1 // Amalgamated source file
2 /*
3 ** Defs are upb's internal representation of the constructs that can appear
4 ** in a .proto file:
5 **
6 ** - upb::MessageDef (upb_msgdef): describes a "message" construct.
7 ** - upb::FieldDef (upb_fielddef): describes a message field.
8 ** - upb::FileDef (upb_filedef): describes a .proto file and its defs.
9 ** - upb::EnumDef (upb_enumdef): describes an enum.
10 ** - upb::OneofDef (upb_oneofdef): describes a oneof.
11 ** - upb::Def (upb_def): base class of all the others.
12 **
13 ** TODO: definitions of services.
14 **
15 ** Like upb_refcounted objects, defs are mutable only until frozen, and are
16 ** only thread-safe once frozen.
17 **
18 ** This is a mixed C/C++ interface that offers a full API to both languages.
19 ** See the top-level README for more information.
20 */
21
22 #ifndef UPB_DEF_H_
23 #define UPB_DEF_H_
24
25 /*
26 ** upb::RefCounted (upb_refcounted)
27 **
28 ** A refcounting scheme that supports circular refs. It accomplishes this by
29 ** partitioning the set of objects into groups such that no cycle spans groups;
30 ** we can then reference-count the group as a whole and ignore refs within the
31 ** group. When objects are mutable, these groups are computed very
32 ** conservatively; we group any objects that have ever had a link between them.
33 ** When objects are frozen, we compute strongly-connected components which
34 ** allows us to be precise and only group objects that are actually cyclic.
35 **
36 ** This is a mixed C/C++ interface that offers a full API to both languages.
37 ** See the top-level README for more information.
38 */
39
40 #ifndef UPB_REFCOUNTED_H_
41 #define UPB_REFCOUNTED_H_
42
43 /*
44 ** upb_table
45 **
46 ** This header is INTERNAL-ONLY! Its interfaces are not public or stable!
47 ** This file defines very fast int->upb_value (inttable) and string->upb_value
48 ** (strtable) hash tables.
49 **
50 ** The table uses chained scatter with Brent's variation (inspired by the Lua
51 ** implementation of hash tables). The hash function for strings is Austin
52 ** Appleby's "MurmurHash."
53 **
54 ** The inttable uses uintptr_t as its key, which guarantees it can be used to
55 ** store pointers or integers of at least 32 bits (upb isn't really useful on
56 ** systems where sizeof(void*) < 4).
57 **
58 ** The table must be homogeneous (all values of the same type). In debug
59 ** mode, we check this on insert and lookup.
60 */
61
62 #ifndef UPB_TABLE_H_
63 #define UPB_TABLE_H_
64
65 #include <assert.h>
66 #include <stdint.h>
67 #include <string.h>
68 /*
69 ** This file contains shared definitions that are widely used across upb.
70 **
71 ** This is a mixed C/C++ interface that offers a full API to both languages.
72 ** See the top-level README for more information.
73 */
74
75 #ifndef UPB_H_
76 #define UPB_H_
77
78 #include <assert.h>
79 #include <stdarg.h>
80 #include <stdbool.h>
81 #include <stddef.h>
82
83 #ifdef __cplusplus
84 namespace upb {
85 class Allocator;
86 class Arena;
87 class Environment;
88 class ErrorSpace;
89 class Status;
90 template <int N> class InlinedArena;
91 template <int N> class InlinedEnvironment;
92 }
93 #endif
94
95 /* UPB_INLINE: inline if possible, emit standalone code if required. */
96 #ifdef __cplusplus
97 #define UPB_INLINE inline
98 #elif defined (__GNUC__)
99 #define UPB_INLINE static __inline__
100 #else
101 #define UPB_INLINE static
102 #endif
103
104 /* Define UPB_BIG_ENDIAN manually if you're on big endian and your compiler
105 * doesn't provide these preprocessor symbols. */
106 #if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
107 #define UPB_BIG_ENDIAN
108 #endif
109
110 /* Macros for function attributes on compilers that support them. */
111 #ifdef __GNUC__
112 #define UPB_FORCEINLINE __inline__ __attribute__((always_inline))
113 #define UPB_NOINLINE __attribute__((noinline))
114 #define UPB_NORETURN __attribute__((__noreturn__))
115 #else /* !defined(__GNUC__) */
116 #define UPB_FORCEINLINE
117 #define UPB_NOINLINE
118 #define UPB_NORETURN
119 #endif
120
121 /* A few hacky workarounds for functions not in C89.
122 * For internal use only!
123 * TODO(haberman): fix these by including our own implementations, or finding
124 * another workaround.
125 */
126 #ifdef __GNUC__
127 #define _upb_snprintf __builtin_snprintf
128 #define _upb_vsnprintf __builtin_vsnprintf
129 #define _upb_va_copy(a, b) __va_copy(a, b)
130 #elif __STDC_VERSION__ >= 199901L
131 /* C99 versions. */
132 #define _upb_snprintf snprintf
133 #define _upb_vsnprintf vsnprintf
134 #define _upb_va_copy(a, b) va_copy(a, b)
135 #else
136 #error Need implementations of [v]snprintf and va_copy
137 #endif
138
139
140 #if ((defined(__cplusplus) && __cplusplus >= 201103L) || \
141 defined(__GXX_EXPERIMENTAL_CXX0X__)) && !defined(UPB_NO_CXX11)
142 #define UPB_CXX11
143 #endif
144
145 /* UPB_DISALLOW_COPY_AND_ASSIGN()
146 * UPB_DISALLOW_POD_OPS()
147 *
148 * Declare these in the "private" section of a C++ class to forbid copy/assign
149 * or all POD ops (construct, destruct, copy, assign) on that class. */
150 #ifdef UPB_CXX11
151 #include <type_traits>
152 #define UPB_DISALLOW_COPY_AND_ASSIGN(class_name) \
153 class_name(const class_name&) = delete; \
154 void operator=(const class_name&) = delete;
155 #define UPB_DISALLOW_POD_OPS(class_name, full_class_name) \
156 class_name() = delete; \
157 ~class_name() = delete; \
158 UPB_DISALLOW_COPY_AND_ASSIGN(class_name)
159 #define UPB_ASSERT_STDLAYOUT(type) \
160 static_assert(std::is_standard_layout<type>::value, \
161 #type " must be standard layout");
162 #define UPB_FINAL final
163 #else /* !defined(UPB_CXX11) */
164 #define UPB_DISALLOW_COPY_AND_ASSIGN(class_name) \
165 class_name(const class_name&); \
166 void operator=(const class_name&);
167 #define UPB_DISALLOW_POD_OPS(class_name, full_class_name) \
168 class_name(); \
169 ~class_name(); \
170 UPB_DISALLOW_COPY_AND_ASSIGN(class_name)
171 #define UPB_ASSERT_STDLAYOUT(type)
172 #define UPB_FINAL
173 #endif
174
175 /* UPB_DECLARE_TYPE()
176 * UPB_DECLARE_DERIVED_TYPE()
177 * UPB_DECLARE_DERIVED_TYPE2()
178 *
179 * Macros for declaring C and C++ types both, including inheritance.
180 * The inheritance doesn't use real C++ inheritance, to stay compatible with C.
181 *
182 * These macros also provide upcasts:
183 * - in C: types-specific functions (ie. upb_foo_upcast(foo))
184 * - in C++: upb::upcast(foo) along with implicit conversions
185 *
186 * Downcasts are not provided, but upb/def.h defines downcasts for upb::Def. */
187
188 #define UPB_C_UPCASTS(ty, base) \
189 UPB_INLINE base *ty ## _upcast_mutable(ty *p) { return (base*)p; } \
190 UPB_INLINE const base *ty ## _upcast(const ty *p) { return (const base*)p; }
191
192 #define UPB_C_UPCASTS2(ty, base, base2) \
193 UPB_C_UPCASTS(ty, base) \
194 UPB_INLINE base2 *ty ## _upcast2_mutable(ty *p) { return (base2*)p; } \
195 UPB_INLINE const base2 *ty ## _upcast2(const ty *p) { return (const base2*)p; }
196
197 #ifdef __cplusplus
198
199 #define UPB_BEGIN_EXTERN_C extern "C" {
200 #define UPB_END_EXTERN_C }
201 #define UPB_PRIVATE_FOR_CPP private:
202 #define UPB_DECLARE_TYPE(cppname, cname) typedef cppname cname;
203
204 #define UPB_DECLARE_DERIVED_TYPE(cppname, cppbase, cname, cbase) \
205 UPB_DECLARE_TYPE(cppname, cname) \
206 UPB_C_UPCASTS(cname, cbase) \
207 namespace upb { \
208 template <> \
209 class Pointer<cppname> : public PointerBase<cppname, cppbase> { \
210 public: \
211 explicit Pointer(cppname* ptr) \
212 : PointerBase<cppname, cppbase>(ptr) {} \
213 }; \
214 template <> \
215 class Pointer<const cppname> \
216 : public PointerBase<const cppname, const cppbase> { \
217 public: \
218 explicit Pointer(const cppname* ptr) \
219 : PointerBase<const cppname, const cppbase>(ptr) {} \
220 }; \
221 }
222
223 #define UPB_DECLARE_DERIVED_TYPE2(cppname, cppbase, cppbase2, cname, cbase, \
224 cbase2) \
225 UPB_DECLARE_TYPE(cppname, cname) \
226 UPB_C_UPCASTS2(cname, cbase, cbase2) \
227 namespace upb { \
228 template <> \
229 class Pointer<cppname> : public PointerBase2<cppname, cppbase, cppbase2> { \
230 public: \
231 explicit Pointer(cppname* ptr) \
232 : PointerBase2<cppname, cppbase, cppbase2>(ptr) {} \
233 }; \
234 template <> \
235 class Pointer<const cppname> \
236 : public PointerBase2<const cppname, const cppbase, const cppbase2> { \
237 public: \
238 explicit Pointer(const cppname* ptr) \
239 : PointerBase2<const cppname, const cppbase, const cppbase2>(ptr) {} \
240 }; \
241 }
242
243 #else /* !defined(__cplusplus) */
244
245 #define UPB_BEGIN_EXTERN_C
246 #define UPB_END_EXTERN_C
247 #define UPB_PRIVATE_FOR_CPP
248 #define UPB_DECLARE_TYPE(cppname, cname) \
249 struct cname; \
250 typedef struct cname cname;
251 #define UPB_DECLARE_DERIVED_TYPE(cppname, cppbase, cname, cbase) \
252 UPB_DECLARE_TYPE(cppname, cname) \
253 UPB_C_UPCASTS(cname, cbase)
254 #define UPB_DECLARE_DERIVED_TYPE2(cppname, cppbase, cppbase2, \
255 cname, cbase, cbase2) \
256 UPB_DECLARE_TYPE(cppname, cname) \
257 UPB_C_UPCASTS2(cname, cbase, cbase2)
258
259 #endif /* defined(__cplusplus) */
260
261 #define UPB_MAX(x, y) ((x) > (y) ? (x) : (y))
262 #define UPB_MIN(x, y) ((x) < (y) ? (x) : (y))
263
264 #define UPB_UNUSED(var) (void)var
265
266 /* For asserting something about a variable when the variable is not used for
267 * anything else. This prevents "unused variable" warnings when compiling in
268 * debug mode. */
269 #define UPB_ASSERT_VAR(var, predicate) UPB_UNUSED(var); assert(predicate)
270
271 /* Generic function type. */
272 typedef void upb_func();
273
274
275 /* C++ Casts ******************************************************************/
276
277 #ifdef __cplusplus
278
279 namespace upb {
280
281 template <class T> class Pointer;
282
283 /* Casts to a subclass. The caller must know that cast is correct; an
284 * incorrect cast will throw an assertion failure in debug mode.
285 *
286 * Example:
287 * upb::Def* def = GetDef();
288 * // Assert-fails if this was not actually a MessageDef.
289 * upb::MessgeDef* md = upb::down_cast<upb::MessageDef>(def);
290 *
291 * Note that downcasts are only defined for some types (at the moment you can
292 * only downcast from a upb::Def to a specific Def type). */
293 template<class To, class From> To down_cast(From* f);
294
295 /* Casts to a subclass. If the class does not actually match the given To type,
296 * returns NULL.
297 *
298 * Example:
299 * upb::Def* def = GetDef();
300 * // md will be NULL if this was not actually a MessageDef.
301 * upb::MessgeDef* md = upb::down_cast<upb::MessageDef>(def);
302 *
303 * Note that dynamic casts are only defined for some types (at the moment you
304 * can only downcast from a upb::Def to a specific Def type).. */
305 template<class To, class From> To dyn_cast(From* f);
306
307 /* Casts to any base class, or the type itself (ie. can be a no-op).
308 *
309 * Example:
310 * upb::MessageDef* md = GetDef();
311 * // This will fail to compile if this wasn't actually a base class.
312 * upb::Def* def = upb::upcast(md);
313 */
upcast(T * f)314 template <class T> inline Pointer<T> upcast(T *f) { return Pointer<T>(f); }
315
316 /* Attempt upcast to specific base class.
317 *
318 * Example:
319 * upb::MessageDef* md = GetDef();
320 * upb::upcast_to<upb::Def>(md)->MethodOnDef();
321 */
upcast_to(F * f)322 template <class T, class F> inline T* upcast_to(F *f) {
323 return static_cast<T*>(upcast(f));
324 }
325
326 /* PointerBase<T>: implementation detail of upb::upcast().
327 * It is implicitly convertable to pointers to the Base class(es).
328 */
329 template <class T, class Base>
330 class PointerBase {
331 public:
PointerBase(T * ptr)332 explicit PointerBase(T* ptr) : ptr_(ptr) {}
333 operator T*() { return ptr_; }
334 operator Base*() { return (Base*)ptr_; }
335
336 private:
337 T* ptr_;
338 };
339
340 template <class T, class Base, class Base2>
341 class PointerBase2 : public PointerBase<T, Base> {
342 public:
PointerBase2(T * ptr)343 explicit PointerBase2(T* ptr) : PointerBase<T, Base>(ptr) {}
344 operator Base2*() { return Pointer<Base>(*this); }
345 };
346
347 }
348
349 #endif
350
351
352 /* upb::ErrorSpace ************************************************************/
353
354 /* A upb::ErrorSpace represents some domain of possible error values. This lets
355 * upb::Status attach specific error codes to operations, like POSIX/C errno,
356 * Win32 error codes, etc. Clients who want to know the very specific error
357 * code can check the error space and then know the type of the integer code.
358 *
359 * NOTE: upb::ErrorSpace is currently not used and should be considered
360 * experimental. It is important primarily in cases where upb is performing
361 * I/O, but upb doesn't currently have any components that do this. */
362
UPB_DECLARE_TYPE(upb::ErrorSpace,upb_errorspace)363 UPB_DECLARE_TYPE(upb::ErrorSpace, upb_errorspace)
364
365 #ifdef __cplusplus
366 class upb::ErrorSpace {
367 #else
368 struct upb_errorspace {
369 #endif
370 const char *name;
371 };
372
373
374 /* upb::Status ****************************************************************/
375
376 /* upb::Status represents a success or failure status and error message.
377 * It owns no resources and allocates no memory, so it should work
378 * even in OOM situations. */
379 UPB_DECLARE_TYPE(upb::Status, upb_status)
380
381 /* The maximum length of an error message before it will get truncated. */
382 #define UPB_STATUS_MAX_MESSAGE 128
383
384 UPB_BEGIN_EXTERN_C
385
386 const char *upb_status_errmsg(const upb_status *status);
387 bool upb_ok(const upb_status *status);
388 upb_errorspace *upb_status_errspace(const upb_status *status);
389 int upb_status_errcode(const upb_status *status);
390
391 /* Any of the functions that write to a status object allow status to be NULL,
392 * to support use cases where the function's caller does not care about the
393 * status message. */
394 void upb_status_clear(upb_status *status);
395 void upb_status_seterrmsg(upb_status *status, const char *msg);
396 void upb_status_seterrf(upb_status *status, const char *fmt, ...);
397 void upb_status_vseterrf(upb_status *status, const char *fmt, va_list args);
398 void upb_status_copy(upb_status *to, const upb_status *from);
399
400 UPB_END_EXTERN_C
401
402 #ifdef __cplusplus
403
404 class upb::Status {
405 public:
406 Status() { upb_status_clear(this); }
407
408 /* Returns true if there is no error. */
409 bool ok() const { return upb_ok(this); }
410
411 /* Optional error space and code, useful if the caller wants to
412 * programmatically check the specific kind of error. */
413 ErrorSpace* error_space() { return upb_status_errspace(this); }
414 int error_code() const { return upb_status_errcode(this); }
415
416 /* The returned string is invalidated by any other call into the status. */
417 const char *error_message() const { return upb_status_errmsg(this); }
418
419 /* The error message will be truncated if it is longer than
420 * UPB_STATUS_MAX_MESSAGE-4. */
421 void SetErrorMessage(const char* msg) { upb_status_seterrmsg(this, msg); }
422 void SetFormattedErrorMessage(const char* fmt, ...) {
423 va_list args;
424 va_start(args, fmt);
425 upb_status_vseterrf(this, fmt, args);
426 va_end(args);
427 }
428
429 /* Resets the status to a successful state with no message. */
430 void Clear() { upb_status_clear(this); }
431
432 void CopyFrom(const Status& other) { upb_status_copy(this, &other); }
433
434 private:
435 UPB_DISALLOW_COPY_AND_ASSIGN(Status)
436 #else
437 struct upb_status {
438 #endif
439 bool ok_;
440
441 /* Specific status code defined by some error space (optional). */
442 int code_;
443 upb_errorspace *error_space_;
444
445 /* TODO(haberman): add file/line of error? */
446
447 /* Error message; NULL-terminated. */
448 char msg[UPB_STATUS_MAX_MESSAGE];
449 };
450
451 #define UPB_STATUS_INIT {true, 0, NULL, {0}}
452
453
454 /** Built-in error spaces. ****************************************************/
455
456 /* Errors raised by upb that we want to be able to detect programmatically. */
457 typedef enum {
458 UPB_NOMEM /* Can't reuse ENOMEM because it is POSIX, not ISO C. */
459 } upb_errcode_t;
460
461 extern upb_errorspace upb_upberr;
462
463 void upb_upberr_setoom(upb_status *s);
464
465 /* Since errno is defined by standard C, we define an error space for it in
466 * core upb. Other error spaces should be defined in other, platform-specific
467 * modules. */
468
469 extern upb_errorspace upb_errnoerr;
470
471
472 /** upb::Allocator ************************************************************/
473
474 /* A upb::Allocator is a possibly-stateful allocator object.
475 *
476 * It could either be an arena allocator (which doesn't require individual
477 * free() calls) or a regular malloc() (which does). The client must therefore
478 * free memory unless it knows that the allocator is an arena allocator. */
479 UPB_DECLARE_TYPE(upb::Allocator, upb_alloc)
480
481 /* A malloc()/free() function.
482 * If "size" is 0 then the function acts like free(), otherwise it acts like
483 * realloc(). Only "oldsize" bytes from a previous allocation are preserved. */
484 typedef void *upb_alloc_func(upb_alloc *alloc, void *ptr, size_t oldsize,
485 size_t size);
486
487 #ifdef __cplusplus
488
489 class upb::Allocator UPB_FINAL {
490 public:
491 Allocator() {}
492
493 private:
494 UPB_DISALLOW_COPY_AND_ASSIGN(Allocator)
495
496 public:
497 #else
498 struct upb_alloc {
499 #endif /* __cplusplus */
500 upb_alloc_func *func;
501 };
502
503 UPB_INLINE void *upb_malloc(upb_alloc *alloc, size_t size) {
504 assert(size > 0);
505 return alloc->func(alloc, NULL, 0, size);
506 }
507
508 UPB_INLINE void *upb_realloc(upb_alloc *alloc, void *ptr, size_t oldsize,
509 size_t size) {
510 assert(size > 0);
511 return alloc->func(alloc, ptr, oldsize, size);
512 }
513
514 UPB_INLINE void upb_free(upb_alloc *alloc, void *ptr) {
515 alloc->func(alloc, ptr, 0, 0);
516 }
517
518 /* The global allocator used by upb. Uses the standard malloc()/free(). */
519
520 extern upb_alloc upb_alloc_global;
521
522 /* Functions that hard-code the global malloc.
523 *
524 * We still get benefit because we can put custom logic into our global
525 * allocator, like injecting out-of-memory faults in debug/testing builds. */
526
527 UPB_INLINE void *upb_gmalloc(size_t size) {
528 return upb_malloc(&upb_alloc_global, size);
529 }
530
531 UPB_INLINE void *upb_grealloc(void *ptr, size_t oldsize, size_t size) {
532 return upb_realloc(&upb_alloc_global, ptr, oldsize, size);
533 }
534
535 UPB_INLINE void upb_gfree(void *ptr) {
536 upb_free(&upb_alloc_global, ptr);
537 }
538
539 /* upb::Arena *****************************************************************/
540
541 /* upb::Arena is a specific allocator implementation that uses arena allocation.
542 * The user provides an allocator that will be used to allocate the underlying
543 * arena blocks. Arenas by nature do not require the individual allocations
544 * to be freed. However the Arena does allow users to register cleanup
545 * functions that will run when the arena is destroyed.
546 *
547 * A upb::Arena is *not* thread-safe.
548 *
549 * You could write a thread-safe arena allocator that satisfies the
550 * upb::Allocator interface, but it would not be as efficient for the
551 * single-threaded case. */
552 UPB_DECLARE_TYPE(upb::Arena, upb_arena)
553
554 typedef void upb_cleanup_func(void *ud);
555
556 #define UPB_ARENA_BLOCK_OVERHEAD (sizeof(size_t)*4)
557
558 UPB_BEGIN_EXTERN_C
559
560 void upb_arena_init(upb_arena *a);
561 void upb_arena_init2(upb_arena *a, void *mem, size_t n, upb_alloc *alloc);
562 void upb_arena_uninit(upb_arena *a);
563 upb_alloc *upb_arena_alloc(upb_arena *a);
564 bool upb_arena_addcleanup(upb_arena *a, upb_cleanup_func *func, void *ud);
565 size_t upb_arena_bytesallocated(const upb_arena *a);
566 void upb_arena_setnextblocksize(upb_arena *a, size_t size);
567 void upb_arena_setmaxblocksize(upb_arena *a, size_t size);
568
569 UPB_END_EXTERN_C
570
571 #ifdef __cplusplus
572
573 class upb::Arena {
574 public:
575 /* A simple arena with no initial memory block and the default allocator. */
576 Arena() { upb_arena_init(this); }
577
578 /* Constructs an arena with the given initial block which allocates blocks
579 * with the given allocator. The given allocator must outlive the Arena.
580 *
581 * If you pass NULL for the allocator it will default to the global allocator
582 * upb_alloc_global, and NULL/0 for the initial block will cause there to be
583 * no initial block. */
584 Arena(void *mem, size_t len, Allocator* a) {
585 upb_arena_init2(this, mem, len, a);
586 }
587
588 ~Arena() { upb_arena_uninit(this); }
589
590 /* Sets the size of the next block the Arena will request (unless the
591 * requested allocation is larger). Each block will double in size until the
592 * max limit is reached. */
593 void SetNextBlockSize(size_t size) { upb_arena_setnextblocksize(this, size); }
594
595 /* Sets the maximum block size. No blocks larger than this will be requested
596 * from the underlying allocator unless individual arena allocations are
597 * larger. */
598 void SetMaxBlockSize(size_t size) { upb_arena_setmaxblocksize(this, size); }
599
600 /* Allows this arena to be used as a generic allocator.
601 *
602 * The arena does not need free() calls so when using Arena as an allocator
603 * it is safe to skip them. However they are no-ops so there is no harm in
604 * calling free() either. */
605 Allocator* allocator() { return upb_arena_alloc(this); }
606
607 /* Add a cleanup function to run when the arena is destroyed.
608 * Returns false on out-of-memory. */
609 bool AddCleanup(upb_cleanup_func* func, void* ud) {
610 return upb_arena_addcleanup(this, func, ud);
611 }
612
613 /* Total number of bytes that have been allocated. It is undefined what
614 * Realloc() does to this counter. */
615 size_t BytesAllocated() const {
616 return upb_arena_bytesallocated(this);
617 }
618
619 private:
620 UPB_DISALLOW_COPY_AND_ASSIGN(Arena)
621
622 #else
623 struct upb_arena {
624 #endif /* __cplusplus */
625 /* We implement the allocator interface.
626 * This must be the first member of upb_arena! */
627 upb_alloc alloc;
628
629 /* Allocator to allocate arena blocks. We are responsible for freeing these
630 * when we are destroyed. */
631 upb_alloc *block_alloc;
632
633 size_t bytes_allocated;
634 size_t next_block_size;
635 size_t max_block_size;
636
637 /* Linked list of blocks. Points to an arena_block, defined in env.c */
638 void *block_head;
639
640 /* Cleanup entries. Pointer to a cleanup_ent, defined in env.c */
641 void *cleanup_head;
642
643 /* For future expansion, since the size of this struct is exposed to users. */
644 void *future1;
645 void *future2;
646 };
647
648
649 /* upb::Environment ***********************************************************/
650
651 /* A upb::Environment provides a means for injecting malloc and an
652 * error-reporting callback into encoders/decoders. This allows them to be
653 * independent of nearly all assumptions about their actual environment.
654 *
655 * It is also a container for allocating the encoders/decoders themselves that
656 * insulates clients from knowing their actual size. This provides ABI
657 * compatibility even if the size of the objects change. And this allows the
658 * structure definitions to be in the .c files instead of the .h files, making
659 * the .h files smaller and more readable.
660 *
661 * We might want to consider renaming this to "Pipeline" if/when the concept of
662 * a pipeline element becomes more formalized. */
663 UPB_DECLARE_TYPE(upb::Environment, upb_env)
664
665 /* A function that receives an error report from an encoder or decoder. The
666 * callback can return true to request that the error should be recovered, but
667 * if the error is not recoverable this has no effect. */
668 typedef bool upb_error_func(void *ud, const upb_status *status);
669
670 UPB_BEGIN_EXTERN_C
671
672 void upb_env_init(upb_env *e);
673 void upb_env_init2(upb_env *e, void *mem, size_t n, upb_alloc *alloc);
674 void upb_env_uninit(upb_env *e);
675
676 void upb_env_initonly(upb_env *e);
677
678 upb_arena *upb_env_arena(upb_env *e);
679 bool upb_env_ok(const upb_env *e);
680 void upb_env_seterrorfunc(upb_env *e, upb_error_func *func, void *ud);
681
682 /* Convenience wrappers around the methods of the contained arena. */
683 void upb_env_reporterrorsto(upb_env *e, upb_status *s);
684 bool upb_env_reporterror(upb_env *e, const upb_status *s);
685 void *upb_env_malloc(upb_env *e, size_t size);
686 void *upb_env_realloc(upb_env *e, void *ptr, size_t oldsize, size_t size);
687 void upb_env_free(upb_env *e, void *ptr);
688 bool upb_env_addcleanup(upb_env *e, upb_cleanup_func *func, void *ud);
689 size_t upb_env_bytesallocated(const upb_env *e);
690
691 UPB_END_EXTERN_C
692
693 #ifdef __cplusplus
694
695 class upb::Environment {
696 public:
697 /* The given Arena must outlive this environment. */
698 Environment() { upb_env_initonly(this); }
699
700 Environment(void *mem, size_t len, Allocator *a) : arena_(mem, len, a) {
701 upb_env_initonly(this);
702 }
703
704 Arena* arena() { return upb_env_arena(this); }
705
706 /* Set a custom error reporting function. */
707 void SetErrorFunction(upb_error_func* func, void* ud) {
708 upb_env_seterrorfunc(this, func, ud);
709 }
710
711 /* Set the error reporting function to simply copy the status to the given
712 * status and abort. */
713 void ReportErrorsTo(Status* status) { upb_env_reporterrorsto(this, status); }
714
715 /* Returns true if all allocations and AddCleanup() calls have succeeded,
716 * and no errors were reported with ReportError() (except ones that recovered
717 * successfully). */
718 bool ok() const { return upb_env_ok(this); }
719
720 /* Reports an error to this environment's callback, returning true if
721 * the caller should try to recover. */
722 bool ReportError(const Status* status) {
723 return upb_env_reporterror(this, status);
724 }
725
726 private:
727 UPB_DISALLOW_COPY_AND_ASSIGN(Environment)
728
729 #else
730 struct upb_env {
731 #endif /* __cplusplus */
732 upb_arena arena_;
733 upb_error_func *error_func_;
734 void *error_ud_;
735 bool ok_;
736 };
737
738
739 /* upb::InlinedArena **********************************************************/
740 /* upb::InlinedEnvironment ****************************************************/
741
742 /* upb::InlinedArena and upb::InlinedEnvironment seed their arenas with a
743 * predefined amount of memory. No heap memory will be allocated until the
744 * initial block is exceeded.
745 *
746 * These types only exist in C++ */
747
748 #ifdef __cplusplus
749
750 template <int N> class upb::InlinedArena : public upb::Arena {
751 public:
752 InlinedArena() : Arena(initial_block_, N, NULL) {}
753 explicit InlinedArena(Allocator* a) : Arena(initial_block_, N, a) {}
754
755 private:
756 UPB_DISALLOW_COPY_AND_ASSIGN(InlinedArena)
757
758 char initial_block_[N + UPB_ARENA_BLOCK_OVERHEAD];
759 };
760
761 template <int N> class upb::InlinedEnvironment : public upb::Environment {
762 public:
763 InlinedEnvironment() : Environment(initial_block_, N, NULL) {}
764 explicit InlinedEnvironment(Allocator *a)
765 : Environment(initial_block_, N, a) {}
766
767 private:
768 UPB_DISALLOW_COPY_AND_ASSIGN(InlinedEnvironment)
769
770 char initial_block_[N + UPB_ARENA_BLOCK_OVERHEAD];
771 };
772
773 #endif /* __cplusplus */
774
775
776
777 #endif /* UPB_H_ */
778
779 #ifdef __cplusplus
780 extern "C" {
781 #endif
782
783
784 /* upb_value ******************************************************************/
785
786 /* A tagged union (stored untagged inside the table) so that we can check that
787 * clients calling table accessors are correctly typed without having to have
788 * an explosion of accessors. */
789 typedef enum {
790 UPB_CTYPE_INT32 = 1,
791 UPB_CTYPE_INT64 = 2,
792 UPB_CTYPE_UINT32 = 3,
793 UPB_CTYPE_UINT64 = 4,
794 UPB_CTYPE_BOOL = 5,
795 UPB_CTYPE_CSTR = 6,
796 UPB_CTYPE_PTR = 7,
797 UPB_CTYPE_CONSTPTR = 8,
798 UPB_CTYPE_FPTR = 9
799 } upb_ctype_t;
800
801 typedef struct {
802 uint64_t val;
803 #ifndef NDEBUG
804 /* In debug mode we carry the value type around also so we can check accesses
805 * to be sure the right member is being read. */
806 upb_ctype_t ctype;
807 #endif
808 } upb_value;
809
810 #ifdef NDEBUG
811 #define SET_TYPE(dest, val) UPB_UNUSED(val)
812 #else
813 #define SET_TYPE(dest, val) dest = val
814 #endif
815
816 /* Like strdup(), which isn't always available since it's not ANSI C. */
817 char *upb_strdup(const char *s, upb_alloc *a);
818 /* Variant that works with a length-delimited rather than NULL-delimited string,
819 * as supported by strtable. */
820 char *upb_strdup2(const char *s, size_t len, upb_alloc *a);
821
822 UPB_INLINE char *upb_gstrdup(const char *s) {
823 return upb_strdup(s, &upb_alloc_global);
824 }
825
826 UPB_INLINE void _upb_value_setval(upb_value *v, uint64_t val,
827 upb_ctype_t ctype) {
828 v->val = val;
829 SET_TYPE(v->ctype, ctype);
830 }
831
832 UPB_INLINE upb_value _upb_value_val(uint64_t val, upb_ctype_t ctype) {
833 upb_value ret;
834 _upb_value_setval(&ret, val, ctype);
835 return ret;
836 }
837
838 /* For each value ctype, define the following set of functions:
839 *
840 * // Get/set an int32 from a upb_value.
841 * int32_t upb_value_getint32(upb_value val);
842 * void upb_value_setint32(upb_value *val, int32_t cval);
843 *
844 * // Construct a new upb_value from an int32.
845 * upb_value upb_value_int32(int32_t val); */
846 #define FUNCS(name, membername, type_t, converter, proto_type) \
847 UPB_INLINE void upb_value_set ## name(upb_value *val, type_t cval) { \
848 val->val = (converter)cval; \
849 SET_TYPE(val->ctype, proto_type); \
850 } \
851 UPB_INLINE upb_value upb_value_ ## name(type_t val) { \
852 upb_value ret; \
853 upb_value_set ## name(&ret, val); \
854 return ret; \
855 } \
856 UPB_INLINE type_t upb_value_get ## name(upb_value val) { \
857 assert(val.ctype == proto_type); \
858 return (type_t)(converter)val.val; \
859 }
860
861 FUNCS(int32, int32, int32_t, int32_t, UPB_CTYPE_INT32)
862 FUNCS(int64, int64, int64_t, int64_t, UPB_CTYPE_INT64)
863 FUNCS(uint32, uint32, uint32_t, uint32_t, UPB_CTYPE_UINT32)
864 FUNCS(uint64, uint64, uint64_t, uint64_t, UPB_CTYPE_UINT64)
865 FUNCS(bool, _bool, bool, bool, UPB_CTYPE_BOOL)
866 FUNCS(cstr, cstr, char*, uintptr_t, UPB_CTYPE_CSTR)
867 FUNCS(ptr, ptr, void*, uintptr_t, UPB_CTYPE_PTR)
868 FUNCS(constptr, constptr, const void*, uintptr_t, UPB_CTYPE_CONSTPTR)
869 FUNCS(fptr, fptr, upb_func*, uintptr_t, UPB_CTYPE_FPTR)
870
871 #undef FUNCS
872 #undef SET_TYPE
873
874
875 /* upb_tabkey *****************************************************************/
876
877 /* Either:
878 * 1. an actual integer key, or
879 * 2. a pointer to a string prefixed by its uint32_t length, owned by us.
880 *
881 * ...depending on whether this is a string table or an int table. We would
882 * make this a union of those two types, but C89 doesn't support statically
883 * initializing a non-first union member. */
884 typedef uintptr_t upb_tabkey;
885
886 #define UPB_TABKEY_NUM(n) n
887 #define UPB_TABKEY_NONE 0
888 /* The preprocessor isn't quite powerful enough to turn the compile-time string
889 * length into a byte-wise string representation, so code generation needs to
890 * help it along.
891 *
892 * "len1" is the low byte and len4 is the high byte. */
893 #ifdef UPB_BIG_ENDIAN
894 #define UPB_TABKEY_STR(len1, len2, len3, len4, strval) \
895 (uintptr_t)(len4 len3 len2 len1 strval)
896 #else
897 #define UPB_TABKEY_STR(len1, len2, len3, len4, strval) \
898 (uintptr_t)(len1 len2 len3 len4 strval)
899 #endif
900
901 UPB_INLINE char *upb_tabstr(upb_tabkey key, uint32_t *len) {
902 char* mem = (char*)key;
903 if (len) memcpy(len, mem, sizeof(*len));
904 return mem + sizeof(*len);
905 }
906
907
908 /* upb_tabval *****************************************************************/
909
910 #ifdef __cplusplus
911
912 /* Status initialization not supported.
913 *
914 * This separate definition is necessary because in C++, UINTPTR_MAX isn't
915 * reliably available. */
916 typedef struct {
917 uint64_t val;
918 } upb_tabval;
919
920 #else
921
922 /* C -- supports static initialization, but to support static initialization of
923 * both integers and points for both 32 and 64 bit targets, it takes a little
924 * bit of doing. */
925
926 #if UINTPTR_MAX == 0xffffffffffffffffULL
927 #define UPB_PTR_IS_64BITS
928 #elif UINTPTR_MAX != 0xffffffff
929 #error Could not determine how many bits pointers are.
930 #endif
931
932 typedef union {
933 /* For static initialization.
934 *
935 * Unfortunately this ugliness is necessary -- it is the only way that we can,
936 * with -std=c89 -pedantic, statically initialize this to either a pointer or
937 * an integer on 32-bit platforms. */
938 struct {
939 #ifdef UPB_PTR_IS_64BITS
940 uintptr_t val;
941 #else
942 uintptr_t val1;
943 uintptr_t val2;
944 #endif
945 } staticinit;
946
947 /* The normal accessor that we use for everything at runtime. */
948 uint64_t val;
949 } upb_tabval;
950
951 #ifdef UPB_PTR_IS_64BITS
952 #define UPB_TABVALUE_INT_INIT(v) {{v}}
953 #define UPB_TABVALUE_EMPTY_INIT {{-1}}
954 #else
955
956 /* 32-bit pointers */
957
958 #ifdef UPB_BIG_ENDIAN
959 #define UPB_TABVALUE_INT_INIT(v) {{0, v}}
960 #define UPB_TABVALUE_EMPTY_INIT {{-1, -1}}
961 #else
962 #define UPB_TABVALUE_INT_INIT(v) {{v, 0}}
963 #define UPB_TABVALUE_EMPTY_INIT {{-1, -1}}
964 #endif
965
966 #endif
967
968 #define UPB_TABVALUE_PTR_INIT(v) UPB_TABVALUE_INT_INIT((uintptr_t)v)
969
970 #undef UPB_PTR_IS_64BITS
971
972 #endif /* __cplusplus */
973
974
975 /* upb_table ******************************************************************/
976
977 typedef struct _upb_tabent {
978 upb_tabkey key;
979 upb_tabval val;
980
981 /* Internal chaining. This is const so we can create static initializers for
982 * tables. We cast away const sometimes, but *only* when the containing
983 * upb_table is known to be non-const. This requires a bit of care, but
984 * the subtlety is confined to table.c. */
985 const struct _upb_tabent *next;
986 } upb_tabent;
987
988 typedef struct {
989 size_t count; /* Number of entries in the hash part. */
990 size_t mask; /* Mask to turn hash value -> bucket. */
991 upb_ctype_t ctype; /* Type of all values. */
992 uint8_t size_lg2; /* Size of the hashtable part is 2^size_lg2 entries. */
993
994 /* Hash table entries.
995 * Making this const isn't entirely accurate; what we really want is for it to
996 * have the same const-ness as the table it's inside. But there's no way to
997 * declare that in C. So we have to make it const so that we can statically
998 * initialize const hash tables. Then we cast away const when we have to.
999 */
1000 const upb_tabent *entries;
1001
1002 #ifndef NDEBUG
1003 /* This table's allocator. We make the user pass it in to every relevant
1004 * function and only use this to check it in debug mode. We do this solely
1005 * to keep upb_table as small as possible. This might seem slightly paranoid
1006 * but the plan is to use upb_table for all map fields and extension sets in
1007 * a forthcoming message representation, so there could be a lot of these.
1008 * If this turns out to be too annoying later, we can change it (since this
1009 * is an internal-only header file). */
1010 upb_alloc *alloc;
1011 #endif
1012 } upb_table;
1013
1014 #ifdef NDEBUG
1015 # define UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries) \
1016 {count, mask, ctype, size_lg2, entries}
1017 #else
1018 # ifdef UPB_DEBUG_REFS
1019 /* At the moment the only mutable tables we statically initialize are debug
1020 * ref tables. */
1021 # define UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries) \
1022 {count, mask, ctype, size_lg2, entries, &upb_alloc_debugrefs}
1023 # else
1024 # define UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries) \
1025 {count, mask, ctype, size_lg2, entries, NULL}
1026 # endif
1027 #endif
1028
1029 typedef struct {
1030 upb_table t;
1031 } upb_strtable;
1032
1033 #define UPB_STRTABLE_INIT(count, mask, ctype, size_lg2, entries) \
1034 {UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries)}
1035
1036 #define UPB_EMPTY_STRTABLE_INIT(ctype) \
1037 UPB_STRTABLE_INIT(0, 0, ctype, 0, NULL)
1038
1039 typedef struct {
1040 upb_table t; /* For entries that don't fit in the array part. */
1041 const upb_tabval *array; /* Array part of the table. See const note above. */
1042 size_t array_size; /* Array part size. */
1043 size_t array_count; /* Array part number of elements. */
1044 } upb_inttable;
1045
1046 #define UPB_INTTABLE_INIT(count, mask, ctype, size_lg2, ent, a, asize, acount) \
1047 {UPB_TABLE_INIT(count, mask, ctype, size_lg2, ent), a, asize, acount}
1048
1049 #define UPB_EMPTY_INTTABLE_INIT(ctype) \
1050 UPB_INTTABLE_INIT(0, 0, ctype, 0, NULL, NULL, 0, 0)
1051
1052 #define UPB_ARRAY_EMPTYENT -1
1053
1054 UPB_INLINE size_t upb_table_size(const upb_table *t) {
1055 if (t->size_lg2 == 0)
1056 return 0;
1057 else
1058 return 1 << t->size_lg2;
1059 }
1060
1061 /* Internal-only functions, in .h file only out of necessity. */
1062 UPB_INLINE bool upb_tabent_isempty(const upb_tabent *e) {
1063 return e->key == 0;
1064 }
1065
1066 /* Used by some of the unit tests for generic hashing functionality. */
1067 uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed);
1068
1069 UPB_INLINE uintptr_t upb_intkey(uintptr_t key) {
1070 return key;
1071 }
1072
1073 UPB_INLINE uint32_t upb_inthash(uintptr_t key) {
1074 return (uint32_t)key;
1075 }
1076
1077 static const upb_tabent *upb_getentry(const upb_table *t, uint32_t hash) {
1078 return t->entries + (hash & t->mask);
1079 }
1080
1081 UPB_INLINE bool upb_arrhas(upb_tabval key) {
1082 return key.val != (uint64_t)-1;
1083 }
1084
1085 /* Initialize and uninitialize a table, respectively. If memory allocation
1086 * failed, false is returned that the table is uninitialized. */
1087 bool upb_inttable_init2(upb_inttable *table, upb_ctype_t ctype, upb_alloc *a);
1088 bool upb_strtable_init2(upb_strtable *table, upb_ctype_t ctype, upb_alloc *a);
1089 void upb_inttable_uninit2(upb_inttable *table, upb_alloc *a);
1090 void upb_strtable_uninit2(upb_strtable *table, upb_alloc *a);
1091
1092 UPB_INLINE bool upb_inttable_init(upb_inttable *table, upb_ctype_t ctype) {
1093 return upb_inttable_init2(table, ctype, &upb_alloc_global);
1094 }
1095
1096 UPB_INLINE bool upb_strtable_init(upb_strtable *table, upb_ctype_t ctype) {
1097 return upb_strtable_init2(table, ctype, &upb_alloc_global);
1098 }
1099
1100 UPB_INLINE void upb_inttable_uninit(upb_inttable *table) {
1101 upb_inttable_uninit2(table, &upb_alloc_global);
1102 }
1103
1104 UPB_INLINE void upb_strtable_uninit(upb_strtable *table) {
1105 upb_strtable_uninit2(table, &upb_alloc_global);
1106 }
1107
1108 /* Returns the number of values in the table. */
1109 size_t upb_inttable_count(const upb_inttable *t);
1110 UPB_INLINE size_t upb_strtable_count(const upb_strtable *t) {
1111 return t->t.count;
1112 }
1113
1114 /* Inserts the given key into the hashtable with the given value. The key must
1115 * not already exist in the hash table. For string tables, the key must be
1116 * NULL-terminated, and the table will make an internal copy of the key.
1117 * Inttables must not insert a value of UINTPTR_MAX.
1118 *
1119 * If a table resize was required but memory allocation failed, false is
1120 * returned and the table is unchanged. */
1121 bool upb_inttable_insert2(upb_inttable *t, uintptr_t key, upb_value val,
1122 upb_alloc *a);
1123 bool upb_strtable_insert3(upb_strtable *t, const char *key, size_t len,
1124 upb_value val, upb_alloc *a);
1125
1126 UPB_INLINE bool upb_inttable_insert(upb_inttable *t, uintptr_t key,
1127 upb_value val) {
1128 return upb_inttable_insert2(t, key, val, &upb_alloc_global);
1129 }
1130
1131 UPB_INLINE bool upb_strtable_insert2(upb_strtable *t, const char *key,
1132 size_t len, upb_value val) {
1133 return upb_strtable_insert3(t, key, len, val, &upb_alloc_global);
1134 }
1135
1136 /* For NULL-terminated strings. */
1137 UPB_INLINE bool upb_strtable_insert(upb_strtable *t, const char *key,
1138 upb_value val) {
1139 return upb_strtable_insert2(t, key, strlen(key), val);
1140 }
1141
1142 /* Looks up key in this table, returning "true" if the key was found.
1143 * If v is non-NULL, copies the value for this key into *v. */
1144 bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v);
1145 bool upb_strtable_lookup2(const upb_strtable *t, const char *key, size_t len,
1146 upb_value *v);
1147
1148 /* For NULL-terminated strings. */
1149 UPB_INLINE bool upb_strtable_lookup(const upb_strtable *t, const char *key,
1150 upb_value *v) {
1151 return upb_strtable_lookup2(t, key, strlen(key), v);
1152 }
1153
1154 /* Removes an item from the table. Returns true if the remove was successful,
1155 * and stores the removed item in *val if non-NULL. */
1156 bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val);
1157 bool upb_strtable_remove3(upb_strtable *t, const char *key, size_t len,
1158 upb_value *val, upb_alloc *alloc);
1159
1160 UPB_INLINE bool upb_strtable_remove2(upb_strtable *t, const char *key,
1161 size_t len, upb_value *val) {
1162 return upb_strtable_remove3(t, key, len, val, &upb_alloc_global);
1163 }
1164
1165 /* For NULL-terminated strings. */
1166 UPB_INLINE bool upb_strtable_remove(upb_strtable *t, const char *key,
1167 upb_value *v) {
1168 return upb_strtable_remove2(t, key, strlen(key), v);
1169 }
1170
1171 /* Updates an existing entry in an inttable. If the entry does not exist,
1172 * returns false and does nothing. Unlike insert/remove, this does not
1173 * invalidate iterators. */
1174 bool upb_inttable_replace(upb_inttable *t, uintptr_t key, upb_value val);
1175
1176 /* Handy routines for treating an inttable like a stack. May not be mixed with
1177 * other insert/remove calls. */
1178 bool upb_inttable_push2(upb_inttable *t, upb_value val, upb_alloc *a);
1179 upb_value upb_inttable_pop(upb_inttable *t);
1180
1181 UPB_INLINE bool upb_inttable_push(upb_inttable *t, upb_value val) {
1182 return upb_inttable_push2(t, val, &upb_alloc_global);
1183 }
1184
1185 /* Convenience routines for inttables with pointer keys. */
1186 bool upb_inttable_insertptr2(upb_inttable *t, const void *key, upb_value val,
1187 upb_alloc *a);
1188 bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val);
1189 bool upb_inttable_lookupptr(
1190 const upb_inttable *t, const void *key, upb_value *val);
1191
1192 UPB_INLINE bool upb_inttable_insertptr(upb_inttable *t, const void *key,
1193 upb_value val) {
1194 return upb_inttable_insertptr2(t, key, val, &upb_alloc_global);
1195 }
1196
1197 /* Optimizes the table for the current set of entries, for both memory use and
1198 * lookup time. Client should call this after all entries have been inserted;
1199 * inserting more entries is legal, but will likely require a table resize. */
1200 void upb_inttable_compact2(upb_inttable *t, upb_alloc *a);
1201
1202 UPB_INLINE void upb_inttable_compact(upb_inttable *t) {
1203 upb_inttable_compact2(t, &upb_alloc_global);
1204 }
1205
1206 /* A special-case inlinable version of the lookup routine for 32-bit
1207 * integers. */
1208 UPB_INLINE bool upb_inttable_lookup32(const upb_inttable *t, uint32_t key,
1209 upb_value *v) {
1210 *v = upb_value_int32(0); /* Silence compiler warnings. */
1211 if (key < t->array_size) {
1212 upb_tabval arrval = t->array[key];
1213 if (upb_arrhas(arrval)) {
1214 _upb_value_setval(v, arrval.val, t->t.ctype);
1215 return true;
1216 } else {
1217 return false;
1218 }
1219 } else {
1220 const upb_tabent *e;
1221 if (t->t.entries == NULL) return false;
1222 for (e = upb_getentry(&t->t, upb_inthash(key)); true; e = e->next) {
1223 if ((uint32_t)e->key == key) {
1224 _upb_value_setval(v, e->val.val, t->t.ctype);
1225 return true;
1226 }
1227 if (e->next == NULL) return false;
1228 }
1229 }
1230 }
1231
1232 /* Exposed for testing only. */
1233 bool upb_strtable_resize(upb_strtable *t, size_t size_lg2, upb_alloc *a);
1234
1235 /* Iterators ******************************************************************/
1236
1237 /* Iterators for int and string tables. We are subject to some kind of unusual
1238 * design constraints:
1239 *
1240 * For high-level languages:
1241 * - we must be able to guarantee that we don't crash or corrupt memory even if
1242 * the program accesses an invalidated iterator.
1243 *
1244 * For C++11 range-based for:
1245 * - iterators must be copyable
1246 * - iterators must be comparable
1247 * - it must be possible to construct an "end" value.
1248 *
1249 * Iteration order is undefined.
1250 *
1251 * Modifying the table invalidates iterators. upb_{str,int}table_done() is
1252 * guaranteed to work even on an invalidated iterator, as long as the table it
1253 * is iterating over has not been freed. Calling next() or accessing data from
1254 * an invalidated iterator yields unspecified elements from the table, but it is
1255 * guaranteed not to crash and to return real table elements (except when done()
1256 * is true). */
1257
1258
1259 /* upb_strtable_iter **********************************************************/
1260
1261 /* upb_strtable_iter i;
1262 * upb_strtable_begin(&i, t);
1263 * for(; !upb_strtable_done(&i); upb_strtable_next(&i)) {
1264 * const char *key = upb_strtable_iter_key(&i);
1265 * const upb_value val = upb_strtable_iter_value(&i);
1266 * // ...
1267 * }
1268 */
1269
1270 typedef struct {
1271 const upb_strtable *t;
1272 size_t index;
1273 } upb_strtable_iter;
1274
1275 void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t);
1276 void upb_strtable_next(upb_strtable_iter *i);
1277 bool upb_strtable_done(const upb_strtable_iter *i);
1278 const char *upb_strtable_iter_key(const upb_strtable_iter *i);
1279 size_t upb_strtable_iter_keylength(const upb_strtable_iter *i);
1280 upb_value upb_strtable_iter_value(const upb_strtable_iter *i);
1281 void upb_strtable_iter_setdone(upb_strtable_iter *i);
1282 bool upb_strtable_iter_isequal(const upb_strtable_iter *i1,
1283 const upb_strtable_iter *i2);
1284
1285
1286 /* upb_inttable_iter **********************************************************/
1287
1288 /* upb_inttable_iter i;
1289 * upb_inttable_begin(&i, t);
1290 * for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
1291 * uintptr_t key = upb_inttable_iter_key(&i);
1292 * upb_value val = upb_inttable_iter_value(&i);
1293 * // ...
1294 * }
1295 */
1296
1297 typedef struct {
1298 const upb_inttable *t;
1299 size_t index;
1300 bool array_part;
1301 } upb_inttable_iter;
1302
1303 void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t);
1304 void upb_inttable_next(upb_inttable_iter *i);
1305 bool upb_inttable_done(const upb_inttable_iter *i);
1306 uintptr_t upb_inttable_iter_key(const upb_inttable_iter *i);
1307 upb_value upb_inttable_iter_value(const upb_inttable_iter *i);
1308 void upb_inttable_iter_setdone(upb_inttable_iter *i);
1309 bool upb_inttable_iter_isequal(const upb_inttable_iter *i1,
1310 const upb_inttable_iter *i2);
1311
1312
1313 #ifdef __cplusplus
1314 } /* extern "C" */
1315 #endif
1316
1317 #endif /* UPB_TABLE_H_ */
1318
1319 /* Reference tracking will check ref()/unref() operations to make sure the
1320 * ref ownership is correct. Where possible it will also make tools like
1321 * Valgrind attribute ref leaks to the code that took the leaked ref, not
1322 * the code that originally created the object.
1323 *
1324 * Enabling this requires the application to define upb_lock()/upb_unlock()
1325 * functions that acquire/release a global mutex (or #define UPB_THREAD_UNSAFE).
1326 * For this reason we don't enable it by default, even in debug builds.
1327 */
1328
1329 /* #define UPB_DEBUG_REFS */
1330
1331 #ifdef __cplusplus
1332 namespace upb {
1333 class RefCounted;
1334 template <class T> class reffed_ptr;
1335 }
1336 #endif
1337
1338 UPB_DECLARE_TYPE(upb::RefCounted, upb_refcounted)
1339
1340 struct upb_refcounted_vtbl;
1341
1342 #ifdef __cplusplus
1343
1344 class upb::RefCounted {
1345 public:
1346 /* Returns true if the given object is frozen. */
1347 bool IsFrozen() const;
1348
1349 /* Increases the ref count, the new ref is owned by "owner" which must not
1350 * already own a ref (and should not itself be a refcounted object if the ref
1351 * could possibly be circular; see below).
1352 * Thread-safe iff "this" is frozen. */
1353 void Ref(const void *owner) const;
1354
1355 /* Release a ref that was acquired from upb_refcounted_ref() and collects any
1356 * objects it can. */
1357 void Unref(const void *owner) const;
1358
1359 /* Moves an existing ref from "from" to "to", without changing the overall
1360 * ref count. DonateRef(foo, NULL, owner) is the same as Ref(foo, owner),
1361 * but "to" may not be NULL. */
1362 void DonateRef(const void *from, const void *to) const;
1363
1364 /* Verifies that a ref to the given object is currently held by the given
1365 * owner. Only effective in UPB_DEBUG_REFS builds. */
1366 void CheckRef(const void *owner) const;
1367
1368 private:
1369 UPB_DISALLOW_POD_OPS(RefCounted, upb::RefCounted)
1370 #else
1371 struct upb_refcounted {
1372 #endif
1373 /* TODO(haberman): move the actual structure definition to structdefs.int.h.
1374 * The only reason they are here is because inline functions need to see the
1375 * definition of upb_handlers, which needs to see this definition. But we
1376 * can change the upb_handlers inline functions to deal in raw offsets
1377 * instead.
1378 */
1379
1380 /* A single reference count shared by all objects in the group. */
1381 uint32_t *group;
1382
1383 /* A singly-linked list of all objects in the group. */
1384 upb_refcounted *next;
1385
1386 /* Table of function pointers for this type. */
1387 const struct upb_refcounted_vtbl *vtbl;
1388
1389 /* Maintained only when mutable, this tracks the number of refs (but not
1390 * ref2's) to this object. *group should be the sum of all individual_count
1391 * in the group. */
1392 uint32_t individual_count;
1393
1394 bool is_frozen;
1395
1396 #ifdef UPB_DEBUG_REFS
1397 upb_inttable *refs; /* Maps owner -> trackedref for incoming refs. */
1398 upb_inttable *ref2s; /* Set of targets for outgoing ref2s. */
1399 #endif
1400 };
1401
1402 #ifdef UPB_DEBUG_REFS
1403 extern upb_alloc upb_alloc_debugrefs;
1404 #define UPB_REFCOUNT_INIT(vtbl, refs, ref2s) \
1405 {&static_refcount, NULL, vtbl, 0, true, refs, ref2s}
1406 #else
1407 #define UPB_REFCOUNT_INIT(vtbl, refs, ref2s) \
1408 {&static_refcount, NULL, vtbl, 0, true}
1409 #endif
1410
1411 UPB_BEGIN_EXTERN_C
1412
1413 /* It is better to use tracked refs when possible, for the extra debugging
1414 * capability. But if this is not possible (because you don't have easy access
1415 * to a stable pointer value that is associated with the ref), you can pass
1416 * UPB_UNTRACKED_REF instead. */
1417 extern const void *UPB_UNTRACKED_REF;
1418
1419 /* Native C API. */
1420 bool upb_refcounted_isfrozen(const upb_refcounted *r);
1421 void upb_refcounted_ref(const upb_refcounted *r, const void *owner);
1422 void upb_refcounted_unref(const upb_refcounted *r, const void *owner);
1423 void upb_refcounted_donateref(
1424 const upb_refcounted *r, const void *from, const void *to);
1425 void upb_refcounted_checkref(const upb_refcounted *r, const void *owner);
1426
1427 #define UPB_REFCOUNTED_CMETHODS(type, upcastfunc) \
1428 UPB_INLINE bool type ## _isfrozen(const type *v) { \
1429 return upb_refcounted_isfrozen(upcastfunc(v)); \
1430 } \
1431 UPB_INLINE void type ## _ref(const type *v, const void *owner) { \
1432 upb_refcounted_ref(upcastfunc(v), owner); \
1433 } \
1434 UPB_INLINE void type ## _unref(const type *v, const void *owner) { \
1435 upb_refcounted_unref(upcastfunc(v), owner); \
1436 } \
1437 UPB_INLINE void type ## _donateref(const type *v, const void *from, const void *to) { \
1438 upb_refcounted_donateref(upcastfunc(v), from, to); \
1439 } \
1440 UPB_INLINE void type ## _checkref(const type *v, const void *owner) { \
1441 upb_refcounted_checkref(upcastfunc(v), owner); \
1442 }
1443
1444 #define UPB_REFCOUNTED_CPPMETHODS \
1445 bool IsFrozen() const { \
1446 return upb::upcast_to<const upb::RefCounted>(this)->IsFrozen(); \
1447 } \
1448 void Ref(const void *owner) const { \
1449 return upb::upcast_to<const upb::RefCounted>(this)->Ref(owner); \
1450 } \
1451 void Unref(const void *owner) const { \
1452 return upb::upcast_to<const upb::RefCounted>(this)->Unref(owner); \
1453 } \
1454 void DonateRef(const void *from, const void *to) const { \
1455 return upb::upcast_to<const upb::RefCounted>(this)->DonateRef(from, to); \
1456 } \
1457 void CheckRef(const void *owner) const { \
1458 return upb::upcast_to<const upb::RefCounted>(this)->CheckRef(owner); \
1459 }
1460
1461 /* Internal-to-upb Interface **************************************************/
1462
1463 typedef void upb_refcounted_visit(const upb_refcounted *r,
1464 const upb_refcounted *subobj,
1465 void *closure);
1466
1467 struct upb_refcounted_vtbl {
1468 /* Must visit all subobjects that are currently ref'd via upb_refcounted_ref2.
1469 * Must be longjmp()-safe. */
1470 void (*visit)(const upb_refcounted *r, upb_refcounted_visit *visit, void *c);
1471
1472 /* Must free the object and release all references to other objects. */
1473 void (*free)(upb_refcounted *r);
1474 };
1475
1476 /* Initializes the refcounted with a single ref for the given owner. Returns
1477 * false if memory could not be allocated. */
1478 bool upb_refcounted_init(upb_refcounted *r,
1479 const struct upb_refcounted_vtbl *vtbl,
1480 const void *owner);
1481
1482 /* Adds a ref from one refcounted object to another ("from" must not already
1483 * own a ref). These refs may be circular; cycles will be collected correctly
1484 * (if conservatively). These refs do not need to be freed in from's free()
1485 * function. */
1486 void upb_refcounted_ref2(const upb_refcounted *r, upb_refcounted *from);
1487
1488 /* Removes a ref that was acquired from upb_refcounted_ref2(), and collects any
1489 * object it can. This is only necessary when "from" no longer points to "r",
1490 * and not from from's "free" function. */
1491 void upb_refcounted_unref2(const upb_refcounted *r, upb_refcounted *from);
1492
1493 #define upb_ref2(r, from) \
1494 upb_refcounted_ref2((const upb_refcounted*)r, (upb_refcounted*)from)
1495 #define upb_unref2(r, from) \
1496 upb_refcounted_unref2((const upb_refcounted*)r, (upb_refcounted*)from)
1497
1498 /* Freezes all mutable object reachable by ref2() refs from the given roots.
1499 * This will split refcounting groups into precise SCC groups, so that
1500 * refcounting of frozen objects can be more aggressive. If memory allocation
1501 * fails, or if more than 2**31 mutable objects are reachable from "roots", or
1502 * if the maximum depth of the graph exceeds "maxdepth", false is returned and
1503 * the objects are unchanged.
1504 *
1505 * After this operation succeeds, the objects are frozen/const, and may not be
1506 * used through non-const pointers. In particular, they may not be passed as
1507 * the second parameter of upb_refcounted_{ref,unref}2(). On the upside, all
1508 * operations on frozen refcounteds are threadsafe, and objects will be freed
1509 * at the precise moment that they become unreachable.
1510 *
1511 * Caller must own refs on each object in the "roots" list. */
1512 bool upb_refcounted_freeze(upb_refcounted *const*roots, int n, upb_status *s,
1513 int maxdepth);
1514
1515 /* Shared by all compiled-in refcounted objects. */
1516 extern uint32_t static_refcount;
1517
1518 UPB_END_EXTERN_C
1519
1520 #ifdef __cplusplus
1521 /* C++ Wrappers. */
1522 namespace upb {
1523 inline bool RefCounted::IsFrozen() const {
1524 return upb_refcounted_isfrozen(this);
1525 }
1526 inline void RefCounted::Ref(const void *owner) const {
1527 upb_refcounted_ref(this, owner);
1528 }
1529 inline void RefCounted::Unref(const void *owner) const {
1530 upb_refcounted_unref(this, owner);
1531 }
1532 inline void RefCounted::DonateRef(const void *from, const void *to) const {
1533 upb_refcounted_donateref(this, from, to);
1534 }
1535 inline void RefCounted::CheckRef(const void *owner) const {
1536 upb_refcounted_checkref(this, owner);
1537 }
1538 } /* namespace upb */
1539 #endif
1540
1541
1542 /* upb::reffed_ptr ************************************************************/
1543
1544 #ifdef __cplusplus
1545
1546 #include <algorithm> /* For std::swap(). */
1547
1548 /* Provides RAII semantics for upb refcounted objects. Each reffed_ptr owns a
1549 * ref on whatever object it points to (if any). */
1550 template <class T> class upb::reffed_ptr {
1551 public:
1552 reffed_ptr() : ptr_(NULL) {}
1553
1554 /* If ref_donor is NULL, takes a new ref, otherwise adopts from ref_donor. */
1555 template <class U>
1556 reffed_ptr(U* val, const void* ref_donor = NULL)
1557 : ptr_(upb::upcast(val)) {
1558 if (ref_donor) {
1559 assert(ptr_);
1560 ptr_->DonateRef(ref_donor, this);
1561 } else if (ptr_) {
1562 ptr_->Ref(this);
1563 }
1564 }
1565
1566 template <class U>
1567 reffed_ptr(const reffed_ptr<U>& other)
1568 : ptr_(upb::upcast(other.get())) {
1569 if (ptr_) ptr_->Ref(this);
1570 }
1571
1572 reffed_ptr(const reffed_ptr& other)
1573 : ptr_(upb::upcast(other.get())) {
1574 if (ptr_) ptr_->Ref(this);
1575 }
1576
1577 ~reffed_ptr() { if (ptr_) ptr_->Unref(this); }
1578
1579 template <class U>
1580 reffed_ptr& operator=(const reffed_ptr<U>& other) {
1581 reset(other.get());
1582 return *this;
1583 }
1584
1585 reffed_ptr& operator=(const reffed_ptr& other) {
1586 reset(other.get());
1587 return *this;
1588 }
1589
1590 /* TODO(haberman): add C++11 move construction/assignment for greater
1591 * efficiency. */
1592
1593 void swap(reffed_ptr& other) {
1594 if (ptr_ == other.ptr_) {
1595 return;
1596 }
1597
1598 if (ptr_) ptr_->DonateRef(this, &other);
1599 if (other.ptr_) other.ptr_->DonateRef(&other, this);
1600 std::swap(ptr_, other.ptr_);
1601 }
1602
1603 T& operator*() const {
1604 assert(ptr_);
1605 return *ptr_;
1606 }
1607
1608 T* operator->() const {
1609 assert(ptr_);
1610 return ptr_;
1611 }
1612
1613 T* get() const { return ptr_; }
1614
1615 /* If ref_donor is NULL, takes a new ref, otherwise adopts from ref_donor. */
1616 template <class U>
1617 void reset(U* ptr = NULL, const void* ref_donor = NULL) {
1618 reffed_ptr(ptr, ref_donor).swap(*this);
1619 }
1620
1621 template <class U>
1622 reffed_ptr<U> down_cast() {
1623 return reffed_ptr<U>(upb::down_cast<U*>(get()));
1624 }
1625
1626 template <class U>
1627 reffed_ptr<U> dyn_cast() {
1628 return reffed_ptr<U>(upb::dyn_cast<U*>(get()));
1629 }
1630
1631 /* Plain release() is unsafe; if we were the only owner, it would leak the
1632 * object. Instead we provide this: */
1633 T* ReleaseTo(const void* new_owner) {
1634 T* ret = NULL;
1635 ptr_->DonateRef(this, new_owner);
1636 std::swap(ret, ptr_);
1637 return ret;
1638 }
1639
1640 private:
1641 T* ptr_;
1642 };
1643
1644 #endif /* __cplusplus */
1645
1646 #endif /* UPB_REFCOUNT_H_ */
1647
1648 #ifdef __cplusplus
1649 #include <cstring>
1650 #include <string>
1651 #include <vector>
1652
1653 namespace upb {
1654 class Def;
1655 class EnumDef;
1656 class FieldDef;
1657 class FileDef;
1658 class MessageDef;
1659 class OneofDef;
1660 }
1661 #endif
1662
1663 UPB_DECLARE_DERIVED_TYPE(upb::Def, upb::RefCounted, upb_def, upb_refcounted)
1664 UPB_DECLARE_DERIVED_TYPE(upb::OneofDef, upb::RefCounted, upb_oneofdef,
1665 upb_refcounted)
1666 UPB_DECLARE_DERIVED_TYPE(upb::FileDef, upb::RefCounted, upb_filedef,
1667 upb_refcounted)
1668
1669 /* The maximum message depth that the type graph can have. This is a resource
1670 * limit for the C stack since we sometimes need to recursively traverse the
1671 * graph. Cycles are ok; the traversal will stop when it detects a cycle, but
1672 * we must hit the cycle before the maximum depth is reached.
1673 *
1674 * If having a single static limit is too inflexible, we can add another variant
1675 * of Def::Freeze that allows specifying this as a parameter. */
1676 #define UPB_MAX_MESSAGE_DEPTH 64
1677
1678
1679 /* upb::Def: base class for top-level defs ***********************************/
1680
1681 /* All the different kind of defs that can be defined at the top-level and put
1682 * in a SymbolTable or appear in a FileDef::defs() list. This excludes some
1683 * defs (like oneofs and files). It only includes fields because they can be
1684 * defined as extensions. */
1685 typedef enum {
1686 UPB_DEF_MSG,
1687 UPB_DEF_FIELD,
1688 UPB_DEF_ENUM,
1689 UPB_DEF_SERVICE, /* Not yet implemented. */
1690 UPB_DEF_ANY = -1 /* Wildcard for upb_symtab_get*() */
1691 } upb_deftype_t;
1692
1693 #ifdef __cplusplus
1694
1695 /* The base class of all defs. Its base is upb::RefCounted (use upb::upcast()
1696 * to convert). */
1697 class upb::Def {
1698 public:
1699 typedef upb_deftype_t Type;
1700
1701 Def* Dup(const void *owner) const;
1702
1703 /* upb::RefCounted methods like Ref()/Unref(). */
1704 UPB_REFCOUNTED_CPPMETHODS
1705
1706 Type def_type() const;
1707
1708 /* "fullname" is the def's fully-qualified name (eg. foo.bar.Message). */
1709 const char *full_name() const;
1710
1711 /* The final part of a def's name (eg. Message). */
1712 const char *name() const;
1713
1714 /* The def must be mutable. Caller retains ownership of fullname. Defs are
1715 * not required to have a name; if a def has no name when it is frozen, it
1716 * will remain an anonymous def. On failure, returns false and details in "s"
1717 * if non-NULL. */
1718 bool set_full_name(const char* fullname, upb::Status* s);
1719 bool set_full_name(const std::string &fullname, upb::Status* s);
1720
1721 /* The file in which this def appears. It is not necessary to add a def to a
1722 * file (and consequently the accessor may return NULL). Set this by calling
1723 * file->Add(def). */
1724 FileDef* file() const;
1725
1726 /* Freezes the given defs; this validates all constraints and marks the defs
1727 * as frozen (read-only). "defs" may not contain any fielddefs, but fields
1728 * of any msgdefs will be frozen.
1729 *
1730 * Symbolic references to sub-types and enum defaults must have already been
1731 * resolved. Any mutable defs reachable from any of "defs" must also be in
1732 * the list; more formally, "defs" must be a transitive closure of mutable
1733 * defs.
1734 *
1735 * After this operation succeeds, the finalized defs must only be accessed
1736 * through a const pointer! */
1737 static bool Freeze(Def* const* defs, size_t n, Status* status);
1738 static bool Freeze(const std::vector<Def*>& defs, Status* status);
1739
1740 private:
1741 UPB_DISALLOW_POD_OPS(Def, upb::Def)
1742 };
1743
1744 #endif /* __cplusplus */
1745
1746 UPB_BEGIN_EXTERN_C
1747
1748 /* Native C API. */
1749 upb_def *upb_def_dup(const upb_def *def, const void *owner);
1750
1751 /* Include upb_refcounted methods like upb_def_ref()/upb_def_unref(). */
1752 UPB_REFCOUNTED_CMETHODS(upb_def, upb_def_upcast)
1753
1754 upb_deftype_t upb_def_type(const upb_def *d);
1755 const char *upb_def_fullname(const upb_def *d);
1756 const char *upb_def_name(const upb_def *d);
1757 const upb_filedef *upb_def_file(const upb_def *d);
1758 bool upb_def_setfullname(upb_def *def, const char *fullname, upb_status *s);
1759 bool upb_def_freeze(upb_def *const *defs, size_t n, upb_status *s);
1760
1761 /* Temporary API: for internal use only. */
1762 bool _upb_def_validate(upb_def *const*defs, size_t n, upb_status *s);
1763
1764 UPB_END_EXTERN_C
1765
1766
1767 /* upb::Def casts *************************************************************/
1768
1769 #ifdef __cplusplus
1770 #define UPB_CPP_CASTS(cname, cpptype) \
1771 namespace upb { \
1772 template <> \
1773 inline cpptype *down_cast<cpptype *, Def>(Def * def) { \
1774 return upb_downcast_##cname##_mutable(def); \
1775 } \
1776 template <> \
1777 inline cpptype *dyn_cast<cpptype *, Def>(Def * def) { \
1778 return upb_dyncast_##cname##_mutable(def); \
1779 } \
1780 template <> \
1781 inline const cpptype *down_cast<const cpptype *, const Def>( \
1782 const Def *def) { \
1783 return upb_downcast_##cname(def); \
1784 } \
1785 template <> \
1786 inline const cpptype *dyn_cast<const cpptype *, const Def>(const Def *def) { \
1787 return upb_dyncast_##cname(def); \
1788 } \
1789 template <> \
1790 inline const cpptype *down_cast<const cpptype *, Def>(Def * def) { \
1791 return upb_downcast_##cname(def); \
1792 } \
1793 template <> \
1794 inline const cpptype *dyn_cast<const cpptype *, Def>(Def * def) { \
1795 return upb_dyncast_##cname(def); \
1796 } \
1797 } /* namespace upb */
1798 #else
1799 #define UPB_CPP_CASTS(cname, cpptype)
1800 #endif /* __cplusplus */
1801
1802 /* Dynamic casts, for determining if a def is of a particular type at runtime.
1803 * Downcasts, for when some wants to assert that a def is of a particular type.
1804 * These are only checked if we are building debug. */
1805 #define UPB_DEF_CASTS(lower, upper, cpptype) \
1806 UPB_INLINE const upb_##lower *upb_dyncast_##lower(const upb_def *def) { \
1807 if (upb_def_type(def) != UPB_DEF_##upper) return NULL; \
1808 return (upb_##lower *)def; \
1809 } \
1810 UPB_INLINE const upb_##lower *upb_downcast_##lower(const upb_def *def) { \
1811 assert(upb_def_type(def) == UPB_DEF_##upper); \
1812 return (const upb_##lower *)def; \
1813 } \
1814 UPB_INLINE upb_##lower *upb_dyncast_##lower##_mutable(upb_def *def) { \
1815 return (upb_##lower *)upb_dyncast_##lower(def); \
1816 } \
1817 UPB_INLINE upb_##lower *upb_downcast_##lower##_mutable(upb_def *def) { \
1818 return (upb_##lower *)upb_downcast_##lower(def); \
1819 } \
1820 UPB_CPP_CASTS(lower, cpptype)
1821
1822 #define UPB_DEFINE_DEF(cppname, lower, upper, cppmethods, members) \
1823 UPB_DEFINE_CLASS2(cppname, upb::Def, upb::RefCounted, cppmethods, \
1824 members) \
1825 UPB_DEF_CASTS(lower, upper, cppname)
1826
1827 #define UPB_DECLARE_DEF_TYPE(cppname, lower, upper) \
1828 UPB_DECLARE_DERIVED_TYPE2(cppname, upb::Def, upb::RefCounted, \
1829 upb_ ## lower, upb_def, upb_refcounted) \
1830 UPB_DEF_CASTS(lower, upper, cppname)
1831
1832 UPB_DECLARE_DEF_TYPE(upb::FieldDef, fielddef, FIELD)
1833 UPB_DECLARE_DEF_TYPE(upb::MessageDef, msgdef, MSG)
1834 UPB_DECLARE_DEF_TYPE(upb::EnumDef, enumdef, ENUM)
1835
1836 #undef UPB_DECLARE_DEF_TYPE
1837 #undef UPB_DEF_CASTS
1838 #undef UPB_CPP_CASTS
1839
1840
1841 /* upb::FieldDef **************************************************************/
1842
1843 /* The types a field can have. Note that this list is not identical to the
1844 * types defined in descriptor.proto, which gives INT32 and SINT32 separate
1845 * types (we distinguish the two with the "integer encoding" enum below). */
1846 typedef enum {
1847 UPB_TYPE_FLOAT = 1,
1848 UPB_TYPE_DOUBLE = 2,
1849 UPB_TYPE_BOOL = 3,
1850 UPB_TYPE_STRING = 4,
1851 UPB_TYPE_BYTES = 5,
1852 UPB_TYPE_MESSAGE = 6,
1853 UPB_TYPE_ENUM = 7, /* Enum values are int32. */
1854 UPB_TYPE_INT32 = 8,
1855 UPB_TYPE_UINT32 = 9,
1856 UPB_TYPE_INT64 = 10,
1857 UPB_TYPE_UINT64 = 11
1858 } upb_fieldtype_t;
1859
1860 /* The repeated-ness of each field; this matches descriptor.proto. */
1861 typedef enum {
1862 UPB_LABEL_OPTIONAL = 1,
1863 UPB_LABEL_REQUIRED = 2,
1864 UPB_LABEL_REPEATED = 3
1865 } upb_label_t;
1866
1867 /* How integers should be encoded in serializations that offer multiple
1868 * integer encoding methods. */
1869 typedef enum {
1870 UPB_INTFMT_VARIABLE = 1,
1871 UPB_INTFMT_FIXED = 2,
1872 UPB_INTFMT_ZIGZAG = 3 /* Only for signed types (INT32/INT64). */
1873 } upb_intfmt_t;
1874
1875 /* Descriptor types, as defined in descriptor.proto. */
1876 typedef enum {
1877 UPB_DESCRIPTOR_TYPE_DOUBLE = 1,
1878 UPB_DESCRIPTOR_TYPE_FLOAT = 2,
1879 UPB_DESCRIPTOR_TYPE_INT64 = 3,
1880 UPB_DESCRIPTOR_TYPE_UINT64 = 4,
1881 UPB_DESCRIPTOR_TYPE_INT32 = 5,
1882 UPB_DESCRIPTOR_TYPE_FIXED64 = 6,
1883 UPB_DESCRIPTOR_TYPE_FIXED32 = 7,
1884 UPB_DESCRIPTOR_TYPE_BOOL = 8,
1885 UPB_DESCRIPTOR_TYPE_STRING = 9,
1886 UPB_DESCRIPTOR_TYPE_GROUP = 10,
1887 UPB_DESCRIPTOR_TYPE_MESSAGE = 11,
1888 UPB_DESCRIPTOR_TYPE_BYTES = 12,
1889 UPB_DESCRIPTOR_TYPE_UINT32 = 13,
1890 UPB_DESCRIPTOR_TYPE_ENUM = 14,
1891 UPB_DESCRIPTOR_TYPE_SFIXED32 = 15,
1892 UPB_DESCRIPTOR_TYPE_SFIXED64 = 16,
1893 UPB_DESCRIPTOR_TYPE_SINT32 = 17,
1894 UPB_DESCRIPTOR_TYPE_SINT64 = 18
1895 } upb_descriptortype_t;
1896
1897 typedef enum {
1898 UPB_SYNTAX_PROTO2 = 2,
1899 UPB_SYNTAX_PROTO3 = 3
1900 } upb_syntax_t;
1901
1902 /* Maximum field number allowed for FieldDefs. This is an inherent limit of the
1903 * protobuf wire format. */
1904 #define UPB_MAX_FIELDNUMBER ((1 << 29) - 1)
1905
1906 #ifdef __cplusplus
1907
1908 /* A upb_fielddef describes a single field in a message. It is most often
1909 * found as a part of a upb_msgdef, but can also stand alone to represent
1910 * an extension.
1911 *
1912 * Its base class is upb::Def (use upb::upcast() to convert). */
1913 class upb::FieldDef {
1914 public:
1915 typedef upb_fieldtype_t Type;
1916 typedef upb_label_t Label;
1917 typedef upb_intfmt_t IntegerFormat;
1918 typedef upb_descriptortype_t DescriptorType;
1919
1920 /* These return true if the given value is a valid member of the enumeration. */
1921 static bool CheckType(int32_t val);
1922 static bool CheckLabel(int32_t val);
1923 static bool CheckDescriptorType(int32_t val);
1924 static bool CheckIntegerFormat(int32_t val);
1925
1926 /* These convert to the given enumeration; they require that the value is
1927 * valid. */
1928 static Type ConvertType(int32_t val);
1929 static Label ConvertLabel(int32_t val);
1930 static DescriptorType ConvertDescriptorType(int32_t val);
1931 static IntegerFormat ConvertIntegerFormat(int32_t val);
1932
1933 /* Returns NULL if memory allocation failed. */
1934 static reffed_ptr<FieldDef> New();
1935
1936 /* Duplicates the given field, returning NULL if memory allocation failed.
1937 * When a fielddef is duplicated, the subdef (if any) is made symbolic if it
1938 * wasn't already. If the subdef is set but has no name (which is possible
1939 * since msgdefs are not required to have a name) the new fielddef's subdef
1940 * will be unset. */
1941 FieldDef* Dup(const void* owner) const;
1942
1943 /* upb::RefCounted methods like Ref()/Unref(). */
1944 UPB_REFCOUNTED_CPPMETHODS
1945
1946 /* Functionality from upb::Def. */
1947 const char* full_name() const;
1948
1949 bool type_is_set() const; /* set_[descriptor_]type() has been called? */
1950 Type type() const; /* Requires that type_is_set() == true. */
1951 Label label() const; /* Defaults to UPB_LABEL_OPTIONAL. */
1952 const char* name() const; /* NULL if uninitialized. */
1953 uint32_t number() const; /* Returns 0 if uninitialized. */
1954 bool is_extension() const;
1955
1956 /* Copies the JSON name for this field into the given buffer. Returns the
1957 * actual size of the JSON name, including the NULL terminator. If the
1958 * return value is 0, the JSON name is unset. If the return value is
1959 * greater than len, the JSON name was truncated. The buffer is always
1960 * NULL-terminated if len > 0.
1961 *
1962 * The JSON name always defaults to a camelCased version of the regular
1963 * name. However if the regular name is unset, the JSON name will be unset
1964 * also.
1965 */
1966 size_t GetJsonName(char* buf, size_t len) const;
1967
1968 /* Convenience version of the above function which copies the JSON name
1969 * into the given string, returning false if the name is not set. */
1970 template <class T>
1971 bool GetJsonName(T* str) {
1972 str->resize(GetJsonName(NULL, 0));
1973 GetJsonName(&(*str)[0], str->size());
1974 return str->size() > 0;
1975 }
1976
1977 /* For UPB_TYPE_MESSAGE fields only where is_tag_delimited() == false,
1978 * indicates whether this field should have lazy parsing handlers that yield
1979 * the unparsed string for the submessage.
1980 *
1981 * TODO(haberman): I think we want to move this into a FieldOptions container
1982 * when we add support for custom options (the FieldOptions struct will
1983 * contain both regular FieldOptions like "lazy" *and* custom options). */
1984 bool lazy() const;
1985
1986 /* For non-string, non-submessage fields, this indicates whether binary
1987 * protobufs are encoded in packed or non-packed format.
1988 *
1989 * TODO(haberman): see note above about putting options like this into a
1990 * FieldOptions container. */
1991 bool packed() const;
1992
1993 /* An integer that can be used as an index into an array of fields for
1994 * whatever message this field belongs to. Guaranteed to be less than
1995 * f->containing_type()->field_count(). May only be accessed once the def has
1996 * been finalized. */
1997 uint32_t index() const;
1998
1999 /* The MessageDef to which this field belongs.
2000 *
2001 * If this field has been added to a MessageDef, that message can be retrieved
2002 * directly (this is always the case for frozen FieldDefs).
2003 *
2004 * If the field has not yet been added to a MessageDef, you can set the name
2005 * of the containing type symbolically instead. This is mostly useful for
2006 * extensions, where the extension is declared separately from the message. */
2007 const MessageDef* containing_type() const;
2008 const char* containing_type_name();
2009
2010 /* The OneofDef to which this field belongs, or NULL if this field is not part
2011 * of a oneof. */
2012 const OneofDef* containing_oneof() const;
2013
2014 /* The field's type according to the enum in descriptor.proto. This is not
2015 * the same as UPB_TYPE_*, because it distinguishes between (for example)
2016 * INT32 and SINT32, whereas our "type" enum does not. This return of
2017 * descriptor_type() is a function of type(), integer_format(), and
2018 * is_tag_delimited(). Likewise set_descriptor_type() sets all three
2019 * appropriately. */
2020 DescriptorType descriptor_type() const;
2021
2022 /* Convenient field type tests. */
2023 bool IsSubMessage() const;
2024 bool IsString() const;
2025 bool IsSequence() const;
2026 bool IsPrimitive() const;
2027 bool IsMap() const;
2028
2029 /* Whether this field must be able to explicitly represent presence:
2030 *
2031 * * This is always false for repeated fields (an empty repeated field is
2032 * equivalent to a repeated field with zero entries).
2033 *
2034 * * This is always true for submessages.
2035 *
2036 * * For other fields, it depends on the message (see
2037 * MessageDef::SetPrimitivesHavePresence())
2038 */
2039 bool HasPresence() const;
2040
2041 /* How integers are encoded. Only meaningful for integer types.
2042 * Defaults to UPB_INTFMT_VARIABLE, and is reset when "type" changes. */
2043 IntegerFormat integer_format() const;
2044
2045 /* Whether a submessage field is tag-delimited or not (if false, then
2046 * length-delimited). May only be set when type() == UPB_TYPE_MESSAGE. */
2047 bool is_tag_delimited() const;
2048
2049 /* Returns the non-string default value for this fielddef, which may either
2050 * be something the client set explicitly or the "default default" (0 for
2051 * numbers, empty for strings). The field's type indicates the type of the
2052 * returned value, except for enum fields that are still mutable.
2053 *
2054 * Requires that the given function matches the field's current type. */
2055 int64_t default_int64() const;
2056 int32_t default_int32() const;
2057 uint64_t default_uint64() const;
2058 uint32_t default_uint32() const;
2059 bool default_bool() const;
2060 float default_float() const;
2061 double default_double() const;
2062
2063 /* The resulting string is always NULL-terminated. If non-NULL, the length
2064 * will be stored in *len. */
2065 const char *default_string(size_t* len) const;
2066
2067 /* For frozen UPB_TYPE_ENUM fields, enum defaults can always be read as either
2068 * string or int32, and both of these methods will always return true.
2069 *
2070 * For mutable UPB_TYPE_ENUM fields, the story is a bit more complicated.
2071 * Enum defaults are unusual. They can be specified either as string or int32,
2072 * but to be valid the enum must have that value as a member. And if no
2073 * default is specified, the "default default" comes from the EnumDef.
2074 *
2075 * We allow reading the default as either an int32 or a string, but only if
2076 * we have a meaningful value to report. We have a meaningful value if it was
2077 * set explicitly, or if we could get the "default default" from the EnumDef.
2078 * Also if you explicitly set the name and we find the number in the EnumDef */
2079 bool EnumHasStringDefault() const;
2080 bool EnumHasInt32Default() const;
2081
2082 /* Submessage and enum fields must reference a "subdef", which is the
2083 * upb::MessageDef or upb::EnumDef that defines their type. Note that when
2084 * the FieldDef is mutable it may not have a subdef *yet*, but this function
2085 * still returns true to indicate that the field's type requires a subdef. */
2086 bool HasSubDef() const;
2087
2088 /* Returns the enum or submessage def for this field, if any. The field's
2089 * type must match (ie. you may only call enum_subdef() for fields where
2090 * type() == UPB_TYPE_ENUM). Returns NULL if the subdef has not been set or
2091 * is currently set symbolically. */
2092 const EnumDef* enum_subdef() const;
2093 const MessageDef* message_subdef() const;
2094
2095 /* Returns the generic subdef for this field. Requires that HasSubDef() (ie.
2096 * only works for UPB_TYPE_ENUM and UPB_TYPE_MESSAGE fields). */
2097 const Def* subdef() const;
2098
2099 /* Returns the symbolic name of the subdef. If the subdef is currently set
2100 * unresolved (ie. set symbolically) returns the symbolic name. If it has
2101 * been resolved to a specific subdef, returns the name from that subdef. */
2102 const char* subdef_name() const;
2103
2104 /* Setters (non-const methods), only valid for mutable FieldDefs! ***********/
2105
2106 bool set_full_name(const char* fullname, upb::Status* s);
2107 bool set_full_name(const std::string& fullname, upb::Status* s);
2108
2109 /* This may only be called if containing_type() == NULL (ie. the field has not
2110 * been added to a message yet). */
2111 bool set_containing_type_name(const char *name, Status* status);
2112 bool set_containing_type_name(const std::string& name, Status* status);
2113
2114 /* Defaults to false. When we freeze, we ensure that this can only be true
2115 * for length-delimited message fields. Prior to freezing this can be true or
2116 * false with no restrictions. */
2117 void set_lazy(bool lazy);
2118
2119 /* Defaults to true. Sets whether this field is encoded in packed format. */
2120 void set_packed(bool packed);
2121
2122 /* "type" or "descriptor_type" MUST be set explicitly before the fielddef is
2123 * finalized. These setters require that the enum value is valid; if the
2124 * value did not come directly from an enum constant, the caller should
2125 * validate it first with the functions above (CheckFieldType(), etc). */
2126 void set_type(Type type);
2127 void set_label(Label label);
2128 void set_descriptor_type(DescriptorType type);
2129 void set_is_extension(bool is_extension);
2130
2131 /* "number" and "name" must be set before the FieldDef is added to a
2132 * MessageDef, and may not be set after that.
2133 *
2134 * "name" is the same as full_name()/set_full_name(), but since fielddefs
2135 * most often use simple, non-qualified names, we provide this accessor
2136 * also. Generally only extensions will want to think of this name as
2137 * fully-qualified. */
2138 bool set_number(uint32_t number, upb::Status* s);
2139 bool set_name(const char* name, upb::Status* s);
2140 bool set_name(const std::string& name, upb::Status* s);
2141
2142 /* Sets the JSON name to the given string. */
2143 /* TODO(haberman): implement. Right now only default json_name (camelCase)
2144 * is supported. */
2145 bool set_json_name(const char* json_name, upb::Status* s);
2146 bool set_json_name(const std::string& name, upb::Status* s);
2147
2148 /* Clears the JSON name. This will make it revert to its default, which is
2149 * a camelCased version of the regular field name. */
2150 void clear_json_name();
2151
2152 void set_integer_format(IntegerFormat format);
2153 bool set_tag_delimited(bool tag_delimited, upb::Status* s);
2154
2155 /* Sets default value for the field. The call must exactly match the type
2156 * of the field. Enum fields may use either setint32 or setstring to set
2157 * the default numerically or symbolically, respectively, but symbolic
2158 * defaults must be resolved before finalizing (see ResolveEnumDefault()).
2159 *
2160 * Changing the type of a field will reset its default. */
2161 void set_default_int64(int64_t val);
2162 void set_default_int32(int32_t val);
2163 void set_default_uint64(uint64_t val);
2164 void set_default_uint32(uint32_t val);
2165 void set_default_bool(bool val);
2166 void set_default_float(float val);
2167 void set_default_double(double val);
2168 bool set_default_string(const void *str, size_t len, Status *s);
2169 bool set_default_string(const std::string &str, Status *s);
2170 void set_default_cstr(const char *str, Status *s);
2171
2172 /* Before a fielddef is frozen, its subdef may be set either directly (with a
2173 * upb::Def*) or symbolically. Symbolic refs must be resolved before the
2174 * containing msgdef can be frozen (see upb_resolve() above). upb always
2175 * guarantees that any def reachable from a live def will also be kept alive.
2176 *
2177 * Both methods require that upb_hassubdef(f) (so the type must be set prior
2178 * to calling these methods). Returns false if this is not the case, or if
2179 * the given subdef is not of the correct type. The subdef is reset if the
2180 * field's type is changed. The subdef can be set to NULL to clear it. */
2181 bool set_subdef(const Def* subdef, Status* s);
2182 bool set_enum_subdef(const EnumDef* subdef, Status* s);
2183 bool set_message_subdef(const MessageDef* subdef, Status* s);
2184 bool set_subdef_name(const char* name, Status* s);
2185 bool set_subdef_name(const std::string &name, Status* s);
2186
2187 private:
2188 UPB_DISALLOW_POD_OPS(FieldDef, upb::FieldDef)
2189 };
2190
2191 # endif /* defined(__cplusplus) */
2192
2193 UPB_BEGIN_EXTERN_C
2194
2195 /* Native C API. */
2196 upb_fielddef *upb_fielddef_new(const void *owner);
2197 upb_fielddef *upb_fielddef_dup(const upb_fielddef *f, const void *owner);
2198
2199 /* Include upb_refcounted methods like upb_fielddef_ref(). */
2200 UPB_REFCOUNTED_CMETHODS(upb_fielddef, upb_fielddef_upcast2)
2201
2202 /* Methods from upb_def. */
2203 const char *upb_fielddef_fullname(const upb_fielddef *f);
2204 bool upb_fielddef_setfullname(upb_fielddef *f, const char *fullname,
2205 upb_status *s);
2206
2207 bool upb_fielddef_typeisset(const upb_fielddef *f);
2208 upb_fieldtype_t upb_fielddef_type(const upb_fielddef *f);
2209 upb_descriptortype_t upb_fielddef_descriptortype(const upb_fielddef *f);
2210 upb_label_t upb_fielddef_label(const upb_fielddef *f);
2211 uint32_t upb_fielddef_number(const upb_fielddef *f);
2212 const char *upb_fielddef_name(const upb_fielddef *f);
2213 bool upb_fielddef_isextension(const upb_fielddef *f);
2214 bool upb_fielddef_lazy(const upb_fielddef *f);
2215 bool upb_fielddef_packed(const upb_fielddef *f);
2216 size_t upb_fielddef_getjsonname(const upb_fielddef *f, char *buf, size_t len);
2217 const upb_msgdef *upb_fielddef_containingtype(const upb_fielddef *f);
2218 const upb_oneofdef *upb_fielddef_containingoneof(const upb_fielddef *f);
2219 upb_msgdef *upb_fielddef_containingtype_mutable(upb_fielddef *f);
2220 const char *upb_fielddef_containingtypename(upb_fielddef *f);
2221 upb_intfmt_t upb_fielddef_intfmt(const upb_fielddef *f);
2222 uint32_t upb_fielddef_index(const upb_fielddef *f);
2223 bool upb_fielddef_istagdelim(const upb_fielddef *f);
2224 bool upb_fielddef_issubmsg(const upb_fielddef *f);
2225 bool upb_fielddef_isstring(const upb_fielddef *f);
2226 bool upb_fielddef_isseq(const upb_fielddef *f);
2227 bool upb_fielddef_isprimitive(const upb_fielddef *f);
2228 bool upb_fielddef_ismap(const upb_fielddef *f);
2229 bool upb_fielddef_haspresence(const upb_fielddef *f);
2230 int64_t upb_fielddef_defaultint64(const upb_fielddef *f);
2231 int32_t upb_fielddef_defaultint32(const upb_fielddef *f);
2232 uint64_t upb_fielddef_defaultuint64(const upb_fielddef *f);
2233 uint32_t upb_fielddef_defaultuint32(const upb_fielddef *f);
2234 bool upb_fielddef_defaultbool(const upb_fielddef *f);
2235 float upb_fielddef_defaultfloat(const upb_fielddef *f);
2236 double upb_fielddef_defaultdouble(const upb_fielddef *f);
2237 const char *upb_fielddef_defaultstr(const upb_fielddef *f, size_t *len);
2238 bool upb_fielddef_enumhasdefaultint32(const upb_fielddef *f);
2239 bool upb_fielddef_enumhasdefaultstr(const upb_fielddef *f);
2240 bool upb_fielddef_hassubdef(const upb_fielddef *f);
2241 const upb_def *upb_fielddef_subdef(const upb_fielddef *f);
2242 const upb_msgdef *upb_fielddef_msgsubdef(const upb_fielddef *f);
2243 const upb_enumdef *upb_fielddef_enumsubdef(const upb_fielddef *f);
2244 const char *upb_fielddef_subdefname(const upb_fielddef *f);
2245
2246 void upb_fielddef_settype(upb_fielddef *f, upb_fieldtype_t type);
2247 void upb_fielddef_setdescriptortype(upb_fielddef *f, int type);
2248 void upb_fielddef_setlabel(upb_fielddef *f, upb_label_t label);
2249 bool upb_fielddef_setnumber(upb_fielddef *f, uint32_t number, upb_status *s);
2250 bool upb_fielddef_setname(upb_fielddef *f, const char *name, upb_status *s);
2251 bool upb_fielddef_setjsonname(upb_fielddef *f, const char *name, upb_status *s);
2252 bool upb_fielddef_clearjsonname(upb_fielddef *f);
2253 bool upb_fielddef_setcontainingtypename(upb_fielddef *f, const char *name,
2254 upb_status *s);
2255 void upb_fielddef_setisextension(upb_fielddef *f, bool is_extension);
2256 void upb_fielddef_setlazy(upb_fielddef *f, bool lazy);
2257 void upb_fielddef_setpacked(upb_fielddef *f, bool packed);
2258 void upb_fielddef_setintfmt(upb_fielddef *f, upb_intfmt_t fmt);
2259 void upb_fielddef_settagdelim(upb_fielddef *f, bool tag_delim);
2260 void upb_fielddef_setdefaultint64(upb_fielddef *f, int64_t val);
2261 void upb_fielddef_setdefaultint32(upb_fielddef *f, int32_t val);
2262 void upb_fielddef_setdefaultuint64(upb_fielddef *f, uint64_t val);
2263 void upb_fielddef_setdefaultuint32(upb_fielddef *f, uint32_t val);
2264 void upb_fielddef_setdefaultbool(upb_fielddef *f, bool val);
2265 void upb_fielddef_setdefaultfloat(upb_fielddef *f, float val);
2266 void upb_fielddef_setdefaultdouble(upb_fielddef *f, double val);
2267 bool upb_fielddef_setdefaultstr(upb_fielddef *f, const void *str, size_t len,
2268 upb_status *s);
2269 void upb_fielddef_setdefaultcstr(upb_fielddef *f, const char *str,
2270 upb_status *s);
2271 bool upb_fielddef_setsubdef(upb_fielddef *f, const upb_def *subdef,
2272 upb_status *s);
2273 bool upb_fielddef_setmsgsubdef(upb_fielddef *f, const upb_msgdef *subdef,
2274 upb_status *s);
2275 bool upb_fielddef_setenumsubdef(upb_fielddef *f, const upb_enumdef *subdef,
2276 upb_status *s);
2277 bool upb_fielddef_setsubdefname(upb_fielddef *f, const char *name,
2278 upb_status *s);
2279
2280 bool upb_fielddef_checklabel(int32_t label);
2281 bool upb_fielddef_checktype(int32_t type);
2282 bool upb_fielddef_checkdescriptortype(int32_t type);
2283 bool upb_fielddef_checkintfmt(int32_t fmt);
2284
2285 UPB_END_EXTERN_C
2286
2287
2288 /* upb::MessageDef ************************************************************/
2289
2290 typedef upb_inttable_iter upb_msg_field_iter;
2291 typedef upb_strtable_iter upb_msg_oneof_iter;
2292
2293 /* Well-known field tag numbers for map-entry messages. */
2294 #define UPB_MAPENTRY_KEY 1
2295 #define UPB_MAPENTRY_VALUE 2
2296
2297 #ifdef __cplusplus
2298
2299 /* Structure that describes a single .proto message type.
2300 *
2301 * Its base class is upb::Def (use upb::upcast() to convert). */
2302 class upb::MessageDef {
2303 public:
2304 /* Returns NULL if memory allocation failed. */
2305 static reffed_ptr<MessageDef> New();
2306
2307 /* upb::RefCounted methods like Ref()/Unref(). */
2308 UPB_REFCOUNTED_CPPMETHODS
2309
2310 /* Functionality from upb::Def. */
2311 const char* full_name() const;
2312 const char* name() const;
2313 bool set_full_name(const char* fullname, Status* s);
2314 bool set_full_name(const std::string& fullname, Status* s);
2315
2316 /* Call to freeze this MessageDef.
2317 * WARNING: this will fail if this message has any unfrozen submessages!
2318 * Messages with cycles must be frozen as a batch using upb::Def::Freeze(). */
2319 bool Freeze(Status* s);
2320
2321 /* The number of fields that belong to the MessageDef. */
2322 int field_count() const;
2323
2324 /* The number of oneofs that belong to the MessageDef. */
2325 int oneof_count() const;
2326
2327 /* Adds a field (upb_fielddef object) to a msgdef. Requires that the msgdef
2328 * and the fielddefs are mutable. The fielddef's name and number must be
2329 * set, and the message may not already contain any field with this name or
2330 * number, and this fielddef may not be part of another message. In error
2331 * cases false is returned and the msgdef is unchanged.
2332 *
2333 * If the given field is part of a oneof, this call succeeds if and only if
2334 * that oneof is already part of this msgdef. (Note that adding a oneof to a
2335 * msgdef automatically adds all of its fields to the msgdef at the time that
2336 * the oneof is added, so it is usually more idiomatic to add the oneof's
2337 * fields first then add the oneof to the msgdef. This case is supported for
2338 * convenience.)
2339 *
2340 * If |f| is already part of this MessageDef, this method performs no action
2341 * and returns true (success). Thus, this method is idempotent. */
2342 bool AddField(FieldDef* f, Status* s);
2343 bool AddField(const reffed_ptr<FieldDef>& f, Status* s);
2344
2345 /* Adds a oneof (upb_oneofdef object) to a msgdef. Requires that the msgdef,
2346 * oneof, and any fielddefs are mutable, that the fielddefs contained in the
2347 * oneof do not have any name or number conflicts with existing fields in the
2348 * msgdef, and that the oneof's name is unique among all oneofs in the msgdef.
2349 * If the oneof is added successfully, all of its fields will be added
2350 * directly to the msgdef as well. In error cases, false is returned and the
2351 * msgdef is unchanged. */
2352 bool AddOneof(OneofDef* o, Status* s);
2353 bool AddOneof(const reffed_ptr<OneofDef>& o, Status* s);
2354
2355 upb_syntax_t syntax() const;
2356
2357 /* Returns false if we don't support this syntax value. */
2358 bool set_syntax(upb_syntax_t syntax);
2359
2360 /* Set this to false to indicate that primitive fields should not have
2361 * explicit presence information associated with them. This will affect all
2362 * fields added to this message. Defaults to true. */
2363 void SetPrimitivesHavePresence(bool have_presence);
2364
2365 /* These return NULL if the field is not found. */
2366 FieldDef* FindFieldByNumber(uint32_t number);
2367 FieldDef* FindFieldByName(const char *name, size_t len);
2368 const FieldDef* FindFieldByNumber(uint32_t number) const;
2369 const FieldDef* FindFieldByName(const char* name, size_t len) const;
2370
2371
2372 FieldDef* FindFieldByName(const char *name) {
2373 return FindFieldByName(name, strlen(name));
2374 }
2375 const FieldDef* FindFieldByName(const char *name) const {
2376 return FindFieldByName(name, strlen(name));
2377 }
2378
2379 template <class T>
2380 FieldDef* FindFieldByName(const T& str) {
2381 return FindFieldByName(str.c_str(), str.size());
2382 }
2383 template <class T>
2384 const FieldDef* FindFieldByName(const T& str) const {
2385 return FindFieldByName(str.c_str(), str.size());
2386 }
2387
2388 OneofDef* FindOneofByName(const char* name, size_t len);
2389 const OneofDef* FindOneofByName(const char* name, size_t len) const;
2390
2391 OneofDef* FindOneofByName(const char* name) {
2392 return FindOneofByName(name, strlen(name));
2393 }
2394 const OneofDef* FindOneofByName(const char* name) const {
2395 return FindOneofByName(name, strlen(name));
2396 }
2397
2398 template<class T>
2399 OneofDef* FindOneofByName(const T& str) {
2400 return FindOneofByName(str.c_str(), str.size());
2401 }
2402 template<class T>
2403 const OneofDef* FindOneofByName(const T& str) const {
2404 return FindOneofByName(str.c_str(), str.size());
2405 }
2406
2407 /* Returns a new msgdef that is a copy of the given msgdef (and a copy of all
2408 * the fields) but with any references to submessages broken and replaced
2409 * with just the name of the submessage. Returns NULL if memory allocation
2410 * failed.
2411 *
2412 * TODO(haberman): which is more useful, keeping fields resolved or
2413 * unresolving them? If there's no obvious answer, Should this functionality
2414 * just be moved into symtab.c? */
2415 MessageDef* Dup(const void* owner) const;
2416
2417 /* Is this message a map entry? */
2418 void setmapentry(bool map_entry);
2419 bool mapentry() const;
2420
2421 /* Iteration over fields. The order is undefined. */
2422 class field_iterator
2423 : public std::iterator<std::forward_iterator_tag, FieldDef*> {
2424 public:
2425 explicit field_iterator(MessageDef* md);
2426 static field_iterator end(MessageDef* md);
2427
2428 void operator++();
2429 FieldDef* operator*() const;
2430 bool operator!=(const field_iterator& other) const;
2431 bool operator==(const field_iterator& other) const;
2432
2433 private:
2434 upb_msg_field_iter iter_;
2435 };
2436
2437 class const_field_iterator
2438 : public std::iterator<std::forward_iterator_tag, const FieldDef*> {
2439 public:
2440 explicit const_field_iterator(const MessageDef* md);
2441 static const_field_iterator end(const MessageDef* md);
2442
2443 void operator++();
2444 const FieldDef* operator*() const;
2445 bool operator!=(const const_field_iterator& other) const;
2446 bool operator==(const const_field_iterator& other) const;
2447
2448 private:
2449 upb_msg_field_iter iter_;
2450 };
2451
2452 /* Iteration over oneofs. The order is undefined. */
2453 class oneof_iterator
2454 : public std::iterator<std::forward_iterator_tag, FieldDef*> {
2455 public:
2456 explicit oneof_iterator(MessageDef* md);
2457 static oneof_iterator end(MessageDef* md);
2458
2459 void operator++();
2460 OneofDef* operator*() const;
2461 bool operator!=(const oneof_iterator& other) const;
2462 bool operator==(const oneof_iterator& other) const;
2463
2464 private:
2465 upb_msg_oneof_iter iter_;
2466 };
2467
2468 class const_oneof_iterator
2469 : public std::iterator<std::forward_iterator_tag, const FieldDef*> {
2470 public:
2471 explicit const_oneof_iterator(const MessageDef* md);
2472 static const_oneof_iterator end(const MessageDef* md);
2473
2474 void operator++();
2475 const OneofDef* operator*() const;
2476 bool operator!=(const const_oneof_iterator& other) const;
2477 bool operator==(const const_oneof_iterator& other) const;
2478
2479 private:
2480 upb_msg_oneof_iter iter_;
2481 };
2482
2483 class FieldAccessor {
2484 public:
2485 explicit FieldAccessor(MessageDef* msg) : msg_(msg) {}
2486 field_iterator begin() { return msg_->field_begin(); }
2487 field_iterator end() { return msg_->field_end(); }
2488 private:
2489 MessageDef* msg_;
2490 };
2491
2492 class ConstFieldAccessor {
2493 public:
2494 explicit ConstFieldAccessor(const MessageDef* msg) : msg_(msg) {}
2495 const_field_iterator begin() { return msg_->field_begin(); }
2496 const_field_iterator end() { return msg_->field_end(); }
2497 private:
2498 const MessageDef* msg_;
2499 };
2500
2501 class OneofAccessor {
2502 public:
2503 explicit OneofAccessor(MessageDef* msg) : msg_(msg) {}
2504 oneof_iterator begin() { return msg_->oneof_begin(); }
2505 oneof_iterator end() { return msg_->oneof_end(); }
2506 private:
2507 MessageDef* msg_;
2508 };
2509
2510 class ConstOneofAccessor {
2511 public:
2512 explicit ConstOneofAccessor(const MessageDef* msg) : msg_(msg) {}
2513 const_oneof_iterator begin() { return msg_->oneof_begin(); }
2514 const_oneof_iterator end() { return msg_->oneof_end(); }
2515 private:
2516 const MessageDef* msg_;
2517 };
2518
2519 field_iterator field_begin();
2520 field_iterator field_end();
2521 const_field_iterator field_begin() const;
2522 const_field_iterator field_end() const;
2523
2524 oneof_iterator oneof_begin();
2525 oneof_iterator oneof_end();
2526 const_oneof_iterator oneof_begin() const;
2527 const_oneof_iterator oneof_end() const;
2528
2529 FieldAccessor fields() { return FieldAccessor(this); }
2530 ConstFieldAccessor fields() const { return ConstFieldAccessor(this); }
2531 OneofAccessor oneofs() { return OneofAccessor(this); }
2532 ConstOneofAccessor oneofs() const { return ConstOneofAccessor(this); }
2533
2534 private:
2535 UPB_DISALLOW_POD_OPS(MessageDef, upb::MessageDef)
2536 };
2537
2538 #endif /* __cplusplus */
2539
2540 UPB_BEGIN_EXTERN_C
2541
2542 /* Returns NULL if memory allocation failed. */
2543 upb_msgdef *upb_msgdef_new(const void *owner);
2544
2545 /* Include upb_refcounted methods like upb_msgdef_ref(). */
2546 UPB_REFCOUNTED_CMETHODS(upb_msgdef, upb_msgdef_upcast2)
2547
2548 bool upb_msgdef_freeze(upb_msgdef *m, upb_status *status);
2549
2550 upb_msgdef *upb_msgdef_dup(const upb_msgdef *m, const void *owner);
2551 const char *upb_msgdef_fullname(const upb_msgdef *m);
2552 const char *upb_msgdef_name(const upb_msgdef *m);
2553 int upb_msgdef_numoneofs(const upb_msgdef *m);
2554 upb_syntax_t upb_msgdef_syntax(const upb_msgdef *m);
2555
2556 bool upb_msgdef_addfield(upb_msgdef *m, upb_fielddef *f, const void *ref_donor,
2557 upb_status *s);
2558 bool upb_msgdef_addoneof(upb_msgdef *m, upb_oneofdef *o, const void *ref_donor,
2559 upb_status *s);
2560 bool upb_msgdef_setfullname(upb_msgdef *m, const char *fullname, upb_status *s);
2561 void upb_msgdef_setmapentry(upb_msgdef *m, bool map_entry);
2562 bool upb_msgdef_mapentry(const upb_msgdef *m);
2563 bool upb_msgdef_setsyntax(upb_msgdef *m, upb_syntax_t syntax);
2564
2565 /* Field lookup in a couple of different variations:
2566 * - itof = int to field
2567 * - ntof = name to field
2568 * - ntofz = name to field, null-terminated string. */
2569 const upb_fielddef *upb_msgdef_itof(const upb_msgdef *m, uint32_t i);
2570 const upb_fielddef *upb_msgdef_ntof(const upb_msgdef *m, const char *name,
2571 size_t len);
2572 int upb_msgdef_numfields(const upb_msgdef *m);
2573
2574 UPB_INLINE const upb_fielddef *upb_msgdef_ntofz(const upb_msgdef *m,
2575 const char *name) {
2576 return upb_msgdef_ntof(m, name, strlen(name));
2577 }
2578
2579 UPB_INLINE upb_fielddef *upb_msgdef_itof_mutable(upb_msgdef *m, uint32_t i) {
2580 return (upb_fielddef*)upb_msgdef_itof(m, i);
2581 }
2582
2583 UPB_INLINE upb_fielddef *upb_msgdef_ntof_mutable(upb_msgdef *m,
2584 const char *name, size_t len) {
2585 return (upb_fielddef *)upb_msgdef_ntof(m, name, len);
2586 }
2587
2588 /* Oneof lookup:
2589 * - ntoo = name to oneof
2590 * - ntooz = name to oneof, null-terminated string. */
2591 const upb_oneofdef *upb_msgdef_ntoo(const upb_msgdef *m, const char *name,
2592 size_t len);
2593 int upb_msgdef_numoneofs(const upb_msgdef *m);
2594
2595 UPB_INLINE const upb_oneofdef *upb_msgdef_ntooz(const upb_msgdef *m,
2596 const char *name) {
2597 return upb_msgdef_ntoo(m, name, strlen(name));
2598 }
2599
2600 UPB_INLINE upb_oneofdef *upb_msgdef_ntoo_mutable(upb_msgdef *m,
2601 const char *name, size_t len) {
2602 return (upb_oneofdef *)upb_msgdef_ntoo(m, name, len);
2603 }
2604
2605 /* Lookup of either field or oneof by name. Returns whether either was found.
2606 * If the return is true, then the found def will be set, and the non-found
2607 * one set to NULL. */
2608 bool upb_msgdef_lookupname(const upb_msgdef *m, const char *name, size_t len,
2609 const upb_fielddef **f, const upb_oneofdef **o);
2610
2611 UPB_INLINE bool upb_msgdef_lookupnamez(const upb_msgdef *m, const char *name,
2612 const upb_fielddef **f,
2613 const upb_oneofdef **o) {
2614 return upb_msgdef_lookupname(m, name, strlen(name), f, o);
2615 }
2616
2617 /* Iteration over fields and oneofs. For example:
2618 *
2619 * upb_msg_field_iter i;
2620 * for(upb_msg_field_begin(&i, m);
2621 * !upb_msg_field_done(&i);
2622 * upb_msg_field_next(&i)) {
2623 * upb_fielddef *f = upb_msg_iter_field(&i);
2624 * // ...
2625 * }
2626 *
2627 * For C we don't have separate iterators for const and non-const.
2628 * It is the caller's responsibility to cast the upb_fielddef* to
2629 * const if the upb_msgdef* is const. */
2630 void upb_msg_field_begin(upb_msg_field_iter *iter, const upb_msgdef *m);
2631 void upb_msg_field_next(upb_msg_field_iter *iter);
2632 bool upb_msg_field_done(const upb_msg_field_iter *iter);
2633 upb_fielddef *upb_msg_iter_field(const upb_msg_field_iter *iter);
2634 void upb_msg_field_iter_setdone(upb_msg_field_iter *iter);
2635
2636 /* Similar to above, we also support iterating through the oneofs in a
2637 * msgdef. */
2638 void upb_msg_oneof_begin(upb_msg_oneof_iter *iter, const upb_msgdef *m);
2639 void upb_msg_oneof_next(upb_msg_oneof_iter *iter);
2640 bool upb_msg_oneof_done(const upb_msg_oneof_iter *iter);
2641 upb_oneofdef *upb_msg_iter_oneof(const upb_msg_oneof_iter *iter);
2642 void upb_msg_oneof_iter_setdone(upb_msg_oneof_iter *iter);
2643
2644 UPB_END_EXTERN_C
2645
2646
2647 /* upb::EnumDef ***************************************************************/
2648
2649 typedef upb_strtable_iter upb_enum_iter;
2650
2651 #ifdef __cplusplus
2652
2653 /* Class that represents an enum. Its base class is upb::Def (convert with
2654 * upb::upcast()). */
2655 class upb::EnumDef {
2656 public:
2657 /* Returns NULL if memory allocation failed. */
2658 static reffed_ptr<EnumDef> New();
2659
2660 /* upb::RefCounted methods like Ref()/Unref(). */
2661 UPB_REFCOUNTED_CPPMETHODS
2662
2663 /* Functionality from upb::Def. */
2664 const char* full_name() const;
2665 const char* name() const;
2666 bool set_full_name(const char* fullname, Status* s);
2667 bool set_full_name(const std::string& fullname, Status* s);
2668
2669 /* Call to freeze this EnumDef. */
2670 bool Freeze(Status* s);
2671
2672 /* The value that is used as the default when no field default is specified.
2673 * If not set explicitly, the first value that was added will be used.
2674 * The default value must be a member of the enum.
2675 * Requires that value_count() > 0. */
2676 int32_t default_value() const;
2677
2678 /* Sets the default value. If this value is not valid, returns false and an
2679 * error message in status. */
2680 bool set_default_value(int32_t val, Status* status);
2681
2682 /* Returns the number of values currently defined in the enum. Note that
2683 * multiple names can refer to the same number, so this may be greater than
2684 * the total number of unique numbers. */
2685 int value_count() const;
2686
2687 /* Adds a single name/number pair to the enum. Fails if this name has
2688 * already been used by another value. */
2689 bool AddValue(const char* name, int32_t num, Status* status);
2690 bool AddValue(const std::string& name, int32_t num, Status* status);
2691
2692 /* Lookups from name to integer, returning true if found. */
2693 bool FindValueByName(const char* name, int32_t* num) const;
2694
2695 /* Finds the name corresponding to the given number, or NULL if none was
2696 * found. If more than one name corresponds to this number, returns the
2697 * first one that was added. */
2698 const char* FindValueByNumber(int32_t num) const;
2699
2700 /* Returns a new EnumDef with all the same values. The new EnumDef will be
2701 * owned by the given owner. */
2702 EnumDef* Dup(const void* owner) const;
2703
2704 /* Iteration over name/value pairs. The order is undefined.
2705 * Adding an enum val invalidates any iterators.
2706 *
2707 * TODO: make compatible with range-for, with elements as pairs? */
2708 class Iterator {
2709 public:
2710 explicit Iterator(const EnumDef*);
2711
2712 int32_t number();
2713 const char *name();
2714 bool Done();
2715 void Next();
2716
2717 private:
2718 upb_enum_iter iter_;
2719 };
2720
2721 private:
2722 UPB_DISALLOW_POD_OPS(EnumDef, upb::EnumDef)
2723 };
2724
2725 #endif /* __cplusplus */
2726
2727 UPB_BEGIN_EXTERN_C
2728
2729 /* Native C API. */
2730 upb_enumdef *upb_enumdef_new(const void *owner);
2731 upb_enumdef *upb_enumdef_dup(const upb_enumdef *e, const void *owner);
2732
2733 /* Include upb_refcounted methods like upb_enumdef_ref(). */
2734 UPB_REFCOUNTED_CMETHODS(upb_enumdef, upb_enumdef_upcast2)
2735
2736 bool upb_enumdef_freeze(upb_enumdef *e, upb_status *status);
2737
2738 /* From upb_def. */
2739 const char *upb_enumdef_fullname(const upb_enumdef *e);
2740 const char *upb_enumdef_name(const upb_enumdef *e);
2741 bool upb_enumdef_setfullname(upb_enumdef *e, const char *fullname,
2742 upb_status *s);
2743
2744 int32_t upb_enumdef_default(const upb_enumdef *e);
2745 bool upb_enumdef_setdefault(upb_enumdef *e, int32_t val, upb_status *s);
2746 int upb_enumdef_numvals(const upb_enumdef *e);
2747 bool upb_enumdef_addval(upb_enumdef *e, const char *name, int32_t num,
2748 upb_status *status);
2749
2750 /* Enum lookups:
2751 * - ntoi: look up a name with specified length.
2752 * - ntoiz: look up a name provided as a null-terminated string.
2753 * - iton: look up an integer, returning the name as a null-terminated
2754 * string. */
2755 bool upb_enumdef_ntoi(const upb_enumdef *e, const char *name, size_t len,
2756 int32_t *num);
2757 UPB_INLINE bool upb_enumdef_ntoiz(const upb_enumdef *e,
2758 const char *name, int32_t *num) {
2759 return upb_enumdef_ntoi(e, name, strlen(name), num);
2760 }
2761 const char *upb_enumdef_iton(const upb_enumdef *e, int32_t num);
2762
2763 /* upb_enum_iter i;
2764 * for(upb_enum_begin(&i, e); !upb_enum_done(&i); upb_enum_next(&i)) {
2765 * // ...
2766 * }
2767 */
2768 void upb_enum_begin(upb_enum_iter *iter, const upb_enumdef *e);
2769 void upb_enum_next(upb_enum_iter *iter);
2770 bool upb_enum_done(upb_enum_iter *iter);
2771 const char *upb_enum_iter_name(upb_enum_iter *iter);
2772 int32_t upb_enum_iter_number(upb_enum_iter *iter);
2773
2774 UPB_END_EXTERN_C
2775
2776 /* upb::OneofDef **************************************************************/
2777
2778 typedef upb_inttable_iter upb_oneof_iter;
2779
2780 #ifdef __cplusplus
2781
2782 /* Class that represents a oneof. */
2783 class upb::OneofDef {
2784 public:
2785 /* Returns NULL if memory allocation failed. */
2786 static reffed_ptr<OneofDef> New();
2787
2788 /* upb::RefCounted methods like Ref()/Unref(). */
2789 UPB_REFCOUNTED_CPPMETHODS
2790
2791 /* Returns the MessageDef that owns this OneofDef. */
2792 const MessageDef* containing_type() const;
2793
2794 /* Returns the name of this oneof. This is the name used to look up the oneof
2795 * by name once added to a message def. */
2796 const char* name() const;
2797 bool set_name(const char* name, Status* s);
2798 bool set_name(const std::string& name, Status* s);
2799
2800 /* Returns the number of fields currently defined in the oneof. */
2801 int field_count() const;
2802
2803 /* Adds a field to the oneof. The field must not have been added to any other
2804 * oneof or msgdef. If the oneof is not yet part of a msgdef, then when the
2805 * oneof is eventually added to a msgdef, all fields added to the oneof will
2806 * also be added to the msgdef at that time. If the oneof is already part of a
2807 * msgdef, the field must either be a part of that msgdef already, or must not
2808 * be a part of any msgdef; in the latter case, the field is added to the
2809 * msgdef as a part of this operation.
2810 *
2811 * The field may only have an OPTIONAL label, never REQUIRED or REPEATED.
2812 *
2813 * If |f| is already part of this MessageDef, this method performs no action
2814 * and returns true (success). Thus, this method is idempotent. */
2815 bool AddField(FieldDef* field, Status* s);
2816 bool AddField(const reffed_ptr<FieldDef>& field, Status* s);
2817
2818 /* Looks up by name. */
2819 const FieldDef* FindFieldByName(const char* name, size_t len) const;
2820 FieldDef* FindFieldByName(const char* name, size_t len);
2821 const FieldDef* FindFieldByName(const char* name) const {
2822 return FindFieldByName(name, strlen(name));
2823 }
2824 FieldDef* FindFieldByName(const char* name) {
2825 return FindFieldByName(name, strlen(name));
2826 }
2827
2828 template <class T>
2829 FieldDef* FindFieldByName(const T& str) {
2830 return FindFieldByName(str.c_str(), str.size());
2831 }
2832 template <class T>
2833 const FieldDef* FindFieldByName(const T& str) const {
2834 return FindFieldByName(str.c_str(), str.size());
2835 }
2836
2837 /* Looks up by tag number. */
2838 const FieldDef* FindFieldByNumber(uint32_t num) const;
2839
2840 /* Returns a new OneofDef with all the same fields. The OneofDef will be owned
2841 * by the given owner. */
2842 OneofDef* Dup(const void* owner) const;
2843
2844 /* Iteration over fields. The order is undefined. */
2845 class iterator : public std::iterator<std::forward_iterator_tag, FieldDef*> {
2846 public:
2847 explicit iterator(OneofDef* md);
2848 static iterator end(OneofDef* md);
2849
2850 void operator++();
2851 FieldDef* operator*() const;
2852 bool operator!=(const iterator& other) const;
2853 bool operator==(const iterator& other) const;
2854
2855 private:
2856 upb_oneof_iter iter_;
2857 };
2858
2859 class const_iterator
2860 : public std::iterator<std::forward_iterator_tag, const FieldDef*> {
2861 public:
2862 explicit const_iterator(const OneofDef* md);
2863 static const_iterator end(const OneofDef* md);
2864
2865 void operator++();
2866 const FieldDef* operator*() const;
2867 bool operator!=(const const_iterator& other) const;
2868 bool operator==(const const_iterator& other) const;
2869
2870 private:
2871 upb_oneof_iter iter_;
2872 };
2873
2874 iterator begin();
2875 iterator end();
2876 const_iterator begin() const;
2877 const_iterator end() const;
2878
2879 private:
2880 UPB_DISALLOW_POD_OPS(OneofDef, upb::OneofDef)
2881 };
2882
2883 #endif /* __cplusplus */
2884
2885 UPB_BEGIN_EXTERN_C
2886
2887 /* Native C API. */
2888 upb_oneofdef *upb_oneofdef_new(const void *owner);
2889 upb_oneofdef *upb_oneofdef_dup(const upb_oneofdef *o, const void *owner);
2890
2891 /* Include upb_refcounted methods like upb_oneofdef_ref(). */
2892 UPB_REFCOUNTED_CMETHODS(upb_oneofdef, upb_oneofdef_upcast)
2893
2894 const char *upb_oneofdef_name(const upb_oneofdef *o);
2895 bool upb_oneofdef_setname(upb_oneofdef *o, const char *name, upb_status *s);
2896
2897 const upb_msgdef *upb_oneofdef_containingtype(const upb_oneofdef *o);
2898 int upb_oneofdef_numfields(const upb_oneofdef *o);
2899 bool upb_oneofdef_addfield(upb_oneofdef *o, upb_fielddef *f,
2900 const void *ref_donor,
2901 upb_status *s);
2902
2903 /* Oneof lookups:
2904 * - ntof: look up a field by name.
2905 * - ntofz: look up a field by name (as a null-terminated string).
2906 * - itof: look up a field by number. */
2907 const upb_fielddef *upb_oneofdef_ntof(const upb_oneofdef *o,
2908 const char *name, size_t length);
2909 UPB_INLINE const upb_fielddef *upb_oneofdef_ntofz(const upb_oneofdef *o,
2910 const char *name) {
2911 return upb_oneofdef_ntof(o, name, strlen(name));
2912 }
2913 const upb_fielddef *upb_oneofdef_itof(const upb_oneofdef *o, uint32_t num);
2914
2915 /* upb_oneof_iter i;
2916 * for(upb_oneof_begin(&i, e); !upb_oneof_done(&i); upb_oneof_next(&i)) {
2917 * // ...
2918 * }
2919 */
2920 void upb_oneof_begin(upb_oneof_iter *iter, const upb_oneofdef *o);
2921 void upb_oneof_next(upb_oneof_iter *iter);
2922 bool upb_oneof_done(upb_oneof_iter *iter);
2923 upb_fielddef *upb_oneof_iter_field(const upb_oneof_iter *iter);
2924 void upb_oneof_iter_setdone(upb_oneof_iter *iter);
2925
2926 UPB_END_EXTERN_C
2927
2928
2929 /* upb::FileDef ***************************************************************/
2930
2931 #ifdef __cplusplus
2932
2933 /* Class that represents a .proto file with some things defined in it.
2934 *
2935 * Many users won't care about FileDefs, but they are necessary if you want to
2936 * read the values of file-level options. */
2937 class upb::FileDef {
2938 public:
2939 /* Returns NULL if memory allocation failed. */
2940 static reffed_ptr<FileDef> New();
2941
2942 /* upb::RefCounted methods like Ref()/Unref(). */
2943 UPB_REFCOUNTED_CPPMETHODS
2944
2945 /* Get/set name of the file (eg. "foo/bar.proto"). */
2946 const char* name() const;
2947 bool set_name(const char* name, Status* s);
2948 bool set_name(const std::string& name, Status* s);
2949
2950 /* Package name for definitions inside the file (eg. "foo.bar"). */
2951 const char* package() const;
2952 bool set_package(const char* package, Status* s);
2953
2954 /* Syntax for the file. Defaults to proto2. */
2955 upb_syntax_t syntax() const;
2956 void set_syntax(upb_syntax_t syntax);
2957
2958 /* Get the list of defs from the file. These are returned in the order that
2959 * they were added to the FileDef. */
2960 int def_count() const;
2961 const Def* def(int index) const;
2962 Def* def(int index);
2963
2964 /* Get the list of dependencies from the file. These are returned in the
2965 * order that they were added to the FileDef. */
2966 int dependency_count() const;
2967 const FileDef* dependency(int index) const;
2968
2969 /* Adds defs to this file. The def must not already belong to another
2970 * file.
2971 *
2972 * Note: this does *not* ensure that this def's name is unique in this file!
2973 * Use a SymbolTable if you want to check this property. Especially since
2974 * properly checking uniqueness would require a check across *all* files
2975 * (including dependencies). */
2976 bool AddDef(Def* def, Status* s);
2977 bool AddMessage(MessageDef* m, Status* s);
2978 bool AddEnum(EnumDef* e, Status* s);
2979 bool AddExtension(FieldDef* f, Status* s);
2980
2981 /* Adds a dependency of this file. */
2982 bool AddDependency(const FileDef* file);
2983
2984 /* Freezes this FileDef and all messages/enums under it. All subdefs must be
2985 * resolved and all messages/enums must validate. Returns true if this
2986 * succeeded.
2987 *
2988 * TODO(haberman): should we care whether the file's dependencies are frozen
2989 * already? */
2990 bool Freeze(Status* s);
2991
2992 private:
2993 UPB_DISALLOW_POD_OPS(FileDef, upb::FileDef)
2994 };
2995
2996 #endif
2997
2998 UPB_BEGIN_EXTERN_C
2999
3000 upb_filedef *upb_filedef_new(const void *owner);
3001
3002 /* Include upb_refcounted methods like upb_msgdef_ref(). */
3003 UPB_REFCOUNTED_CMETHODS(upb_filedef, upb_filedef_upcast)
3004
3005 const char *upb_filedef_name(const upb_filedef *f);
3006 const char *upb_filedef_package(const upb_filedef *f);
3007 upb_syntax_t upb_filedef_syntax(const upb_filedef *f);
3008 size_t upb_filedef_defcount(const upb_filedef *f);
3009 size_t upb_filedef_depcount(const upb_filedef *f);
3010 const upb_def *upb_filedef_def(const upb_filedef *f, size_t i);
3011 const upb_filedef *upb_filedef_dep(const upb_filedef *f, size_t i);
3012
3013 bool upb_filedef_freeze(upb_filedef *f, upb_status *s);
3014 bool upb_filedef_setname(upb_filedef *f, const char *name, upb_status *s);
3015 bool upb_filedef_setpackage(upb_filedef *f, const char *package, upb_status *s);
3016 bool upb_filedef_setsyntax(upb_filedef *f, upb_syntax_t syntax, upb_status *s);
3017
3018 bool upb_filedef_adddef(upb_filedef *f, upb_def *def, const void *ref_donor,
3019 upb_status *s);
3020 bool upb_filedef_adddep(upb_filedef *f, const upb_filedef *dep);
3021
3022 UPB_INLINE bool upb_filedef_addmsg(upb_filedef *f, upb_msgdef *m,
3023 const void *ref_donor, upb_status *s) {
3024 return upb_filedef_adddef(f, upb_msgdef_upcast_mutable(m), ref_donor, s);
3025 }
3026
3027 UPB_INLINE bool upb_filedef_addenum(upb_filedef *f, upb_enumdef *e,
3028 const void *ref_donor, upb_status *s) {
3029 return upb_filedef_adddef(f, upb_enumdef_upcast_mutable(e), ref_donor, s);
3030 }
3031
3032 UPB_INLINE bool upb_filedef_addext(upb_filedef *file, upb_fielddef *f,
3033 const void *ref_donor, upb_status *s) {
3034 return upb_filedef_adddef(file, upb_fielddef_upcast_mutable(f), ref_donor, s);
3035 }
3036 UPB_INLINE upb_def *upb_filedef_mutabledef(upb_filedef *f, int i) {
3037 return (upb_def*)upb_filedef_def(f, i);
3038 }
3039
3040 UPB_END_EXTERN_C
3041
3042 #ifdef __cplusplus
3043
3044 UPB_INLINE const char* upb_safecstr(const std::string& str) {
3045 assert(str.size() == std::strlen(str.c_str()));
3046 return str.c_str();
3047 }
3048
3049 /* Inline C++ wrappers. */
3050 namespace upb {
3051
3052 inline Def* Def::Dup(const void* owner) const {
3053 return upb_def_dup(this, owner);
3054 }
3055 inline Def::Type Def::def_type() const { return upb_def_type(this); }
3056 inline const char* Def::full_name() const { return upb_def_fullname(this); }
3057 inline const char* Def::name() const { return upb_def_name(this); }
3058 inline bool Def::set_full_name(const char* fullname, Status* s) {
3059 return upb_def_setfullname(this, fullname, s);
3060 }
3061 inline bool Def::set_full_name(const std::string& fullname, Status* s) {
3062 return upb_def_setfullname(this, upb_safecstr(fullname), s);
3063 }
3064 inline bool Def::Freeze(Def* const* defs, size_t n, Status* status) {
3065 return upb_def_freeze(defs, n, status);
3066 }
3067 inline bool Def::Freeze(const std::vector<Def*>& defs, Status* status) {
3068 return upb_def_freeze((Def* const*)&defs[0], defs.size(), status);
3069 }
3070
3071 inline bool FieldDef::CheckType(int32_t val) {
3072 return upb_fielddef_checktype(val);
3073 }
3074 inline bool FieldDef::CheckLabel(int32_t val) {
3075 return upb_fielddef_checklabel(val);
3076 }
3077 inline bool FieldDef::CheckDescriptorType(int32_t val) {
3078 return upb_fielddef_checkdescriptortype(val);
3079 }
3080 inline bool FieldDef::CheckIntegerFormat(int32_t val) {
3081 return upb_fielddef_checkintfmt(val);
3082 }
3083 inline FieldDef::Type FieldDef::ConvertType(int32_t val) {
3084 assert(CheckType(val));
3085 return static_cast<FieldDef::Type>(val);
3086 }
3087 inline FieldDef::Label FieldDef::ConvertLabel(int32_t val) {
3088 assert(CheckLabel(val));
3089 return static_cast<FieldDef::Label>(val);
3090 }
3091 inline FieldDef::DescriptorType FieldDef::ConvertDescriptorType(int32_t val) {
3092 assert(CheckDescriptorType(val));
3093 return static_cast<FieldDef::DescriptorType>(val);
3094 }
3095 inline FieldDef::IntegerFormat FieldDef::ConvertIntegerFormat(int32_t val) {
3096 assert(CheckIntegerFormat(val));
3097 return static_cast<FieldDef::IntegerFormat>(val);
3098 }
3099
3100 inline reffed_ptr<FieldDef> FieldDef::New() {
3101 upb_fielddef *f = upb_fielddef_new(&f);
3102 return reffed_ptr<FieldDef>(f, &f);
3103 }
3104 inline FieldDef* FieldDef::Dup(const void* owner) const {
3105 return upb_fielddef_dup(this, owner);
3106 }
3107 inline const char* FieldDef::full_name() const {
3108 return upb_fielddef_fullname(this);
3109 }
3110 inline bool FieldDef::set_full_name(const char* fullname, Status* s) {
3111 return upb_fielddef_setfullname(this, fullname, s);
3112 }
3113 inline bool FieldDef::set_full_name(const std::string& fullname, Status* s) {
3114 return upb_fielddef_setfullname(this, upb_safecstr(fullname), s);
3115 }
3116 inline bool FieldDef::type_is_set() const {
3117 return upb_fielddef_typeisset(this);
3118 }
3119 inline FieldDef::Type FieldDef::type() const { return upb_fielddef_type(this); }
3120 inline FieldDef::DescriptorType FieldDef::descriptor_type() const {
3121 return upb_fielddef_descriptortype(this);
3122 }
3123 inline FieldDef::Label FieldDef::label() const {
3124 return upb_fielddef_label(this);
3125 }
3126 inline uint32_t FieldDef::number() const { return upb_fielddef_number(this); }
3127 inline const char* FieldDef::name() const { return upb_fielddef_name(this); }
3128 inline bool FieldDef::is_extension() const {
3129 return upb_fielddef_isextension(this);
3130 }
3131 inline size_t FieldDef::GetJsonName(char* buf, size_t len) const {
3132 return upb_fielddef_getjsonname(this, buf, len);
3133 }
3134 inline bool FieldDef::lazy() const {
3135 return upb_fielddef_lazy(this);
3136 }
3137 inline void FieldDef::set_lazy(bool lazy) {
3138 upb_fielddef_setlazy(this, lazy);
3139 }
3140 inline bool FieldDef::packed() const {
3141 return upb_fielddef_packed(this);
3142 }
3143 inline uint32_t FieldDef::index() const {
3144 return upb_fielddef_index(this);
3145 }
3146 inline void FieldDef::set_packed(bool packed) {
3147 upb_fielddef_setpacked(this, packed);
3148 }
3149 inline const MessageDef* FieldDef::containing_type() const {
3150 return upb_fielddef_containingtype(this);
3151 }
3152 inline const OneofDef* FieldDef::containing_oneof() const {
3153 return upb_fielddef_containingoneof(this);
3154 }
3155 inline const char* FieldDef::containing_type_name() {
3156 return upb_fielddef_containingtypename(this);
3157 }
3158 inline bool FieldDef::set_number(uint32_t number, Status* s) {
3159 return upb_fielddef_setnumber(this, number, s);
3160 }
3161 inline bool FieldDef::set_name(const char *name, Status* s) {
3162 return upb_fielddef_setname(this, name, s);
3163 }
3164 inline bool FieldDef::set_name(const std::string& name, Status* s) {
3165 return upb_fielddef_setname(this, upb_safecstr(name), s);
3166 }
3167 inline bool FieldDef::set_json_name(const char *name, Status* s) {
3168 return upb_fielddef_setjsonname(this, name, s);
3169 }
3170 inline bool FieldDef::set_json_name(const std::string& name, Status* s) {
3171 return upb_fielddef_setjsonname(this, upb_safecstr(name), s);
3172 }
3173 inline void FieldDef::clear_json_name() {
3174 upb_fielddef_clearjsonname(this);
3175 }
3176 inline bool FieldDef::set_containing_type_name(const char *name, Status* s) {
3177 return upb_fielddef_setcontainingtypename(this, name, s);
3178 }
3179 inline bool FieldDef::set_containing_type_name(const std::string &name,
3180 Status *s) {
3181 return upb_fielddef_setcontainingtypename(this, upb_safecstr(name), s);
3182 }
3183 inline void FieldDef::set_type(upb_fieldtype_t type) {
3184 upb_fielddef_settype(this, type);
3185 }
3186 inline void FieldDef::set_is_extension(bool is_extension) {
3187 upb_fielddef_setisextension(this, is_extension);
3188 }
3189 inline void FieldDef::set_descriptor_type(FieldDef::DescriptorType type) {
3190 upb_fielddef_setdescriptortype(this, type);
3191 }
3192 inline void FieldDef::set_label(upb_label_t label) {
3193 upb_fielddef_setlabel(this, label);
3194 }
3195 inline bool FieldDef::IsSubMessage() const {
3196 return upb_fielddef_issubmsg(this);
3197 }
3198 inline bool FieldDef::IsString() const { return upb_fielddef_isstring(this); }
3199 inline bool FieldDef::IsSequence() const { return upb_fielddef_isseq(this); }
3200 inline bool FieldDef::IsMap() const { return upb_fielddef_ismap(this); }
3201 inline int64_t FieldDef::default_int64() const {
3202 return upb_fielddef_defaultint64(this);
3203 }
3204 inline int32_t FieldDef::default_int32() const {
3205 return upb_fielddef_defaultint32(this);
3206 }
3207 inline uint64_t FieldDef::default_uint64() const {
3208 return upb_fielddef_defaultuint64(this);
3209 }
3210 inline uint32_t FieldDef::default_uint32() const {
3211 return upb_fielddef_defaultuint32(this);
3212 }
3213 inline bool FieldDef::default_bool() const {
3214 return upb_fielddef_defaultbool(this);
3215 }
3216 inline float FieldDef::default_float() const {
3217 return upb_fielddef_defaultfloat(this);
3218 }
3219 inline double FieldDef::default_double() const {
3220 return upb_fielddef_defaultdouble(this);
3221 }
3222 inline const char* FieldDef::default_string(size_t* len) const {
3223 return upb_fielddef_defaultstr(this, len);
3224 }
3225 inline void FieldDef::set_default_int64(int64_t value) {
3226 upb_fielddef_setdefaultint64(this, value);
3227 }
3228 inline void FieldDef::set_default_int32(int32_t value) {
3229 upb_fielddef_setdefaultint32(this, value);
3230 }
3231 inline void FieldDef::set_default_uint64(uint64_t value) {
3232 upb_fielddef_setdefaultuint64(this, value);
3233 }
3234 inline void FieldDef::set_default_uint32(uint32_t value) {
3235 upb_fielddef_setdefaultuint32(this, value);
3236 }
3237 inline void FieldDef::set_default_bool(bool value) {
3238 upb_fielddef_setdefaultbool(this, value);
3239 }
3240 inline void FieldDef::set_default_float(float value) {
3241 upb_fielddef_setdefaultfloat(this, value);
3242 }
3243 inline void FieldDef::set_default_double(double value) {
3244 upb_fielddef_setdefaultdouble(this, value);
3245 }
3246 inline bool FieldDef::set_default_string(const void *str, size_t len,
3247 Status *s) {
3248 return upb_fielddef_setdefaultstr(this, str, len, s);
3249 }
3250 inline bool FieldDef::set_default_string(const std::string& str, Status* s) {
3251 return upb_fielddef_setdefaultstr(this, str.c_str(), str.size(), s);
3252 }
3253 inline void FieldDef::set_default_cstr(const char* str, Status* s) {
3254 return upb_fielddef_setdefaultcstr(this, str, s);
3255 }
3256 inline bool FieldDef::HasSubDef() const { return upb_fielddef_hassubdef(this); }
3257 inline const Def* FieldDef::subdef() const { return upb_fielddef_subdef(this); }
3258 inline const MessageDef *FieldDef::message_subdef() const {
3259 return upb_fielddef_msgsubdef(this);
3260 }
3261 inline const EnumDef *FieldDef::enum_subdef() const {
3262 return upb_fielddef_enumsubdef(this);
3263 }
3264 inline const char* FieldDef::subdef_name() const {
3265 return upb_fielddef_subdefname(this);
3266 }
3267 inline bool FieldDef::set_subdef(const Def* subdef, Status* s) {
3268 return upb_fielddef_setsubdef(this, subdef, s);
3269 }
3270 inline bool FieldDef::set_enum_subdef(const EnumDef* subdef, Status* s) {
3271 return upb_fielddef_setenumsubdef(this, subdef, s);
3272 }
3273 inline bool FieldDef::set_message_subdef(const MessageDef* subdef, Status* s) {
3274 return upb_fielddef_setmsgsubdef(this, subdef, s);
3275 }
3276 inline bool FieldDef::set_subdef_name(const char* name, Status* s) {
3277 return upb_fielddef_setsubdefname(this, name, s);
3278 }
3279 inline bool FieldDef::set_subdef_name(const std::string& name, Status* s) {
3280 return upb_fielddef_setsubdefname(this, upb_safecstr(name), s);
3281 }
3282
3283 inline reffed_ptr<MessageDef> MessageDef::New() {
3284 upb_msgdef *m = upb_msgdef_new(&m);
3285 return reffed_ptr<MessageDef>(m, &m);
3286 }
3287 inline const char *MessageDef::full_name() const {
3288 return upb_msgdef_fullname(this);
3289 }
3290 inline const char *MessageDef::name() const {
3291 return upb_msgdef_name(this);
3292 }
3293 inline upb_syntax_t MessageDef::syntax() const {
3294 return upb_msgdef_syntax(this);
3295 }
3296 inline bool MessageDef::set_full_name(const char* fullname, Status* s) {
3297 return upb_msgdef_setfullname(this, fullname, s);
3298 }
3299 inline bool MessageDef::set_full_name(const std::string& fullname, Status* s) {
3300 return upb_msgdef_setfullname(this, upb_safecstr(fullname), s);
3301 }
3302 inline bool MessageDef::set_syntax(upb_syntax_t syntax) {
3303 return upb_msgdef_setsyntax(this, syntax);
3304 }
3305 inline bool MessageDef::Freeze(Status* status) {
3306 return upb_msgdef_freeze(this, status);
3307 }
3308 inline int MessageDef::field_count() const {
3309 return upb_msgdef_numfields(this);
3310 }
3311 inline int MessageDef::oneof_count() const {
3312 return upb_msgdef_numoneofs(this);
3313 }
3314 inline bool MessageDef::AddField(upb_fielddef* f, Status* s) {
3315 return upb_msgdef_addfield(this, f, NULL, s);
3316 }
3317 inline bool MessageDef::AddField(const reffed_ptr<FieldDef>& f, Status* s) {
3318 return upb_msgdef_addfield(this, f.get(), NULL, s);
3319 }
3320 inline bool MessageDef::AddOneof(upb_oneofdef* o, Status* s) {
3321 return upb_msgdef_addoneof(this, o, NULL, s);
3322 }
3323 inline bool MessageDef::AddOneof(const reffed_ptr<OneofDef>& o, Status* s) {
3324 return upb_msgdef_addoneof(this, o.get(), NULL, s);
3325 }
3326 inline FieldDef* MessageDef::FindFieldByNumber(uint32_t number) {
3327 return upb_msgdef_itof_mutable(this, number);
3328 }
3329 inline FieldDef* MessageDef::FindFieldByName(const char* name, size_t len) {
3330 return upb_msgdef_ntof_mutable(this, name, len);
3331 }
3332 inline const FieldDef* MessageDef::FindFieldByNumber(uint32_t number) const {
3333 return upb_msgdef_itof(this, number);
3334 }
3335 inline const FieldDef *MessageDef::FindFieldByName(const char *name,
3336 size_t len) const {
3337 return upb_msgdef_ntof(this, name, len);
3338 }
3339 inline OneofDef* MessageDef::FindOneofByName(const char* name, size_t len) {
3340 return upb_msgdef_ntoo_mutable(this, name, len);
3341 }
3342 inline const OneofDef* MessageDef::FindOneofByName(const char* name,
3343 size_t len) const {
3344 return upb_msgdef_ntoo(this, name, len);
3345 }
3346 inline MessageDef* MessageDef::Dup(const void *owner) const {
3347 return upb_msgdef_dup(this, owner);
3348 }
3349 inline void MessageDef::setmapentry(bool map_entry) {
3350 upb_msgdef_setmapentry(this, map_entry);
3351 }
3352 inline bool MessageDef::mapentry() const {
3353 return upb_msgdef_mapentry(this);
3354 }
3355 inline MessageDef::field_iterator MessageDef::field_begin() {
3356 return field_iterator(this);
3357 }
3358 inline MessageDef::field_iterator MessageDef::field_end() {
3359 return field_iterator::end(this);
3360 }
3361 inline MessageDef::const_field_iterator MessageDef::field_begin() const {
3362 return const_field_iterator(this);
3363 }
3364 inline MessageDef::const_field_iterator MessageDef::field_end() const {
3365 return const_field_iterator::end(this);
3366 }
3367
3368 inline MessageDef::oneof_iterator MessageDef::oneof_begin() {
3369 return oneof_iterator(this);
3370 }
3371 inline MessageDef::oneof_iterator MessageDef::oneof_end() {
3372 return oneof_iterator::end(this);
3373 }
3374 inline MessageDef::const_oneof_iterator MessageDef::oneof_begin() const {
3375 return const_oneof_iterator(this);
3376 }
3377 inline MessageDef::const_oneof_iterator MessageDef::oneof_end() const {
3378 return const_oneof_iterator::end(this);
3379 }
3380
3381 inline MessageDef::field_iterator::field_iterator(MessageDef* md) {
3382 upb_msg_field_begin(&iter_, md);
3383 }
3384 inline MessageDef::field_iterator MessageDef::field_iterator::end(
3385 MessageDef* md) {
3386 MessageDef::field_iterator iter(md);
3387 upb_msg_field_iter_setdone(&iter.iter_);
3388 return iter;
3389 }
3390 inline FieldDef* MessageDef::field_iterator::operator*() const {
3391 return upb_msg_iter_field(&iter_);
3392 }
3393 inline void MessageDef::field_iterator::operator++() {
3394 return upb_msg_field_next(&iter_);
3395 }
3396 inline bool MessageDef::field_iterator::operator==(
3397 const field_iterator &other) const {
3398 return upb_inttable_iter_isequal(&iter_, &other.iter_);
3399 }
3400 inline bool MessageDef::field_iterator::operator!=(
3401 const field_iterator &other) const {
3402 return !(*this == other);
3403 }
3404
3405 inline MessageDef::const_field_iterator::const_field_iterator(
3406 const MessageDef* md) {
3407 upb_msg_field_begin(&iter_, md);
3408 }
3409 inline MessageDef::const_field_iterator MessageDef::const_field_iterator::end(
3410 const MessageDef *md) {
3411 MessageDef::const_field_iterator iter(md);
3412 upb_msg_field_iter_setdone(&iter.iter_);
3413 return iter;
3414 }
3415 inline const FieldDef* MessageDef::const_field_iterator::operator*() const {
3416 return upb_msg_iter_field(&iter_);
3417 }
3418 inline void MessageDef::const_field_iterator::operator++() {
3419 return upb_msg_field_next(&iter_);
3420 }
3421 inline bool MessageDef::const_field_iterator::operator==(
3422 const const_field_iterator &other) const {
3423 return upb_inttable_iter_isequal(&iter_, &other.iter_);
3424 }
3425 inline bool MessageDef::const_field_iterator::operator!=(
3426 const const_field_iterator &other) const {
3427 return !(*this == other);
3428 }
3429
3430 inline MessageDef::oneof_iterator::oneof_iterator(MessageDef* md) {
3431 upb_msg_oneof_begin(&iter_, md);
3432 }
3433 inline MessageDef::oneof_iterator MessageDef::oneof_iterator::end(
3434 MessageDef* md) {
3435 MessageDef::oneof_iterator iter(md);
3436 upb_msg_oneof_iter_setdone(&iter.iter_);
3437 return iter;
3438 }
3439 inline OneofDef* MessageDef::oneof_iterator::operator*() const {
3440 return upb_msg_iter_oneof(&iter_);
3441 }
3442 inline void MessageDef::oneof_iterator::operator++() {
3443 return upb_msg_oneof_next(&iter_);
3444 }
3445 inline bool MessageDef::oneof_iterator::operator==(
3446 const oneof_iterator &other) const {
3447 return upb_strtable_iter_isequal(&iter_, &other.iter_);
3448 }
3449 inline bool MessageDef::oneof_iterator::operator!=(
3450 const oneof_iterator &other) const {
3451 return !(*this == other);
3452 }
3453
3454 inline MessageDef::const_oneof_iterator::const_oneof_iterator(
3455 const MessageDef* md) {
3456 upb_msg_oneof_begin(&iter_, md);
3457 }
3458 inline MessageDef::const_oneof_iterator MessageDef::const_oneof_iterator::end(
3459 const MessageDef *md) {
3460 MessageDef::const_oneof_iterator iter(md);
3461 upb_msg_oneof_iter_setdone(&iter.iter_);
3462 return iter;
3463 }
3464 inline const OneofDef* MessageDef::const_oneof_iterator::operator*() const {
3465 return upb_msg_iter_oneof(&iter_);
3466 }
3467 inline void MessageDef::const_oneof_iterator::operator++() {
3468 return upb_msg_oneof_next(&iter_);
3469 }
3470 inline bool MessageDef::const_oneof_iterator::operator==(
3471 const const_oneof_iterator &other) const {
3472 return upb_strtable_iter_isequal(&iter_, &other.iter_);
3473 }
3474 inline bool MessageDef::const_oneof_iterator::operator!=(
3475 const const_oneof_iterator &other) const {
3476 return !(*this == other);
3477 }
3478
3479 inline reffed_ptr<EnumDef> EnumDef::New() {
3480 upb_enumdef *e = upb_enumdef_new(&e);
3481 return reffed_ptr<EnumDef>(e, &e);
3482 }
3483 inline const char* EnumDef::full_name() const {
3484 return upb_enumdef_fullname(this);
3485 }
3486 inline const char* EnumDef::name() const {
3487 return upb_enumdef_name(this);
3488 }
3489 inline bool EnumDef::set_full_name(const char* fullname, Status* s) {
3490 return upb_enumdef_setfullname(this, fullname, s);
3491 }
3492 inline bool EnumDef::set_full_name(const std::string& fullname, Status* s) {
3493 return upb_enumdef_setfullname(this, upb_safecstr(fullname), s);
3494 }
3495 inline bool EnumDef::Freeze(Status* status) {
3496 return upb_enumdef_freeze(this, status);
3497 }
3498 inline int32_t EnumDef::default_value() const {
3499 return upb_enumdef_default(this);
3500 }
3501 inline bool EnumDef::set_default_value(int32_t val, Status* status) {
3502 return upb_enumdef_setdefault(this, val, status);
3503 }
3504 inline int EnumDef::value_count() const { return upb_enumdef_numvals(this); }
3505 inline bool EnumDef::AddValue(const char* name, int32_t num, Status* status) {
3506 return upb_enumdef_addval(this, name, num, status);
3507 }
3508 inline bool EnumDef::AddValue(const std::string& name, int32_t num,
3509 Status* status) {
3510 return upb_enumdef_addval(this, upb_safecstr(name), num, status);
3511 }
3512 inline bool EnumDef::FindValueByName(const char* name, int32_t *num) const {
3513 return upb_enumdef_ntoiz(this, name, num);
3514 }
3515 inline const char* EnumDef::FindValueByNumber(int32_t num) const {
3516 return upb_enumdef_iton(this, num);
3517 }
3518 inline EnumDef* EnumDef::Dup(const void* owner) const {
3519 return upb_enumdef_dup(this, owner);
3520 }
3521
3522 inline EnumDef::Iterator::Iterator(const EnumDef* e) {
3523 upb_enum_begin(&iter_, e);
3524 }
3525 inline int32_t EnumDef::Iterator::number() {
3526 return upb_enum_iter_number(&iter_);
3527 }
3528 inline const char* EnumDef::Iterator::name() {
3529 return upb_enum_iter_name(&iter_);
3530 }
3531 inline bool EnumDef::Iterator::Done() { return upb_enum_done(&iter_); }
3532 inline void EnumDef::Iterator::Next() { return upb_enum_next(&iter_); }
3533
3534 inline reffed_ptr<OneofDef> OneofDef::New() {
3535 upb_oneofdef *o = upb_oneofdef_new(&o);
3536 return reffed_ptr<OneofDef>(o, &o);
3537 }
3538
3539 inline const MessageDef* OneofDef::containing_type() const {
3540 return upb_oneofdef_containingtype(this);
3541 }
3542 inline const char* OneofDef::name() const {
3543 return upb_oneofdef_name(this);
3544 }
3545 inline bool OneofDef::set_name(const char* name, Status* s) {
3546 return upb_oneofdef_setname(this, name, s);
3547 }
3548 inline bool OneofDef::set_name(const std::string& name, Status* s) {
3549 return upb_oneofdef_setname(this, upb_safecstr(name), s);
3550 }
3551 inline int OneofDef::field_count() const {
3552 return upb_oneofdef_numfields(this);
3553 }
3554 inline bool OneofDef::AddField(FieldDef* field, Status* s) {
3555 return upb_oneofdef_addfield(this, field, NULL, s);
3556 }
3557 inline bool OneofDef::AddField(const reffed_ptr<FieldDef>& field, Status* s) {
3558 return upb_oneofdef_addfield(this, field.get(), NULL, s);
3559 }
3560 inline const FieldDef* OneofDef::FindFieldByName(const char* name,
3561 size_t len) const {
3562 return upb_oneofdef_ntof(this, name, len);
3563 }
3564 inline const FieldDef* OneofDef::FindFieldByNumber(uint32_t num) const {
3565 return upb_oneofdef_itof(this, num);
3566 }
3567 inline OneofDef::iterator OneofDef::begin() { return iterator(this); }
3568 inline OneofDef::iterator OneofDef::end() { return iterator::end(this); }
3569 inline OneofDef::const_iterator OneofDef::begin() const {
3570 return const_iterator(this);
3571 }
3572 inline OneofDef::const_iterator OneofDef::end() const {
3573 return const_iterator::end(this);
3574 }
3575
3576 inline OneofDef::iterator::iterator(OneofDef* o) {
3577 upb_oneof_begin(&iter_, o);
3578 }
3579 inline OneofDef::iterator OneofDef::iterator::end(OneofDef* o) {
3580 OneofDef::iterator iter(o);
3581 upb_oneof_iter_setdone(&iter.iter_);
3582 return iter;
3583 }
3584 inline FieldDef* OneofDef::iterator::operator*() const {
3585 return upb_oneof_iter_field(&iter_);
3586 }
3587 inline void OneofDef::iterator::operator++() { return upb_oneof_next(&iter_); }
3588 inline bool OneofDef::iterator::operator==(const iterator &other) const {
3589 return upb_inttable_iter_isequal(&iter_, &other.iter_);
3590 }
3591 inline bool OneofDef::iterator::operator!=(const iterator &other) const {
3592 return !(*this == other);
3593 }
3594
3595 inline OneofDef::const_iterator::const_iterator(const OneofDef* md) {
3596 upb_oneof_begin(&iter_, md);
3597 }
3598 inline OneofDef::const_iterator OneofDef::const_iterator::end(
3599 const OneofDef *md) {
3600 OneofDef::const_iterator iter(md);
3601 upb_oneof_iter_setdone(&iter.iter_);
3602 return iter;
3603 }
3604 inline const FieldDef* OneofDef::const_iterator::operator*() const {
3605 return upb_msg_iter_field(&iter_);
3606 }
3607 inline void OneofDef::const_iterator::operator++() {
3608 return upb_oneof_next(&iter_);
3609 }
3610 inline bool OneofDef::const_iterator::operator==(
3611 const const_iterator &other) const {
3612 return upb_inttable_iter_isequal(&iter_, &other.iter_);
3613 }
3614 inline bool OneofDef::const_iterator::operator!=(
3615 const const_iterator &other) const {
3616 return !(*this == other);
3617 }
3618
3619 inline reffed_ptr<FileDef> FileDef::New() {
3620 upb_filedef *f = upb_filedef_new(&f);
3621 return reffed_ptr<FileDef>(f, &f);
3622 }
3623
3624 inline const char* FileDef::name() const {
3625 return upb_filedef_name(this);
3626 }
3627 inline bool FileDef::set_name(const char* name, Status* s) {
3628 return upb_filedef_setname(this, name, s);
3629 }
3630 inline bool FileDef::set_name(const std::string& name, Status* s) {
3631 return upb_filedef_setname(this, upb_safecstr(name), s);
3632 }
3633 inline const char* FileDef::package() const {
3634 return upb_filedef_package(this);
3635 }
3636 inline bool FileDef::set_package(const char* package, Status* s) {
3637 return upb_filedef_setpackage(this, package, s);
3638 }
3639 inline int FileDef::def_count() const {
3640 return upb_filedef_defcount(this);
3641 }
3642 inline const Def* FileDef::def(int index) const {
3643 return upb_filedef_def(this, index);
3644 }
3645 inline Def* FileDef::def(int index) {
3646 return const_cast<Def*>(upb_filedef_def(this, index));
3647 }
3648 inline int FileDef::dependency_count() const {
3649 return upb_filedef_depcount(this);
3650 }
3651 inline const FileDef* FileDef::dependency(int index) const {
3652 return upb_filedef_dep(this, index);
3653 }
3654 inline bool FileDef::AddDef(Def* def, Status* s) {
3655 return upb_filedef_adddef(this, def, NULL, s);
3656 }
3657 inline bool FileDef::AddMessage(MessageDef* m, Status* s) {
3658 return upb_filedef_addmsg(this, m, NULL, s);
3659 }
3660 inline bool FileDef::AddEnum(EnumDef* e, Status* s) {
3661 return upb_filedef_addenum(this, e, NULL, s);
3662 }
3663 inline bool FileDef::AddExtension(FieldDef* f, Status* s) {
3664 return upb_filedef_addext(this, f, NULL, s);
3665 }
3666 inline bool FileDef::AddDependency(const FileDef* file) {
3667 return upb_filedef_adddep(this, file);
3668 }
3669
3670 } /* namespace upb */
3671 #endif
3672
3673 #endif /* UPB_DEF_H_ */
3674 /*
3675 ** This file contains definitions of structs that should be considered private
3676 ** and NOT stable across versions of upb.
3677 **
3678 ** The only reason they are declared here and not in .c files is to allow upb
3679 ** and the application (if desired) to embed statically-initialized instances
3680 ** of structures like defs.
3681 **
3682 ** If you include this file, all guarantees of ABI compatibility go out the
3683 ** window! Any code that includes this file needs to recompile against the
3684 ** exact same version of upb that they are linking against.
3685 **
3686 ** You also need to recompile if you change the value of the UPB_DEBUG_REFS
3687 ** flag.
3688 */
3689
3690
3691 #ifndef UPB_STATICINIT_H_
3692 #define UPB_STATICINIT_H_
3693
3694 #ifdef __cplusplus
3695 /* Because of how we do our typedefs, this header can't be included from C++. */
3696 #error This file cannot be included from C++
3697 #endif
3698
3699 /* upb_refcounted *************************************************************/
3700
3701
3702 /* upb_def ********************************************************************/
3703
3704 struct upb_def {
3705 upb_refcounted base;
3706
3707 const char *fullname;
3708 const upb_filedef* file;
3709 char type; /* A upb_deftype_t (char to save space) */
3710
3711 /* Used as a flag during the def's mutable stage. Must be false unless
3712 * it is currently being used by a function on the stack. This allows
3713 * us to easily determine which defs were passed into the function's
3714 * current invocation. */
3715 bool came_from_user;
3716 };
3717
3718 #define UPB_DEF_INIT(name, type, vtbl, refs, ref2s) \
3719 { UPB_REFCOUNT_INIT(vtbl, refs, ref2s), name, NULL, type, false }
3720
3721
3722 /* upb_fielddef ***************************************************************/
3723
3724 struct upb_fielddef {
3725 upb_def base;
3726
3727 union {
3728 int64_t sint;
3729 uint64_t uint;
3730 double dbl;
3731 float flt;
3732 void *bytes;
3733 } defaultval;
3734 union {
3735 const upb_msgdef *def; /* If !msg_is_symbolic. */
3736 char *name; /* If msg_is_symbolic. */
3737 } msg;
3738 union {
3739 const upb_def *def; /* If !subdef_is_symbolic. */
3740 char *name; /* If subdef_is_symbolic. */
3741 } sub; /* The msgdef or enumdef for this field, if upb_hassubdef(f). */
3742 bool subdef_is_symbolic;
3743 bool msg_is_symbolic;
3744 const upb_oneofdef *oneof;
3745 bool default_is_string;
3746 bool type_is_set_; /* False until type is explicitly set. */
3747 bool is_extension_;
3748 bool lazy_;
3749 bool packed_;
3750 upb_intfmt_t intfmt;
3751 bool tagdelim;
3752 upb_fieldtype_t type_;
3753 upb_label_t label_;
3754 uint32_t number_;
3755 uint32_t selector_base; /* Used to index into a upb::Handlers table. */
3756 uint32_t index_;
3757 };
3758
3759 extern const struct upb_refcounted_vtbl upb_fielddef_vtbl;
3760
3761 #define UPB_FIELDDEF_INIT(label, type, intfmt, tagdelim, is_extension, lazy, \
3762 packed, name, num, msgdef, subdef, selector_base, \
3763 index, defaultval, refs, ref2s) \
3764 { \
3765 UPB_DEF_INIT(name, UPB_DEF_FIELD, &upb_fielddef_vtbl, refs, ref2s), \
3766 defaultval, {msgdef}, {subdef}, NULL, false, false, \
3767 type == UPB_TYPE_STRING || type == UPB_TYPE_BYTES, true, is_extension, \
3768 lazy, packed, intfmt, tagdelim, type, label, num, selector_base, index \
3769 }
3770
3771
3772 /* upb_msgdef *****************************************************************/
3773
3774 struct upb_msgdef {
3775 upb_def base;
3776
3777 size_t selector_count;
3778 uint32_t submsg_field_count;
3779
3780 /* Tables for looking up fields by number and name. */
3781 upb_inttable itof; /* int to field */
3782 upb_strtable ntof; /* name to field/oneof */
3783
3784 /* Is this a map-entry message? */
3785 bool map_entry;
3786
3787 /* Whether this message has proto2 or proto3 semantics. */
3788 upb_syntax_t syntax;
3789
3790 /* TODO(haberman): proper extension ranges (there can be multiple). */
3791 };
3792
3793 extern const struct upb_refcounted_vtbl upb_msgdef_vtbl;
3794
3795 /* TODO: also support static initialization of the oneofs table. This will be
3796 * needed if we compile in descriptors that contain oneofs. */
3797 #define UPB_MSGDEF_INIT(name, selector_count, submsg_field_count, itof, ntof, \
3798 map_entry, syntax, refs, ref2s) \
3799 { \
3800 UPB_DEF_INIT(name, UPB_DEF_MSG, &upb_fielddef_vtbl, refs, ref2s), \
3801 selector_count, submsg_field_count, itof, ntof, map_entry, syntax \
3802 }
3803
3804
3805 /* upb_enumdef ****************************************************************/
3806
3807 struct upb_enumdef {
3808 upb_def base;
3809
3810 upb_strtable ntoi;
3811 upb_inttable iton;
3812 int32_t defaultval;
3813 };
3814
3815 extern const struct upb_refcounted_vtbl upb_enumdef_vtbl;
3816
3817 #define UPB_ENUMDEF_INIT(name, ntoi, iton, defaultval, refs, ref2s) \
3818 { UPB_DEF_INIT(name, UPB_DEF_ENUM, &upb_enumdef_vtbl, refs, ref2s), ntoi, \
3819 iton, defaultval }
3820
3821
3822 /* upb_oneofdef ***************************************************************/
3823
3824 struct upb_oneofdef {
3825 upb_refcounted base;
3826
3827 const char *name;
3828 upb_strtable ntof;
3829 upb_inttable itof;
3830 const upb_msgdef *parent;
3831 };
3832
3833 extern const struct upb_refcounted_vtbl upb_oneofdef_vtbl;
3834
3835 #define UPB_ONEOFDEF_INIT(name, ntof, itof, refs, ref2s) \
3836 { UPB_REFCOUNT_INIT(&upb_oneofdef_vtbl, refs, ref2s), name, ntof, itof }
3837
3838
3839 /* upb_symtab *****************************************************************/
3840
3841 struct upb_symtab {
3842 upb_refcounted base;
3843
3844 upb_strtable symtab;
3845 };
3846
3847 struct upb_filedef {
3848 upb_refcounted base;
3849
3850 const char *name;
3851 const char *package;
3852 upb_syntax_t syntax;
3853
3854 upb_inttable defs;
3855 upb_inttable deps;
3856 };
3857
3858 extern const struct upb_refcounted_vtbl upb_filedef_vtbl;
3859
3860 #endif /* UPB_STATICINIT_H_ */
3861 /*
3862 ** upb::Handlers (upb_handlers)
3863 **
3864 ** A upb_handlers is like a virtual table for a upb_msgdef. Each field of the
3865 ** message can have associated functions that will be called when we are
3866 ** parsing or visiting a stream of data. This is similar to how handlers work
3867 ** in SAX (the Simple API for XML).
3868 **
3869 ** The handlers have no idea where the data is coming from, so a single set of
3870 ** handlers could be used with two completely different data sources (for
3871 ** example, a parser and a visitor over in-memory objects). This decoupling is
3872 ** the most important feature of upb, because it allows parsers and serializers
3873 ** to be highly reusable.
3874 **
3875 ** This is a mixed C/C++ interface that offers a full API to both languages.
3876 ** See the top-level README for more information.
3877 */
3878
3879 #ifndef UPB_HANDLERS_H
3880 #define UPB_HANDLERS_H
3881
3882
3883 #ifdef __cplusplus
3884 namespace upb {
3885 class BufferHandle;
3886 class BytesHandler;
3887 class HandlerAttributes;
3888 class Handlers;
3889 template <class T> class Handler;
3890 template <class T> struct CanonicalType;
3891 } /* namespace upb */
3892 #endif
3893
3894 UPB_DECLARE_TYPE(upb::BufferHandle, upb_bufhandle)
3895 UPB_DECLARE_TYPE(upb::BytesHandler, upb_byteshandler)
3896 UPB_DECLARE_TYPE(upb::HandlerAttributes, upb_handlerattr)
3897 UPB_DECLARE_DERIVED_TYPE(upb::Handlers, upb::RefCounted,
3898 upb_handlers, upb_refcounted)
3899
3900 /* The maximum depth that the handler graph can have. This is a resource limit
3901 * for the C stack since we sometimes need to recursively traverse the graph.
3902 * Cycles are ok; the traversal will stop when it detects a cycle, but we must
3903 * hit the cycle before the maximum depth is reached.
3904 *
3905 * If having a single static limit is too inflexible, we can add another variant
3906 * of Handlers::Freeze that allows specifying this as a parameter. */
3907 #define UPB_MAX_HANDLER_DEPTH 64
3908
3909 /* All the different types of handlers that can be registered.
3910 * Only needed for the advanced functions in upb::Handlers. */
3911 typedef enum {
3912 UPB_HANDLER_INT32,
3913 UPB_HANDLER_INT64,
3914 UPB_HANDLER_UINT32,
3915 UPB_HANDLER_UINT64,
3916 UPB_HANDLER_FLOAT,
3917 UPB_HANDLER_DOUBLE,
3918 UPB_HANDLER_BOOL,
3919 UPB_HANDLER_STARTSTR,
3920 UPB_HANDLER_STRING,
3921 UPB_HANDLER_ENDSTR,
3922 UPB_HANDLER_STARTSUBMSG,
3923 UPB_HANDLER_ENDSUBMSG,
3924 UPB_HANDLER_STARTSEQ,
3925 UPB_HANDLER_ENDSEQ
3926 } upb_handlertype_t;
3927
3928 #define UPB_HANDLER_MAX (UPB_HANDLER_ENDSEQ+1)
3929
3930 #define UPB_BREAK NULL
3931
3932 /* A convenient definition for when no closure is needed. */
3933 extern char _upb_noclosure;
3934 #define UPB_NO_CLOSURE &_upb_noclosure
3935
3936 /* A selector refers to a specific field handler in the Handlers object
3937 * (for example: the STARTSUBMSG handler for field "field15"). */
3938 typedef int32_t upb_selector_t;
3939
3940 UPB_BEGIN_EXTERN_C
3941
3942 /* Forward-declares for C inline accessors. We need to declare these here
3943 * so we can "friend" them in the class declarations in C++. */
3944 UPB_INLINE upb_func *upb_handlers_gethandler(const upb_handlers *h,
3945 upb_selector_t s);
3946 UPB_INLINE const void *upb_handlerattr_handlerdata(const upb_handlerattr *attr);
3947 UPB_INLINE const void *upb_handlers_gethandlerdata(const upb_handlers *h,
3948 upb_selector_t s);
3949
3950 UPB_INLINE void upb_bufhandle_init(upb_bufhandle *h);
3951 UPB_INLINE void upb_bufhandle_setobj(upb_bufhandle *h, const void *obj,
3952 const void *type);
3953 UPB_INLINE void upb_bufhandle_setbuf(upb_bufhandle *h, const char *buf,
3954 size_t ofs);
3955 UPB_INLINE const void *upb_bufhandle_obj(const upb_bufhandle *h);
3956 UPB_INLINE const void *upb_bufhandle_objtype(const upb_bufhandle *h);
3957 UPB_INLINE const char *upb_bufhandle_buf(const upb_bufhandle *h);
3958
3959 UPB_END_EXTERN_C
3960
3961
3962 /* Static selectors for upb::Handlers. */
3963 #define UPB_STARTMSG_SELECTOR 0
3964 #define UPB_ENDMSG_SELECTOR 1
3965 #define UPB_STATIC_SELECTOR_COUNT 2
3966
3967 /* Static selectors for upb::BytesHandler. */
3968 #define UPB_STARTSTR_SELECTOR 0
3969 #define UPB_STRING_SELECTOR 1
3970 #define UPB_ENDSTR_SELECTOR 2
3971
3972 typedef void upb_handlerfree(void *d);
3973
3974 #ifdef __cplusplus
3975
3976 /* A set of attributes that accompanies a handler's function pointer. */
3977 class upb::HandlerAttributes {
3978 public:
3979 HandlerAttributes();
3980 ~HandlerAttributes();
3981
3982 /* Sets the handler data that will be passed as the second parameter of the
3983 * handler. To free this pointer when the handlers are freed, call
3984 * Handlers::AddCleanup(). */
3985 bool SetHandlerData(const void *handler_data);
3986 const void* handler_data() const;
3987
3988 /* Use this to specify the type of the closure. This will be checked against
3989 * all other closure types for handler that use the same closure.
3990 * Registration will fail if this does not match all other non-NULL closure
3991 * types. */
3992 bool SetClosureType(const void *closure_type);
3993 const void* closure_type() const;
3994
3995 /* Use this to specify the type of the returned closure. Only used for
3996 * Start*{String,SubMessage,Sequence} handlers. This must match the closure
3997 * type of any handlers that use it (for example, the StringBuf handler must
3998 * match the closure returned from StartString). */
3999 bool SetReturnClosureType(const void *return_closure_type);
4000 const void* return_closure_type() const;
4001
4002 /* Set to indicate that the handler always returns "ok" (either "true" or a
4003 * non-NULL closure). This is a hint that can allow code generators to
4004 * generate more efficient code. */
4005 bool SetAlwaysOk(bool always_ok);
4006 bool always_ok() const;
4007
4008 private:
4009 friend UPB_INLINE const void * ::upb_handlerattr_handlerdata(
4010 const upb_handlerattr *attr);
4011 #else
4012 struct upb_handlerattr {
4013 #endif
4014 const void *handler_data_;
4015 const void *closure_type_;
4016 const void *return_closure_type_;
4017 bool alwaysok_;
4018 };
4019
4020 #define UPB_HANDLERATTR_INITIALIZER {NULL, NULL, NULL, false}
4021
4022 typedef struct {
4023 upb_func *func;
4024
4025 /* It is wasteful to include the entire attributes here:
4026 *
4027 * * Some of the information is redundant (like storing the closure type
4028 * separately for each handler that must match).
4029 * * Some of the info is only needed prior to freeze() (like closure types).
4030 * * alignment padding wastes a lot of space for alwaysok_.
4031 *
4032 * If/when the size and locality of handlers is an issue, we can optimize this
4033 * not to store the entire attr like this. We do not expose the table's
4034 * layout to allow this optimization in the future. */
4035 upb_handlerattr attr;
4036 } upb_handlers_tabent;
4037
4038 #ifdef __cplusplus
4039
4040 /* Extra information about a buffer that is passed to a StringBuf handler.
4041 * TODO(haberman): allow the handle to be pinned so that it will outlive
4042 * the handler invocation. */
4043 class upb::BufferHandle {
4044 public:
4045 BufferHandle();
4046 ~BufferHandle();
4047
4048 /* The beginning of the buffer. This may be different than the pointer
4049 * passed to a StringBuf handler because the handler may receive data
4050 * that is from the middle or end of a larger buffer. */
4051 const char* buffer() const;
4052
4053 /* The offset within the attached object where this buffer begins. Only
4054 * meaningful if there is an attached object. */
4055 size_t object_offset() const;
4056
4057 /* Note that object_offset is the offset of "buf" within the attached
4058 * object. */
4059 void SetBuffer(const char* buf, size_t object_offset);
4060
4061 /* The BufferHandle can have an "attached object", which can be used to
4062 * tunnel through a pointer to the buffer's underlying representation. */
4063 template <class T>
4064 void SetAttachedObject(const T* obj);
4065
4066 /* Returns NULL if the attached object is not of this type. */
4067 template <class T>
4068 const T* GetAttachedObject() const;
4069
4070 private:
4071 friend UPB_INLINE void ::upb_bufhandle_init(upb_bufhandle *h);
4072 friend UPB_INLINE void ::upb_bufhandle_setobj(upb_bufhandle *h,
4073 const void *obj,
4074 const void *type);
4075 friend UPB_INLINE void ::upb_bufhandle_setbuf(upb_bufhandle *h,
4076 const char *buf, size_t ofs);
4077 friend UPB_INLINE const void* ::upb_bufhandle_obj(const upb_bufhandle *h);
4078 friend UPB_INLINE const void* ::upb_bufhandle_objtype(
4079 const upb_bufhandle *h);
4080 friend UPB_INLINE const char* ::upb_bufhandle_buf(const upb_bufhandle *h);
4081 #else
4082 struct upb_bufhandle {
4083 #endif
4084 const char *buf_;
4085 const void *obj_;
4086 const void *objtype_;
4087 size_t objofs_;
4088 };
4089
4090 #ifdef __cplusplus
4091
4092 /* A upb::Handlers object represents the set of handlers associated with a
4093 * message in the graph of messages. You can think of it as a big virtual
4094 * table with functions corresponding to all the events that can fire while
4095 * parsing or visiting a message of a specific type.
4096 *
4097 * Any handlers that are not set behave as if they had successfully consumed
4098 * the value. Any unset Start* handlers will propagate their closure to the
4099 * inner frame.
4100 *
4101 * The easiest way to create the *Handler objects needed by the Set* methods is
4102 * with the UpbBind() and UpbMakeHandler() macros; see below. */
4103 class upb::Handlers {
4104 public:
4105 typedef upb_selector_t Selector;
4106 typedef upb_handlertype_t Type;
4107
4108 typedef Handler<void *(*)(void *, const void *)> StartFieldHandler;
4109 typedef Handler<bool (*)(void *, const void *)> EndFieldHandler;
4110 typedef Handler<bool (*)(void *, const void *)> StartMessageHandler;
4111 typedef Handler<bool (*)(void *, const void *, Status*)> EndMessageHandler;
4112 typedef Handler<void *(*)(void *, const void *, size_t)> StartStringHandler;
4113 typedef Handler<size_t (*)(void *, const void *, const char *, size_t,
4114 const BufferHandle *)> StringHandler;
4115
4116 template <class T> struct ValueHandler {
4117 typedef Handler<bool(*)(void *, const void *, T)> H;
4118 };
4119
4120 typedef ValueHandler<int32_t>::H Int32Handler;
4121 typedef ValueHandler<int64_t>::H Int64Handler;
4122 typedef ValueHandler<uint32_t>::H UInt32Handler;
4123 typedef ValueHandler<uint64_t>::H UInt64Handler;
4124 typedef ValueHandler<float>::H FloatHandler;
4125 typedef ValueHandler<double>::H DoubleHandler;
4126 typedef ValueHandler<bool>::H BoolHandler;
4127
4128 /* Any function pointer can be converted to this and converted back to its
4129 * correct type. */
4130 typedef void GenericFunction();
4131
4132 typedef void HandlersCallback(const void *closure, upb_handlers *h);
4133
4134 /* Returns a new handlers object for the given frozen msgdef.
4135 * Returns NULL if memory allocation failed. */
4136 static reffed_ptr<Handlers> New(const MessageDef *m);
4137
4138 /* Convenience function for registering a graph of handlers that mirrors the
4139 * graph of msgdefs for some message. For "m" and all its children a new set
4140 * of handlers will be created and the given callback will be invoked,
4141 * allowing the client to register handlers for this message. Note that any
4142 * subhandlers set by the callback will be overwritten. */
4143 static reffed_ptr<const Handlers> NewFrozen(const MessageDef *m,
4144 HandlersCallback *callback,
4145 const void *closure);
4146
4147 /* Functionality from upb::RefCounted. */
4148 UPB_REFCOUNTED_CPPMETHODS
4149
4150 /* All handler registration functions return bool to indicate success or
4151 * failure; details about failures are stored in this status object. If a
4152 * failure does occur, it must be cleared before the Handlers are frozen,
4153 * otherwise the freeze() operation will fail. The functions may *only* be
4154 * used while the Handlers are mutable. */
4155 const Status* status();
4156 void ClearError();
4157
4158 /* Call to freeze these Handlers. Requires that any SubHandlers are already
4159 * frozen. For cycles, you must use the static version below and freeze the
4160 * whole graph at once. */
4161 bool Freeze(Status* s);
4162
4163 /* Freezes the given set of handlers. You may not freeze a handler without
4164 * also freezing any handlers they point to. */
4165 static bool Freeze(Handlers*const* handlers, int n, Status* s);
4166 static bool Freeze(const std::vector<Handlers*>& handlers, Status* s);
4167
4168 /* Returns the msgdef associated with this handlers object. */
4169 const MessageDef* message_def() const;
4170
4171 /* Adds the given pointer and function to the list of cleanup functions that
4172 * will be run when these handlers are freed. If this pointer has previously
4173 * been registered, the function returns false and does nothing. */
4174 bool AddCleanup(void *ptr, upb_handlerfree *cleanup);
4175
4176 /* Sets the startmsg handler for the message, which is defined as follows:
4177 *
4178 * bool startmsg(MyType* closure) {
4179 * // Called when the message begins. Returns true if processing should
4180 * // continue.
4181 * return true;
4182 * }
4183 */
4184 bool SetStartMessageHandler(const StartMessageHandler& handler);
4185
4186 /* Sets the endmsg handler for the message, which is defined as follows:
4187 *
4188 * bool endmsg(MyType* closure, upb_status *status) {
4189 * // Called when processing of this message ends, whether in success or
4190 * // failure. "status" indicates the final status of processing, and
4191 * // can also be modified in-place to update the final status.
4192 * }
4193 */
4194 bool SetEndMessageHandler(const EndMessageHandler& handler);
4195
4196 /* Sets the value handler for the given field, which is defined as follows
4197 * (this is for an int32 field; other field types will pass their native
4198 * C/C++ type for "val"):
4199 *
4200 * bool OnValue(MyClosure* c, const MyHandlerData* d, int32_t val) {
4201 * // Called when the field's value is encountered. "d" contains
4202 * // whatever data was bound to this field when it was registered.
4203 * // Returns true if processing should continue.
4204 * return true;
4205 * }
4206 *
4207 * handers->SetInt32Handler(f, UpbBind(OnValue, new MyHandlerData(...)));
4208 *
4209 * The value type must exactly match f->type().
4210 * For example, a handler that takes an int32_t parameter may only be used for
4211 * fields of type UPB_TYPE_INT32 and UPB_TYPE_ENUM.
4212 *
4213 * Returns false if the handler failed to register; in this case the cleanup
4214 * handler (if any) will be called immediately.
4215 */
4216 bool SetInt32Handler (const FieldDef* f, const Int32Handler& h);
4217 bool SetInt64Handler (const FieldDef* f, const Int64Handler& h);
4218 bool SetUInt32Handler(const FieldDef* f, const UInt32Handler& h);
4219 bool SetUInt64Handler(const FieldDef* f, const UInt64Handler& h);
4220 bool SetFloatHandler (const FieldDef* f, const FloatHandler& h);
4221 bool SetDoubleHandler(const FieldDef* f, const DoubleHandler& h);
4222 bool SetBoolHandler (const FieldDef* f, const BoolHandler& h);
4223
4224 /* Like the previous, but templated on the type on the value (ie. int32).
4225 * This is mostly useful to call from other templates. To call this you must
4226 * specify the template parameter explicitly, ie:
4227 * h->SetValueHandler<T>(f, UpbBind(MyHandler<T>, MyData)); */
4228 template <class T>
4229 bool SetValueHandler(
4230 const FieldDef *f,
4231 const typename ValueHandler<typename CanonicalType<T>::Type>::H& handler);
4232
4233 /* Sets handlers for a string field, which are defined as follows:
4234 *
4235 * MySubClosure* startstr(MyClosure* c, const MyHandlerData* d,
4236 * size_t size_hint) {
4237 * // Called when a string value begins. The return value indicates the
4238 * // closure for the string. "size_hint" indicates the size of the
4239 * // string if it is known, however if the string is length-delimited
4240 * // and the end-of-string is not available size_hint will be zero.
4241 * // This case is indistinguishable from the case where the size is
4242 * // known to be zero.
4243 * //
4244 * // TODO(haberman): is it important to distinguish these cases?
4245 * // If we had ssize_t as a type we could make -1 "unknown", but
4246 * // ssize_t is POSIX (not ANSI) and therefore less portable.
4247 * // In practice I suspect it won't be important to distinguish.
4248 * return closure;
4249 * }
4250 *
4251 * size_t str(MyClosure* closure, const MyHandlerData* d,
4252 * const char *str, size_t len) {
4253 * // Called for each buffer of string data; the multiple physical buffers
4254 * // are all part of the same logical string. The return value indicates
4255 * // how many bytes were consumed. If this number is less than "len",
4256 * // this will also indicate that processing should be halted for now,
4257 * // like returning false or UPB_BREAK from any other callback. If
4258 * // number is greater than "len", the excess bytes will be skipped over
4259 * // and not passed to the callback.
4260 * return len;
4261 * }
4262 *
4263 * bool endstr(MyClosure* c, const MyHandlerData* d) {
4264 * // Called when a string value ends. Return value indicates whether
4265 * // processing should continue.
4266 * return true;
4267 * }
4268 */
4269 bool SetStartStringHandler(const FieldDef* f, const StartStringHandler& h);
4270 bool SetStringHandler(const FieldDef* f, const StringHandler& h);
4271 bool SetEndStringHandler(const FieldDef* f, const EndFieldHandler& h);
4272
4273 /* Sets the startseq handler, which is defined as follows:
4274 *
4275 * MySubClosure *startseq(MyClosure* c, const MyHandlerData* d) {
4276 * // Called when a sequence (repeated field) begins. The returned
4277 * // pointer indicates the closure for the sequence (or UPB_BREAK
4278 * // to interrupt processing).
4279 * return closure;
4280 * }
4281 *
4282 * h->SetStartSequenceHandler(f, UpbBind(startseq, new MyHandlerData(...)));
4283 *
4284 * Returns "false" if "f" does not belong to this message or is not a
4285 * repeated field.
4286 */
4287 bool SetStartSequenceHandler(const FieldDef* f, const StartFieldHandler& h);
4288
4289 /* Sets the startsubmsg handler for the given field, which is defined as
4290 * follows:
4291 *
4292 * MySubClosure* startsubmsg(MyClosure* c, const MyHandlerData* d) {
4293 * // Called when a submessage begins. The returned pointer indicates the
4294 * // closure for the sequence (or UPB_BREAK to interrupt processing).
4295 * return closure;
4296 * }
4297 *
4298 * h->SetStartSubMessageHandler(f, UpbBind(startsubmsg,
4299 * new MyHandlerData(...)));
4300 *
4301 * Returns "false" if "f" does not belong to this message or is not a
4302 * submessage/group field.
4303 */
4304 bool SetStartSubMessageHandler(const FieldDef* f, const StartFieldHandler& h);
4305
4306 /* Sets the endsubmsg handler for the given field, which is defined as
4307 * follows:
4308 *
4309 * bool endsubmsg(MyClosure* c, const MyHandlerData* d) {
4310 * // Called when a submessage ends. Returns true to continue processing.
4311 * return true;
4312 * }
4313 *
4314 * Returns "false" if "f" does not belong to this message or is not a
4315 * submessage/group field.
4316 */
4317 bool SetEndSubMessageHandler(const FieldDef *f, const EndFieldHandler &h);
4318
4319 /* Starts the endsubseq handler for the given field, which is defined as
4320 * follows:
4321 *
4322 * bool endseq(MyClosure* c, const MyHandlerData* d) {
4323 * // Called when a sequence ends. Returns true continue processing.
4324 * return true;
4325 * }
4326 *
4327 * Returns "false" if "f" does not belong to this message or is not a
4328 * repeated field.
4329 */
4330 bool SetEndSequenceHandler(const FieldDef* f, const EndFieldHandler& h);
4331
4332 /* Sets or gets the object that specifies handlers for the given field, which
4333 * must be a submessage or group. Returns NULL if no handlers are set. */
4334 bool SetSubHandlers(const FieldDef* f, const Handlers* sub);
4335 const Handlers* GetSubHandlers(const FieldDef* f) const;
4336
4337 /* Equivalent to GetSubHandlers, but takes the STARTSUBMSG selector for the
4338 * field. */
4339 const Handlers* GetSubHandlers(Selector startsubmsg) const;
4340
4341 /* A selector refers to a specific field handler in the Handlers object
4342 * (for example: the STARTSUBMSG handler for field "field15").
4343 * On success, returns true and stores the selector in "s".
4344 * If the FieldDef or Type are invalid, returns false.
4345 * The returned selector is ONLY valid for Handlers whose MessageDef
4346 * contains this FieldDef. */
4347 static bool GetSelector(const FieldDef* f, Type type, Selector* s);
4348
4349 /* Given a START selector of any kind, returns the corresponding END selector. */
4350 static Selector GetEndSelector(Selector start_selector);
4351
4352 /* Returns the function pointer for this handler. It is the client's
4353 * responsibility to cast to the correct function type before calling it. */
4354 GenericFunction* GetHandler(Selector selector);
4355
4356 /* Sets the given attributes to the attributes for this selector. */
4357 bool GetAttributes(Selector selector, HandlerAttributes* attr);
4358
4359 /* Returns the handler data that was registered with this handler. */
4360 const void* GetHandlerData(Selector selector);
4361
4362 /* Could add any of the following functions as-needed, with some minor
4363 * implementation changes:
4364 *
4365 * const FieldDef* GetFieldDef(Selector selector);
4366 * static bool IsSequence(Selector selector); */
4367
4368 private:
4369 UPB_DISALLOW_POD_OPS(Handlers, upb::Handlers)
4370
4371 friend UPB_INLINE GenericFunction *::upb_handlers_gethandler(
4372 const upb_handlers *h, upb_selector_t s);
4373 friend UPB_INLINE const void *::upb_handlers_gethandlerdata(
4374 const upb_handlers *h, upb_selector_t s);
4375 #else
4376 struct upb_handlers {
4377 #endif
4378 upb_refcounted base;
4379
4380 const upb_msgdef *msg;
4381 const upb_handlers **sub;
4382 const void *top_closure_type;
4383 upb_inttable cleanup_;
4384 upb_status status_; /* Used only when mutable. */
4385 upb_handlers_tabent table[1]; /* Dynamically-sized field handler array. */
4386 };
4387
4388 #ifdef __cplusplus
4389
4390 namespace upb {
4391
4392 /* Convenience macros for creating a Handler object that is wrapped with a
4393 * type-safe wrapper function that converts the "void*" parameters/returns
4394 * of the underlying C API into nice C++ function.
4395 *
4396 * Sample usage:
4397 * void OnValue1(MyClosure* c, const MyHandlerData* d, int32_t val) {
4398 * // do stuff ...
4399 * }
4400 *
4401 * // Handler that doesn't need any data bound to it.
4402 * void OnValue2(MyClosure* c, int32_t val) {
4403 * // do stuff ...
4404 * }
4405 *
4406 * // Handler that returns bool so it can return failure if necessary.
4407 * bool OnValue3(MyClosure* c, int32_t val) {
4408 * // do stuff ...
4409 * return ok;
4410 * }
4411 *
4412 * // Member function handler.
4413 * class MyClosure {
4414 * public:
4415 * void OnValue(int32_t val) {
4416 * // do stuff ...
4417 * }
4418 * };
4419 *
4420 * // Takes ownership of the MyHandlerData.
4421 * handlers->SetInt32Handler(f1, UpbBind(OnValue1, new MyHandlerData(...)));
4422 * handlers->SetInt32Handler(f2, UpbMakeHandler(OnValue2));
4423 * handlers->SetInt32Handler(f1, UpbMakeHandler(OnValue3));
4424 * handlers->SetInt32Handler(f2, UpbMakeHandler(&MyClosure::OnValue));
4425 */
4426
4427 #ifdef UPB_CXX11
4428
4429 /* In C++11, the "template" disambiguator can appear even outside templates,
4430 * so all calls can safely use this pair of macros. */
4431
4432 #define UpbMakeHandler(f) upb::MatchFunc(f).template GetFunc<f>()
4433
4434 /* We have to be careful to only evaluate "d" once. */
4435 #define UpbBind(f, d) upb::MatchFunc(f).template GetFunc<f>((d))
4436
4437 #else
4438
4439 /* Prior to C++11, the "template" disambiguator may only appear inside a
4440 * template, so the regular macro must not use "template" */
4441
4442 #define UpbMakeHandler(f) upb::MatchFunc(f).GetFunc<f>()
4443
4444 #define UpbBind(f, d) upb::MatchFunc(f).GetFunc<f>((d))
4445
4446 #endif /* UPB_CXX11 */
4447
4448 /* This macro must be used in C++98 for calls from inside a template. But we
4449 * define this variant in all cases; code that wants to be compatible with both
4450 * C++98 and C++11 should always use this macro when calling from a template. */
4451 #define UpbMakeHandlerT(f) upb::MatchFunc(f).template GetFunc<f>()
4452
4453 /* We have to be careful to only evaluate "d" once. */
4454 #define UpbBindT(f, d) upb::MatchFunc(f).template GetFunc<f>((d))
4455
4456 /* Handler: a struct that contains the (handler, data, deleter) tuple that is
4457 * used to register all handlers. Users can Make() these directly but it's
4458 * more convenient to use the UpbMakeHandler/UpbBind macros above. */
4459 template <class T> class Handler {
4460 public:
4461 /* The underlying, handler function signature that upb uses internally. */
4462 typedef T FuncPtr;
4463
4464 /* Intentionally implicit. */
4465 template <class F> Handler(F func);
4466 ~Handler();
4467
4468 private:
4469 void AddCleanup(Handlers* h) const {
4470 if (cleanup_func_) {
4471 bool ok = h->AddCleanup(cleanup_data_, cleanup_func_);
4472 UPB_ASSERT_VAR(ok, ok);
4473 }
4474 }
4475
4476 UPB_DISALLOW_COPY_AND_ASSIGN(Handler)
4477 friend class Handlers;
4478 FuncPtr handler_;
4479 mutable HandlerAttributes attr_;
4480 mutable bool registered_;
4481 void *cleanup_data_;
4482 upb_handlerfree *cleanup_func_;
4483 };
4484
4485 } /* namespace upb */
4486
4487 #endif /* __cplusplus */
4488
4489 UPB_BEGIN_EXTERN_C
4490
4491 /* Native C API. */
4492
4493 /* Handler function typedefs. */
4494 typedef bool upb_startmsg_handlerfunc(void *c, const void*);
4495 typedef bool upb_endmsg_handlerfunc(void *c, const void *, upb_status *status);
4496 typedef void* upb_startfield_handlerfunc(void *c, const void *hd);
4497 typedef bool upb_endfield_handlerfunc(void *c, const void *hd);
4498 typedef bool upb_int32_handlerfunc(void *c, const void *hd, int32_t val);
4499 typedef bool upb_int64_handlerfunc(void *c, const void *hd, int64_t val);
4500 typedef bool upb_uint32_handlerfunc(void *c, const void *hd, uint32_t val);
4501 typedef bool upb_uint64_handlerfunc(void *c, const void *hd, uint64_t val);
4502 typedef bool upb_float_handlerfunc(void *c, const void *hd, float val);
4503 typedef bool upb_double_handlerfunc(void *c, const void *hd, double val);
4504 typedef bool upb_bool_handlerfunc(void *c, const void *hd, bool val);
4505 typedef void *upb_startstr_handlerfunc(void *c, const void *hd,
4506 size_t size_hint);
4507 typedef size_t upb_string_handlerfunc(void *c, const void *hd, const char *buf,
4508 size_t n, const upb_bufhandle* handle);
4509
4510 /* upb_bufhandle */
4511 size_t upb_bufhandle_objofs(const upb_bufhandle *h);
4512
4513 /* upb_handlerattr */
4514 void upb_handlerattr_init(upb_handlerattr *attr);
4515 void upb_handlerattr_uninit(upb_handlerattr *attr);
4516
4517 bool upb_handlerattr_sethandlerdata(upb_handlerattr *attr, const void *hd);
4518 bool upb_handlerattr_setclosuretype(upb_handlerattr *attr, const void *type);
4519 const void *upb_handlerattr_closuretype(const upb_handlerattr *attr);
4520 bool upb_handlerattr_setreturnclosuretype(upb_handlerattr *attr,
4521 const void *type);
4522 const void *upb_handlerattr_returnclosuretype(const upb_handlerattr *attr);
4523 bool upb_handlerattr_setalwaysok(upb_handlerattr *attr, bool alwaysok);
4524 bool upb_handlerattr_alwaysok(const upb_handlerattr *attr);
4525
4526 UPB_INLINE const void *upb_handlerattr_handlerdata(
4527 const upb_handlerattr *attr) {
4528 return attr->handler_data_;
4529 }
4530
4531 /* upb_handlers */
4532 typedef void upb_handlers_callback(const void *closure, upb_handlers *h);
4533 upb_handlers *upb_handlers_new(const upb_msgdef *m,
4534 const void *owner);
4535 const upb_handlers *upb_handlers_newfrozen(const upb_msgdef *m,
4536 const void *owner,
4537 upb_handlers_callback *callback,
4538 const void *closure);
4539
4540 /* Include refcounted methods like upb_handlers_ref(). */
4541 UPB_REFCOUNTED_CMETHODS(upb_handlers, upb_handlers_upcast)
4542
4543 const upb_status *upb_handlers_status(upb_handlers *h);
4544 void upb_handlers_clearerr(upb_handlers *h);
4545 const upb_msgdef *upb_handlers_msgdef(const upb_handlers *h);
4546 bool upb_handlers_addcleanup(upb_handlers *h, void *p, upb_handlerfree *hfree);
4547
4548 bool upb_handlers_setstartmsg(upb_handlers *h, upb_startmsg_handlerfunc *func,
4549 upb_handlerattr *attr);
4550 bool upb_handlers_setendmsg(upb_handlers *h, upb_endmsg_handlerfunc *func,
4551 upb_handlerattr *attr);
4552 bool upb_handlers_setint32(upb_handlers *h, const upb_fielddef *f,
4553 upb_int32_handlerfunc *func, upb_handlerattr *attr);
4554 bool upb_handlers_setint64(upb_handlers *h, const upb_fielddef *f,
4555 upb_int64_handlerfunc *func, upb_handlerattr *attr);
4556 bool upb_handlers_setuint32(upb_handlers *h, const upb_fielddef *f,
4557 upb_uint32_handlerfunc *func,
4558 upb_handlerattr *attr);
4559 bool upb_handlers_setuint64(upb_handlers *h, const upb_fielddef *f,
4560 upb_uint64_handlerfunc *func,
4561 upb_handlerattr *attr);
4562 bool upb_handlers_setfloat(upb_handlers *h, const upb_fielddef *f,
4563 upb_float_handlerfunc *func, upb_handlerattr *attr);
4564 bool upb_handlers_setdouble(upb_handlers *h, const upb_fielddef *f,
4565 upb_double_handlerfunc *func,
4566 upb_handlerattr *attr);
4567 bool upb_handlers_setbool(upb_handlers *h, const upb_fielddef *f,
4568 upb_bool_handlerfunc *func,
4569 upb_handlerattr *attr);
4570 bool upb_handlers_setstartstr(upb_handlers *h, const upb_fielddef *f,
4571 upb_startstr_handlerfunc *func,
4572 upb_handlerattr *attr);
4573 bool upb_handlers_setstring(upb_handlers *h, const upb_fielddef *f,
4574 upb_string_handlerfunc *func,
4575 upb_handlerattr *attr);
4576 bool upb_handlers_setendstr(upb_handlers *h, const upb_fielddef *f,
4577 upb_endfield_handlerfunc *func,
4578 upb_handlerattr *attr);
4579 bool upb_handlers_setstartseq(upb_handlers *h, const upb_fielddef *f,
4580 upb_startfield_handlerfunc *func,
4581 upb_handlerattr *attr);
4582 bool upb_handlers_setstartsubmsg(upb_handlers *h, const upb_fielddef *f,
4583 upb_startfield_handlerfunc *func,
4584 upb_handlerattr *attr);
4585 bool upb_handlers_setendsubmsg(upb_handlers *h, const upb_fielddef *f,
4586 upb_endfield_handlerfunc *func,
4587 upb_handlerattr *attr);
4588 bool upb_handlers_setendseq(upb_handlers *h, const upb_fielddef *f,
4589 upb_endfield_handlerfunc *func,
4590 upb_handlerattr *attr);
4591
4592 bool upb_handlers_setsubhandlers(upb_handlers *h, const upb_fielddef *f,
4593 const upb_handlers *sub);
4594 const upb_handlers *upb_handlers_getsubhandlers(const upb_handlers *h,
4595 const upb_fielddef *f);
4596 const upb_handlers *upb_handlers_getsubhandlers_sel(const upb_handlers *h,
4597 upb_selector_t sel);
4598
4599 UPB_INLINE upb_func *upb_handlers_gethandler(const upb_handlers *h,
4600 upb_selector_t s) {
4601 return (upb_func *)h->table[s].func;
4602 }
4603
4604 bool upb_handlers_getattr(const upb_handlers *h, upb_selector_t s,
4605 upb_handlerattr *attr);
4606
4607 UPB_INLINE const void *upb_handlers_gethandlerdata(const upb_handlers *h,
4608 upb_selector_t s) {
4609 return upb_handlerattr_handlerdata(&h->table[s].attr);
4610 }
4611
4612 #ifdef __cplusplus
4613
4614 /* Handler types for single fields.
4615 * Right now we only have one for TYPE_BYTES but ones for other types
4616 * should follow.
4617 *
4618 * These follow the same handlers protocol for fields of a message. */
4619 class upb::BytesHandler {
4620 public:
4621 BytesHandler();
4622 ~BytesHandler();
4623 #else
4624 struct upb_byteshandler {
4625 #endif
4626 upb_handlers_tabent table[3];
4627 };
4628
4629 void upb_byteshandler_init(upb_byteshandler *h);
4630
4631 /* Caller must ensure that "d" outlives the handlers.
4632 * TODO(haberman): should this have a "freeze" operation? It's not necessary
4633 * for memory management, but could be useful to force immutability and provide
4634 * a convenient moment to verify that all registration succeeded. */
4635 bool upb_byteshandler_setstartstr(upb_byteshandler *h,
4636 upb_startstr_handlerfunc *func, void *d);
4637 bool upb_byteshandler_setstring(upb_byteshandler *h,
4638 upb_string_handlerfunc *func, void *d);
4639 bool upb_byteshandler_setendstr(upb_byteshandler *h,
4640 upb_endfield_handlerfunc *func, void *d);
4641
4642 /* "Static" methods */
4643 bool upb_handlers_freeze(upb_handlers *const *handlers, int n, upb_status *s);
4644 upb_handlertype_t upb_handlers_getprimitivehandlertype(const upb_fielddef *f);
4645 bool upb_handlers_getselector(const upb_fielddef *f, upb_handlertype_t type,
4646 upb_selector_t *s);
4647 UPB_INLINE upb_selector_t upb_handlers_getendselector(upb_selector_t start) {
4648 return start + 1;
4649 }
4650
4651 /* Internal-only. */
4652 uint32_t upb_handlers_selectorbaseoffset(const upb_fielddef *f);
4653 uint32_t upb_handlers_selectorcount(const upb_fielddef *f);
4654
4655 UPB_END_EXTERN_C
4656
4657 /*
4658 ** Inline definitions for handlers.h, which are particularly long and a bit
4659 ** tricky.
4660 */
4661
4662 #ifndef UPB_HANDLERS_INL_H_
4663 #define UPB_HANDLERS_INL_H_
4664
4665 #include <limits.h>
4666
4667 /* C inline methods. */
4668
4669 /* upb_bufhandle */
4670 UPB_INLINE void upb_bufhandle_init(upb_bufhandle *h) {
4671 h->obj_ = NULL;
4672 h->objtype_ = NULL;
4673 h->buf_ = NULL;
4674 h->objofs_ = 0;
4675 }
4676 UPB_INLINE void upb_bufhandle_uninit(upb_bufhandle *h) {
4677 UPB_UNUSED(h);
4678 }
4679 UPB_INLINE void upb_bufhandle_setobj(upb_bufhandle *h, const void *obj,
4680 const void *type) {
4681 h->obj_ = obj;
4682 h->objtype_ = type;
4683 }
4684 UPB_INLINE void upb_bufhandle_setbuf(upb_bufhandle *h, const char *buf,
4685 size_t ofs) {
4686 h->buf_ = buf;
4687 h->objofs_ = ofs;
4688 }
4689 UPB_INLINE const void *upb_bufhandle_obj(const upb_bufhandle *h) {
4690 return h->obj_;
4691 }
4692 UPB_INLINE const void *upb_bufhandle_objtype(const upb_bufhandle *h) {
4693 return h->objtype_;
4694 }
4695 UPB_INLINE const char *upb_bufhandle_buf(const upb_bufhandle *h) {
4696 return h->buf_;
4697 }
4698
4699
4700 #ifdef __cplusplus
4701
4702 /* Type detection and typedefs for integer types.
4703 * For platforms where there are multiple 32-bit or 64-bit types, we need to be
4704 * able to enumerate them so we can properly create overloads for all variants.
4705 *
4706 * If any platform existed where there were three integer types with the same
4707 * size, this would have to become more complicated. For example, short, int,
4708 * and long could all be 32-bits. Even more diabolically, short, int, long,
4709 * and long long could all be 64 bits and still be standard-compliant.
4710 * However, few platforms are this strange, and it's unlikely that upb will be
4711 * used on the strangest ones. */
4712
4713 /* Can't count on stdint.h limits like INT32_MAX, because in C++ these are
4714 * only defined when __STDC_LIMIT_MACROS are defined before the *first* include
4715 * of stdint.h. We can't guarantee that someone else didn't include these first
4716 * without defining __STDC_LIMIT_MACROS. */
4717 #define UPB_INT32_MAX 0x7fffffffLL
4718 #define UPB_INT32_MIN (-UPB_INT32_MAX - 1)
4719 #define UPB_INT64_MAX 0x7fffffffffffffffLL
4720 #define UPB_INT64_MIN (-UPB_INT64_MAX - 1)
4721
4722 #if INT_MAX == UPB_INT32_MAX && INT_MIN == UPB_INT32_MIN
4723 #define UPB_INT_IS_32BITS 1
4724 #endif
4725
4726 #if LONG_MAX == UPB_INT32_MAX && LONG_MIN == UPB_INT32_MIN
4727 #define UPB_LONG_IS_32BITS 1
4728 #endif
4729
4730 #if LONG_MAX == UPB_INT64_MAX && LONG_MIN == UPB_INT64_MIN
4731 #define UPB_LONG_IS_64BITS 1
4732 #endif
4733
4734 #if LLONG_MAX == UPB_INT64_MAX && LLONG_MIN == UPB_INT64_MIN
4735 #define UPB_LLONG_IS_64BITS 1
4736 #endif
4737
4738 /* We use macros instead of typedefs so we can undefine them later and avoid
4739 * leaking them outside this header file. */
4740 #if UPB_INT_IS_32BITS
4741 #define UPB_INT32_T int
4742 #define UPB_UINT32_T unsigned int
4743
4744 #if UPB_LONG_IS_32BITS
4745 #define UPB_TWO_32BIT_TYPES 1
4746 #define UPB_INT32ALT_T long
4747 #define UPB_UINT32ALT_T unsigned long
4748 #endif /* UPB_LONG_IS_32BITS */
4749
4750 #elif UPB_LONG_IS_32BITS /* && !UPB_INT_IS_32BITS */
4751 #define UPB_INT32_T long
4752 #define UPB_UINT32_T unsigned long
4753 #endif /* UPB_INT_IS_32BITS */
4754
4755
4756 #if UPB_LONG_IS_64BITS
4757 #define UPB_INT64_T long
4758 #define UPB_UINT64_T unsigned long
4759
4760 #if UPB_LLONG_IS_64BITS
4761 #define UPB_TWO_64BIT_TYPES 1
4762 #define UPB_INT64ALT_T long long
4763 #define UPB_UINT64ALT_T unsigned long long
4764 #endif /* UPB_LLONG_IS_64BITS */
4765
4766 #elif UPB_LLONG_IS_64BITS /* && !UPB_LONG_IS_64BITS */
4767 #define UPB_INT64_T long long
4768 #define UPB_UINT64_T unsigned long long
4769 #endif /* UPB_LONG_IS_64BITS */
4770
4771 #undef UPB_INT32_MAX
4772 #undef UPB_INT32_MIN
4773 #undef UPB_INT64_MAX
4774 #undef UPB_INT64_MIN
4775 #undef UPB_INT_IS_32BITS
4776 #undef UPB_LONG_IS_32BITS
4777 #undef UPB_LONG_IS_64BITS
4778 #undef UPB_LLONG_IS_64BITS
4779
4780
4781 namespace upb {
4782
4783 typedef void CleanupFunc(void *ptr);
4784
4785 /* Template to remove "const" from "const T*" and just return "T*".
4786 *
4787 * We define a nonsense default because otherwise it will fail to instantiate as
4788 * a function parameter type even in cases where we don't expect any caller to
4789 * actually match the overload. */
4790 class CouldntRemoveConst {};
4791 template <class T> struct remove_constptr { typedef CouldntRemoveConst type; };
4792 template <class T> struct remove_constptr<const T *> { typedef T *type; };
4793
4794 /* Template that we use below to remove a template specialization from
4795 * consideration if it matches a specific type. */
4796 template <class T, class U> struct disable_if_same { typedef void Type; };
4797 template <class T> struct disable_if_same<T, T> {};
4798
4799 template <class T> void DeletePointer(void *p) { delete static_cast<T>(p); }
4800
4801 template <class T1, class T2>
4802 struct FirstUnlessVoidOrBool {
4803 typedef T1 value;
4804 };
4805
4806 template <class T2>
4807 struct FirstUnlessVoidOrBool<void, T2> {
4808 typedef T2 value;
4809 };
4810
4811 template <class T2>
4812 struct FirstUnlessVoidOrBool<bool, T2> {
4813 typedef T2 value;
4814 };
4815
4816 template<class T, class U>
4817 struct is_same {
4818 static bool value;
4819 };
4820
4821 template<class T>
4822 struct is_same<T, T> {
4823 static bool value;
4824 };
4825
4826 template<class T, class U>
4827 bool is_same<T, U>::value = false;
4828
4829 template<class T>
4830 bool is_same<T, T>::value = true;
4831
4832 /* FuncInfo *******************************************************************/
4833
4834 /* Info about the user's original, pre-wrapped function. */
4835 template <class C, class R = void>
4836 struct FuncInfo {
4837 /* The type of the closure that the function takes (its first param). */
4838 typedef C Closure;
4839
4840 /* The return type. */
4841 typedef R Return;
4842 };
4843
4844 /* Func ***********************************************************************/
4845
4846 /* Func1, Func2, Func3: Template classes representing a function and its
4847 * signature.
4848 *
4849 * Since the function is a template parameter, calling the function can be
4850 * inlined at compile-time and does not require a function pointer at runtime.
4851 * These functions are not bound to a handler data so have no data or cleanup
4852 * handler. */
4853 struct UnboundFunc {
4854 CleanupFunc *GetCleanup() { return NULL; }
4855 void *GetData() { return NULL; }
4856 };
4857
4858 template <class R, class P1, R F(P1), class I>
4859 struct Func1 : public UnboundFunc {
4860 typedef R Return;
4861 typedef I FuncInfo;
4862 static R Call(P1 p1) { return F(p1); }
4863 };
4864
4865 template <class R, class P1, class P2, R F(P1, P2), class I>
4866 struct Func2 : public UnboundFunc {
4867 typedef R Return;
4868 typedef I FuncInfo;
4869 static R Call(P1 p1, P2 p2) { return F(p1, p2); }
4870 };
4871
4872 template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I>
4873 struct Func3 : public UnboundFunc {
4874 typedef R Return;
4875 typedef I FuncInfo;
4876 static R Call(P1 p1, P2 p2, P3 p3) { return F(p1, p2, p3); }
4877 };
4878
4879 template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
4880 class I>
4881 struct Func4 : public UnboundFunc {
4882 typedef R Return;
4883 typedef I FuncInfo;
4884 static R Call(P1 p1, P2 p2, P3 p3, P4 p4) { return F(p1, p2, p3, p4); }
4885 };
4886
4887 template <class R, class P1, class P2, class P3, class P4, class P5,
4888 R F(P1, P2, P3, P4, P5), class I>
4889 struct Func5 : public UnboundFunc {
4890 typedef R Return;
4891 typedef I FuncInfo;
4892 static R Call(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5) {
4893 return F(p1, p2, p3, p4, p5);
4894 }
4895 };
4896
4897 /* BoundFunc ******************************************************************/
4898
4899 /* BoundFunc2, BoundFunc3: Like Func2/Func3 except also contains a value that
4900 * shall be bound to the function's second parameter.
4901 *
4902 * Note that the second parameter is a const pointer, but our stored bound value
4903 * is non-const so we can free it when the handlers are destroyed. */
4904 template <class T>
4905 struct BoundFunc {
4906 typedef typename remove_constptr<T>::type MutableP2;
4907 explicit BoundFunc(MutableP2 data_) : data(data_) {}
4908 CleanupFunc *GetCleanup() { return &DeletePointer<MutableP2>; }
4909 MutableP2 GetData() { return data; }
4910 MutableP2 data;
4911 };
4912
4913 template <class R, class P1, class P2, R F(P1, P2), class I>
4914 struct BoundFunc2 : public BoundFunc<P2> {
4915 typedef BoundFunc<P2> Base;
4916 typedef I FuncInfo;
4917 explicit BoundFunc2(typename Base::MutableP2 arg) : Base(arg) {}
4918 };
4919
4920 template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I>
4921 struct BoundFunc3 : public BoundFunc<P2> {
4922 typedef BoundFunc<P2> Base;
4923 typedef I FuncInfo;
4924 explicit BoundFunc3(typename Base::MutableP2 arg) : Base(arg) {}
4925 };
4926
4927 template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
4928 class I>
4929 struct BoundFunc4 : public BoundFunc<P2> {
4930 typedef BoundFunc<P2> Base;
4931 typedef I FuncInfo;
4932 explicit BoundFunc4(typename Base::MutableP2 arg) : Base(arg) {}
4933 };
4934
4935 template <class R, class P1, class P2, class P3, class P4, class P5,
4936 R F(P1, P2, P3, P4, P5), class I>
4937 struct BoundFunc5 : public BoundFunc<P2> {
4938 typedef BoundFunc<P2> Base;
4939 typedef I FuncInfo;
4940 explicit BoundFunc5(typename Base::MutableP2 arg) : Base(arg) {}
4941 };
4942
4943 /* FuncSig ********************************************************************/
4944
4945 /* FuncSig1, FuncSig2, FuncSig3: template classes reflecting a function
4946 * *signature*, but without a specific function attached.
4947 *
4948 * These classes contain member functions that can be invoked with a
4949 * specific function to return a Func/BoundFunc class. */
4950 template <class R, class P1>
4951 struct FuncSig1 {
4952 template <R F(P1)>
4953 Func1<R, P1, F, FuncInfo<P1, R> > GetFunc() {
4954 return Func1<R, P1, F, FuncInfo<P1, R> >();
4955 }
4956 };
4957
4958 template <class R, class P1, class P2>
4959 struct FuncSig2 {
4960 template <R F(P1, P2)>
4961 Func2<R, P1, P2, F, FuncInfo<P1, R> > GetFunc() {
4962 return Func2<R, P1, P2, F, FuncInfo<P1, R> >();
4963 }
4964
4965 template <R F(P1, P2)>
4966 BoundFunc2<R, P1, P2, F, FuncInfo<P1, R> > GetFunc(
4967 typename remove_constptr<P2>::type param2) {
4968 return BoundFunc2<R, P1, P2, F, FuncInfo<P1, R> >(param2);
4969 }
4970 };
4971
4972 template <class R, class P1, class P2, class P3>
4973 struct FuncSig3 {
4974 template <R F(P1, P2, P3)>
4975 Func3<R, P1, P2, P3, F, FuncInfo<P1, R> > GetFunc() {
4976 return Func3<R, P1, P2, P3, F, FuncInfo<P1, R> >();
4977 }
4978
4979 template <R F(P1, P2, P3)>
4980 BoundFunc3<R, P1, P2, P3, F, FuncInfo<P1, R> > GetFunc(
4981 typename remove_constptr<P2>::type param2) {
4982 return BoundFunc3<R, P1, P2, P3, F, FuncInfo<P1, R> >(param2);
4983 }
4984 };
4985
4986 template <class R, class P1, class P2, class P3, class P4>
4987 struct FuncSig4 {
4988 template <R F(P1, P2, P3, P4)>
4989 Func4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> > GetFunc() {
4990 return Func4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> >();
4991 }
4992
4993 template <R F(P1, P2, P3, P4)>
4994 BoundFunc4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> > GetFunc(
4995 typename remove_constptr<P2>::type param2) {
4996 return BoundFunc4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> >(param2);
4997 }
4998 };
4999
5000 template <class R, class P1, class P2, class P3, class P4, class P5>
5001 struct FuncSig5 {
5002 template <R F(P1, P2, P3, P4, P5)>
5003 Func5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> > GetFunc() {
5004 return Func5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> >();
5005 }
5006
5007 template <R F(P1, P2, P3, P4, P5)>
5008 BoundFunc5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> > GetFunc(
5009 typename remove_constptr<P2>::type param2) {
5010 return BoundFunc5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> >(param2);
5011 }
5012 };
5013
5014 /* Overloaded template function that can construct the appropriate FuncSig*
5015 * class given a function pointer by deducing the template parameters. */
5016 template <class R, class P1>
5017 inline FuncSig1<R, P1> MatchFunc(R (*f)(P1)) {
5018 UPB_UNUSED(f); /* Only used for template parameter deduction. */
5019 return FuncSig1<R, P1>();
5020 }
5021
5022 template <class R, class P1, class P2>
5023 inline FuncSig2<R, P1, P2> MatchFunc(R (*f)(P1, P2)) {
5024 UPB_UNUSED(f); /* Only used for template parameter deduction. */
5025 return FuncSig2<R, P1, P2>();
5026 }
5027
5028 template <class R, class P1, class P2, class P3>
5029 inline FuncSig3<R, P1, P2, P3> MatchFunc(R (*f)(P1, P2, P3)) {
5030 UPB_UNUSED(f); /* Only used for template parameter deduction. */
5031 return FuncSig3<R, P1, P2, P3>();
5032 }
5033
5034 template <class R, class P1, class P2, class P3, class P4>
5035 inline FuncSig4<R, P1, P2, P3, P4> MatchFunc(R (*f)(P1, P2, P3, P4)) {
5036 UPB_UNUSED(f); /* Only used for template parameter deduction. */
5037 return FuncSig4<R, P1, P2, P3, P4>();
5038 }
5039
5040 template <class R, class P1, class P2, class P3, class P4, class P5>
5041 inline FuncSig5<R, P1, P2, P3, P4, P5> MatchFunc(R (*f)(P1, P2, P3, P4, P5)) {
5042 UPB_UNUSED(f); /* Only used for template parameter deduction. */
5043 return FuncSig5<R, P1, P2, P3, P4, P5>();
5044 }
5045
5046 /* MethodSig ******************************************************************/
5047
5048 /* CallMethod*: a function template that calls a given method. */
5049 template <class R, class C, R (C::*F)()>
5050 R CallMethod0(C *obj) {
5051 return ((*obj).*F)();
5052 }
5053
5054 template <class R, class C, class P1, R (C::*F)(P1)>
5055 R CallMethod1(C *obj, P1 arg1) {
5056 return ((*obj).*F)(arg1);
5057 }
5058
5059 template <class R, class C, class P1, class P2, R (C::*F)(P1, P2)>
5060 R CallMethod2(C *obj, P1 arg1, P2 arg2) {
5061 return ((*obj).*F)(arg1, arg2);
5062 }
5063
5064 template <class R, class C, class P1, class P2, class P3, R (C::*F)(P1, P2, P3)>
5065 R CallMethod3(C *obj, P1 arg1, P2 arg2, P3 arg3) {
5066 return ((*obj).*F)(arg1, arg2, arg3);
5067 }
5068
5069 template <class R, class C, class P1, class P2, class P3, class P4,
5070 R (C::*F)(P1, P2, P3, P4)>
5071 R CallMethod4(C *obj, P1 arg1, P2 arg2, P3 arg3, P4 arg4) {
5072 return ((*obj).*F)(arg1, arg2, arg3, arg4);
5073 }
5074
5075 /* MethodSig: like FuncSig, but for member functions.
5076 *
5077 * GetFunc() returns a normal FuncN object, so after calling GetFunc() no
5078 * more logic is required to special-case methods. */
5079 template <class R, class C>
5080 struct MethodSig0 {
5081 template <R (C::*F)()>
5082 Func1<R, C *, CallMethod0<R, C, F>, FuncInfo<C *, R> > GetFunc() {
5083 return Func1<R, C *, CallMethod0<R, C, F>, FuncInfo<C *, R> >();
5084 }
5085 };
5086
5087 template <class R, class C, class P1>
5088 struct MethodSig1 {
5089 template <R (C::*F)(P1)>
5090 Func2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> > GetFunc() {
5091 return Func2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> >();
5092 }
5093
5094 template <R (C::*F)(P1)>
5095 BoundFunc2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> > GetFunc(
5096 typename remove_constptr<P1>::type param1) {
5097 return BoundFunc2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> >(
5098 param1);
5099 }
5100 };
5101
5102 template <class R, class C, class P1, class P2>
5103 struct MethodSig2 {
5104 template <R (C::*F)(P1, P2)>
5105 Func3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> >
5106 GetFunc() {
5107 return Func3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>,
5108 FuncInfo<C *, R> >();
5109 }
5110
5111 template <R (C::*F)(P1, P2)>
5112 BoundFunc3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> >
5113 GetFunc(typename remove_constptr<P1>::type param1) {
5114 return BoundFunc3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>,
5115 FuncInfo<C *, R> >(param1);
5116 }
5117 };
5118
5119 template <class R, class C, class P1, class P2, class P3>
5120 struct MethodSig3 {
5121 template <R (C::*F)(P1, P2, P3)>
5122 Func4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>, FuncInfo<C *, R> >
5123 GetFunc() {
5124 return Func4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
5125 FuncInfo<C *, R> >();
5126 }
5127
5128 template <R (C::*F)(P1, P2, P3)>
5129 BoundFunc4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
5130 FuncInfo<C *, R> >
5131 GetFunc(typename remove_constptr<P1>::type param1) {
5132 return BoundFunc4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
5133 FuncInfo<C *, R> >(param1);
5134 }
5135 };
5136
5137 template <class R, class C, class P1, class P2, class P3, class P4>
5138 struct MethodSig4 {
5139 template <R (C::*F)(P1, P2, P3, P4)>
5140 Func5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
5141 FuncInfo<C *, R> >
5142 GetFunc() {
5143 return Func5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
5144 FuncInfo<C *, R> >();
5145 }
5146
5147 template <R (C::*F)(P1, P2, P3, P4)>
5148 BoundFunc5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
5149 FuncInfo<C *, R> >
5150 GetFunc(typename remove_constptr<P1>::type param1) {
5151 return BoundFunc5<R, C *, P1, P2, P3, P4,
5152 CallMethod4<R, C, P1, P2, P3, P4, F>, FuncInfo<C *, R> >(
5153 param1);
5154 }
5155 };
5156
5157 template <class R, class C>
5158 inline MethodSig0<R, C> MatchFunc(R (C::*f)()) {
5159 UPB_UNUSED(f); /* Only used for template parameter deduction. */
5160 return MethodSig0<R, C>();
5161 }
5162
5163 template <class R, class C, class P1>
5164 inline MethodSig1<R, C, P1> MatchFunc(R (C::*f)(P1)) {
5165 UPB_UNUSED(f); /* Only used for template parameter deduction. */
5166 return MethodSig1<R, C, P1>();
5167 }
5168
5169 template <class R, class C, class P1, class P2>
5170 inline MethodSig2<R, C, P1, P2> MatchFunc(R (C::*f)(P1, P2)) {
5171 UPB_UNUSED(f); /* Only used for template parameter deduction. */
5172 return MethodSig2<R, C, P1, P2>();
5173 }
5174
5175 template <class R, class C, class P1, class P2, class P3>
5176 inline MethodSig3<R, C, P1, P2, P3> MatchFunc(R (C::*f)(P1, P2, P3)) {
5177 UPB_UNUSED(f); /* Only used for template parameter deduction. */
5178 return MethodSig3<R, C, P1, P2, P3>();
5179 }
5180
5181 template <class R, class C, class P1, class P2, class P3, class P4>
5182 inline MethodSig4<R, C, P1, P2, P3, P4> MatchFunc(R (C::*f)(P1, P2, P3, P4)) {
5183 UPB_UNUSED(f); /* Only used for template parameter deduction. */
5184 return MethodSig4<R, C, P1, P2, P3, P4>();
5185 }
5186
5187 /* MaybeWrapReturn ************************************************************/
5188
5189 /* Template class that attempts to wrap the return value of the function so it
5190 * matches the expected type. There are two main adjustments it may make:
5191 *
5192 * 1. If the function returns void, make it return the expected type and with
5193 * a value that always indicates success.
5194 * 2. If the function returns bool, make it return the expected type with a
5195 * value that indicates success or failure.
5196 *
5197 * The "expected type" for return is:
5198 * 1. void* for start handlers. If the closure parameter has a different type
5199 * we will cast it to void* for the return in the success case.
5200 * 2. size_t for string buffer handlers.
5201 * 3. bool for everything else. */
5202
5203 /* Template parameters are FuncN type and desired return type. */
5204 template <class F, class R, class Enable = void>
5205 struct MaybeWrapReturn;
5206
5207 /* If the return type matches, return the given function unwrapped. */
5208 template <class F>
5209 struct MaybeWrapReturn<F, typename F::Return> {
5210 typedef F Func;
5211 };
5212
5213 /* Function wrapper that munges the return value from void to (bool)true. */
5214 template <class P1, class P2, void F(P1, P2)>
5215 bool ReturnTrue2(P1 p1, P2 p2) {
5216 F(p1, p2);
5217 return true;
5218 }
5219
5220 template <class P1, class P2, class P3, void F(P1, P2, P3)>
5221 bool ReturnTrue3(P1 p1, P2 p2, P3 p3) {
5222 F(p1, p2, p3);
5223 return true;
5224 }
5225
5226 /* Function wrapper that munges the return value from void to (void*)arg1 */
5227 template <class P1, class P2, void F(P1, P2)>
5228 void *ReturnClosure2(P1 p1, P2 p2) {
5229 F(p1, p2);
5230 return p1;
5231 }
5232
5233 template <class P1, class P2, class P3, void F(P1, P2, P3)>
5234 void *ReturnClosure3(P1 p1, P2 p2, P3 p3) {
5235 F(p1, p2, p3);
5236 return p1;
5237 }
5238
5239 /* Function wrapper that munges the return value from R to void*. */
5240 template <class R, class P1, class P2, R F(P1, P2)>
5241 void *CastReturnToVoidPtr2(P1 p1, P2 p2) {
5242 return F(p1, p2);
5243 }
5244
5245 template <class R, class P1, class P2, class P3, R F(P1, P2, P3)>
5246 void *CastReturnToVoidPtr3(P1 p1, P2 p2, P3 p3) {
5247 return F(p1, p2, p3);
5248 }
5249
5250 /* Function wrapper that munges the return value from bool to void*. */
5251 template <class P1, class P2, bool F(P1, P2)>
5252 void *ReturnClosureOrBreak2(P1 p1, P2 p2) {
5253 return F(p1, p2) ? p1 : UPB_BREAK;
5254 }
5255
5256 template <class P1, class P2, class P3, bool F(P1, P2, P3)>
5257 void *ReturnClosureOrBreak3(P1 p1, P2 p2, P3 p3) {
5258 return F(p1, p2, p3) ? p1 : UPB_BREAK;
5259 }
5260
5261 /* For the string callback, which takes five params, returns the size param. */
5262 template <class P1, class P2,
5263 void F(P1, P2, const char *, size_t, const BufferHandle *)>
5264 size_t ReturnStringLen(P1 p1, P2 p2, const char *p3, size_t p4,
5265 const BufferHandle *p5) {
5266 F(p1, p2, p3, p4, p5);
5267 return p4;
5268 }
5269
5270 /* For the string callback, which takes five params, returns the size param or
5271 * zero. */
5272 template <class P1, class P2,
5273 bool F(P1, P2, const char *, size_t, const BufferHandle *)>
5274 size_t ReturnNOr0(P1 p1, P2 p2, const char *p3, size_t p4,
5275 const BufferHandle *p5) {
5276 return F(p1, p2, p3, p4, p5) ? p4 : 0;
5277 }
5278
5279 /* If we have a function returning void but want a function returning bool, wrap
5280 * it in a function that returns true. */
5281 template <class P1, class P2, void F(P1, P2), class I>
5282 struct MaybeWrapReturn<Func2<void, P1, P2, F, I>, bool> {
5283 typedef Func2<bool, P1, P2, ReturnTrue2<P1, P2, F>, I> Func;
5284 };
5285
5286 template <class P1, class P2, class P3, void F(P1, P2, P3), class I>
5287 struct MaybeWrapReturn<Func3<void, P1, P2, P3, F, I>, bool> {
5288 typedef Func3<bool, P1, P2, P3, ReturnTrue3<P1, P2, P3, F>, I> Func;
5289 };
5290
5291 /* If our function returns void but we want one returning void*, wrap it in a
5292 * function that returns the first argument. */
5293 template <class P1, class P2, void F(P1, P2), class I>
5294 struct MaybeWrapReturn<Func2<void, P1, P2, F, I>, void *> {
5295 typedef Func2<void *, P1, P2, ReturnClosure2<P1, P2, F>, I> Func;
5296 };
5297
5298 template <class P1, class P2, class P3, void F(P1, P2, P3), class I>
5299 struct MaybeWrapReturn<Func3<void, P1, P2, P3, F, I>, void *> {
5300 typedef Func3<void *, P1, P2, P3, ReturnClosure3<P1, P2, P3, F>, I> Func;
5301 };
5302
5303 /* If our function returns R* but we want one returning void*, wrap it in a
5304 * function that casts to void*. */
5305 template <class R, class P1, class P2, R *F(P1, P2), class I>
5306 struct MaybeWrapReturn<Func2<R *, P1, P2, F, I>, void *,
5307 typename disable_if_same<R *, void *>::Type> {
5308 typedef Func2<void *, P1, P2, CastReturnToVoidPtr2<R *, P1, P2, F>, I> Func;
5309 };
5310
5311 template <class R, class P1, class P2, class P3, R *F(P1, P2, P3), class I>
5312 struct MaybeWrapReturn<Func3<R *, P1, P2, P3, F, I>, void *,
5313 typename disable_if_same<R *, void *>::Type> {
5314 typedef Func3<void *, P1, P2, P3, CastReturnToVoidPtr3<R *, P1, P2, P3, F>, I>
5315 Func;
5316 };
5317
5318 /* If our function returns bool but we want one returning void*, wrap it in a
5319 * function that returns either the first param or UPB_BREAK. */
5320 template <class P1, class P2, bool F(P1, P2), class I>
5321 struct MaybeWrapReturn<Func2<bool, P1, P2, F, I>, void *> {
5322 typedef Func2<void *, P1, P2, ReturnClosureOrBreak2<P1, P2, F>, I> Func;
5323 };
5324
5325 template <class P1, class P2, class P3, bool F(P1, P2, P3), class I>
5326 struct MaybeWrapReturn<Func3<bool, P1, P2, P3, F, I>, void *> {
5327 typedef Func3<void *, P1, P2, P3, ReturnClosureOrBreak3<P1, P2, P3, F>, I>
5328 Func;
5329 };
5330
5331 /* If our function returns void but we want one returning size_t, wrap it in a
5332 * function that returns the size argument. */
5333 template <class P1, class P2,
5334 void F(P1, P2, const char *, size_t, const BufferHandle *), class I>
5335 struct MaybeWrapReturn<
5336 Func5<void, P1, P2, const char *, size_t, const BufferHandle *, F, I>,
5337 size_t> {
5338 typedef Func5<size_t, P1, P2, const char *, size_t, const BufferHandle *,
5339 ReturnStringLen<P1, P2, F>, I> Func;
5340 };
5341
5342 /* If our function returns bool but we want one returning size_t, wrap it in a
5343 * function that returns either 0 or the buf size. */
5344 template <class P1, class P2,
5345 bool F(P1, P2, const char *, size_t, const BufferHandle *), class I>
5346 struct MaybeWrapReturn<
5347 Func5<bool, P1, P2, const char *, size_t, const BufferHandle *, F, I>,
5348 size_t> {
5349 typedef Func5<size_t, P1, P2, const char *, size_t, const BufferHandle *,
5350 ReturnNOr0<P1, P2, F>, I> Func;
5351 };
5352
5353 /* ConvertParams **************************************************************/
5354
5355 /* Template class that converts the function parameters if necessary, and
5356 * ignores the HandlerData parameter if appropriate.
5357 *
5358 * Template parameter is the are FuncN function type. */
5359 template <class F, class T>
5360 struct ConvertParams;
5361
5362 /* Function that discards the handler data parameter. */
5363 template <class R, class P1, R F(P1)>
5364 R IgnoreHandlerData2(void *p1, const void *hd) {
5365 UPB_UNUSED(hd);
5366 return F(static_cast<P1>(p1));
5367 }
5368
5369 template <class R, class P1, class P2Wrapper, class P2Wrapped,
5370 R F(P1, P2Wrapped)>
5371 R IgnoreHandlerData3(void *p1, const void *hd, P2Wrapper p2) {
5372 UPB_UNUSED(hd);
5373 return F(static_cast<P1>(p1), p2);
5374 }
5375
5376 template <class R, class P1, class P2, class P3, R F(P1, P2, P3)>
5377 R IgnoreHandlerData4(void *p1, const void *hd, P2 p2, P3 p3) {
5378 UPB_UNUSED(hd);
5379 return F(static_cast<P1>(p1), p2, p3);
5380 }
5381
5382 template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4)>
5383 R IgnoreHandlerData5(void *p1, const void *hd, P2 p2, P3 p3, P4 p4) {
5384 UPB_UNUSED(hd);
5385 return F(static_cast<P1>(p1), p2, p3, p4);
5386 }
5387
5388 template <class R, class P1, R F(P1, const char*, size_t)>
5389 R IgnoreHandlerDataIgnoreHandle(void *p1, const void *hd, const char *p2,
5390 size_t p3, const BufferHandle *handle) {
5391 UPB_UNUSED(hd);
5392 UPB_UNUSED(handle);
5393 return F(static_cast<P1>(p1), p2, p3);
5394 }
5395
5396 /* Function that casts the handler data parameter. */
5397 template <class R, class P1, class P2, R F(P1, P2)>
5398 R CastHandlerData2(void *c, const void *hd) {
5399 return F(static_cast<P1>(c), static_cast<P2>(hd));
5400 }
5401
5402 template <class R, class P1, class P2, class P3Wrapper, class P3Wrapped,
5403 R F(P1, P2, P3Wrapped)>
5404 R CastHandlerData3(void *c, const void *hd, P3Wrapper p3) {
5405 return F(static_cast<P1>(c), static_cast<P2>(hd), p3);
5406 }
5407
5408 template <class R, class P1, class P2, class P3, class P4, class P5,
5409 R F(P1, P2, P3, P4, P5)>
5410 R CastHandlerData5(void *c, const void *hd, P3 p3, P4 p4, P5 p5) {
5411 return F(static_cast<P1>(c), static_cast<P2>(hd), p3, p4, p5);
5412 }
5413
5414 template <class R, class P1, class P2, R F(P1, P2, const char *, size_t)>
5415 R CastHandlerDataIgnoreHandle(void *c, const void *hd, const char *p3,
5416 size_t p4, const BufferHandle *handle) {
5417 UPB_UNUSED(handle);
5418 return F(static_cast<P1>(c), static_cast<P2>(hd), p3, p4);
5419 }
5420
5421 /* For unbound functions, ignore the handler data. */
5422 template <class R, class P1, R F(P1), class I, class T>
5423 struct ConvertParams<Func1<R, P1, F, I>, T> {
5424 typedef Func2<R, void *, const void *, IgnoreHandlerData2<R, P1, F>, I> Func;
5425 };
5426
5427 template <class R, class P1, class P2, R F(P1, P2), class I,
5428 class R2, class P1_2, class P2_2, class P3_2>
5429 struct ConvertParams<Func2<R, P1, P2, F, I>,
5430 R2 (*)(P1_2, P2_2, P3_2)> {
5431 typedef Func3<R, void *, const void *, P3_2,
5432 IgnoreHandlerData3<R, P1, P3_2, P2, F>, I> Func;
5433 };
5434
5435 /* For StringBuffer only; this ignores both the handler data and the
5436 * BufferHandle. */
5437 template <class R, class P1, R F(P1, const char *, size_t), class I, class T>
5438 struct ConvertParams<Func3<R, P1, const char *, size_t, F, I>, T> {
5439 typedef Func5<R, void *, const void *, const char *, size_t,
5440 const BufferHandle *, IgnoreHandlerDataIgnoreHandle<R, P1, F>,
5441 I> Func;
5442 };
5443
5444 template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
5445 class I, class T>
5446 struct ConvertParams<Func4<R, P1, P2, P3, P4, F, I>, T> {
5447 typedef Func5<R, void *, const void *, P2, P3, P4,
5448 IgnoreHandlerData5<R, P1, P2, P3, P4, F>, I> Func;
5449 };
5450
5451 /* For bound functions, cast the handler data. */
5452 template <class R, class P1, class P2, R F(P1, P2), class I, class T>
5453 struct ConvertParams<BoundFunc2<R, P1, P2, F, I>, T> {
5454 typedef Func2<R, void *, const void *, CastHandlerData2<R, P1, P2, F>, I>
5455 Func;
5456 };
5457
5458 template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I,
5459 class R2, class P1_2, class P2_2, class P3_2>
5460 struct ConvertParams<BoundFunc3<R, P1, P2, P3, F, I>,
5461 R2 (*)(P1_2, P2_2, P3_2)> {
5462 typedef Func3<R, void *, const void *, P3_2,
5463 CastHandlerData3<R, P1, P2, P3_2, P3, F>, I> Func;
5464 };
5465
5466 /* For StringBuffer only; this ignores the BufferHandle. */
5467 template <class R, class P1, class P2, R F(P1, P2, const char *, size_t),
5468 class I, class T>
5469 struct ConvertParams<BoundFunc4<R, P1, P2, const char *, size_t, F, I>, T> {
5470 typedef Func5<R, void *, const void *, const char *, size_t,
5471 const BufferHandle *, CastHandlerDataIgnoreHandle<R, P1, P2, F>,
5472 I> Func;
5473 };
5474
5475 template <class R, class P1, class P2, class P3, class P4, class P5,
5476 R F(P1, P2, P3, P4, P5), class I, class T>
5477 struct ConvertParams<BoundFunc5<R, P1, P2, P3, P4, P5, F, I>, T> {
5478 typedef Func5<R, void *, const void *, P3, P4, P5,
5479 CastHandlerData5<R, P1, P2, P3, P4, P5, F>, I> Func;
5480 };
5481
5482 /* utype/ltype are upper/lower-case, ctype is canonical C type, vtype is
5483 * variant C type. */
5484 #define TYPE_METHODS(utype, ltype, ctype, vtype) \
5485 template <> struct CanonicalType<vtype> { \
5486 typedef ctype Type; \
5487 }; \
5488 template <> \
5489 inline bool Handlers::SetValueHandler<vtype>( \
5490 const FieldDef *f, \
5491 const Handlers::utype ## Handler& handler) { \
5492 assert(!handler.registered_); \
5493 handler.AddCleanup(this); \
5494 handler.registered_ = true; \
5495 return upb_handlers_set##ltype(this, f, handler.handler_, &handler.attr_); \
5496 } \
5497
5498 TYPE_METHODS(Double, double, double, double)
5499 TYPE_METHODS(Float, float, float, float)
5500 TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64_T)
5501 TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32_T)
5502 TYPE_METHODS(Int64, int64, int64_t, UPB_INT64_T)
5503 TYPE_METHODS(Int32, int32, int32_t, UPB_INT32_T)
5504 TYPE_METHODS(Bool, bool, bool, bool)
5505
5506 #ifdef UPB_TWO_32BIT_TYPES
5507 TYPE_METHODS(Int32, int32, int32_t, UPB_INT32ALT_T)
5508 TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32ALT_T)
5509 #endif
5510
5511 #ifdef UPB_TWO_64BIT_TYPES
5512 TYPE_METHODS(Int64, int64, int64_t, UPB_INT64ALT_T)
5513 TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64ALT_T)
5514 #endif
5515 #undef TYPE_METHODS
5516
5517 template <> struct CanonicalType<Status*> {
5518 typedef Status* Type;
5519 };
5520
5521 /* Type methods that are only one-per-canonical-type and not
5522 * one-per-cvariant. */
5523
5524 #define TYPE_METHODS(utype, ctype) \
5525 inline bool Handlers::Set##utype##Handler(const FieldDef *f, \
5526 const utype##Handler &h) { \
5527 return SetValueHandler<ctype>(f, h); \
5528 } \
5529
5530 TYPE_METHODS(Double, double)
5531 TYPE_METHODS(Float, float)
5532 TYPE_METHODS(UInt64, uint64_t)
5533 TYPE_METHODS(UInt32, uint32_t)
5534 TYPE_METHODS(Int64, int64_t)
5535 TYPE_METHODS(Int32, int32_t)
5536 TYPE_METHODS(Bool, bool)
5537 #undef TYPE_METHODS
5538
5539 template <class F> struct ReturnOf;
5540
5541 template <class R, class P1, class P2>
5542 struct ReturnOf<R (*)(P1, P2)> {
5543 typedef R Return;
5544 };
5545
5546 template <class R, class P1, class P2, class P3>
5547 struct ReturnOf<R (*)(P1, P2, P3)> {
5548 typedef R Return;
5549 };
5550
5551 template <class R, class P1, class P2, class P3, class P4>
5552 struct ReturnOf<R (*)(P1, P2, P3, P4)> {
5553 typedef R Return;
5554 };
5555
5556 template <class R, class P1, class P2, class P3, class P4, class P5>
5557 struct ReturnOf<R (*)(P1, P2, P3, P4, P5)> {
5558 typedef R Return;
5559 };
5560
5561 template<class T> const void *UniquePtrForType() {
5562 static const char ch = 0;
5563 return &ch;
5564 }
5565
5566 template <class T>
5567 template <class F>
5568 inline Handler<T>::Handler(F func)
5569 : registered_(false),
5570 cleanup_data_(func.GetData()),
5571 cleanup_func_(func.GetCleanup()) {
5572 upb_handlerattr_sethandlerdata(&attr_, func.GetData());
5573 typedef typename ReturnOf<T>::Return Return;
5574 typedef typename ConvertParams<F, T>::Func ConvertedParamsFunc;
5575 typedef typename MaybeWrapReturn<ConvertedParamsFunc, Return>::Func
5576 ReturnWrappedFunc;
5577 handler_ = ReturnWrappedFunc().Call;
5578
5579 /* Set attributes based on what templates can statically tell us about the
5580 * user's function. */
5581
5582 /* If the original function returns void, then we know that we wrapped it to
5583 * always return ok. */
5584 bool always_ok = is_same<typename F::FuncInfo::Return, void>::value;
5585 attr_.SetAlwaysOk(always_ok);
5586
5587 /* Closure parameter and return type. */
5588 attr_.SetClosureType(UniquePtrForType<typename F::FuncInfo::Closure>());
5589
5590 /* We use the closure type (from the first parameter) if the return type is
5591 * void or bool, since these are the two cases we wrap to return the closure's
5592 * type anyway.
5593 *
5594 * This is all nonsense for non START* handlers, but it doesn't matter because
5595 * in that case the value will be ignored. */
5596 typedef typename FirstUnlessVoidOrBool<typename F::FuncInfo::Return,
5597 typename F::FuncInfo::Closure>::value
5598 EffectiveReturn;
5599 attr_.SetReturnClosureType(UniquePtrForType<EffectiveReturn>());
5600 }
5601
5602 template <class T>
5603 inline Handler<T>::~Handler() {
5604 assert(registered_);
5605 }
5606
5607 inline HandlerAttributes::HandlerAttributes() { upb_handlerattr_init(this); }
5608 inline HandlerAttributes::~HandlerAttributes() { upb_handlerattr_uninit(this); }
5609 inline bool HandlerAttributes::SetHandlerData(const void *hd) {
5610 return upb_handlerattr_sethandlerdata(this, hd);
5611 }
5612 inline const void* HandlerAttributes::handler_data() const {
5613 return upb_handlerattr_handlerdata(this);
5614 }
5615 inline bool HandlerAttributes::SetClosureType(const void *type) {
5616 return upb_handlerattr_setclosuretype(this, type);
5617 }
5618 inline const void* HandlerAttributes::closure_type() const {
5619 return upb_handlerattr_closuretype(this);
5620 }
5621 inline bool HandlerAttributes::SetReturnClosureType(const void *type) {
5622 return upb_handlerattr_setreturnclosuretype(this, type);
5623 }
5624 inline const void* HandlerAttributes::return_closure_type() const {
5625 return upb_handlerattr_returnclosuretype(this);
5626 }
5627 inline bool HandlerAttributes::SetAlwaysOk(bool always_ok) {
5628 return upb_handlerattr_setalwaysok(this, always_ok);
5629 }
5630 inline bool HandlerAttributes::always_ok() const {
5631 return upb_handlerattr_alwaysok(this);
5632 }
5633
5634 inline BufferHandle::BufferHandle() { upb_bufhandle_init(this); }
5635 inline BufferHandle::~BufferHandle() { upb_bufhandle_uninit(this); }
5636 inline const char* BufferHandle::buffer() const {
5637 return upb_bufhandle_buf(this);
5638 }
5639 inline size_t BufferHandle::object_offset() const {
5640 return upb_bufhandle_objofs(this);
5641 }
5642 inline void BufferHandle::SetBuffer(const char* buf, size_t ofs) {
5643 upb_bufhandle_setbuf(this, buf, ofs);
5644 }
5645 template <class T>
5646 void BufferHandle::SetAttachedObject(const T* obj) {
5647 upb_bufhandle_setobj(this, obj, UniquePtrForType<T>());
5648 }
5649 template <class T>
5650 const T* BufferHandle::GetAttachedObject() const {
5651 return upb_bufhandle_objtype(this) == UniquePtrForType<T>()
5652 ? static_cast<const T *>(upb_bufhandle_obj(this))
5653 : NULL;
5654 }
5655
5656 inline reffed_ptr<Handlers> Handlers::New(const MessageDef *m) {
5657 upb_handlers *h = upb_handlers_new(m, &h);
5658 return reffed_ptr<Handlers>(h, &h);
5659 }
5660 inline reffed_ptr<const Handlers> Handlers::NewFrozen(
5661 const MessageDef *m, upb_handlers_callback *callback,
5662 const void *closure) {
5663 const upb_handlers *h = upb_handlers_newfrozen(m, &h, callback, closure);
5664 return reffed_ptr<const Handlers>(h, &h);
5665 }
5666 inline const Status* Handlers::status() {
5667 return upb_handlers_status(this);
5668 }
5669 inline void Handlers::ClearError() {
5670 return upb_handlers_clearerr(this);
5671 }
5672 inline bool Handlers::Freeze(Status *s) {
5673 upb::Handlers* h = this;
5674 return upb_handlers_freeze(&h, 1, s);
5675 }
5676 inline bool Handlers::Freeze(Handlers *const *handlers, int n, Status *s) {
5677 return upb_handlers_freeze(handlers, n, s);
5678 }
5679 inline bool Handlers::Freeze(const std::vector<Handlers*>& h, Status* status) {
5680 return upb_handlers_freeze((Handlers* const*)&h[0], h.size(), status);
5681 }
5682 inline const MessageDef *Handlers::message_def() const {
5683 return upb_handlers_msgdef(this);
5684 }
5685 inline bool Handlers::AddCleanup(void *p, upb_handlerfree *func) {
5686 return upb_handlers_addcleanup(this, p, func);
5687 }
5688 inline bool Handlers::SetStartMessageHandler(
5689 const Handlers::StartMessageHandler &handler) {
5690 assert(!handler.registered_);
5691 handler.registered_ = true;
5692 handler.AddCleanup(this);
5693 return upb_handlers_setstartmsg(this, handler.handler_, &handler.attr_);
5694 }
5695 inline bool Handlers::SetEndMessageHandler(
5696 const Handlers::EndMessageHandler &handler) {
5697 assert(!handler.registered_);
5698 handler.registered_ = true;
5699 handler.AddCleanup(this);
5700 return upb_handlers_setendmsg(this, handler.handler_, &handler.attr_);
5701 }
5702 inline bool Handlers::SetStartStringHandler(const FieldDef *f,
5703 const StartStringHandler &handler) {
5704 assert(!handler.registered_);
5705 handler.registered_ = true;
5706 handler.AddCleanup(this);
5707 return upb_handlers_setstartstr(this, f, handler.handler_, &handler.attr_);
5708 }
5709 inline bool Handlers::SetEndStringHandler(const FieldDef *f,
5710 const EndFieldHandler &handler) {
5711 assert(!handler.registered_);
5712 handler.registered_ = true;
5713 handler.AddCleanup(this);
5714 return upb_handlers_setendstr(this, f, handler.handler_, &handler.attr_);
5715 }
5716 inline bool Handlers::SetStringHandler(const FieldDef *f,
5717 const StringHandler& handler) {
5718 assert(!handler.registered_);
5719 handler.registered_ = true;
5720 handler.AddCleanup(this);
5721 return upb_handlers_setstring(this, f, handler.handler_, &handler.attr_);
5722 }
5723 inline bool Handlers::SetStartSequenceHandler(
5724 const FieldDef *f, const StartFieldHandler &handler) {
5725 assert(!handler.registered_);
5726 handler.registered_ = true;
5727 handler.AddCleanup(this);
5728 return upb_handlers_setstartseq(this, f, handler.handler_, &handler.attr_);
5729 }
5730 inline bool Handlers::SetStartSubMessageHandler(
5731 const FieldDef *f, const StartFieldHandler &handler) {
5732 assert(!handler.registered_);
5733 handler.registered_ = true;
5734 handler.AddCleanup(this);
5735 return upb_handlers_setstartsubmsg(this, f, handler.handler_, &handler.attr_);
5736 }
5737 inline bool Handlers::SetEndSubMessageHandler(const FieldDef *f,
5738 const EndFieldHandler &handler) {
5739 assert(!handler.registered_);
5740 handler.registered_ = true;
5741 handler.AddCleanup(this);
5742 return upb_handlers_setendsubmsg(this, f, handler.handler_, &handler.attr_);
5743 }
5744 inline bool Handlers::SetEndSequenceHandler(const FieldDef *f,
5745 const EndFieldHandler &handler) {
5746 assert(!handler.registered_);
5747 handler.registered_ = true;
5748 handler.AddCleanup(this);
5749 return upb_handlers_setendseq(this, f, handler.handler_, &handler.attr_);
5750 }
5751 inline bool Handlers::SetSubHandlers(const FieldDef *f, const Handlers *sub) {
5752 return upb_handlers_setsubhandlers(this, f, sub);
5753 }
5754 inline const Handlers *Handlers::GetSubHandlers(const FieldDef *f) const {
5755 return upb_handlers_getsubhandlers(this, f);
5756 }
5757 inline const Handlers *Handlers::GetSubHandlers(Handlers::Selector sel) const {
5758 return upb_handlers_getsubhandlers_sel(this, sel);
5759 }
5760 inline bool Handlers::GetSelector(const FieldDef *f, Handlers::Type type,
5761 Handlers::Selector *s) {
5762 return upb_handlers_getselector(f, type, s);
5763 }
5764 inline Handlers::Selector Handlers::GetEndSelector(Handlers::Selector start) {
5765 return upb_handlers_getendselector(start);
5766 }
5767 inline Handlers::GenericFunction *Handlers::GetHandler(
5768 Handlers::Selector selector) {
5769 return upb_handlers_gethandler(this, selector);
5770 }
5771 inline const void *Handlers::GetHandlerData(Handlers::Selector selector) {
5772 return upb_handlers_gethandlerdata(this, selector);
5773 }
5774
5775 inline BytesHandler::BytesHandler() {
5776 upb_byteshandler_init(this);
5777 }
5778
5779 inline BytesHandler::~BytesHandler() {}
5780
5781 } /* namespace upb */
5782
5783 #endif /* __cplusplus */
5784
5785
5786 #undef UPB_TWO_32BIT_TYPES
5787 #undef UPB_TWO_64BIT_TYPES
5788 #undef UPB_INT32_T
5789 #undef UPB_UINT32_T
5790 #undef UPB_INT32ALT_T
5791 #undef UPB_UINT32ALT_T
5792 #undef UPB_INT64_T
5793 #undef UPB_UINT64_T
5794 #undef UPB_INT64ALT_T
5795 #undef UPB_UINT64ALT_T
5796
5797 #endif /* UPB_HANDLERS_INL_H_ */
5798
5799 #endif /* UPB_HANDLERS_H */
5800 /*
5801 ** upb::Sink (upb_sink)
5802 ** upb::BytesSink (upb_bytessink)
5803 **
5804 ** A upb_sink is an object that binds a upb_handlers object to some runtime
5805 ** state. It is the object that can actually receive data via the upb_handlers
5806 ** interface.
5807 **
5808 ** Unlike upb_def and upb_handlers, upb_sink is never frozen, immutable, or
5809 ** thread-safe. You can create as many of them as you want, but each one may
5810 ** only be used in a single thread at a time.
5811 **
5812 ** If we compare with class-based OOP, a you can think of a upb_def as an
5813 ** abstract base class, a upb_handlers as a concrete derived class, and a
5814 ** upb_sink as an object (class instance).
5815 */
5816
5817 #ifndef UPB_SINK_H
5818 #define UPB_SINK_H
5819
5820
5821 #ifdef __cplusplus
5822 namespace upb {
5823 class BufferSource;
5824 class BytesSink;
5825 class Sink;
5826 }
5827 #endif
5828
5829 UPB_DECLARE_TYPE(upb::BufferSource, upb_bufsrc)
5830 UPB_DECLARE_TYPE(upb::BytesSink, upb_bytessink)
5831 UPB_DECLARE_TYPE(upb::Sink, upb_sink)
5832
5833 #ifdef __cplusplus
5834
5835 /* A upb::Sink is an object that binds a upb::Handlers object to some runtime
5836 * state. It represents an endpoint to which data can be sent.
5837 *
5838 * TODO(haberman): right now all of these functions take selectors. Should they
5839 * take selectorbase instead?
5840 *
5841 * ie. instead of calling:
5842 * sink->StartString(FOO_FIELD_START_STRING, ...)
5843 * a selector base would let you say:
5844 * sink->StartString(FOO_FIELD, ...)
5845 *
5846 * This would make call sites a little nicer and require emitting fewer selector
5847 * definitions in .h files.
5848 *
5849 * But the current scheme has the benefit that you can retrieve a function
5850 * pointer for any handler with handlers->GetHandler(selector), without having
5851 * to have a separate GetHandler() function for each handler type. The JIT
5852 * compiler uses this. To accommodate we'd have to expose a separate
5853 * GetHandler() for every handler type.
5854 *
5855 * Also to ponder: selectors right now are independent of a specific Handlers
5856 * instance. In other words, they allocate a number to every possible handler
5857 * that *could* be registered, without knowing anything about what handlers
5858 * *are* registered. That means that using selectors as table offsets prohibits
5859 * us from compacting the handler table at Freeze() time. If the table is very
5860 * sparse, this could be wasteful.
5861 *
5862 * Having another selector-like thing that is specific to a Handlers instance
5863 * would allow this compacting, but then it would be impossible to write code
5864 * ahead-of-time that can be bound to any Handlers instance at runtime. For
5865 * example, a .proto file parser written as straight C will not know what
5866 * Handlers it will be bound to, so when it calls sink->StartString() what
5867 * selector will it pass? It needs a selector like we have today, that is
5868 * independent of any particular upb::Handlers.
5869 *
5870 * Is there a way then to allow Handlers table compaction? */
5871 class upb::Sink {
5872 public:
5873 /* Constructor with no initialization; must be Reset() before use. */
5874 Sink() {}
5875
5876 /* Constructs a new sink for the given frozen handlers and closure.
5877 *
5878 * TODO: once the Handlers know the expected closure type, verify that T
5879 * matches it. */
5880 template <class T> Sink(const Handlers* handlers, T* closure);
5881
5882 /* Resets the value of the sink. */
5883 template <class T> void Reset(const Handlers* handlers, T* closure);
5884
5885 /* Returns the top-level object that is bound to this sink.
5886 *
5887 * TODO: once the Handlers know the expected closure type, verify that T
5888 * matches it. */
5889 template <class T> T* GetObject() const;
5890
5891 /* Functions for pushing data into the sink.
5892 *
5893 * These return false if processing should stop (either due to error or just
5894 * to suspend).
5895 *
5896 * These may not be called from within one of the same sink's handlers (in
5897 * other words, handlers are not re-entrant). */
5898
5899 /* Should be called at the start and end of every message; both the top-level
5900 * message and submessages. This means that submessages should use the
5901 * following sequence:
5902 * sink->StartSubMessage(startsubmsg_selector);
5903 * sink->StartMessage();
5904 * // ...
5905 * sink->EndMessage(&status);
5906 * sink->EndSubMessage(endsubmsg_selector); */
5907 bool StartMessage();
5908 bool EndMessage(Status* status);
5909
5910 /* Putting of individual values. These work for both repeated and
5911 * non-repeated fields, but for repeated fields you must wrap them in
5912 * calls to StartSequence()/EndSequence(). */
5913 bool PutInt32(Handlers::Selector s, int32_t val);
5914 bool PutInt64(Handlers::Selector s, int64_t val);
5915 bool PutUInt32(Handlers::Selector s, uint32_t val);
5916 bool PutUInt64(Handlers::Selector s, uint64_t val);
5917 bool PutFloat(Handlers::Selector s, float val);
5918 bool PutDouble(Handlers::Selector s, double val);
5919 bool PutBool(Handlers::Selector s, bool val);
5920
5921 /* Putting of string/bytes values. Each string can consist of zero or more
5922 * non-contiguous buffers of data.
5923 *
5924 * For StartString(), the function will write a sink for the string to "sub."
5925 * The sub-sink must be used for any/all PutStringBuffer() calls. */
5926 bool StartString(Handlers::Selector s, size_t size_hint, Sink* sub);
5927 size_t PutStringBuffer(Handlers::Selector s, const char *buf, size_t len,
5928 const BufferHandle *handle);
5929 bool EndString(Handlers::Selector s);
5930
5931 /* For submessage fields.
5932 *
5933 * For StartSubMessage(), the function will write a sink for the string to
5934 * "sub." The sub-sink must be used for any/all handlers called within the
5935 * submessage. */
5936 bool StartSubMessage(Handlers::Selector s, Sink* sub);
5937 bool EndSubMessage(Handlers::Selector s);
5938
5939 /* For repeated fields of any type, the sequence of values must be wrapped in
5940 * these calls.
5941 *
5942 * For StartSequence(), the function will write a sink for the string to
5943 * "sub." The sub-sink must be used for any/all handlers called within the
5944 * sequence. */
5945 bool StartSequence(Handlers::Selector s, Sink* sub);
5946 bool EndSequence(Handlers::Selector s);
5947
5948 /* Copy and assign specifically allowed.
5949 * We don't even bother making these members private because so many
5950 * functions need them and this is mainly just a dumb data container anyway.
5951 */
5952 #else
5953 struct upb_sink {
5954 #endif
5955 const upb_handlers *handlers;
5956 void *closure;
5957 };
5958
5959 #ifdef __cplusplus
5960 class upb::BytesSink {
5961 public:
5962 BytesSink() {}
5963
5964 /* Constructs a new sink for the given frozen handlers and closure.
5965 *
5966 * TODO(haberman): once the Handlers know the expected closure type, verify
5967 * that T matches it. */
5968 template <class T> BytesSink(const BytesHandler* handler, T* closure);
5969
5970 /* Resets the value of the sink. */
5971 template <class T> void Reset(const BytesHandler* handler, T* closure);
5972
5973 bool Start(size_t size_hint, void **subc);
5974 size_t PutBuffer(void *subc, const char *buf, size_t len,
5975 const BufferHandle *handle);
5976 bool End();
5977 #else
5978 struct upb_bytessink {
5979 #endif
5980 const upb_byteshandler *handler;
5981 void *closure;
5982 };
5983
5984 #ifdef __cplusplus
5985
5986 /* A class for pushing a flat buffer of data to a BytesSink.
5987 * You can construct an instance of this to get a resumable source,
5988 * or just call the static PutBuffer() to do a non-resumable push all in one
5989 * go. */
5990 class upb::BufferSource {
5991 public:
5992 BufferSource();
5993 BufferSource(const char* buf, size_t len, BytesSink* sink);
5994
5995 /* Returns true if the entire buffer was pushed successfully. Otherwise the
5996 * next call to PutNext() will resume where the previous one left off.
5997 * TODO(haberman): implement this. */
5998 bool PutNext();
5999
6000 /* A static version; with this version is it not possible to resume in the
6001 * case of failure or a partially-consumed buffer. */
6002 static bool PutBuffer(const char* buf, size_t len, BytesSink* sink);
6003
6004 template <class T> static bool PutBuffer(const T& str, BytesSink* sink) {
6005 return PutBuffer(str.c_str(), str.size(), sink);
6006 }
6007 #else
6008 struct upb_bufsrc {
6009 char dummy;
6010 #endif
6011 };
6012
6013 UPB_BEGIN_EXTERN_C
6014
6015 /* Inline definitions. */
6016
6017 UPB_INLINE void upb_bytessink_reset(upb_bytessink *s, const upb_byteshandler *h,
6018 void *closure) {
6019 s->handler = h;
6020 s->closure = closure;
6021 }
6022
6023 UPB_INLINE bool upb_bytessink_start(upb_bytessink *s, size_t size_hint,
6024 void **subc) {
6025 typedef upb_startstr_handlerfunc func;
6026 func *start;
6027 *subc = s->closure;
6028 if (!s->handler) return true;
6029 start = (func *)s->handler->table[UPB_STARTSTR_SELECTOR].func;
6030
6031 if (!start) return true;
6032 *subc = start(s->closure, upb_handlerattr_handlerdata(
6033 &s->handler->table[UPB_STARTSTR_SELECTOR].attr),
6034 size_hint);
6035 return *subc != NULL;
6036 }
6037
6038 UPB_INLINE size_t upb_bytessink_putbuf(upb_bytessink *s, void *subc,
6039 const char *buf, size_t size,
6040 const upb_bufhandle* handle) {
6041 typedef upb_string_handlerfunc func;
6042 func *putbuf;
6043 if (!s->handler) return true;
6044 putbuf = (func *)s->handler->table[UPB_STRING_SELECTOR].func;
6045
6046 if (!putbuf) return true;
6047 return putbuf(subc, upb_handlerattr_handlerdata(
6048 &s->handler->table[UPB_STRING_SELECTOR].attr),
6049 buf, size, handle);
6050 }
6051
6052 UPB_INLINE bool upb_bytessink_end(upb_bytessink *s) {
6053 typedef upb_endfield_handlerfunc func;
6054 func *end;
6055 if (!s->handler) return true;
6056 end = (func *)s->handler->table[UPB_ENDSTR_SELECTOR].func;
6057
6058 if (!end) return true;
6059 return end(s->closure,
6060 upb_handlerattr_handlerdata(
6061 &s->handler->table[UPB_ENDSTR_SELECTOR].attr));
6062 }
6063
6064 UPB_INLINE bool upb_bufsrc_putbuf(const char *buf, size_t len,
6065 upb_bytessink *sink) {
6066 void *subc;
6067 bool ret;
6068 upb_bufhandle handle;
6069 upb_bufhandle_init(&handle);
6070 upb_bufhandle_setbuf(&handle, buf, 0);
6071 ret = upb_bytessink_start(sink, len, &subc);
6072 if (ret && len != 0) {
6073 ret = (upb_bytessink_putbuf(sink, subc, buf, len, &handle) >= len);
6074 }
6075 if (ret) {
6076 ret = upb_bytessink_end(sink);
6077 }
6078 upb_bufhandle_uninit(&handle);
6079 return ret;
6080 }
6081
6082 #define PUTVAL(type, ctype) \
6083 UPB_INLINE bool upb_sink_put##type(upb_sink *s, upb_selector_t sel, \
6084 ctype val) { \
6085 typedef upb_##type##_handlerfunc functype; \
6086 functype *func; \
6087 const void *hd; \
6088 if (!s->handlers) return true; \
6089 func = (functype *)upb_handlers_gethandler(s->handlers, sel); \
6090 if (!func) return true; \
6091 hd = upb_handlers_gethandlerdata(s->handlers, sel); \
6092 return func(s->closure, hd, val); \
6093 }
6094
6095 PUTVAL(int32, int32_t)
6096 PUTVAL(int64, int64_t)
6097 PUTVAL(uint32, uint32_t)
6098 PUTVAL(uint64, uint64_t)
6099 PUTVAL(float, float)
6100 PUTVAL(double, double)
6101 PUTVAL(bool, bool)
6102 #undef PUTVAL
6103
6104 UPB_INLINE void upb_sink_reset(upb_sink *s, const upb_handlers *h, void *c) {
6105 s->handlers = h;
6106 s->closure = c;
6107 }
6108
6109 UPB_INLINE size_t upb_sink_putstring(upb_sink *s, upb_selector_t sel,
6110 const char *buf, size_t n,
6111 const upb_bufhandle *handle) {
6112 typedef upb_string_handlerfunc func;
6113 func *handler;
6114 const void *hd;
6115 if (!s->handlers) return n;
6116 handler = (func *)upb_handlers_gethandler(s->handlers, sel);
6117
6118 if (!handler) return n;
6119 hd = upb_handlers_gethandlerdata(s->handlers, sel);
6120 return handler(s->closure, hd, buf, n, handle);
6121 }
6122
6123 UPB_INLINE bool upb_sink_startmsg(upb_sink *s) {
6124 typedef upb_startmsg_handlerfunc func;
6125 func *startmsg;
6126 const void *hd;
6127 if (!s->handlers) return true;
6128 startmsg = (func*)upb_handlers_gethandler(s->handlers, UPB_STARTMSG_SELECTOR);
6129
6130 if (!startmsg) return true;
6131 hd = upb_handlers_gethandlerdata(s->handlers, UPB_STARTMSG_SELECTOR);
6132 return startmsg(s->closure, hd);
6133 }
6134
6135 UPB_INLINE bool upb_sink_endmsg(upb_sink *s, upb_status *status) {
6136 typedef upb_endmsg_handlerfunc func;
6137 func *endmsg;
6138 const void *hd;
6139 if (!s->handlers) return true;
6140 endmsg = (func *)upb_handlers_gethandler(s->handlers, UPB_ENDMSG_SELECTOR);
6141
6142 if (!endmsg) return true;
6143 hd = upb_handlers_gethandlerdata(s->handlers, UPB_ENDMSG_SELECTOR);
6144 return endmsg(s->closure, hd, status);
6145 }
6146
6147 UPB_INLINE bool upb_sink_startseq(upb_sink *s, upb_selector_t sel,
6148 upb_sink *sub) {
6149 typedef upb_startfield_handlerfunc func;
6150 func *startseq;
6151 const void *hd;
6152 sub->closure = s->closure;
6153 sub->handlers = s->handlers;
6154 if (!s->handlers) return true;
6155 startseq = (func*)upb_handlers_gethandler(s->handlers, sel);
6156
6157 if (!startseq) return true;
6158 hd = upb_handlers_gethandlerdata(s->handlers, sel);
6159 sub->closure = startseq(s->closure, hd);
6160 return sub->closure ? true : false;
6161 }
6162
6163 UPB_INLINE bool upb_sink_endseq(upb_sink *s, upb_selector_t sel) {
6164 typedef upb_endfield_handlerfunc func;
6165 func *endseq;
6166 const void *hd;
6167 if (!s->handlers) return true;
6168 endseq = (func*)upb_handlers_gethandler(s->handlers, sel);
6169
6170 if (!endseq) return true;
6171 hd = upb_handlers_gethandlerdata(s->handlers, sel);
6172 return endseq(s->closure, hd);
6173 }
6174
6175 UPB_INLINE bool upb_sink_startstr(upb_sink *s, upb_selector_t sel,
6176 size_t size_hint, upb_sink *sub) {
6177 typedef upb_startstr_handlerfunc func;
6178 func *startstr;
6179 const void *hd;
6180 sub->closure = s->closure;
6181 sub->handlers = s->handlers;
6182 if (!s->handlers) return true;
6183 startstr = (func*)upb_handlers_gethandler(s->handlers, sel);
6184
6185 if (!startstr) return true;
6186 hd = upb_handlers_gethandlerdata(s->handlers, sel);
6187 sub->closure = startstr(s->closure, hd, size_hint);
6188 return sub->closure ? true : false;
6189 }
6190
6191 UPB_INLINE bool upb_sink_endstr(upb_sink *s, upb_selector_t sel) {
6192 typedef upb_endfield_handlerfunc func;
6193 func *endstr;
6194 const void *hd;
6195 if (!s->handlers) return true;
6196 endstr = (func*)upb_handlers_gethandler(s->handlers, sel);
6197
6198 if (!endstr) return true;
6199 hd = upb_handlers_gethandlerdata(s->handlers, sel);
6200 return endstr(s->closure, hd);
6201 }
6202
6203 UPB_INLINE bool upb_sink_startsubmsg(upb_sink *s, upb_selector_t sel,
6204 upb_sink *sub) {
6205 typedef upb_startfield_handlerfunc func;
6206 func *startsubmsg;
6207 const void *hd;
6208 sub->closure = s->closure;
6209 if (!s->handlers) {
6210 sub->handlers = NULL;
6211 return true;
6212 }
6213 sub->handlers = upb_handlers_getsubhandlers_sel(s->handlers, sel);
6214 startsubmsg = (func*)upb_handlers_gethandler(s->handlers, sel);
6215
6216 if (!startsubmsg) return true;
6217 hd = upb_handlers_gethandlerdata(s->handlers, sel);
6218 sub->closure = startsubmsg(s->closure, hd);
6219 return sub->closure ? true : false;
6220 }
6221
6222 UPB_INLINE bool upb_sink_endsubmsg(upb_sink *s, upb_selector_t sel) {
6223 typedef upb_endfield_handlerfunc func;
6224 func *endsubmsg;
6225 const void *hd;
6226 if (!s->handlers) return true;
6227 endsubmsg = (func*)upb_handlers_gethandler(s->handlers, sel);
6228
6229 if (!endsubmsg) return s->closure;
6230 hd = upb_handlers_gethandlerdata(s->handlers, sel);
6231 return endsubmsg(s->closure, hd);
6232 }
6233
6234 UPB_END_EXTERN_C
6235
6236 #ifdef __cplusplus
6237
6238 namespace upb {
6239
6240 template <class T> Sink::Sink(const Handlers* handlers, T* closure) {
6241 upb_sink_reset(this, handlers, closure);
6242 }
6243 template <class T>
6244 inline void Sink::Reset(const Handlers* handlers, T* closure) {
6245 upb_sink_reset(this, handlers, closure);
6246 }
6247 inline bool Sink::StartMessage() {
6248 return upb_sink_startmsg(this);
6249 }
6250 inline bool Sink::EndMessage(Status* status) {
6251 return upb_sink_endmsg(this, status);
6252 }
6253 inline bool Sink::PutInt32(Handlers::Selector sel, int32_t val) {
6254 return upb_sink_putint32(this, sel, val);
6255 }
6256 inline bool Sink::PutInt64(Handlers::Selector sel, int64_t val) {
6257 return upb_sink_putint64(this, sel, val);
6258 }
6259 inline bool Sink::PutUInt32(Handlers::Selector sel, uint32_t val) {
6260 return upb_sink_putuint32(this, sel, val);
6261 }
6262 inline bool Sink::PutUInt64(Handlers::Selector sel, uint64_t val) {
6263 return upb_sink_putuint64(this, sel, val);
6264 }
6265 inline bool Sink::PutFloat(Handlers::Selector sel, float val) {
6266 return upb_sink_putfloat(this, sel, val);
6267 }
6268 inline bool Sink::PutDouble(Handlers::Selector sel, double val) {
6269 return upb_sink_putdouble(this, sel, val);
6270 }
6271 inline bool Sink::PutBool(Handlers::Selector sel, bool val) {
6272 return upb_sink_putbool(this, sel, val);
6273 }
6274 inline bool Sink::StartString(Handlers::Selector sel, size_t size_hint,
6275 Sink *sub) {
6276 return upb_sink_startstr(this, sel, size_hint, sub);
6277 }
6278 inline size_t Sink::PutStringBuffer(Handlers::Selector sel, const char *buf,
6279 size_t len, const BufferHandle* handle) {
6280 return upb_sink_putstring(this, sel, buf, len, handle);
6281 }
6282 inline bool Sink::EndString(Handlers::Selector sel) {
6283 return upb_sink_endstr(this, sel);
6284 }
6285 inline bool Sink::StartSubMessage(Handlers::Selector sel, Sink* sub) {
6286 return upb_sink_startsubmsg(this, sel, sub);
6287 }
6288 inline bool Sink::EndSubMessage(Handlers::Selector sel) {
6289 return upb_sink_endsubmsg(this, sel);
6290 }
6291 inline bool Sink::StartSequence(Handlers::Selector sel, Sink* sub) {
6292 return upb_sink_startseq(this, sel, sub);
6293 }
6294 inline bool Sink::EndSequence(Handlers::Selector sel) {
6295 return upb_sink_endseq(this, sel);
6296 }
6297
6298 template <class T>
6299 BytesSink::BytesSink(const BytesHandler* handler, T* closure) {
6300 Reset(handler, closure);
6301 }
6302
6303 template <class T>
6304 void BytesSink::Reset(const BytesHandler *handler, T *closure) {
6305 upb_bytessink_reset(this, handler, closure);
6306 }
6307 inline bool BytesSink::Start(size_t size_hint, void **subc) {
6308 return upb_bytessink_start(this, size_hint, subc);
6309 }
6310 inline size_t BytesSink::PutBuffer(void *subc, const char *buf, size_t len,
6311 const BufferHandle *handle) {
6312 return upb_bytessink_putbuf(this, subc, buf, len, handle);
6313 }
6314 inline bool BytesSink::End() {
6315 return upb_bytessink_end(this);
6316 }
6317
6318 inline bool BufferSource::PutBuffer(const char *buf, size_t len,
6319 BytesSink *sink) {
6320 return upb_bufsrc_putbuf(buf, len, sink);
6321 }
6322
6323 } /* namespace upb */
6324 #endif
6325
6326 #endif
6327 /*
6328 ** For handlers that do very tiny, very simple operations, the function call
6329 ** overhead of calling a handler can be significant. This file allows the
6330 ** user to define handlers that do something very simple like store the value
6331 ** to memory and/or set a hasbit. JIT compilers can then special-case these
6332 ** handlers and emit specialized code for them instead of actually calling the
6333 ** handler.
6334 **
6335 ** The functionality is very simple/limited right now but may expand to be able
6336 ** to call another function.
6337 */
6338
6339 #ifndef UPB_SHIM_H
6340 #define UPB_SHIM_H
6341
6342
6343 typedef struct {
6344 size_t offset;
6345 int32_t hasbit;
6346 } upb_shim_data;
6347
6348 #ifdef __cplusplus
6349
6350 namespace upb {
6351
6352 struct Shim {
6353 typedef upb_shim_data Data;
6354
6355 /* Sets a handler for the given field that writes the value to the given
6356 * offset and, if hasbit >= 0, sets a bit at the given bit offset. Returns
6357 * true if the handler was set successfully. */
6358 static bool Set(Handlers *h, const FieldDef *f, size_t ofs, int32_t hasbit);
6359
6360 /* If this handler is a shim, returns the corresponding upb::Shim::Data and
6361 * stores the type in "type". Otherwise returns NULL. */
6362 static const Data* GetData(const Handlers* h, Handlers::Selector s,
6363 FieldDef::Type* type);
6364 };
6365
6366 } /* namespace upb */
6367
6368 #endif
6369
6370 UPB_BEGIN_EXTERN_C
6371
6372 /* C API. */
6373 bool upb_shim_set(upb_handlers *h, const upb_fielddef *f, size_t offset,
6374 int32_t hasbit);
6375 const upb_shim_data *upb_shim_getdata(const upb_handlers *h, upb_selector_t s,
6376 upb_fieldtype_t *type);
6377
6378 UPB_END_EXTERN_C
6379
6380 #ifdef __cplusplus
6381 /* C++ Wrappers. */
6382 namespace upb {
6383 inline bool Shim::Set(Handlers* h, const FieldDef* f, size_t ofs,
6384 int32_t hasbit) {
6385 return upb_shim_set(h, f, ofs, hasbit);
6386 }
6387 inline const Shim::Data* Shim::GetData(const Handlers* h, Handlers::Selector s,
6388 FieldDef::Type* type) {
6389 return upb_shim_getdata(h, s, type);
6390 }
6391 } /* namespace upb */
6392 #endif
6393
6394 #endif /* UPB_SHIM_H */
6395 /*
6396 ** upb::SymbolTable (upb_symtab)
6397 **
6398 ** A symtab (symbol table) stores a name->def map of upb_defs. Clients could
6399 ** always create such tables themselves, but upb_symtab has logic for resolving
6400 ** symbolic references, and in particular, for keeping a whole set of consistent
6401 ** defs when replacing some subset of those defs. This logic is nontrivial.
6402 **
6403 ** This is a mixed C/C++ interface that offers a full API to both languages.
6404 ** See the top-level README for more information.
6405 */
6406
6407 #ifndef UPB_SYMTAB_H_
6408 #define UPB_SYMTAB_H_
6409
6410
6411 #ifdef __cplusplus
6412 #include <vector>
6413 namespace upb { class SymbolTable; }
6414 #endif
6415
6416 UPB_DECLARE_DERIVED_TYPE(upb::SymbolTable, upb::RefCounted,
6417 upb_symtab, upb_refcounted)
6418
6419 typedef struct {
6420 UPB_PRIVATE_FOR_CPP
6421 upb_strtable_iter iter;
6422 upb_deftype_t type;
6423 } upb_symtab_iter;
6424
6425 #ifdef __cplusplus
6426
6427 /* Non-const methods in upb::SymbolTable are NOT thread-safe. */
6428 class upb::SymbolTable {
6429 public:
6430 /* Returns a new symbol table with a single ref owned by "owner."
6431 * Returns NULL if memory allocation failed. */
6432 static reffed_ptr<SymbolTable> New();
6433
6434 /* Include RefCounted base methods. */
6435 UPB_REFCOUNTED_CPPMETHODS
6436
6437 /* For all lookup functions, the returned pointer is not owned by the
6438 * caller; it may be invalidated by any non-const call or unref of the
6439 * SymbolTable! To protect against this, take a ref if desired. */
6440
6441 /* Freezes the symbol table: prevents further modification of it.
6442 * After the Freeze() operation is successful, the SymbolTable must only be
6443 * accessed via a const pointer.
6444 *
6445 * Unlike with upb::MessageDef/upb::EnumDef/etc, freezing a SymbolTable is not
6446 * a necessary step in using a SymbolTable. If you have no need for it to be
6447 * immutable, there is no need to freeze it ever. However sometimes it is
6448 * useful, and SymbolTables that are statically compiled into the binary are
6449 * always frozen by nature. */
6450 void Freeze();
6451
6452 /* Resolves the given symbol using the rules described in descriptor.proto,
6453 * namely:
6454 *
6455 * If the name starts with a '.', it is fully-qualified. Otherwise,
6456 * C++-like scoping rules are used to find the type (i.e. first the nested
6457 * types within this message are searched, then within the parent, on up
6458 * to the root namespace).
6459 *
6460 * If not found, returns NULL. */
6461 const Def* Resolve(const char* base, const char* sym) const;
6462
6463 /* Finds an entry in the symbol table with this exact name. If not found,
6464 * returns NULL. */
6465 const Def* Lookup(const char *sym) const;
6466 const MessageDef* LookupMessage(const char *sym) const;
6467 const EnumDef* LookupEnum(const char *sym) const;
6468
6469 /* TODO: introduce a C++ iterator, but make it nice and templated so that if
6470 * you ask for an iterator of MessageDef the iterated elements are strongly
6471 * typed as MessageDef*. */
6472
6473 /* Adds the given mutable defs to the symtab, resolving all symbols
6474 * (including enum default values) and finalizing the defs. Only one def per
6475 * name may be in the list, but defs can replace existing defs in the symtab.
6476 * All defs must have a name -- anonymous defs are not allowed. Anonymous
6477 * defs can still be frozen by calling upb_def_freeze() directly.
6478 *
6479 * Any existing defs that can reach defs that are being replaced will
6480 * themselves be replaced also, so that the resulting set of defs is fully
6481 * consistent.
6482 *
6483 * This logic implemented in this method is a convenience; ultimately it
6484 * calls some combination of upb_fielddef_setsubdef(), upb_def_dup(), and
6485 * upb_freeze(), any of which the client could call themself. However, since
6486 * the logic for doing so is nontrivial, we provide it here.
6487 *
6488 * The entire operation either succeeds or fails. If the operation fails,
6489 * the symtab is unchanged, false is returned, and status indicates the
6490 * error. The caller passes a ref on all defs to the symtab (even if the
6491 * operation fails).
6492 *
6493 * TODO(haberman): currently failure will leave the symtab unchanged, but may
6494 * leave the defs themselves partially resolved. Does this matter? If so we
6495 * could do a prepass that ensures that all symbols are resolvable and bail
6496 * if not, so we don't mutate anything until we know the operation will
6497 * succeed.
6498 *
6499 * TODO(haberman): since the defs must be mutable, refining a frozen def
6500 * requires making mutable copies of the entire tree. This is wasteful if
6501 * only a few messages are changing. We may want to add a way of adding a
6502 * tree of frozen defs to the symtab (perhaps an alternate constructor where
6503 * you pass the root of the tree?) */
6504 bool Add(Def*const* defs, size_t n, void* ref_donor, Status* status);
6505
6506 bool Add(const std::vector<Def*>& defs, void *owner, Status* status) {
6507 return Add((Def*const*)&defs[0], defs.size(), owner, status);
6508 }
6509
6510 /* Resolves all subdefs for messages in this file and attempts to freeze the
6511 * file. If this succeeds, adds all the symbols to this SymbolTable
6512 * (replacing any existing ones with the same names). */
6513 bool AddFile(FileDef* file, Status* s);
6514
6515 private:
6516 UPB_DISALLOW_POD_OPS(SymbolTable, upb::SymbolTable)
6517 };
6518
6519 #endif /* __cplusplus */
6520
6521 UPB_BEGIN_EXTERN_C
6522
6523 /* Native C API. */
6524
6525 /* Include refcounted methods like upb_symtab_ref(). */
6526 UPB_REFCOUNTED_CMETHODS(upb_symtab, upb_symtab_upcast)
6527
6528 upb_symtab *upb_symtab_new(const void *owner);
6529 void upb_symtab_freeze(upb_symtab *s);
6530 const upb_def *upb_symtab_resolve(const upb_symtab *s, const char *base,
6531 const char *sym);
6532 const upb_def *upb_symtab_lookup(const upb_symtab *s, const char *sym);
6533 const upb_msgdef *upb_symtab_lookupmsg(const upb_symtab *s, const char *sym);
6534 const upb_enumdef *upb_symtab_lookupenum(const upb_symtab *s, const char *sym);
6535 bool upb_symtab_add(upb_symtab *s, upb_def *const*defs, size_t n,
6536 void *ref_donor, upb_status *status);
6537 bool upb_symtab_addfile(upb_symtab *s, upb_filedef *file, upb_status* status);
6538
6539 /* upb_symtab_iter i;
6540 * for(upb_symtab_begin(&i, s, type); !upb_symtab_done(&i);
6541 * upb_symtab_next(&i)) {
6542 * const upb_def *def = upb_symtab_iter_def(&i);
6543 * // ...
6544 * }
6545 *
6546 * For C we don't have separate iterators for const and non-const.
6547 * It is the caller's responsibility to cast the upb_fielddef* to
6548 * const if the upb_msgdef* is const. */
6549 void upb_symtab_begin(upb_symtab_iter *iter, const upb_symtab *s,
6550 upb_deftype_t type);
6551 void upb_symtab_next(upb_symtab_iter *iter);
6552 bool upb_symtab_done(const upb_symtab_iter *iter);
6553 const upb_def *upb_symtab_iter_def(const upb_symtab_iter *iter);
6554
6555 UPB_END_EXTERN_C
6556
6557 #ifdef __cplusplus
6558 /* C++ inline wrappers. */
6559 namespace upb {
6560 inline reffed_ptr<SymbolTable> SymbolTable::New() {
6561 upb_symtab *s = upb_symtab_new(&s);
6562 return reffed_ptr<SymbolTable>(s, &s);
6563 }
6564
6565 inline void SymbolTable::Freeze() {
6566 return upb_symtab_freeze(this);
6567 }
6568 inline const Def *SymbolTable::Resolve(const char *base,
6569 const char *sym) const {
6570 return upb_symtab_resolve(this, base, sym);
6571 }
6572 inline const Def* SymbolTable::Lookup(const char *sym) const {
6573 return upb_symtab_lookup(this, sym);
6574 }
6575 inline const MessageDef *SymbolTable::LookupMessage(const char *sym) const {
6576 return upb_symtab_lookupmsg(this, sym);
6577 }
6578 inline bool SymbolTable::Add(
6579 Def*const* defs, size_t n, void* ref_donor, Status* status) {
6580 return upb_symtab_add(this, (upb_def*const*)defs, n, ref_donor, status);
6581 }
6582 inline bool SymbolTable::AddFile(FileDef* file, Status* s) {
6583 return upb_symtab_addfile(this, file, s);
6584 }
6585 } /* namespace upb */
6586 #endif
6587
6588 #endif /* UPB_SYMTAB_H_ */
6589 /*
6590 ** upb::descriptor::Reader (upb_descreader)
6591 **
6592 ** Provides a way of building upb::Defs from data in descriptor.proto format.
6593 */
6594
6595 #ifndef UPB_DESCRIPTOR_H
6596 #define UPB_DESCRIPTOR_H
6597
6598
6599 #ifdef __cplusplus
6600 namespace upb {
6601 namespace descriptor {
6602 class Reader;
6603 } /* namespace descriptor */
6604 } /* namespace upb */
6605 #endif
6606
6607 UPB_DECLARE_TYPE(upb::descriptor::Reader, upb_descreader)
6608
6609 #ifdef __cplusplus
6610
6611 /* Class that receives descriptor data according to the descriptor.proto schema
6612 * and use it to build upb::Defs corresponding to that schema. */
6613 class upb::descriptor::Reader {
6614 public:
6615 /* These handlers must have come from NewHandlers() and must outlive the
6616 * Reader.
6617 *
6618 * TODO: generate the handlers statically (like we do with the
6619 * descriptor.proto defs) so that there is no need to pass this parameter (or
6620 * to build/memory-manage the handlers at runtime at all). Unfortunately this
6621 * is a bit tricky to implement for Handlers, but necessary to simplify this
6622 * interface. */
6623 static Reader* Create(Environment* env, const Handlers* handlers);
6624
6625 /* The reader's input; this is where descriptor.proto data should be sent. */
6626 Sink* input();
6627
6628 /* Use to get the FileDefs that have been parsed. */
6629 size_t file_count() const;
6630 FileDef* file(size_t i) const;
6631
6632 /* Builds and returns handlers for the reader, owned by "owner." */
6633 static Handlers* NewHandlers(const void* owner);
6634
6635 private:
6636 UPB_DISALLOW_POD_OPS(Reader, upb::descriptor::Reader)
6637 };
6638
6639 #endif
6640
6641 UPB_BEGIN_EXTERN_C
6642
6643 /* C API. */
6644 upb_descreader *upb_descreader_create(upb_env *e, const upb_handlers *h);
6645 upb_sink *upb_descreader_input(upb_descreader *r);
6646 size_t upb_descreader_filecount(const upb_descreader *r);
6647 upb_filedef *upb_descreader_file(const upb_descreader *r, size_t i);
6648 const upb_handlers *upb_descreader_newhandlers(const void *owner);
6649
6650 UPB_END_EXTERN_C
6651
6652 #ifdef __cplusplus
6653 /* C++ implementation details. ************************************************/
6654 namespace upb {
6655 namespace descriptor {
6656 inline Reader* Reader::Create(Environment* e, const Handlers *h) {
6657 return upb_descreader_create(e, h);
6658 }
6659 inline Sink* Reader::input() { return upb_descreader_input(this); }
6660 inline size_t Reader::file_count() const {
6661 return upb_descreader_filecount(this);
6662 }
6663 inline FileDef* Reader::file(size_t i) const {
6664 return upb_descreader_file(this, i);
6665 }
6666 } /* namespace descriptor */
6667 } /* namespace upb */
6668 #endif
6669
6670 #endif /* UPB_DESCRIPTOR_H */
6671 /* This file contains accessors for a set of compiled-in defs.
6672 * Note that unlike Google's protobuf, it does *not* define
6673 * generated classes or any other kind of data structure for
6674 * actually storing protobufs. It only contains *defs* which
6675 * let you reflect over a protobuf *schema*.
6676 */
6677 /* This file was generated by upbc (the upb compiler) from the input
6678 * file:
6679 *
6680 * upb/descriptor/descriptor.proto
6681 *
6682 * Do not edit -- your changes will be discarded when the file is
6683 * regenerated. */
6684
6685 #ifndef UPB_DESCRIPTOR_DESCRIPTOR_PROTO_UPB_H_
6686 #define UPB_DESCRIPTOR_DESCRIPTOR_PROTO_UPB_H_
6687
6688
6689 UPB_BEGIN_EXTERN_C
6690
6691 /* Enums */
6692
6693 typedef enum {
6694 google_protobuf_FieldDescriptorProto_LABEL_OPTIONAL = 1,
6695 google_protobuf_FieldDescriptorProto_LABEL_REQUIRED = 2,
6696 google_protobuf_FieldDescriptorProto_LABEL_REPEATED = 3
6697 } google_protobuf_FieldDescriptorProto_Label;
6698
6699 typedef enum {
6700 google_protobuf_FieldDescriptorProto_TYPE_DOUBLE = 1,
6701 google_protobuf_FieldDescriptorProto_TYPE_FLOAT = 2,
6702 google_protobuf_FieldDescriptorProto_TYPE_INT64 = 3,
6703 google_protobuf_FieldDescriptorProto_TYPE_UINT64 = 4,
6704 google_protobuf_FieldDescriptorProto_TYPE_INT32 = 5,
6705 google_protobuf_FieldDescriptorProto_TYPE_FIXED64 = 6,
6706 google_protobuf_FieldDescriptorProto_TYPE_FIXED32 = 7,
6707 google_protobuf_FieldDescriptorProto_TYPE_BOOL = 8,
6708 google_protobuf_FieldDescriptorProto_TYPE_STRING = 9,
6709 google_protobuf_FieldDescriptorProto_TYPE_GROUP = 10,
6710 google_protobuf_FieldDescriptorProto_TYPE_MESSAGE = 11,
6711 google_protobuf_FieldDescriptorProto_TYPE_BYTES = 12,
6712 google_protobuf_FieldDescriptorProto_TYPE_UINT32 = 13,
6713 google_protobuf_FieldDescriptorProto_TYPE_ENUM = 14,
6714 google_protobuf_FieldDescriptorProto_TYPE_SFIXED32 = 15,
6715 google_protobuf_FieldDescriptorProto_TYPE_SFIXED64 = 16,
6716 google_protobuf_FieldDescriptorProto_TYPE_SINT32 = 17,
6717 google_protobuf_FieldDescriptorProto_TYPE_SINT64 = 18
6718 } google_protobuf_FieldDescriptorProto_Type;
6719
6720 typedef enum {
6721 google_protobuf_FieldOptions_STRING = 0,
6722 google_protobuf_FieldOptions_CORD = 1,
6723 google_protobuf_FieldOptions_STRING_PIECE = 2
6724 } google_protobuf_FieldOptions_CType;
6725
6726 typedef enum {
6727 google_protobuf_FieldOptions_JS_NORMAL = 0,
6728 google_protobuf_FieldOptions_JS_STRING = 1,
6729 google_protobuf_FieldOptions_JS_NUMBER = 2
6730 } google_protobuf_FieldOptions_JSType;
6731
6732 typedef enum {
6733 google_protobuf_FileOptions_SPEED = 1,
6734 google_protobuf_FileOptions_CODE_SIZE = 2,
6735 google_protobuf_FileOptions_LITE_RUNTIME = 3
6736 } google_protobuf_FileOptions_OptimizeMode;
6737
6738 /* MessageDefs: call these functions to get a ref to a msgdef. */
6739 const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_get(const void *owner);
6740 const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_get(const void *owner);
6741 const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_ReservedRange_get(const void *owner);
6742 const upb_msgdef *upbdefs_google_protobuf_EnumDescriptorProto_get(const void *owner);
6743 const upb_msgdef *upbdefs_google_protobuf_EnumOptions_get(const void *owner);
6744 const upb_msgdef *upbdefs_google_protobuf_EnumValueDescriptorProto_get(const void *owner);
6745 const upb_msgdef *upbdefs_google_protobuf_EnumValueOptions_get(const void *owner);
6746 const upb_msgdef *upbdefs_google_protobuf_FieldDescriptorProto_get(const void *owner);
6747 const upb_msgdef *upbdefs_google_protobuf_FieldOptions_get(const void *owner);
6748 const upb_msgdef *upbdefs_google_protobuf_FileDescriptorProto_get(const void *owner);
6749 const upb_msgdef *upbdefs_google_protobuf_FileDescriptorSet_get(const void *owner);
6750 const upb_msgdef *upbdefs_google_protobuf_FileOptions_get(const void *owner);
6751 const upb_msgdef *upbdefs_google_protobuf_MessageOptions_get(const void *owner);
6752 const upb_msgdef *upbdefs_google_protobuf_MethodDescriptorProto_get(const void *owner);
6753 const upb_msgdef *upbdefs_google_protobuf_MethodOptions_get(const void *owner);
6754 const upb_msgdef *upbdefs_google_protobuf_OneofDescriptorProto_get(const void *owner);
6755 const upb_msgdef *upbdefs_google_protobuf_ServiceDescriptorProto_get(const void *owner);
6756 const upb_msgdef *upbdefs_google_protobuf_ServiceOptions_get(const void *owner);
6757 const upb_msgdef *upbdefs_google_protobuf_SourceCodeInfo_get(const void *owner);
6758 const upb_msgdef *upbdefs_google_protobuf_SourceCodeInfo_Location_get(const void *owner);
6759 const upb_msgdef *upbdefs_google_protobuf_UninterpretedOption_get(const void *owner);
6760 const upb_msgdef *upbdefs_google_protobuf_UninterpretedOption_NamePart_get(const void *owner);
6761
6762 /* EnumDefs: call these functions to get a ref to an enumdef. */
6763 const upb_enumdef *upbdefs_google_protobuf_FieldDescriptorProto_Label_get(const void *owner);
6764 const upb_enumdef *upbdefs_google_protobuf_FieldDescriptorProto_Type_get(const void *owner);
6765 const upb_enumdef *upbdefs_google_protobuf_FieldOptions_CType_get(const void *owner);
6766 const upb_enumdef *upbdefs_google_protobuf_FieldOptions_JSType_get(const void *owner);
6767 const upb_enumdef *upbdefs_google_protobuf_FileOptions_OptimizeMode_get(const void *owner);
6768
6769 /* Functions to test whether this message is of a certain type. */
6770 UPB_INLINE bool upbdefs_google_protobuf_DescriptorProto_is(const upb_msgdef *m) {
6771 return strcmp(upb_msgdef_fullname(m), "google.protobuf.DescriptorProto") == 0;
6772 }
6773 UPB_INLINE bool upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(const upb_msgdef *m) {
6774 return strcmp(upb_msgdef_fullname(m), "google.protobuf.DescriptorProto.ExtensionRange") == 0;
6775 }
6776 UPB_INLINE bool upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(const upb_msgdef *m) {
6777 return strcmp(upb_msgdef_fullname(m), "google.protobuf.DescriptorProto.ReservedRange") == 0;
6778 }
6779 UPB_INLINE bool upbdefs_google_protobuf_EnumDescriptorProto_is(const upb_msgdef *m) {
6780 return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumDescriptorProto") == 0;
6781 }
6782 UPB_INLINE bool upbdefs_google_protobuf_EnumOptions_is(const upb_msgdef *m) {
6783 return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumOptions") == 0;
6784 }
6785 UPB_INLINE bool upbdefs_google_protobuf_EnumValueDescriptorProto_is(const upb_msgdef *m) {
6786 return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumValueDescriptorProto") == 0;
6787 }
6788 UPB_INLINE bool upbdefs_google_protobuf_EnumValueOptions_is(const upb_msgdef *m) {
6789 return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumValueOptions") == 0;
6790 }
6791 UPB_INLINE bool upbdefs_google_protobuf_FieldDescriptorProto_is(const upb_msgdef *m) {
6792 return strcmp(upb_msgdef_fullname(m), "google.protobuf.FieldDescriptorProto") == 0;
6793 }
6794 UPB_INLINE bool upbdefs_google_protobuf_FieldOptions_is(const upb_msgdef *m) {
6795 return strcmp(upb_msgdef_fullname(m), "google.protobuf.FieldOptions") == 0;
6796 }
6797 UPB_INLINE bool upbdefs_google_protobuf_FileDescriptorProto_is(const upb_msgdef *m) {
6798 return strcmp(upb_msgdef_fullname(m), "google.protobuf.FileDescriptorProto") == 0;
6799 }
6800 UPB_INLINE bool upbdefs_google_protobuf_FileDescriptorSet_is(const upb_msgdef *m) {
6801 return strcmp(upb_msgdef_fullname(m), "google.protobuf.FileDescriptorSet") == 0;
6802 }
6803 UPB_INLINE bool upbdefs_google_protobuf_FileOptions_is(const upb_msgdef *m) {
6804 return strcmp(upb_msgdef_fullname(m), "google.protobuf.FileOptions") == 0;
6805 }
6806 UPB_INLINE bool upbdefs_google_protobuf_MessageOptions_is(const upb_msgdef *m) {
6807 return strcmp(upb_msgdef_fullname(m), "google.protobuf.MessageOptions") == 0;
6808 }
6809 UPB_INLINE bool upbdefs_google_protobuf_MethodDescriptorProto_is(const upb_msgdef *m) {
6810 return strcmp(upb_msgdef_fullname(m), "google.protobuf.MethodDescriptorProto") == 0;
6811 }
6812 UPB_INLINE bool upbdefs_google_protobuf_MethodOptions_is(const upb_msgdef *m) {
6813 return strcmp(upb_msgdef_fullname(m), "google.protobuf.MethodOptions") == 0;
6814 }
6815 UPB_INLINE bool upbdefs_google_protobuf_OneofDescriptorProto_is(const upb_msgdef *m) {
6816 return strcmp(upb_msgdef_fullname(m), "google.protobuf.OneofDescriptorProto") == 0;
6817 }
6818 UPB_INLINE bool upbdefs_google_protobuf_ServiceDescriptorProto_is(const upb_msgdef *m) {
6819 return strcmp(upb_msgdef_fullname(m), "google.protobuf.ServiceDescriptorProto") == 0;
6820 }
6821 UPB_INLINE bool upbdefs_google_protobuf_ServiceOptions_is(const upb_msgdef *m) {
6822 return strcmp(upb_msgdef_fullname(m), "google.protobuf.ServiceOptions") == 0;
6823 }
6824 UPB_INLINE bool upbdefs_google_protobuf_SourceCodeInfo_is(const upb_msgdef *m) {
6825 return strcmp(upb_msgdef_fullname(m), "google.protobuf.SourceCodeInfo") == 0;
6826 }
6827 UPB_INLINE bool upbdefs_google_protobuf_SourceCodeInfo_Location_is(const upb_msgdef *m) {
6828 return strcmp(upb_msgdef_fullname(m), "google.protobuf.SourceCodeInfo.Location") == 0;
6829 }
6830 UPB_INLINE bool upbdefs_google_protobuf_UninterpretedOption_is(const upb_msgdef *m) {
6831 return strcmp(upb_msgdef_fullname(m), "google.protobuf.UninterpretedOption") == 0;
6832 }
6833 UPB_INLINE bool upbdefs_google_protobuf_UninterpretedOption_NamePart_is(const upb_msgdef *m) {
6834 return strcmp(upb_msgdef_fullname(m), "google.protobuf.UninterpretedOption.NamePart") == 0;
6835 }
6836
6837 /* Functions to test whether this enum is of a certain type. */
6838 UPB_INLINE bool upbdefs_google_protobuf_FieldDescriptorProto_Label_is(const upb_enumdef *e) {
6839 return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldDescriptorProto.Label") == 0;
6840 }
6841 UPB_INLINE bool upbdefs_google_protobuf_FieldDescriptorProto_Type_is(const upb_enumdef *e) {
6842 return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldDescriptorProto.Type") == 0;
6843 }
6844 UPB_INLINE bool upbdefs_google_protobuf_FieldOptions_CType_is(const upb_enumdef *e) {
6845 return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldOptions.CType") == 0;
6846 }
6847 UPB_INLINE bool upbdefs_google_protobuf_FieldOptions_JSType_is(const upb_enumdef *e) {
6848 return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldOptions.JSType") == 0;
6849 }
6850 UPB_INLINE bool upbdefs_google_protobuf_FileOptions_OptimizeMode_is(const upb_enumdef *e) {
6851 return strcmp(upb_enumdef_fullname(e), "google.protobuf.FileOptions.OptimizeMode") == 0;
6852 }
6853
6854
6855 /* Functions to get a fielddef from a msgdef reference. */
6856 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_f_end(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(m)); return upb_msgdef_itof(m, 2); }
6857 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_f_start(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(m)); return upb_msgdef_itof(m, 1); }
6858 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ReservedRange_f_end(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(m)); return upb_msgdef_itof(m, 2); }
6859 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ReservedRange_f_start(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(m)); return upb_msgdef_itof(m, 1); }
6860 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_enum_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 4); }
6861 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_extension(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 6); }
6862 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_extension_range(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 5); }
6863 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_field(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
6864 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
6865 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_nested_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
6866 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_oneof_decl(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 8); }
6867 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 7); }
6868 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_reserved_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 10); }
6869 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_reserved_range(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 9); }
6870 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
6871 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
6872 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_f_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
6873 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_f_allow_alias(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumOptions_is(m)); return upb_msgdef_itof(m, 2); }
6874 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumOptions_is(m)); return upb_msgdef_itof(m, 3); }
6875 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumOptions_is(m)); return upb_msgdef_itof(m, 999); }
6876 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
6877 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_f_number(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
6878 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
6879 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueOptions_is(m)); return upb_msgdef_itof(m, 1); }
6880 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueOptions_is(m)); return upb_msgdef_itof(m, 999); }
6881 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_default_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 7); }
6882 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_extendee(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
6883 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_json_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 10); }
6884 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_label(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 4); }
6885 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
6886 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_number(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
6887 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_oneof_index(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 9); }
6888 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 8); }
6889 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 5); }
6890 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_type_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 6); }
6891 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_ctype(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 1); }
6892 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 3); }
6893 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_jstype(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 6); }
6894 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_lazy(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 5); }
6895 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_packed(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 2); }
6896 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 999); }
6897 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_weak(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 10); }
6898 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_dependency(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
6899 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_enum_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 5); }
6900 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_extension(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 7); }
6901 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_message_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 4); }
6902 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
6903 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 8); }
6904 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
6905 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_public_dependency(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 10); }
6906 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_service(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 6); }
6907 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_source_code_info(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 9); }
6908 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_syntax(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 12); }
6909 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_weak_dependency(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 11); }
6910 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorSet_f_file(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorSet_is(m)); return upb_msgdef_itof(m, 1); }
6911 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_cc_enable_arenas(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 31); }
6912 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_cc_generic_services(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 16); }
6913 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_csharp_namespace(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 37); }
6914 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 23); }
6915 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_go_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 11); }
6916 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_generate_equals_and_hash(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 20); }
6917 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_generic_services(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 17); }
6918 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_multiple_files(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 10); }
6919 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_outer_classname(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 8); }
6920 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 1); }
6921 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_string_check_utf8(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 27); }
6922 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_javanano_use_deprecated_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 38); }
6923 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_objc_class_prefix(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 36); }
6924 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_optimize_for(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 9); }
6925 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_py_generic_services(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 18); }
6926 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 999); }
6927 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 3); }
6928 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_map_entry(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 7); }
6929 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_message_set_wire_format(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 1); }
6930 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_no_standard_descriptor_accessor(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 2); }
6931 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 999); }
6932 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_client_streaming(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 5); }
6933 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_input_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
6934 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
6935 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 4); }
6936 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_output_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
6937 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_server_streaming(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 6); }
6938 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodOptions_is(m)); return upb_msgdef_itof(m, 33); }
6939 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodOptions_is(m)); return upb_msgdef_itof(m, 999); }
6940 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_OneofDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_OneofDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
6941 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_f_method(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
6942 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
6943 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
6944 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceOptions_is(m)); return upb_msgdef_itof(m, 33); }
6945 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceOptions_is(m)); return upb_msgdef_itof(m, 999); }
6946 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_leading_comments(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 3); }
6947 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_leading_detached_comments(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 6); }
6948 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_path(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 1); }
6949 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_span(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 2); }
6950 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_trailing_comments(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 4); }
6951 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_f_location(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_is(m)); return upb_msgdef_itof(m, 1); }
6952 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_NamePart_f_is_extension(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_NamePart_is(m)); return upb_msgdef_itof(m, 2); }
6953 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_NamePart_f_name_part(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_NamePart_is(m)); return upb_msgdef_itof(m, 1); }
6954 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_aggregate_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 8); }
6955 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_double_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 6); }
6956 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_identifier_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 3); }
6957 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 2); }
6958 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_negative_int_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 5); }
6959 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_positive_int_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 4); }
6960 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_string_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 7); }
6961
6962 UPB_END_EXTERN_C
6963
6964 #ifdef __cplusplus
6965
6966 namespace upbdefs {
6967 namespace google {
6968 namespace protobuf {
6969
6970 class DescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
6971 public:
6972 DescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
6973 : reffed_ptr(m, ref_donor) {
6974 assert(upbdefs_google_protobuf_DescriptorProto_is(m));
6975 }
6976
6977 static DescriptorProto get() {
6978 const ::upb::MessageDef* m = upbdefs_google_protobuf_DescriptorProto_get(&m);
6979 return DescriptorProto(m, &m);
6980 }
6981
6982 class ExtensionRange : public ::upb::reffed_ptr<const ::upb::MessageDef> {
6983 public:
6984 ExtensionRange(const ::upb::MessageDef* m, const void *ref_donor = NULL)
6985 : reffed_ptr(m, ref_donor) {
6986 assert(upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(m));
6987 }
6988
6989 static ExtensionRange get() {
6990 const ::upb::MessageDef* m = upbdefs_google_protobuf_DescriptorProto_ExtensionRange_get(&m);
6991 return ExtensionRange(m, &m);
6992 }
6993 };
6994
6995 class ReservedRange : public ::upb::reffed_ptr<const ::upb::MessageDef> {
6996 public:
6997 ReservedRange(const ::upb::MessageDef* m, const void *ref_donor = NULL)
6998 : reffed_ptr(m, ref_donor) {
6999 assert(upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(m));
7000 }
7001
7002 static ReservedRange get() {
7003 const ::upb::MessageDef* m = upbdefs_google_protobuf_DescriptorProto_ReservedRange_get(&m);
7004 return ReservedRange(m, &m);
7005 }
7006 };
7007 };
7008
7009 class EnumDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7010 public:
7011 EnumDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7012 : reffed_ptr(m, ref_donor) {
7013 assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m));
7014 }
7015
7016 static EnumDescriptorProto get() {
7017 const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumDescriptorProto_get(&m);
7018 return EnumDescriptorProto(m, &m);
7019 }
7020 };
7021
7022 class EnumOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7023 public:
7024 EnumOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7025 : reffed_ptr(m, ref_donor) {
7026 assert(upbdefs_google_protobuf_EnumOptions_is(m));
7027 }
7028
7029 static EnumOptions get() {
7030 const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumOptions_get(&m);
7031 return EnumOptions(m, &m);
7032 }
7033 };
7034
7035 class EnumValueDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7036 public:
7037 EnumValueDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7038 : reffed_ptr(m, ref_donor) {
7039 assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m));
7040 }
7041
7042 static EnumValueDescriptorProto get() {
7043 const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumValueDescriptorProto_get(&m);
7044 return EnumValueDescriptorProto(m, &m);
7045 }
7046 };
7047
7048 class EnumValueOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7049 public:
7050 EnumValueOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7051 : reffed_ptr(m, ref_donor) {
7052 assert(upbdefs_google_protobuf_EnumValueOptions_is(m));
7053 }
7054
7055 static EnumValueOptions get() {
7056 const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumValueOptions_get(&m);
7057 return EnumValueOptions(m, &m);
7058 }
7059 };
7060
7061 class FieldDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7062 public:
7063 FieldDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7064 : reffed_ptr(m, ref_donor) {
7065 assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m));
7066 }
7067
7068 static FieldDescriptorProto get() {
7069 const ::upb::MessageDef* m = upbdefs_google_protobuf_FieldDescriptorProto_get(&m);
7070 return FieldDescriptorProto(m, &m);
7071 }
7072
7073 class Label : public ::upb::reffed_ptr<const ::upb::EnumDef> {
7074 public:
7075 Label(const ::upb::EnumDef* e, const void *ref_donor = NULL)
7076 : reffed_ptr(e, ref_donor) {
7077 assert(upbdefs_google_protobuf_FieldDescriptorProto_Label_is(e));
7078 }
7079 static Label get() {
7080 const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldDescriptorProto_Label_get(&e);
7081 return Label(e, &e);
7082 }
7083 };
7084
7085 class Type : public ::upb::reffed_ptr<const ::upb::EnumDef> {
7086 public:
7087 Type(const ::upb::EnumDef* e, const void *ref_donor = NULL)
7088 : reffed_ptr(e, ref_donor) {
7089 assert(upbdefs_google_protobuf_FieldDescriptorProto_Type_is(e));
7090 }
7091 static Type get() {
7092 const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldDescriptorProto_Type_get(&e);
7093 return Type(e, &e);
7094 }
7095 };
7096 };
7097
7098 class FieldOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7099 public:
7100 FieldOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7101 : reffed_ptr(m, ref_donor) {
7102 assert(upbdefs_google_protobuf_FieldOptions_is(m));
7103 }
7104
7105 static FieldOptions get() {
7106 const ::upb::MessageDef* m = upbdefs_google_protobuf_FieldOptions_get(&m);
7107 return FieldOptions(m, &m);
7108 }
7109
7110 class CType : public ::upb::reffed_ptr<const ::upb::EnumDef> {
7111 public:
7112 CType(const ::upb::EnumDef* e, const void *ref_donor = NULL)
7113 : reffed_ptr(e, ref_donor) {
7114 assert(upbdefs_google_protobuf_FieldOptions_CType_is(e));
7115 }
7116 static CType get() {
7117 const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldOptions_CType_get(&e);
7118 return CType(e, &e);
7119 }
7120 };
7121
7122 class JSType : public ::upb::reffed_ptr<const ::upb::EnumDef> {
7123 public:
7124 JSType(const ::upb::EnumDef* e, const void *ref_donor = NULL)
7125 : reffed_ptr(e, ref_donor) {
7126 assert(upbdefs_google_protobuf_FieldOptions_JSType_is(e));
7127 }
7128 static JSType get() {
7129 const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldOptions_JSType_get(&e);
7130 return JSType(e, &e);
7131 }
7132 };
7133 };
7134
7135 class FileDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7136 public:
7137 FileDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7138 : reffed_ptr(m, ref_donor) {
7139 assert(upbdefs_google_protobuf_FileDescriptorProto_is(m));
7140 }
7141
7142 static FileDescriptorProto get() {
7143 const ::upb::MessageDef* m = upbdefs_google_protobuf_FileDescriptorProto_get(&m);
7144 return FileDescriptorProto(m, &m);
7145 }
7146 };
7147
7148 class FileDescriptorSet : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7149 public:
7150 FileDescriptorSet(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7151 : reffed_ptr(m, ref_donor) {
7152 assert(upbdefs_google_protobuf_FileDescriptorSet_is(m));
7153 }
7154
7155 static FileDescriptorSet get() {
7156 const ::upb::MessageDef* m = upbdefs_google_protobuf_FileDescriptorSet_get(&m);
7157 return FileDescriptorSet(m, &m);
7158 }
7159 };
7160
7161 class FileOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7162 public:
7163 FileOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7164 : reffed_ptr(m, ref_donor) {
7165 assert(upbdefs_google_protobuf_FileOptions_is(m));
7166 }
7167
7168 static FileOptions get() {
7169 const ::upb::MessageDef* m = upbdefs_google_protobuf_FileOptions_get(&m);
7170 return FileOptions(m, &m);
7171 }
7172
7173 class OptimizeMode : public ::upb::reffed_ptr<const ::upb::EnumDef> {
7174 public:
7175 OptimizeMode(const ::upb::EnumDef* e, const void *ref_donor = NULL)
7176 : reffed_ptr(e, ref_donor) {
7177 assert(upbdefs_google_protobuf_FileOptions_OptimizeMode_is(e));
7178 }
7179 static OptimizeMode get() {
7180 const ::upb::EnumDef* e = upbdefs_google_protobuf_FileOptions_OptimizeMode_get(&e);
7181 return OptimizeMode(e, &e);
7182 }
7183 };
7184 };
7185
7186 class MessageOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7187 public:
7188 MessageOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7189 : reffed_ptr(m, ref_donor) {
7190 assert(upbdefs_google_protobuf_MessageOptions_is(m));
7191 }
7192
7193 static MessageOptions get() {
7194 const ::upb::MessageDef* m = upbdefs_google_protobuf_MessageOptions_get(&m);
7195 return MessageOptions(m, &m);
7196 }
7197 };
7198
7199 class MethodDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7200 public:
7201 MethodDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7202 : reffed_ptr(m, ref_donor) {
7203 assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m));
7204 }
7205
7206 static MethodDescriptorProto get() {
7207 const ::upb::MessageDef* m = upbdefs_google_protobuf_MethodDescriptorProto_get(&m);
7208 return MethodDescriptorProto(m, &m);
7209 }
7210 };
7211
7212 class MethodOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7213 public:
7214 MethodOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7215 : reffed_ptr(m, ref_donor) {
7216 assert(upbdefs_google_protobuf_MethodOptions_is(m));
7217 }
7218
7219 static MethodOptions get() {
7220 const ::upb::MessageDef* m = upbdefs_google_protobuf_MethodOptions_get(&m);
7221 return MethodOptions(m, &m);
7222 }
7223 };
7224
7225 class OneofDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7226 public:
7227 OneofDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7228 : reffed_ptr(m, ref_donor) {
7229 assert(upbdefs_google_protobuf_OneofDescriptorProto_is(m));
7230 }
7231
7232 static OneofDescriptorProto get() {
7233 const ::upb::MessageDef* m = upbdefs_google_protobuf_OneofDescriptorProto_get(&m);
7234 return OneofDescriptorProto(m, &m);
7235 }
7236 };
7237
7238 class ServiceDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7239 public:
7240 ServiceDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7241 : reffed_ptr(m, ref_donor) {
7242 assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m));
7243 }
7244
7245 static ServiceDescriptorProto get() {
7246 const ::upb::MessageDef* m = upbdefs_google_protobuf_ServiceDescriptorProto_get(&m);
7247 return ServiceDescriptorProto(m, &m);
7248 }
7249 };
7250
7251 class ServiceOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7252 public:
7253 ServiceOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7254 : reffed_ptr(m, ref_donor) {
7255 assert(upbdefs_google_protobuf_ServiceOptions_is(m));
7256 }
7257
7258 static ServiceOptions get() {
7259 const ::upb::MessageDef* m = upbdefs_google_protobuf_ServiceOptions_get(&m);
7260 return ServiceOptions(m, &m);
7261 }
7262 };
7263
7264 class SourceCodeInfo : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7265 public:
7266 SourceCodeInfo(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7267 : reffed_ptr(m, ref_donor) {
7268 assert(upbdefs_google_protobuf_SourceCodeInfo_is(m));
7269 }
7270
7271 static SourceCodeInfo get() {
7272 const ::upb::MessageDef* m = upbdefs_google_protobuf_SourceCodeInfo_get(&m);
7273 return SourceCodeInfo(m, &m);
7274 }
7275
7276 class Location : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7277 public:
7278 Location(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7279 : reffed_ptr(m, ref_donor) {
7280 assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m));
7281 }
7282
7283 static Location get() {
7284 const ::upb::MessageDef* m = upbdefs_google_protobuf_SourceCodeInfo_Location_get(&m);
7285 return Location(m, &m);
7286 }
7287 };
7288 };
7289
7290 class UninterpretedOption : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7291 public:
7292 UninterpretedOption(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7293 : reffed_ptr(m, ref_donor) {
7294 assert(upbdefs_google_protobuf_UninterpretedOption_is(m));
7295 }
7296
7297 static UninterpretedOption get() {
7298 const ::upb::MessageDef* m = upbdefs_google_protobuf_UninterpretedOption_get(&m);
7299 return UninterpretedOption(m, &m);
7300 }
7301
7302 class NamePart : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7303 public:
7304 NamePart(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7305 : reffed_ptr(m, ref_donor) {
7306 assert(upbdefs_google_protobuf_UninterpretedOption_NamePart_is(m));
7307 }
7308
7309 static NamePart get() {
7310 const ::upb::MessageDef* m = upbdefs_google_protobuf_UninterpretedOption_NamePart_get(&m);
7311 return NamePart(m, &m);
7312 }
7313 };
7314 };
7315
7316 } /* namespace protobuf */
7317 } /* namespace google */
7318 } /* namespace upbdefs */
7319
7320 #endif /* __cplusplus */
7321
7322 #endif /* UPB_DESCRIPTOR_DESCRIPTOR_PROTO_UPB_H_ */
7323 /*
7324 ** Internal-only definitions for the decoder.
7325 */
7326
7327 #ifndef UPB_DECODER_INT_H_
7328 #define UPB_DECODER_INT_H_
7329
7330 /*
7331 ** upb::pb::Decoder
7332 **
7333 ** A high performance, streaming, resumable decoder for the binary protobuf
7334 ** format.
7335 **
7336 ** This interface works the same regardless of what decoder backend is being
7337 ** used. A client of this class does not need to know whether decoding is using
7338 ** a JITted decoder (DynASM, LLVM, etc) or an interpreted decoder. By default,
7339 ** it will always use the fastest available decoder. However, you can call
7340 ** set_allow_jit(false) to disable any JIT decoder that might be available.
7341 ** This is primarily useful for testing purposes.
7342 */
7343
7344 #ifndef UPB_DECODER_H_
7345 #define UPB_DECODER_H_
7346
7347
7348 #ifdef __cplusplus
7349 namespace upb {
7350 namespace pb {
7351 class CodeCache;
7352 class Decoder;
7353 class DecoderMethod;
7354 class DecoderMethodOptions;
7355 } /* namespace pb */
7356 } /* namespace upb */
7357 #endif
7358
7359 UPB_DECLARE_TYPE(upb::pb::CodeCache, upb_pbcodecache)
7360 UPB_DECLARE_TYPE(upb::pb::Decoder, upb_pbdecoder)
7361 UPB_DECLARE_TYPE(upb::pb::DecoderMethodOptions, upb_pbdecodermethodopts)
7362
7363 UPB_DECLARE_DERIVED_TYPE(upb::pb::DecoderMethod, upb::RefCounted,
7364 upb_pbdecodermethod, upb_refcounted)
7365
7366 /* The maximum number of bytes we are required to buffer internally between
7367 * calls to the decoder. The value is 14: a 5 byte unknown tag plus ten-byte
7368 * varint, less one because we are buffering an incomplete value.
7369 *
7370 * Should only be used by unit tests. */
7371 #define UPB_DECODER_MAX_RESIDUAL_BYTES 14
7372
7373 #ifdef __cplusplus
7374
7375 /* The parameters one uses to construct a DecoderMethod.
7376 * TODO(haberman): move allowjit here? Seems more convenient for users.
7377 * TODO(haberman): move this to be heap allocated for ABI stability. */
7378 class upb::pb::DecoderMethodOptions {
7379 public:
7380 /* Parameter represents the destination handlers that this method will push
7381 * to. */
7382 explicit DecoderMethodOptions(const Handlers* dest_handlers);
7383
7384 /* Should the decoder push submessages to lazy handlers for fields that have
7385 * them? The caller should set this iff the lazy handlers expect data that is
7386 * in protobuf binary format and the caller wishes to lazy parse it. */
7387 void set_lazy(bool lazy);
7388 #else
7389 struct upb_pbdecodermethodopts {
7390 #endif
7391 const upb_handlers *handlers;
7392 bool lazy;
7393 };
7394
7395 #ifdef __cplusplus
7396
7397 /* Represents the code to parse a protobuf according to a destination
7398 * Handlers. */
7399 class upb::pb::DecoderMethod {
7400 public:
7401 /* Include base methods from upb::ReferenceCounted. */
7402 UPB_REFCOUNTED_CPPMETHODS
7403
7404 /* The destination handlers that are statically bound to this method.
7405 * This method is only capable of outputting to a sink that uses these
7406 * handlers. */
7407 const Handlers* dest_handlers() const;
7408
7409 /* The input handlers for this decoder method. */
7410 const BytesHandler* input_handler() const;
7411
7412 /* Whether this method is native. */
7413 bool is_native() const;
7414
7415 /* Convenience method for generating a DecoderMethod without explicitly
7416 * creating a CodeCache. */
7417 static reffed_ptr<const DecoderMethod> New(const DecoderMethodOptions& opts);
7418
7419 private:
7420 UPB_DISALLOW_POD_OPS(DecoderMethod, upb::pb::DecoderMethod)
7421 };
7422
7423 #endif
7424
7425 /* Preallocation hint: decoder won't allocate more bytes than this when first
7426 * constructed. This hint may be an overestimate for some build configurations.
7427 * But if the decoder library is upgraded without recompiling the application,
7428 * it may be an underestimate. */
7429 #define UPB_PB_DECODER_SIZE 4416
7430
7431 #ifdef __cplusplus
7432
7433 /* A Decoder receives binary protobuf data on its input sink and pushes the
7434 * decoded data to its output sink. */
7435 class upb::pb::Decoder {
7436 public:
7437 /* Constructs a decoder instance for the given method, which must outlive this
7438 * decoder. Any errors during parsing will be set on the given status, which
7439 * must also outlive this decoder.
7440 *
7441 * The sink must match the given method. */
7442 static Decoder* Create(Environment* env, const DecoderMethod* method,
7443 Sink* output);
7444
7445 /* Returns the DecoderMethod this decoder is parsing from. */
7446 const DecoderMethod* method() const;
7447
7448 /* The sink on which this decoder receives input. */
7449 BytesSink* input();
7450
7451 /* Returns number of bytes successfully parsed.
7452 *
7453 * This can be useful for determining the stream position where an error
7454 * occurred.
7455 *
7456 * This value may not be up-to-date when called from inside a parsing
7457 * callback. */
7458 uint64_t BytesParsed() const;
7459
7460 /* Gets/sets the parsing nexting limit. If the total number of nested
7461 * submessages and repeated fields hits this limit, parsing will fail. This
7462 * is a resource limit that controls the amount of memory used by the parsing
7463 * stack.
7464 *
7465 * Setting the limit will fail if the parser is currently suspended at a depth
7466 * greater than this, or if memory allocation of the stack fails. */
7467 size_t max_nesting() const;
7468 bool set_max_nesting(size_t max);
7469
7470 void Reset();
7471
7472 static const size_t kSize = UPB_PB_DECODER_SIZE;
7473
7474 private:
7475 UPB_DISALLOW_POD_OPS(Decoder, upb::pb::Decoder)
7476 };
7477
7478 #endif /* __cplusplus */
7479
7480 #ifdef __cplusplus
7481
7482 /* A class for caching protobuf processing code, whether bytecode for the
7483 * interpreted decoder or machine code for the JIT.
7484 *
7485 * This class is not thread-safe.
7486 *
7487 * TODO(haberman): move this to be heap allocated for ABI stability. */
7488 class upb::pb::CodeCache {
7489 public:
7490 CodeCache();
7491 ~CodeCache();
7492
7493 /* Whether the cache is allowed to generate machine code. Defaults to true.
7494 * There is no real reason to turn it off except for testing or if you are
7495 * having a specific problem with the JIT.
7496 *
7497 * Note that allow_jit = true does not *guarantee* that the code will be JIT
7498 * compiled. If this platform is not supported or the JIT was not compiled
7499 * in, the code may still be interpreted. */
7500 bool allow_jit() const;
7501
7502 /* This may only be called when the object is first constructed, and prior to
7503 * any code generation, otherwise returns false and does nothing. */
7504 bool set_allow_jit(bool allow);
7505
7506 /* Returns a DecoderMethod that can push data to the given handlers.
7507 * If a suitable method already exists, it will be returned from the cache.
7508 *
7509 * Specifying the destination handlers here allows the DecoderMethod to be
7510 * statically bound to the destination handlers if possible, which can allow
7511 * more efficient decoding. However the returned method may or may not
7512 * actually be statically bound. But in all cases, the returned method can
7513 * push data to the given handlers. */
7514 const DecoderMethod *GetDecoderMethod(const DecoderMethodOptions& opts);
7515
7516 /* If/when someone needs to explicitly create a dynamically-bound
7517 * DecoderMethod*, we can add a method to get it here. */
7518
7519 private:
7520 UPB_DISALLOW_COPY_AND_ASSIGN(CodeCache)
7521 #else
7522 struct upb_pbcodecache {
7523 #endif
7524 bool allow_jit_;
7525
7526 /* Array of mgroups. */
7527 upb_inttable groups;
7528 };
7529
7530 UPB_BEGIN_EXTERN_C
7531
7532 upb_pbdecoder *upb_pbdecoder_create(upb_env *e,
7533 const upb_pbdecodermethod *method,
7534 upb_sink *output);
7535 const upb_pbdecodermethod *upb_pbdecoder_method(const upb_pbdecoder *d);
7536 upb_bytessink *upb_pbdecoder_input(upb_pbdecoder *d);
7537 uint64_t upb_pbdecoder_bytesparsed(const upb_pbdecoder *d);
7538 size_t upb_pbdecoder_maxnesting(const upb_pbdecoder *d);
7539 bool upb_pbdecoder_setmaxnesting(upb_pbdecoder *d, size_t max);
7540 void upb_pbdecoder_reset(upb_pbdecoder *d);
7541
7542 void upb_pbdecodermethodopts_init(upb_pbdecodermethodopts *opts,
7543 const upb_handlers *h);
7544 void upb_pbdecodermethodopts_setlazy(upb_pbdecodermethodopts *opts, bool lazy);
7545
7546
7547 /* Include refcounted methods like upb_pbdecodermethod_ref(). */
7548 UPB_REFCOUNTED_CMETHODS(upb_pbdecodermethod, upb_pbdecodermethod_upcast)
7549
7550 const upb_handlers *upb_pbdecodermethod_desthandlers(
7551 const upb_pbdecodermethod *m);
7552 const upb_byteshandler *upb_pbdecodermethod_inputhandler(
7553 const upb_pbdecodermethod *m);
7554 bool upb_pbdecodermethod_isnative(const upb_pbdecodermethod *m);
7555 const upb_pbdecodermethod *upb_pbdecodermethod_new(
7556 const upb_pbdecodermethodopts *opts, const void *owner);
7557
7558 void upb_pbcodecache_init(upb_pbcodecache *c);
7559 void upb_pbcodecache_uninit(upb_pbcodecache *c);
7560 bool upb_pbcodecache_allowjit(const upb_pbcodecache *c);
7561 bool upb_pbcodecache_setallowjit(upb_pbcodecache *c, bool allow);
7562 const upb_pbdecodermethod *upb_pbcodecache_getdecodermethod(
7563 upb_pbcodecache *c, const upb_pbdecodermethodopts *opts);
7564
7565 UPB_END_EXTERN_C
7566
7567 #ifdef __cplusplus
7568
7569 namespace upb {
7570
7571 namespace pb {
7572
7573 /* static */
7574 inline Decoder* Decoder::Create(Environment* env, const DecoderMethod* m,
7575 Sink* sink) {
7576 return upb_pbdecoder_create(env, m, sink);
7577 }
7578 inline const DecoderMethod* Decoder::method() const {
7579 return upb_pbdecoder_method(this);
7580 }
7581 inline BytesSink* Decoder::input() {
7582 return upb_pbdecoder_input(this);
7583 }
7584 inline uint64_t Decoder::BytesParsed() const {
7585 return upb_pbdecoder_bytesparsed(this);
7586 }
7587 inline size_t Decoder::max_nesting() const {
7588 return upb_pbdecoder_maxnesting(this);
7589 }
7590 inline bool Decoder::set_max_nesting(size_t max) {
7591 return upb_pbdecoder_setmaxnesting(this, max);
7592 }
7593 inline void Decoder::Reset() { upb_pbdecoder_reset(this); }
7594
7595 inline DecoderMethodOptions::DecoderMethodOptions(const Handlers* h) {
7596 upb_pbdecodermethodopts_init(this, h);
7597 }
7598 inline void DecoderMethodOptions::set_lazy(bool lazy) {
7599 upb_pbdecodermethodopts_setlazy(this, lazy);
7600 }
7601
7602 inline const Handlers* DecoderMethod::dest_handlers() const {
7603 return upb_pbdecodermethod_desthandlers(this);
7604 }
7605 inline const BytesHandler* DecoderMethod::input_handler() const {
7606 return upb_pbdecodermethod_inputhandler(this);
7607 }
7608 inline bool DecoderMethod::is_native() const {
7609 return upb_pbdecodermethod_isnative(this);
7610 }
7611 /* static */
7612 inline reffed_ptr<const DecoderMethod> DecoderMethod::New(
7613 const DecoderMethodOptions &opts) {
7614 const upb_pbdecodermethod *m = upb_pbdecodermethod_new(&opts, &m);
7615 return reffed_ptr<const DecoderMethod>(m, &m);
7616 }
7617
7618 inline CodeCache::CodeCache() {
7619 upb_pbcodecache_init(this);
7620 }
7621 inline CodeCache::~CodeCache() {
7622 upb_pbcodecache_uninit(this);
7623 }
7624 inline bool CodeCache::allow_jit() const {
7625 return upb_pbcodecache_allowjit(this);
7626 }
7627 inline bool CodeCache::set_allow_jit(bool allow) {
7628 return upb_pbcodecache_setallowjit(this, allow);
7629 }
7630 inline const DecoderMethod *CodeCache::GetDecoderMethod(
7631 const DecoderMethodOptions& opts) {
7632 return upb_pbcodecache_getdecodermethod(this, &opts);
7633 }
7634
7635 } /* namespace pb */
7636 } /* namespace upb */
7637
7638 #endif /* __cplusplus */
7639
7640 #endif /* UPB_DECODER_H_ */
7641
7642 /* C++ names are not actually used since this type isn't exposed to users. */
7643 #ifdef __cplusplus
7644 namespace upb {
7645 namespace pb {
7646 class MessageGroup;
7647 } /* namespace pb */
7648 } /* namespace upb */
7649 #endif
7650 UPB_DECLARE_DERIVED_TYPE(upb::pb::MessageGroup, upb::RefCounted,
7651 mgroup, upb_refcounted)
7652
7653 /* Opcode definitions. The canonical meaning of each opcode is its
7654 * implementation in the interpreter (the JIT is written to match this).
7655 *
7656 * All instructions have the opcode in the low byte.
7657 * Instruction format for most instructions is:
7658 *
7659 * +-------------------+--------+
7660 * | arg (24) | op (8) |
7661 * +-------------------+--------+
7662 *
7663 * Exceptions are indicated below. A few opcodes are multi-word. */
7664 typedef enum {
7665 /* Opcodes 1-8, 13, 15-18 parse their respective descriptor types.
7666 * Arg for all of these is the upb selector for this field. */
7667 #define T(type) OP_PARSE_ ## type = UPB_DESCRIPTOR_TYPE_ ## type
7668 T(DOUBLE), T(FLOAT), T(INT64), T(UINT64), T(INT32), T(FIXED64), T(FIXED32),
7669 T(BOOL), T(UINT32), T(SFIXED32), T(SFIXED64), T(SINT32), T(SINT64),
7670 #undef T
7671 OP_STARTMSG = 9, /* No arg. */
7672 OP_ENDMSG = 10, /* No arg. */
7673 OP_STARTSEQ = 11,
7674 OP_ENDSEQ = 12,
7675 OP_STARTSUBMSG = 14,
7676 OP_ENDSUBMSG = 19,
7677 OP_STARTSTR = 20,
7678 OP_STRING = 21,
7679 OP_ENDSTR = 22,
7680
7681 OP_PUSHTAGDELIM = 23, /* No arg. */
7682 OP_PUSHLENDELIM = 24, /* No arg. */
7683 OP_POP = 25, /* No arg. */
7684 OP_SETDELIM = 26, /* No arg. */
7685 OP_SETBIGGROUPNUM = 27, /* two words:
7686 * | unused (24) | opc (8) |
7687 * | groupnum (32) | */
7688 OP_CHECKDELIM = 28,
7689 OP_CALL = 29,
7690 OP_RET = 30,
7691 OP_BRANCH = 31,
7692
7693 /* Different opcodes depending on how many bytes expected. */
7694 OP_TAG1 = 32, /* | match tag (16) | jump target (8) | opc (8) | */
7695 OP_TAG2 = 33, /* | match tag (16) | jump target (8) | opc (8) | */
7696 OP_TAGN = 34, /* three words: */
7697 /* | unused (16) | jump target(8) | opc (8) | */
7698 /* | match tag 1 (32) | */
7699 /* | match tag 2 (32) | */
7700
7701 OP_SETDISPATCH = 35, /* N words: */
7702 /* | unused (24) | opc | */
7703 /* | upb_inttable* (32 or 64) | */
7704
7705 OP_DISPATCH = 36, /* No arg. */
7706
7707 OP_HALT = 37 /* No arg. */
7708 } opcode;
7709
7710 #define OP_MAX OP_HALT
7711
7712 UPB_INLINE opcode getop(uint32_t instr) { return instr & 0xff; }
7713
7714 /* Method group; represents a set of decoder methods that had their code
7715 * emitted together, and must therefore be freed together. Immutable once
7716 * created. It is possible we may want to expose this to users at some point.
7717 *
7718 * Overall ownership of Decoder objects looks like this:
7719 *
7720 * +----------+
7721 * | | <---> DecoderMethod
7722 * | method |
7723 * CodeCache ---> | group | <---> DecoderMethod
7724 * | |
7725 * | (mgroup) | <---> DecoderMethod
7726 * +----------+
7727 */
7728 struct mgroup {
7729 upb_refcounted base;
7730
7731 /* Maps upb_msgdef/upb_handlers -> upb_pbdecodermethod. We own refs on the
7732 * methods. */
7733 upb_inttable methods;
7734
7735 /* When we add the ability to link to previously existing mgroups, we'll
7736 * need an array of mgroups we reference here, and own refs on them. */
7737
7738 /* The bytecode for our methods, if any exists. Owned by us. */
7739 uint32_t *bytecode;
7740 uint32_t *bytecode_end;
7741
7742 #ifdef UPB_USE_JIT_X64
7743 /* JIT-generated machine code, if any. */
7744 upb_string_handlerfunc *jit_code;
7745 /* The size of the jit_code (required to munmap()). */
7746 size_t jit_size;
7747 char *debug_info;
7748 void *dl;
7749 #endif
7750 };
7751
7752 /* The maximum that any submessages can be nested. Matches proto2's limit.
7753 * This specifies the size of the decoder's statically-sized array and therefore
7754 * setting it high will cause the upb::pb::Decoder object to be larger.
7755 *
7756 * If necessary we can add a runtime-settable property to Decoder that allow
7757 * this to be larger than the compile-time setting, but this would add
7758 * complexity, particularly since we would have to decide how/if to give users
7759 * the ability to set a custom memory allocation function. */
7760 #define UPB_DECODER_MAX_NESTING 64
7761
7762 /* Internal-only struct used by the decoder. */
7763 typedef struct {
7764 /* Space optimization note: we store two pointers here that the JIT
7765 * doesn't need at all; the upb_handlers* inside the sink and
7766 * the dispatch table pointer. We can optimze so that the JIT uses
7767 * smaller stack frames than the interpreter. The only thing we need
7768 * to guarantee is that the fallback routines can find end_ofs. */
7769 upb_sink sink;
7770
7771 /* The absolute stream offset of the end-of-frame delimiter.
7772 * Non-delimited frames (groups and non-packed repeated fields) reuse the
7773 * delimiter of their parent, even though the frame may not end there.
7774 *
7775 * NOTE: the JIT stores a slightly different value here for non-top frames.
7776 * It stores the value relative to the end of the enclosed message. But the
7777 * top frame is still stored the same way, which is important for ensuring
7778 * that calls from the JIT into C work correctly. */
7779 uint64_t end_ofs;
7780 const uint32_t *base;
7781
7782 /* 0 indicates a length-delimited field.
7783 * A positive number indicates a known group.
7784 * A negative number indicates an unknown group. */
7785 int32_t groupnum;
7786 upb_inttable *dispatch; /* Not used by the JIT. */
7787 } upb_pbdecoder_frame;
7788
7789 struct upb_pbdecodermethod {
7790 upb_refcounted base;
7791
7792 /* While compiling, the base is relative in "ofs", after compiling it is
7793 * absolute in "ptr". */
7794 union {
7795 uint32_t ofs; /* PC offset of method. */
7796 void *ptr; /* Pointer to bytecode or machine code for this method. */
7797 } code_base;
7798
7799 /* The decoder method group to which this method belongs. We own a ref.
7800 * Owning a ref on the entire group is more coarse-grained than is strictly
7801 * necessary; all we truly require is that methods we directly reference
7802 * outlive us, while the group could contain many other messages we don't
7803 * require. But the group represents the messages that were
7804 * allocated+compiled together, so it makes the most sense to free them
7805 * together also. */
7806 const upb_refcounted *group;
7807
7808 /* Whether this method is native code or bytecode. */
7809 bool is_native_;
7810
7811 /* The handler one calls to invoke this method. */
7812 upb_byteshandler input_handler_;
7813
7814 /* The destination handlers this method is bound to. We own a ref. */
7815 const upb_handlers *dest_handlers_;
7816
7817 /* Dispatch table -- used by both bytecode decoder and JIT when encountering a
7818 * field number that wasn't the one we were expecting to see. See
7819 * decoder.int.h for the layout of this table. */
7820 upb_inttable dispatch;
7821 };
7822
7823 struct upb_pbdecoder {
7824 upb_env *env;
7825
7826 /* Our input sink. */
7827 upb_bytessink input_;
7828
7829 /* The decoder method we are parsing with (owned). */
7830 const upb_pbdecodermethod *method_;
7831
7832 size_t call_len;
7833 const uint32_t *pc, *last;
7834
7835 /* Current input buffer and its stream offset. */
7836 const char *buf, *ptr, *end, *checkpoint;
7837
7838 /* End of the delimited region, relative to ptr, NULL if not in this buf. */
7839 const char *delim_end;
7840
7841 /* End of the delimited region, relative to ptr, end if not in this buf. */
7842 const char *data_end;
7843
7844 /* Overall stream offset of "buf." */
7845 uint64_t bufstart_ofs;
7846
7847 /* Buffer for residual bytes not parsed from the previous buffer. */
7848 char residual[UPB_DECODER_MAX_RESIDUAL_BYTES];
7849 char *residual_end;
7850
7851 /* Bytes of data that should be discarded from the input beore we start
7852 * parsing again. We set this when we internally determine that we can
7853 * safely skip the next N bytes, but this region extends past the current
7854 * user buffer. */
7855 size_t skip;
7856
7857 /* Stores the user buffer passed to our decode function. */
7858 const char *buf_param;
7859 size_t size_param;
7860 const upb_bufhandle *handle;
7861
7862 /* Our internal stack. */
7863 upb_pbdecoder_frame *stack, *top, *limit;
7864 const uint32_t **callstack;
7865 size_t stack_size;
7866
7867 upb_status *status;
7868
7869 #ifdef UPB_USE_JIT_X64
7870 /* Used momentarily by the generated code to store a value while a user
7871 * function is called. */
7872 uint32_t tmp_len;
7873
7874 const void *saved_rsp;
7875 #endif
7876 };
7877
7878 /* Decoder entry points; used as handlers. */
7879 void *upb_pbdecoder_startbc(void *closure, const void *pc, size_t size_hint);
7880 void *upb_pbdecoder_startjit(void *closure, const void *hd, size_t size_hint);
7881 size_t upb_pbdecoder_decode(void *closure, const void *hd, const char *buf,
7882 size_t size, const upb_bufhandle *handle);
7883 bool upb_pbdecoder_end(void *closure, const void *handler_data);
7884
7885 /* Decoder-internal functions that the JIT calls to handle fallback paths. */
7886 int32_t upb_pbdecoder_resume(upb_pbdecoder *d, void *p, const char *buf,
7887 size_t size, const upb_bufhandle *handle);
7888 size_t upb_pbdecoder_suspend(upb_pbdecoder *d);
7889 int32_t upb_pbdecoder_skipunknown(upb_pbdecoder *d, int32_t fieldnum,
7890 uint8_t wire_type);
7891 int32_t upb_pbdecoder_checktag_slow(upb_pbdecoder *d, uint64_t expected);
7892 int32_t upb_pbdecoder_decode_varint_slow(upb_pbdecoder *d, uint64_t *u64);
7893 int32_t upb_pbdecoder_decode_f32(upb_pbdecoder *d, uint32_t *u32);
7894 int32_t upb_pbdecoder_decode_f64(upb_pbdecoder *d, uint64_t *u64);
7895 void upb_pbdecoder_seterr(upb_pbdecoder *d, const char *msg);
7896
7897 /* Error messages that are shared between the bytecode and JIT decoders. */
7898 extern const char *kPbDecoderStackOverflow;
7899 extern const char *kPbDecoderSubmessageTooLong;
7900
7901 /* Access to decoderplan members needed by the decoder. */
7902 const char *upb_pbdecoder_getopname(unsigned int op);
7903
7904 /* JIT codegen entry point. */
7905 void upb_pbdecoder_jit(mgroup *group);
7906 void upb_pbdecoder_freejit(mgroup *group);
7907 UPB_REFCOUNTED_CMETHODS(mgroup, mgroup_upcast)
7908
7909 /* A special label that means "do field dispatch for this message and branch to
7910 * wherever that takes you." */
7911 #define LABEL_DISPATCH 0
7912
7913 /* A special slot in the dispatch table that stores the epilogue (ENDMSG and/or
7914 * RET) for branching to when we find an appropriate ENDGROUP tag. */
7915 #define DISPATCH_ENDMSG 0
7916
7917 /* It's important to use this invalid wire type instead of 0 (which is a valid
7918 * wire type). */
7919 #define NO_WIRE_TYPE 0xff
7920
7921 /* The dispatch table layout is:
7922 * [field number] -> [ 48-bit offset ][ 8-bit wt2 ][ 8-bit wt1 ]
7923 *
7924 * If wt1 matches, jump to the 48-bit offset. If wt2 matches, lookup
7925 * (UPB_MAX_FIELDNUMBER + fieldnum) and jump there.
7926 *
7927 * We need two wire types because of packed/non-packed compatibility. A
7928 * primitive repeated field can use either wire type and be valid. While we
7929 * could key the table on fieldnum+wiretype, the table would be 8x sparser.
7930 *
7931 * Storing two wire types in the primary value allows us to quickly rule out
7932 * the second wire type without needing to do a separate lookup (this case is
7933 * less common than an unknown field). */
7934 UPB_INLINE uint64_t upb_pbdecoder_packdispatch(uint64_t ofs, uint8_t wt1,
7935 uint8_t wt2) {
7936 return (ofs << 16) | (wt2 << 8) | wt1;
7937 }
7938
7939 UPB_INLINE void upb_pbdecoder_unpackdispatch(uint64_t dispatch, uint64_t *ofs,
7940 uint8_t *wt1, uint8_t *wt2) {
7941 *wt1 = (uint8_t)dispatch;
7942 *wt2 = (uint8_t)(dispatch >> 8);
7943 *ofs = dispatch >> 16;
7944 }
7945
7946 /* All of the functions in decoder.c that return int32_t return values according
7947 * to the following scheme:
7948 * 1. negative values indicate a return code from the following list.
7949 * 2. positive values indicate that error or end of buffer was hit, and
7950 * that the decode function should immediately return the given value
7951 * (the decoder state has already been suspended and is ready to be
7952 * resumed). */
7953 #define DECODE_OK -1
7954 #define DECODE_MISMATCH -2 /* Used only from checktag_slow(). */
7955 #define DECODE_ENDGROUP -3 /* Used only from checkunknown(). */
7956
7957 #define CHECK_RETURN(x) { int32_t ret = x; if (ret >= 0) return ret; }
7958
7959 #endif /* UPB_DECODER_INT_H_ */
7960 /*
7961 ** A number of routines for varint manipulation (we keep them all around to
7962 ** have multiple approaches available for benchmarking).
7963 */
7964
7965 #ifndef UPB_VARINT_DECODER_H_
7966 #define UPB_VARINT_DECODER_H_
7967
7968 #include <assert.h>
7969 #include <stdint.h>
7970 #include <string.h>
7971
7972 #ifdef __cplusplus
7973 extern "C" {
7974 #endif
7975
7976 /* A list of types as they are encoded on-the-wire. */
7977 typedef enum {
7978 UPB_WIRE_TYPE_VARINT = 0,
7979 UPB_WIRE_TYPE_64BIT = 1,
7980 UPB_WIRE_TYPE_DELIMITED = 2,
7981 UPB_WIRE_TYPE_START_GROUP = 3,
7982 UPB_WIRE_TYPE_END_GROUP = 4,
7983 UPB_WIRE_TYPE_32BIT = 5
7984 } upb_wiretype_t;
7985
7986 #define UPB_MAX_WIRE_TYPE 5
7987
7988 /* The maximum number of bytes that it takes to encode a 64-bit varint.
7989 * Note that with a better encoding this could be 9 (TODO: write up a
7990 * wiki document about this). */
7991 #define UPB_PB_VARINT_MAX_LEN 10
7992
7993 /* Array of the "native" (ie. non-packed-repeated) wire type for the given a
7994 * descriptor type (upb_descriptortype_t). */
7995 extern const uint8_t upb_pb_native_wire_types[];
7996
7997 /* Zig-zag encoding/decoding **************************************************/
7998
7999 UPB_INLINE int32_t upb_zzdec_32(uint32_t n) {
8000 return (n >> 1) ^ -(int32_t)(n & 1);
8001 }
8002 UPB_INLINE int64_t upb_zzdec_64(uint64_t n) {
8003 return (n >> 1) ^ -(int64_t)(n & 1);
8004 }
8005 UPB_INLINE uint32_t upb_zzenc_32(int32_t n) { return (n << 1) ^ (n >> 31); }
8006 UPB_INLINE uint64_t upb_zzenc_64(int64_t n) { return (n << 1) ^ (n >> 63); }
8007
8008 /* Decoding *******************************************************************/
8009
8010 /* All decoding functions return this struct by value. */
8011 typedef struct {
8012 const char *p; /* NULL if the varint was unterminated. */
8013 uint64_t val;
8014 } upb_decoderet;
8015
8016 UPB_INLINE upb_decoderet upb_decoderet_make(const char *p, uint64_t val) {
8017 upb_decoderet ret;
8018 ret.p = p;
8019 ret.val = val;
8020 return ret;
8021 }
8022
8023 /* Four functions for decoding a varint of at most eight bytes. They are all
8024 * functionally identical, but are implemented in different ways and likely have
8025 * different performance profiles. We keep them around for performance testing.
8026 *
8027 * Note that these functions may not read byte-by-byte, so they must not be used
8028 * unless there are at least eight bytes left in the buffer! */
8029 upb_decoderet upb_vdecode_max8_branch32(upb_decoderet r);
8030 upb_decoderet upb_vdecode_max8_branch64(upb_decoderet r);
8031 upb_decoderet upb_vdecode_max8_wright(upb_decoderet r);
8032 upb_decoderet upb_vdecode_max8_massimino(upb_decoderet r);
8033
8034 /* Template for a function that checks the first two bytes with branching
8035 * and dispatches 2-10 bytes with a separate function. Note that this may read
8036 * up to 10 bytes, so it must not be used unless there are at least ten bytes
8037 * left in the buffer! */
8038 #define UPB_VARINT_DECODER_CHECK2(name, decode_max8_function) \
8039 UPB_INLINE upb_decoderet upb_vdecode_check2_ ## name(const char *_p) { \
8040 uint8_t *p = (uint8_t*)_p; \
8041 upb_decoderet r; \
8042 if ((*p & 0x80) == 0) { \
8043 /* Common case: one-byte varint. */ \
8044 return upb_decoderet_make(_p + 1, *p & 0x7fU); \
8045 } \
8046 r = upb_decoderet_make(_p + 2, (*p & 0x7fU) | ((*(p + 1) & 0x7fU) << 7)); \
8047 if ((*(p + 1) & 0x80) == 0) { \
8048 /* Two-byte varint. */ \
8049 return r; \
8050 } \
8051 /* Longer varint, fallback to out-of-line function. */ \
8052 return decode_max8_function(r); \
8053 }
8054
8055 UPB_VARINT_DECODER_CHECK2(branch32, upb_vdecode_max8_branch32)
8056 UPB_VARINT_DECODER_CHECK2(branch64, upb_vdecode_max8_branch64)
8057 UPB_VARINT_DECODER_CHECK2(wright, upb_vdecode_max8_wright)
8058 UPB_VARINT_DECODER_CHECK2(massimino, upb_vdecode_max8_massimino)
8059 #undef UPB_VARINT_DECODER_CHECK2
8060
8061 /* Our canonical functions for decoding varints, based on the currently
8062 * favored best-performing implementations. */
8063 UPB_INLINE upb_decoderet upb_vdecode_fast(const char *p) {
8064 if (sizeof(long) == 8)
8065 return upb_vdecode_check2_branch64(p);
8066 else
8067 return upb_vdecode_check2_branch32(p);
8068 }
8069
8070 UPB_INLINE upb_decoderet upb_vdecode_max8_fast(upb_decoderet r) {
8071 return upb_vdecode_max8_massimino(r);
8072 }
8073
8074
8075 /* Encoding *******************************************************************/
8076
8077 UPB_INLINE int upb_value_size(uint64_t val) {
8078 #ifdef __GNUC__
8079 int high_bit = 63 - __builtin_clzll(val); /* 0-based, undef if val == 0. */
8080 #else
8081 int high_bit = 0;
8082 uint64_t tmp = val;
8083 while(tmp >>= 1) high_bit++;
8084 #endif
8085 return val == 0 ? 1 : high_bit / 8 + 1;
8086 }
8087
8088 /* Encodes a 64-bit varint into buf (which must be >=UPB_PB_VARINT_MAX_LEN
8089 * bytes long), returning how many bytes were used.
8090 *
8091 * TODO: benchmark and optimize if necessary. */
8092 UPB_INLINE size_t upb_vencode64(uint64_t val, char *buf) {
8093 size_t i;
8094 if (val == 0) { buf[0] = 0; return 1; }
8095 i = 0;
8096 while (val) {
8097 uint8_t byte = val & 0x7fU;
8098 val >>= 7;
8099 if (val) byte |= 0x80U;
8100 buf[i++] = byte;
8101 }
8102 return i;
8103 }
8104
8105 UPB_INLINE size_t upb_varint_size(uint64_t val) {
8106 char buf[UPB_PB_VARINT_MAX_LEN];
8107 return upb_vencode64(val, buf);
8108 }
8109
8110 /* Encodes a 32-bit varint, *not* sign-extended. */
8111 UPB_INLINE uint64_t upb_vencode32(uint32_t val) {
8112 char buf[UPB_PB_VARINT_MAX_LEN];
8113 size_t bytes = upb_vencode64(val, buf);
8114 uint64_t ret = 0;
8115 assert(bytes <= 5);
8116 memcpy(&ret, buf, bytes);
8117 assert(ret <= 0xffffffffffU);
8118 return ret;
8119 }
8120
8121 #ifdef __cplusplus
8122 } /* extern "C" */
8123 #endif
8124
8125 #endif /* UPB_VARINT_DECODER_H_ */
8126 /*
8127 ** upb::pb::Encoder (upb_pb_encoder)
8128 **
8129 ** Implements a set of upb_handlers that write protobuf data to the binary wire
8130 ** format.
8131 **
8132 ** This encoder implementation does not have any access to any out-of-band or
8133 ** precomputed lengths for submessages, so it must buffer submessages internally
8134 ** before it can emit the first byte.
8135 */
8136
8137 #ifndef UPB_ENCODER_H_
8138 #define UPB_ENCODER_H_
8139
8140
8141 #ifdef __cplusplus
8142 namespace upb {
8143 namespace pb {
8144 class Encoder;
8145 } /* namespace pb */
8146 } /* namespace upb */
8147 #endif
8148
8149 UPB_DECLARE_TYPE(upb::pb::Encoder, upb_pb_encoder)
8150
8151 #define UPB_PBENCODER_MAX_NESTING 100
8152
8153 /* upb::pb::Encoder ***********************************************************/
8154
8155 /* Preallocation hint: decoder won't allocate more bytes than this when first
8156 * constructed. This hint may be an overestimate for some build configurations.
8157 * But if the decoder library is upgraded without recompiling the application,
8158 * it may be an underestimate. */
8159 #define UPB_PB_ENCODER_SIZE 768
8160
8161 #ifdef __cplusplus
8162
8163 class upb::pb::Encoder {
8164 public:
8165 /* Creates a new encoder in the given environment. The Handlers must have
8166 * come from NewHandlers() below. */
8167 static Encoder* Create(Environment* env, const Handlers* handlers,
8168 BytesSink* output);
8169
8170 /* The input to the encoder. */
8171 Sink* input();
8172
8173 /* Creates a new set of handlers for this MessageDef. */
8174 static reffed_ptr<const Handlers> NewHandlers(const MessageDef* msg);
8175
8176 static const size_t kSize = UPB_PB_ENCODER_SIZE;
8177
8178 private:
8179 UPB_DISALLOW_POD_OPS(Encoder, upb::pb::Encoder)
8180 };
8181
8182 #endif
8183
8184 UPB_BEGIN_EXTERN_C
8185
8186 const upb_handlers *upb_pb_encoder_newhandlers(const upb_msgdef *m,
8187 const void *owner);
8188 upb_sink *upb_pb_encoder_input(upb_pb_encoder *p);
8189 upb_pb_encoder* upb_pb_encoder_create(upb_env* e, const upb_handlers* h,
8190 upb_bytessink* output);
8191
8192 UPB_END_EXTERN_C
8193
8194 #ifdef __cplusplus
8195
8196 namespace upb {
8197 namespace pb {
8198 inline Encoder* Encoder::Create(Environment* env, const Handlers* handlers,
8199 BytesSink* output) {
8200 return upb_pb_encoder_create(env, handlers, output);
8201 }
8202 inline Sink* Encoder::input() {
8203 return upb_pb_encoder_input(this);
8204 }
8205 inline reffed_ptr<const Handlers> Encoder::NewHandlers(
8206 const upb::MessageDef *md) {
8207 const Handlers* h = upb_pb_encoder_newhandlers(md, &h);
8208 return reffed_ptr<const Handlers>(h, &h);
8209 }
8210 } /* namespace pb */
8211 } /* namespace upb */
8212
8213 #endif
8214
8215 #endif /* UPB_ENCODER_H_ */
8216 /*
8217 ** upb's core components like upb_decoder and upb_msg are carefully designed to
8218 ** avoid depending on each other for maximum orthogonality. In other words,
8219 ** you can use a upb_decoder to decode into *any* kind of structure; upb_msg is
8220 ** just one such structure. A upb_msg can be serialized/deserialized into any
8221 ** format, protobuf binary format is just one such format.
8222 **
8223 ** However, for convenience we provide functions here for doing common
8224 ** operations like deserializing protobuf binary format into a upb_msg. The
8225 ** compromise is that this file drags in almost all of upb as a dependency,
8226 ** which could be undesirable if you're trying to use a trimmed-down build of
8227 ** upb.
8228 **
8229 ** While these routines are convenient, they do not reuse any encoding/decoding
8230 ** state. For example, if a decoder is JIT-based, it will be re-JITted every
8231 ** time these functions are called. For this reason, if you are parsing lots
8232 ** of data and efficiency is an issue, these may not be the best functions to
8233 ** use (though they are useful for prototyping, before optimizing).
8234 */
8235
8236 #ifndef UPB_GLUE_H
8237 #define UPB_GLUE_H
8238
8239 #include <stdbool.h>
8240
8241 #ifdef __cplusplus
8242 #include <vector>
8243
8244 extern "C" {
8245 #endif
8246
8247 /* Loads a binary descriptor and returns a NULL-terminated array of unfrozen
8248 * filedefs. The caller owns the returned array, which must be freed with
8249 * upb_gfree(). */
8250 upb_filedef **upb_loaddescriptor(const char *buf, size_t n, const void *owner,
8251 upb_status *status);
8252
8253 #ifdef __cplusplus
8254 } /* extern "C" */
8255
8256 namespace upb {
8257
8258 inline bool LoadDescriptor(const char* buf, size_t n, Status* status,
8259 std::vector<reffed_ptr<FileDef> >* files) {
8260 FileDef** parsed_files = upb_loaddescriptor(buf, n, &parsed_files, status);
8261
8262 if (parsed_files) {
8263 FileDef** p = parsed_files;
8264 while (*p) {
8265 files->push_back(reffed_ptr<FileDef>(*p, &parsed_files));
8266 ++p;
8267 }
8268 free(parsed_files);
8269 return true;
8270 } else {
8271 return false;
8272 }
8273 }
8274
8275 /* Templated so it can accept both string and std::string. */
8276 template <typename T>
8277 bool LoadDescriptor(const T& desc, Status* status,
8278 std::vector<reffed_ptr<FileDef> >* files) {
8279 return LoadDescriptor(desc.c_str(), desc.size(), status, files);
8280 }
8281
8282 } /* namespace upb */
8283
8284 #endif
8285
8286 #endif /* UPB_GLUE_H */
8287 /*
8288 ** upb::pb::TextPrinter (upb_textprinter)
8289 **
8290 ** Handlers for writing to protobuf text format.
8291 */
8292
8293 #ifndef UPB_TEXT_H_
8294 #define UPB_TEXT_H_
8295
8296
8297 #ifdef __cplusplus
8298 namespace upb {
8299 namespace pb {
8300 class TextPrinter;
8301 } /* namespace pb */
8302 } /* namespace upb */
8303 #endif
8304
8305 UPB_DECLARE_TYPE(upb::pb::TextPrinter, upb_textprinter)
8306
8307 #ifdef __cplusplus
8308
8309 class upb::pb::TextPrinter {
8310 public:
8311 /* The given handlers must have come from NewHandlers(). It must outlive the
8312 * TextPrinter. */
8313 static TextPrinter *Create(Environment *env, const upb::Handlers *handlers,
8314 BytesSink *output);
8315
8316 void SetSingleLineMode(bool single_line);
8317
8318 Sink* input();
8319
8320 /* If handler caching becomes a requirement we can add a code cache as in
8321 * decoder.h */
8322 static reffed_ptr<const Handlers> NewHandlers(const MessageDef* md);
8323 };
8324
8325 #endif
8326
8327 UPB_BEGIN_EXTERN_C
8328
8329 /* C API. */
8330 upb_textprinter *upb_textprinter_create(upb_env *env, const upb_handlers *h,
8331 upb_bytessink *output);
8332 void upb_textprinter_setsingleline(upb_textprinter *p, bool single_line);
8333 upb_sink *upb_textprinter_input(upb_textprinter *p);
8334
8335 const upb_handlers *upb_textprinter_newhandlers(const upb_msgdef *m,
8336 const void *owner);
8337
8338 UPB_END_EXTERN_C
8339
8340 #ifdef __cplusplus
8341
8342 namespace upb {
8343 namespace pb {
8344 inline TextPrinter *TextPrinter::Create(Environment *env,
8345 const upb::Handlers *handlers,
8346 BytesSink *output) {
8347 return upb_textprinter_create(env, handlers, output);
8348 }
8349 inline void TextPrinter::SetSingleLineMode(bool single_line) {
8350 upb_textprinter_setsingleline(this, single_line);
8351 }
8352 inline Sink* TextPrinter::input() {
8353 return upb_textprinter_input(this);
8354 }
8355 inline reffed_ptr<const Handlers> TextPrinter::NewHandlers(
8356 const MessageDef *md) {
8357 const Handlers* h = upb_textprinter_newhandlers(md, &h);
8358 return reffed_ptr<const Handlers>(h, &h);
8359 }
8360 } /* namespace pb */
8361 } /* namespace upb */
8362
8363 #endif
8364
8365 #endif /* UPB_TEXT_H_ */
8366 /*
8367 ** upb::json::Parser (upb_json_parser)
8368 **
8369 ** Parses JSON according to a specific schema.
8370 ** Support for parsing arbitrary JSON (schema-less) will be added later.
8371 */
8372
8373 #ifndef UPB_JSON_PARSER_H_
8374 #define UPB_JSON_PARSER_H_
8375
8376
8377 #ifdef __cplusplus
8378 namespace upb {
8379 namespace json {
8380 class Parser;
8381 class ParserMethod;
8382 } /* namespace json */
8383 } /* namespace upb */
8384 #endif
8385
8386 UPB_DECLARE_TYPE(upb::json::Parser, upb_json_parser)
8387 UPB_DECLARE_DERIVED_TYPE(upb::json::ParserMethod, upb::RefCounted,
8388 upb_json_parsermethod, upb_refcounted)
8389
8390 /* upb::json::Parser **********************************************************/
8391
8392 /* Preallocation hint: parser won't allocate more bytes than this when first
8393 * constructed. This hint may be an overestimate for some build configurations.
8394 * But if the parser library is upgraded without recompiling the application,
8395 * it may be an underestimate. */
8396 #define UPB_JSON_PARSER_SIZE 4112
8397
8398 #ifdef __cplusplus
8399
8400 /* Parses an incoming BytesStream, pushing the results to the destination
8401 * sink. */
8402 class upb::json::Parser {
8403 public:
8404 static Parser* Create(Environment* env, const ParserMethod* method,
8405 Sink* output);
8406
8407 BytesSink* input();
8408
8409 private:
8410 UPB_DISALLOW_POD_OPS(Parser, upb::json::Parser)
8411 };
8412
8413 class upb::json::ParserMethod {
8414 public:
8415 /* Include base methods from upb::ReferenceCounted. */
8416 UPB_REFCOUNTED_CPPMETHODS
8417
8418 /* Returns handlers for parsing according to the specified schema. */
8419 static reffed_ptr<const ParserMethod> New(const upb::MessageDef* md);
8420
8421 /* The destination handlers that are statically bound to this method.
8422 * This method is only capable of outputting to a sink that uses these
8423 * handlers. */
8424 const Handlers* dest_handlers() const;
8425
8426 /* The input handlers for this decoder method. */
8427 const BytesHandler* input_handler() const;
8428
8429 private:
8430 UPB_DISALLOW_POD_OPS(ParserMethod, upb::json::ParserMethod)
8431 };
8432
8433 #endif
8434
8435 UPB_BEGIN_EXTERN_C
8436
8437 upb_json_parser* upb_json_parser_create(upb_env* e,
8438 const upb_json_parsermethod* m,
8439 upb_sink* output);
8440 upb_bytessink *upb_json_parser_input(upb_json_parser *p);
8441
8442 upb_json_parsermethod* upb_json_parsermethod_new(const upb_msgdef* md,
8443 const void* owner);
8444 const upb_handlers *upb_json_parsermethod_desthandlers(
8445 const upb_json_parsermethod *m);
8446 const upb_byteshandler *upb_json_parsermethod_inputhandler(
8447 const upb_json_parsermethod *m);
8448
8449 /* Include refcounted methods like upb_json_parsermethod_ref(). */
8450 UPB_REFCOUNTED_CMETHODS(upb_json_parsermethod, upb_json_parsermethod_upcast)
8451
8452 UPB_END_EXTERN_C
8453
8454 #ifdef __cplusplus
8455
8456 namespace upb {
8457 namespace json {
8458 inline Parser* Parser::Create(Environment* env, const ParserMethod* method,
8459 Sink* output) {
8460 return upb_json_parser_create(env, method, output);
8461 }
8462 inline BytesSink* Parser::input() {
8463 return upb_json_parser_input(this);
8464 }
8465
8466 inline const Handlers* ParserMethod::dest_handlers() const {
8467 return upb_json_parsermethod_desthandlers(this);
8468 }
8469 inline const BytesHandler* ParserMethod::input_handler() const {
8470 return upb_json_parsermethod_inputhandler(this);
8471 }
8472 /* static */
8473 inline reffed_ptr<const ParserMethod> ParserMethod::New(
8474 const MessageDef* md) {
8475 const upb_json_parsermethod *m = upb_json_parsermethod_new(md, &m);
8476 return reffed_ptr<const ParserMethod>(m, &m);
8477 }
8478
8479 } /* namespace json */
8480 } /* namespace upb */
8481
8482 #endif
8483
8484
8485 #endif /* UPB_JSON_PARSER_H_ */
8486 /*
8487 ** upb::json::Printer
8488 **
8489 ** Handlers that emit JSON according to a specific protobuf schema.
8490 */
8491
8492 #ifndef UPB_JSON_TYPED_PRINTER_H_
8493 #define UPB_JSON_TYPED_PRINTER_H_
8494
8495
8496 #ifdef __cplusplus
8497 namespace upb {
8498 namespace json {
8499 class Printer;
8500 } /* namespace json */
8501 } /* namespace upb */
8502 #endif
8503
8504 UPB_DECLARE_TYPE(upb::json::Printer, upb_json_printer)
8505
8506
8507 /* upb::json::Printer *********************************************************/
8508
8509 #define UPB_JSON_PRINTER_SIZE 176
8510
8511 #ifdef __cplusplus
8512
8513 /* Prints an incoming stream of data to a BytesSink in JSON format. */
8514 class upb::json::Printer {
8515 public:
8516 static Printer* Create(Environment* env, const upb::Handlers* handlers,
8517 BytesSink* output);
8518
8519 /* The input to the printer. */
8520 Sink* input();
8521
8522 /* Returns handlers for printing according to the specified schema.
8523 * If preserve_proto_fieldnames is true, the output JSON will use the
8524 * original .proto field names (ie. {"my_field":3}) instead of using
8525 * camelCased names, which is the default: (eg. {"myField":3}). */
8526 static reffed_ptr<const Handlers> NewHandlers(const upb::MessageDef* md,
8527 bool preserve_proto_fieldnames);
8528
8529 static const size_t kSize = UPB_JSON_PRINTER_SIZE;
8530
8531 private:
8532 UPB_DISALLOW_POD_OPS(Printer, upb::json::Printer)
8533 };
8534
8535 #endif
8536
8537 UPB_BEGIN_EXTERN_C
8538
8539 /* Native C API. */
8540 upb_json_printer *upb_json_printer_create(upb_env *e, const upb_handlers *h,
8541 upb_bytessink *output);
8542 upb_sink *upb_json_printer_input(upb_json_printer *p);
8543 const upb_handlers *upb_json_printer_newhandlers(const upb_msgdef *md,
8544 bool preserve_fieldnames,
8545 const void *owner);
8546
8547 UPB_END_EXTERN_C
8548
8549 #ifdef __cplusplus
8550
8551 namespace upb {
8552 namespace json {
8553 inline Printer* Printer::Create(Environment* env, const upb::Handlers* handlers,
8554 BytesSink* output) {
8555 return upb_json_printer_create(env, handlers, output);
8556 }
8557 inline Sink* Printer::input() { return upb_json_printer_input(this); }
8558 inline reffed_ptr<const Handlers> Printer::NewHandlers(
8559 const upb::MessageDef *md, bool preserve_proto_fieldnames) {
8560 const Handlers* h = upb_json_printer_newhandlers(
8561 md, preserve_proto_fieldnames, &h);
8562 return reffed_ptr<const Handlers>(h, &h);
8563 }
8564 } /* namespace json */
8565 } /* namespace upb */
8566
8567 #endif
8568
8569 #endif /* UPB_JSON_TYPED_PRINTER_H_ */
8570