1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements C++ semantic analysis for scope specifiers.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/NestedNameSpecifier.h"
20 #include "clang/Basic/PartialDiagnostic.h"
21 #include "clang/Sema/DeclSpec.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/Template.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/Support/raw_ostream.h"
26 using namespace clang;
27 
28 /// \brief Find the current instantiation that associated with the given type.
getCurrentInstantiationOf(QualType T,DeclContext * CurContext)29 static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
30                                                 DeclContext *CurContext) {
31   if (T.isNull())
32     return nullptr;
33 
34   const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
35   if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
36     CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
37     if (!Record->isDependentContext() ||
38         Record->isCurrentInstantiation(CurContext))
39       return Record;
40 
41     return nullptr;
42   } else if (isa<InjectedClassNameType>(Ty))
43     return cast<InjectedClassNameType>(Ty)->getDecl();
44   else
45     return nullptr;
46 }
47 
48 /// \brief Compute the DeclContext that is associated with the given type.
49 ///
50 /// \param T the type for which we are attempting to find a DeclContext.
51 ///
52 /// \returns the declaration context represented by the type T,
53 /// or NULL if the declaration context cannot be computed (e.g., because it is
54 /// dependent and not the current instantiation).
computeDeclContext(QualType T)55 DeclContext *Sema::computeDeclContext(QualType T) {
56   if (!T->isDependentType())
57     if (const TagType *Tag = T->getAs<TagType>())
58       return Tag->getDecl();
59 
60   return ::getCurrentInstantiationOf(T, CurContext);
61 }
62 
63 /// \brief Compute the DeclContext that is associated with the given
64 /// scope specifier.
65 ///
66 /// \param SS the C++ scope specifier as it appears in the source
67 ///
68 /// \param EnteringContext when true, we will be entering the context of
69 /// this scope specifier, so we can retrieve the declaration context of a
70 /// class template or class template partial specialization even if it is
71 /// not the current instantiation.
72 ///
73 /// \returns the declaration context represented by the scope specifier @p SS,
74 /// or NULL if the declaration context cannot be computed (e.g., because it is
75 /// dependent and not the current instantiation).
computeDeclContext(const CXXScopeSpec & SS,bool EnteringContext)76 DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
77                                       bool EnteringContext) {
78   if (!SS.isSet() || SS.isInvalid())
79     return nullptr;
80 
81   NestedNameSpecifier *NNS = SS.getScopeRep();
82   if (NNS->isDependent()) {
83     // If this nested-name-specifier refers to the current
84     // instantiation, return its DeclContext.
85     if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
86       return Record;
87 
88     if (EnteringContext) {
89       const Type *NNSType = NNS->getAsType();
90       if (!NNSType) {
91         return nullptr;
92       }
93 
94       // Look through type alias templates, per C++0x [temp.dep.type]p1.
95       NNSType = Context.getCanonicalType(NNSType);
96       if (const TemplateSpecializationType *SpecType
97             = NNSType->getAs<TemplateSpecializationType>()) {
98         // We are entering the context of the nested name specifier, so try to
99         // match the nested name specifier to either a primary class template
100         // or a class template partial specialization.
101         if (ClassTemplateDecl *ClassTemplate
102               = dyn_cast_or_null<ClassTemplateDecl>(
103                             SpecType->getTemplateName().getAsTemplateDecl())) {
104           QualType ContextType
105             = Context.getCanonicalType(QualType(SpecType, 0));
106 
107           // If the type of the nested name specifier is the same as the
108           // injected class name of the named class template, we're entering
109           // into that class template definition.
110           QualType Injected
111             = ClassTemplate->getInjectedClassNameSpecialization();
112           if (Context.hasSameType(Injected, ContextType))
113             return ClassTemplate->getTemplatedDecl();
114 
115           // If the type of the nested name specifier is the same as the
116           // type of one of the class template's class template partial
117           // specializations, we're entering into the definition of that
118           // class template partial specialization.
119           if (ClassTemplatePartialSpecializationDecl *PartialSpec
120                 = ClassTemplate->findPartialSpecialization(ContextType)) {
121             // A declaration of the partial specialization must be visible.
122             // We can always recover here, because this only happens when we're
123             // entering the context, and that can't happen in a SFINAE context.
124             assert(!isSFINAEContext() &&
125                    "partial specialization scope specifier in SFINAE context?");
126             if (!hasVisibleDeclaration(PartialSpec))
127               diagnoseMissingImport(SS.getLastQualifierNameLoc(), PartialSpec,
128                                     MissingImportKind::PartialSpecialization,
129                                     /*Recover*/true);
130             return PartialSpec;
131           }
132         }
133       } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
134         // The nested name specifier refers to a member of a class template.
135         return RecordT->getDecl();
136       }
137     }
138 
139     return nullptr;
140   }
141 
142   switch (NNS->getKind()) {
143   case NestedNameSpecifier::Identifier:
144     llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
145 
146   case NestedNameSpecifier::Namespace:
147     return NNS->getAsNamespace();
148 
149   case NestedNameSpecifier::NamespaceAlias:
150     return NNS->getAsNamespaceAlias()->getNamespace();
151 
152   case NestedNameSpecifier::TypeSpec:
153   case NestedNameSpecifier::TypeSpecWithTemplate: {
154     const TagType *Tag = NNS->getAsType()->getAs<TagType>();
155     assert(Tag && "Non-tag type in nested-name-specifier");
156     return Tag->getDecl();
157   }
158 
159   case NestedNameSpecifier::Global:
160     return Context.getTranslationUnitDecl();
161 
162   case NestedNameSpecifier::Super:
163     return NNS->getAsRecordDecl();
164   }
165 
166   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
167 }
168 
isDependentScopeSpecifier(const CXXScopeSpec & SS)169 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
170   if (!SS.isSet() || SS.isInvalid())
171     return false;
172 
173   return SS.getScopeRep()->isDependent();
174 }
175 
176 /// \brief If the given nested name specifier refers to the current
177 /// instantiation, return the declaration that corresponds to that
178 /// current instantiation (C++0x [temp.dep.type]p1).
179 ///
180 /// \param NNS a dependent nested name specifier.
getCurrentInstantiationOf(NestedNameSpecifier * NNS)181 CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
182   assert(getLangOpts().CPlusPlus && "Only callable in C++");
183   assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
184 
185   if (!NNS->getAsType())
186     return nullptr;
187 
188   QualType T = QualType(NNS->getAsType(), 0);
189   return ::getCurrentInstantiationOf(T, CurContext);
190 }
191 
192 /// \brief Require that the context specified by SS be complete.
193 ///
194 /// If SS refers to a type, this routine checks whether the type is
195 /// complete enough (or can be made complete enough) for name lookup
196 /// into the DeclContext. A type that is not yet completed can be
197 /// considered "complete enough" if it is a class/struct/union/enum
198 /// that is currently being defined. Or, if we have a type that names
199 /// a class template specialization that is not a complete type, we
200 /// will attempt to instantiate that class template.
RequireCompleteDeclContext(CXXScopeSpec & SS,DeclContext * DC)201 bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
202                                       DeclContext *DC) {
203   assert(DC && "given null context");
204 
205   TagDecl *tag = dyn_cast<TagDecl>(DC);
206 
207   // If this is a dependent type, then we consider it complete.
208   // FIXME: This is wrong; we should require a (visible) definition to
209   // exist in this case too.
210   if (!tag || tag->isDependentContext())
211     return false;
212 
213   // If we're currently defining this type, then lookup into the
214   // type is okay: don't complain that it isn't complete yet.
215   QualType type = Context.getTypeDeclType(tag);
216   const TagType *tagType = type->getAs<TagType>();
217   if (tagType && tagType->isBeingDefined())
218     return false;
219 
220   SourceLocation loc = SS.getLastQualifierNameLoc();
221   if (loc.isInvalid()) loc = SS.getRange().getBegin();
222 
223   // The type must be complete.
224   if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
225                           SS.getRange())) {
226     SS.SetInvalid(SS.getRange());
227     return true;
228   }
229 
230   // Fixed enum types are complete, but they aren't valid as scopes
231   // until we see a definition, so awkwardly pull out this special
232   // case.
233   const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType);
234   if (!enumType)
235     return false;
236   if (enumType->getDecl()->isCompleteDefinition()) {
237     // If we know about the definition but it is not visible, complain.
238     NamedDecl *SuggestedDef = nullptr;
239     if (!hasVisibleDefinition(enumType->getDecl(), &SuggestedDef,
240                               /*OnlyNeedComplete*/false)) {
241       // If the user is going to see an error here, recover by making the
242       // definition visible.
243       bool TreatAsComplete = !isSFINAEContext();
244       diagnoseMissingImport(loc, SuggestedDef, MissingImportKind::Definition,
245                             /*Recover*/TreatAsComplete);
246       return !TreatAsComplete;
247     }
248     return false;
249   }
250 
251   // Try to instantiate the definition, if this is a specialization of an
252   // enumeration temploid.
253   EnumDecl *ED = enumType->getDecl();
254   if (EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
255     MemberSpecializationInfo *MSI = ED->getMemberSpecializationInfo();
256     if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
257       if (InstantiateEnum(loc, ED, Pattern, getTemplateInstantiationArgs(ED),
258                           TSK_ImplicitInstantiation)) {
259         SS.SetInvalid(SS.getRange());
260         return true;
261       }
262       return false;
263     }
264   }
265 
266   Diag(loc, diag::err_incomplete_nested_name_spec)
267     << type << SS.getRange();
268   SS.SetInvalid(SS.getRange());
269   return true;
270 }
271 
ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc,CXXScopeSpec & SS)272 bool Sema::ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc,
273                                         CXXScopeSpec &SS) {
274   SS.MakeGlobal(Context, CCLoc);
275   return false;
276 }
277 
ActOnSuperScopeSpecifier(SourceLocation SuperLoc,SourceLocation ColonColonLoc,CXXScopeSpec & SS)278 bool Sema::ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
279                                     SourceLocation ColonColonLoc,
280                                     CXXScopeSpec &SS) {
281   CXXRecordDecl *RD = nullptr;
282   for (Scope *S = getCurScope(); S; S = S->getParent()) {
283     if (S->isFunctionScope()) {
284       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(S->getEntity()))
285         RD = MD->getParent();
286       break;
287     }
288     if (S->isClassScope()) {
289       RD = cast<CXXRecordDecl>(S->getEntity());
290       break;
291     }
292   }
293 
294   if (!RD) {
295     Diag(SuperLoc, diag::err_invalid_super_scope);
296     return true;
297   } else if (RD->isLambda()) {
298     Diag(SuperLoc, diag::err_super_in_lambda_unsupported);
299     return true;
300   } else if (RD->getNumBases() == 0) {
301     Diag(SuperLoc, diag::err_no_base_classes) << RD->getName();
302     return true;
303   }
304 
305   SS.MakeSuper(Context, RD, SuperLoc, ColonColonLoc);
306   return false;
307 }
308 
309 /// \brief Determines whether the given declaration is an valid acceptable
310 /// result for name lookup of a nested-name-specifier.
311 /// \param SD Declaration checked for nested-name-specifier.
312 /// \param IsExtension If not null and the declaration is accepted as an
313 /// extension, the pointed variable is assigned true.
isAcceptableNestedNameSpecifier(const NamedDecl * SD,bool * IsExtension)314 bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD,
315                                            bool *IsExtension) {
316   if (!SD)
317     return false;
318 
319   SD = SD->getUnderlyingDecl();
320 
321   // Namespace and namespace aliases are fine.
322   if (isa<NamespaceDecl>(SD))
323     return true;
324 
325   if (!isa<TypeDecl>(SD))
326     return false;
327 
328   // Determine whether we have a class (or, in C++11, an enum) or
329   // a typedef thereof. If so, build the nested-name-specifier.
330   QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
331   if (T->isDependentType())
332     return true;
333   if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
334     if (TD->getUnderlyingType()->isRecordType())
335       return true;
336     if (TD->getUnderlyingType()->isEnumeralType()) {
337       if (Context.getLangOpts().CPlusPlus11)
338         return true;
339       if (IsExtension)
340         *IsExtension = true;
341     }
342   } else if (isa<RecordDecl>(SD)) {
343     return true;
344   } else if (isa<EnumDecl>(SD)) {
345     if (Context.getLangOpts().CPlusPlus11)
346       return true;
347     if (IsExtension)
348       *IsExtension = true;
349   }
350 
351   return false;
352 }
353 
354 /// \brief If the given nested-name-specifier begins with a bare identifier
355 /// (e.g., Base::), perform name lookup for that identifier as a
356 /// nested-name-specifier within the given scope, and return the result of that
357 /// name lookup.
FindFirstQualifierInScope(Scope * S,NestedNameSpecifier * NNS)358 NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
359   if (!S || !NNS)
360     return nullptr;
361 
362   while (NNS->getPrefix())
363     NNS = NNS->getPrefix();
364 
365   if (NNS->getKind() != NestedNameSpecifier::Identifier)
366     return nullptr;
367 
368   LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
369                      LookupNestedNameSpecifierName);
370   LookupName(Found, S);
371   assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
372 
373   if (!Found.isSingleResult())
374     return nullptr;
375 
376   NamedDecl *Result = Found.getFoundDecl();
377   if (isAcceptableNestedNameSpecifier(Result))
378     return Result;
379 
380   return nullptr;
381 }
382 
isNonTypeNestedNameSpecifier(Scope * S,CXXScopeSpec & SS,SourceLocation IdLoc,IdentifierInfo & II,ParsedType ObjectTypePtr)383 bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
384                                         SourceLocation IdLoc,
385                                         IdentifierInfo &II,
386                                         ParsedType ObjectTypePtr) {
387   QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
388   LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
389 
390   // Determine where to perform name lookup
391   DeclContext *LookupCtx = nullptr;
392   bool isDependent = false;
393   if (!ObjectType.isNull()) {
394     // This nested-name-specifier occurs in a member access expression, e.g.,
395     // x->B::f, and we are looking into the type of the object.
396     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
397     LookupCtx = computeDeclContext(ObjectType);
398     isDependent = ObjectType->isDependentType();
399   } else if (SS.isSet()) {
400     // This nested-name-specifier occurs after another nested-name-specifier,
401     // so long into the context associated with the prior nested-name-specifier.
402     LookupCtx = computeDeclContext(SS, false);
403     isDependent = isDependentScopeSpecifier(SS);
404     Found.setContextRange(SS.getRange());
405   }
406 
407   if (LookupCtx) {
408     // Perform "qualified" name lookup into the declaration context we
409     // computed, which is either the type of the base of a member access
410     // expression or the declaration context associated with a prior
411     // nested-name-specifier.
412 
413     // The declaration context must be complete.
414     if (!LookupCtx->isDependentContext() &&
415         RequireCompleteDeclContext(SS, LookupCtx))
416       return false;
417 
418     LookupQualifiedName(Found, LookupCtx);
419   } else if (isDependent) {
420     return false;
421   } else {
422     LookupName(Found, S);
423   }
424   Found.suppressDiagnostics();
425 
426   return Found.getAsSingle<NamespaceDecl>();
427 }
428 
429 namespace {
430 
431 // Callback to only accept typo corrections that can be a valid C++ member
432 // intializer: either a non-static field member or a base class.
433 class NestedNameSpecifierValidatorCCC : public CorrectionCandidateCallback {
434  public:
NestedNameSpecifierValidatorCCC(Sema & SRef)435   explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
436       : SRef(SRef) {}
437 
ValidateCandidate(const TypoCorrection & candidate)438   bool ValidateCandidate(const TypoCorrection &candidate) override {
439     return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
440   }
441 
442  private:
443   Sema &SRef;
444 };
445 
446 }
447 
448 /// \brief Build a new nested-name-specifier for "identifier::", as described
449 /// by ActOnCXXNestedNameSpecifier.
450 ///
451 /// \param S Scope in which the nested-name-specifier occurs.
452 /// \param Identifier Identifier in the sequence "identifier" "::".
453 /// \param IdentifierLoc Location of the \p Identifier.
454 /// \param CCLoc Location of "::" following Identifier.
455 /// \param ObjectType Type of postfix expression if the nested-name-specifier
456 ///        occurs in construct like: <tt>ptr->nns::f</tt>.
457 /// \param EnteringContext If true, enter the context specified by the
458 ///        nested-name-specifier.
459 /// \param SS Optional nested name specifier preceding the identifier.
460 /// \param ScopeLookupResult Provides the result of name lookup within the
461 ///        scope of the nested-name-specifier that was computed at template
462 ///        definition time.
463 /// \param ErrorRecoveryLookup Specifies if the method is called to improve
464 ///        error recovery and what kind of recovery is performed.
465 /// \param IsCorrectedToColon If not null, suggestion of replace '::' -> ':'
466 ///        are allowed.  The bool value pointed by this parameter is set to
467 ///       'true' if the identifier is treated as if it was followed by ':',
468 ///        not '::'.
469 ///
470 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
471 /// that it contains an extra parameter \p ScopeLookupResult, which provides
472 /// the result of name lookup within the scope of the nested-name-specifier
473 /// that was computed at template definition time.
474 ///
475 /// If ErrorRecoveryLookup is true, then this call is used to improve error
476 /// recovery.  This means that it should not emit diagnostics, it should
477 /// just return true on failure.  It also means it should only return a valid
478 /// scope if it *knows* that the result is correct.  It should not return in a
479 /// dependent context, for example. Nor will it extend \p SS with the scope
480 /// specifier.
BuildCXXNestedNameSpecifier(Scope * S,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation CCLoc,QualType ObjectType,bool EnteringContext,CXXScopeSpec & SS,NamedDecl * ScopeLookupResult,bool ErrorRecoveryLookup,bool * IsCorrectedToColon)481 bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
482                                        IdentifierInfo &Identifier,
483                                        SourceLocation IdentifierLoc,
484                                        SourceLocation CCLoc,
485                                        QualType ObjectType,
486                                        bool EnteringContext,
487                                        CXXScopeSpec &SS,
488                                        NamedDecl *ScopeLookupResult,
489                                        bool ErrorRecoveryLookup,
490                                        bool *IsCorrectedToColon) {
491   LookupResult Found(*this, &Identifier, IdentifierLoc,
492                      LookupNestedNameSpecifierName);
493 
494   // Determine where to perform name lookup
495   DeclContext *LookupCtx = nullptr;
496   bool isDependent = false;
497   if (IsCorrectedToColon)
498     *IsCorrectedToColon = false;
499   if (!ObjectType.isNull()) {
500     // This nested-name-specifier occurs in a member access expression, e.g.,
501     // x->B::f, and we are looking into the type of the object.
502     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
503     LookupCtx = computeDeclContext(ObjectType);
504     isDependent = ObjectType->isDependentType();
505   } else if (SS.isSet()) {
506     // This nested-name-specifier occurs after another nested-name-specifier,
507     // so look into the context associated with the prior nested-name-specifier.
508     LookupCtx = computeDeclContext(SS, EnteringContext);
509     isDependent = isDependentScopeSpecifier(SS);
510     Found.setContextRange(SS.getRange());
511   }
512 
513   bool ObjectTypeSearchedInScope = false;
514   if (LookupCtx) {
515     // Perform "qualified" name lookup into the declaration context we
516     // computed, which is either the type of the base of a member access
517     // expression or the declaration context associated with a prior
518     // nested-name-specifier.
519 
520     // The declaration context must be complete.
521     if (!LookupCtx->isDependentContext() &&
522         RequireCompleteDeclContext(SS, LookupCtx))
523       return true;
524 
525     LookupQualifiedName(Found, LookupCtx);
526 
527     if (!ObjectType.isNull() && Found.empty()) {
528       // C++ [basic.lookup.classref]p4:
529       //   If the id-expression in a class member access is a qualified-id of
530       //   the form
531       //
532       //        class-name-or-namespace-name::...
533       //
534       //   the class-name-or-namespace-name following the . or -> operator is
535       //   looked up both in the context of the entire postfix-expression and in
536       //   the scope of the class of the object expression. If the name is found
537       //   only in the scope of the class of the object expression, the name
538       //   shall refer to a class-name. If the name is found only in the
539       //   context of the entire postfix-expression, the name shall refer to a
540       //   class-name or namespace-name. [...]
541       //
542       // Qualified name lookup into a class will not find a namespace-name,
543       // so we do not need to diagnose that case specifically. However,
544       // this qualified name lookup may find nothing. In that case, perform
545       // unqualified name lookup in the given scope (if available) or
546       // reconstruct the result from when name lookup was performed at template
547       // definition time.
548       if (S)
549         LookupName(Found, S);
550       else if (ScopeLookupResult)
551         Found.addDecl(ScopeLookupResult);
552 
553       ObjectTypeSearchedInScope = true;
554     }
555   } else if (!isDependent) {
556     // Perform unqualified name lookup in the current scope.
557     LookupName(Found, S);
558   }
559 
560   if (Found.isAmbiguous())
561     return true;
562 
563   // If we performed lookup into a dependent context and did not find anything,
564   // that's fine: just build a dependent nested-name-specifier.
565   if (Found.empty() && isDependent &&
566       !(LookupCtx && LookupCtx->isRecord() &&
567         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
568          !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
569     // Don't speculate if we're just trying to improve error recovery.
570     if (ErrorRecoveryLookup)
571       return true;
572 
573     // We were not able to compute the declaration context for a dependent
574     // base object type or prior nested-name-specifier, so this
575     // nested-name-specifier refers to an unknown specialization. Just build
576     // a dependent nested-name-specifier.
577     SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
578     return false;
579   }
580 
581   if (Found.empty() && !ErrorRecoveryLookup) {
582     // If identifier is not found as class-name-or-namespace-name, but is found
583     // as other entity, don't look for typos.
584     LookupResult R(*this, Found.getLookupNameInfo(), LookupOrdinaryName);
585     if (LookupCtx)
586       LookupQualifiedName(R, LookupCtx);
587     else if (S && !isDependent)
588       LookupName(R, S);
589     if (!R.empty()) {
590       // Don't diagnose problems with this speculative lookup.
591       R.suppressDiagnostics();
592       // The identifier is found in ordinary lookup. If correction to colon is
593       // allowed, suggest replacement to ':'.
594       if (IsCorrectedToColon) {
595         *IsCorrectedToColon = true;
596         Diag(CCLoc, diag::err_nested_name_spec_is_not_class)
597             << &Identifier << getLangOpts().CPlusPlus
598             << FixItHint::CreateReplacement(CCLoc, ":");
599         if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
600           Diag(ND->getLocation(), diag::note_declared_at);
601         return true;
602       }
603       // Replacement '::' -> ':' is not allowed, just issue respective error.
604       Diag(R.getNameLoc(), diag::err_expected_class_or_namespace)
605           << &Identifier << getLangOpts().CPlusPlus;
606       if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
607         Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier;
608       return true;
609     }
610   }
611 
612   if (Found.empty() && !ErrorRecoveryLookup && !getLangOpts().MSVCCompat) {
613     // We haven't found anything, and we're not recovering from a
614     // different kind of error, so look for typos.
615     DeclarationName Name = Found.getLookupName();
616     Found.clear();
617     if (TypoCorrection Corrected = CorrectTypo(
618             Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS,
619             llvm::make_unique<NestedNameSpecifierValidatorCCC>(*this),
620             CTK_ErrorRecovery, LookupCtx, EnteringContext)) {
621       if (LookupCtx) {
622         bool DroppedSpecifier =
623             Corrected.WillReplaceSpecifier() &&
624             Name.getAsString() == Corrected.getAsString(getLangOpts());
625         if (DroppedSpecifier)
626           SS.clear();
627         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
628                                   << Name << LookupCtx << DroppedSpecifier
629                                   << SS.getRange());
630       } else
631         diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest)
632                                   << Name);
633 
634       if (Corrected.getCorrectionSpecifier())
635         SS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
636                        SourceRange(Found.getNameLoc()));
637 
638       if (NamedDecl *ND = Corrected.getFoundDecl())
639         Found.addDecl(ND);
640       Found.setLookupName(Corrected.getCorrection());
641     } else {
642       Found.setLookupName(&Identifier);
643     }
644   }
645 
646   NamedDecl *SD =
647       Found.isSingleResult() ? Found.getRepresentativeDecl() : nullptr;
648   bool IsExtension = false;
649   bool AcceptSpec = isAcceptableNestedNameSpecifier(SD, &IsExtension);
650   if (!AcceptSpec && IsExtension) {
651     AcceptSpec = true;
652     Diag(IdentifierLoc, diag::ext_nested_name_spec_is_enum);
653   }
654   if (AcceptSpec) {
655     if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
656         !getLangOpts().CPlusPlus11) {
657       // C++03 [basic.lookup.classref]p4:
658       //   [...] If the name is found in both contexts, the
659       //   class-name-or-namespace-name shall refer to the same entity.
660       //
661       // We already found the name in the scope of the object. Now, look
662       // into the current scope (the scope of the postfix-expression) to
663       // see if we can find the same name there. As above, if there is no
664       // scope, reconstruct the result from the template instantiation itself.
665       //
666       // Note that C++11 does *not* perform this redundant lookup.
667       NamedDecl *OuterDecl;
668       if (S) {
669         LookupResult FoundOuter(*this, &Identifier, IdentifierLoc,
670                                 LookupNestedNameSpecifierName);
671         LookupName(FoundOuter, S);
672         OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
673       } else
674         OuterDecl = ScopeLookupResult;
675 
676       if (isAcceptableNestedNameSpecifier(OuterDecl) &&
677           OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
678           (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
679            !Context.hasSameType(
680                             Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
681                                Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
682         if (ErrorRecoveryLookup)
683           return true;
684 
685          Diag(IdentifierLoc,
686               diag::err_nested_name_member_ref_lookup_ambiguous)
687            << &Identifier;
688          Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
689            << ObjectType;
690          Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
691 
692          // Fall through so that we'll pick the name we found in the object
693          // type, since that's probably what the user wanted anyway.
694        }
695     }
696 
697     if (auto *TD = dyn_cast_or_null<TypedefNameDecl>(SD))
698       MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
699 
700     // If we're just performing this lookup for error-recovery purposes,
701     // don't extend the nested-name-specifier. Just return now.
702     if (ErrorRecoveryLookup)
703       return false;
704 
705     // The use of a nested name specifier may trigger deprecation warnings.
706     DiagnoseUseOfDecl(SD, CCLoc);
707 
708 
709     if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
710       SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
711       return false;
712     }
713 
714     if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
715       SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
716       return false;
717     }
718 
719     QualType T =
720         Context.getTypeDeclType(cast<TypeDecl>(SD->getUnderlyingDecl()));
721     TypeLocBuilder TLB;
722     if (isa<InjectedClassNameType>(T)) {
723       InjectedClassNameTypeLoc InjectedTL
724         = TLB.push<InjectedClassNameTypeLoc>(T);
725       InjectedTL.setNameLoc(IdentifierLoc);
726     } else if (isa<RecordType>(T)) {
727       RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
728       RecordTL.setNameLoc(IdentifierLoc);
729     } else if (isa<TypedefType>(T)) {
730       TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
731       TypedefTL.setNameLoc(IdentifierLoc);
732     } else if (isa<EnumType>(T)) {
733       EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
734       EnumTL.setNameLoc(IdentifierLoc);
735     } else if (isa<TemplateTypeParmType>(T)) {
736       TemplateTypeParmTypeLoc TemplateTypeTL
737         = TLB.push<TemplateTypeParmTypeLoc>(T);
738       TemplateTypeTL.setNameLoc(IdentifierLoc);
739     } else if (isa<UnresolvedUsingType>(T)) {
740       UnresolvedUsingTypeLoc UnresolvedTL
741         = TLB.push<UnresolvedUsingTypeLoc>(T);
742       UnresolvedTL.setNameLoc(IdentifierLoc);
743     } else if (isa<SubstTemplateTypeParmType>(T)) {
744       SubstTemplateTypeParmTypeLoc TL
745         = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
746       TL.setNameLoc(IdentifierLoc);
747     } else if (isa<SubstTemplateTypeParmPackType>(T)) {
748       SubstTemplateTypeParmPackTypeLoc TL
749         = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
750       TL.setNameLoc(IdentifierLoc);
751     } else {
752       llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
753     }
754 
755     if (T->isEnumeralType())
756       Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
757 
758     SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
759               CCLoc);
760     return false;
761   }
762 
763   // Otherwise, we have an error case.  If we don't want diagnostics, just
764   // return an error now.
765   if (ErrorRecoveryLookup)
766     return true;
767 
768   // If we didn't find anything during our lookup, try again with
769   // ordinary name lookup, which can help us produce better error
770   // messages.
771   if (Found.empty()) {
772     Found.clear(LookupOrdinaryName);
773     LookupName(Found, S);
774   }
775 
776   // In Microsoft mode, if we are within a templated function and we can't
777   // resolve Identifier, then extend the SS with Identifier. This will have
778   // the effect of resolving Identifier during template instantiation.
779   // The goal is to be able to resolve a function call whose
780   // nested-name-specifier is located inside a dependent base class.
781   // Example:
782   //
783   // class C {
784   // public:
785   //    static void foo2() {  }
786   // };
787   // template <class T> class A { public: typedef C D; };
788   //
789   // template <class T> class B : public A<T> {
790   // public:
791   //   void foo() { D::foo2(); }
792   // };
793   if (getLangOpts().MSVCCompat) {
794     DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
795     if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
796       CXXRecordDecl *ContainingClass = dyn_cast<CXXRecordDecl>(DC->getParent());
797       if (ContainingClass && ContainingClass->hasAnyDependentBases()) {
798         Diag(IdentifierLoc, diag::ext_undeclared_unqual_id_with_dependent_base)
799             << &Identifier << ContainingClass;
800         SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
801         return false;
802       }
803     }
804   }
805 
806   if (!Found.empty()) {
807     if (TypeDecl *TD = Found.getAsSingle<TypeDecl>())
808       Diag(IdentifierLoc, diag::err_expected_class_or_namespace)
809           << QualType(TD->getTypeForDecl(), 0) << getLangOpts().CPlusPlus;
810     else {
811       Diag(IdentifierLoc, diag::err_expected_class_or_namespace)
812           << &Identifier << getLangOpts().CPlusPlus;
813       if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
814         Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier;
815     }
816   } else if (SS.isSet())
817     Diag(IdentifierLoc, diag::err_no_member) << &Identifier << LookupCtx
818                                              << SS.getRange();
819   else
820     Diag(IdentifierLoc, diag::err_undeclared_var_use) << &Identifier;
821 
822   return true;
823 }
824 
ActOnCXXNestedNameSpecifier(Scope * S,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation CCLoc,ParsedType ObjectType,bool EnteringContext,CXXScopeSpec & SS,bool ErrorRecoveryLookup,bool * IsCorrectedToColon)825 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
826                                        IdentifierInfo &Identifier,
827                                        SourceLocation IdentifierLoc,
828                                        SourceLocation CCLoc,
829                                        ParsedType ObjectType,
830                                        bool EnteringContext,
831                                        CXXScopeSpec &SS,
832                                        bool ErrorRecoveryLookup,
833                                        bool *IsCorrectedToColon) {
834   if (SS.isInvalid())
835     return true;
836 
837   return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
838                                      GetTypeFromParser(ObjectType),
839                                      EnteringContext, SS,
840                                      /*ScopeLookupResult=*/nullptr, false,
841                                      IsCorrectedToColon);
842 }
843 
ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec & SS,const DeclSpec & DS,SourceLocation ColonColonLoc)844 bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
845                                                const DeclSpec &DS,
846                                                SourceLocation ColonColonLoc) {
847   if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
848     return true;
849 
850   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
851 
852   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
853   if (!T->isDependentType() && !T->getAs<TagType>()) {
854     Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class_or_namespace)
855       << T << getLangOpts().CPlusPlus;
856     return true;
857   }
858 
859   TypeLocBuilder TLB;
860   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
861   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
862   SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
863             ColonColonLoc);
864   return false;
865 }
866 
867 /// IsInvalidUnlessNestedName - This method is used for error recovery
868 /// purposes to determine whether the specified identifier is only valid as
869 /// a nested name specifier, for example a namespace name.  It is
870 /// conservatively correct to always return false from this method.
871 ///
872 /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
IsInvalidUnlessNestedName(Scope * S,CXXScopeSpec & SS,IdentifierInfo & Identifier,SourceLocation IdentifierLoc,SourceLocation ColonLoc,ParsedType ObjectType,bool EnteringContext)873 bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
874                                      IdentifierInfo &Identifier,
875                                      SourceLocation IdentifierLoc,
876                                      SourceLocation ColonLoc,
877                                      ParsedType ObjectType,
878                                      bool EnteringContext) {
879   if (SS.isInvalid())
880     return false;
881 
882   return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
883                                       GetTypeFromParser(ObjectType),
884                                       EnteringContext, SS,
885                                       /*ScopeLookupResult=*/nullptr, true);
886 }
887 
ActOnCXXNestedNameSpecifier(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy Template,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,SourceLocation CCLoc,bool EnteringContext)888 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
889                                        CXXScopeSpec &SS,
890                                        SourceLocation TemplateKWLoc,
891                                        TemplateTy Template,
892                                        SourceLocation TemplateNameLoc,
893                                        SourceLocation LAngleLoc,
894                                        ASTTemplateArgsPtr TemplateArgsIn,
895                                        SourceLocation RAngleLoc,
896                                        SourceLocation CCLoc,
897                                        bool EnteringContext) {
898   if (SS.isInvalid())
899     return true;
900 
901   // Translate the parser's template argument list in our AST format.
902   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
903   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
904 
905   DependentTemplateName *DTN = Template.get().getAsDependentTemplateName();
906   if (DTN && DTN->isIdentifier()) {
907     // Handle a dependent template specialization for which we cannot resolve
908     // the template name.
909     assert(DTN->getQualifier() == SS.getScopeRep());
910     QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
911                                                           DTN->getQualifier(),
912                                                           DTN->getIdentifier(),
913                                                                 TemplateArgs);
914 
915     // Create source-location information for this type.
916     TypeLocBuilder Builder;
917     DependentTemplateSpecializationTypeLoc SpecTL
918       = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
919     SpecTL.setElaboratedKeywordLoc(SourceLocation());
920     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
921     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
922     SpecTL.setTemplateNameLoc(TemplateNameLoc);
923     SpecTL.setLAngleLoc(LAngleLoc);
924     SpecTL.setRAngleLoc(RAngleLoc);
925     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
926       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
927 
928     SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
929               CCLoc);
930     return false;
931   }
932 
933   TemplateDecl *TD = Template.get().getAsTemplateDecl();
934   if (Template.get().getAsOverloadedTemplate() || DTN ||
935       isa<FunctionTemplateDecl>(TD) || isa<VarTemplateDecl>(TD)) {
936     SourceRange R(TemplateNameLoc, RAngleLoc);
937     if (SS.getRange().isValid())
938       R.setBegin(SS.getRange().getBegin());
939 
940     Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
941       << (TD && isa<VarTemplateDecl>(TD)) << Template.get() << R;
942     NoteAllFoundTemplates(Template.get());
943     return true;
944   }
945 
946   // We were able to resolve the template name to an actual template.
947   // Build an appropriate nested-name-specifier.
948   QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc,
949                                    TemplateArgs);
950   if (T.isNull())
951     return true;
952 
953   // Alias template specializations can produce types which are not valid
954   // nested name specifiers.
955   if (!T->isDependentType() && !T->getAs<TagType>()) {
956     Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
957     NoteAllFoundTemplates(Template.get());
958     return true;
959   }
960 
961   // Provide source-location information for the template specialization type.
962   TypeLocBuilder Builder;
963   TemplateSpecializationTypeLoc SpecTL
964     = Builder.push<TemplateSpecializationTypeLoc>(T);
965   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
966   SpecTL.setTemplateNameLoc(TemplateNameLoc);
967   SpecTL.setLAngleLoc(LAngleLoc);
968   SpecTL.setRAngleLoc(RAngleLoc);
969   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
970     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
971 
972 
973   SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
974             CCLoc);
975   return false;
976 }
977 
978 namespace {
979   /// \brief A structure that stores a nested-name-specifier annotation,
980   /// including both the nested-name-specifier
981   struct NestedNameSpecifierAnnotation {
982     NestedNameSpecifier *NNS;
983   };
984 }
985 
SaveNestedNameSpecifierAnnotation(CXXScopeSpec & SS)986 void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
987   if (SS.isEmpty() || SS.isInvalid())
988     return nullptr;
989 
990   void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
991                                                         SS.location_size()),
992                                llvm::alignOf<NestedNameSpecifierAnnotation>());
993   NestedNameSpecifierAnnotation *Annotation
994     = new (Mem) NestedNameSpecifierAnnotation;
995   Annotation->NNS = SS.getScopeRep();
996   memcpy(Annotation + 1, SS.location_data(), SS.location_size());
997   return Annotation;
998 }
999 
RestoreNestedNameSpecifierAnnotation(void * AnnotationPtr,SourceRange AnnotationRange,CXXScopeSpec & SS)1000 void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
1001                                                 SourceRange AnnotationRange,
1002                                                 CXXScopeSpec &SS) {
1003   if (!AnnotationPtr) {
1004     SS.SetInvalid(AnnotationRange);
1005     return;
1006   }
1007 
1008   NestedNameSpecifierAnnotation *Annotation
1009     = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
1010   SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
1011 }
1012 
ShouldEnterDeclaratorScope(Scope * S,const CXXScopeSpec & SS)1013 bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
1014   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1015 
1016   NestedNameSpecifier *Qualifier = SS.getScopeRep();
1017 
1018   // There are only two places a well-formed program may qualify a
1019   // declarator: first, when defining a namespace or class member
1020   // out-of-line, and second, when naming an explicitly-qualified
1021   // friend function.  The latter case is governed by
1022   // C++03 [basic.lookup.unqual]p10:
1023   //   In a friend declaration naming a member function, a name used
1024   //   in the function declarator and not part of a template-argument
1025   //   in a template-id is first looked up in the scope of the member
1026   //   function's class. If it is not found, or if the name is part of
1027   //   a template-argument in a template-id, the look up is as
1028   //   described for unqualified names in the definition of the class
1029   //   granting friendship.
1030   // i.e. we don't push a scope unless it's a class member.
1031 
1032   switch (Qualifier->getKind()) {
1033   case NestedNameSpecifier::Global:
1034   case NestedNameSpecifier::Namespace:
1035   case NestedNameSpecifier::NamespaceAlias:
1036     // These are always namespace scopes.  We never want to enter a
1037     // namespace scope from anything but a file context.
1038     return CurContext->getRedeclContext()->isFileContext();
1039 
1040   case NestedNameSpecifier::Identifier:
1041   case NestedNameSpecifier::TypeSpec:
1042   case NestedNameSpecifier::TypeSpecWithTemplate:
1043   case NestedNameSpecifier::Super:
1044     // These are never namespace scopes.
1045     return true;
1046   }
1047 
1048   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
1049 }
1050 
1051 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
1052 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
1053 /// After this method is called, according to [C++ 3.4.3p3], names should be
1054 /// looked up in the declarator-id's scope, until the declarator is parsed and
1055 /// ActOnCXXExitDeclaratorScope is called.
1056 /// The 'SS' should be a non-empty valid CXXScopeSpec.
ActOnCXXEnterDeclaratorScope(Scope * S,CXXScopeSpec & SS)1057 bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
1058   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1059 
1060   if (SS.isInvalid()) return true;
1061 
1062   DeclContext *DC = computeDeclContext(SS, true);
1063   if (!DC) return true;
1064 
1065   // Before we enter a declarator's context, we need to make sure that
1066   // it is a complete declaration context.
1067   if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
1068     return true;
1069 
1070   EnterDeclaratorContext(S, DC);
1071 
1072   // Rebuild the nested name specifier for the new scope.
1073   if (DC->isDependentContext())
1074     RebuildNestedNameSpecifierInCurrentInstantiation(SS);
1075 
1076   return false;
1077 }
1078 
1079 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
1080 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
1081 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
1082 /// Used to indicate that names should revert to being looked up in the
1083 /// defining scope.
ActOnCXXExitDeclaratorScope(Scope * S,const CXXScopeSpec & SS)1084 void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
1085   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1086   if (SS.isInvalid())
1087     return;
1088   assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
1089          "exiting declarator scope we never really entered");
1090   ExitDeclaratorContext(S);
1091 }
1092