1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/sha1.h"
6 
7 #include <stddef.h>
8 #include <stdint.h>
9 #include <string.h>
10 
11 #include "base/sys_byteorder.h"
12 
13 namespace base {
14 
15 // Implementation of SHA-1. Only handles data in byte-sized blocks,
16 // which simplifies the code a fair bit.
17 
18 // Identifier names follow notation in FIPS PUB 180-3, where you'll
19 // also find a description of the algorithm:
20 // http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
21 
22 // Usage example:
23 //
24 // SecureHashAlgorithm sha;
25 // while(there is data to hash)
26 //   sha.Update(moredata, size of data);
27 // sha.Final();
28 // memcpy(somewhere, sha.Digest(), 20);
29 //
30 // to reuse the instance of sha, call sha.Init();
31 
32 // TODO(jhawkins): Replace this implementation with a per-platform
33 // implementation using each platform's crypto library.  See
34 // http://crbug.com/47218
35 
36 class SecureHashAlgorithm {
37  public:
SecureHashAlgorithm()38   SecureHashAlgorithm() { Init(); }
39 
40   static const int kDigestSizeBytes;
41 
42   void Init();
43   void Update(const void* data, size_t nbytes);
44   void Final();
45 
46   // 20 bytes of message digest.
Digest() const47   const unsigned char* Digest() const {
48     return reinterpret_cast<const unsigned char*>(H);
49   }
50 
51  private:
52   void Pad();
53   void Process();
54 
55   uint32_t A, B, C, D, E;
56 
57   uint32_t H[5];
58 
59   union {
60     uint32_t W[80];
61     uint8_t M[64];
62   };
63 
64   uint32_t cursor;
65   uint64_t l;
66 };
67 
f(uint32_t t,uint32_t B,uint32_t C,uint32_t D)68 static inline uint32_t f(uint32_t t, uint32_t B, uint32_t C, uint32_t D) {
69   if (t < 20) {
70     return (B & C) | ((~B) & D);
71   } else if (t < 40) {
72     return B ^ C ^ D;
73   } else if (t < 60) {
74     return (B & C) | (B & D) | (C & D);
75   } else {
76     return B ^ C ^ D;
77   }
78 }
79 
S(uint32_t n,uint32_t X)80 static inline uint32_t S(uint32_t n, uint32_t X) {
81   return (X << n) | (X >> (32-n));
82 }
83 
K(uint32_t t)84 static inline uint32_t K(uint32_t t) {
85   if (t < 20) {
86     return 0x5a827999;
87   } else if (t < 40) {
88     return 0x6ed9eba1;
89   } else if (t < 60) {
90     return 0x8f1bbcdc;
91   } else {
92     return 0xca62c1d6;
93   }
94 }
95 
96 const int SecureHashAlgorithm::kDigestSizeBytes = 20;
97 
Init()98 void SecureHashAlgorithm::Init() {
99   A = 0;
100   B = 0;
101   C = 0;
102   D = 0;
103   E = 0;
104   cursor = 0;
105   l = 0;
106   H[0] = 0x67452301;
107   H[1] = 0xefcdab89;
108   H[2] = 0x98badcfe;
109   H[3] = 0x10325476;
110   H[4] = 0xc3d2e1f0;
111 }
112 
Final()113 void SecureHashAlgorithm::Final() {
114   Pad();
115   Process();
116 
117   for (int t = 0; t < 5; ++t)
118     H[t] = ByteSwap(H[t]);
119 }
120 
Update(const void * data,size_t nbytes)121 void SecureHashAlgorithm::Update(const void* data, size_t nbytes) {
122   const uint8_t* d = reinterpret_cast<const uint8_t*>(data);
123   while (nbytes--) {
124     M[cursor++] = *d++;
125     if (cursor >= 64)
126       Process();
127     l += 8;
128   }
129 }
130 
Pad()131 void SecureHashAlgorithm::Pad() {
132   M[cursor++] = 0x80;
133 
134   if (cursor > 64-8) {
135     // pad out to next block
136     while (cursor < 64)
137       M[cursor++] = 0;
138 
139     Process();
140   }
141 
142   while (cursor < 64-8)
143     M[cursor++] = 0;
144 
145   M[cursor++] = (l >> 56) & 0xff;
146   M[cursor++] = (l >> 48) & 0xff;
147   M[cursor++] = (l >> 40) & 0xff;
148   M[cursor++] = (l >> 32) & 0xff;
149   M[cursor++] = (l >> 24) & 0xff;
150   M[cursor++] = (l >> 16) & 0xff;
151   M[cursor++] = (l >> 8) & 0xff;
152   M[cursor++] = l & 0xff;
153 }
154 
Process()155 void SecureHashAlgorithm::Process() {
156   uint32_t t;
157 
158   // Each a...e corresponds to a section in the FIPS 180-3 algorithm.
159 
160   // a.
161   //
162   // W and M are in a union, so no need to memcpy.
163   // memcpy(W, M, sizeof(M));
164   for (t = 0; t < 16; ++t)
165     W[t] = ByteSwap(W[t]);
166 
167   // b.
168   for (t = 16; t < 80; ++t)
169     W[t] = S(1, W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16]);
170 
171   // c.
172   A = H[0];
173   B = H[1];
174   C = H[2];
175   D = H[3];
176   E = H[4];
177 
178   // d.
179   for (t = 0; t < 80; ++t) {
180     uint32_t TEMP = S(5, A) + f(t, B, C, D) + E + W[t] + K(t);
181     E = D;
182     D = C;
183     C = S(30, B);
184     B = A;
185     A = TEMP;
186   }
187 
188   // e.
189   H[0] += A;
190   H[1] += B;
191   H[2] += C;
192   H[3] += D;
193   H[4] += E;
194 
195   cursor = 0;
196 }
197 
SHA1HashString(const std::string & str)198 std::string SHA1HashString(const std::string& str) {
199   char hash[SecureHashAlgorithm::kDigestSizeBytes];
200   SHA1HashBytes(reinterpret_cast<const unsigned char*>(str.c_str()),
201                 str.length(), reinterpret_cast<unsigned char*>(hash));
202   return std::string(hash, SecureHashAlgorithm::kDigestSizeBytes);
203 }
204 
SHA1HashBytes(const unsigned char * data,size_t len,unsigned char * hash)205 void SHA1HashBytes(const unsigned char* data, size_t len,
206                    unsigned char* hash) {
207   SecureHashAlgorithm sha;
208   sha.Update(data, len);
209   sha.Final();
210 
211   memcpy(hash, sha.Digest(), SecureHashAlgorithm::kDigestSizeBytes);
212 }
213 
214 }  // namespace base
215