackOrGrey(obj)) {
3541       Marking::MarkWhite(marking_state->MarkBitFrom(obj));
3542       MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address());
3543       RememberedSet<OLD_TO_NEW>::FreeEmptyBuckets(chunk);
3544       chunk->ResetProgressBar();
3545       marking_state->SetLiveBytes(chunk, 0);
3546     }
3547     DCHECK(marking_state->IsWhite(obj));
3548   }
3549 }
3550 
3551 void LargeObjectSpace::InsertChunkMapEntries(LargePage* page) {
3552   // There may be concurrent access on the chunk map. We have to take the lock
3553   // here.
3554   base::LockGuard<base::Mutex> guard(&chunk_map_mutex_);
3555   for (Address current = reinterpret_cast<Address>(page);
3556        current < reinterpret_cast<Address>(page) + page->size();
3557        current += MemoryChunk::kPageSize) {
3558     chunk_map_[current] = page;
3559   }
3560 }
3561 
3562 void LargeObjectSpace::RemoveChunkMapEntries(LargePage* page) {
3563   RemoveChunkMapEntries(page, page->address());
3564 }
3565 
3566 void LargeObjectSpace::RemoveChunkMapEntries(LargePage* page,
3567                                              Address free_start) {
3568   for (Address current = ::RoundUp(free_start, MemoryChunk::kPageSize);
3569        current < reinterpret_cast<Address>(page) + page->size();
3570        current += MemoryChunk::kPageSize) {
3571     chunk_map_.erase(current);
3572   }
3573 }
3574 
3575 void LargeObjectSpace::FreeUnmarkedObjects() {
3576   LargePage* current = first_page();
3577   IncrementalMarking::NonAtomicMarkingState* marking_state =
3578       heap()->incremental_marking()->non_atomic_marking_state();
3579   objects_size_ = 0;
3580   while (current) {
3581     LargePage* next_current = current->next_page();
3582     HeapObject* object = current->GetObject();
3583     DCHECK(!marking_state->IsGrey(object));
3584     if (marking_state->IsBlack(object)) {
3585       Address free_start;
3586       size_t size = static_cast<size_t>(object->Size());
3587       objects_size_ += size;
3588       if ((free_start = current->GetAddressToShrink(object->address(), size)) !=
3589           0) {
3590         DCHECK(!current->IsFlagSet(Page::IS_EXECUTABLE));
3591         current->ClearOutOfLiveRangeSlots(free_start);
3592         RemoveChunkMapEntries(current, free_start);
3593         const size_t bytes_to_free =
3594             current->size() - (free_start - current->address());
3595         heap()->memory_allocator()->PartialFreeMemory(
3596             current, free_start, bytes_to_free,
3597             current->area_start() + object->Size());
3598         size_ -= bytes_to_free;
3599         AccountUncommitted(bytes_to_free);
3600       }
3601     } else {
3602       memory_chunk_list_.Remove(current);
3603 
3604       // Free the chunk.
3605       size_ -= static_cast<int>(current->size());
3606       AccountUncommitted(current->size());
3607       page_count_--;
3608 
3609       RemoveChunkMapEntries(current);
3610       heap()->memory_allocator()->Free<MemoryAllocator::kPreFreeAndQueue>(
3611           current);
3612     }
3613     current = next_current;
3614   }
3615 }
3616 
3617 
3618 bool LargeObjectSpace::Contains(HeapObject* object) {
3619   Address address = object->address();
3620   MemoryChunk* chunk = MemoryChunk::FromAddress(address);
3621 
3622   bool owned = (chunk->owner() == this);
3623 
3624   SLOW_DCHECK(!owned || FindObject(address)->IsHeapObject());
3625 
3626   return owned;
3627 }
3628 
3629 std::unique_ptr<ObjectIterator> LargeObjectSpace::GetObjectIterator() {
3630   return std::unique_ptr<ObjectIterator>(new LargeObjectIterator(this));
3631 }
3632 
3633 #ifdef VERIFY_HEAP
3634 // We do not assume that the large object iterator works, because it depends
3635 // on the invariants we are checking during verification.
3636 void LargeObjectSpace::Verify(Isolate* isolate) {
3637   size_t external_backing_store_bytes[kNumTypes];
3638 
3639   for (int i = 0; i < kNumTypes; i++) {
3640     external_backing_store_bytes[static_cast<ExternalBackingStoreType>(i)] = 0;
3641   }
3642 
3643   for (LargePage* chunk = first_page(); chunk != nullptr;
3644        chunk = chunk->next_page()) {
3645     // Each chunk contains an object that starts at the large object page's
3646     // object area start.
3647     HeapObject* object = chunk->GetObject();
3648     Page* page = Page::FromAddress(object->address());
3649     CHECK(object->address() == page->area_start());
3650 
3651     // The first word should be a map, and we expect all map pointers to be
3652     // in map space or read-only space.
3653     Map* map = object->map();
3654     CHECK(map->IsMap());
3655     CHECK(heap()->map_space()->Contains(map) ||
3656           heap()->read_only_space()->Contains(map));
3657 
3658     // We have only the following types in the large object space:
3659     CHECK(object->IsAbstractCode() || object->IsSeqString() ||
3660           object->IsExternalString() || object->IsThinString() ||
3661           object->IsFixedArray() || object->IsFixedDoubleArray() ||
3662           object->IsWeakFixedArray() || object->IsWeakArrayList() ||
3663           object->IsPropertyArray() || object->IsByteArray() ||
3664           object->IsFeedbackVector() || object->IsBigInt() ||
3665           object->IsFreeSpace() || object->IsFeedbackMetadata());
3666 
3667     // The object itself should look OK.
3668     object->ObjectVerify(isolate);
3669 
3670     if (!FLAG_verify_heap_skip_remembered_set) {
3671       heap()->VerifyRememberedSetFor(object);
3672     }
3673 
3674     // Byte arrays and strings don't have interior pointers.
3675     if (object->IsAbstractCode()) {
3676       VerifyPointersVisitor code_visitor(heap());
3677       object->IterateBody(map, object->Size(), &code_visitor);
3678     } else if (object->IsFixedArray()) {
3679       FixedArray* array = FixedArray::cast(object);
3680       for (int j = 0; j < array->length(); j++) {
3681         Object* element = array->get(j);
3682         if (element->IsHeapObject()) {
3683           HeapObject* element_object = HeapObject::cast(element);
3684           CHECK(heap()->Contains(element_object));
3685           CHECK(element_object->map()->IsMap());
3686         }
3687       }
3688     } else if (object->IsPropertyArray()) {
3689       PropertyArray* array = PropertyArray::cast(object);
3690       for (int j = 0; j < array->length(); j++) {
3691         Object* property = array->get(j);
3692         if (property->IsHeapObject()) {
3693           HeapObject* property_object = HeapObject::cast(property);
3694           CHECK(heap()->Contains(property_object));
3695           CHECK(property_object->map()->IsMap());
3696         }
3697       }
3698     }
3699     for (int i = 0; i < kNumTypes; i++) {
3700       ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
3701       external_backing_store_bytes[t] += chunk->ExternalBackingStoreBytes(t);
3702     }
3703   }
3704   for (int i = 0; i < kNumTypes; i++) {
3705     ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
3706     CHECK_EQ(external_backing_store_bytes[t], ExternalBackingStoreBytes(t));
3707   }
3708 }
3709 #endif
3710 
3711 #ifdef DEBUG
3712 void LargeObjectSpace::Print() {
3713   StdoutStream os;
3714   LargeObjectIterator it(this);
3715   for (HeapObject* obj = it.Next(); obj != nullptr; obj = it.Next()) {
3716     obj->Print(os);
3717   }
3718 }
3719 
3720 void Page::Print() {
3721   // Make a best-effort to print the objects in the page.
3722   PrintF("Page@%p in %s\n", reinterpret_cast<void*>(this->address()),
3723          this->owner()->name());
3724   printf(" --------------------------------------\n");
3725   HeapObjectIterator objects(this);
3726   unsigned mark_size = 0;
3727   for (HeapObject* object = objects.Next(); object != nullptr;
3728        object = objects.Next()) {
3729     bool is_marked =
3730         heap()->incremental_marking()->marking_state()->IsBlackOrGrey(object);
3731     PrintF(" %c ", (is_marked ? '!' : ' '));  // Indent a little.
3732     if (is_marked) {
3733       mark_size += object->Size();
3734     }
3735     object->ShortPrint();
3736     PrintF("\n");
3737   }
3738   printf(" --------------------------------------\n");
3739   printf(" Marked: %x, LiveCount: %" V8PRIdPTR "\n", mark_size,
3740          heap()->incremental_marking()->marking_state()->live_bytes(this));
3741 }
3742 
3743 #endif  // DEBUG
3744 
3745 NewLargeObjectSpace::NewLargeObjectSpace(Heap* heap)
3746     : LargeObjectSpace(heap, NEW_LO_SPACE) {}
3747 
3748 AllocationResult NewLargeObjectSpace::AllocateRaw(int object_size) {
3749   // TODO(hpayer): Add heap growing strategy here.
3750   LargePage* page = AllocateLargePage(object_size, NOT_EXECUTABLE);
3751   if (page == nullptr) return AllocationResult::Retry(identity());
3752   page->SetYoungGenerationPageFlags(heap()->incremental_marking()->IsMarking());
3753   page->SetFlag(MemoryChunk::IN_TO_SPACE);
3754   page->InitializationMemoryFence();
3755   return page->GetObject();
3756 }
3757 
3758 size_t NewLargeObjectSpace::Available() {
3759   // TODO(hpayer): Update as soon as we have a growing strategy.
3760   return 0;
3761 }
3762 }  // namespace internal
3763 }  // namespace v8
3764