1 //==- MachineScheduler.h - MachineInstr Scheduling Pass ----------*- C++ -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides an interface for customizing the standard MachineScheduler
11 // pass. Note that the entire pass may be replaced as follows:
12 //
13 // <Target>TargetMachine::createPassConfig(PassManagerBase &PM) {
14 //   PM.substitutePass(&MachineSchedulerID, &CustomSchedulerPassID);
15 //   ...}
16 //
17 // The MachineScheduler pass is only responsible for choosing the regions to be
18 // scheduled. Targets can override the DAG builder and scheduler without
19 // replacing the pass as follows:
20 //
21 // ScheduleDAGInstrs *<Target>PassConfig::
22 // createMachineScheduler(MachineSchedContext *C) {
23 //   return new CustomMachineScheduler(C);
24 // }
25 //
26 // The default scheduler, ScheduleDAGMILive, builds the DAG and drives list
27 // scheduling while updating the instruction stream, register pressure, and live
28 // intervals. Most targets don't need to override the DAG builder and list
29 // schedulier, but subtargets that require custom scheduling heuristics may
30 // plugin an alternate MachineSchedStrategy. The strategy is responsible for
31 // selecting the highest priority node from the list:
32 //
33 // ScheduleDAGInstrs *<Target>PassConfig::
34 // createMachineScheduler(MachineSchedContext *C) {
35 //   return new ScheduleDAGMI(C, CustomStrategy(C));
36 // }
37 //
38 // The DAG builder can also be customized in a sense by adding DAG mutations
39 // that will run after DAG building and before list scheduling. DAG mutations
40 // can adjust dependencies based on target-specific knowledge or add weak edges
41 // to aid heuristics:
42 //
43 // ScheduleDAGInstrs *<Target>PassConfig::
44 // createMachineScheduler(MachineSchedContext *C) {
45 //   ScheduleDAGMI *DAG = new ScheduleDAGMI(C, CustomStrategy(C));
46 //   DAG->addMutation(new CustomDependencies(DAG->TII, DAG->TRI));
47 //   return DAG;
48 // }
49 //
50 // A target that supports alternative schedulers can use the
51 // MachineSchedRegistry to allow command line selection. This can be done by
52 // implementing the following boilerplate:
53 //
54 // static ScheduleDAGInstrs *createCustomMachineSched(MachineSchedContext *C) {
55 //  return new CustomMachineScheduler(C);
56 // }
57 // static MachineSchedRegistry
58 // SchedCustomRegistry("custom", "Run my target's custom scheduler",
59 //                     createCustomMachineSched);
60 //
61 //
62 // Finally, subtargets that don't need to implement custom heuristics but would
63 // like to configure the GenericScheduler's policy for a given scheduler region,
64 // including scheduling direction and register pressure tracking policy, can do
65 // this:
66 //
67 // void <SubTarget>Subtarget::
68 // overrideSchedPolicy(MachineSchedPolicy &Policy,
69 //                     unsigned NumRegionInstrs) const {
70 //   Policy.<Flag> = true;
71 // }
72 //
73 //===----------------------------------------------------------------------===//
74 
75 #ifndef LLVM_CODEGEN_MACHINESCHEDULER_H
76 #define LLVM_CODEGEN_MACHINESCHEDULER_H
77 
78 #include "llvm/Analysis/AliasAnalysis.h"
79 #include "llvm/CodeGen/MachinePassRegistry.h"
80 #include "llvm/CodeGen/RegisterPressure.h"
81 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
82 #include "llvm/CodeGen/ScheduleDAGMutation.h"
83 #include <memory>
84 
85 namespace llvm {
86 
87 extern cl::opt<bool> ForceTopDown;
88 extern cl::opt<bool> ForceBottomUp;
89 
90 class LiveIntervals;
91 class MachineDominatorTree;
92 class MachineLoopInfo;
93 class RegisterClassInfo;
94 class ScheduleDAGInstrs;
95 class SchedDFSResult;
96 class ScheduleHazardRecognizer;
97 
98 /// MachineSchedContext provides enough context from the MachineScheduler pass
99 /// for the target to instantiate a scheduler.
100 struct MachineSchedContext {
101   MachineFunction *MF;
102   const MachineLoopInfo *MLI;
103   const MachineDominatorTree *MDT;
104   const TargetPassConfig *PassConfig;
105   AliasAnalysis *AA;
106   LiveIntervals *LIS;
107 
108   RegisterClassInfo *RegClassInfo;
109 
110   MachineSchedContext();
111   virtual ~MachineSchedContext();
112 };
113 
114 /// MachineSchedRegistry provides a selection of available machine instruction
115 /// schedulers.
116 class MachineSchedRegistry : public MachinePassRegistryNode {
117 public:
118   typedef ScheduleDAGInstrs *(*ScheduleDAGCtor)(MachineSchedContext *);
119 
120   // RegisterPassParser requires a (misnamed) FunctionPassCtor type.
121   typedef ScheduleDAGCtor FunctionPassCtor;
122 
123   static MachinePassRegistry Registry;
124 
MachineSchedRegistry(const char * N,const char * D,ScheduleDAGCtor C)125   MachineSchedRegistry(const char *N, const char *D, ScheduleDAGCtor C)
126     : MachinePassRegistryNode(N, D, (MachinePassCtor)C) {
127     Registry.Add(this);
128   }
~MachineSchedRegistry()129   ~MachineSchedRegistry() { Registry.Remove(this); }
130 
131   // Accessors.
132   //
getNext()133   MachineSchedRegistry *getNext() const {
134     return (MachineSchedRegistry *)MachinePassRegistryNode::getNext();
135   }
getList()136   static MachineSchedRegistry *getList() {
137     return (MachineSchedRegistry *)Registry.getList();
138   }
setListener(MachinePassRegistryListener * L)139   static void setListener(MachinePassRegistryListener *L) {
140     Registry.setListener(L);
141   }
142 };
143 
144 class ScheduleDAGMI;
145 
146 /// Define a generic scheduling policy for targets that don't provide their own
147 /// MachineSchedStrategy. This can be overriden for each scheduling region
148 /// before building the DAG.
149 struct MachineSchedPolicy {
150   // Allow the scheduler to disable register pressure tracking.
151   bool ShouldTrackPressure;
152   /// Track LaneMasks to allow reordering of independent subregister writes
153   /// of the same vreg. \sa MachineSchedStrategy::shouldTrackLaneMasks()
154   bool ShouldTrackLaneMasks;
155 
156   // Allow the scheduler to force top-down or bottom-up scheduling. If neither
157   // is true, the scheduler runs in both directions and converges.
158   bool OnlyTopDown;
159   bool OnlyBottomUp;
160 
161   // Disable heuristic that tries to fetch nodes from long dependency chains
162   // first.
163   bool DisableLatencyHeuristic;
164 
MachineSchedPolicyMachineSchedPolicy165   MachineSchedPolicy(): ShouldTrackPressure(false), ShouldTrackLaneMasks(false),
166     OnlyTopDown(false), OnlyBottomUp(false), DisableLatencyHeuristic(false) {}
167 };
168 
169 /// MachineSchedStrategy - Interface to the scheduling algorithm used by
170 /// ScheduleDAGMI.
171 ///
172 /// Initialization sequence:
173 ///   initPolicy -> shouldTrackPressure -> initialize(DAG) -> registerRoots
174 class MachineSchedStrategy {
175   virtual void anchor();
176 public:
~MachineSchedStrategy()177   virtual ~MachineSchedStrategy() {}
178 
179   /// Optionally override the per-region scheduling policy.
initPolicy(MachineBasicBlock::iterator Begin,MachineBasicBlock::iterator End,unsigned NumRegionInstrs)180   virtual void initPolicy(MachineBasicBlock::iterator Begin,
181                           MachineBasicBlock::iterator End,
182                           unsigned NumRegionInstrs) {}
183 
dumpPolicy()184   virtual void dumpPolicy() {}
185 
186   /// Check if pressure tracking is needed before building the DAG and
187   /// initializing this strategy. Called after initPolicy.
shouldTrackPressure()188   virtual bool shouldTrackPressure() const { return true; }
189 
190   /// Returns true if lanemasks should be tracked. LaneMask tracking is
191   /// necessary to reorder independent subregister defs for the same vreg.
192   /// This has to be enabled in combination with shouldTrackPressure().
shouldTrackLaneMasks()193   virtual bool shouldTrackLaneMasks() const { return false; }
194 
195   /// Initialize the strategy after building the DAG for a new region.
196   virtual void initialize(ScheduleDAGMI *DAG) = 0;
197 
198   /// Notify this strategy that all roots have been released (including those
199   /// that depend on EntrySU or ExitSU).
registerRoots()200   virtual void registerRoots() {}
201 
202   /// Pick the next node to schedule, or return NULL. Set IsTopNode to true to
203   /// schedule the node at the top of the unscheduled region. Otherwise it will
204   /// be scheduled at the bottom.
205   virtual SUnit *pickNode(bool &IsTopNode) = 0;
206 
207   /// \brief Scheduler callback to notify that a new subtree is scheduled.
scheduleTree(unsigned SubtreeID)208   virtual void scheduleTree(unsigned SubtreeID) {}
209 
210   /// Notify MachineSchedStrategy that ScheduleDAGMI has scheduled an
211   /// instruction and updated scheduled/remaining flags in the DAG nodes.
212   virtual void schedNode(SUnit *SU, bool IsTopNode) = 0;
213 
214   /// When all predecessor dependencies have been resolved, free this node for
215   /// top-down scheduling.
216   virtual void releaseTopNode(SUnit *SU) = 0;
217   /// When all successor dependencies have been resolved, free this node for
218   /// bottom-up scheduling.
219   virtual void releaseBottomNode(SUnit *SU) = 0;
220 };
221 
222 /// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply
223 /// schedules machine instructions according to the given MachineSchedStrategy
224 /// without much extra book-keeping. This is the common functionality between
225 /// PreRA and PostRA MachineScheduler.
226 class ScheduleDAGMI : public ScheduleDAGInstrs {
227 protected:
228   AliasAnalysis *AA;
229   LiveIntervals *LIS;
230   std::unique_ptr<MachineSchedStrategy> SchedImpl;
231 
232   /// Topo - A topological ordering for SUnits which permits fast IsReachable
233   /// and similar queries.
234   ScheduleDAGTopologicalSort Topo;
235 
236   /// Ordered list of DAG postprocessing steps.
237   std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
238 
239   /// The top of the unscheduled zone.
240   MachineBasicBlock::iterator CurrentTop;
241 
242   /// The bottom of the unscheduled zone.
243   MachineBasicBlock::iterator CurrentBottom;
244 
245   /// Record the next node in a scheduled cluster.
246   const SUnit *NextClusterPred;
247   const SUnit *NextClusterSucc;
248 
249 #ifndef NDEBUG
250   /// The number of instructions scheduled so far. Used to cut off the
251   /// scheduler at the point determined by misched-cutoff.
252   unsigned NumInstrsScheduled;
253 #endif
254 public:
ScheduleDAGMI(MachineSchedContext * C,std::unique_ptr<MachineSchedStrategy> S,bool RemoveKillFlags)255   ScheduleDAGMI(MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S,
256                 bool RemoveKillFlags)
257       : ScheduleDAGInstrs(*C->MF, C->MLI, RemoveKillFlags), AA(C->AA),
258         LIS(C->LIS), SchedImpl(std::move(S)), Topo(SUnits, &ExitSU),
259         CurrentTop(), CurrentBottom(), NextClusterPred(nullptr),
260         NextClusterSucc(nullptr) {
261 #ifndef NDEBUG
262     NumInstrsScheduled = 0;
263 #endif
264   }
265 
266   // Provide a vtable anchor
267   ~ScheduleDAGMI() override;
268 
269   // Returns LiveIntervals instance for use in DAG mutators and such.
getLIS()270   LiveIntervals *getLIS() const { return LIS; }
271 
272   /// Return true if this DAG supports VReg liveness and RegPressure.
hasVRegLiveness()273   virtual bool hasVRegLiveness() const { return false; }
274 
275   /// Add a postprocessing step to the DAG builder.
276   /// Mutations are applied in the order that they are added after normal DAG
277   /// building and before MachineSchedStrategy initialization.
278   ///
279   /// ScheduleDAGMI takes ownership of the Mutation object.
addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation)280   void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
281     Mutations.push_back(std::move(Mutation));
282   }
283 
284   /// \brief True if an edge can be added from PredSU to SuccSU without creating
285   /// a cycle.
286   bool canAddEdge(SUnit *SuccSU, SUnit *PredSU);
287 
288   /// \brief Add a DAG edge to the given SU with the given predecessor
289   /// dependence data.
290   ///
291   /// \returns true if the edge may be added without creating a cycle OR if an
292   /// equivalent edge already existed (false indicates failure).
293   bool addEdge(SUnit *SuccSU, const SDep &PredDep);
294 
top()295   MachineBasicBlock::iterator top() const { return CurrentTop; }
bottom()296   MachineBasicBlock::iterator bottom() const { return CurrentBottom; }
297 
298   /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
299   /// region. This covers all instructions in a block, while schedule() may only
300   /// cover a subset.
301   void enterRegion(MachineBasicBlock *bb,
302                    MachineBasicBlock::iterator begin,
303                    MachineBasicBlock::iterator end,
304                    unsigned regioninstrs) override;
305 
306   /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
307   /// reorderable instructions.
308   void schedule() override;
309 
310   /// Change the position of an instruction within the basic block and update
311   /// live ranges and region boundary iterators.
312   void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos);
313 
getNextClusterPred()314   const SUnit *getNextClusterPred() const { return NextClusterPred; }
315 
getNextClusterSucc()316   const SUnit *getNextClusterSucc() const { return NextClusterSucc; }
317 
318   void viewGraph(const Twine &Name, const Twine &Title) override;
319   void viewGraph() override;
320 
321 protected:
322   // Top-Level entry points for the schedule() driver...
323 
324   /// Apply each ScheduleDAGMutation step in order. This allows different
325   /// instances of ScheduleDAGMI to perform custom DAG postprocessing.
326   void postprocessDAG();
327 
328   /// Release ExitSU predecessors and setup scheduler queues.
329   void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots);
330 
331   /// Update scheduler DAG and queues after scheduling an instruction.
332   void updateQueues(SUnit *SU, bool IsTopNode);
333 
334   /// Reinsert debug_values recorded in ScheduleDAGInstrs::DbgValues.
335   void placeDebugValues();
336 
337   /// \brief dump the scheduled Sequence.
338   void dumpSchedule() const;
339 
340   // Lesser helpers...
341   bool checkSchedLimit();
342 
343   void findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
344                              SmallVectorImpl<SUnit*> &BotRoots);
345 
346   void releaseSucc(SUnit *SU, SDep *SuccEdge);
347   void releaseSuccessors(SUnit *SU);
348   void releasePred(SUnit *SU, SDep *PredEdge);
349   void releasePredecessors(SUnit *SU);
350 };
351 
352 /// ScheduleDAGMILive is an implementation of ScheduleDAGInstrs that schedules
353 /// machine instructions while updating LiveIntervals and tracking regpressure.
354 class ScheduleDAGMILive : public ScheduleDAGMI {
355 protected:
356   RegisterClassInfo *RegClassInfo;
357 
358   /// Information about DAG subtrees. If DFSResult is NULL, then SchedulerTrees
359   /// will be empty.
360   SchedDFSResult *DFSResult;
361   BitVector ScheduledTrees;
362 
363   MachineBasicBlock::iterator LiveRegionEnd;
364 
365   // Map each SU to its summary of pressure changes. This array is updated for
366   // liveness during bottom-up scheduling. Top-down scheduling may proceed but
367   // has no affect on the pressure diffs.
368   PressureDiffs SUPressureDiffs;
369 
370   /// Register pressure in this region computed by initRegPressure.
371   bool ShouldTrackPressure;
372   bool ShouldTrackLaneMasks;
373   IntervalPressure RegPressure;
374   RegPressureTracker RPTracker;
375 
376   /// List of pressure sets that exceed the target's pressure limit before
377   /// scheduling, listed in increasing set ID order. Each pressure set is paired
378   /// with its max pressure in the currently scheduled regions.
379   std::vector<PressureChange> RegionCriticalPSets;
380 
381   /// The top of the unscheduled zone.
382   IntervalPressure TopPressure;
383   RegPressureTracker TopRPTracker;
384 
385   /// The bottom of the unscheduled zone.
386   IntervalPressure BotPressure;
387   RegPressureTracker BotRPTracker;
388 
389   /// True if disconnected subregister components are already renamed.
390   /// The renaming is only done on demand if lane masks are tracked.
391   bool DisconnectedComponentsRenamed;
392 
393 public:
ScheduleDAGMILive(MachineSchedContext * C,std::unique_ptr<MachineSchedStrategy> S)394   ScheduleDAGMILive(MachineSchedContext *C,
395                     std::unique_ptr<MachineSchedStrategy> S)
396       : ScheduleDAGMI(C, std::move(S), /*RemoveKillFlags=*/false),
397         RegClassInfo(C->RegClassInfo), DFSResult(nullptr),
398         ShouldTrackPressure(false), ShouldTrackLaneMasks(false),
399         RPTracker(RegPressure), TopRPTracker(TopPressure),
400         BotRPTracker(BotPressure), DisconnectedComponentsRenamed(false) {}
401 
402   ~ScheduleDAGMILive() override;
403 
404   /// Return true if this DAG supports VReg liveness and RegPressure.
hasVRegLiveness()405   bool hasVRegLiveness() const override { return true; }
406 
407   /// \brief Return true if register pressure tracking is enabled.
isTrackingPressure()408   bool isTrackingPressure() const { return ShouldTrackPressure; }
409 
410   /// Get current register pressure for the top scheduled instructions.
getTopPressure()411   const IntervalPressure &getTopPressure() const { return TopPressure; }
getTopRPTracker()412   const RegPressureTracker &getTopRPTracker() const { return TopRPTracker; }
413 
414   /// Get current register pressure for the bottom scheduled instructions.
getBotPressure()415   const IntervalPressure &getBotPressure() const { return BotPressure; }
getBotRPTracker()416   const RegPressureTracker &getBotRPTracker() const { return BotRPTracker; }
417 
418   /// Get register pressure for the entire scheduling region before scheduling.
getRegPressure()419   const IntervalPressure &getRegPressure() const { return RegPressure; }
420 
getRegionCriticalPSets()421   const std::vector<PressureChange> &getRegionCriticalPSets() const {
422     return RegionCriticalPSets;
423   }
424 
getPressureDiff(const SUnit * SU)425   PressureDiff &getPressureDiff(const SUnit *SU) {
426     return SUPressureDiffs[SU->NodeNum];
427   }
428 
429   /// Compute a DFSResult after DAG building is complete, and before any
430   /// queue comparisons.
431   void computeDFSResult();
432 
433   /// Return a non-null DFS result if the scheduling strategy initialized it.
getDFSResult()434   const SchedDFSResult *getDFSResult() const { return DFSResult; }
435 
getScheduledTrees()436   BitVector &getScheduledTrees() { return ScheduledTrees; }
437 
438   /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
439   /// region. This covers all instructions in a block, while schedule() may only
440   /// cover a subset.
441   void enterRegion(MachineBasicBlock *bb,
442                    MachineBasicBlock::iterator begin,
443                    MachineBasicBlock::iterator end,
444                    unsigned regioninstrs) override;
445 
446   /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
447   /// reorderable instructions.
448   void schedule() override;
449 
450   /// Compute the cyclic critical path through the DAG.
451   unsigned computeCyclicCriticalPath();
452 
453 protected:
454   // Top-Level entry points for the schedule() driver...
455 
456   /// Call ScheduleDAGInstrs::buildSchedGraph with register pressure tracking
457   /// enabled. This sets up three trackers. RPTracker will cover the entire DAG
458   /// region, TopTracker and BottomTracker will be initialized to the top and
459   /// bottom of the DAG region without covereing any unscheduled instruction.
460   void buildDAGWithRegPressure();
461 
462   /// Release ExitSU predecessors and setup scheduler queues. Re-position
463   /// the Top RP tracker in case the region beginning has changed.
464   void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots);
465 
466   /// Move an instruction and update register pressure.
467   void scheduleMI(SUnit *SU, bool IsTopNode);
468 
469   // Lesser helpers...
470 
471   void initRegPressure();
472 
473   void updatePressureDiffs(ArrayRef<RegisterMaskPair> LiveUses);
474 
475   void updateScheduledPressure(const SUnit *SU,
476                                const std::vector<unsigned> &NewMaxPressure);
477 };
478 
479 //===----------------------------------------------------------------------===//
480 ///
481 /// Helpers for implementing custom MachineSchedStrategy classes. These take
482 /// care of the book-keeping associated with list scheduling heuristics.
483 ///
484 //===----------------------------------------------------------------------===//
485 
486 /// ReadyQueue encapsulates vector of "ready" SUnits with basic convenience
487 /// methods for pushing and removing nodes. ReadyQueue's are uniquely identified
488 /// by an ID. SUnit::NodeQueueId is a mask of the ReadyQueues the SUnit is in.
489 ///
490 /// This is a convenience class that may be used by implementations of
491 /// MachineSchedStrategy.
492 class ReadyQueue {
493   unsigned ID;
494   std::string Name;
495   std::vector<SUnit*> Queue;
496 
497 public:
ReadyQueue(unsigned id,const Twine & name)498   ReadyQueue(unsigned id, const Twine &name): ID(id), Name(name.str()) {}
499 
getID()500   unsigned getID() const { return ID; }
501 
getName()502   StringRef getName() const { return Name; }
503 
504   // SU is in this queue if it's NodeQueueID is a superset of this ID.
isInQueue(SUnit * SU)505   bool isInQueue(SUnit *SU) const { return (SU->NodeQueueId & ID); }
506 
empty()507   bool empty() const { return Queue.empty(); }
508 
clear()509   void clear() { Queue.clear(); }
510 
size()511   unsigned size() const { return Queue.size(); }
512 
513   typedef std::vector<SUnit*>::iterator iterator;
514 
begin()515   iterator begin() { return Queue.begin(); }
516 
end()517   iterator end() { return Queue.end(); }
518 
elements()519   ArrayRef<SUnit*> elements() { return Queue; }
520 
find(SUnit * SU)521   iterator find(SUnit *SU) {
522     return std::find(Queue.begin(), Queue.end(), SU);
523   }
524 
push(SUnit * SU)525   void push(SUnit *SU) {
526     Queue.push_back(SU);
527     SU->NodeQueueId |= ID;
528   }
529 
remove(iterator I)530   iterator remove(iterator I) {
531     (*I)->NodeQueueId &= ~ID;
532     *I = Queue.back();
533     unsigned idx = I - Queue.begin();
534     Queue.pop_back();
535     return Queue.begin() + idx;
536   }
537 
538   void dump();
539 };
540 
541 /// Summarize the unscheduled region.
542 struct SchedRemainder {
543   // Critical path through the DAG in expected latency.
544   unsigned CriticalPath;
545   unsigned CyclicCritPath;
546 
547   // Scaled count of micro-ops left to schedule.
548   unsigned RemIssueCount;
549 
550   bool IsAcyclicLatencyLimited;
551 
552   // Unscheduled resources
553   SmallVector<unsigned, 16> RemainingCounts;
554 
resetSchedRemainder555   void reset() {
556     CriticalPath = 0;
557     CyclicCritPath = 0;
558     RemIssueCount = 0;
559     IsAcyclicLatencyLimited = false;
560     RemainingCounts.clear();
561   }
562 
SchedRemainderSchedRemainder563   SchedRemainder() { reset(); }
564 
565   void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
566 };
567 
568 /// Each Scheduling boundary is associated with ready queues. It tracks the
569 /// current cycle in the direction of movement, and maintains the state
570 /// of "hazards" and other interlocks at the current cycle.
571 class SchedBoundary {
572 public:
573   /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
574   enum {
575     TopQID = 1,
576     BotQID = 2,
577     LogMaxQID = 2
578   };
579 
580   ScheduleDAGMI *DAG;
581   const TargetSchedModel *SchedModel;
582   SchedRemainder *Rem;
583 
584   ReadyQueue Available;
585   ReadyQueue Pending;
586 
587   ScheduleHazardRecognizer *HazardRec;
588 
589 private:
590   /// True if the pending Q should be checked/updated before scheduling another
591   /// instruction.
592   bool CheckPending;
593 
594   // For heuristics, keep a list of the nodes that immediately depend on the
595   // most recently scheduled node.
596   SmallPtrSet<const SUnit*, 8> NextSUs;
597 
598   /// Number of cycles it takes to issue the instructions scheduled in this
599   /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls.
600   /// See getStalls().
601   unsigned CurrCycle;
602 
603   /// Micro-ops issued in the current cycle
604   unsigned CurrMOps;
605 
606   /// MinReadyCycle - Cycle of the soonest available instruction.
607   unsigned MinReadyCycle;
608 
609   // The expected latency of the critical path in this scheduled zone.
610   unsigned ExpectedLatency;
611 
612   // The latency of dependence chains leading into this zone.
613   // For each node scheduled bottom-up: DLat = max DLat, N.Depth.
614   // For each cycle scheduled: DLat -= 1.
615   unsigned DependentLatency;
616 
617   /// Count the scheduled (issued) micro-ops that can be retired by
618   /// time=CurrCycle assuming the first scheduled instr is retired at time=0.
619   unsigned RetiredMOps;
620 
621   // Count scheduled resources that have been executed. Resources are
622   // considered executed if they become ready in the time that it takes to
623   // saturate any resource including the one in question. Counts are scaled
624   // for direct comparison with other resources. Counts can be compared with
625   // MOps * getMicroOpFactor and Latency * getLatencyFactor.
626   SmallVector<unsigned, 16> ExecutedResCounts;
627 
628   /// Cache the max count for a single resource.
629   unsigned MaxExecutedResCount;
630 
631   // Cache the critical resources ID in this scheduled zone.
632   unsigned ZoneCritResIdx;
633 
634   // Is the scheduled region resource limited vs. latency limited.
635   bool IsResourceLimited;
636 
637   // Record the highest cycle at which each resource has been reserved by a
638   // scheduled instruction.
639   SmallVector<unsigned, 16> ReservedCycles;
640 
641 #ifndef NDEBUG
642   // Remember the greatest possible stall as an upper bound on the number of
643   // times we should retry the pending queue because of a hazard.
644   unsigned MaxObservedStall;
645 #endif
646 
647 public:
648   /// Pending queues extend the ready queues with the same ID and the
649   /// PendingFlag set.
SchedBoundary(unsigned ID,const Twine & Name)650   SchedBoundary(unsigned ID, const Twine &Name):
651     DAG(nullptr), SchedModel(nullptr), Rem(nullptr), Available(ID, Name+".A"),
652     Pending(ID << LogMaxQID, Name+".P"),
653     HazardRec(nullptr) {
654     reset();
655   }
656 
657   ~SchedBoundary();
658 
659   void reset();
660 
661   void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
662             SchedRemainder *rem);
663 
isTop()664   bool isTop() const {
665     return Available.getID() == TopQID;
666   }
667 
668   /// Number of cycles to issue the instructions scheduled in this zone.
getCurrCycle()669   unsigned getCurrCycle() const { return CurrCycle; }
670 
671   /// Micro-ops issued in the current cycle
getCurrMOps()672   unsigned getCurrMOps() const { return CurrMOps; }
673 
674   /// Return true if the given SU is used by the most recently scheduled
675   /// instruction.
isNextSU(const SUnit * SU)676   bool isNextSU(const SUnit *SU) const { return NextSUs.count(SU); }
677 
678   // The latency of dependence chains leading into this zone.
getDependentLatency()679   unsigned getDependentLatency() const { return DependentLatency; }
680 
681   /// Get the number of latency cycles "covered" by the scheduled
682   /// instructions. This is the larger of the critical path within the zone
683   /// and the number of cycles required to issue the instructions.
getScheduledLatency()684   unsigned getScheduledLatency() const {
685     return std::max(ExpectedLatency, CurrCycle);
686   }
687 
getUnscheduledLatency(SUnit * SU)688   unsigned getUnscheduledLatency(SUnit *SU) const {
689     return isTop() ? SU->getHeight() : SU->getDepth();
690   }
691 
getResourceCount(unsigned ResIdx)692   unsigned getResourceCount(unsigned ResIdx) const {
693     return ExecutedResCounts[ResIdx];
694   }
695 
696   /// Get the scaled count of scheduled micro-ops and resources, including
697   /// executed resources.
getCriticalCount()698   unsigned getCriticalCount() const {
699     if (!ZoneCritResIdx)
700       return RetiredMOps * SchedModel->getMicroOpFactor();
701     return getResourceCount(ZoneCritResIdx);
702   }
703 
704   /// Get a scaled count for the minimum execution time of the scheduled
705   /// micro-ops that are ready to execute by getExecutedCount. Notice the
706   /// feedback loop.
getExecutedCount()707   unsigned getExecutedCount() const {
708     return std::max(CurrCycle * SchedModel->getLatencyFactor(),
709                     MaxExecutedResCount);
710   }
711 
getZoneCritResIdx()712   unsigned getZoneCritResIdx() const { return ZoneCritResIdx; }
713 
714   // Is the scheduled region resource limited vs. latency limited.
isResourceLimited()715   bool isResourceLimited() const { return IsResourceLimited; }
716 
717   /// Get the difference between the given SUnit's ready time and the current
718   /// cycle.
719   unsigned getLatencyStallCycles(SUnit *SU);
720 
721   unsigned getNextResourceCycle(unsigned PIdx, unsigned Cycles);
722 
723   bool checkHazard(SUnit *SU);
724 
725   unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs);
726 
727   unsigned getOtherResourceCount(unsigned &OtherCritIdx);
728 
729   void releaseNode(SUnit *SU, unsigned ReadyCycle);
730 
731   void releaseTopNode(SUnit *SU);
732 
733   void releaseBottomNode(SUnit *SU);
734 
735   void bumpCycle(unsigned NextCycle);
736 
737   void incExecutedResources(unsigned PIdx, unsigned Count);
738 
739   unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle);
740 
741   void bumpNode(SUnit *SU);
742 
743   void releasePending();
744 
745   void removeReady(SUnit *SU);
746 
747   /// Call this before applying any other heuristics to the Available queue.
748   /// Updates the Available/Pending Q's if necessary and returns the single
749   /// available instruction, or NULL if there are multiple candidates.
750   SUnit *pickOnlyChoice();
751 
752 #ifndef NDEBUG
753   void dumpScheduledState();
754 #endif
755 };
756 
757 /// Base class for GenericScheduler. This class maintains information about
758 /// scheduling candidates based on TargetSchedModel making it easy to implement
759 /// heuristics for either preRA or postRA scheduling.
760 class GenericSchedulerBase : public MachineSchedStrategy {
761 public:
762   /// Represent the type of SchedCandidate found within a single queue.
763   /// pickNodeBidirectional depends on these listed by decreasing priority.
764   enum CandReason : uint8_t {
765     NoCand, Only1, PhysRegCopy, RegExcess, RegCritical, Stall, Cluster, Weak,
766     RegMax, ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
767     TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder};
768 
769 #ifndef NDEBUG
770   static const char *getReasonStr(GenericSchedulerBase::CandReason Reason);
771 #endif
772 
773   /// Policy for scheduling the next instruction in the candidate's zone.
774   struct CandPolicy {
775     bool ReduceLatency;
776     unsigned ReduceResIdx;
777     unsigned DemandResIdx;
778 
CandPolicyCandPolicy779     CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {}
780 
781     bool operator==(const CandPolicy &RHS) const {
782       return ReduceLatency == RHS.ReduceLatency &&
783              ReduceResIdx == RHS.ReduceResIdx &&
784              DemandResIdx == RHS.DemandResIdx;
785     }
786     bool operator!=(const CandPolicy &RHS) const {
787       return !(*this == RHS);
788     }
789   };
790 
791   /// Status of an instruction's critical resource consumption.
792   struct SchedResourceDelta {
793     // Count critical resources in the scheduled region required by SU.
794     unsigned CritResources;
795 
796     // Count critical resources from another region consumed by SU.
797     unsigned DemandedResources;
798 
SchedResourceDeltaSchedResourceDelta799     SchedResourceDelta(): CritResources(0), DemandedResources(0) {}
800 
801     bool operator==(const SchedResourceDelta &RHS) const {
802       return CritResources == RHS.CritResources
803         && DemandedResources == RHS.DemandedResources;
804     }
805     bool operator!=(const SchedResourceDelta &RHS) const {
806       return !operator==(RHS);
807     }
808   };
809 
810   /// Store the state used by GenericScheduler heuristics, required for the
811   /// lifetime of one invocation of pickNode().
812   struct SchedCandidate {
813     CandPolicy Policy;
814 
815     // The best SUnit candidate.
816     SUnit *SU;
817 
818     // The reason for this candidate.
819     CandReason Reason;
820 
821     // Whether this candidate should be scheduled at top/bottom.
822     bool AtTop;
823 
824     // Register pressure values for the best candidate.
825     RegPressureDelta RPDelta;
826 
827     // Critical resource consumption of the best candidate.
828     SchedResourceDelta ResDelta;
829 
SchedCandidateSchedCandidate830     SchedCandidate() { reset(CandPolicy()); }
SchedCandidateSchedCandidate831     SchedCandidate(const CandPolicy &Policy) { reset(Policy); }
832 
resetSchedCandidate833     void reset(const CandPolicy &NewPolicy) {
834       Policy = NewPolicy;
835       SU = nullptr;
836       Reason = NoCand;
837       AtTop = false;
838       RPDelta = RegPressureDelta();
839       ResDelta = SchedResourceDelta();
840     }
841 
isValidSchedCandidate842     bool isValid() const { return SU; }
843 
844     // Copy the status of another candidate without changing policy.
setBestSchedCandidate845     void setBest(SchedCandidate &Best) {
846       assert(Best.Reason != NoCand && "uninitialized Sched candidate");
847       SU = Best.SU;
848       Reason = Best.Reason;
849       AtTop = Best.AtTop;
850       RPDelta = Best.RPDelta;
851       ResDelta = Best.ResDelta;
852     }
853 
854     void initResourceDelta(const ScheduleDAGMI *DAG,
855                            const TargetSchedModel *SchedModel);
856   };
857 
858 protected:
859   const MachineSchedContext *Context;
860   const TargetSchedModel *SchedModel;
861   const TargetRegisterInfo *TRI;
862 
863   SchedRemainder Rem;
864 protected:
GenericSchedulerBase(const MachineSchedContext * C)865   GenericSchedulerBase(const MachineSchedContext *C):
866     Context(C), SchedModel(nullptr), TRI(nullptr) {}
867 
868   void setPolicy(CandPolicy &Policy, bool IsPostRA, SchedBoundary &CurrZone,
869                  SchedBoundary *OtherZone);
870 
871 #ifndef NDEBUG
872   void traceCandidate(const SchedCandidate &Cand);
873 #endif
874 };
875 
876 /// GenericScheduler shrinks the unscheduled zone using heuristics to balance
877 /// the schedule.
878 class GenericScheduler : public GenericSchedulerBase {
879   ScheduleDAGMILive *DAG;
880 
881   // State of the top and bottom scheduled instruction boundaries.
882   SchedBoundary Top;
883   SchedBoundary Bot;
884 
885   /// Candidate last picked from Top boundary.
886   SchedCandidate TopCand;
887   /// Candidate last picked from Bot boundary.
888   SchedCandidate BotCand;
889 
890   MachineSchedPolicy RegionPolicy;
891 public:
GenericScheduler(const MachineSchedContext * C)892   GenericScheduler(const MachineSchedContext *C):
893     GenericSchedulerBase(C), DAG(nullptr), Top(SchedBoundary::TopQID, "TopQ"),
894     Bot(SchedBoundary::BotQID, "BotQ") {}
895 
896   void initPolicy(MachineBasicBlock::iterator Begin,
897                   MachineBasicBlock::iterator End,
898                   unsigned NumRegionInstrs) override;
899 
900   void dumpPolicy() override;
901 
shouldTrackPressure()902   bool shouldTrackPressure() const override {
903     return RegionPolicy.ShouldTrackPressure;
904   }
905 
shouldTrackLaneMasks()906   bool shouldTrackLaneMasks() const override {
907     return RegionPolicy.ShouldTrackLaneMasks;
908   }
909 
910   void initialize(ScheduleDAGMI *dag) override;
911 
912   SUnit *pickNode(bool &IsTopNode) override;
913 
914   void schedNode(SUnit *SU, bool IsTopNode) override;
915 
releaseTopNode(SUnit * SU)916   void releaseTopNode(SUnit *SU) override {
917     Top.releaseTopNode(SU);
918     TopCand.SU = nullptr;
919   }
920 
releaseBottomNode(SUnit * SU)921   void releaseBottomNode(SUnit *SU) override {
922     Bot.releaseBottomNode(SU);
923     BotCand.SU = nullptr;
924   }
925 
926   void registerRoots() override;
927 
928 protected:
929   void checkAcyclicLatency();
930 
931   void initCandidate(SchedCandidate &Cand, SUnit *SU, bool AtTop,
932                      const RegPressureTracker &RPTracker,
933                      RegPressureTracker &TempTracker);
934 
935   void tryCandidate(SchedCandidate &Cand,
936                     SchedCandidate &TryCand,
937                     SchedBoundary *Zone);
938 
939   SUnit *pickNodeBidirectional(bool &IsTopNode);
940 
941   void pickNodeFromQueue(SchedBoundary &Zone,
942                          const CandPolicy &ZonePolicy,
943                          const RegPressureTracker &RPTracker,
944                          SchedCandidate &Candidate);
945 
946   void reschedulePhysRegCopies(SUnit *SU, bool isTop);
947 };
948 
949 /// PostGenericScheduler - Interface to the scheduling algorithm used by
950 /// ScheduleDAGMI.
951 ///
952 /// Callbacks from ScheduleDAGMI:
953 ///   initPolicy -> initialize(DAG) -> registerRoots -> pickNode ...
954 class PostGenericScheduler : public GenericSchedulerBase {
955   ScheduleDAGMI *DAG;
956   SchedBoundary Top;
957   SmallVector<SUnit*, 8> BotRoots;
958 public:
PostGenericScheduler(const MachineSchedContext * C)959   PostGenericScheduler(const MachineSchedContext *C):
960     GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ") {}
961 
~PostGenericScheduler()962   ~PostGenericScheduler() override {}
963 
initPolicy(MachineBasicBlock::iterator Begin,MachineBasicBlock::iterator End,unsigned NumRegionInstrs)964   void initPolicy(MachineBasicBlock::iterator Begin,
965                   MachineBasicBlock::iterator End,
966                   unsigned NumRegionInstrs) override {
967     /* no configurable policy */
968   }
969 
970   /// PostRA scheduling does not track pressure.
shouldTrackPressure()971   bool shouldTrackPressure() const override { return false; }
972 
973   void initialize(ScheduleDAGMI *Dag) override;
974 
975   void registerRoots() override;
976 
977   SUnit *pickNode(bool &IsTopNode) override;
978 
scheduleTree(unsigned SubtreeID)979   void scheduleTree(unsigned SubtreeID) override {
980     llvm_unreachable("PostRA scheduler does not support subtree analysis.");
981   }
982 
983   void schedNode(SUnit *SU, bool IsTopNode) override;
984 
releaseTopNode(SUnit * SU)985   void releaseTopNode(SUnit *SU) override {
986     Top.releaseTopNode(SU);
987   }
988 
989   // Only called for roots.
releaseBottomNode(SUnit * SU)990   void releaseBottomNode(SUnit *SU) override {
991     BotRoots.push_back(SU);
992   }
993 
994 protected:
995   void tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand);
996 
997   void pickNodeFromQueue(SchedCandidate &Cand);
998 };
999 
1000 } // namespace llvm
1001 
1002 #endif
1003