1 /* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #ifndef TENSORFLOW_EXAMPLES_ANDROID_JNI_OBJECT_TRACKING_UTILS_H_
17 #define TENSORFLOW_EXAMPLES_ANDROID_JNI_OBJECT_TRACKING_UTILS_H_
18 
19 #include <math.h>
20 #include <stdint.h>
21 #include <stdlib.h>
22 #include <time.h>
23 
24 #include <cmath>  // for std::abs(float)
25 
26 #ifndef HAVE_CLOCK_GETTIME
27 // Use gettimeofday() instead of clock_gettime().
28 #include <sys/time.h>
29 #endif  // ifdef HAVE_CLOCK_GETTIME
30 
31 #include "tensorflow/examples/android/jni/object_tracking/logging.h"
32 
33 // TODO(andrewharp): clean up these macros to use the codebase statndard.
34 
35 // A very small number, generally used as the tolerance for accumulated
36 // floating point errors in bounds-checks.
37 #define EPSILON 0.00001f
38 
39 #define SAFE_DELETE(pointer) {\
40   if ((pointer) != NULL) {\
41     LOGV("Safe deleting pointer: %s", #pointer);\
42     delete (pointer);\
43     (pointer) = NULL;\
44   } else {\
45     LOGV("Pointer already null: %s", #pointer);\
46   }\
47 }
48 
49 
50 #ifdef __GOOGLE__
51 
52 #define CHECK_ALWAYS(condition, format, ...) {\
53   CHECK(condition) << StringPrintf(format, ##__VA_ARGS__);\
54 }
55 
56 #define SCHECK(condition, format, ...) {\
57   DCHECK(condition) << StringPrintf(format, ##__VA_ARGS__);\
58 }
59 
60 #else
61 
62 #define CHECK_ALWAYS(condition, format, ...) {\
63   if (!(condition)) {\
64     LOGE("CHECK FAILED (%s): " format, #condition, ##__VA_ARGS__);\
65     abort();\
66   }\
67 }
68 
69 #ifdef SANITY_CHECKS
70 #define SCHECK(condition, format, ...) {\
71   CHECK_ALWAYS(condition, format, ##__VA_ARGS__);\
72 }
73 #else
74 #define SCHECK(condition, format, ...) {}
75 #endif  // SANITY_CHECKS
76 
77 #endif  // __GOOGLE__
78 
79 
80 #ifndef MAX
81 #define MAX(a, b) (((a) > (b)) ? (a) : (b))
82 #endif
83 #ifndef MIN
84 #define MIN(a, b) (((a) > (b)) ? (b) : (a))
85 #endif
86 
CurrentThreadTimeNanos()87 inline static int64_t CurrentThreadTimeNanos() {
88 #ifdef HAVE_CLOCK_GETTIME
89   struct timespec tm;
90   clock_gettime(CLOCK_THREAD_CPUTIME_ID, &tm);
91   return tm.tv_sec * 1000000000LL + tm.tv_nsec;
92 #else
93   struct timeval tv;
94   gettimeofday(&tv, NULL);
95   return tv.tv_sec * 1000000000 + tv.tv_usec * 1000;
96 #endif
97 }
98 
CurrentRealTimeMillis()99 inline static int64_t CurrentRealTimeMillis() {
100 #ifdef HAVE_CLOCK_GETTIME
101   struct timespec tm;
102   clock_gettime(CLOCK_MONOTONIC, &tm);
103   return tm.tv_sec * 1000LL + tm.tv_nsec / 1000000LL;
104 #else
105   struct timeval tv;
106   gettimeofday(&tv, NULL);
107   return tv.tv_sec * 1000 + tv.tv_usec / 1000;
108 #endif
109 }
110 
111 
112 template<typename T>
Square(const T a)113 inline static T Square(const T a) {
114   return a * a;
115 }
116 
117 
118 template<typename T>
Clip(const T a,const T floor,const T ceil)119 inline static T Clip(const T a, const T floor, const T ceil) {
120   SCHECK(ceil >= floor, "Bounds mismatch!");
121   return (a <= floor) ? floor : ((a >= ceil) ? ceil : a);
122 }
123 
124 
125 template<typename T>
Floor(const T a)126 inline static int Floor(const T a) {
127   return static_cast<int>(a);
128 }
129 
130 
131 template<typename T>
Ceil(const T a)132 inline static int Ceil(const T a) {
133   return Floor(a) + 1;
134 }
135 
136 
137 template<typename T>
InRange(const T a,const T min,const T max)138 inline static bool InRange(const T a, const T min, const T max) {
139   return (a >= min) && (a <= max);
140 }
141 
142 
ValidIndex(const int a,const int max)143 inline static bool ValidIndex(const int a, const int max) {
144   return (a >= 0) && (a < max);
145 }
146 
147 
NearlyEqual(const float a,const float b,const float tolerance)148 inline bool NearlyEqual(const float a, const float b, const float tolerance) {
149   return std::abs(a - b) < tolerance;
150 }
151 
152 
NearlyEqual(const float a,const float b)153 inline bool NearlyEqual(const float a, const float b) {
154   return NearlyEqual(a, b, EPSILON);
155 }
156 
157 
158 template<typename T>
Round(const float a)159 inline static int Round(const float a) {
160   return (a - static_cast<float>(floor(a) > 0.5f) ? ceil(a) : floor(a));
161 }
162 
163 
164 template<typename T>
Swap(T * const a,T * const b)165 inline static void Swap(T* const a, T* const b) {
166   // Cache out the VALUE of what's at a.
167   T tmp = *a;
168   *a = *b;
169 
170   *b = tmp;
171 }
172 
173 
randf()174 static inline float randf() {
175   return rand() / static_cast<float>(RAND_MAX);
176 }
177 
randf(const float min_value,const float max_value)178 static inline float randf(const float min_value, const float max_value) {
179   return randf() * (max_value - min_value) + min_value;
180 }
181 
RealToFixed115(const float real_number)182 static inline uint16_t RealToFixed115(const float real_number) {
183   SCHECK(InRange(real_number, 0.0f, 2048.0f),
184         "Value out of range! %.2f", real_number);
185 
186   static const float kMult = 32.0f;
187   const float round_add = (real_number > 0.0f) ? 0.5f : -0.5f;
188   return static_cast<uint16_t>(real_number * kMult + round_add);
189 }
190 
FixedToFloat115(const uint16_t fp_number)191 static inline float FixedToFloat115(const uint16_t fp_number) {
192   const float kDiv = 32.0f;
193   return (static_cast<float>(fp_number) / kDiv);
194 }
195 
RealToFixed1616(const float real_number)196 static inline int RealToFixed1616(const float real_number) {
197   static const float kMult = 65536.0f;
198   SCHECK(InRange(real_number, -kMult, kMult),
199         "Value out of range! %.2f", real_number);
200 
201   const float round_add = (real_number > 0.0f) ? 0.5f : -0.5f;
202   return static_cast<int>(real_number * kMult + round_add);
203 }
204 
FixedToFloat1616(const int fp_number)205 static inline float FixedToFloat1616(const int fp_number) {
206   const float kDiv = 65536.0f;
207   return (static_cast<float>(fp_number) / kDiv);
208 }
209 
210 template<typename T>
211 // produces numbers in range [0,2*M_PI] (rather than -PI,PI)
FastAtan2(const T y,const T x)212 inline T FastAtan2(const T y, const T x) {
213   static const T coeff_1 = (T)(M_PI / 4.0);
214   static const T coeff_2 = (T)(3.0 * coeff_1);
215   const T abs_y = fabs(y);
216   T angle;
217   if (x >= 0) {
218     T r = (x - abs_y) / (x + abs_y);
219     angle = coeff_1 - coeff_1 * r;
220   } else {
221     T r = (x + abs_y) / (abs_y - x);
222     angle = coeff_2 - coeff_1 * r;
223   }
224   static const T PI_2 = 2.0 * M_PI;
225   return y < 0 ? PI_2 - angle : angle;
226 }
227 
228 #define NELEMS(X) (sizeof(X) / sizeof(X[0]))
229 
230 namespace tf_tracking {
231 
232 #ifdef __ARM_NEON
233 float ComputeMeanNeon(const float* const values, const int num_vals);
234 
235 float ComputeStdDevNeon(const float* const values, const int num_vals,
236                         const float mean);
237 
238 float ComputeWeightedMeanNeon(const float* const values,
239                               const float* const weights, const int num_vals);
240 
241 float ComputeCrossCorrelationNeon(const float* const values1,
242                                   const float* const values2,
243                                   const int num_vals);
244 #endif
245 
ComputeMeanCpu(const float * const values,const int num_vals)246 inline float ComputeMeanCpu(const float* const values, const int num_vals) {
247   // Get mean.
248   float sum = values[0];
249   for (int i = 1; i < num_vals; ++i) {
250     sum += values[i];
251   }
252   return sum / static_cast<float>(num_vals);
253 }
254 
255 
ComputeMean(const float * const values,const int num_vals)256 inline float ComputeMean(const float* const values, const int num_vals) {
257   return
258 #ifdef __ARM_NEON
259       (num_vals >= 8) ? ComputeMeanNeon(values, num_vals) :
260 #endif
261                       ComputeMeanCpu(values, num_vals);
262 }
263 
264 
ComputeStdDevCpu(const float * const values,const int num_vals,const float mean)265 inline float ComputeStdDevCpu(const float* const values,
266                               const int num_vals,
267                               const float mean) {
268   // Get Std dev.
269   float squared_sum = 0.0f;
270   for (int i = 0; i < num_vals; ++i) {
271     squared_sum += Square(values[i] - mean);
272   }
273   return sqrt(squared_sum / static_cast<float>(num_vals));
274 }
275 
276 
ComputeStdDev(const float * const values,const int num_vals,const float mean)277 inline float ComputeStdDev(const float* const values,
278                            const int num_vals,
279                            const float mean) {
280   return
281 #ifdef __ARM_NEON
282       (num_vals >= 8) ? ComputeStdDevNeon(values, num_vals, mean) :
283 #endif
284                       ComputeStdDevCpu(values, num_vals, mean);
285 }
286 
287 
288 // TODO(andrewharp): Accelerate with NEON.
ComputeWeightedMean(const float * const values,const float * const weights,const int num_vals)289 inline float ComputeWeightedMean(const float* const values,
290                                  const float* const weights,
291                                  const int num_vals) {
292   float sum = 0.0f;
293   float total_weight = 0.0f;
294   for (int i = 0; i < num_vals; ++i) {
295     sum += values[i] * weights[i];
296     total_weight += weights[i];
297   }
298   return sum / num_vals;
299 }
300 
301 
ComputeCrossCorrelationCpu(const float * const values1,const float * const values2,const int num_vals)302 inline float ComputeCrossCorrelationCpu(const float* const values1,
303                                         const float* const values2,
304                                         const int num_vals) {
305   float sxy = 0.0f;
306   for (int offset = 0; offset < num_vals; ++offset) {
307     sxy += values1[offset] * values2[offset];
308   }
309 
310   const float cross_correlation = sxy / num_vals;
311 
312   return cross_correlation;
313 }
314 
315 
ComputeCrossCorrelation(const float * const values1,const float * const values2,const int num_vals)316 inline float ComputeCrossCorrelation(const float* const values1,
317                                      const float* const values2,
318                                      const int num_vals) {
319   return
320 #ifdef __ARM_NEON
321       (num_vals >= 8) ? ComputeCrossCorrelationNeon(values1, values2, num_vals)
322                       :
323 #endif
324                       ComputeCrossCorrelationCpu(values1, values2, num_vals);
325 }
326 
327 
NormalizeNumbers(float * const values,const int num_vals)328 inline void NormalizeNumbers(float* const values, const int num_vals) {
329   // Find the mean and then subtract so that the new mean is 0.0.
330   const float mean = ComputeMean(values, num_vals);
331   VLOG(2) << "Mean is " << mean;
332   float* curr_data = values;
333   for (int i = 0; i < num_vals; ++i) {
334     *curr_data -= mean;
335     curr_data++;
336   }
337 
338   // Now divide by the std deviation so the new standard deviation is 1.0.
339   // The numbers might all be identical (and thus shifted to 0.0 now),
340   // so only scale by the standard deviation if this is not the case.
341   const float std_dev = ComputeStdDev(values, num_vals, 0.0f);
342   if (std_dev > 0.0f) {
343     VLOG(2) << "Std dev is " << std_dev;
344     curr_data = values;
345     for (int i = 0; i < num_vals; ++i) {
346       *curr_data /= std_dev;
347       curr_data++;
348     }
349   }
350 }
351 
352 
353 // Returns the determinant of a 2x2 matrix.
354 template<class T>
FindDeterminant2x2(const T * const a)355 inline T FindDeterminant2x2(const T* const a) {
356   // Determinant: (ad - bc)
357   return a[0] * a[3] - a[1] * a[2];
358 }
359 
360 
361 // Finds the inverse of a 2x2 matrix.
362 // Returns true upon success, false if the matrix is not invertible.
363 template<class T>
Invert2x2(const T * const a,float * const a_inv)364 inline bool Invert2x2(const T* const a, float* const a_inv) {
365   const float det = static_cast<float>(FindDeterminant2x2(a));
366   if (fabs(det) < EPSILON) {
367     return false;
368   }
369   const float inv_det = 1.0f / det;
370 
371   a_inv[0] = inv_det * static_cast<float>(a[3]);   // d
372   a_inv[1] = inv_det * static_cast<float>(-a[1]);  // -b
373   a_inv[2] = inv_det * static_cast<float>(-a[2]);  // -c
374   a_inv[3] = inv_det * static_cast<float>(a[0]);   // a
375 
376   return true;
377 }
378 
379 }  // namespace tf_tracking
380 
381 #endif  // TENSORFLOW_EXAMPLES_ANDROID_JNI_OBJECT_TRACKING_UTILS_H_
382