1 /* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #include "tensorflow/lite/interpreter.h"
17 
18 #include <cassert>
19 #include <cstdarg>
20 #include <cstdint>
21 #include <cstring>
22 #include <mutex>  // NOLINT(build/c++11): only using std::call_once, not mutex.
23 
24 #include "tensorflow/lite/c/c_api_internal.h"
25 #include "tensorflow/lite/context_util.h"
26 #include "tensorflow/lite/core/api/error_reporter.h"
27 #include "tensorflow/lite/graph_info.h"
28 #include "tensorflow/lite/memory_planner.h"
29 #include "tensorflow/lite/minimal_logging.h"
30 #include "tensorflow/lite/nnapi_delegate.h"
31 #include "tensorflow/lite/profiling/profiler.h"
32 #include "tensorflow/lite/schema/schema_generated.h"
33 #include "tensorflow/lite/util.h"
34 
35 namespace tflite {
36 
37 namespace {
38 
39 // Gets the current TfLiteQuantization from the legacy fLiteQuantizationParams.
GetQuantizationFromLegacy(const TfLiteQuantizationParams & legacy_quantization)40 TfLiteQuantization GetQuantizationFromLegacy(
41     const TfLiteQuantizationParams& legacy_quantization) {
42   TfLiteQuantization quantization;
43   quantization.type = kTfLiteAffineQuantization;
44   auto* affine_quantization = reinterpret_cast<TfLiteAffineQuantization*>(
45       malloc(sizeof(TfLiteAffineQuantization)));
46   affine_quantization->scale = TfLiteFloatArrayCreate(1);
47   affine_quantization->zero_point = TfLiteIntArrayCreate(1);
48   affine_quantization->scale->data[0] = legacy_quantization.scale;
49   affine_quantization->zero_point->data[0] = legacy_quantization.zero_point;
50   quantization.params = affine_quantization;
51 
52   return quantization;
53 }
54 
55 }  // namespace
56 
Interpreter(ErrorReporter * error_reporter)57 Interpreter::Interpreter(ErrorReporter* error_reporter)
58     : error_reporter_(error_reporter ? error_reporter
59                                      : DefaultErrorReporter()) {
60   // Only log initialization once per-process to avoid log spam.
61   static std::once_flag init_log_once_flag;
62   std::call_once(init_log_once_flag, []() {
63     // TODO(b/128420794): Include the TFLite runtime version in the log.
64     TFLITE_LOG_PROD(TFLITE_LOG_INFO, "Initialized TensorFlow Lite runtime.");
65   });
66 
67   // There's always at least 1 subgraph which is the primary subgraph.
68   AddSubgraphs(1);
69   context_ = primary_subgraph().context();
70 
71   // Reserve some space for the tensors to avoid excessive resizing.
72   for (int i = 0; i < kTfLiteMaxExternalContexts; ++i) {
73     external_contexts_[i] = nullptr;
74   }
75 
76   UseNNAPI(false);
77 }
78 
~Interpreter()79 Interpreter::~Interpreter() {}
80 
SetExternalContext(TfLiteExternalContextType type,TfLiteExternalContext * ctx)81 void Interpreter::SetExternalContext(TfLiteExternalContextType type,
82                                      TfLiteExternalContext* ctx) {
83   primary_subgraph().SetExternalContext(type, ctx);
84 }
85 
SetInputs(std::vector<int> inputs)86 TfLiteStatus Interpreter::SetInputs(std::vector<int> inputs) {
87   return primary_subgraph().SetInputs(inputs);
88 }
89 
SetOutputs(std::vector<int> outputs)90 TfLiteStatus Interpreter::SetOutputs(std::vector<int> outputs) {
91   return primary_subgraph().SetOutputs(outputs);
92 }
93 
SetVariables(std::vector<int> variables)94 TfLiteStatus Interpreter::SetVariables(std::vector<int> variables) {
95   return primary_subgraph().SetVariables(variables);
96 }
97 
AllocateTensors()98 TfLiteStatus Interpreter::AllocateTensors() {
99   return primary_subgraph().AllocateTensors();
100 }
101 
ReserveNodes(int count)102 void Interpreter::ReserveNodes(int count) {
103   primary_subgraph().ReserveNodes(count);
104 }
105 
AddSubgraphs(int subgraphs_to_add,int * first_new_subgraph_index)106 void Interpreter::AddSubgraphs(int subgraphs_to_add,
107                                int* first_new_subgraph_index) {
108   const size_t base_index = subgraphs_.size();
109   if (first_new_subgraph_index) *first_new_subgraph_index = base_index;
110 
111   subgraphs_.reserve(base_index + subgraphs_to_add);
112   for (int i = 0; i < subgraphs_to_add; ++i) {
113     Subgraph* subgraph =
114         new Subgraph(error_reporter_, external_contexts_, &subgraphs_);
115     subgraphs_.emplace_back(subgraph);
116   }
117 }
118 
AddNodeWithParameters(const std::vector<int> & inputs,const std::vector<int> & outputs,const char * init_data,size_t init_data_size,void * builtin_data,const TfLiteRegistration * registration,int * node_index)119 TfLiteStatus Interpreter::AddNodeWithParameters(
120     const std::vector<int>& inputs, const std::vector<int>& outputs,
121     const char* init_data, size_t init_data_size, void* builtin_data,
122     const TfLiteRegistration* registration, int* node_index) {
123   return primary_subgraph().AddNodeWithParameters(inputs, outputs, init_data,
124                                                   init_data_size, builtin_data,
125                                                   registration, node_index);
126 }
127 
ResizeInputTensor(int tensor_index,const std::vector<int> & dims)128 TfLiteStatus Interpreter::ResizeInputTensor(int tensor_index,
129                                             const std::vector<int>& dims) {
130   return primary_subgraph().ResizeInputTensor(tensor_index, dims);
131 }
132 
Invoke()133 TfLiteStatus Interpreter::Invoke() {
134   TF_LITE_ENSURE_STATUS(primary_subgraph().Invoke());
135 
136   if (!allow_buffer_handle_output_) {
137     for (int tensor_index : outputs()) {
138       TF_LITE_ENSURE_STATUS(
139           primary_subgraph().EnsureTensorDataIsReadable(tensor_index));
140     }
141   }
142 
143   return kTfLiteOk;
144 }
145 
AddTensors(int tensors_to_add,int * first_new_tensor_index)146 TfLiteStatus Interpreter::AddTensors(int tensors_to_add,
147                                      int* first_new_tensor_index) {
148   return primary_subgraph().AddTensors(tensors_to_add, first_new_tensor_index);
149 }
150 
ResetVariableTensors()151 TfLiteStatus Interpreter::ResetVariableTensors() {
152   return primary_subgraph().ResetVariableTensors();
153 }
154 
SetTensorParametersReadOnly(int tensor_index,TfLiteType type,const char * name,const std::vector<int> & dims,TfLiteQuantization quantization,const char * buffer,size_t bytes,const Allocation * allocation)155 TfLiteStatus Interpreter::SetTensorParametersReadOnly(
156     int tensor_index, TfLiteType type, const char* name,
157     const std::vector<int>& dims, TfLiteQuantization quantization,
158     const char* buffer, size_t bytes, const Allocation* allocation) {
159   return primary_subgraph().SetTensorParametersReadOnly(
160       tensor_index, type, name, dims.size(), dims.data(), quantization, buffer,
161       bytes, allocation);
162 }
163 
SetTensorParametersReadWrite(int tensor_index,TfLiteType type,const char * name,const std::vector<int> & dims,TfLiteQuantization quantization,bool is_variable)164 TfLiteStatus Interpreter::SetTensorParametersReadWrite(
165     int tensor_index, TfLiteType type, const char* name,
166     const std::vector<int>& dims, TfLiteQuantization quantization,
167     bool is_variable) {
168   return primary_subgraph().SetTensorParametersReadWrite(
169       tensor_index, type, name, dims.size(), dims.data(), quantization,
170       is_variable);
171 }
172 
SetTensorParametersReadOnly(int tensor_index,TfLiteType type,const char * name,const size_t rank,const int * dims,TfLiteQuantizationParams quantization,const char * buffer,size_t bytes,const Allocation * allocation)173 TfLiteStatus Interpreter::SetTensorParametersReadOnly(
174     int tensor_index, TfLiteType type, const char* name, const size_t rank,
175     const int* dims, TfLiteQuantizationParams quantization, const char* buffer,
176     size_t bytes, const Allocation* allocation) {
177   TfLiteQuantization new_quantization = GetQuantizationFromLegacy(quantization);
178   if (primary_subgraph().SetTensorParametersReadOnly(
179           tensor_index, type, name, rank, dims, new_quantization, buffer, bytes,
180           allocation) != kTfLiteOk) {
181     TfLiteQuantizationFree(&new_quantization);
182     return kTfLiteError;
183   }
184   return kTfLiteOk;
185 }
186 
SetTensorParametersReadWrite(int tensor_index,TfLiteType type,const char * name,const size_t rank,const int * dims,TfLiteQuantizationParams quantization,bool is_variable)187 TfLiteStatus Interpreter::SetTensorParametersReadWrite(
188     int tensor_index, TfLiteType type, const char* name, const size_t rank,
189     const int* dims, TfLiteQuantizationParams quantization, bool is_variable) {
190   TfLiteQuantization new_quantization = GetQuantizationFromLegacy(quantization);
191   if (primary_subgraph().SetTensorParametersReadWrite(
192           tensor_index, type, name, rank, dims, new_quantization,
193           is_variable) != kTfLiteOk) {
194     TfLiteQuantizationFree(&new_quantization);
195     return kTfLiteError;
196   }
197   return kTfLiteOk;
198 }
199 
SetExecutionPlan(const std::vector<int> & new_plan)200 TfLiteStatus Interpreter::SetExecutionPlan(const std::vector<int>& new_plan) {
201   return primary_subgraph().SetExecutionPlan(new_plan);
202 }
203 
UseNNAPI(bool enable)204 void Interpreter::UseNNAPI(bool enable) { primary_subgraph().UseNNAPI(enable); }
205 
SetNumThreads(int num_threads)206 void Interpreter::SetNumThreads(int num_threads) {
207   for (auto& subgraph : subgraphs_) {
208     subgraph->context()->recommended_num_threads = num_threads;
209   }
210 
211   for (int i = 0; i < kTfLiteMaxExternalContexts; ++i) {
212     auto* c = external_contexts_[i];
213     if (c && c->Refresh) {
214       c->Refresh(context_);
215     }
216   }
217 }
218 
SetAllowFp16PrecisionForFp32(bool allow)219 void Interpreter::SetAllowFp16PrecisionForFp32(bool allow) {
220   for (auto& subgraph : subgraphs_) {
221     subgraph->context()->allow_fp32_relax_to_fp16 = allow;
222   }
223 }
224 
225 // TODO(b/121264966): Subgraphs added after cancellation is set will not get the
226 // cancellation function added to their context.
SetCancellationFunction(void * data,bool (* check_cancelled_func)(void *))227 void Interpreter::SetCancellationFunction(void* data,
228                                           bool (*check_cancelled_func)(void*)) {
229   for (auto& subgraph : subgraphs_) {
230     subgraph->SetCancellationFunction(data, check_cancelled_func);
231   }
232 }
233 
ModifyGraphWithDelegate(TfLiteDelegate * delegate)234 TfLiteStatus Interpreter::ModifyGraphWithDelegate(TfLiteDelegate* delegate) {
235   for (auto& subgraph : subgraphs_) {
236     TF_LITE_ENSURE_OK(context_, subgraph->ModifyGraphWithDelegate(delegate));
237   }
238   return kTfLiteOk;
239 }
240 
SetBufferHandle(int tensor_index,TfLiteBufferHandle buffer_handle,TfLiteDelegate * delegate)241 TfLiteStatus Interpreter::SetBufferHandle(int tensor_index,
242                                           TfLiteBufferHandle buffer_handle,
243                                           TfLiteDelegate* delegate) {
244   TF_LITE_ENSURE(context_, tensor_index < tensors_size());
245   std::vector<TfLiteTensor>& tensors = primary_subgraph().tensors();
246   TfLiteTensor* tensor = &tensors[tensor_index];
247 
248   TF_LITE_ENSURE(context_,
249                  tensor->delegate == nullptr || tensor->delegate == delegate);
250   tensor->delegate = delegate;
251   if (tensor->buffer_handle != kTfLiteNullBufferHandle) {
252     TF_LITE_ENSURE(context_, tensor->delegate->FreeBufferHandle != nullptr);
253     tensor->delegate->FreeBufferHandle(context_, tensor->delegate,
254                                        &tensor->buffer_handle);
255   }
256   tensor->buffer_handle = buffer_handle;
257 
258   return kTfLiteOk;
259 }
260 
GetBufferHandle(int tensor_index,TfLiteBufferHandle * buffer_handle,TfLiteDelegate ** delegate)261 TfLiteStatus Interpreter::GetBufferHandle(int tensor_index,
262                                           TfLiteBufferHandle* buffer_handle,
263                                           TfLiteDelegate** delegate) {
264   TF_LITE_ENSURE(context_, tensor_index < tensors_size());
265   std::vector<TfLiteTensor>& tensors = primary_subgraph().tensors();
266   TfLiteTensor* tensor = &tensors[tensor_index];
267 
268   *delegate = tensor->delegate;
269   *buffer_handle = tensor->buffer_handle;
270 
271   return kTfLiteOk;
272 }
273 
SetProfiler(profiling::Profiler * profiler)274 void Interpreter::SetProfiler(profiling::Profiler* profiler) {
275   for (auto& subgraph : subgraphs_) subgraph->SetProfiler(profiler);
276 }
277 
GetProfiler()278 profiling::Profiler* Interpreter::GetProfiler() {
279   return primary_subgraph().GetProfiler();
280 }
281 
282 }  // namespace tflite
283