1 /*!****************************************************************************
2 
3  @file         PVRTVector.h
4  @copyright    Copyright (c) Imagination Technologies Limited.
5  @brief        Vector and matrix mathematics library
6 
7 ******************************************************************************/
8 #ifndef __PVRTVECTOR_H__
9 #define __PVRTVECTOR_H__
10 
11 #include "assert.h"
12 #include "PVRTGlobal.h"
13 #include "PVRTFixedPoint.h"
14 #include "PVRTMatrix.h"
15 #include <string.h>
16 #include <math.h>
17 
18 /*!***************************************************************************
19 ** Forward Declarations for vector and matrix structs
20 ****************************************************************************/
21 struct PVRTVec4;
22 struct PVRTVec3;
23 struct PVRTMat3;
24 struct PVRTMat4;
25 
26 /*!***************************************************************************
27  @fn       			PVRTLinearEqSolve
28  @param[in]			pSrc	2D array of floats. 4 Eq linear problem is 5x4
29 							matrix, constants in first column
30  @param[in]			nCnt	Number of equations to solve
31  @param[out]		pRes	Result
32  @brief      		Solves 'nCnt' simultaneous equations of 'nCnt' variables.
33 					pRes should be an array large enough to contain the
34 					results: the values of the 'nCnt' variables.
35 					This fn recursively uses Gaussian Elimination.
36 *****************************************************************************/
37 void PVRTLinearEqSolve(VERTTYPE * const pRes, VERTTYPE ** const pSrc, const int nCnt);
38 
39 /*!***************************************************************************
40  @struct            PVRTVec2
41  @brief             2 component vector
42 *****************************************************************************/
43 struct PVRTVec2
44 {
45 	VERTTYPE x, y;
46 	/*!***************************************************************************
47 		** Constructors
48 		****************************************************************************/
49 	/*!***************************************************************************
50 		@brief      		Blank constructor.
51 		*****************************************************************************/
PVRTVec2PVRTVec252 	PVRTVec2() : x(0), y(0) {}
53 	/*!***************************************************************************
54 		@brief      		Simple constructor from 2 values.
55 		@param[in]			fX	X component of vector
56 		@param[in]			fY	Y component of vector
57 		*****************************************************************************/
PVRTVec2PVRTVec258 	PVRTVec2(VERTTYPE fX, VERTTYPE fY) : x(fX), y(fY) {}
59 	/*!***************************************************************************
60 		@brief      		Constructor from a single value.
61 		@param[in]			fValue	    A component value
62 		*****************************************************************************/
PVRTVec2PVRTVec263 	PVRTVec2(VERTTYPE fValue) : x(fValue), y(fValue) {}
64 	/*!***************************************************************************
65 		@brief      		Constructor from an array
66 		@param[in]			pVec	An array
67 		*****************************************************************************/
PVRTVec2PVRTVec268 	PVRTVec2(const VERTTYPE* pVec) : x(pVec[0]), y(pVec[1]) {}
69 	/*!***************************************************************************
70 		@brief      		Constructor from a Vec3
71 		@param[in]			v3Vec   A Vec3
72 		*****************************************************************************/
73 	PVRTVec2(const PVRTVec3& v3Vec);
74 	/*!***************************************************************************
75 		** Operators
76 		****************************************************************************/
77 	/*!***************************************************************************
78 		@brief      		componentwise addition operator for two Vec2s
79 		@param[in]			rhs     Another Vec2
80 		@return 			result of addition
81 		*****************************************************************************/
82 	PVRTVec2 operator+(const PVRTVec2& rhs) const
83 	{
84 		PVRTVec2 out(*this);
85 		return out += rhs;
86 	}
87 	/*!***************************************************************************
88 		@brief      		componentwise subtraction operator for two Vec2s
89 		@param[in]			rhs    Another vec2
90 		@return 			result of subtraction
91 		****************************************************************************/
92 	PVRTVec2 operator-(const PVRTVec2& rhs) const
93 	{
94 		PVRTVec2 out(*this);
95 		return out -= rhs;
96 	}
97 
98 	/*!***************************************************************************
99 		@brief      		Componentwise addition and assignment operator for two Vec2s
100 		@param[in]			rhs    Another vec2
101 		@return 			result of addition
102 		****************************************************************************/
103 	PVRTVec2& operator+=(const PVRTVec2& rhs)
104 	{
105 		x += rhs.x;
106 		y += rhs.y;
107 		return *this;
108 	}
109 
110 	/*!***************************************************************************
111 		@brief      		Componentwise subtraction and assignment operator for two Vec2s
112 		@param[in]			rhs    Another vec2
113 		@return 			Result of subtraction
114 		****************************************************************************/
115 	PVRTVec2& operator-=(const PVRTVec2& rhs)
116 	{
117 		x -= rhs.x;
118 		y -= rhs.y;
119 		return *this;
120 	}
121 
122 	/*!***************************************************************************
123 		@brief      		Negation operator for a Vec2
124 		@param[in]			rhs    Another vec2
125 		@return 			Result of negation
126 		****************************************************************************/
127 	friend PVRTVec2 operator- (const PVRTVec2& rhs) { return PVRTVec2(-rhs.x, -rhs.y); }
128 
129 	/*!***************************************************************************
130 		@brief      		Multiplication operator for a Vec2
131 		@param[in]			lhs     Scalar
132 		@param[in]			rhs     A Vec2
133 		@return 			result of multiplication
134 		****************************************************************************/
135 	friend PVRTVec2 operator*(const VERTTYPE lhs, const PVRTVec2&  rhs)
136 	{
137 		PVRTVec2 out(lhs);
138 		return out *= rhs;
139 	}
140 
141 	/*!***************************************************************************
142 		@brief      		Division operator for scalar and Vec2
143 		@param[in]			lhs scalar
144 		@param[in]			rhs a Vec2
145 		@return 			Result of division
146 		****************************************************************************/
147 	friend PVRTVec2 operator/(const VERTTYPE lhs, const PVRTVec2&  rhs)
148 	{
149 		PVRTVec2 out(lhs);
150 		return out /= rhs;
151 	}
152 
153 	/*!**************************************************************************
154 		@brief      		Componentwise multiplication by scalar for Vec2*
155 		@param[in]			rhs     A scalar
156 		@return 			Result of multiplication
157 		****************************************************************************/
158 	PVRTVec2 operator*(const VERTTYPE& rhs) const
159 	{
160 		PVRTVec2 out(*this);
161 		return out *= rhs;
162 	}
163 
164 	/*!***************************************************************************
165 		@brief      		Componentwise multiplication and assignment by scalar for Vec2
166 		@param[in]			rhs     A scalar
167 		@return 			Result of multiplication and assignment
168 		****************************************************************************/
169 	PVRTVec2& operator*=(const VERTTYPE& rhs)
170 	{
171 		x = VERTTYPEMUL(x, rhs);
172 		y = VERTTYPEMUL(y, rhs);
173 		return *this;
174 	}
175 
176 	/*!***************************************************************************
177 		@brief      		Componentwise multiplication and assignment by Vec2 for Vec2
178 		@param[in]			rhs     A Vec2
179 		@return 			Result of multiplication and assignment
180 		****************************************************************************/
181 	PVRTVec2& operator*=(const PVRTVec2& rhs)
182 	{
183 		x = VERTTYPEMUL(x, rhs.x);
184 		y = VERTTYPEMUL(y, rhs.y);
185 		return *this;
186 	}
187 
188 	/*!***************************************************************************
189 		@brief      		componentwise division by scalar for Vec2
190 		@param[in]			rhs a scalar
191 		@return 			result of division
192 		****************************************************************************/
193 	PVRTVec2 operator/(const VERTTYPE& rhs) const
194 	{
195 		PVRTVec2 out(*this);
196 		return out /= rhs;
197 	}
198 
199 	/*!***************************************************************************
200 		@brief      		componentwise division and assignment by scalar for Vec2
201 		@param[in]			rhs a scalar
202 		@return 			result of division and assignment
203 		****************************************************************************/
204 	PVRTVec2& operator/=(const VERTTYPE& rhs)
205 	{
206 		x = VERTTYPEDIV(x, rhs);
207 		y = VERTTYPEDIV(y, rhs);
208 		return *this;
209 	}
210 
211 	/*!***************************************************************************
212 		@brief      		componentwise division and assignment by Vec2 for Vec2
213 		@param[in]			rhs a Vec2
214 		@return 			result of division and assignment
215 		****************************************************************************/
216 	PVRTVec2& operator/=(const PVRTVec2& rhs)
217 	{
218 		x = VERTTYPEDIV(x, rhs.x);
219 		y = VERTTYPEDIV(y, rhs.y);
220 		return *this;
221 	}
222 
223 	/*!***************************************************************************
224         @brief      		PVRTVec2 equality operator
225         @param[in]			rhs     A single value
226         @return 			true if the two vectors are equal
227 	****************************************************************************/
228 	bool operator==(const PVRTVec2& rhs) const
229 	{
230 		return ((x == rhs.x) && (y == rhs.y));
231 	}
232 
233 	/*!***************************************************************************
234         @brief      		PVRTVec2 inequality operator
235         @param[in]			rhs     A single value
236         @return 			true if the two vectors are not equal
237 	****************************************************************************/
238 	bool operator!=(const PVRTVec2& rhs) const
239 	{
240 		return ((x != rhs.x) || (y != rhs.y));
241 	}
242 
243 	// FUNCTIONS
244 	/*!***************************************************************************
245 		@brief      		calculates the square of the magnitude of the vector
246 		@return 			The square of the magnitude of the vector
247 		****************************************************************************/
lenSqrPVRTVec2248 	VERTTYPE lenSqr() const
249 	{
250 		return VERTTYPEMUL(x,x)+VERTTYPEMUL(y,y);
251 	}
252 
253 	/*!***************************************************************************
254 		@fn       			length
255 		@return 			the of the magnitude of the vector
256 		@brief      		calculates the magnitude of the vector
257 		****************************************************************************/
lengthPVRTVec2258 	VERTTYPE length() const
259 	{
260 		return (VERTTYPE) f2vt(sqrt(vt2f(x)*vt2f(x) + vt2f(y)*vt2f(y)));
261 	}
262 
263 	/*!***************************************************************************
264 		@fn       			normalize
265 		@return 			the normalized value of the vector
266 		@brief      		normalizes the vector
267 		****************************************************************************/
normalizePVRTVec2268 	PVRTVec2 normalize()
269 	{
270 		return *this /= length();
271 	}
272 
273 	/*!***************************************************************************
274 		@fn       			normalized
275 		@return 			returns the normalized value of the vector
276 		@brief      		returns a normalized vector of the same direction as this
277 		vector
278 		****************************************************************************/
normalizedPVRTVec2279 	PVRTVec2 normalized() const
280 	{
281 		PVRTVec2 out(*this);
282 		return out.normalize();
283 	}
284 
285 	/*!***************************************************************************
286 		@fn       			rotated90
287 		@return 			returns the vector rotated 90�
288 		@brief      		returns the vector rotated 90�
289 		****************************************************************************/
rotated90PVRTVec2290 	PVRTVec2 rotated90() const
291 	{
292 		return PVRTVec2(-y, x);
293 	}
294 
295 	/*!***************************************************************************
296 		@fn       			dot
297 		@param[in]			rhs    A single value
298 		@return 			scalar product
299 		@brief      		calculate the scalar product of two Vec3s
300 		****************************************************************************/
dotPVRTVec2301 	VERTTYPE dot(const PVRTVec2& rhs) const
302 	{
303 		return VERTTYPEMUL(x, rhs.x) + VERTTYPEMUL(y, rhs.y);
304 	}
305 
306 	/*!***************************************************************************
307 		@fn       			ptr
308 		@return 			pointer
309 		@brief      		returns a pointer to memory containing the values of the
310 		Vec3
311 		****************************************************************************/
ptrPVRTVec2312 	VERTTYPE *ptr() { return (VERTTYPE*)this; }
313 };
314 
315 /*!***************************************************************************
316  @struct            PVRTVec3
317  @brief             3 component vector
318 ****************************************************************************/
319 struct PVRTVec3 : public PVRTVECTOR3
320 {
321 /*!***************************************************************************
322 ** Constructors
323 ****************************************************************************/
324 /*!***************************************************************************
325  @brief      		Blank constructor.
326 *****************************************************************************/
PVRTVec3PVRTVec3327 	PVRTVec3()
328 	{
329 		x = y = z = 0;
330 	}
331 /*!***************************************************************************
332  @brief      		Simple constructor from 3 values.
333  @param[in]			fX	X component of vector
334  @param[in]			fY	Y component of vector
335  @param[in]			fZ	Z component of vector
336 *****************************************************************************/
PVRTVec3PVRTVec3337 	PVRTVec3(VERTTYPE fX, VERTTYPE fY, VERTTYPE fZ)
338 	{
339 		x = fX;	y = fY;	z = fZ;
340 	}
341 /*!***************************************************************************
342  @brief      		Constructor from a single value.
343  @param[in]			fValue	 A component value
344 *****************************************************************************/
PVRTVec3PVRTVec3345 	PVRTVec3(const VERTTYPE fValue)
346 	{
347 		x = fValue; y = fValue; z = fValue;
348 	}
349 /*!***************************************************************************
350  @brief      		Constructor from an array
351  @param[in]			pVec	An array
352 *****************************************************************************/
PVRTVec3PVRTVec3353 	PVRTVec3(const VERTTYPE* pVec)
354 	{
355 		x = (*pVec++); y = (*pVec++); z = *pVec;
356 	}
357 /*!***************************************************************************
358  @brief      		Constructor from a PVRTVec4
359  @param[in]			v4Vec   A PVRTVec4
360 *****************************************************************************/
361 	PVRTVec3(const PVRTVec4& v4Vec);
362 /*!***************************************************************************
363 ** Operators
364 ****************************************************************************/
365 /*!***************************************************************************
366  @brief      		componentwise addition operator for two PVRTVec3s
367  @param[in]			rhs     Another PVRTVec3
368  @return 			result of addition
369 *****************************************************************************/
370 	PVRTVec3 operator+(const PVRTVec3& rhs) const
371 	{
372 		PVRTVec3 out;
373 		out.x = x+rhs.x;
374 		out.y = y+rhs.y;
375 		out.z = z+rhs.z;
376 		return out;
377 	}
378 /*!***************************************************************************
379  @brief      		Componentwise subtraction operator for two PVRTVec3s
380  @param[in]			rhs    Another PVRTVec3
381  @return 			result of subtraction
382 ****************************************************************************/
383 	PVRTVec3 operator-(const PVRTVec3& rhs) const
384 	{
385 		PVRTVec3 out;
386 		out.x = x-rhs.x;
387 		out.y = y-rhs.y;
388 		out.z = z-rhs.z;
389 		return out;
390 	}
391 
392 /*!***************************************************************************
393  @brief      		Componentwise addition and assignement operator for two PVRTVec3s
394  @param[in]			rhs    Another PVRTVec3
395  @return 			Result of addition
396 ****************************************************************************/
397 	PVRTVec3& operator+=(const PVRTVec3& rhs)
398 	{
399 		x +=rhs.x;
400 		y +=rhs.y;
401 		z +=rhs.z;
402 		return *this;
403 	}
404 
405 /*!***************************************************************************
406  @brief      		Componentwise subtraction and assignement operator for two PVRTVec3s
407  @param[in]			rhs    Another PVRTVec3
408  @return 			Result of subtraction
409 ****************************************************************************/
410 	PVRTVec3& operator-=(const PVRTVec3& rhs)
411 	{
412 		x -=rhs.x;
413 		y -=rhs.y;
414 		z -=rhs.z;
415 		return *this;
416 	}
417 
418 /*!***************************************************************************
419  @brief      		Negation operator for a PVRTVec3
420  @param[in]			rhs    Another PVRTVec3
421  @return 			Result of negation
422 ****************************************************************************/
423 	friend PVRTVec3 operator - (const PVRTVec3& rhs) { return PVRTVec3(rhs) *= f2vt(-1); }
424 
425 /*!***************************************************************************
426  @brief      		multiplication operator for a PVRTVec3
427  @param[in]			lhs     Single value
428  @param[in]			rhs     A PVRTVec3
429  @return 			Result of multiplication
430 ****************************************************************************/
431 	friend PVRTVec3 operator*(const VERTTYPE lhs, const PVRTVec3&  rhs)
432 	{
433 		PVRTVec3 out;
434 		out.x = VERTTYPEMUL(lhs,rhs.x);
435 		out.y = VERTTYPEMUL(lhs,rhs.y);
436 		out.z = VERTTYPEMUL(lhs,rhs.z);
437 		return out;
438 	}
439 
440 /*!***************************************************************************
441  @brief      		Negation operator for a PVRTVec3
442  @param[in]			lhs     Single value
443  @param[in]			rhs     A PVRTVec3
444  @return 			result of negation
445 ****************************************************************************/
446 	friend PVRTVec3 operator/(const VERTTYPE lhs, const PVRTVec3&  rhs)
447 	{
448 		PVRTVec3 out;
449 		out.x = VERTTYPEDIV(lhs,rhs.x);
450 		out.y = VERTTYPEDIV(lhs,rhs.y);
451 		out.z = VERTTYPEDIV(lhs,rhs.z);
452 		return out;
453 	}
454 
455 /*!***************************************************************************
456  @brief      		Matrix multiplication operator PVRTVec3 and PVRTMat3
457  @param[in]			rhs     A PVRTMat3
458  @return 			Result of multiplication
459 ****************************************************************************/
460 	PVRTVec3 operator*(const PVRTMat3& rhs) const;
461 
462 /*!***************************************************************************
463  @brief      		Matrix multiplication and assignment operator for PVRTVec3 and PVRTMat3
464  @param[in]			rhs     A PVRTMat3
465  @return 			Result of multiplication and assignment
466 ****************************************************************************/
467 	PVRTVec3& operator*=(const PVRTMat3& rhs);
468 
469 /*!***************************************************************************
470  @brief      		Componentwise multiplication by single dimension value for PVRTVec3
471  @param[in]			rhs     A single value
472  @return 			Result of multiplication
473 ****************************************************************************/
474 	PVRTVec3 operator*(const VERTTYPE& rhs) const
475 	{
476 		PVRTVec3 out;
477 		out.x = VERTTYPEMUL(x,rhs);
478 		out.y = VERTTYPEMUL(y,rhs);
479 		out.z = VERTTYPEMUL(z,rhs);
480 		return out;
481 	}
482 
483 /*!***************************************************************************
484  @brief      		Componentwise multiplication and assignement by single
485 					dimension value	for PVRTVec3
486  @param[in]			rhs    A single value
487  @return 			Result of multiplication and assignment
488 ****************************************************************************/
489 	PVRTVec3& operator*=(const VERTTYPE& rhs)
490 	{
491 		x = VERTTYPEMUL(x,rhs);
492 		y = VERTTYPEMUL(y,rhs);
493 		z = VERTTYPEMUL(z,rhs);
494 		return *this;
495 	}
496 
497 /*!***************************************************************************
498  @brief      		Componentwise division by single dimension value for PVRTVec3
499  @param[in]			rhs    A single value
500  @return 			Result of division
501 ****************************************************************************/
502 	PVRTVec3 operator/(const VERTTYPE& rhs) const
503 	{
504 		PVRTVec3 out;
505 		out.x = VERTTYPEDIV(x,rhs);
506 		out.y = VERTTYPEDIV(y,rhs);
507 		out.z = VERTTYPEDIV(z,rhs);
508 		return out;
509 	}
510 
511 /*!***************************************************************************
512  @brief      		Componentwise division and assignement by single
513 					dimension value	for PVRTVec3
514  @param[in]			rhs    A single value
515  @return 			Result of division and assignment
516 ****************************************************************************/
517 	PVRTVec3& operator/=(const VERTTYPE& rhs)
518 	{
519 		x = VERTTYPEDIV(x,rhs);
520 		y = VERTTYPEDIV(y,rhs);
521 		z = VERTTYPEDIV(z,rhs);
522 		return *this;
523 	}
524 
525 /*!***************************************************************************
526  @brief      		PVRTVec3 equality operator
527  @param[in]			rhs    A single value
528  @return 			true if the two vectors are equal
529 ****************************************************************************/
530 	bool operator==(const PVRTVec3& rhs) const
531 	{
532 		return ((x == rhs.x) && (y == rhs.y) && (z == rhs.z));
533 	}
534 
535 /*!***************************************************************************
536  @brief      		PVRTVec3 inequality operator
537  @param[in]			rhs    A single value
538  @return 			true if the two vectors are not equal
539 	****************************************************************************/
540 	bool operator!=(const PVRTVec3& rhs) const
541 	{
542 		return ((x != rhs.x) || (y != rhs.y) || (z != rhs.z));
543 	}
544 	// FUNCTIONS
545 /*!***************************************************************************
546  @fn       			lenSqr
547  @return 			the square of the magnitude of the vector
548  @brief      		calculates the square of the magnitude of the vector
549 ****************************************************************************/
lenSqrPVRTVec3550 	VERTTYPE lenSqr() const
551 	{
552 		return VERTTYPEMUL(x,x)+VERTTYPEMUL(y,y)+VERTTYPEMUL(z,z);
553 	}
554 
555 /*!***************************************************************************
556  @fn       			length
557  @return 			the of the magnitude of the vector
558  @brief      		calculates the magnitude of the vector
559 ****************************************************************************/
lengthPVRTVec3560 	VERTTYPE length() const
561 	{
562 		return (VERTTYPE) f2vt(sqrt(vt2f(x)*vt2f(x) + vt2f(y)*vt2f(y) + vt2f(z)*vt2f(z)));
563 	}
564 
565 /*!***************************************************************************
566  @fn       			normalize
567  @return 			the normalized value of the vector
568  @brief      		normalizes the vector
569 ****************************************************************************/
normalizePVRTVec3570 	PVRTVec3 normalize()
571 	{
572 #if defined(PVRT_FIXED_POINT_ENABLE)
573 		// Scale vector by uniform value
574 		int n = PVRTABS(x) + PVRTABS(y) + PVRTABS(z);
575 		x = VERTTYPEDIV(x, n);
576 		y = VERTTYPEDIV(y, n);
577 		z = VERTTYPEDIV(z, n);
578 
579 		// Calculate x2+y2+z2/sqrt(x2+y2+z2)
580 		int f = dot(*this);
581 		f = VERTTYPEDIV(PVRTF2X(1.0f), PVRTF2X(sqrt(PVRTX2F(f))));
582 
583 		// Multiply vector components by f
584 		x = PVRTXMUL(x, f);
585 		y = PVRTXMUL(y, f);
586 		z = PVRTXMUL(z, f);
587 #else
588 		VERTTYPE len = length();
589 		x =VERTTYPEDIV(x,len);
590 		y =VERTTYPEDIV(y,len);
591 		z =VERTTYPEDIV(z,len);
592 #endif
593 		return *this;
594 	}
595 
596 /*!***************************************************************************
597  @fn       			normalized
598  @return 			returns the normalized value of the vector
599  @brief      		returns a normalized vector of the same direction as this
600 					vector
601 ****************************************************************************/
normalizedPVRTVec3602 	PVRTVec3 normalized() const
603 	{
604 		PVRTVec3 out;
605 #if defined(PVRT_FIXED_POINT_ENABLE)
606 		// Scale vector by uniform value
607 		int n = PVRTABS(x) + PVRTABS(y) + PVRTABS(z);
608 		out.x = VERTTYPEDIV(x, n);
609 		out.y = VERTTYPEDIV(y, n);
610 		out.z = VERTTYPEDIV(z, n);
611 
612 		// Calculate x2+y2+z2/sqrt(x2+y2+z2)
613 		int f = out.dot(out);
614 		f = VERTTYPEDIV(PVRTF2X(1.0f), PVRTF2X(sqrt(PVRTX2F(f))));
615 
616 		// Multiply vector components by f
617 		out.x = PVRTXMUL(out.x, f);
618 		out.y = PVRTXMUL(out.y, f);
619 		out.z = PVRTXMUL(out.z, f);
620 #else
621 		VERTTYPE len = length();
622 		out.x =VERTTYPEDIV(x,len);
623 		out.y =VERTTYPEDIV(y,len);
624 		out.z =VERTTYPEDIV(z,len);
625 #endif
626 		return out;
627 	}
628 
629 /*!***************************************************************************
630  @fn       			dot
631  @param[in]			rhs    A single value
632  @return 			scalar product
633  @brief      		calculate the scalar product of two PVRTVec3s
634 ****************************************************************************/
dotPVRTVec3635 	VERTTYPE dot(const PVRTVec3& rhs) const
636 	{
637 		return VERTTYPEMUL(x,rhs.x)+VERTTYPEMUL(y,rhs.y)+VERTTYPEMUL(z,rhs.z);
638 	}
639 
640 /*!***************************************************************************
641  @fn       			cross
642  @return 			returns three-dimensional vector
643  @brief      		calculate the cross product of two PVRTVec3s
644 ****************************************************************************/
crossPVRTVec3645 	PVRTVec3 cross(const PVRTVec3& rhs) const
646 	{
647 		PVRTVec3 out;
648 		out.x = VERTTYPEMUL(y,rhs.z)-VERTTYPEMUL(z,rhs.y);
649 		out.y = VERTTYPEMUL(z,rhs.x)-VERTTYPEMUL(x,rhs.z);
650 		out.z = VERTTYPEMUL(x,rhs.y)-VERTTYPEMUL(y,rhs.x);
651 		return out;
652 	}
653 
654 /*!***************************************************************************
655  @fn       			ptr
656  @return 			pointer
657  @brief      		returns a pointer to memory containing the values of the
658 					PVRTVec3
659 ****************************************************************************/
ptrPVRTVec3660 	VERTTYPE *ptr() { return (VERTTYPE*)this; }
661 };
662 
663 /*!***************************************************************************
664  @struct            PVRTVec4
665  @brief             4 component vector
666 ****************************************************************************/
667 struct PVRTVec4 : public PVRTVECTOR4
668 {
669 /*!***************************************************************************
670 ** Constructors
671 ****************************************************************************/
672 /*!***************************************************************************
673  @brief      	Blank constructor.
674 *****************************************************************************/
PVRTVec4PVRTVec4675 	PVRTVec4(){}
676 
677 /*!***************************************************************************
678  @brief      	Blank constructor.
679 *****************************************************************************/
PVRTVec4PVRTVec4680 	PVRTVec4(const VERTTYPE vec)
681 	{
682 		x = vec; y = vec; z = vec; w = vec;
683 	}
684 
685 /*!***************************************************************************
686  @brief      	Constructs a PVRTVec4 from 4 separate values
687  @param[in]		fX      Value of x component
688  @param[in]		fY      Value of y component
689  @param[in]		fZ      Value of z component
690  @param[in]		fW      Value of w component
691 ****************************************************************************/
PVRTVec4PVRTVec4692 	PVRTVec4(VERTTYPE fX, VERTTYPE fY, VERTTYPE fZ, VERTTYPE fW)
693 	{
694 		x = fX;	y = fY;	z = fZ;	w = fW;
695 	}
696 
697 /*!***************************************************************************
698  @param[in]			vec3 a PVRTVec3
699  @param[in]			fW     Value of w component
700  @brief      		Constructs a PVRTVec4 from a vec3 and a w component
701 ****************************************************************************/
PVRTVec4PVRTVec4702 	PVRTVec4(const PVRTVec3& vec3, VERTTYPE fW)
703 	{
704 		x = vec3.x;	y = vec3.y;	z = vec3.z;	w = fW;
705 	}
706 
707 /*!***************************************************************************
708  @brief      		Constructs a vec4 from a vec3 and a w component
709  @param[in]			fX value of x component
710  @param[in]			vec3 a PVRTVec3
711 ****************************************************************************/
PVRTVec4PVRTVec4712 	PVRTVec4(VERTTYPE fX, const PVRTVec3& vec3)
713 	{
714 		x = fX;	y = vec3.x;	z = vec3.y;	w = vec3.z;
715 	}
716 
717 /*!***************************************************************************
718  @brief      		Constructs a PVRTVec4 from a pointer to an array of four values
719  @param[in]			pVec a pointer to an array of four values
720 ****************************************************************************/
PVRTVec4PVRTVec4721 	PVRTVec4(const VERTTYPE* pVec)
722 	{
723 		x = (*pVec++); y = (*pVec++); z= (*pVec++); w = *pVec;
724 	}
725 
726 /*!***************************************************************************
727 ** PVRTVec4 Operators
728 ****************************************************************************/
729 /*!***************************************************************************
730  @brief      		Addition operator for PVRTVec4
731  @param[in]			rhs    Another PVRTVec4
732  @return 			result of addition
733 ****************************************************************************/
734 	PVRTVec4 operator+(const PVRTVec4& rhs) const
735 	{
736 		PVRTVec4 out;
737 		out.x = x+rhs.x;
738 		out.y = y+rhs.y;
739 		out.z = z+rhs.z;
740 		out.w = w+rhs.w;
741 		return out;
742 	}
743 
744 /*!***************************************************************************
745  @brief      		Subtraction operator for PVRTVec4
746  @param[in]			rhs    Another PVRTVec4
747  @return 			result of subtraction
748 ****************************************************************************/
749 	PVRTVec4 operator-(const PVRTVec4& rhs) const
750 	{
751 		PVRTVec4 out;
752 		out.x = x-rhs.x;
753 		out.y = y-rhs.y;
754 		out.z = z-rhs.z;
755 		out.w = w-rhs.w;
756 		return out;
757 	}
758 
759 /*!***************************************************************************
760  @brief      		Addition and assignment operator for PVRTVec4
761  @param[in]			rhs    Another PVRTVec4
762  @return 			result of addition and assignment
763 ****************************************************************************/
764 	PVRTVec4& operator+=(const PVRTVec4& rhs)
765 	{
766 		x +=rhs.x;
767 		y +=rhs.y;
768 		z +=rhs.z;
769 		w +=rhs.w;
770 		return *this;
771 	}
772 
773 /*!***************************************************************************
774  @brief      		Subtraction and assignment operator for PVRTVec4
775  @param[in]			rhs    Another PVRTVec4
776  @return 			result of subtraction and assignment
777 ****************************************************************************/
778 	PVRTVec4& operator-=(const PVRTVec4& rhs)
779 	{
780 		x -=rhs.x;
781 		y -=rhs.y;
782 		z -=rhs.z;
783 		w -=rhs.w;
784 		return *this;
785 	}
786 
787 /*!***************************************************************************
788  @brief      		Matrix multiplication for PVRTVec4 and PVRTMat4
789  @param[in]			rhs    A PVRTMat4
790  @return 			result of multiplication
791 ****************************************************************************/
792 	PVRTVec4 operator*(const PVRTMat4& rhs) const;
793 
794 /*!***************************************************************************
795  @brief      		Matrix multiplication and assignment for PVRTVec4 and PVRTMat4
796  @param[in]			rhs    A PVRTMat4
797  @return 			result of multiplication and assignement
798 ****************************************************************************/
799 	PVRTVec4& operator*=(const PVRTMat4& rhs);
800 
801 /*!***************************************************************************
802  @brief      		Componentwise multiplication of a PVRTVec4 by a single value
803  @param[in]			rhs  A single dimension value
804  @return 			result of multiplication
805 ****************************************************************************/
806 	PVRTVec4 operator*(const VERTTYPE& rhs) const
807 	{
808 		PVRTVec4 out;
809 		out.x = VERTTYPEMUL(x,rhs);
810 		out.y = VERTTYPEMUL(y,rhs);
811 		out.z = VERTTYPEMUL(z,rhs);
812 		out.w = VERTTYPEMUL(w,rhs);
813 		return out;
814 	}
815 
816 /*!***************************************************************************
817  @brief      		componentwise multiplication and assignment of a PVRTVec4 by
818                     a single value
819  @param[in]			rhs     A single dimension value
820  @return 			result of multiplication and assignment
821 ****************************************************************************/
822 	PVRTVec4& operator*=(const VERTTYPE& rhs)
823 	{
824 		x = VERTTYPEMUL(x,rhs);
825 		y = VERTTYPEMUL(y,rhs);
826 		z = VERTTYPEMUL(z,rhs);
827 		w = VERTTYPEMUL(w,rhs);
828 		return *this;
829 	}
830 
831 /*!***************************************************************************
832  @brief      		componentwise division of a PVRTVec4 by a single value
833  @param[in]			rhs     A single dimension value
834  @return 			result of division
835 ****************************************************************************/
836 	PVRTVec4 operator/(const VERTTYPE& rhs) const
837 	{
838 		PVRTVec4 out;
839 		out.x = VERTTYPEDIV(x,rhs);
840 		out.y = VERTTYPEDIV(y,rhs);
841 		out.z = VERTTYPEDIV(z,rhs);
842 		out.w = VERTTYPEDIV(w,rhs);
843 		return out;
844 	}
845 
846 /*!***************************************************************************
847  @brief      		componentwise division and assignment of a PVRTVec4 by
848 					a single value
849  @param[in]				rhs a single dimension value
850  @return 			result of division and assignment
851 ****************************************************************************/
852 	PVRTVec4& operator/=(const VERTTYPE& rhs)
853 	{
854 		x = VERTTYPEDIV(x,rhs);
855 		y = VERTTYPEDIV(y,rhs);
856 		z = VERTTYPEDIV(z,rhs);
857 		w = VERTTYPEDIV(w,rhs);
858 		return *this;
859 	}
860 
861 /*!***************************************************************************
862  @brief      		componentwise multiplication of a PVRTVec4 by
863 					a single value
864  @param[in]				lhs a single dimension value
865  @param[in]				rhs a PVRTVec4
866  @return 			result of muliplication
867 ****************************************************************************/
868 friend PVRTVec4 operator*(const VERTTYPE lhs, const PVRTVec4&  rhs)
869 {
870 	PVRTVec4 out;
871 	out.x = VERTTYPEMUL(lhs,rhs.x);
872 	out.y = VERTTYPEMUL(lhs,rhs.y);
873 	out.z = VERTTYPEMUL(lhs,rhs.z);
874 	out.w = VERTTYPEMUL(lhs,rhs.w);
875 	return out;
876 }
877 
878 /*!***************************************************************************
879  @brief      		PVRTVec4 equality operator
880  @param[in]			rhs    A single value
881  @return 			true if the two vectors are equal
882 ****************************************************************************/
883 bool operator==(const PVRTVec4& rhs) const
884 {
885 	return ((x == rhs.x) && (y == rhs.y) && (z == rhs.z) && (w == rhs.w));
886 }
887 
888 /*!***************************************************************************
889 @brief      		PVRTVec4 inequality operator
890 @param[in]			rhs    A single value
891 @return 			true if the two vectors are not equal
892 	****************************************************************************/
893 bool operator!=(const PVRTVec4& rhs) const
894 {
895 	return ((x != rhs.x) || (y != rhs.y) || (z != rhs.z) || (w != rhs.w));
896 }
897 /*!***************************************************************************
898 ** Functions
899 ****************************************************************************/
900 /*!***************************************************************************
901  @fn       			lenSqr
902  @return 			square of the magnitude of the vector
903  @brief      		calculates the square of the magnitude of the vector
904 ****************************************************************************/
lenSqrPVRTVec4905 	VERTTYPE lenSqr() const
906 	{
907 		return VERTTYPEMUL(x,x)+VERTTYPEMUL(y,y)+VERTTYPEMUL(z,z)+VERTTYPEMUL(w,w);
908 	}
909 
910 /*!***************************************************************************
911  @fn       			length
912  @return 			the magnitude of the vector
913  @brief      		calculates the magnitude of the vector
914 ****************************************************************************/
lengthPVRTVec4915 	VERTTYPE length() const
916 	{
917 		return (VERTTYPE) f2vt(sqrt(vt2f(x)*vt2f(x) + vt2f(y)*vt2f(y) + vt2f(z)*vt2f(z) + vt2f(w)*vt2f(w)));
918 	}
919 
920 /*!***************************************************************************
921  @fn       			normalize
922  @return 			normalized vector
923  @brief      		calculates the normalized value of a PVRTVec4
924 ****************************************************************************/
normalizePVRTVec4925 	PVRTVec4 normalize()
926 	{
927 		VERTTYPE len = length();
928 		x =VERTTYPEDIV(x,len);
929 		y =VERTTYPEDIV(y,len);
930 		z =VERTTYPEDIV(z,len);
931 		w =VERTTYPEDIV(w,len);
932 		return *this;
933 	}
934 /*!***************************************************************************
935  @fn       			normalized
936  @return 			normalized vector
937  @brief      		returns a normalized vector of the same direction as this
938 					vector
939 ****************************************************************************/
normalizedPVRTVec4940 	PVRTVec4 normalized() const
941 	{
942 		PVRTVec4 out;
943 		VERTTYPE len = length();
944 		out.x =VERTTYPEDIV(x,len);
945 		out.y =VERTTYPEDIV(y,len);
946 		out.z =VERTTYPEDIV(z,len);
947 		out.w =VERTTYPEDIV(w,len);
948 		return out;
949 	}
950 
951 /*!***************************************************************************
952  @fn       			dot
953  @return 			scalar product
954  @brief      		returns a normalized vector of the same direction as this
955 					vector
956 ****************************************************************************/
dotPVRTVec4957 	VERTTYPE dot(const PVRTVec4& rhs) const
958 	{
959 		return VERTTYPEMUL(x,rhs.x)+VERTTYPEMUL(y,rhs.y)+VERTTYPEMUL(z,rhs.z)+VERTTYPEMUL(w,rhs.w);
960 	}
961 
962 /*!***************************************************************************
963  @fn       			ptr
964  @return 			pointer to vector values
965  @brief      		returns a pointer to memory containing the values of the
966 					PVRTVec3
967 ****************************************************************************/
ptrPVRTVec4968 	VERTTYPE *ptr() { return (VERTTYPE*)this; }
969 };
970 
971 /*!***************************************************************************
972  @struct            PVRTMat3
973  @brief             3x3 Matrix
974 ****************************************************************************/
975 struct PVRTMat3 : public PVRTMATRIX3
976 {
977 /*!***************************************************************************
978 ** Constructors
979 ****************************************************************************/
980 /*!***************************************************************************
981  @brief      		Blank constructor.
982 *****************************************************************************/
PVRTMat3PVRTMat3983 	PVRTMat3(){}
984 /*!***************************************************************************
985  @brief      		Constructor from array.
986  @param[in]			pMat    An array of values for the matrix
987 *****************************************************************************/
PVRTMat3PVRTMat3988 	PVRTMat3(const VERTTYPE* pMat)
989 	{
990 		VERTTYPE* ptr = f;
991 		for(int i=0;i<9;i++)
992 		{
993 			(*ptr++)=(*pMat++);
994 		}
995 	}
996 
997 /*!***************************************************************************
998  @brief      	    Constructor from distinct values.
999  @param[in]	    	m0	m0 matrix value
1000  @param[in]	    	m1	m1 matrix value
1001  @param[in]	    	m2	m2 matrix value
1002  @param[in]	    	m3	m3 matrix value
1003  @param[in]	    	m4	m4 matrix value
1004  @param[in]	    	m5	m5 matrix value
1005  @param[in]	    	m6	m6 matrix value
1006  @param[in]	    	m7	m7 matrix value
1007  @param[in]	    	m8	m8 matrix value
1008 *****************************************************************************/
PVRTMat3PVRTMat31009 	PVRTMat3(VERTTYPE m0,VERTTYPE m1,VERTTYPE m2,
1010 		VERTTYPE m3,VERTTYPE m4,VERTTYPE m5,
1011 		VERTTYPE m6,VERTTYPE m7,VERTTYPE m8)
1012 	{
1013 		f[0]=m0;f[1]=m1;f[2]=m2;
1014 		f[3]=m3;f[4]=m4;f[5]=m5;
1015 		f[6]=m6;f[7]=m7;f[8]=m8;
1016 	}
1017 
1018 /*!***************************************************************************
1019  @brief      		Constructor from 4x4 matrix - uses top left values
1020  @param[in]			mat - a PVRTMat4
1021 *****************************************************************************/
1022 	PVRTMat3(const PVRTMat4& mat);
1023 
1024 /****************************************************************************
1025 ** PVRTMat3 OPERATORS
1026 ****************************************************************************/
1027 /*!***************************************************************************
1028  @brief      		Returns the value of the element at the specified row and column
1029 					of the PVRTMat3
1030  @param[in]			row			row of matrix
1031  @param[in]			column		column of matrix
1032  @return 			value of element
1033 *****************************************************************************/
operatorPVRTMat31034 	VERTTYPE& operator()(const int row, const int column)
1035 	{
1036 		return f[column*3+row];
1037 	}
1038 /*!***************************************************************************
1039  @brief      		Returns the value of the element at the specified row and column
1040 					of the PVRTMat3
1041  @param[in]			row			row of matrix
1042  @param[in]			column		column of matrix
1043  @return 			value of element
1044 *****************************************************************************/
operatorPVRTMat31045 	const VERTTYPE& operator()(const int row, const int column) const
1046 	{
1047 		return f[column*3+row];
1048 	}
1049 
1050 /*!***************************************************************************
1051  @brief      		Matrix multiplication of two 3x3 matrices.
1052  @param[in]			rhs     Another PVRTMat3
1053  @return 			result of multiplication
1054 *****************************************************************************/
1055 	PVRTMat3 operator*(const PVRTMat3& rhs) const
1056 	{
1057 		PVRTMat3 out;
1058 		// col 1
1059 		out.f[0] =	VERTTYPEMUL(f[0],rhs.f[0])+VERTTYPEMUL(f[3],rhs.f[1])+VERTTYPEMUL(f[6],rhs.f[2]);
1060 		out.f[1] =	VERTTYPEMUL(f[1],rhs.f[0])+VERTTYPEMUL(f[4],rhs.f[1])+VERTTYPEMUL(f[7],rhs.f[2]);
1061 		out.f[2] =	VERTTYPEMUL(f[2],rhs.f[0])+VERTTYPEMUL(f[5],rhs.f[1])+VERTTYPEMUL(f[8],rhs.f[2]);
1062 
1063 		// col 2
1064 		out.f[3] =	VERTTYPEMUL(f[0],rhs.f[3])+VERTTYPEMUL(f[3],rhs.f[4])+VERTTYPEMUL(f[6],rhs.f[5]);
1065 		out.f[4] =	VERTTYPEMUL(f[1],rhs.f[3])+VERTTYPEMUL(f[4],rhs.f[4])+VERTTYPEMUL(f[7],rhs.f[5]);
1066 		out.f[5] =	VERTTYPEMUL(f[2],rhs.f[3])+VERTTYPEMUL(f[5],rhs.f[4])+VERTTYPEMUL(f[8],rhs.f[5]);
1067 
1068 		// col3
1069 		out.f[6] =	VERTTYPEMUL(f[0],rhs.f[6])+VERTTYPEMUL(f[3],rhs.f[7])+VERTTYPEMUL(f[6],rhs.f[8]);
1070 		out.f[7] =	VERTTYPEMUL(f[1],rhs.f[6])+VERTTYPEMUL(f[4],rhs.f[7])+VERTTYPEMUL(f[7],rhs.f[8]);
1071 		out.f[8] =	VERTTYPEMUL(f[2],rhs.f[6])+VERTTYPEMUL(f[5],rhs.f[7])+VERTTYPEMUL(f[8],rhs.f[8]);
1072 		return out;
1073 	}
1074 
1075 /*!***************************************************************************
1076  @brief      		element by element addition operator.
1077  @param[in]			rhs     Another PVRTMat3
1078  @return 			result of addition
1079 *****************************************************************************/
1080 	PVRTMat3 operator+(const PVRTMat3& rhs) const
1081 	{
1082 		PVRTMat3 out;
1083 		VERTTYPE const *lptr = f, *rptr = rhs.f;
1084 		VERTTYPE *outptr = out.f;
1085 		for(int i=0;i<9;i++)
1086 		{
1087 			(*outptr++) = (*lptr++) + (*rptr++);
1088 		}
1089 		return out;
1090 	}
1091 
1092 /*!***************************************************************************
1093  @brief      		element by element subtraction operator.
1094  @param[in]			rhs     Another PVRTMat3
1095  @return 			result of subtraction
1096 *****************************************************************************/
1097 	PVRTMat3 operator-(const PVRTMat3& rhs) const
1098 	{
1099 		PVRTMat3 out;
1100 		VERTTYPE const *lptr = f, *rptr = rhs.f;
1101 		VERTTYPE *outptr = out.f;
1102 		for(int i=0;i<9;i++)
1103 		{
1104 			(*outptr++) = (*lptr++) - (*rptr++);
1105 		}
1106 		return out;
1107 	}
1108 
1109 /*!***************************************************************************
1110  @brief      		Element by element addition and assignment operator.
1111  @param[in]			rhs     Another PVRTMat3
1112  @return 			Result of addition and assignment
1113 *****************************************************************************/
1114 	PVRTMat3& operator+=(const PVRTMat3& rhs)
1115 	{
1116 		VERTTYPE *lptr = f;
1117 		VERTTYPE const *rptr = rhs.f;
1118 		for(int i=0;i<9;i++)
1119 		{
1120 			(*lptr++) += (*rptr++);
1121 		}
1122 		return *this;
1123 	}
1124 
1125 /*!***************************************************************************
1126  @brief      		element by element subtraction and assignment operator.
1127  @param[in]			rhs     Another PVRTMat3
1128  @return 			result of subtraction and assignment
1129 *****************************************************************************/
1130 	PVRTMat3& operator-=(const PVRTMat3& rhs)
1131 	{
1132 		VERTTYPE *lptr = f;
1133 		VERTTYPE const *rptr = rhs.f;
1134 		for(int i=0;i<9;i++)
1135 		{
1136 			(*lptr++) -= (*rptr++);
1137 		}
1138 		return *this;
1139 	}
1140 
1141 /*!***************************************************************************
1142  @brief      		Matrix multiplication and assignment of two 3x3 matrices.
1143  @param[in]			rhs     Another PVRTMat3
1144  @return 			result of multiplication and assignment
1145 *****************************************************************************/
1146 	PVRTMat3& operator*=(const PVRTMat3& rhs)
1147 	{
1148 		PVRTMat3 out;
1149 		// col 1
1150 		out.f[0] =	VERTTYPEMUL(f[0],rhs.f[0])+VERTTYPEMUL(f[3],rhs.f[1])+VERTTYPEMUL(f[6],rhs.f[2]);
1151 		out.f[1] =	VERTTYPEMUL(f[1],rhs.f[0])+VERTTYPEMUL(f[4],rhs.f[1])+VERTTYPEMUL(f[7],rhs.f[2]);
1152 		out.f[2] =	VERTTYPEMUL(f[2],rhs.f[0])+VERTTYPEMUL(f[5],rhs.f[1])+VERTTYPEMUL(f[8],rhs.f[2]);
1153 
1154 		// col 2
1155 		out.f[3] =	VERTTYPEMUL(f[0],rhs.f[3])+VERTTYPEMUL(f[3],rhs.f[4])+VERTTYPEMUL(f[6],rhs.f[5]);
1156 		out.f[4] =	VERTTYPEMUL(f[1],rhs.f[3])+VERTTYPEMUL(f[4],rhs.f[4])+VERTTYPEMUL(f[7],rhs.f[5]);
1157 		out.f[5] =	VERTTYPEMUL(f[2],rhs.f[3])+VERTTYPEMUL(f[5],rhs.f[4])+VERTTYPEMUL(f[8],rhs.f[5]);
1158 
1159 		// col3
1160 		out.f[6] =	VERTTYPEMUL(f[0],rhs.f[6])+VERTTYPEMUL(f[3],rhs.f[7])+VERTTYPEMUL(f[6],rhs.f[8]);
1161 		out.f[7] =	VERTTYPEMUL(f[1],rhs.f[6])+VERTTYPEMUL(f[4],rhs.f[7])+VERTTYPEMUL(f[7],rhs.f[8]);
1162 		out.f[8] =	VERTTYPEMUL(f[2],rhs.f[6])+VERTTYPEMUL(f[5],rhs.f[7])+VERTTYPEMUL(f[8],rhs.f[8]);
1163 		*this = out;
1164 		return *this;
1165 	}
1166 
1167 /*!***************************************************************************
1168  @brief      		Element multiplication by a single value.
1169  @param[in]			rhs    A single value
1170  @return 			Result of multiplication and assignment
1171 *****************************************************************************/
1172 	PVRTMat3& operator*(const VERTTYPE rhs)
1173 	{
1174 		for (int i=0; i<9; ++i)
1175 		{
1176 			f[i]*=rhs;
1177 		}
1178 		return *this;
1179 	}
1180 /*!***************************************************************************
1181  @brief      		Element multiplication and assignment by a single value.
1182  @param[in]			rhs    A single value
1183  @return 			result of multiplication and assignment
1184 *****************************************************************************/
1185 	PVRTMat3& operator*=(const VERTTYPE rhs)
1186 	{
1187 		for (int i=0; i<9; ++i)
1188 		{
1189 			f[i]*=rhs;
1190 		}
1191 		return *this;
1192 	}
1193 
1194 /*!***************************************************************************
1195  @brief      		Matrix multiplication of 3x3 matrix and vec3
1196  @param[in]			rhs    Another PVRTVec3
1197  @return 			result of multiplication
1198 *****************************************************************************/
1199 	PVRTVec3 operator*(const PVRTVec3& rhs) const
1200 	{
1201 		PVRTVec3 out;
1202 		out.x = VERTTYPEMUL(rhs.x,f[0])+VERTTYPEMUL(rhs.y,f[3])+VERTTYPEMUL(rhs.z,f[6]);
1203 		out.y = VERTTYPEMUL(rhs.x,f[1])+VERTTYPEMUL(rhs.y,f[4])+VERTTYPEMUL(rhs.z,f[7]);
1204 		out.z = VERTTYPEMUL(rhs.x,f[2])+VERTTYPEMUL(rhs.y,f[5])+VERTTYPEMUL(rhs.z,f[8]);
1205 
1206 		return out;
1207 	}
1208 
1209 
1210 	// FUNCTIONS
1211 /*!***************************************************************************
1212 ** Functions
1213 *****************************************************************************/
1214 /*!***************************************************************************
1215  @fn       			determinant
1216  @return 			result of multiplication
1217  @brief      		Matrix multiplication and assignment of 3x3 matrix and vec3
1218 *****************************************************************************/
determinantPVRTMat31219 	VERTTYPE determinant() const
1220 	{
1221 		return VERTTYPEMUL(f[0],(VERTTYPEMUL(f[4],f[8])-VERTTYPEMUL(f[7],f[5])))
1222 			- VERTTYPEMUL(f[3],(VERTTYPEMUL(f[1],f[8])-VERTTYPEMUL(f[7],f[2])))
1223 			+ VERTTYPEMUL(f[6],(VERTTYPEMUL(f[1],f[5])-VERTTYPEMUL(f[4],f[2])));
1224 	}
1225 
1226 /*!***************************************************************************
1227  @fn       			inverse
1228  @return 			inverse mat3
1229  @brief      		Calculates multiplicative inverse of this matrix
1230 *****************************************************************************/
inversePVRTMat31231 	PVRTMat3 inverse() const
1232 	{
1233 		PVRTMat3 out;
1234 
1235 
1236 		VERTTYPE recDet = determinant();
1237 		_ASSERT(recDet!=0);
1238 		recDet = VERTTYPEDIV(f2vt(1.0f),recDet);
1239 
1240 		//TODO: deal with singular matrices with more than just an assert
1241 
1242 		// inverse is 1/det * adjoint of M
1243 
1244 		// adjoint is transpose of cofactor matrix
1245 
1246 		// do transpose and cofactors in one step
1247 
1248 		out.f[0] = VERTTYPEMUL(f[4],f[8]) - VERTTYPEMUL(f[5],f[7]);
1249 		out.f[1] = VERTTYPEMUL(f[2],f[7]) - VERTTYPEMUL(f[1],f[8]);
1250 		out.f[2] = VERTTYPEMUL(f[1],f[5]) - VERTTYPEMUL(f[2],f[4]);
1251 
1252 		out.f[3] = VERTTYPEMUL(f[5],f[6]) - VERTTYPEMUL(f[3],f[8]);
1253 		out.f[4] = VERTTYPEMUL(f[0],f[8]) - VERTTYPEMUL(f[2],f[6]);
1254 		out.f[5] = VERTTYPEMUL(f[2],f[3]) - VERTTYPEMUL(f[0],f[5]);
1255 
1256 		out.f[6] = VERTTYPEMUL(f[3],f[7]) - VERTTYPEMUL(f[4],f[6]);
1257 		out.f[7] = VERTTYPEMUL(f[1],f[6]) - VERTTYPEMUL(f[0],f[7]);
1258 		out.f[8] = VERTTYPEMUL(f[0],f[4]) - VERTTYPEMUL(f[1],f[3]);
1259 
1260 		out *= recDet;
1261 		return out;
1262 	}
1263 
1264 /*!***************************************************************************
1265  @fn       			transpose
1266  @return 			transpose 3x3 matrix
1267  @brief      		Calculates the transpose of this matrix
1268 *****************************************************************************/
transposePVRTMat31269 	PVRTMat3 transpose() const
1270 	{
1271 		PVRTMat3 out;
1272 		out.f[0] = f[0];	out.f[3] = f[1];	out.f[6] = f[2];
1273 		out.f[1] = f[3];	out.f[4] = f[4];	out.f[7] = f[5];
1274 		out.f[2] = f[6];	out.f[5] = f[7];	out.f[8] = f[8];
1275 		return out;
1276 	}
1277 
1278 /*!***************************************************************************
1279  @fn       			ptr
1280  @return 			pointer to an array of the elements of this PVRTMat3
1281  @brief      		Calculates transpose of this matrix
1282 *****************************************************************************/
ptrPVRTMat31283 	VERTTYPE *ptr() { return (VERTTYPE*)&f; }
1284 
1285 /*!***************************************************************************
1286 ** Static factory functions
1287 *****************************************************************************/
1288 /*!***************************************************************************
1289  @fn       			Identity
1290  @return 			a PVRTMat3 representation of the 3x3 identity matrix
1291  @brief      		Generates an identity matrix
1292 *****************************************************************************/
IdentityPVRTMat31293 	static PVRTMat3 Identity()
1294 	{
1295 		PVRTMat3 out;
1296 		out.f[0] = 1;out.f[1] = 0;out.f[2] = 0;
1297 		out.f[3] = 0;out.f[4] = 1;out.f[5] = 0;
1298 		out.f[6] = 0;out.f[7] = 0;out.f[8] = 1;
1299 		return out;
1300 	}
1301 
1302 /*!***************************************************************************
1303  @fn       			RotationX
1304  @return 			a PVRTMat3 corresponding to the requested rotation
1305  @brief      		Calculates a matrix corresponding to a rotation of angle
1306 					degrees about the X axis
1307 *****************************************************************************/
1308 	static PVRTMat3 RotationX(VERTTYPE angle);
1309 
1310 /*!***************************************************************************
1311  @fn       			RotationY
1312  @return 			a PVRTMat3 corresponding to the requested rotation
1313  @brief      		Calculates a matrix corresponding to a rotation of angle
1314 					degrees about the Y axis
1315 *****************************************************************************/
1316 	static PVRTMat3 RotationY(VERTTYPE angle);
1317 
1318 /*!***************************************************************************
1319  @fn       			RotationZ
1320  @return 			a PVRTMat3 corresponding to the requested rotation
1321  @brief      		Calculates a matrix corresponding to a rotation of angle
1322 					degrees about the Z axis
1323 *****************************************************************************/
1324 	static PVRTMat3 RotationZ(VERTTYPE angle);
1325 
1326 /*!***************************************************************************
1327  @fn       			Rotation2D
1328  @return 			a PVRTMat3 corresponding to the requested rotation
1329  @brief      		Calculates a matrix corresponding to a rotation of angle
1330 					degrees about the Z axis
1331 *****************************************************************************/
Rotation2DPVRTMat31332 	static PVRTMat3 Rotation2D(VERTTYPE angle)
1333 	{
1334 		return RotationZ(angle);
1335 	}
1336 
1337 /*!***************************************************************************
1338  @fn       			Scale
1339  @return 			a PVRTMat3 corresponding to the requested scaling transformation
1340  @brief      		Calculates a matrix corresponding to scaling of fx, fy and fz
1341 					times in each axis.
1342 *****************************************************************************/
ScalePVRTMat31343 	static PVRTMat3 Scale(const VERTTYPE fx,const VERTTYPE fy,const VERTTYPE fz)
1344 	{
1345 		return PVRTMat3(fx,0,0,
1346 						0,fy,0,
1347 						0,0,fz);
1348 	}
1349 
1350 /*!***************************************************************************
1351  @fn       			Scale2D
1352  @return 			a PVRTMat3 corresponding to the requested scaling transformation
1353  @brief      		Calculates a matrix corresponding to scaling of fx, fy and fz
1354 					times in each axis.
1355 *****************************************************************************/
Scale2DPVRTMat31356 	static PVRTMat3 Scale2D(const VERTTYPE fx,const VERTTYPE fy)
1357 	{
1358 		return PVRTMat3(fx,0,0,
1359 						0,fy,0,
1360 						0,0,f2vt(1));
1361 	}
1362 
1363 /*!***************************************************************************
1364  @fn       			Translation2D
1365  @return 			a PVRTMat3 corresponding to the requested translation
1366  @brief      		Calculates a matrix corresponding to a transformation
1367 					of tx and ty times in each axis.
1368 *****************************************************************************/
Translation2DPVRTMat31369 	static PVRTMat3 Translation2D(const VERTTYPE tx, const VERTTYPE ty)
1370 	{
1371 		return PVRTMat3( f2vt(1),    0,  0,
1372 						 0,    f2vt(1),  0,
1373 						tx,  		ty,  f2vt(1));
1374 	}
1375 
1376 };
1377 
1378 /*!***************************************************************************
1379  @struct            PVRTMat4
1380  @brief             4x4 Matrix
1381 ****************************************************************************/
1382 struct PVRTMat4 : public PVRTMATRIX
1383 {
1384 /*!***************************************************************************
1385 ** Constructors
1386 ****************************************************************************/
1387 /*!***************************************************************************
1388  @brief      		Blank constructor.
1389 *****************************************************************************/
PVRTMat4PVRTMat41390 	PVRTMat4(){}
1391 /*!***************************************************************************
1392  @brief      		Constructor from array.
1393  @param[in]			m0	m0 matrix value
1394  @param[in]			m1	m1 matrix value
1395  @param[in]			m2	m2 matrix value
1396  @param[in]			m3	m3 matrix value
1397  @param[in]			m4	m4 matrix value
1398  @param[in]			m5	m5 matrix value
1399  @param[in]			m6	m6 matrix value
1400  @param[in]			m7	m7 matrix value
1401  @param[in]			m8	m8 matrix value
1402  @param[in]			m9	m9 matrix value
1403  @param[in]			m10	m10 matrix value
1404  @param[in]			m11	m11 matrix value
1405  @param[in]			m12	m12 matrix value
1406  @param[in]			m13	m13 matrix value
1407  @param[in]			m14	m14 matrix value
1408  @param[in]			m15	m15 matrix value
1409 *****************************************************************************/
PVRTMat4PVRTMat41410 	PVRTMat4(VERTTYPE m0,VERTTYPE m1,VERTTYPE m2,VERTTYPE m3,
1411 		VERTTYPE m4,VERTTYPE m5,VERTTYPE m6,VERTTYPE m7,
1412 		VERTTYPE m8,VERTTYPE m9,VERTTYPE m10,VERTTYPE m11,
1413 		VERTTYPE m12,VERTTYPE m13,VERTTYPE m14,VERTTYPE m15)
1414 	{
1415 		f[0]=m0;f[1]=m1;f[2]=m2;f[3]=m3;
1416 		f[4]=m4;f[5]=m5;f[6]=m6;f[7]=m7;
1417 		f[8]=m8;f[9]=m9;f[10]=m10;f[11]=m11;
1418 		f[12]=m12;f[13]=m13;f[14]=m14;f[15]=m15;
1419 	}
1420 /*!***************************************************************************
1421  @brief      		Constructor from distinct values.
1422  @param[in]			mat     A pointer to an array of 16 VERTTYPEs
1423 *****************************************************************************/
PVRTMat4PVRTMat41424 	PVRTMat4(const VERTTYPE* mat)
1425 	{
1426 		VERTTYPE* ptr = f;
1427 		for(int i=0;i<16;i++)
1428 		{
1429 			(*ptr++)=(*mat++);
1430 		}
1431 	}
1432 
1433 /****************************************************************************
1434 ** PVRTMat4 OPERATORS
1435 ****************************************************************************/
1436 /*!***************************************************************************
1437  @brief      		Returns value of the element at row r and colun c of the
1438 					PVRTMat4
1439  @param[in]				r - row of matrix
1440  @param[in]				c - column of matrix
1441  @return 			value of element
1442 *****************************************************************************/
operatorPVRTMat41443 	VERTTYPE& operator()(const int r, const int c)
1444 	{
1445 		return f[c*4+r];
1446 	}
1447 
1448 /*!***************************************************************************
1449  @brief      		Returns value of the element at row r and colun c of the
1450 					PVRTMat4
1451  @param[in]				r - row of matrix
1452  @param[in]				c - column of matrix
1453  @return 			value of element
1454 *****************************************************************************/
operatorPVRTMat41455 	const VERTTYPE& operator()(const int r, const int c) const
1456 	{
1457 		return f[c*4+r];
1458 	}
1459 
1460 /*!***************************************************************************
1461  @brief      		Matrix multiplication of two 4x4 matrices.
1462  @param[in]				rhs another PVRTMat4
1463  @return 			result of multiplication
1464 *****************************************************************************/
1465 	PVRTMat4 operator*(const PVRTMat4& rhs) const;
1466 
1467 /*!***************************************************************************
1468  @brief      		element by element addition operator.
1469  @param[in]				rhs another PVRTMat4
1470  @return 			result of addition
1471 *****************************************************************************/
1472 	PVRTMat4 operator+(const PVRTMat4& rhs) const
1473 	{
1474 		PVRTMat4 out;
1475 		VERTTYPE const *lptr = f, *rptr = rhs.f;
1476 		VERTTYPE *outptr = out.f;
1477 		for(int i=0;i<16;i++)
1478 		{
1479 			(*outptr++) = (*lptr++) + (*rptr++);
1480 		}
1481 		return out;
1482 	}
1483 
1484 /*!***************************************************************************
1485  @brief      		element by element subtraction operator.
1486  @param[in]				rhs another PVRTMat4
1487  @return 			result of subtraction
1488 *****************************************************************************/
1489 	PVRTMat4 operator-(const PVRTMat4& rhs) const
1490 	{
1491 		PVRTMat4 out;
1492 		for(int i=0;i<16;i++)
1493 		{
1494 			out.f[i] = f[i]-rhs.f[i];
1495 		}
1496 		return out;
1497 	}
1498 
1499 /*!***************************************************************************
1500  @brief      		element by element addition and assignment operator.
1501  @param[in]				rhs another PVRTMat4
1502  @return 			result of addition and assignment
1503 *****************************************************************************/
1504 	PVRTMat4& operator+=(const PVRTMat4& rhs)
1505 	{
1506 		VERTTYPE *lptr = f;
1507 		VERTTYPE const *rptr = rhs.f;
1508 		for(int i=0;i<16;i++)
1509 		{
1510 			(*lptr++) += (*rptr++);
1511 		}
1512 		return *this;
1513 	}
1514 
1515 /*!***************************************************************************
1516  @brief      		element by element subtraction and assignment operator.
1517  @param[in]				rhs another PVRTMat4
1518  @return 			result of subtraction and assignment
1519 *****************************************************************************/
1520 	PVRTMat4& operator-=(const PVRTMat4& rhs)
1521 	{
1522 		VERTTYPE *lptr = f;
1523 		VERTTYPE const *rptr = rhs.f;
1524 		for(int i=0;i<16;i++)
1525 		{
1526 			(*lptr++) -= (*rptr++);
1527 		}
1528 		return *this;
1529 	}
1530 
1531 
1532 /*!***************************************************************************
1533  @brief      		Matrix multiplication and assignment of two 4x4 matrices.
1534  @param[in]				rhs another PVRTMat4
1535  @return 			result of multiplication and assignment
1536 *****************************************************************************/
1537 	PVRTMat4& operator*=(const PVRTMat4& rhs)
1538 	{
1539 		PVRTMat4 result;
1540 		// col 0
1541 		result.f[0] =	VERTTYPEMUL(f[0],rhs.f[0])+VERTTYPEMUL(f[4],rhs.f[1])+VERTTYPEMUL(f[8],rhs.f[2])+VERTTYPEMUL(f[12],rhs.f[3]);
1542 		result.f[1] =	VERTTYPEMUL(f[1],rhs.f[0])+VERTTYPEMUL(f[5],rhs.f[1])+VERTTYPEMUL(f[9],rhs.f[2])+VERTTYPEMUL(f[13],rhs.f[3]);
1543 		result.f[2] =	VERTTYPEMUL(f[2],rhs.f[0])+VERTTYPEMUL(f[6],rhs.f[1])+VERTTYPEMUL(f[10],rhs.f[2])+VERTTYPEMUL(f[14],rhs.f[3]);
1544 		result.f[3] =	VERTTYPEMUL(f[3],rhs.f[0])+VERTTYPEMUL(f[7],rhs.f[1])+VERTTYPEMUL(f[11],rhs.f[2])+VERTTYPEMUL(f[15],rhs.f[3]);
1545 
1546 		// col 1
1547 		result.f[4] =	VERTTYPEMUL(f[0],rhs.f[4])+VERTTYPEMUL(f[4],rhs.f[5])+VERTTYPEMUL(f[8],rhs.f[6])+VERTTYPEMUL(f[12],rhs.f[7]);
1548 		result.f[5] =	VERTTYPEMUL(f[1],rhs.f[4])+VERTTYPEMUL(f[5],rhs.f[5])+VERTTYPEMUL(f[9],rhs.f[6])+VERTTYPEMUL(f[13],rhs.f[7]);
1549 		result.f[6] =	VERTTYPEMUL(f[2],rhs.f[4])+VERTTYPEMUL(f[6],rhs.f[5])+VERTTYPEMUL(f[10],rhs.f[6])+VERTTYPEMUL(f[14],rhs.f[7]);
1550 		result.f[7] =	VERTTYPEMUL(f[3],rhs.f[4])+VERTTYPEMUL(f[7],rhs.f[5])+VERTTYPEMUL(f[11],rhs.f[6])+VERTTYPEMUL(f[15],rhs.f[7]);
1551 
1552 		// col 2
1553 		result.f[8] =	VERTTYPEMUL(f[0],rhs.f[8])+VERTTYPEMUL(f[4],rhs.f[9])+VERTTYPEMUL(f[8],rhs.f[10])+VERTTYPEMUL(f[12],rhs.f[11]);
1554 		result.f[9] =	VERTTYPEMUL(f[1],rhs.f[8])+VERTTYPEMUL(f[5],rhs.f[9])+VERTTYPEMUL(f[9],rhs.f[10])+VERTTYPEMUL(f[13],rhs.f[11]);
1555 		result.f[10] =	VERTTYPEMUL(f[2],rhs.f[8])+VERTTYPEMUL(f[6],rhs.f[9])+VERTTYPEMUL(f[10],rhs.f[10])+VERTTYPEMUL(f[14],rhs.f[11]);
1556 		result.f[11] =	VERTTYPEMUL(f[3],rhs.f[8])+VERTTYPEMUL(f[7],rhs.f[9])+VERTTYPEMUL(f[11],rhs.f[10])+VERTTYPEMUL(f[15],rhs.f[11]);
1557 
1558 		// col 3
1559 		result.f[12] =	VERTTYPEMUL(f[0],rhs.f[12])+VERTTYPEMUL(f[4],rhs.f[13])+VERTTYPEMUL(f[8],rhs.f[14])+VERTTYPEMUL(f[12],rhs.f[15]);
1560 		result.f[13] =	VERTTYPEMUL(f[1],rhs.f[12])+VERTTYPEMUL(f[5],rhs.f[13])+VERTTYPEMUL(f[9],rhs.f[14])+VERTTYPEMUL(f[13],rhs.f[15]);
1561 		result.f[14] =	VERTTYPEMUL(f[2],rhs.f[12])+VERTTYPEMUL(f[6],rhs.f[13])+VERTTYPEMUL(f[10],rhs.f[14])+VERTTYPEMUL(f[14],rhs.f[15]);
1562 		result.f[15] =	VERTTYPEMUL(f[3],rhs.f[12])+VERTTYPEMUL(f[7],rhs.f[13])+VERTTYPEMUL(f[11],rhs.f[14])+VERTTYPEMUL(f[15],rhs.f[15]);
1563 
1564 		*this = result;
1565 		return *this;
1566 	}
1567 
1568 /*!***************************************************************************
1569  @brief      		element multiplication by a single value.
1570  @param[in]			rhs    A single value
1571  @return 			result of multiplication and assignment
1572 *****************************************************************************/
1573 	PVRTMat4& operator*(const VERTTYPE rhs)
1574 	{
1575 		for (int i=0; i<16; ++i)
1576 		{
1577 			f[i]*=rhs;
1578 		}
1579 		return *this;
1580 	}
1581 /*!***************************************************************************
1582  @brief      		element multiplication and assignment by a single value.
1583  @param[in]			rhs    A single value
1584  @return 			result of multiplication and assignment
1585 *****************************************************************************/
1586 	PVRTMat4& operator*=(const VERTTYPE rhs)
1587 	{
1588 		for (int i=0; i<16; ++i)
1589 		{
1590 			f[i]*=rhs;
1591 		}
1592 		return *this;
1593 	}
1594 
1595 /*!***************************************************************************
1596  @brief      		element assignment operator.
1597  @param[in]				rhs another PVRTMat4
1598  @return 			result of assignment
1599 *****************************************************************************/
1600 	PVRTMat4& operator=(const PVRTMat4& rhs)
1601 	{
1602 		for (int i=0; i<16; ++i)
1603 		{
1604 			f[i] =rhs.f[i];
1605 		}
1606 		return *this;
1607 	}
1608 /*!***************************************************************************
1609  @brief      		Matrix multiplication of 4x4 matrix and vec3
1610  @param[in]				rhs a PVRTVec4
1611  @return 			result of multiplication
1612 *****************************************************************************/
1613 	PVRTVec4 operator*(const PVRTVec4& rhs) const
1614 	{
1615 		PVRTVec4 out;
1616 		out.x = VERTTYPEMUL(rhs.x,f[0])+VERTTYPEMUL(rhs.y,f[4])+VERTTYPEMUL(rhs.z,f[8])+VERTTYPEMUL(rhs.w,f[12]);
1617 		out.y = VERTTYPEMUL(rhs.x,f[1])+VERTTYPEMUL(rhs.y,f[5])+VERTTYPEMUL(rhs.z,f[9])+VERTTYPEMUL(rhs.w,f[13]);
1618 		out.z = VERTTYPEMUL(rhs.x,f[2])+VERTTYPEMUL(rhs.y,f[6])+VERTTYPEMUL(rhs.z,f[10])+VERTTYPEMUL(rhs.w,f[14]);
1619 		out.w = VERTTYPEMUL(rhs.x,f[3])+VERTTYPEMUL(rhs.y,f[7])+VERTTYPEMUL(rhs.z,f[11])+VERTTYPEMUL(rhs.w,f[15]);
1620 
1621 		return out;
1622 	}
1623 
1624 /*!***************************************************************************
1625  @brief      		Matrix multiplication and assignment of 4x4 matrix and vec3
1626  @param[in]				rhs a PVRTVec4
1627  @return 			result of multiplication and assignment
1628 *****************************************************************************/
1629 	PVRTVec4 operator*=(const PVRTVec4& rhs) const
1630 	{
1631 		PVRTVec4 out;
1632 		out.x = VERTTYPEMUL(rhs.x,f[0])+VERTTYPEMUL(rhs.y,f[4])+VERTTYPEMUL(rhs.z,f[8])+VERTTYPEMUL(rhs.w,f[12]);
1633 		out.y = VERTTYPEMUL(rhs.x,f[1])+VERTTYPEMUL(rhs.y,f[5])+VERTTYPEMUL(rhs.z,f[9])+VERTTYPEMUL(rhs.w,f[13]);
1634 		out.z = VERTTYPEMUL(rhs.x,f[2])+VERTTYPEMUL(rhs.y,f[6])+VERTTYPEMUL(rhs.z,f[10])+VERTTYPEMUL(rhs.w,f[14]);
1635 		out.w = VERTTYPEMUL(rhs.x,f[3])+VERTTYPEMUL(rhs.y,f[7])+VERTTYPEMUL(rhs.z,f[11])+VERTTYPEMUL(rhs.w,f[15]);
1636 
1637 		return out;
1638 	}
1639 
1640 /*!***************************************************************************
1641  @brief      		Calculates multiplicative inverse of this matrix
1642 					The matrix must be of the form :
1643 					A 0
1644 					C 1
1645 					Where A is a 3x3 matrix and C is a 1x3 matrix.
1646  @return 			inverse mat4
1647 *****************************************************************************/
1648 	PVRTMat4 inverse() const;
1649 
1650 /*!***************************************************************************
1651  @fn       			inverseEx
1652  @return 			inverse mat4
1653  @brief      		Calculates multiplicative inverse of this matrix
1654 					Uses a linear equation solver and the knowledge that M.M^-1=I.
1655 					Use this fn to calculate the inverse of matrices that
1656 					inverse() cannot.
1657 *****************************************************************************/
inverseExPVRTMat41658 	PVRTMat4 inverseEx() const
1659 	{
1660 		PVRTMat4 out;
1661 		VERTTYPE 		*ppRows[4];
1662 		VERTTYPE 		pRes[4];
1663 		VERTTYPE 		pIn[20];
1664 		int				i, j;
1665 
1666 		for(i = 0; i < 4; ++i)
1667 			ppRows[i] = &pIn[i * 5];
1668 
1669 		/* Solve 4 sets of 4 linear equations */
1670 		for(i = 0; i < 4; ++i)
1671 		{
1672 			for(j = 0; j < 4; ++j)
1673 			{
1674 				ppRows[j][0] = PVRTMat4::Identity().f[i + 4 * j];
1675 				memcpy(&ppRows[j][1], &f[j * 4], 4 * sizeof(VERTTYPE));
1676 			}
1677 
1678 			PVRTLinearEqSolve(pRes, (VERTTYPE**)ppRows, 4);
1679 
1680 			for(j = 0; j < 4; ++j)
1681 			{
1682 				out.f[i + 4 * j] = pRes[j];
1683 			}
1684 		}
1685 
1686 		return out;
1687 	}
1688 
1689 /*!***************************************************************************
1690  @fn       			transpose
1691  @return 			transpose mat4
1692  @brief      		Calculates transpose of this matrix
1693 *****************************************************************************/
transposePVRTMat41694 	PVRTMat4 transpose() const
1695 	{
1696 		PVRTMat4 out;
1697 		out.f[0] = f[0];		out.f[1] = f[4];		out.f[2] = f[8];		out.f[3] = f[12];
1698 		out.f[4] = f[1];		out.f[5] = f[5];		out.f[6] = f[9];		out.f[7] = f[13];
1699 		out.f[8] = f[2];		out.f[9] = f[6];		out.f[10] = f[10];		out.f[11] = f[14];
1700 		out.f[12] = f[3];		out.f[13] = f[7];		out.f[14] = f[11];		out.f[15] = f[15];
1701 		return out;
1702 	}
1703 
1704 /*!***************************************************************************
1705  @brief      		Alters the translation component of the transformation matrix.
1706  @param[in]			tx      Distance of translation in x axis
1707  @param[in]			ty      Distance of translation in y axis
1708  @param[in]			tz      Distance of translation in z axis
1709  @return 			Returns this
1710 *****************************************************************************/
postTranslatePVRTMat41711 	PVRTMat4& postTranslate(VERTTYPE tx, VERTTYPE ty, VERTTYPE tz)
1712 	{
1713 		f[12] += VERTTYPEMUL(tx,f[0])+VERTTYPEMUL(ty,f[4])+VERTTYPEMUL(tz,f[8]);
1714 		f[13] += VERTTYPEMUL(tx,f[1])+VERTTYPEMUL(ty,f[5])+VERTTYPEMUL(tz,f[9]);
1715 		f[14] += VERTTYPEMUL(tx,f[2])+VERTTYPEMUL(ty,f[6])+VERTTYPEMUL(tz,f[10]);
1716 		f[15] += VERTTYPEMUL(tx,f[3])+VERTTYPEMUL(ty,f[7])+VERTTYPEMUL(tz,f[11]);
1717 
1718 //			col(3) += tx * col(0) + ty * col(1) + tz * col(2);
1719 		return *this;
1720 	}
1721 
1722 /*!***************************************************************************
1723  @brief      		Alters the translation component of the transformation matrix.
1724  @param[in]			tvec    Translation vector
1725  @return 			Returns this
1726 *****************************************************************************/
postTranslatePVRTMat41727 	PVRTMat4& postTranslate(const PVRTVec3& tvec)
1728 	{
1729 		return postTranslate(tvec.x, tvec.y, tvec.z);
1730 	}
1731 
1732 /*!***************************************************************************
1733  @brief      		Translates the matrix from the passed parameters
1734  @param[in]			tx      Distance of translation in x axis
1735  @param[in]			ty      Distance of translation in y axis
1736  @param[in]			tz      Distance of translation in z axis
1737  @return 			Returns this
1738 *****************************************************************************/
preTranslatePVRTMat41739 	PVRTMat4& preTranslate(VERTTYPE tx, VERTTYPE ty, VERTTYPE tz)
1740 	{
1741 		f[0]+=VERTTYPEMUL(f[3],tx);	f[4]+=VERTTYPEMUL(f[7],tx);	f[8]+=VERTTYPEMUL(f[11],tx);	f[12]+=VERTTYPEMUL(f[15],tx);
1742 		f[1]+=VERTTYPEMUL(f[3],ty);	f[5]+=VERTTYPEMUL(f[7],ty);	f[9]+=VERTTYPEMUL(f[11],ty);	f[13]+=VERTTYPEMUL(f[15],ty);
1743 		f[2]+=VERTTYPEMUL(f[3],tz);	f[6]+=VERTTYPEMUL(f[7],tz);	f[10]+=VERTTYPEMUL(f[11],tz);	f[14]+=VERTTYPEMUL(f[15],tz);
1744 
1745 //			row(0) += tx * row(3);
1746 //			row(1) += ty * row(3);
1747 //			row(2) += tz * row(3);
1748 		return *this;
1749 	}
1750 
1751 /*!***************************************************************************
1752  @brief      		Translates the matrix from the passed parameters
1753  @param[in]			tvec    Translation vector
1754  @return 			Returns the translation defined by the passed parameters
1755 *****************************************************************************/
preTranslatePVRTMat41756 	PVRTMat4& preTranslate(const PVRTVec3& tvec)
1757 	{
1758 		return preTranslate(tvec.x, tvec.y, tvec.z);
1759 	}
1760 /*!***************************************************************************
1761  @brief      		Calculates transpose of this matrix
1762  @return 			pointer to an array of the elements of this PVRTMat4
1763 *****************************************************************************/
ptrPVRTMat41764 	VERTTYPE *ptr() { return (VERTTYPE*)&f; }
1765 
1766 /*!***************************************************************************
1767 ** Static factory functions
1768 *****************************************************************************/
1769 /*!***************************************************************************
1770  @brief      		Generates an identity matrix
1771  @return 			a PVRTMat4 representation of the 4x4 identity matrix
1772 *****************************************************************************/
IdentityPVRTMat41773 	static PVRTMat4 Identity()
1774 	{
1775 		PVRTMat4 out;
1776 		out.f[0] = f2vt(1);out.f[1] = 0;out.f[2] = 0;out.f[3] = 0;
1777 		out.f[4] = 0;out.f[5] = f2vt(1);out.f[6] = 0;out.f[7] = 0;
1778 		out.f[8] = 0;out.f[9] = 0;out.f[10] = f2vt(1);out.f[11] = 0;
1779 		out.f[12] = 0;out.f[13] = 0;out.f[14] = 0;out.f[15] = f2vt(1);
1780 		return out;
1781 	}
1782 
1783 /*!***************************************************************************
1784  @fn       			RotationX
1785  @return 			a PVRTMat3 corresponding to the requested rotation
1786  @brief      		Calculates a matrix corresponding to a rotation of angle
1787 					degrees about the X axis
1788 *****************************************************************************/
1789 	static PVRTMat4 RotationX(VERTTYPE angle);
1790 /*!***************************************************************************
1791  @fn       			RotationY
1792  @return 			a PVRTMat3 corresponding to the requested rotation
1793  @brief      		Calculates a matrix corresponding to a rotation of angle
1794 					degrees about the Y axis
1795 *****************************************************************************/
1796 	static PVRTMat4 RotationY(VERTTYPE angle);
1797 /*!***************************************************************************
1798  @fn       			RotationZ
1799  @return 			a PVRTMat3 corresponding to the requested rotation
1800  @brief      		Calculates a matrix corresponding to a rotation of angle
1801 					degrees about the Z axis
1802 *****************************************************************************/
1803 	static PVRTMat4 RotationZ(VERTTYPE angle);
1804 
1805 /*!***************************************************************************
1806  @brief      		Calculates a matrix corresponding to scaling of fx, fy and fz
1807 					times in each axis.
1808  @return 			a PVRTMat3 corresponding to the requested scaling transformation
1809 *****************************************************************************/
ScalePVRTMat41810 	static PVRTMat4 Scale(const VERTTYPE fx,const VERTTYPE fy,const VERTTYPE fz)
1811 	{
1812 		return PVRTMat4(fx,0,0,0,
1813 			0,fy,0,0,
1814 			0,0,fz,0,
1815 			0,0,0,f2vt(1));
1816 	}
1817 
1818 /*!***************************************************************************
1819  @brief      		Calculates a matrix corresponding to scaling of the given vector.
1820  @return 			a PVRTMat3 corresponding to the requested scaling transformation
1821 *****************************************************************************/
ScalePVRTMat41822 	static PVRTMat4 Scale(const PVRTVec3& vec)
1823 	{
1824 		return Scale(vec.x, vec.y, vec.z);
1825 	}
1826 
1827 /*!***************************************************************************
1828  @brief      		Calculates a 4x4 matrix corresponding to a transformation
1829 					of tx, ty and tz distance in each axis.
1830  @return 			a PVRTMat4 corresponding to the requested translation
1831 *****************************************************************************/
TranslationPVRTMat41832 	static PVRTMat4 Translation(const VERTTYPE tx, const VERTTYPE ty, const VERTTYPE tz)
1833 	{
1834 		return PVRTMat4(f2vt(1),0,0,0,
1835 			0,f2vt(1),0,0,
1836 			0,0,f2vt(1),0,
1837 			tx,ty,tz,f2vt(1));
1838 	}
1839 
1840 /*!***************************************************************************
1841  @brief      		Calculates a 4x4 matrix corresponding to a transformation
1842 					of tx, ty and tz distance in each axis as taken from the
1843 					given vector.
1844  @return 			a PVRTMat4 corresponding to the requested translation
1845 *****************************************************************************/
1846 
TranslationPVRTMat41847 	static PVRTMat4 Translation(const PVRTVec3& vec)
1848 	{
1849 		return Translation(vec.x, vec.y, vec.z);
1850 	}
1851 
1852 /*!***************************************************************************
1853 ** Clipspace enum
1854 ** Determines whether clip space Z ranges from -1 to 1 (OGL) or from 0 to 1 (D3D)
1855 *****************************************************************************/
1856 	enum eClipspace { OGL, D3D };
1857 
1858 /*!***************************************************************************
1859  @brief      		Translates the matrix from the passed parameters
1860  @param[in]			left        Left view plane
1861  @param[in]			top         Top view plane
1862  @param[in]			right       Right view plane
1863  @param[in]			bottom      Bottom view plane
1864  @param[in]			nearPlane   The near rendering plane
1865  @param[in]			farPlane    The far rendering plane
1866  @param[in]			cs          Which clipspace convention is being used
1867  @param[in]			bRotate     Is the viewport in portrait or landscape mode
1868  @return 			Returns the orthogonal projection matrix defined by the passed parameters
1869 *****************************************************************************/
1870 	static PVRTMat4 Ortho(VERTTYPE left, VERTTYPE top, VERTTYPE right,
1871 		VERTTYPE bottom, VERTTYPE nearPlane, VERTTYPE farPlane, const eClipspace cs, bool bRotate = false)
1872 	{
1873 		VERTTYPE rcplmr = VERTTYPEDIV(VERTTYPE(1),(left - right));
1874 		VERTTYPE rcpbmt = VERTTYPEDIV(VERTTYPE(1),(bottom - top));
1875 		VERTTYPE rcpnmf = VERTTYPEDIV(VERTTYPE(1),(nearPlane - farPlane));
1876 
1877 		PVRTMat4 result;
1878 
1879 		if (bRotate)
1880 		{
1881 			result.f[0]=0;		result.f[4]=VERTTYPEMUL(2,rcplmr); result.f[8]=0; result.f[12]=VERTTYPEMUL(-(right+left),rcplmr);
1882 			result.f[1]=VERTTYPEMUL(-2,rcpbmt);	result.f[5]=0;		result.f[9]=0;	result.f[13]=VERTTYPEMUL((top+bottom),rcpbmt);
1883 		}
1884 		else
1885 		{
1886 			result.f[0]=VERTTYPEMUL(-2,rcplmr);	result.f[4]=0; result.f[8]=0; result.f[12]=VERTTYPEMUL(right+left,rcplmr);
1887 			result.f[1]=0;		result.f[5]=VERTTYPEMUL(-2,rcpbmt);	result.f[9]=0;	result.f[13]=VERTTYPEMUL((top+bottom),rcpbmt);
1888 		}
1889 		if (cs == D3D)
1890 		{
1891 			result.f[2]=0;	result.f[6]=0;	result.f[10]=-rcpnmf;	result.f[14]=VERTTYPEMUL(nearPlane,rcpnmf);
1892 		}
1893 		else
1894 		{
1895 			result.f[2]=0;	result.f[6]=0;	result.f[10]=VERTTYPEMUL(-2,rcpnmf);	result.f[14]=VERTTYPEMUL(nearPlane + farPlane,rcpnmf);
1896 		}
1897 		result.f[3]=0;	result.f[7]=0;	result.f[11]=0;	result.f[15]=1;
1898 
1899 		return result;
1900 	}
1901 
1902 /*!***************************************************************************
1903  @fn       			LookAtRH
1904  @param[in]				vEye position of 'camera'
1905  @param[in]				vAt target that camera points at
1906  @param[in]				vUp up vector for camera
1907  @return 			Returns the view matrix defined by the passed parameters
1908  @brief      		Create a look-at view matrix for a right hand coordinate
1909 					system
1910 *****************************************************************************/
LookAtRHPVRTMat41911 	static PVRTMat4 LookAtRH(const PVRTVec3& vEye, const PVRTVec3& vAt, const PVRTVec3& vUp)
1912 		{ return LookAt(vEye, vAt, vUp, true); }
1913 /*!***************************************************************************
1914  @fn       			LookAtLH
1915  @param[in]				vEye position of 'camera'
1916  @param[in]				vAt target that camera points at
1917  @param[in]				vUp up vector for camera
1918  @return 			Returns the view matrix defined by the passed parameters
1919  @brief      		Create a look-at view matrix for a left hand coordinate
1920 					system
1921 *****************************************************************************/
LookAtLHPVRTMat41922 	static PVRTMat4 LookAtLH(const PVRTVec3& vEye, const PVRTVec3& vAt, const PVRTVec3& vUp)
1923 		{ return LookAt(vEye, vAt, vUp, false);	}
1924 
1925 /*!***************************************************************************
1926  @brief      	Create a perspective matrix for a right hand coordinate
1927 				system
1928  @param[in]			width		width of viewplane
1929  @param[in]			height		height of viewplane
1930  @param[in]			nearPlane	near clipping distance
1931  @param[in]			farPlane	far clipping distance
1932  @param[in]			cs			cs which clipspace convention is being used
1933  @param[in]			bRotate is the viewport in portrait or landscape mode
1934  @return 		Perspective matrix
1935 *****************************************************************************/
1936 	static PVRTMat4 PerspectiveRH(VERTTYPE width, VERTTYPE height, VERTTYPE nearPlane,
1937 		VERTTYPE farPlane, const eClipspace cs, bool bRotate = false)
1938 		{ return Perspective(width, height, nearPlane, farPlane, cs, true, bRotate); }
1939 
1940 /*!***************************************************************************
1941  @brief      	Create a perspective matrix for a left hand coordinate
1942 				system
1943  @param[in]			width		width of viewplane
1944  @param[in]			height		height of viewplane
1945  @param[in]			nearPlane	near clipping distance
1946  @param[in]			farPlane	far clipping distance
1947  @param[in]			cs			cs which clipspace convention is being used
1948  @param[in]			bRotate is the viewport in portrait or landscape mode
1949  @return 		Perspective matrix
1950 *****************************************************************************/
1951 	static PVRTMat4 PerspectiveLH(VERTTYPE width, VERTTYPE height, VERTTYPE nearPlane, VERTTYPE farPlane, const eClipspace cs, bool bRotate = false)
1952 		{ return Perspective(width, height, nearPlane, farPlane, cs, false, bRotate); }
1953 
1954 /*!***************************************************************************
1955  @brief      	Create a perspective matrix for a right hand coordinate
1956 				system
1957  @param[in]			width		width of viewplane
1958  @param[in]			height		height of viewplane
1959  @param[in]			nearPlane	near clipping distance
1960  @param[in]			cs			cs which clipspace convention is being used
1961  @param[in]			bRotate is the viewport in portrait or landscape mode
1962  @return 		Perspective matrix
1963 *****************************************************************************/
1964 	static PVRTMat4 PerspectiveFloatDepthRH(VERTTYPE width, VERTTYPE height, VERTTYPE nearPlane, const eClipspace cs, bool bRotate = false)
1965 		{ return PerspectiveFloatDepth(width, height, nearPlane, cs, true, bRotate); }
1966 
1967 /*!***************************************************************************
1968  @brief      	Create a perspective matrix for a left hand coordinate
1969 				system
1970  @param[in]			width		width of viewplane
1971  @param[in]			height		height of viewplane
1972  @param[in]			nearPlane	near clipping distance
1973  @param[in]			cs			cs which clipspace convention is being used
1974  @param[in]			bRotate is the viewport in portrait or landscape mode
1975  @return 		Perspective matrix
1976 *****************************************************************************/
1977 	static PVRTMat4 PerspectiveFloatDepthLH(VERTTYPE width, VERTTYPE height, VERTTYPE nearPlane, const eClipspace cs, bool bRotate = false)
1978 		{ return PerspectiveFloatDepth(width, height, nearPlane, cs, false, bRotate); }
1979 
1980 /*!***************************************************************************
1981  @brief      	Create a perspective matrix for a right hand coordinate
1982 				system
1983  @param[in]			fovy		angle of view (vertical)
1984  @param[in]			aspect		aspect ratio of view
1985  @param[in]			nearPlane	near clipping distance
1986  @param[in]			farPlane	far clipping distance
1987  @param[in]			cs			cs which clipspace convention is being used
1988  @param[in]			bRotate is the viewport in portrait or landscape mode
1989  @return 		Perspective matrix
1990 *****************************************************************************/
1991 	static PVRTMat4 PerspectiveFovRH(VERTTYPE fovy, VERTTYPE aspect, VERTTYPE nearPlane, VERTTYPE farPlane, const eClipspace cs, bool bRotate = false)
1992 		{ return PerspectiveFov(fovy, aspect, nearPlane, farPlane, cs, true, bRotate); }
1993 /*!***************************************************************************
1994  @brief      	Create a perspective matrix for a left hand coordinate
1995 				system
1996  @param[in]			fovy		angle of view (vertical)
1997  @param[in]			aspect		aspect ratio of view
1998  @param[in]			nearPlane	near clipping distance
1999  @param[in]			farPlane	far clipping distance
2000  @param[in]			cs			cs which clipspace convention is being used
2001  @param[in]			bRotate is the viewport in portrait or landscape mode
2002  @return 		Perspective matrix
2003 *****************************************************************************/
2004 	static PVRTMat4 PerspectiveFovLH(VERTTYPE fovy, VERTTYPE aspect, VERTTYPE nearPlane, VERTTYPE farPlane, const eClipspace cs, bool bRotate = false)
2005 		{ return PerspectiveFov(fovy, aspect, nearPlane, farPlane, cs, false, bRotate); }
2006 
2007 /*!***************************************************************************
2008  @brief      	Create a perspective matrix for a right hand coordinate
2009 				system
2010  @param[in]			fovy		angle of view (vertical)
2011  @param[in]			aspect		aspect ratio of view
2012  @param[in]			nearPlane	near clipping distance
2013  @param[in]			cs			cs which clipspace convention is being used
2014  @param[in]			bRotate is the viewport in portrait or landscape mode
2015  @return 		Perspective matrix
2016 *****************************************************************************/
2017 	static PVRTMat4 PerspectiveFovFloatDepthRH(VERTTYPE fovy, VERTTYPE aspect, VERTTYPE nearPlane, const eClipspace cs, bool bRotate = false)
2018 		{ return PerspectiveFovFloatDepth(fovy, aspect, nearPlane, cs, true, bRotate); }
2019 /*!***************************************************************************
2020  @brief      	Create a perspective matrix for a left hand coordinate
2021 				system
2022  @param[in]			fovy		angle of view (vertical)
2023  @param[in]			aspect		aspect ratio of view
2024  @param[in]			nearPlane	near clipping distance
2025  @param[in]			cs			cs which clipspace convention is being used
2026  @param[in]			bRotate is the viewport in portrait or landscape mode
2027  @return 		Perspective matrix
2028 *****************************************************************************/
2029 	static PVRTMat4 PerspectiveFovFloatDepthLH(VERTTYPE fovy, VERTTYPE aspect, VERTTYPE nearPlane, const eClipspace cs, bool bRotate = false)
2030 		{ return PerspectiveFovFloatDepth(fovy, aspect, nearPlane, cs, false, bRotate); }
2031 
2032 /*!***************************************************************************
2033  @brief      		Create a look-at view matrix
2034  @param[in]			vEye            Position of 'camera'
2035  @param[in]			vAt             Target that camera points at
2036  @param[in]			vUp             Up vector for camera
2037  @param[in]			bRightHanded    Handedness of coordinate system
2038  @return 			Returns the view matrix defined by the passed parameters
2039 *****************************************************************************/
LookAtPVRTMat42040 	static PVRTMat4 LookAt(const PVRTVec3& vEye, const PVRTVec3& vAt, const PVRTVec3& vUp, bool bRightHanded)
2041 	{
2042 		PVRTVec3 vForward, vUpNorm, vSide;
2043 		PVRTMat4 result;
2044 
2045 		vForward = (bRightHanded) ? vEye - vAt : vAt - vEye;
2046 
2047 		vForward.normalize();
2048 		vSide   = vUp.cross( vForward);
2049 		vSide	= vSide.normalized();
2050 		vUpNorm = vForward.cross(vSide);
2051 		vUpNorm = vUpNorm.normalized();
2052 
2053 		result.f[0]=vSide.x;	result.f[4]=vSide.y;	result.f[8]=vSide.z;		result.f[12]=0;
2054 		result.f[1]=vUpNorm.x;	result.f[5]=vUpNorm.y;	result.f[9]=vUpNorm.z;		result.f[13]=0;
2055 		result.f[2]=vForward.x; result.f[6]=vForward.y;	result.f[10]=vForward.z;	result.f[14]=0;
2056 		result.f[3]=0;			result.f[7]=0;			result.f[11]=0;				result.f[15]=f2vt(1);
2057 
2058 
2059 		result.postTranslate(-vEye);
2060 		return result;
2061 	}
2062 
2063 /*!***************************************************************************
2064  @brief      	Create a perspective matrix
2065  @param[in]		width		Width of viewplane
2066  @param[in]		height		Height of viewplane
2067  @param[in]		nearPlane	Near clipping distance
2068  @param[in]		farPlane	Far clipping distance
2069  @param[in]		cs			Which clipspace convention is being used
2070  @param[in]		bRightHanded	Handedness of coordinate system
2071  @param[in]		bRotate		Is the viewport in portrait or landscape mode
2072  @return 		Perspective matrix
2073 *****************************************************************************/
2074 	static PVRTMat4 Perspective(
2075 		VERTTYPE width, VERTTYPE height,
2076 		VERTTYPE nearPlane, VERTTYPE farPlane,
2077 		const eClipspace cs,
2078 		bool bRightHanded,
2079 		bool bRotate = false)
2080 	{
2081 		VERTTYPE n2 = VERTTYPEMUL(f2vt(2),nearPlane);
2082 		VERTTYPE rcpnmf = VERTTYPEDIV(f2vt(1),(nearPlane - farPlane));
2083 
2084 		PVRTMat4 result;
2085 		if (bRotate)
2086 		{
2087 			result.f[0] = 0;	result.f[4]=VERTTYPEDIV(-n2,width);	result.f[8]=0;	result.f[12]=0;
2088 			result.f[1] = VERTTYPEDIV(n2,height);	result.f[5]=0;	result.f[9]=0;	result.f[13]=0;
2089 		}
2090 		else
2091 		{
2092 			result.f[0] = VERTTYPEDIV(n2,width);	result.f[4]=0;	result.f[8]=0;	result.f[12]=0;
2093 			result.f[1] = 0;	result.f[5]=VERTTYPEDIV(n2,height);	result.f[9]=0;	result.f[13]=0;
2094 		}
2095 		if (cs == D3D)
2096 		{
2097 			result.f[2] = 0;	result.f[6]=0;	result.f[10]=VERTTYPEMUL(farPlane,rcpnmf);	result.f[14]=VERTTYPEMUL(VERTTYPEMUL(farPlane,rcpnmf),nearPlane);
2098 		}
2099 		else
2100 		{
2101 			result.f[2] = 0;	result.f[6]=0;	result.f[10]=VERTTYPEMUL(farPlane+nearPlane,rcpnmf);	result.f[14]=VERTTYPEMUL(VERTTYPEMUL(farPlane,rcpnmf),n2);
2102 		}
2103 		result.f[3] = 0;	result.f[7]=0;	result.f[11]=f2vt(-1);	result.f[15]=0;
2104 
2105 		if (!bRightHanded)
2106 		{
2107 			result.f[10] = VERTTYPEMUL(result.f[10], f2vt(-1));
2108 			result.f[11] = f2vt(1);
2109 		}
2110 
2111 		return result;
2112 	}
2113 
2114 /*!***************************************************************************
2115  @brief      	Perspective calculation where far plane is assumed to be at an infinite distance and the screen
2116 				space Z is inverted
2117  @param[in]		width		Width of viewplane
2118  @param[in]		height		Height of viewplane
2119  @param[in]		nearPlane	Near clipping distance
2120  @param[in]		cs			Which clipspace convention is being used
2121  @param[in]		bRightHanded	Handedness of coordinate system
2122  @param[in]		bRotate		Is the viewport in portrait or landscape mode
2123  @return 		Perspective matrix
2124 *****************************************************************************/
2125 	static PVRTMat4 PerspectiveFloatDepth(
2126 		VERTTYPE width, VERTTYPE height,
2127 		VERTTYPE nearPlane,
2128 		const eClipspace cs,
2129 		bool bRightHanded,
2130 		bool bRotate = false)
2131 	{
2132 		VERTTYPE n2 = VERTTYPEMUL(2,nearPlane);
2133 
2134 		PVRTMat4 result;
2135 		if (bRotate)
2136 		{
2137 			result.f[0] = 0;	result.f[4]=VERTTYPEDIV(-n2,width);	result.f[8]=0;	result.f[12]=0;
2138 			result.f[1] = VERTTYPEDIV(n2,height);	result.f[5]=0;	result.f[9]=0;	result.f[13]=0;
2139 		}
2140 		else
2141 		{
2142 			result.f[0] = VERTTYPEDIV(n2,width);	result.f[4]=0;	result.f[8]=0;	result.f[12]=0;
2143 			result.f[1] = 0;	result.f[5]=VERTTYPEDIV(n2,height);	result.f[9]=0;	result.f[13]=0;
2144 		}
2145 		if (cs == D3D)
2146 		{
2147 			result.f[2] = 0;	result.f[6]=0;	result.f[10]=0;	result.f[14]=nearPlane;
2148 		}
2149 		else
2150 		{
2151 			result.f[2] = 0;	result.f[6]=0;	result.f[10]=(bRightHanded?(VERTTYPE)1:(VERTTYPE)-1);	result.f[14]=n2;
2152 		}
2153 		result.f[3] = (VERTTYPE)0;	result.f[7]=(VERTTYPE)0;	result.f[11]= (bRightHanded?(VERTTYPE)-1:(VERTTYPE)1);	result.f[15]=(VERTTYPE)0;
2154 
2155 		return result;
2156 	}
2157 
2158 /*!***************************************************************************
2159  @brief      	Perspective calculation where field of view is used instead of near plane dimensions
2160  @param[in]		fovy		Angle of view (vertical)
2161  @param[in]		aspect		Aspect ratio of view
2162  @param[in]		nearPlane	Near clipping distance
2163  @param[in]		farPlane	Far clipping distance
2164  @param[in]		cs			Which clipspace convention is being used
2165  @param[in]		bRightHanded	Handedness of coordinate system
2166  @param[in]		bRotate		Is the viewport in portrait or landscape mode
2167  @return 		Perspective matrix
2168 *****************************************************************************/
2169 	static PVRTMat4 PerspectiveFov(
2170 		VERTTYPE fovy, VERTTYPE aspect,
2171 		VERTTYPE nearPlane, VERTTYPE farPlane,
2172 		const eClipspace cs,
2173 		bool bRightHanded,
2174 		bool bRotate = false)
2175 	{
2176 		VERTTYPE height = VERTTYPEMUL(VERTTYPEMUL(f2vt(2.0f),nearPlane),PVRTTAN(VERTTYPEMUL(fovy,f2vt(0.5f))));
2177 		if (bRotate) return Perspective(height, VERTTYPEDIV(height,aspect), nearPlane, farPlane, cs, bRightHanded, bRotate);
2178 		return Perspective(VERTTYPEMUL(height,aspect), height, nearPlane, farPlane, cs, bRightHanded, bRotate);
2179 	}
2180 
2181 /*!***************************************************************************
2182  @brief      	Perspective calculation where field of view is used instead of near plane dimensions
2183 				and far plane is assumed to be at an infinite distance with inverted Z range
2184  @param[in]		fovy		Angle of view (vertical)
2185  @param[in]		aspect		Aspect ratio of view
2186  @param[in]		nearPlane	Near clipping distance
2187  @param[in]		cs			Which clipspace convention is being used
2188  @param[in]		bRightHanded	Handedness of coordinate system
2189  @param[in]		bRotate		Is the viewport in portrait or landscape mode
2190  @return 		Perspective matrix
2191 *****************************************************************************/
2192 	static PVRTMat4 PerspectiveFovFloatDepth(
2193 		VERTTYPE fovy, VERTTYPE aspect,
2194 		VERTTYPE nearPlane,
2195 		const eClipspace cs,
2196 		bool bRightHanded,
2197 		bool bRotate = false)
2198 	{
2199 		VERTTYPE height = VERTTYPEMUL(VERTTYPEMUL(2,nearPlane), PVRTTAN(VERTTYPEMUL(fovy,0.5)));
2200 		if (bRotate) return PerspectiveFloatDepth(height, VERTTYPEDIV(height,aspect), nearPlane, cs, bRightHanded, bRotate);
2201 		return PerspectiveFloatDepth(VERTTYPEMUL(height,aspect), height, nearPlane, cs, bRightHanded, bRotate);
2202 	}
2203 };
2204 
2205 #endif /*__PVRTVECTOR_H__*/
2206 
2207 /*****************************************************************************
2208 End of file (PVRTVector.h)
2209 *****************************************************************************/
2210 
2211