1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements routines for folding instructions into simpler forms
11 // that do not require creating new instructions. This does constant folding
12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
15 // simplified: This is usually true and assuming it simplifies the logic (if
16 // they have not been simplified then results are correct but maybe suboptimal).
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/CaptureTracking.h"
26 #include "llvm/Analysis/CmpInstAnalysis.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/LoopAnalysisManager.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Analysis/VectorUtils.h"
32 #include "llvm/IR/ConstantRange.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/GetElementPtrTypeIterator.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/IR/PatternMatch.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/KnownBits.h"
41 #include <algorithm>
42 using namespace llvm;
43 using namespace llvm::PatternMatch;
44
45 #define DEBUG_TYPE "instsimplify"
46
47 enum { RecursionLimit = 3 };
48
49 STATISTIC(NumExpand, "Number of expansions");
50 STATISTIC(NumReassoc, "Number of reassociations");
51
52 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
53 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
54 unsigned);
55 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &,
56 const SimplifyQuery &, unsigned);
57 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
58 unsigned);
59 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
60 const SimplifyQuery &Q, unsigned MaxRecurse);
61 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
62 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
63 static Value *SimplifyCastInst(unsigned, Value *, Type *,
64 const SimplifyQuery &, unsigned);
65 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &,
66 unsigned);
67
foldSelectWithBinaryOp(Value * Cond,Value * TrueVal,Value * FalseVal)68 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
69 Value *FalseVal) {
70 BinaryOperator::BinaryOps BinOpCode;
71 if (auto *BO = dyn_cast<BinaryOperator>(Cond))
72 BinOpCode = BO->getOpcode();
73 else
74 return nullptr;
75
76 CmpInst::Predicate ExpectedPred, Pred1, Pred2;
77 if (BinOpCode == BinaryOperator::Or) {
78 ExpectedPred = ICmpInst::ICMP_NE;
79 } else if (BinOpCode == BinaryOperator::And) {
80 ExpectedPred = ICmpInst::ICMP_EQ;
81 } else
82 return nullptr;
83
84 // %A = icmp eq %TV, %FV
85 // %B = icmp eq %X, %Y (and one of these is a select operand)
86 // %C = and %A, %B
87 // %D = select %C, %TV, %FV
88 // -->
89 // %FV
90
91 // %A = icmp ne %TV, %FV
92 // %B = icmp ne %X, %Y (and one of these is a select operand)
93 // %C = or %A, %B
94 // %D = select %C, %TV, %FV
95 // -->
96 // %TV
97 Value *X, *Y;
98 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
99 m_Specific(FalseVal)),
100 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
101 Pred1 != Pred2 || Pred1 != ExpectedPred)
102 return nullptr;
103
104 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
105 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
106
107 return nullptr;
108 }
109
110 /// For a boolean type or a vector of boolean type, return false or a vector
111 /// with every element false.
getFalse(Type * Ty)112 static Constant *getFalse(Type *Ty) {
113 return ConstantInt::getFalse(Ty);
114 }
115
116 /// For a boolean type or a vector of boolean type, return true or a vector
117 /// with every element true.
getTrue(Type * Ty)118 static Constant *getTrue(Type *Ty) {
119 return ConstantInt::getTrue(Ty);
120 }
121
122 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
isSameCompare(Value * V,CmpInst::Predicate Pred,Value * LHS,Value * RHS)123 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
124 Value *RHS) {
125 CmpInst *Cmp = dyn_cast<CmpInst>(V);
126 if (!Cmp)
127 return false;
128 CmpInst::Predicate CPred = Cmp->getPredicate();
129 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
130 if (CPred == Pred && CLHS == LHS && CRHS == RHS)
131 return true;
132 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
133 CRHS == LHS;
134 }
135
136 /// Does the given value dominate the specified phi node?
valueDominatesPHI(Value * V,PHINode * P,const DominatorTree * DT)137 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
138 Instruction *I = dyn_cast<Instruction>(V);
139 if (!I)
140 // Arguments and constants dominate all instructions.
141 return true;
142
143 // If we are processing instructions (and/or basic blocks) that have not been
144 // fully added to a function, the parent nodes may still be null. Simply
145 // return the conservative answer in these cases.
146 if (!I->getParent() || !P->getParent() || !I->getFunction())
147 return false;
148
149 // If we have a DominatorTree then do a precise test.
150 if (DT)
151 return DT->dominates(I, P);
152
153 // Otherwise, if the instruction is in the entry block and is not an invoke,
154 // then it obviously dominates all phi nodes.
155 if (I->getParent() == &I->getFunction()->getEntryBlock() &&
156 !isa<InvokeInst>(I))
157 return true;
158
159 return false;
160 }
161
162 /// Simplify "A op (B op' C)" by distributing op over op', turning it into
163 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
164 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
165 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
166 /// Returns the simplified value, or null if no simplification was performed.
ExpandBinOp(Instruction::BinaryOps Opcode,Value * LHS,Value * RHS,Instruction::BinaryOps OpcodeToExpand,const SimplifyQuery & Q,unsigned MaxRecurse)167 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
168 Instruction::BinaryOps OpcodeToExpand,
169 const SimplifyQuery &Q, unsigned MaxRecurse) {
170 // Recursion is always used, so bail out at once if we already hit the limit.
171 if (!MaxRecurse--)
172 return nullptr;
173
174 // Check whether the expression has the form "(A op' B) op C".
175 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
176 if (Op0->getOpcode() == OpcodeToExpand) {
177 // It does! Try turning it into "(A op C) op' (B op C)".
178 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
179 // Do "A op C" and "B op C" both simplify?
180 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
181 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
182 // They do! Return "L op' R" if it simplifies or is already available.
183 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
184 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
185 && L == B && R == A)) {
186 ++NumExpand;
187 return LHS;
188 }
189 // Otherwise return "L op' R" if it simplifies.
190 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
191 ++NumExpand;
192 return V;
193 }
194 }
195 }
196
197 // Check whether the expression has the form "A op (B op' C)".
198 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
199 if (Op1->getOpcode() == OpcodeToExpand) {
200 // It does! Try turning it into "(A op B) op' (A op C)".
201 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
202 // Do "A op B" and "A op C" both simplify?
203 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
204 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
205 // They do! Return "L op' R" if it simplifies or is already available.
206 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
207 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
208 && L == C && R == B)) {
209 ++NumExpand;
210 return RHS;
211 }
212 // Otherwise return "L op' R" if it simplifies.
213 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
214 ++NumExpand;
215 return V;
216 }
217 }
218 }
219
220 return nullptr;
221 }
222
223 /// Generic simplifications for associative binary operations.
224 /// Returns the simpler value, or null if none was found.
SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)225 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
226 Value *LHS, Value *RHS,
227 const SimplifyQuery &Q,
228 unsigned MaxRecurse) {
229 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
230
231 // Recursion is always used, so bail out at once if we already hit the limit.
232 if (!MaxRecurse--)
233 return nullptr;
234
235 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
236 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
237
238 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
239 if (Op0 && Op0->getOpcode() == Opcode) {
240 Value *A = Op0->getOperand(0);
241 Value *B = Op0->getOperand(1);
242 Value *C = RHS;
243
244 // Does "B op C" simplify?
245 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
246 // It does! Return "A op V" if it simplifies or is already available.
247 // If V equals B then "A op V" is just the LHS.
248 if (V == B) return LHS;
249 // Otherwise return "A op V" if it simplifies.
250 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
251 ++NumReassoc;
252 return W;
253 }
254 }
255 }
256
257 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
258 if (Op1 && Op1->getOpcode() == Opcode) {
259 Value *A = LHS;
260 Value *B = Op1->getOperand(0);
261 Value *C = Op1->getOperand(1);
262
263 // Does "A op B" simplify?
264 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
265 // It does! Return "V op C" if it simplifies or is already available.
266 // If V equals B then "V op C" is just the RHS.
267 if (V == B) return RHS;
268 // Otherwise return "V op C" if it simplifies.
269 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
270 ++NumReassoc;
271 return W;
272 }
273 }
274 }
275
276 // The remaining transforms require commutativity as well as associativity.
277 if (!Instruction::isCommutative(Opcode))
278 return nullptr;
279
280 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
281 if (Op0 && Op0->getOpcode() == Opcode) {
282 Value *A = Op0->getOperand(0);
283 Value *B = Op0->getOperand(1);
284 Value *C = RHS;
285
286 // Does "C op A" simplify?
287 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
288 // It does! Return "V op B" if it simplifies or is already available.
289 // If V equals A then "V op B" is just the LHS.
290 if (V == A) return LHS;
291 // Otherwise return "V op B" if it simplifies.
292 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
293 ++NumReassoc;
294 return W;
295 }
296 }
297 }
298
299 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
300 if (Op1 && Op1->getOpcode() == Opcode) {
301 Value *A = LHS;
302 Value *B = Op1->getOperand(0);
303 Value *C = Op1->getOperand(1);
304
305 // Does "C op A" simplify?
306 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
307 // It does! Return "B op V" if it simplifies or is already available.
308 // If V equals C then "B op V" is just the RHS.
309 if (V == C) return RHS;
310 // Otherwise return "B op V" if it simplifies.
311 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
312 ++NumReassoc;
313 return W;
314 }
315 }
316 }
317
318 return nullptr;
319 }
320
321 /// In the case of a binary operation with a select instruction as an operand,
322 /// try to simplify the binop by seeing whether evaluating it on both branches
323 /// of the select results in the same value. Returns the common value if so,
324 /// otherwise returns null.
ThreadBinOpOverSelect(Instruction::BinaryOps Opcode,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)325 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
326 Value *RHS, const SimplifyQuery &Q,
327 unsigned MaxRecurse) {
328 // Recursion is always used, so bail out at once if we already hit the limit.
329 if (!MaxRecurse--)
330 return nullptr;
331
332 SelectInst *SI;
333 if (isa<SelectInst>(LHS)) {
334 SI = cast<SelectInst>(LHS);
335 } else {
336 assert(isa<SelectInst>(RHS) && "No select instruction operand!");
337 SI = cast<SelectInst>(RHS);
338 }
339
340 // Evaluate the BinOp on the true and false branches of the select.
341 Value *TV;
342 Value *FV;
343 if (SI == LHS) {
344 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
345 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
346 } else {
347 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
348 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
349 }
350
351 // If they simplified to the same value, then return the common value.
352 // If they both failed to simplify then return null.
353 if (TV == FV)
354 return TV;
355
356 // If one branch simplified to undef, return the other one.
357 if (TV && isa<UndefValue>(TV))
358 return FV;
359 if (FV && isa<UndefValue>(FV))
360 return TV;
361
362 // If applying the operation did not change the true and false select values,
363 // then the result of the binop is the select itself.
364 if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
365 return SI;
366
367 // If one branch simplified and the other did not, and the simplified
368 // value is equal to the unsimplified one, return the simplified value.
369 // For example, select (cond, X, X & Z) & Z -> X & Z.
370 if ((FV && !TV) || (TV && !FV)) {
371 // Check that the simplified value has the form "X op Y" where "op" is the
372 // same as the original operation.
373 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
374 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
375 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
376 // We already know that "op" is the same as for the simplified value. See
377 // if the operands match too. If so, return the simplified value.
378 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
379 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
380 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
381 if (Simplified->getOperand(0) == UnsimplifiedLHS &&
382 Simplified->getOperand(1) == UnsimplifiedRHS)
383 return Simplified;
384 if (Simplified->isCommutative() &&
385 Simplified->getOperand(1) == UnsimplifiedLHS &&
386 Simplified->getOperand(0) == UnsimplifiedRHS)
387 return Simplified;
388 }
389 }
390
391 return nullptr;
392 }
393
394 /// In the case of a comparison with a select instruction, try to simplify the
395 /// comparison by seeing whether both branches of the select result in the same
396 /// value. Returns the common value if so, otherwise returns null.
ThreadCmpOverSelect(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)397 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
398 Value *RHS, const SimplifyQuery &Q,
399 unsigned MaxRecurse) {
400 // Recursion is always used, so bail out at once if we already hit the limit.
401 if (!MaxRecurse--)
402 return nullptr;
403
404 // Make sure the select is on the LHS.
405 if (!isa<SelectInst>(LHS)) {
406 std::swap(LHS, RHS);
407 Pred = CmpInst::getSwappedPredicate(Pred);
408 }
409 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
410 SelectInst *SI = cast<SelectInst>(LHS);
411 Value *Cond = SI->getCondition();
412 Value *TV = SI->getTrueValue();
413 Value *FV = SI->getFalseValue();
414
415 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
416 // Does "cmp TV, RHS" simplify?
417 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
418 if (TCmp == Cond) {
419 // It not only simplified, it simplified to the select condition. Replace
420 // it with 'true'.
421 TCmp = getTrue(Cond->getType());
422 } else if (!TCmp) {
423 // It didn't simplify. However if "cmp TV, RHS" is equal to the select
424 // condition then we can replace it with 'true'. Otherwise give up.
425 if (!isSameCompare(Cond, Pred, TV, RHS))
426 return nullptr;
427 TCmp = getTrue(Cond->getType());
428 }
429
430 // Does "cmp FV, RHS" simplify?
431 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
432 if (FCmp == Cond) {
433 // It not only simplified, it simplified to the select condition. Replace
434 // it with 'false'.
435 FCmp = getFalse(Cond->getType());
436 } else if (!FCmp) {
437 // It didn't simplify. However if "cmp FV, RHS" is equal to the select
438 // condition then we can replace it with 'false'. Otherwise give up.
439 if (!isSameCompare(Cond, Pred, FV, RHS))
440 return nullptr;
441 FCmp = getFalse(Cond->getType());
442 }
443
444 // If both sides simplified to the same value, then use it as the result of
445 // the original comparison.
446 if (TCmp == FCmp)
447 return TCmp;
448
449 // The remaining cases only make sense if the select condition has the same
450 // type as the result of the comparison, so bail out if this is not so.
451 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
452 return nullptr;
453 // If the false value simplified to false, then the result of the compare
454 // is equal to "Cond && TCmp". This also catches the case when the false
455 // value simplified to false and the true value to true, returning "Cond".
456 if (match(FCmp, m_Zero()))
457 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
458 return V;
459 // If the true value simplified to true, then the result of the compare
460 // is equal to "Cond || FCmp".
461 if (match(TCmp, m_One()))
462 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
463 return V;
464 // Finally, if the false value simplified to true and the true value to
465 // false, then the result of the compare is equal to "!Cond".
466 if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
467 if (Value *V =
468 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
469 Q, MaxRecurse))
470 return V;
471
472 return nullptr;
473 }
474
475 /// In the case of a binary operation with an operand that is a PHI instruction,
476 /// try to simplify the binop by seeing whether evaluating it on the incoming
477 /// phi values yields the same result for every value. If so returns the common
478 /// value, otherwise returns null.
ThreadBinOpOverPHI(Instruction::BinaryOps Opcode,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)479 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
480 Value *RHS, const SimplifyQuery &Q,
481 unsigned MaxRecurse) {
482 // Recursion is always used, so bail out at once if we already hit the limit.
483 if (!MaxRecurse--)
484 return nullptr;
485
486 PHINode *PI;
487 if (isa<PHINode>(LHS)) {
488 PI = cast<PHINode>(LHS);
489 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
490 if (!valueDominatesPHI(RHS, PI, Q.DT))
491 return nullptr;
492 } else {
493 assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
494 PI = cast<PHINode>(RHS);
495 // Bail out if LHS and the phi may be mutually interdependent due to a loop.
496 if (!valueDominatesPHI(LHS, PI, Q.DT))
497 return nullptr;
498 }
499
500 // Evaluate the BinOp on the incoming phi values.
501 Value *CommonValue = nullptr;
502 for (Value *Incoming : PI->incoming_values()) {
503 // If the incoming value is the phi node itself, it can safely be skipped.
504 if (Incoming == PI) continue;
505 Value *V = PI == LHS ?
506 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
507 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
508 // If the operation failed to simplify, or simplified to a different value
509 // to previously, then give up.
510 if (!V || (CommonValue && V != CommonValue))
511 return nullptr;
512 CommonValue = V;
513 }
514
515 return CommonValue;
516 }
517
518 /// In the case of a comparison with a PHI instruction, try to simplify the
519 /// comparison by seeing whether comparing with all of the incoming phi values
520 /// yields the same result every time. If so returns the common result,
521 /// otherwise returns null.
ThreadCmpOverPHI(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)522 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
523 const SimplifyQuery &Q, unsigned MaxRecurse) {
524 // Recursion is always used, so bail out at once if we already hit the limit.
525 if (!MaxRecurse--)
526 return nullptr;
527
528 // Make sure the phi is on the LHS.
529 if (!isa<PHINode>(LHS)) {
530 std::swap(LHS, RHS);
531 Pred = CmpInst::getSwappedPredicate(Pred);
532 }
533 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
534 PHINode *PI = cast<PHINode>(LHS);
535
536 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
537 if (!valueDominatesPHI(RHS, PI, Q.DT))
538 return nullptr;
539
540 // Evaluate the BinOp on the incoming phi values.
541 Value *CommonValue = nullptr;
542 for (Value *Incoming : PI->incoming_values()) {
543 // If the incoming value is the phi node itself, it can safely be skipped.
544 if (Incoming == PI) continue;
545 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
546 // If the operation failed to simplify, or simplified to a different value
547 // to previously, then give up.
548 if (!V || (CommonValue && V != CommonValue))
549 return nullptr;
550 CommonValue = V;
551 }
552
553 return CommonValue;
554 }
555
foldOrCommuteConstant(Instruction::BinaryOps Opcode,Value * & Op0,Value * & Op1,const SimplifyQuery & Q)556 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
557 Value *&Op0, Value *&Op1,
558 const SimplifyQuery &Q) {
559 if (auto *CLHS = dyn_cast<Constant>(Op0)) {
560 if (auto *CRHS = dyn_cast<Constant>(Op1))
561 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
562
563 // Canonicalize the constant to the RHS if this is a commutative operation.
564 if (Instruction::isCommutative(Opcode))
565 std::swap(Op0, Op1);
566 }
567 return nullptr;
568 }
569
570 /// Given operands for an Add, see if we can fold the result.
571 /// If not, this returns null.
SimplifyAddInst(Value * Op0,Value * Op1,bool IsNSW,bool IsNUW,const SimplifyQuery & Q,unsigned MaxRecurse)572 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
573 const SimplifyQuery &Q, unsigned MaxRecurse) {
574 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
575 return C;
576
577 // X + undef -> undef
578 if (match(Op1, m_Undef()))
579 return Op1;
580
581 // X + 0 -> X
582 if (match(Op1, m_Zero()))
583 return Op0;
584
585 // If two operands are negative, return 0.
586 if (isKnownNegation(Op0, Op1))
587 return Constant::getNullValue(Op0->getType());
588
589 // X + (Y - X) -> Y
590 // (Y - X) + X -> Y
591 // Eg: X + -X -> 0
592 Value *Y = nullptr;
593 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
594 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
595 return Y;
596
597 // X + ~X -> -1 since ~X = -X-1
598 Type *Ty = Op0->getType();
599 if (match(Op0, m_Not(m_Specific(Op1))) ||
600 match(Op1, m_Not(m_Specific(Op0))))
601 return Constant::getAllOnesValue(Ty);
602
603 // add nsw/nuw (xor Y, signmask), signmask --> Y
604 // The no-wrapping add guarantees that the top bit will be set by the add.
605 // Therefore, the xor must be clearing the already set sign bit of Y.
606 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
607 match(Op0, m_Xor(m_Value(Y), m_SignMask())))
608 return Y;
609
610 // add nuw %x, -1 -> -1, because %x can only be 0.
611 if (IsNUW && match(Op1, m_AllOnes()))
612 return Op1; // Which is -1.
613
614 /// i1 add -> xor.
615 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
616 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
617 return V;
618
619 // Try some generic simplifications for associative operations.
620 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
621 MaxRecurse))
622 return V;
623
624 // Threading Add over selects and phi nodes is pointless, so don't bother.
625 // Threading over the select in "A + select(cond, B, C)" means evaluating
626 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
627 // only if B and C are equal. If B and C are equal then (since we assume
628 // that operands have already been simplified) "select(cond, B, C)" should
629 // have been simplified to the common value of B and C already. Analysing
630 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
631 // for threading over phi nodes.
632
633 return nullptr;
634 }
635
SimplifyAddInst(Value * Op0,Value * Op1,bool IsNSW,bool IsNUW,const SimplifyQuery & Query)636 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
637 const SimplifyQuery &Query) {
638 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
639 }
640
641 /// Compute the base pointer and cumulative constant offsets for V.
642 ///
643 /// This strips all constant offsets off of V, leaving it the base pointer, and
644 /// accumulates the total constant offset applied in the returned constant. It
645 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
646 /// no constant offsets applied.
647 ///
648 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
649 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
650 /// folding.
stripAndComputeConstantOffsets(const DataLayout & DL,Value * & V,bool AllowNonInbounds=false)651 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
652 bool AllowNonInbounds = false) {
653 assert(V->getType()->isPtrOrPtrVectorTy());
654
655 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
656 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
657
658 // Even though we don't look through PHI nodes, we could be called on an
659 // instruction in an unreachable block, which may be on a cycle.
660 SmallPtrSet<Value *, 4> Visited;
661 Visited.insert(V);
662 do {
663 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
664 if ((!AllowNonInbounds && !GEP->isInBounds()) ||
665 !GEP->accumulateConstantOffset(DL, Offset))
666 break;
667 V = GEP->getPointerOperand();
668 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
669 V = cast<Operator>(V)->getOperand(0);
670 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
671 if (GA->isInterposable())
672 break;
673 V = GA->getAliasee();
674 } else {
675 if (auto CS = CallSite(V))
676 if (Value *RV = CS.getReturnedArgOperand()) {
677 V = RV;
678 continue;
679 }
680 break;
681 }
682 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
683 } while (Visited.insert(V).second);
684
685 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
686 if (V->getType()->isVectorTy())
687 return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
688 OffsetIntPtr);
689 return OffsetIntPtr;
690 }
691
692 /// Compute the constant difference between two pointer values.
693 /// If the difference is not a constant, returns zero.
computePointerDifference(const DataLayout & DL,Value * LHS,Value * RHS)694 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
695 Value *RHS) {
696 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
697 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
698
699 // If LHS and RHS are not related via constant offsets to the same base
700 // value, there is nothing we can do here.
701 if (LHS != RHS)
702 return nullptr;
703
704 // Otherwise, the difference of LHS - RHS can be computed as:
705 // LHS - RHS
706 // = (LHSOffset + Base) - (RHSOffset + Base)
707 // = LHSOffset - RHSOffset
708 return ConstantExpr::getSub(LHSOffset, RHSOffset);
709 }
710
711 /// Given operands for a Sub, see if we can fold the result.
712 /// If not, this returns null.
SimplifySubInst(Value * Op0,Value * Op1,bool isNSW,bool isNUW,const SimplifyQuery & Q,unsigned MaxRecurse)713 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
714 const SimplifyQuery &Q, unsigned MaxRecurse) {
715 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
716 return C;
717
718 // X - undef -> undef
719 // undef - X -> undef
720 if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
721 return UndefValue::get(Op0->getType());
722
723 // X - 0 -> X
724 if (match(Op1, m_Zero()))
725 return Op0;
726
727 // X - X -> 0
728 if (Op0 == Op1)
729 return Constant::getNullValue(Op0->getType());
730
731 // Is this a negation?
732 if (match(Op0, m_Zero())) {
733 // 0 - X -> 0 if the sub is NUW.
734 if (isNUW)
735 return Constant::getNullValue(Op0->getType());
736
737 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
738 if (Known.Zero.isMaxSignedValue()) {
739 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
740 // Op1 must be 0 because negating the minimum signed value is undefined.
741 if (isNSW)
742 return Constant::getNullValue(Op0->getType());
743
744 // 0 - X -> X if X is 0 or the minimum signed value.
745 return Op1;
746 }
747 }
748
749 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
750 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
751 Value *X = nullptr, *Y = nullptr, *Z = Op1;
752 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
753 // See if "V === Y - Z" simplifies.
754 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
755 // It does! Now see if "X + V" simplifies.
756 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
757 // It does, we successfully reassociated!
758 ++NumReassoc;
759 return W;
760 }
761 // See if "V === X - Z" simplifies.
762 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
763 // It does! Now see if "Y + V" simplifies.
764 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
765 // It does, we successfully reassociated!
766 ++NumReassoc;
767 return W;
768 }
769 }
770
771 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
772 // For example, X - (X + 1) -> -1
773 X = Op0;
774 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
775 // See if "V === X - Y" simplifies.
776 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
777 // It does! Now see if "V - Z" simplifies.
778 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
779 // It does, we successfully reassociated!
780 ++NumReassoc;
781 return W;
782 }
783 // See if "V === X - Z" simplifies.
784 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
785 // It does! Now see if "V - Y" simplifies.
786 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
787 // It does, we successfully reassociated!
788 ++NumReassoc;
789 return W;
790 }
791 }
792
793 // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
794 // For example, X - (X - Y) -> Y.
795 Z = Op0;
796 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
797 // See if "V === Z - X" simplifies.
798 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
799 // It does! Now see if "V + Y" simplifies.
800 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
801 // It does, we successfully reassociated!
802 ++NumReassoc;
803 return W;
804 }
805
806 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
807 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
808 match(Op1, m_Trunc(m_Value(Y))))
809 if (X->getType() == Y->getType())
810 // See if "V === X - Y" simplifies.
811 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
812 // It does! Now see if "trunc V" simplifies.
813 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
814 Q, MaxRecurse - 1))
815 // It does, return the simplified "trunc V".
816 return W;
817
818 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
819 if (match(Op0, m_PtrToInt(m_Value(X))) &&
820 match(Op1, m_PtrToInt(m_Value(Y))))
821 if (Constant *Result = computePointerDifference(Q.DL, X, Y))
822 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
823
824 // i1 sub -> xor.
825 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
826 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
827 return V;
828
829 // Threading Sub over selects and phi nodes is pointless, so don't bother.
830 // Threading over the select in "A - select(cond, B, C)" means evaluating
831 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
832 // only if B and C are equal. If B and C are equal then (since we assume
833 // that operands have already been simplified) "select(cond, B, C)" should
834 // have been simplified to the common value of B and C already. Analysing
835 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
836 // for threading over phi nodes.
837
838 return nullptr;
839 }
840
SimplifySubInst(Value * Op0,Value * Op1,bool isNSW,bool isNUW,const SimplifyQuery & Q)841 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
842 const SimplifyQuery &Q) {
843 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
844 }
845
846 /// Given operands for a Mul, see if we can fold the result.
847 /// If not, this returns null.
SimplifyMulInst(Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)848 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
849 unsigned MaxRecurse) {
850 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
851 return C;
852
853 // X * undef -> 0
854 // X * 0 -> 0
855 if (match(Op1, m_CombineOr(m_Undef(), m_Zero())))
856 return Constant::getNullValue(Op0->getType());
857
858 // X * 1 -> X
859 if (match(Op1, m_One()))
860 return Op0;
861
862 // (X / Y) * Y -> X if the division is exact.
863 Value *X = nullptr;
864 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
865 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y)
866 return X;
867
868 // i1 mul -> and.
869 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
870 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
871 return V;
872
873 // Try some generic simplifications for associative operations.
874 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
875 MaxRecurse))
876 return V;
877
878 // Mul distributes over Add. Try some generic simplifications based on this.
879 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
880 Q, MaxRecurse))
881 return V;
882
883 // If the operation is with the result of a select instruction, check whether
884 // operating on either branch of the select always yields the same value.
885 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
886 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
887 MaxRecurse))
888 return V;
889
890 // If the operation is with the result of a phi instruction, check whether
891 // operating on all incoming values of the phi always yields the same value.
892 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
893 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
894 MaxRecurse))
895 return V;
896
897 return nullptr;
898 }
899
SimplifyMulInst(Value * Op0,Value * Op1,const SimplifyQuery & Q)900 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
901 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
902 }
903
904 /// Check for common or similar folds of integer division or integer remainder.
905 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
simplifyDivRem(Value * Op0,Value * Op1,bool IsDiv)906 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) {
907 Type *Ty = Op0->getType();
908
909 // X / undef -> undef
910 // X % undef -> undef
911 if (match(Op1, m_Undef()))
912 return Op1;
913
914 // X / 0 -> undef
915 // X % 0 -> undef
916 // We don't need to preserve faults!
917 if (match(Op1, m_Zero()))
918 return UndefValue::get(Ty);
919
920 // If any element of a constant divisor vector is zero or undef, the whole op
921 // is undef.
922 auto *Op1C = dyn_cast<Constant>(Op1);
923 if (Op1C && Ty->isVectorTy()) {
924 unsigned NumElts = Ty->getVectorNumElements();
925 for (unsigned i = 0; i != NumElts; ++i) {
926 Constant *Elt = Op1C->getAggregateElement(i);
927 if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt)))
928 return UndefValue::get(Ty);
929 }
930 }
931
932 // undef / X -> 0
933 // undef % X -> 0
934 if (match(Op0, m_Undef()))
935 return Constant::getNullValue(Ty);
936
937 // 0 / X -> 0
938 // 0 % X -> 0
939 if (match(Op0, m_Zero()))
940 return Constant::getNullValue(Op0->getType());
941
942 // X / X -> 1
943 // X % X -> 0
944 if (Op0 == Op1)
945 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
946
947 // X / 1 -> X
948 // X % 1 -> 0
949 // If this is a boolean op (single-bit element type), we can't have
950 // division-by-zero or remainder-by-zero, so assume the divisor is 1.
951 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
952 Value *X;
953 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
954 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
955 return IsDiv ? Op0 : Constant::getNullValue(Ty);
956
957 return nullptr;
958 }
959
960 /// Given a predicate and two operands, return true if the comparison is true.
961 /// This is a helper for div/rem simplification where we return some other value
962 /// when we can prove a relationship between the operands.
isICmpTrue(ICmpInst::Predicate Pred,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)963 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
964 const SimplifyQuery &Q, unsigned MaxRecurse) {
965 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
966 Constant *C = dyn_cast_or_null<Constant>(V);
967 return (C && C->isAllOnesValue());
968 }
969
970 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
971 /// to simplify X % Y to X.
isDivZero(Value * X,Value * Y,const SimplifyQuery & Q,unsigned MaxRecurse,bool IsSigned)972 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
973 unsigned MaxRecurse, bool IsSigned) {
974 // Recursion is always used, so bail out at once if we already hit the limit.
975 if (!MaxRecurse--)
976 return false;
977
978 if (IsSigned) {
979 // |X| / |Y| --> 0
980 //
981 // We require that 1 operand is a simple constant. That could be extended to
982 // 2 variables if we computed the sign bit for each.
983 //
984 // Make sure that a constant is not the minimum signed value because taking
985 // the abs() of that is undefined.
986 Type *Ty = X->getType();
987 const APInt *C;
988 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
989 // Is the variable divisor magnitude always greater than the constant
990 // dividend magnitude?
991 // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
992 Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
993 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
994 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
995 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
996 return true;
997 }
998 if (match(Y, m_APInt(C))) {
999 // Special-case: we can't take the abs() of a minimum signed value. If
1000 // that's the divisor, then all we have to do is prove that the dividend
1001 // is also not the minimum signed value.
1002 if (C->isMinSignedValue())
1003 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
1004
1005 // Is the variable dividend magnitude always less than the constant
1006 // divisor magnitude?
1007 // |X| < |C| --> X > -abs(C) and X < abs(C)
1008 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
1009 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
1010 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
1011 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
1012 return true;
1013 }
1014 return false;
1015 }
1016
1017 // IsSigned == false.
1018 // Is the dividend unsigned less than the divisor?
1019 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1020 }
1021
1022 /// These are simplifications common to SDiv and UDiv.
simplifyDiv(Instruction::BinaryOps Opcode,Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)1023 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1024 const SimplifyQuery &Q, unsigned MaxRecurse) {
1025 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1026 return C;
1027
1028 if (Value *V = simplifyDivRem(Op0, Op1, true))
1029 return V;
1030
1031 bool IsSigned = Opcode == Instruction::SDiv;
1032
1033 // (X * Y) / Y -> X if the multiplication does not overflow.
1034 Value *X;
1035 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1036 auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1037 // If the Mul does not overflow, then we are good to go.
1038 if ((IsSigned && Mul->hasNoSignedWrap()) ||
1039 (!IsSigned && Mul->hasNoUnsignedWrap()))
1040 return X;
1041 // If X has the form X = A / Y, then X * Y cannot overflow.
1042 if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1043 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1)))))
1044 return X;
1045 }
1046
1047 // (X rem Y) / Y -> 0
1048 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1049 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1050 return Constant::getNullValue(Op0->getType());
1051
1052 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1053 ConstantInt *C1, *C2;
1054 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
1055 match(Op1, m_ConstantInt(C2))) {
1056 bool Overflow;
1057 (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1058 if (Overflow)
1059 return Constant::getNullValue(Op0->getType());
1060 }
1061
1062 // If the operation is with the result of a select instruction, check whether
1063 // operating on either branch of the select always yields the same value.
1064 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1065 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1066 return V;
1067
1068 // If the operation is with the result of a phi instruction, check whether
1069 // operating on all incoming values of the phi always yields the same value.
1070 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1071 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1072 return V;
1073
1074 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1075 return Constant::getNullValue(Op0->getType());
1076
1077 return nullptr;
1078 }
1079
1080 /// These are simplifications common to SRem and URem.
simplifyRem(Instruction::BinaryOps Opcode,Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)1081 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1082 const SimplifyQuery &Q, unsigned MaxRecurse) {
1083 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1084 return C;
1085
1086 if (Value *V = simplifyDivRem(Op0, Op1, false))
1087 return V;
1088
1089 // (X % Y) % Y -> X % Y
1090 if ((Opcode == Instruction::SRem &&
1091 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1092 (Opcode == Instruction::URem &&
1093 match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1094 return Op0;
1095
1096 // (X << Y) % X -> 0
1097 if ((Opcode == Instruction::SRem &&
1098 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1099 (Opcode == Instruction::URem &&
1100 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))
1101 return Constant::getNullValue(Op0->getType());
1102
1103 // If the operation is with the result of a select instruction, check whether
1104 // operating on either branch of the select always yields the same value.
1105 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1106 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1107 return V;
1108
1109 // If the operation is with the result of a phi instruction, check whether
1110 // operating on all incoming values of the phi always yields the same value.
1111 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1112 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1113 return V;
1114
1115 // If X / Y == 0, then X % Y == X.
1116 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1117 return Op0;
1118
1119 return nullptr;
1120 }
1121
1122 /// Given operands for an SDiv, see if we can fold the result.
1123 /// If not, this returns null.
SimplifySDivInst(Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)1124 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1125 unsigned MaxRecurse) {
1126 // If two operands are negated and no signed overflow, return -1.
1127 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1128 return Constant::getAllOnesValue(Op0->getType());
1129
1130 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1131 }
1132
SimplifySDivInst(Value * Op0,Value * Op1,const SimplifyQuery & Q)1133 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1134 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1135 }
1136
1137 /// Given operands for a UDiv, see if we can fold the result.
1138 /// If not, this returns null.
SimplifyUDivInst(Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)1139 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1140 unsigned MaxRecurse) {
1141 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1142 }
1143
SimplifyUDivInst(Value * Op0,Value * Op1,const SimplifyQuery & Q)1144 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1145 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1146 }
1147
1148 /// Given operands for an SRem, see if we can fold the result.
1149 /// If not, this returns null.
SimplifySRemInst(Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)1150 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1151 unsigned MaxRecurse) {
1152 // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1153 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1154 Value *X;
1155 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1156 return ConstantInt::getNullValue(Op0->getType());
1157
1158 // If the two operands are negated, return 0.
1159 if (isKnownNegation(Op0, Op1))
1160 return ConstantInt::getNullValue(Op0->getType());
1161
1162 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1163 }
1164
SimplifySRemInst(Value * Op0,Value * Op1,const SimplifyQuery & Q)1165 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1166 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1167 }
1168
1169 /// Given operands for a URem, see if we can fold the result.
1170 /// If not, this returns null.
SimplifyURemInst(Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)1171 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1172 unsigned MaxRecurse) {
1173 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1174 }
1175
SimplifyURemInst(Value * Op0,Value * Op1,const SimplifyQuery & Q)1176 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1177 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1178 }
1179
1180 /// Returns true if a shift by \c Amount always yields undef.
isUndefShift(Value * Amount)1181 static bool isUndefShift(Value *Amount) {
1182 Constant *C = dyn_cast<Constant>(Amount);
1183 if (!C)
1184 return false;
1185
1186 // X shift by undef -> undef because it may shift by the bitwidth.
1187 if (isa<UndefValue>(C))
1188 return true;
1189
1190 // Shifting by the bitwidth or more is undefined.
1191 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1192 if (CI->getValue().getLimitedValue() >=
1193 CI->getType()->getScalarSizeInBits())
1194 return true;
1195
1196 // If all lanes of a vector shift are undefined the whole shift is.
1197 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1198 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
1199 if (!isUndefShift(C->getAggregateElement(I)))
1200 return false;
1201 return true;
1202 }
1203
1204 return false;
1205 }
1206
1207 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1208 /// If not, this returns null.
SimplifyShift(Instruction::BinaryOps Opcode,Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)1209 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1210 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) {
1211 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1212 return C;
1213
1214 // 0 shift by X -> 0
1215 if (match(Op0, m_Zero()))
1216 return Constant::getNullValue(Op0->getType());
1217
1218 // X shift by 0 -> X
1219 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1220 // would be poison.
1221 Value *X;
1222 if (match(Op1, m_Zero()) ||
1223 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1224 return Op0;
1225
1226 // Fold undefined shifts.
1227 if (isUndefShift(Op1))
1228 return UndefValue::get(Op0->getType());
1229
1230 // If the operation is with the result of a select instruction, check whether
1231 // operating on either branch of the select always yields the same value.
1232 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1233 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1234 return V;
1235
1236 // If the operation is with the result of a phi instruction, check whether
1237 // operating on all incoming values of the phi always yields the same value.
1238 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1239 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1240 return V;
1241
1242 // If any bits in the shift amount make that value greater than or equal to
1243 // the number of bits in the type, the shift is undefined.
1244 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1245 if (Known.One.getLimitedValue() >= Known.getBitWidth())
1246 return UndefValue::get(Op0->getType());
1247
1248 // If all valid bits in the shift amount are known zero, the first operand is
1249 // unchanged.
1250 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth());
1251 if (Known.countMinTrailingZeros() >= NumValidShiftBits)
1252 return Op0;
1253
1254 return nullptr;
1255 }
1256
1257 /// Given operands for an Shl, LShr or AShr, see if we can
1258 /// fold the result. If not, this returns null.
SimplifyRightShift(Instruction::BinaryOps Opcode,Value * Op0,Value * Op1,bool isExact,const SimplifyQuery & Q,unsigned MaxRecurse)1259 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1260 Value *Op1, bool isExact, const SimplifyQuery &Q,
1261 unsigned MaxRecurse) {
1262 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
1263 return V;
1264
1265 // X >> X -> 0
1266 if (Op0 == Op1)
1267 return Constant::getNullValue(Op0->getType());
1268
1269 // undef >> X -> 0
1270 // undef >> X -> undef (if it's exact)
1271 if (match(Op0, m_Undef()))
1272 return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1273
1274 // The low bit cannot be shifted out of an exact shift if it is set.
1275 if (isExact) {
1276 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1277 if (Op0Known.One[0])
1278 return Op0;
1279 }
1280
1281 return nullptr;
1282 }
1283
1284 /// Given operands for an Shl, see if we can fold the result.
1285 /// If not, this returns null.
SimplifyShlInst(Value * Op0,Value * Op1,bool isNSW,bool isNUW,const SimplifyQuery & Q,unsigned MaxRecurse)1286 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1287 const SimplifyQuery &Q, unsigned MaxRecurse) {
1288 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1289 return V;
1290
1291 // undef << X -> 0
1292 // undef << X -> undef if (if it's NSW/NUW)
1293 if (match(Op0, m_Undef()))
1294 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1295
1296 // (X >> A) << A -> X
1297 Value *X;
1298 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1299 return X;
1300
1301 // shl nuw i8 C, %x -> C iff C has sign bit set.
1302 if (isNUW && match(Op0, m_Negative()))
1303 return Op0;
1304 // NOTE: could use computeKnownBits() / LazyValueInfo,
1305 // but the cost-benefit analysis suggests it isn't worth it.
1306
1307 return nullptr;
1308 }
1309
SimplifyShlInst(Value * Op0,Value * Op1,bool isNSW,bool isNUW,const SimplifyQuery & Q)1310 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1311 const SimplifyQuery &Q) {
1312 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1313 }
1314
1315 /// Given operands for an LShr, see if we can fold the result.
1316 /// If not, this returns null.
SimplifyLShrInst(Value * Op0,Value * Op1,bool isExact,const SimplifyQuery & Q,unsigned MaxRecurse)1317 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1318 const SimplifyQuery &Q, unsigned MaxRecurse) {
1319 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1320 MaxRecurse))
1321 return V;
1322
1323 // (X << A) >> A -> X
1324 Value *X;
1325 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1326 return X;
1327
1328 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A.
1329 // We can return X as we do in the above case since OR alters no bits in X.
1330 // SimplifyDemandedBits in InstCombine can do more general optimization for
1331 // bit manipulation. This pattern aims to provide opportunities for other
1332 // optimizers by supporting a simple but common case in InstSimplify.
1333 Value *Y;
1334 const APInt *ShRAmt, *ShLAmt;
1335 if (match(Op1, m_APInt(ShRAmt)) &&
1336 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1337 *ShRAmt == *ShLAmt) {
1338 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1339 const unsigned Width = Op0->getType()->getScalarSizeInBits();
1340 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
1341 if (ShRAmt->uge(EffWidthY))
1342 return X;
1343 }
1344
1345 return nullptr;
1346 }
1347
SimplifyLShrInst(Value * Op0,Value * Op1,bool isExact,const SimplifyQuery & Q)1348 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1349 const SimplifyQuery &Q) {
1350 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1351 }
1352
1353 /// Given operands for an AShr, see if we can fold the result.
1354 /// If not, this returns null.
SimplifyAShrInst(Value * Op0,Value * Op1,bool isExact,const SimplifyQuery & Q,unsigned MaxRecurse)1355 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1356 const SimplifyQuery &Q, unsigned MaxRecurse) {
1357 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1358 MaxRecurse))
1359 return V;
1360
1361 // all ones >>a X -> -1
1362 // Do not return Op0 because it may contain undef elements if it's a vector.
1363 if (match(Op0, m_AllOnes()))
1364 return Constant::getAllOnesValue(Op0->getType());
1365
1366 // (X << A) >> A -> X
1367 Value *X;
1368 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1369 return X;
1370
1371 // Arithmetic shifting an all-sign-bit value is a no-op.
1372 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1373 if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1374 return Op0;
1375
1376 return nullptr;
1377 }
1378
SimplifyAShrInst(Value * Op0,Value * Op1,bool isExact,const SimplifyQuery & Q)1379 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1380 const SimplifyQuery &Q) {
1381 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1382 }
1383
1384 /// Commuted variants are assumed to be handled by calling this function again
1385 /// with the parameters swapped.
simplifyUnsignedRangeCheck(ICmpInst * ZeroICmp,ICmpInst * UnsignedICmp,bool IsAnd)1386 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1387 ICmpInst *UnsignedICmp, bool IsAnd) {
1388 Value *X, *Y;
1389
1390 ICmpInst::Predicate EqPred;
1391 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1392 !ICmpInst::isEquality(EqPred))
1393 return nullptr;
1394
1395 ICmpInst::Predicate UnsignedPred;
1396 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1397 ICmpInst::isUnsigned(UnsignedPred))
1398 ;
1399 else if (match(UnsignedICmp,
1400 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1401 ICmpInst::isUnsigned(UnsignedPred))
1402 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1403 else
1404 return nullptr;
1405
1406 // X < Y && Y != 0 --> X < Y
1407 // X < Y || Y != 0 --> Y != 0
1408 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1409 return IsAnd ? UnsignedICmp : ZeroICmp;
1410
1411 // X >= Y || Y != 0 --> true
1412 // X >= Y || Y == 0 --> X >= Y
1413 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
1414 if (EqPred == ICmpInst::ICMP_NE)
1415 return getTrue(UnsignedICmp->getType());
1416 return UnsignedICmp;
1417 }
1418
1419 // X < Y && Y == 0 --> false
1420 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1421 IsAnd)
1422 return getFalse(UnsignedICmp->getType());
1423
1424 return nullptr;
1425 }
1426
1427 /// Commuted variants are assumed to be handled by calling this function again
1428 /// with the parameters swapped.
simplifyAndOfICmpsWithSameOperands(ICmpInst * Op0,ICmpInst * Op1)1429 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1430 ICmpInst::Predicate Pred0, Pred1;
1431 Value *A ,*B;
1432 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1433 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1434 return nullptr;
1435
1436 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1437 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1438 // can eliminate Op1 from this 'and'.
1439 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1440 return Op0;
1441
1442 // Check for any combination of predicates that are guaranteed to be disjoint.
1443 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1444 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1445 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1446 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1447 return getFalse(Op0->getType());
1448
1449 return nullptr;
1450 }
1451
1452 /// Commuted variants are assumed to be handled by calling this function again
1453 /// with the parameters swapped.
simplifyOrOfICmpsWithSameOperands(ICmpInst * Op0,ICmpInst * Op1)1454 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1455 ICmpInst::Predicate Pred0, Pred1;
1456 Value *A ,*B;
1457 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1458 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1459 return nullptr;
1460
1461 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1462 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1463 // can eliminate Op0 from this 'or'.
1464 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1465 return Op1;
1466
1467 // Check for any combination of predicates that cover the entire range of
1468 // possibilities.
1469 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1470 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1471 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1472 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1473 return getTrue(Op0->getType());
1474
1475 return nullptr;
1476 }
1477
1478 /// Test if a pair of compares with a shared operand and 2 constants has an
1479 /// empty set intersection, full set union, or if one compare is a superset of
1480 /// the other.
simplifyAndOrOfICmpsWithConstants(ICmpInst * Cmp0,ICmpInst * Cmp1,bool IsAnd)1481 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1482 bool IsAnd) {
1483 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1484 if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1485 return nullptr;
1486
1487 const APInt *C0, *C1;
1488 if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1489 !match(Cmp1->getOperand(1), m_APInt(C1)))
1490 return nullptr;
1491
1492 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1493 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1494
1495 // For and-of-compares, check if the intersection is empty:
1496 // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1497 if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1498 return getFalse(Cmp0->getType());
1499
1500 // For or-of-compares, check if the union is full:
1501 // (icmp X, C0) || (icmp X, C1) --> full set --> true
1502 if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1503 return getTrue(Cmp0->getType());
1504
1505 // Is one range a superset of the other?
1506 // If this is and-of-compares, take the smaller set:
1507 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1508 // If this is or-of-compares, take the larger set:
1509 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1510 if (Range0.contains(Range1))
1511 return IsAnd ? Cmp1 : Cmp0;
1512 if (Range1.contains(Range0))
1513 return IsAnd ? Cmp0 : Cmp1;
1514
1515 return nullptr;
1516 }
1517
simplifyAndOrOfICmpsWithZero(ICmpInst * Cmp0,ICmpInst * Cmp1,bool IsAnd)1518 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1519 bool IsAnd) {
1520 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1521 if (!match(Cmp0->getOperand(1), m_Zero()) ||
1522 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1523 return nullptr;
1524
1525 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1526 return nullptr;
1527
1528 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1529 Value *X = Cmp0->getOperand(0);
1530 Value *Y = Cmp1->getOperand(0);
1531
1532 // If one of the compares is a masked version of a (not) null check, then
1533 // that compare implies the other, so we eliminate the other. Optionally, look
1534 // through a pointer-to-int cast to match a null check of a pointer type.
1535
1536 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1537 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1538 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1539 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1540 if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1541 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1542 return Cmp1;
1543
1544 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1545 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1546 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1547 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1548 if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1549 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1550 return Cmp0;
1551
1552 return nullptr;
1553 }
1554
simplifyAndOfICmpsWithAdd(ICmpInst * Op0,ICmpInst * Op1)1555 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) {
1556 // (icmp (add V, C0), C1) & (icmp V, C0)
1557 ICmpInst::Predicate Pred0, Pred1;
1558 const APInt *C0, *C1;
1559 Value *V;
1560 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1561 return nullptr;
1562
1563 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1564 return nullptr;
1565
1566 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1567 if (AddInst->getOperand(1) != Op1->getOperand(1))
1568 return nullptr;
1569
1570 Type *ITy = Op0->getType();
1571 bool isNSW = AddInst->hasNoSignedWrap();
1572 bool isNUW = AddInst->hasNoUnsignedWrap();
1573
1574 const APInt Delta = *C1 - *C0;
1575 if (C0->isStrictlyPositive()) {
1576 if (Delta == 2) {
1577 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1578 return getFalse(ITy);
1579 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1580 return getFalse(ITy);
1581 }
1582 if (Delta == 1) {
1583 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1584 return getFalse(ITy);
1585 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1586 return getFalse(ITy);
1587 }
1588 }
1589 if (C0->getBoolValue() && isNUW) {
1590 if (Delta == 2)
1591 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1592 return getFalse(ITy);
1593 if (Delta == 1)
1594 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1595 return getFalse(ITy);
1596 }
1597
1598 return nullptr;
1599 }
1600
simplifyAndOfICmps(ICmpInst * Op0,ICmpInst * Op1)1601 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1602 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
1603 return X;
1604 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true))
1605 return X;
1606
1607 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1608 return X;
1609 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1610 return X;
1611
1612 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1613 return X;
1614
1615 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1616 return X;
1617
1618 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1))
1619 return X;
1620 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0))
1621 return X;
1622
1623 return nullptr;
1624 }
1625
simplifyOrOfICmpsWithAdd(ICmpInst * Op0,ICmpInst * Op1)1626 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) {
1627 // (icmp (add V, C0), C1) | (icmp V, C0)
1628 ICmpInst::Predicate Pred0, Pred1;
1629 const APInt *C0, *C1;
1630 Value *V;
1631 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1632 return nullptr;
1633
1634 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1635 return nullptr;
1636
1637 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1638 if (AddInst->getOperand(1) != Op1->getOperand(1))
1639 return nullptr;
1640
1641 Type *ITy = Op0->getType();
1642 bool isNSW = AddInst->hasNoSignedWrap();
1643 bool isNUW = AddInst->hasNoUnsignedWrap();
1644
1645 const APInt Delta = *C1 - *C0;
1646 if (C0->isStrictlyPositive()) {
1647 if (Delta == 2) {
1648 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1649 return getTrue(ITy);
1650 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1651 return getTrue(ITy);
1652 }
1653 if (Delta == 1) {
1654 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1655 return getTrue(ITy);
1656 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1657 return getTrue(ITy);
1658 }
1659 }
1660 if (C0->getBoolValue() && isNUW) {
1661 if (Delta == 2)
1662 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1663 return getTrue(ITy);
1664 if (Delta == 1)
1665 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1666 return getTrue(ITy);
1667 }
1668
1669 return nullptr;
1670 }
1671
simplifyOrOfICmps(ICmpInst * Op0,ICmpInst * Op1)1672 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1673 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
1674 return X;
1675 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false))
1676 return X;
1677
1678 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1679 return X;
1680 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1681 return X;
1682
1683 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1684 return X;
1685
1686 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1687 return X;
1688
1689 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1))
1690 return X;
1691 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0))
1692 return X;
1693
1694 return nullptr;
1695 }
1696
simplifyAndOrOfFCmps(FCmpInst * LHS,FCmpInst * RHS,bool IsAnd)1697 static Value *simplifyAndOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1698 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1699 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1700 if (LHS0->getType() != RHS0->getType())
1701 return nullptr;
1702
1703 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1704 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1705 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1706 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1707 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1708 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1709 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1710 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1711 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1712 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1713 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1714 if ((isKnownNeverNaN(LHS0) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1715 (isKnownNeverNaN(LHS1) && (LHS0 == RHS0 || LHS0 == RHS1)))
1716 return RHS;
1717
1718 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1719 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1720 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1721 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1722 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1723 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1724 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1725 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1726 if ((isKnownNeverNaN(RHS0) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1727 (isKnownNeverNaN(RHS1) && (RHS0 == LHS0 || RHS0 == LHS1)))
1728 return LHS;
1729 }
1730
1731 return nullptr;
1732 }
1733
simplifyAndOrOfCmps(Value * Op0,Value * Op1,bool IsAnd)1734 static Value *simplifyAndOrOfCmps(Value *Op0, Value *Op1, bool IsAnd) {
1735 // Look through casts of the 'and' operands to find compares.
1736 auto *Cast0 = dyn_cast<CastInst>(Op0);
1737 auto *Cast1 = dyn_cast<CastInst>(Op1);
1738 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1739 Cast0->getSrcTy() == Cast1->getSrcTy()) {
1740 Op0 = Cast0->getOperand(0);
1741 Op1 = Cast1->getOperand(0);
1742 }
1743
1744 Value *V = nullptr;
1745 auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1746 auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1747 if (ICmp0 && ICmp1)
1748 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1) :
1749 simplifyOrOfICmps(ICmp0, ICmp1);
1750
1751 auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1752 auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1753 if (FCmp0 && FCmp1)
1754 V = simplifyAndOrOfFCmps(FCmp0, FCmp1, IsAnd);
1755
1756 if (!V)
1757 return nullptr;
1758 if (!Cast0)
1759 return V;
1760
1761 // If we looked through casts, we can only handle a constant simplification
1762 // because we are not allowed to create a cast instruction here.
1763 if (auto *C = dyn_cast<Constant>(V))
1764 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1765
1766 return nullptr;
1767 }
1768
1769 /// Given operands for an And, see if we can fold the result.
1770 /// If not, this returns null.
SimplifyAndInst(Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)1771 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1772 unsigned MaxRecurse) {
1773 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
1774 return C;
1775
1776 // X & undef -> 0
1777 if (match(Op1, m_Undef()))
1778 return Constant::getNullValue(Op0->getType());
1779
1780 // X & X = X
1781 if (Op0 == Op1)
1782 return Op0;
1783
1784 // X & 0 = 0
1785 if (match(Op1, m_Zero()))
1786 return Constant::getNullValue(Op0->getType());
1787
1788 // X & -1 = X
1789 if (match(Op1, m_AllOnes()))
1790 return Op0;
1791
1792 // A & ~A = ~A & A = 0
1793 if (match(Op0, m_Not(m_Specific(Op1))) ||
1794 match(Op1, m_Not(m_Specific(Op0))))
1795 return Constant::getNullValue(Op0->getType());
1796
1797 // (A | ?) & A = A
1798 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
1799 return Op1;
1800
1801 // A & (A | ?) = A
1802 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
1803 return Op0;
1804
1805 // A mask that only clears known zeros of a shifted value is a no-op.
1806 Value *X;
1807 const APInt *Mask;
1808 const APInt *ShAmt;
1809 if (match(Op1, m_APInt(Mask))) {
1810 // If all bits in the inverted and shifted mask are clear:
1811 // and (shl X, ShAmt), Mask --> shl X, ShAmt
1812 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
1813 (~(*Mask)).lshr(*ShAmt).isNullValue())
1814 return Op0;
1815
1816 // If all bits in the inverted and shifted mask are clear:
1817 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
1818 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1819 (~(*Mask)).shl(*ShAmt).isNullValue())
1820 return Op0;
1821 }
1822
1823 // A & (-A) = A if A is a power of two or zero.
1824 if (match(Op0, m_Neg(m_Specific(Op1))) ||
1825 match(Op1, m_Neg(m_Specific(Op0)))) {
1826 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1827 Q.DT))
1828 return Op0;
1829 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1830 Q.DT))
1831 return Op1;
1832 }
1833
1834 if (Value *V = simplifyAndOrOfCmps(Op0, Op1, true))
1835 return V;
1836
1837 // Try some generic simplifications for associative operations.
1838 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1839 MaxRecurse))
1840 return V;
1841
1842 // And distributes over Or. Try some generic simplifications based on this.
1843 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1844 Q, MaxRecurse))
1845 return V;
1846
1847 // And distributes over Xor. Try some generic simplifications based on this.
1848 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1849 Q, MaxRecurse))
1850 return V;
1851
1852 // If the operation is with the result of a select instruction, check whether
1853 // operating on either branch of the select always yields the same value.
1854 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1855 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1856 MaxRecurse))
1857 return V;
1858
1859 // If the operation is with the result of a phi instruction, check whether
1860 // operating on all incoming values of the phi always yields the same value.
1861 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1862 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1863 MaxRecurse))
1864 return V;
1865
1866 // Assuming the effective width of Y is not larger than A, i.e. all bits
1867 // from X and Y are disjoint in (X << A) | Y,
1868 // if the mask of this AND op covers all bits of X or Y, while it covers
1869 // no bits from the other, we can bypass this AND op. E.g.,
1870 // ((X << A) | Y) & Mask -> Y,
1871 // if Mask = ((1 << effective_width_of(Y)) - 1)
1872 // ((X << A) | Y) & Mask -> X << A,
1873 // if Mask = ((1 << effective_width_of(X)) - 1) << A
1874 // SimplifyDemandedBits in InstCombine can optimize the general case.
1875 // This pattern aims to help other passes for a common case.
1876 Value *Y, *XShifted;
1877 if (match(Op1, m_APInt(Mask)) &&
1878 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
1879 m_Value(XShifted)),
1880 m_Value(Y)))) {
1881 const unsigned Width = Op0->getType()->getScalarSizeInBits();
1882 const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
1883 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1884 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
1885 if (EffWidthY <= ShftCnt) {
1886 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
1887 Q.DT);
1888 const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros();
1889 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
1890 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
1891 // If the mask is extracting all bits from X or Y as is, we can skip
1892 // this AND op.
1893 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
1894 return Y;
1895 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
1896 return XShifted;
1897 }
1898 }
1899
1900 return nullptr;
1901 }
1902
SimplifyAndInst(Value * Op0,Value * Op1,const SimplifyQuery & Q)1903 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1904 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
1905 }
1906
1907 /// Given operands for an Or, see if we can fold the result.
1908 /// If not, this returns null.
SimplifyOrInst(Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)1909 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1910 unsigned MaxRecurse) {
1911 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
1912 return C;
1913
1914 // X | undef -> -1
1915 // X | -1 = -1
1916 // Do not return Op1 because it may contain undef elements if it's a vector.
1917 if (match(Op1, m_Undef()) || match(Op1, m_AllOnes()))
1918 return Constant::getAllOnesValue(Op0->getType());
1919
1920 // X | X = X
1921 // X | 0 = X
1922 if (Op0 == Op1 || match(Op1, m_Zero()))
1923 return Op0;
1924
1925 // A | ~A = ~A | A = -1
1926 if (match(Op0, m_Not(m_Specific(Op1))) ||
1927 match(Op1, m_Not(m_Specific(Op0))))
1928 return Constant::getAllOnesValue(Op0->getType());
1929
1930 // (A & ?) | A = A
1931 if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
1932 return Op1;
1933
1934 // A | (A & ?) = A
1935 if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
1936 return Op0;
1937
1938 // ~(A & ?) | A = -1
1939 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
1940 return Constant::getAllOnesValue(Op1->getType());
1941
1942 // A | ~(A & ?) = -1
1943 if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
1944 return Constant::getAllOnesValue(Op0->getType());
1945
1946 Value *A, *B;
1947 // (A & ~B) | (A ^ B) -> (A ^ B)
1948 // (~B & A) | (A ^ B) -> (A ^ B)
1949 // (A & ~B) | (B ^ A) -> (B ^ A)
1950 // (~B & A) | (B ^ A) -> (B ^ A)
1951 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1952 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
1953 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
1954 return Op1;
1955
1956 // Commute the 'or' operands.
1957 // (A ^ B) | (A & ~B) -> (A ^ B)
1958 // (A ^ B) | (~B & A) -> (A ^ B)
1959 // (B ^ A) | (A & ~B) -> (B ^ A)
1960 // (B ^ A) | (~B & A) -> (B ^ A)
1961 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
1962 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
1963 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
1964 return Op0;
1965
1966 // (A & B) | (~A ^ B) -> (~A ^ B)
1967 // (B & A) | (~A ^ B) -> (~A ^ B)
1968 // (A & B) | (B ^ ~A) -> (B ^ ~A)
1969 // (B & A) | (B ^ ~A) -> (B ^ ~A)
1970 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1971 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
1972 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
1973 return Op1;
1974
1975 // (~A ^ B) | (A & B) -> (~A ^ B)
1976 // (~A ^ B) | (B & A) -> (~A ^ B)
1977 // (B ^ ~A) | (A & B) -> (B ^ ~A)
1978 // (B ^ ~A) | (B & A) -> (B ^ ~A)
1979 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1980 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
1981 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
1982 return Op0;
1983
1984 if (Value *V = simplifyAndOrOfCmps(Op0, Op1, false))
1985 return V;
1986
1987 // Try some generic simplifications for associative operations.
1988 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1989 MaxRecurse))
1990 return V;
1991
1992 // Or distributes over And. Try some generic simplifications based on this.
1993 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1994 MaxRecurse))
1995 return V;
1996
1997 // If the operation is with the result of a select instruction, check whether
1998 // operating on either branch of the select always yields the same value.
1999 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
2000 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
2001 MaxRecurse))
2002 return V;
2003
2004 // (A & C1)|(B & C2)
2005 const APInt *C1, *C2;
2006 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2007 match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2008 if (*C1 == ~*C2) {
2009 // (A & C1)|(B & C2)
2010 // If we have: ((V + N) & C1) | (V & C2)
2011 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2012 // replace with V+N.
2013 Value *N;
2014 if (C2->isMask() && // C2 == 0+1+
2015 match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2016 // Add commutes, try both ways.
2017 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2018 return A;
2019 }
2020 // Or commutes, try both ways.
2021 if (C1->isMask() &&
2022 match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2023 // Add commutes, try both ways.
2024 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2025 return B;
2026 }
2027 }
2028 }
2029
2030 // If the operation is with the result of a phi instruction, check whether
2031 // operating on all incoming values of the phi always yields the same value.
2032 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2033 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2034 return V;
2035
2036 return nullptr;
2037 }
2038
SimplifyOrInst(Value * Op0,Value * Op1,const SimplifyQuery & Q)2039 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2040 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
2041 }
2042
2043 /// Given operands for a Xor, see if we can fold the result.
2044 /// If not, this returns null.
SimplifyXorInst(Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)2045 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2046 unsigned MaxRecurse) {
2047 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2048 return C;
2049
2050 // A ^ undef -> undef
2051 if (match(Op1, m_Undef()))
2052 return Op1;
2053
2054 // A ^ 0 = A
2055 if (match(Op1, m_Zero()))
2056 return Op0;
2057
2058 // A ^ A = 0
2059 if (Op0 == Op1)
2060 return Constant::getNullValue(Op0->getType());
2061
2062 // A ^ ~A = ~A ^ A = -1
2063 if (match(Op0, m_Not(m_Specific(Op1))) ||
2064 match(Op1, m_Not(m_Specific(Op0))))
2065 return Constant::getAllOnesValue(Op0->getType());
2066
2067 // Try some generic simplifications for associative operations.
2068 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2069 MaxRecurse))
2070 return V;
2071
2072 // Threading Xor over selects and phi nodes is pointless, so don't bother.
2073 // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2074 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2075 // only if B and C are equal. If B and C are equal then (since we assume
2076 // that operands have already been simplified) "select(cond, B, C)" should
2077 // have been simplified to the common value of B and C already. Analysing
2078 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
2079 // for threading over phi nodes.
2080
2081 return nullptr;
2082 }
2083
SimplifyXorInst(Value * Op0,Value * Op1,const SimplifyQuery & Q)2084 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2085 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
2086 }
2087
2088
GetCompareTy(Value * Op)2089 static Type *GetCompareTy(Value *Op) {
2090 return CmpInst::makeCmpResultType(Op->getType());
2091 }
2092
2093 /// Rummage around inside V looking for something equivalent to the comparison
2094 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2095 /// Helper function for analyzing max/min idioms.
ExtractEquivalentCondition(Value * V,CmpInst::Predicate Pred,Value * LHS,Value * RHS)2096 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2097 Value *LHS, Value *RHS) {
2098 SelectInst *SI = dyn_cast<SelectInst>(V);
2099 if (!SI)
2100 return nullptr;
2101 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2102 if (!Cmp)
2103 return nullptr;
2104 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2105 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2106 return Cmp;
2107 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2108 LHS == CmpRHS && RHS == CmpLHS)
2109 return Cmp;
2110 return nullptr;
2111 }
2112
2113 // A significant optimization not implemented here is assuming that alloca
2114 // addresses are not equal to incoming argument values. They don't *alias*,
2115 // as we say, but that doesn't mean they aren't equal, so we take a
2116 // conservative approach.
2117 //
2118 // This is inspired in part by C++11 5.10p1:
2119 // "Two pointers of the same type compare equal if and only if they are both
2120 // null, both point to the same function, or both represent the same
2121 // address."
2122 //
2123 // This is pretty permissive.
2124 //
2125 // It's also partly due to C11 6.5.9p6:
2126 // "Two pointers compare equal if and only if both are null pointers, both are
2127 // pointers to the same object (including a pointer to an object and a
2128 // subobject at its beginning) or function, both are pointers to one past the
2129 // last element of the same array object, or one is a pointer to one past the
2130 // end of one array object and the other is a pointer to the start of a
2131 // different array object that happens to immediately follow the first array
2132 // object in the address space.)
2133 //
2134 // C11's version is more restrictive, however there's no reason why an argument
2135 // couldn't be a one-past-the-end value for a stack object in the caller and be
2136 // equal to the beginning of a stack object in the callee.
2137 //
2138 // If the C and C++ standards are ever made sufficiently restrictive in this
2139 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2140 // this optimization.
2141 static Constant *
computePointerICmp(const DataLayout & DL,const TargetLibraryInfo * TLI,const DominatorTree * DT,CmpInst::Predicate Pred,AssumptionCache * AC,const Instruction * CxtI,Value * LHS,Value * RHS)2142 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
2143 const DominatorTree *DT, CmpInst::Predicate Pred,
2144 AssumptionCache *AC, const Instruction *CxtI,
2145 Value *LHS, Value *RHS) {
2146 // First, skip past any trivial no-ops.
2147 LHS = LHS->stripPointerCasts();
2148 RHS = RHS->stripPointerCasts();
2149
2150 // A non-null pointer is not equal to a null pointer.
2151 if (llvm::isKnownNonZero(LHS, DL) && isa<ConstantPointerNull>(RHS) &&
2152 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
2153 return ConstantInt::get(GetCompareTy(LHS),
2154 !CmpInst::isTrueWhenEqual(Pred));
2155
2156 // We can only fold certain predicates on pointer comparisons.
2157 switch (Pred) {
2158 default:
2159 return nullptr;
2160
2161 // Equality comaprisons are easy to fold.
2162 case CmpInst::ICMP_EQ:
2163 case CmpInst::ICMP_NE:
2164 break;
2165
2166 // We can only handle unsigned relational comparisons because 'inbounds' on
2167 // a GEP only protects against unsigned wrapping.
2168 case CmpInst::ICMP_UGT:
2169 case CmpInst::ICMP_UGE:
2170 case CmpInst::ICMP_ULT:
2171 case CmpInst::ICMP_ULE:
2172 // However, we have to switch them to their signed variants to handle
2173 // negative indices from the base pointer.
2174 Pred = ICmpInst::getSignedPredicate(Pred);
2175 break;
2176 }
2177
2178 // Strip off any constant offsets so that we can reason about them.
2179 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2180 // here and compare base addresses like AliasAnalysis does, however there are
2181 // numerous hazards. AliasAnalysis and its utilities rely on special rules
2182 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2183 // doesn't need to guarantee pointer inequality when it says NoAlias.
2184 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2185 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2186
2187 // If LHS and RHS are related via constant offsets to the same base
2188 // value, we can replace it with an icmp which just compares the offsets.
2189 if (LHS == RHS)
2190 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2191
2192 // Various optimizations for (in)equality comparisons.
2193 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2194 // Different non-empty allocations that exist at the same time have
2195 // different addresses (if the program can tell). Global variables always
2196 // exist, so they always exist during the lifetime of each other and all
2197 // allocas. Two different allocas usually have different addresses...
2198 //
2199 // However, if there's an @llvm.stackrestore dynamically in between two
2200 // allocas, they may have the same address. It's tempting to reduce the
2201 // scope of the problem by only looking at *static* allocas here. That would
2202 // cover the majority of allocas while significantly reducing the likelihood
2203 // of having an @llvm.stackrestore pop up in the middle. However, it's not
2204 // actually impossible for an @llvm.stackrestore to pop up in the middle of
2205 // an entry block. Also, if we have a block that's not attached to a
2206 // function, we can't tell if it's "static" under the current definition.
2207 // Theoretically, this problem could be fixed by creating a new kind of
2208 // instruction kind specifically for static allocas. Such a new instruction
2209 // could be required to be at the top of the entry block, thus preventing it
2210 // from being subject to a @llvm.stackrestore. Instcombine could even
2211 // convert regular allocas into these special allocas. It'd be nifty.
2212 // However, until then, this problem remains open.
2213 //
2214 // So, we'll assume that two non-empty allocas have different addresses
2215 // for now.
2216 //
2217 // With all that, if the offsets are within the bounds of their allocations
2218 // (and not one-past-the-end! so we can't use inbounds!), and their
2219 // allocations aren't the same, the pointers are not equal.
2220 //
2221 // Note that it's not necessary to check for LHS being a global variable
2222 // address, due to canonicalization and constant folding.
2223 if (isa<AllocaInst>(LHS) &&
2224 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2225 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2226 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2227 uint64_t LHSSize, RHSSize;
2228 ObjectSizeOpts Opts;
2229 Opts.NullIsUnknownSize =
2230 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
2231 if (LHSOffsetCI && RHSOffsetCI &&
2232 getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2233 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
2234 const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2235 const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2236 if (!LHSOffsetValue.isNegative() &&
2237 !RHSOffsetValue.isNegative() &&
2238 LHSOffsetValue.ult(LHSSize) &&
2239 RHSOffsetValue.ult(RHSSize)) {
2240 return ConstantInt::get(GetCompareTy(LHS),
2241 !CmpInst::isTrueWhenEqual(Pred));
2242 }
2243 }
2244
2245 // Repeat the above check but this time without depending on DataLayout
2246 // or being able to compute a precise size.
2247 if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2248 !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2249 LHSOffset->isNullValue() &&
2250 RHSOffset->isNullValue())
2251 return ConstantInt::get(GetCompareTy(LHS),
2252 !CmpInst::isTrueWhenEqual(Pred));
2253 }
2254
2255 // Even if an non-inbounds GEP occurs along the path we can still optimize
2256 // equality comparisons concerning the result. We avoid walking the whole
2257 // chain again by starting where the last calls to
2258 // stripAndComputeConstantOffsets left off and accumulate the offsets.
2259 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2260 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2261 if (LHS == RHS)
2262 return ConstantExpr::getICmp(Pred,
2263 ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2264 ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2265
2266 // If one side of the equality comparison must come from a noalias call
2267 // (meaning a system memory allocation function), and the other side must
2268 // come from a pointer that cannot overlap with dynamically-allocated
2269 // memory within the lifetime of the current function (allocas, byval
2270 // arguments, globals), then determine the comparison result here.
2271 SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
2272 GetUnderlyingObjects(LHS, LHSUObjs, DL);
2273 GetUnderlyingObjects(RHS, RHSUObjs, DL);
2274
2275 // Is the set of underlying objects all noalias calls?
2276 auto IsNAC = [](ArrayRef<Value *> Objects) {
2277 return all_of(Objects, isNoAliasCall);
2278 };
2279
2280 // Is the set of underlying objects all things which must be disjoint from
2281 // noalias calls. For allocas, we consider only static ones (dynamic
2282 // allocas might be transformed into calls to malloc not simultaneously
2283 // live with the compared-to allocation). For globals, we exclude symbols
2284 // that might be resolve lazily to symbols in another dynamically-loaded
2285 // library (and, thus, could be malloc'ed by the implementation).
2286 auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) {
2287 return all_of(Objects, [](Value *V) {
2288 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2289 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2290 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2291 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2292 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2293 !GV->isThreadLocal();
2294 if (const Argument *A = dyn_cast<Argument>(V))
2295 return A->hasByValAttr();
2296 return false;
2297 });
2298 };
2299
2300 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2301 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2302 return ConstantInt::get(GetCompareTy(LHS),
2303 !CmpInst::isTrueWhenEqual(Pred));
2304
2305 // Fold comparisons for non-escaping pointer even if the allocation call
2306 // cannot be elided. We cannot fold malloc comparison to null. Also, the
2307 // dynamic allocation call could be either of the operands.
2308 Value *MI = nullptr;
2309 if (isAllocLikeFn(LHS, TLI) &&
2310 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2311 MI = LHS;
2312 else if (isAllocLikeFn(RHS, TLI) &&
2313 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2314 MI = RHS;
2315 // FIXME: We should also fold the compare when the pointer escapes, but the
2316 // compare dominates the pointer escape
2317 if (MI && !PointerMayBeCaptured(MI, true, true))
2318 return ConstantInt::get(GetCompareTy(LHS),
2319 CmpInst::isFalseWhenEqual(Pred));
2320 }
2321
2322 // Otherwise, fail.
2323 return nullptr;
2324 }
2325
2326 /// Fold an icmp when its operands have i1 scalar type.
simplifyICmpOfBools(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const SimplifyQuery & Q)2327 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2328 Value *RHS, const SimplifyQuery &Q) {
2329 Type *ITy = GetCompareTy(LHS); // The return type.
2330 Type *OpTy = LHS->getType(); // The operand type.
2331 if (!OpTy->isIntOrIntVectorTy(1))
2332 return nullptr;
2333
2334 // A boolean compared to true/false can be simplified in 14 out of the 20
2335 // (10 predicates * 2 constants) possible combinations. Cases not handled here
2336 // require a 'not' of the LHS, so those must be transformed in InstCombine.
2337 if (match(RHS, m_Zero())) {
2338 switch (Pred) {
2339 case CmpInst::ICMP_NE: // X != 0 -> X
2340 case CmpInst::ICMP_UGT: // X >u 0 -> X
2341 case CmpInst::ICMP_SLT: // X <s 0 -> X
2342 return LHS;
2343
2344 case CmpInst::ICMP_ULT: // X <u 0 -> false
2345 case CmpInst::ICMP_SGT: // X >s 0 -> false
2346 return getFalse(ITy);
2347
2348 case CmpInst::ICMP_UGE: // X >=u 0 -> true
2349 case CmpInst::ICMP_SLE: // X <=s 0 -> true
2350 return getTrue(ITy);
2351
2352 default: break;
2353 }
2354 } else if (match(RHS, m_One())) {
2355 switch (Pred) {
2356 case CmpInst::ICMP_EQ: // X == 1 -> X
2357 case CmpInst::ICMP_UGE: // X >=u 1 -> X
2358 case CmpInst::ICMP_SLE: // X <=s -1 -> X
2359 return LHS;
2360
2361 case CmpInst::ICMP_UGT: // X >u 1 -> false
2362 case CmpInst::ICMP_SLT: // X <s -1 -> false
2363 return getFalse(ITy);
2364
2365 case CmpInst::ICMP_ULE: // X <=u 1 -> true
2366 case CmpInst::ICMP_SGE: // X >=s -1 -> true
2367 return getTrue(ITy);
2368
2369 default: break;
2370 }
2371 }
2372
2373 switch (Pred) {
2374 default:
2375 break;
2376 case ICmpInst::ICMP_UGE:
2377 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2378 return getTrue(ITy);
2379 break;
2380 case ICmpInst::ICMP_SGE:
2381 /// For signed comparison, the values for an i1 are 0 and -1
2382 /// respectively. This maps into a truth table of:
2383 /// LHS | RHS | LHS >=s RHS | LHS implies RHS
2384 /// 0 | 0 | 1 (0 >= 0) | 1
2385 /// 0 | 1 | 1 (0 >= -1) | 1
2386 /// 1 | 0 | 0 (-1 >= 0) | 0
2387 /// 1 | 1 | 1 (-1 >= -1) | 1
2388 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2389 return getTrue(ITy);
2390 break;
2391 case ICmpInst::ICMP_ULE:
2392 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2393 return getTrue(ITy);
2394 break;
2395 }
2396
2397 return nullptr;
2398 }
2399
2400 /// Try hard to fold icmp with zero RHS because this is a common case.
simplifyICmpWithZero(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const SimplifyQuery & Q)2401 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2402 Value *RHS, const SimplifyQuery &Q) {
2403 if (!match(RHS, m_Zero()))
2404 return nullptr;
2405
2406 Type *ITy = GetCompareTy(LHS); // The return type.
2407 switch (Pred) {
2408 default:
2409 llvm_unreachable("Unknown ICmp predicate!");
2410 case ICmpInst::ICMP_ULT:
2411 return getFalse(ITy);
2412 case ICmpInst::ICMP_UGE:
2413 return getTrue(ITy);
2414 case ICmpInst::ICMP_EQ:
2415 case ICmpInst::ICMP_ULE:
2416 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2417 return getFalse(ITy);
2418 break;
2419 case ICmpInst::ICMP_NE:
2420 case ICmpInst::ICMP_UGT:
2421 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2422 return getTrue(ITy);
2423 break;
2424 case ICmpInst::ICMP_SLT: {
2425 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2426 if (LHSKnown.isNegative())
2427 return getTrue(ITy);
2428 if (LHSKnown.isNonNegative())
2429 return getFalse(ITy);
2430 break;
2431 }
2432 case ICmpInst::ICMP_SLE: {
2433 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2434 if (LHSKnown.isNegative())
2435 return getTrue(ITy);
2436 if (LHSKnown.isNonNegative() &&
2437 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2438 return getFalse(ITy);
2439 break;
2440 }
2441 case ICmpInst::ICMP_SGE: {
2442 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2443 if (LHSKnown.isNegative())
2444 return getFalse(ITy);
2445 if (LHSKnown.isNonNegative())
2446 return getTrue(ITy);
2447 break;
2448 }
2449 case ICmpInst::ICMP_SGT: {
2450 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2451 if (LHSKnown.isNegative())
2452 return getFalse(ITy);
2453 if (LHSKnown.isNonNegative() &&
2454 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2455 return getTrue(ITy);
2456 break;
2457 }
2458 }
2459
2460 return nullptr;
2461 }
2462
2463 /// Many binary operators with a constant operand have an easy-to-compute
2464 /// range of outputs. This can be used to fold a comparison to always true or
2465 /// always false.
setLimitsForBinOp(BinaryOperator & BO,APInt & Lower,APInt & Upper)2466 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) {
2467 unsigned Width = Lower.getBitWidth();
2468 const APInt *C;
2469 switch (BO.getOpcode()) {
2470 case Instruction::Add:
2471 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
2472 // FIXME: If we have both nuw and nsw, we should reduce the range further.
2473 if (BO.hasNoUnsignedWrap()) {
2474 // 'add nuw x, C' produces [C, UINT_MAX].
2475 Lower = *C;
2476 } else if (BO.hasNoSignedWrap()) {
2477 if (C->isNegative()) {
2478 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
2479 Lower = APInt::getSignedMinValue(Width);
2480 Upper = APInt::getSignedMaxValue(Width) + *C + 1;
2481 } else {
2482 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
2483 Lower = APInt::getSignedMinValue(Width) + *C;
2484 Upper = APInt::getSignedMaxValue(Width) + 1;
2485 }
2486 }
2487 }
2488 break;
2489
2490 case Instruction::And:
2491 if (match(BO.getOperand(1), m_APInt(C)))
2492 // 'and x, C' produces [0, C].
2493 Upper = *C + 1;
2494 break;
2495
2496 case Instruction::Or:
2497 if (match(BO.getOperand(1), m_APInt(C)))
2498 // 'or x, C' produces [C, UINT_MAX].
2499 Lower = *C;
2500 break;
2501
2502 case Instruction::AShr:
2503 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
2504 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
2505 Lower = APInt::getSignedMinValue(Width).ashr(*C);
2506 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
2507 } else if (match(BO.getOperand(0), m_APInt(C))) {
2508 unsigned ShiftAmount = Width - 1;
2509 if (!C->isNullValue() && BO.isExact())
2510 ShiftAmount = C->countTrailingZeros();
2511 if (C->isNegative()) {
2512 // 'ashr C, x' produces [C, C >> (Width-1)]
2513 Lower = *C;
2514 Upper = C->ashr(ShiftAmount) + 1;
2515 } else {
2516 // 'ashr C, x' produces [C >> (Width-1), C]
2517 Lower = C->ashr(ShiftAmount);
2518 Upper = *C + 1;
2519 }
2520 }
2521 break;
2522
2523 case Instruction::LShr:
2524 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
2525 // 'lshr x, C' produces [0, UINT_MAX >> C].
2526 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
2527 } else if (match(BO.getOperand(0), m_APInt(C))) {
2528 // 'lshr C, x' produces [C >> (Width-1), C].
2529 unsigned ShiftAmount = Width - 1;
2530 if (!C->isNullValue() && BO.isExact())
2531 ShiftAmount = C->countTrailingZeros();
2532 Lower = C->lshr(ShiftAmount);
2533 Upper = *C + 1;
2534 }
2535 break;
2536
2537 case Instruction::Shl:
2538 if (match(BO.getOperand(0), m_APInt(C))) {
2539 if (BO.hasNoUnsignedWrap()) {
2540 // 'shl nuw C, x' produces [C, C << CLZ(C)]
2541 Lower = *C;
2542 Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
2543 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
2544 if (C->isNegative()) {
2545 // 'shl nsw C, x' produces [C << CLO(C)-1, C]
2546 unsigned ShiftAmount = C->countLeadingOnes() - 1;
2547 Lower = C->shl(ShiftAmount);
2548 Upper = *C + 1;
2549 } else {
2550 // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
2551 unsigned ShiftAmount = C->countLeadingZeros() - 1;
2552 Lower = *C;
2553 Upper = C->shl(ShiftAmount) + 1;
2554 }
2555 }
2556 }
2557 break;
2558
2559 case Instruction::SDiv:
2560 if (match(BO.getOperand(1), m_APInt(C))) {
2561 APInt IntMin = APInt::getSignedMinValue(Width);
2562 APInt IntMax = APInt::getSignedMaxValue(Width);
2563 if (C->isAllOnesValue()) {
2564 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
2565 // where C != -1 and C != 0 and C != 1
2566 Lower = IntMin + 1;
2567 Upper = IntMax + 1;
2568 } else if (C->countLeadingZeros() < Width - 1) {
2569 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
2570 // where C != -1 and C != 0 and C != 1
2571 Lower = IntMin.sdiv(*C);
2572 Upper = IntMax.sdiv(*C);
2573 if (Lower.sgt(Upper))
2574 std::swap(Lower, Upper);
2575 Upper = Upper + 1;
2576 assert(Upper != Lower && "Upper part of range has wrapped!");
2577 }
2578 } else if (match(BO.getOperand(0), m_APInt(C))) {
2579 if (C->isMinSignedValue()) {
2580 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
2581 Lower = *C;
2582 Upper = Lower.lshr(1) + 1;
2583 } else {
2584 // 'sdiv C, x' produces [-|C|, |C|].
2585 Upper = C->abs() + 1;
2586 Lower = (-Upper) + 1;
2587 }
2588 }
2589 break;
2590
2591 case Instruction::UDiv:
2592 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
2593 // 'udiv x, C' produces [0, UINT_MAX / C].
2594 Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
2595 } else if (match(BO.getOperand(0), m_APInt(C))) {
2596 // 'udiv C, x' produces [0, C].
2597 Upper = *C + 1;
2598 }
2599 break;
2600
2601 case Instruction::SRem:
2602 if (match(BO.getOperand(1), m_APInt(C))) {
2603 // 'srem x, C' produces (-|C|, |C|).
2604 Upper = C->abs();
2605 Lower = (-Upper) + 1;
2606 }
2607 break;
2608
2609 case Instruction::URem:
2610 if (match(BO.getOperand(1), m_APInt(C)))
2611 // 'urem x, C' produces [0, C).
2612 Upper = *C;
2613 break;
2614
2615 default:
2616 break;
2617 }
2618 }
2619
simplifyICmpWithConstant(CmpInst::Predicate Pred,Value * LHS,Value * RHS)2620 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2621 Value *RHS) {
2622 Type *ITy = GetCompareTy(RHS); // The return type.
2623
2624 Value *X;
2625 // Sign-bit checks can be optimized to true/false after unsigned
2626 // floating-point casts:
2627 // icmp slt (bitcast (uitofp X)), 0 --> false
2628 // icmp sgt (bitcast (uitofp X)), -1 --> true
2629 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
2630 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
2631 return ConstantInt::getFalse(ITy);
2632 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
2633 return ConstantInt::getTrue(ITy);
2634 }
2635
2636 const APInt *C;
2637 if (!match(RHS, m_APInt(C)))
2638 return nullptr;
2639
2640 // Rule out tautological comparisons (eg., ult 0 or uge 0).
2641 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2642 if (RHS_CR.isEmptySet())
2643 return ConstantInt::getFalse(ITy);
2644 if (RHS_CR.isFullSet())
2645 return ConstantInt::getTrue(ITy);
2646
2647 // Find the range of possible values for binary operators.
2648 unsigned Width = C->getBitWidth();
2649 APInt Lower = APInt(Width, 0);
2650 APInt Upper = APInt(Width, 0);
2651 if (auto *BO = dyn_cast<BinaryOperator>(LHS))
2652 setLimitsForBinOp(*BO, Lower, Upper);
2653
2654 ConstantRange LHS_CR =
2655 Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true);
2656
2657 if (auto *I = dyn_cast<Instruction>(LHS))
2658 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
2659 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges));
2660
2661 if (!LHS_CR.isFullSet()) {
2662 if (RHS_CR.contains(LHS_CR))
2663 return ConstantInt::getTrue(ITy);
2664 if (RHS_CR.inverse().contains(LHS_CR))
2665 return ConstantInt::getFalse(ITy);
2666 }
2667
2668 return nullptr;
2669 }
2670
2671 /// TODO: A large part of this logic is duplicated in InstCombine's
2672 /// foldICmpBinOp(). We should be able to share that and avoid the code
2673 /// duplication.
simplifyICmpWithBinOp(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)2674 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
2675 Value *RHS, const SimplifyQuery &Q,
2676 unsigned MaxRecurse) {
2677 Type *ITy = GetCompareTy(LHS); // The return type.
2678
2679 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2680 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2681 if (MaxRecurse && (LBO || RBO)) {
2682 // Analyze the case when either LHS or RHS is an add instruction.
2683 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2684 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2685 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2686 if (LBO && LBO->getOpcode() == Instruction::Add) {
2687 A = LBO->getOperand(0);
2688 B = LBO->getOperand(1);
2689 NoLHSWrapProblem =
2690 ICmpInst::isEquality(Pred) ||
2691 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
2692 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
2693 }
2694 if (RBO && RBO->getOpcode() == Instruction::Add) {
2695 C = RBO->getOperand(0);
2696 D = RBO->getOperand(1);
2697 NoRHSWrapProblem =
2698 ICmpInst::isEquality(Pred) ||
2699 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2700 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2701 }
2702
2703 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2704 if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2705 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2706 Constant::getNullValue(RHS->getType()), Q,
2707 MaxRecurse - 1))
2708 return V;
2709
2710 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2711 if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2712 if (Value *V =
2713 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
2714 C == LHS ? D : C, Q, MaxRecurse - 1))
2715 return V;
2716
2717 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2718 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem &&
2719 NoRHSWrapProblem) {
2720 // Determine Y and Z in the form icmp (X+Y), (X+Z).
2721 Value *Y, *Z;
2722 if (A == C) {
2723 // C + B == C + D -> B == D
2724 Y = B;
2725 Z = D;
2726 } else if (A == D) {
2727 // D + B == C + D -> B == C
2728 Y = B;
2729 Z = C;
2730 } else if (B == C) {
2731 // A + C == C + D -> A == D
2732 Y = A;
2733 Z = D;
2734 } else {
2735 assert(B == D);
2736 // A + D == C + D -> A == C
2737 Y = A;
2738 Z = C;
2739 }
2740 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
2741 return V;
2742 }
2743 }
2744
2745 {
2746 Value *Y = nullptr;
2747 // icmp pred (or X, Y), X
2748 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2749 if (Pred == ICmpInst::ICMP_ULT)
2750 return getFalse(ITy);
2751 if (Pred == ICmpInst::ICMP_UGE)
2752 return getTrue(ITy);
2753
2754 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2755 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2756 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2757 if (RHSKnown.isNonNegative() && YKnown.isNegative())
2758 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2759 if (RHSKnown.isNegative() || YKnown.isNonNegative())
2760 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2761 }
2762 }
2763 // icmp pred X, (or X, Y)
2764 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) {
2765 if (Pred == ICmpInst::ICMP_ULE)
2766 return getTrue(ITy);
2767 if (Pred == ICmpInst::ICMP_UGT)
2768 return getFalse(ITy);
2769
2770 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
2771 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2772 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2773 if (LHSKnown.isNonNegative() && YKnown.isNegative())
2774 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
2775 if (LHSKnown.isNegative() || YKnown.isNonNegative())
2776 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
2777 }
2778 }
2779 }
2780
2781 // icmp pred (and X, Y), X
2782 if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2783 if (Pred == ICmpInst::ICMP_UGT)
2784 return getFalse(ITy);
2785 if (Pred == ICmpInst::ICMP_ULE)
2786 return getTrue(ITy);
2787 }
2788 // icmp pred X, (and X, Y)
2789 if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) {
2790 if (Pred == ICmpInst::ICMP_UGE)
2791 return getTrue(ITy);
2792 if (Pred == ICmpInst::ICMP_ULT)
2793 return getFalse(ITy);
2794 }
2795
2796 // 0 - (zext X) pred C
2797 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
2798 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2799 if (RHSC->getValue().isStrictlyPositive()) {
2800 if (Pred == ICmpInst::ICMP_SLT)
2801 return ConstantInt::getTrue(RHSC->getContext());
2802 if (Pred == ICmpInst::ICMP_SGE)
2803 return ConstantInt::getFalse(RHSC->getContext());
2804 if (Pred == ICmpInst::ICMP_EQ)
2805 return ConstantInt::getFalse(RHSC->getContext());
2806 if (Pred == ICmpInst::ICMP_NE)
2807 return ConstantInt::getTrue(RHSC->getContext());
2808 }
2809 if (RHSC->getValue().isNonNegative()) {
2810 if (Pred == ICmpInst::ICMP_SLE)
2811 return ConstantInt::getTrue(RHSC->getContext());
2812 if (Pred == ICmpInst::ICMP_SGT)
2813 return ConstantInt::getFalse(RHSC->getContext());
2814 }
2815 }
2816 }
2817
2818 // icmp pred (urem X, Y), Y
2819 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2820 switch (Pred) {
2821 default:
2822 break;
2823 case ICmpInst::ICMP_SGT:
2824 case ICmpInst::ICMP_SGE: {
2825 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2826 if (!Known.isNonNegative())
2827 break;
2828 LLVM_FALLTHROUGH;
2829 }
2830 case ICmpInst::ICMP_EQ:
2831 case ICmpInst::ICMP_UGT:
2832 case ICmpInst::ICMP_UGE:
2833 return getFalse(ITy);
2834 case ICmpInst::ICMP_SLT:
2835 case ICmpInst::ICMP_SLE: {
2836 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2837 if (!Known.isNonNegative())
2838 break;
2839 LLVM_FALLTHROUGH;
2840 }
2841 case ICmpInst::ICMP_NE:
2842 case ICmpInst::ICMP_ULT:
2843 case ICmpInst::ICMP_ULE:
2844 return getTrue(ITy);
2845 }
2846 }
2847
2848 // icmp pred X, (urem Y, X)
2849 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2850 switch (Pred) {
2851 default:
2852 break;
2853 case ICmpInst::ICMP_SGT:
2854 case ICmpInst::ICMP_SGE: {
2855 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2856 if (!Known.isNonNegative())
2857 break;
2858 LLVM_FALLTHROUGH;
2859 }
2860 case ICmpInst::ICMP_NE:
2861 case ICmpInst::ICMP_UGT:
2862 case ICmpInst::ICMP_UGE:
2863 return getTrue(ITy);
2864 case ICmpInst::ICMP_SLT:
2865 case ICmpInst::ICMP_SLE: {
2866 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2867 if (!Known.isNonNegative())
2868 break;
2869 LLVM_FALLTHROUGH;
2870 }
2871 case ICmpInst::ICMP_EQ:
2872 case ICmpInst::ICMP_ULT:
2873 case ICmpInst::ICMP_ULE:
2874 return getFalse(ITy);
2875 }
2876 }
2877
2878 // x >> y <=u x
2879 // x udiv y <=u x.
2880 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2881 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
2882 // icmp pred (X op Y), X
2883 if (Pred == ICmpInst::ICMP_UGT)
2884 return getFalse(ITy);
2885 if (Pred == ICmpInst::ICMP_ULE)
2886 return getTrue(ITy);
2887 }
2888
2889 // x >=u x >> y
2890 // x >=u x udiv y.
2891 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) ||
2892 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) {
2893 // icmp pred X, (X op Y)
2894 if (Pred == ICmpInst::ICMP_ULT)
2895 return getFalse(ITy);
2896 if (Pred == ICmpInst::ICMP_UGE)
2897 return getTrue(ITy);
2898 }
2899
2900 // handle:
2901 // CI2 << X == CI
2902 // CI2 << X != CI
2903 //
2904 // where CI2 is a power of 2 and CI isn't
2905 if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
2906 const APInt *CI2Val, *CIVal = &CI->getValue();
2907 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
2908 CI2Val->isPowerOf2()) {
2909 if (!CIVal->isPowerOf2()) {
2910 // CI2 << X can equal zero in some circumstances,
2911 // this simplification is unsafe if CI is zero.
2912 //
2913 // We know it is safe if:
2914 // - The shift is nsw, we can't shift out the one bit.
2915 // - The shift is nuw, we can't shift out the one bit.
2916 // - CI2 is one
2917 // - CI isn't zero
2918 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() ||
2919 CI2Val->isOneValue() || !CI->isZero()) {
2920 if (Pred == ICmpInst::ICMP_EQ)
2921 return ConstantInt::getFalse(RHS->getContext());
2922 if (Pred == ICmpInst::ICMP_NE)
2923 return ConstantInt::getTrue(RHS->getContext());
2924 }
2925 }
2926 if (CIVal->isSignMask() && CI2Val->isOneValue()) {
2927 if (Pred == ICmpInst::ICMP_UGT)
2928 return ConstantInt::getFalse(RHS->getContext());
2929 if (Pred == ICmpInst::ICMP_ULE)
2930 return ConstantInt::getTrue(RHS->getContext());
2931 }
2932 }
2933 }
2934
2935 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2936 LBO->getOperand(1) == RBO->getOperand(1)) {
2937 switch (LBO->getOpcode()) {
2938 default:
2939 break;
2940 case Instruction::UDiv:
2941 case Instruction::LShr:
2942 if (ICmpInst::isSigned(Pred) || !LBO->isExact() || !RBO->isExact())
2943 break;
2944 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2945 RBO->getOperand(0), Q, MaxRecurse - 1))
2946 return V;
2947 break;
2948 case Instruction::SDiv:
2949 if (!ICmpInst::isEquality(Pred) || !LBO->isExact() || !RBO->isExact())
2950 break;
2951 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2952 RBO->getOperand(0), Q, MaxRecurse - 1))
2953 return V;
2954 break;
2955 case Instruction::AShr:
2956 if (!LBO->isExact() || !RBO->isExact())
2957 break;
2958 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2959 RBO->getOperand(0), Q, MaxRecurse - 1))
2960 return V;
2961 break;
2962 case Instruction::Shl: {
2963 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
2964 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2965 if (!NUW && !NSW)
2966 break;
2967 if (!NSW && ICmpInst::isSigned(Pred))
2968 break;
2969 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2970 RBO->getOperand(0), Q, MaxRecurse - 1))
2971 return V;
2972 break;
2973 }
2974 }
2975 }
2976 return nullptr;
2977 }
2978
2979 /// Simplify integer comparisons where at least one operand of the compare
2980 /// matches an integer min/max idiom.
simplifyICmpWithMinMax(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)2981 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
2982 Value *RHS, const SimplifyQuery &Q,
2983 unsigned MaxRecurse) {
2984 Type *ITy = GetCompareTy(LHS); // The return type.
2985 Value *A, *B;
2986 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2987 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2988
2989 // Signed variants on "max(a,b)>=a -> true".
2990 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2991 if (A != RHS)
2992 std::swap(A, B); // smax(A, B) pred A.
2993 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2994 // We analyze this as smax(A, B) pred A.
2995 P = Pred;
2996 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2997 (A == LHS || B == LHS)) {
2998 if (A != LHS)
2999 std::swap(A, B); // A pred smax(A, B).
3000 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3001 // We analyze this as smax(A, B) swapped-pred A.
3002 P = CmpInst::getSwappedPredicate(Pred);
3003 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3004 (A == RHS || B == RHS)) {
3005 if (A != RHS)
3006 std::swap(A, B); // smin(A, B) pred A.
3007 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3008 // We analyze this as smax(-A, -B) swapped-pred -A.
3009 // Note that we do not need to actually form -A or -B thanks to EqP.
3010 P = CmpInst::getSwappedPredicate(Pred);
3011 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
3012 (A == LHS || B == LHS)) {
3013 if (A != LHS)
3014 std::swap(A, B); // A pred smin(A, B).
3015 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3016 // We analyze this as smax(-A, -B) pred -A.
3017 // Note that we do not need to actually form -A or -B thanks to EqP.
3018 P = Pred;
3019 }
3020 if (P != CmpInst::BAD_ICMP_PREDICATE) {
3021 // Cases correspond to "max(A, B) p A".
3022 switch (P) {
3023 default:
3024 break;
3025 case CmpInst::ICMP_EQ:
3026 case CmpInst::ICMP_SLE:
3027 // Equivalent to "A EqP B". This may be the same as the condition tested
3028 // in the max/min; if so, we can just return that.
3029 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3030 return V;
3031 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3032 return V;
3033 // Otherwise, see if "A EqP B" simplifies.
3034 if (MaxRecurse)
3035 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3036 return V;
3037 break;
3038 case CmpInst::ICMP_NE:
3039 case CmpInst::ICMP_SGT: {
3040 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3041 // Equivalent to "A InvEqP B". This may be the same as the condition
3042 // tested in the max/min; if so, we can just return that.
3043 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3044 return V;
3045 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3046 return V;
3047 // Otherwise, see if "A InvEqP B" simplifies.
3048 if (MaxRecurse)
3049 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3050 return V;
3051 break;
3052 }
3053 case CmpInst::ICMP_SGE:
3054 // Always true.
3055 return getTrue(ITy);
3056 case CmpInst::ICMP_SLT:
3057 // Always false.
3058 return getFalse(ITy);
3059 }
3060 }
3061
3062 // Unsigned variants on "max(a,b)>=a -> true".
3063 P = CmpInst::BAD_ICMP_PREDICATE;
3064 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3065 if (A != RHS)
3066 std::swap(A, B); // umax(A, B) pred A.
3067 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3068 // We analyze this as umax(A, B) pred A.
3069 P = Pred;
3070 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3071 (A == LHS || B == LHS)) {
3072 if (A != LHS)
3073 std::swap(A, B); // A pred umax(A, B).
3074 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3075 // We analyze this as umax(A, B) swapped-pred A.
3076 P = CmpInst::getSwappedPredicate(Pred);
3077 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3078 (A == RHS || B == RHS)) {
3079 if (A != RHS)
3080 std::swap(A, B); // umin(A, B) pred A.
3081 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3082 // We analyze this as umax(-A, -B) swapped-pred -A.
3083 // Note that we do not need to actually form -A or -B thanks to EqP.
3084 P = CmpInst::getSwappedPredicate(Pred);
3085 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3086 (A == LHS || B == LHS)) {
3087 if (A != LHS)
3088 std::swap(A, B); // A pred umin(A, B).
3089 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3090 // We analyze this as umax(-A, -B) pred -A.
3091 // Note that we do not need to actually form -A or -B thanks to EqP.
3092 P = Pred;
3093 }
3094 if (P != CmpInst::BAD_ICMP_PREDICATE) {
3095 // Cases correspond to "max(A, B) p A".
3096 switch (P) {
3097 default:
3098 break;
3099 case CmpInst::ICMP_EQ:
3100 case CmpInst::ICMP_ULE:
3101 // Equivalent to "A EqP B". This may be the same as the condition tested
3102 // in the max/min; if so, we can just return that.
3103 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3104 return V;
3105 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3106 return V;
3107 // Otherwise, see if "A EqP B" simplifies.
3108 if (MaxRecurse)
3109 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3110 return V;
3111 break;
3112 case CmpInst::ICMP_NE:
3113 case CmpInst::ICMP_UGT: {
3114 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3115 // Equivalent to "A InvEqP B". This may be the same as the condition
3116 // tested in the max/min; if so, we can just return that.
3117 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3118 return V;
3119 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3120 return V;
3121 // Otherwise, see if "A InvEqP B" simplifies.
3122 if (MaxRecurse)
3123 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3124 return V;
3125 break;
3126 }
3127 case CmpInst::ICMP_UGE:
3128 // Always true.
3129 return getTrue(ITy);
3130 case CmpInst::ICMP_ULT:
3131 // Always false.
3132 return getFalse(ITy);
3133 }
3134 }
3135
3136 // Variants on "max(x,y) >= min(x,z)".
3137 Value *C, *D;
3138 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3139 match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3140 (A == C || A == D || B == C || B == D)) {
3141 // max(x, ?) pred min(x, ?).
3142 if (Pred == CmpInst::ICMP_SGE)
3143 // Always true.
3144 return getTrue(ITy);
3145 if (Pred == CmpInst::ICMP_SLT)
3146 // Always false.
3147 return getFalse(ITy);
3148 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3149 match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
3150 (A == C || A == D || B == C || B == D)) {
3151 // min(x, ?) pred max(x, ?).
3152 if (Pred == CmpInst::ICMP_SLE)
3153 // Always true.
3154 return getTrue(ITy);
3155 if (Pred == CmpInst::ICMP_SGT)
3156 // Always false.
3157 return getFalse(ITy);
3158 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3159 match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3160 (A == C || A == D || B == C || B == D)) {
3161 // max(x, ?) pred min(x, ?).
3162 if (Pred == CmpInst::ICMP_UGE)
3163 // Always true.
3164 return getTrue(ITy);
3165 if (Pred == CmpInst::ICMP_ULT)
3166 // Always false.
3167 return getFalse(ITy);
3168 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3169 match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
3170 (A == C || A == D || B == C || B == D)) {
3171 // min(x, ?) pred max(x, ?).
3172 if (Pred == CmpInst::ICMP_ULE)
3173 // Always true.
3174 return getTrue(ITy);
3175 if (Pred == CmpInst::ICMP_UGT)
3176 // Always false.
3177 return getFalse(ITy);
3178 }
3179
3180 return nullptr;
3181 }
3182
3183 /// Given operands for an ICmpInst, see if we can fold the result.
3184 /// If not, this returns null.
SimplifyICmpInst(unsigned Predicate,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)3185 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3186 const SimplifyQuery &Q, unsigned MaxRecurse) {
3187 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3188 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3189
3190 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3191 if (Constant *CRHS = dyn_cast<Constant>(RHS))
3192 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3193
3194 // If we have a constant, make sure it is on the RHS.
3195 std::swap(LHS, RHS);
3196 Pred = CmpInst::getSwappedPredicate(Pred);
3197 }
3198
3199 Type *ITy = GetCompareTy(LHS); // The return type.
3200
3201 // icmp X, X -> true/false
3202 // icmp X, undef -> true/false because undef could be X.
3203 if (LHS == RHS || isa<UndefValue>(RHS))
3204 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3205
3206 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3207 return V;
3208
3209 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3210 return V;
3211
3212 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS))
3213 return V;
3214
3215 // If both operands have range metadata, use the metadata
3216 // to simplify the comparison.
3217 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3218 auto RHS_Instr = cast<Instruction>(RHS);
3219 auto LHS_Instr = cast<Instruction>(LHS);
3220
3221 if (RHS_Instr->getMetadata(LLVMContext::MD_range) &&
3222 LHS_Instr->getMetadata(LLVMContext::MD_range)) {
3223 auto RHS_CR = getConstantRangeFromMetadata(
3224 *RHS_Instr->getMetadata(LLVMContext::MD_range));
3225 auto LHS_CR = getConstantRangeFromMetadata(
3226 *LHS_Instr->getMetadata(LLVMContext::MD_range));
3227
3228 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
3229 if (Satisfied_CR.contains(LHS_CR))
3230 return ConstantInt::getTrue(RHS->getContext());
3231
3232 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
3233 CmpInst::getInversePredicate(Pred), RHS_CR);
3234 if (InversedSatisfied_CR.contains(LHS_CR))
3235 return ConstantInt::getFalse(RHS->getContext());
3236 }
3237 }
3238
3239 // Compare of cast, for example (zext X) != 0 -> X != 0
3240 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3241 Instruction *LI = cast<CastInst>(LHS);
3242 Value *SrcOp = LI->getOperand(0);
3243 Type *SrcTy = SrcOp->getType();
3244 Type *DstTy = LI->getType();
3245
3246 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3247 // if the integer type is the same size as the pointer type.
3248 if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3249 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3250 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3251 // Transfer the cast to the constant.
3252 if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3253 ConstantExpr::getIntToPtr(RHSC, SrcTy),
3254 Q, MaxRecurse-1))
3255 return V;
3256 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3257 if (RI->getOperand(0)->getType() == SrcTy)
3258 // Compare without the cast.
3259 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3260 Q, MaxRecurse-1))
3261 return V;
3262 }
3263 }
3264
3265 if (isa<ZExtInst>(LHS)) {
3266 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3267 // same type.
3268 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3269 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3270 // Compare X and Y. Note that signed predicates become unsigned.
3271 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3272 SrcOp, RI->getOperand(0), Q,
3273 MaxRecurse-1))
3274 return V;
3275 }
3276 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3277 // too. If not, then try to deduce the result of the comparison.
3278 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3279 // Compute the constant that would happen if we truncated to SrcTy then
3280 // reextended to DstTy.
3281 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3282 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3283
3284 // If the re-extended constant didn't change then this is effectively
3285 // also a case of comparing two zero-extended values.
3286 if (RExt == CI && MaxRecurse)
3287 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3288 SrcOp, Trunc, Q, MaxRecurse-1))
3289 return V;
3290
3291 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3292 // there. Use this to work out the result of the comparison.
3293 if (RExt != CI) {
3294 switch (Pred) {
3295 default: llvm_unreachable("Unknown ICmp predicate!");
3296 // LHS <u RHS.
3297 case ICmpInst::ICMP_EQ:
3298 case ICmpInst::ICMP_UGT:
3299 case ICmpInst::ICMP_UGE:
3300 return ConstantInt::getFalse(CI->getContext());
3301
3302 case ICmpInst::ICMP_NE:
3303 case ICmpInst::ICMP_ULT:
3304 case ICmpInst::ICMP_ULE:
3305 return ConstantInt::getTrue(CI->getContext());
3306
3307 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
3308 // is non-negative then LHS <s RHS.
3309 case ICmpInst::ICMP_SGT:
3310 case ICmpInst::ICMP_SGE:
3311 return CI->getValue().isNegative() ?
3312 ConstantInt::getTrue(CI->getContext()) :
3313 ConstantInt::getFalse(CI->getContext());
3314
3315 case ICmpInst::ICMP_SLT:
3316 case ICmpInst::ICMP_SLE:
3317 return CI->getValue().isNegative() ?
3318 ConstantInt::getFalse(CI->getContext()) :
3319 ConstantInt::getTrue(CI->getContext());
3320 }
3321 }
3322 }
3323 }
3324
3325 if (isa<SExtInst>(LHS)) {
3326 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3327 // same type.
3328 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3329 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3330 // Compare X and Y. Note that the predicate does not change.
3331 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3332 Q, MaxRecurse-1))
3333 return V;
3334 }
3335 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3336 // too. If not, then try to deduce the result of the comparison.
3337 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3338 // Compute the constant that would happen if we truncated to SrcTy then
3339 // reextended to DstTy.
3340 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3341 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3342
3343 // If the re-extended constant didn't change then this is effectively
3344 // also a case of comparing two sign-extended values.
3345 if (RExt == CI && MaxRecurse)
3346 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3347 return V;
3348
3349 // Otherwise the upper bits of LHS are all equal, while RHS has varying
3350 // bits there. Use this to work out the result of the comparison.
3351 if (RExt != CI) {
3352 switch (Pred) {
3353 default: llvm_unreachable("Unknown ICmp predicate!");
3354 case ICmpInst::ICMP_EQ:
3355 return ConstantInt::getFalse(CI->getContext());
3356 case ICmpInst::ICMP_NE:
3357 return ConstantInt::getTrue(CI->getContext());
3358
3359 // If RHS is non-negative then LHS <s RHS. If RHS is negative then
3360 // LHS >s RHS.
3361 case ICmpInst::ICMP_SGT:
3362 case ICmpInst::ICMP_SGE:
3363 return CI->getValue().isNegative() ?
3364 ConstantInt::getTrue(CI->getContext()) :
3365 ConstantInt::getFalse(CI->getContext());
3366 case ICmpInst::ICMP_SLT:
3367 case ICmpInst::ICMP_SLE:
3368 return CI->getValue().isNegative() ?
3369 ConstantInt::getFalse(CI->getContext()) :
3370 ConstantInt::getTrue(CI->getContext());
3371
3372 // If LHS is non-negative then LHS <u RHS. If LHS is negative then
3373 // LHS >u RHS.
3374 case ICmpInst::ICMP_UGT:
3375 case ICmpInst::ICMP_UGE:
3376 // Comparison is true iff the LHS <s 0.
3377 if (MaxRecurse)
3378 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3379 Constant::getNullValue(SrcTy),
3380 Q, MaxRecurse-1))
3381 return V;
3382 break;
3383 case ICmpInst::ICMP_ULT:
3384 case ICmpInst::ICMP_ULE:
3385 // Comparison is true iff the LHS >=s 0.
3386 if (MaxRecurse)
3387 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3388 Constant::getNullValue(SrcTy),
3389 Q, MaxRecurse-1))
3390 return V;
3391 break;
3392 }
3393 }
3394 }
3395 }
3396 }
3397
3398 // icmp eq|ne X, Y -> false|true if X != Y
3399 if (ICmpInst::isEquality(Pred) &&
3400 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) {
3401 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3402 }
3403
3404 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3405 return V;
3406
3407 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3408 return V;
3409
3410 // Simplify comparisons of related pointers using a powerful, recursive
3411 // GEP-walk when we have target data available..
3412 if (LHS->getType()->isPointerTy())
3413 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, LHS,
3414 RHS))
3415 return C;
3416 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3417 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3418 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3419 Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3420 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3421 Q.DL.getTypeSizeInBits(CRHS->getType()))
3422 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3423 CLHS->getPointerOperand(),
3424 CRHS->getPointerOperand()))
3425 return C;
3426
3427 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3428 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3429 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3430 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3431 (ICmpInst::isEquality(Pred) ||
3432 (GLHS->isInBounds() && GRHS->isInBounds() &&
3433 Pred == ICmpInst::getSignedPredicate(Pred)))) {
3434 // The bases are equal and the indices are constant. Build a constant
3435 // expression GEP with the same indices and a null base pointer to see
3436 // what constant folding can make out of it.
3437 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3438 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
3439 Constant *NewLHS = ConstantExpr::getGetElementPtr(
3440 GLHS->getSourceElementType(), Null, IndicesLHS);
3441
3442 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3443 Constant *NewRHS = ConstantExpr::getGetElementPtr(
3444 GLHS->getSourceElementType(), Null, IndicesRHS);
3445 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3446 }
3447 }
3448 }
3449
3450 // If the comparison is with the result of a select instruction, check whether
3451 // comparing with either branch of the select always yields the same value.
3452 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3453 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3454 return V;
3455
3456 // If the comparison is with the result of a phi instruction, check whether
3457 // doing the compare with each incoming phi value yields a common result.
3458 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3459 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3460 return V;
3461
3462 return nullptr;
3463 }
3464
SimplifyICmpInst(unsigned Predicate,Value * LHS,Value * RHS,const SimplifyQuery & Q)3465 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3466 const SimplifyQuery &Q) {
3467 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3468 }
3469
3470 /// Given operands for an FCmpInst, see if we can fold the result.
3471 /// If not, this returns null.
SimplifyFCmpInst(unsigned Predicate,Value * LHS,Value * RHS,FastMathFlags FMF,const SimplifyQuery & Q,unsigned MaxRecurse)3472 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3473 FastMathFlags FMF, const SimplifyQuery &Q,
3474 unsigned MaxRecurse) {
3475 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3476 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3477
3478 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3479 if (Constant *CRHS = dyn_cast<Constant>(RHS))
3480 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3481
3482 // If we have a constant, make sure it is on the RHS.
3483 std::swap(LHS, RHS);
3484 Pred = CmpInst::getSwappedPredicate(Pred);
3485 }
3486
3487 // Fold trivial predicates.
3488 Type *RetTy = GetCompareTy(LHS);
3489 if (Pred == FCmpInst::FCMP_FALSE)
3490 return getFalse(RetTy);
3491 if (Pred == FCmpInst::FCMP_TRUE)
3492 return getTrue(RetTy);
3493
3494 // UNO/ORD predicates can be trivially folded if NaNs are ignored.
3495 if (FMF.noNaNs()) {
3496 if (Pred == FCmpInst::FCMP_UNO)
3497 return getFalse(RetTy);
3498 if (Pred == FCmpInst::FCMP_ORD)
3499 return getTrue(RetTy);
3500 }
3501
3502 // NaN is unordered; NaN is not ordered.
3503 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
3504 "Comparison must be either ordered or unordered");
3505 if (match(RHS, m_NaN()))
3506 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3507
3508 // fcmp pred x, undef and fcmp pred undef, x
3509 // fold to true if unordered, false if ordered
3510 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
3511 // Choosing NaN for the undef will always make unordered comparison succeed
3512 // and ordered comparison fail.
3513 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3514 }
3515
3516 // fcmp x,x -> true/false. Not all compares are foldable.
3517 if (LHS == RHS) {
3518 if (CmpInst::isTrueWhenEqual(Pred))
3519 return getTrue(RetTy);
3520 if (CmpInst::isFalseWhenEqual(Pred))
3521 return getFalse(RetTy);
3522 }
3523
3524 // Handle fcmp with constant RHS.
3525 const APFloat *C;
3526 if (match(RHS, m_APFloat(C))) {
3527 // Check whether the constant is an infinity.
3528 if (C->isInfinity()) {
3529 if (C->isNegative()) {
3530 switch (Pred) {
3531 case FCmpInst::FCMP_OLT:
3532 // No value is ordered and less than negative infinity.
3533 return getFalse(RetTy);
3534 case FCmpInst::FCMP_UGE:
3535 // All values are unordered with or at least negative infinity.
3536 return getTrue(RetTy);
3537 default:
3538 break;
3539 }
3540 } else {
3541 switch (Pred) {
3542 case FCmpInst::FCMP_OGT:
3543 // No value is ordered and greater than infinity.
3544 return getFalse(RetTy);
3545 case FCmpInst::FCMP_ULE:
3546 // All values are unordered with and at most infinity.
3547 return getTrue(RetTy);
3548 default:
3549 break;
3550 }
3551 }
3552 }
3553 if (C->isZero()) {
3554 switch (Pred) {
3555 case FCmpInst::FCMP_UGE:
3556 if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3557 return getTrue(RetTy);
3558 break;
3559 case FCmpInst::FCMP_OLT:
3560 // X < 0
3561 if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3562 return getFalse(RetTy);
3563 break;
3564 default:
3565 break;
3566 }
3567 } else if (C->isNegative()) {
3568 assert(!C->isNaN() && "Unexpected NaN constant!");
3569 // TODO: We can catch more cases by using a range check rather than
3570 // relying on CannotBeOrderedLessThanZero.
3571 switch (Pred) {
3572 case FCmpInst::FCMP_UGE:
3573 case FCmpInst::FCMP_UGT:
3574 case FCmpInst::FCMP_UNE:
3575 // (X >= 0) implies (X > C) when (C < 0)
3576 if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3577 return getTrue(RetTy);
3578 break;
3579 case FCmpInst::FCMP_OEQ:
3580 case FCmpInst::FCMP_OLE:
3581 case FCmpInst::FCMP_OLT:
3582 // (X >= 0) implies !(X < C) when (C < 0)
3583 if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3584 return getFalse(RetTy);
3585 break;
3586 default:
3587 break;
3588 }
3589 }
3590 }
3591
3592 // If the comparison is with the result of a select instruction, check whether
3593 // comparing with either branch of the select always yields the same value.
3594 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3595 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3596 return V;
3597
3598 // If the comparison is with the result of a phi instruction, check whether
3599 // doing the compare with each incoming phi value yields a common result.
3600 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3601 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3602 return V;
3603
3604 return nullptr;
3605 }
3606
SimplifyFCmpInst(unsigned Predicate,Value * LHS,Value * RHS,FastMathFlags FMF,const SimplifyQuery & Q)3607 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3608 FastMathFlags FMF, const SimplifyQuery &Q) {
3609 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3610 }
3611
3612 /// See if V simplifies when its operand Op is replaced with RepOp.
SimplifyWithOpReplaced(Value * V,Value * Op,Value * RepOp,const SimplifyQuery & Q,unsigned MaxRecurse)3613 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3614 const SimplifyQuery &Q,
3615 unsigned MaxRecurse) {
3616 // Trivial replacement.
3617 if (V == Op)
3618 return RepOp;
3619
3620 // We cannot replace a constant, and shouldn't even try.
3621 if (isa<Constant>(Op))
3622 return nullptr;
3623
3624 auto *I = dyn_cast<Instruction>(V);
3625 if (!I)
3626 return nullptr;
3627
3628 // If this is a binary operator, try to simplify it with the replaced op.
3629 if (auto *B = dyn_cast<BinaryOperator>(I)) {
3630 // Consider:
3631 // %cmp = icmp eq i32 %x, 2147483647
3632 // %add = add nsw i32 %x, 1
3633 // %sel = select i1 %cmp, i32 -2147483648, i32 %add
3634 //
3635 // We can't replace %sel with %add unless we strip away the flags.
3636 if (isa<OverflowingBinaryOperator>(B))
3637 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap())
3638 return nullptr;
3639 if (isa<PossiblyExactOperator>(B))
3640 if (B->isExact())
3641 return nullptr;
3642
3643 if (MaxRecurse) {
3644 if (B->getOperand(0) == Op)
3645 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
3646 MaxRecurse - 1);
3647 if (B->getOperand(1) == Op)
3648 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
3649 MaxRecurse - 1);
3650 }
3651 }
3652
3653 // Same for CmpInsts.
3654 if (CmpInst *C = dyn_cast<CmpInst>(I)) {
3655 if (MaxRecurse) {
3656 if (C->getOperand(0) == Op)
3657 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
3658 MaxRecurse - 1);
3659 if (C->getOperand(1) == Op)
3660 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
3661 MaxRecurse - 1);
3662 }
3663 }
3664
3665 // Same for GEPs.
3666 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
3667 if (MaxRecurse) {
3668 SmallVector<Value *, 8> NewOps(GEP->getNumOperands());
3669 transform(GEP->operands(), NewOps.begin(),
3670 [&](Value *V) { return V == Op ? RepOp : V; });
3671 return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q,
3672 MaxRecurse - 1);
3673 }
3674 }
3675
3676 // TODO: We could hand off more cases to instsimplify here.
3677
3678 // If all operands are constant after substituting Op for RepOp then we can
3679 // constant fold the instruction.
3680 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
3681 // Build a list of all constant operands.
3682 SmallVector<Constant *, 8> ConstOps;
3683 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3684 if (I->getOperand(i) == Op)
3685 ConstOps.push_back(CRepOp);
3686 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
3687 ConstOps.push_back(COp);
3688 else
3689 break;
3690 }
3691
3692 // All operands were constants, fold it.
3693 if (ConstOps.size() == I->getNumOperands()) {
3694 if (CmpInst *C = dyn_cast<CmpInst>(I))
3695 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3696 ConstOps[1], Q.DL, Q.TLI);
3697
3698 if (LoadInst *LI = dyn_cast<LoadInst>(I))
3699 if (!LI->isVolatile())
3700 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
3701
3702 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
3703 }
3704 }
3705
3706 return nullptr;
3707 }
3708
3709 /// Try to simplify a select instruction when its condition operand is an
3710 /// integer comparison where one operand of the compare is a constant.
simplifySelectBitTest(Value * TrueVal,Value * FalseVal,Value * X,const APInt * Y,bool TrueWhenUnset)3711 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
3712 const APInt *Y, bool TrueWhenUnset) {
3713 const APInt *C;
3714
3715 // (X & Y) == 0 ? X & ~Y : X --> X
3716 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y
3717 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
3718 *Y == ~*C)
3719 return TrueWhenUnset ? FalseVal : TrueVal;
3720
3721 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y
3722 // (X & Y) != 0 ? X : X & ~Y --> X
3723 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
3724 *Y == ~*C)
3725 return TrueWhenUnset ? FalseVal : TrueVal;
3726
3727 if (Y->isPowerOf2()) {
3728 // (X & Y) == 0 ? X | Y : X --> X | Y
3729 // (X & Y) != 0 ? X | Y : X --> X
3730 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
3731 *Y == *C)
3732 return TrueWhenUnset ? TrueVal : FalseVal;
3733
3734 // (X & Y) == 0 ? X : X | Y --> X
3735 // (X & Y) != 0 ? X : X | Y --> X | Y
3736 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
3737 *Y == *C)
3738 return TrueWhenUnset ? TrueVal : FalseVal;
3739 }
3740
3741 return nullptr;
3742 }
3743
3744 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
3745 /// eq/ne.
simplifySelectWithFakeICmpEq(Value * CmpLHS,Value * CmpRHS,ICmpInst::Predicate Pred,Value * TrueVal,Value * FalseVal)3746 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
3747 ICmpInst::Predicate Pred,
3748 Value *TrueVal, Value *FalseVal) {
3749 Value *X;
3750 APInt Mask;
3751 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
3752 return nullptr;
3753
3754 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
3755 Pred == ICmpInst::ICMP_EQ);
3756 }
3757
3758 /// Try to simplify a select instruction when its condition operand is an
3759 /// integer comparison.
simplifySelectWithICmpCond(Value * CondVal,Value * TrueVal,Value * FalseVal,const SimplifyQuery & Q,unsigned MaxRecurse)3760 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
3761 Value *FalseVal, const SimplifyQuery &Q,
3762 unsigned MaxRecurse) {
3763 ICmpInst::Predicate Pred;
3764 Value *CmpLHS, *CmpRHS;
3765 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
3766 return nullptr;
3767
3768 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) {
3769 Value *X;
3770 const APInt *Y;
3771 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
3772 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
3773 Pred == ICmpInst::ICMP_EQ))
3774 return V;
3775 }
3776
3777 // Check for other compares that behave like bit test.
3778 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
3779 TrueVal, FalseVal))
3780 return V;
3781
3782 // If we have an equality comparison, then we know the value in one of the
3783 // arms of the select. See if substituting this value into the arm and
3784 // simplifying the result yields the same value as the other arm.
3785 if (Pred == ICmpInst::ICMP_EQ) {
3786 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3787 TrueVal ||
3788 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3789 TrueVal)
3790 return FalseVal;
3791 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3792 FalseVal ||
3793 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3794 FalseVal)
3795 return FalseVal;
3796 } else if (Pred == ICmpInst::ICMP_NE) {
3797 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3798 FalseVal ||
3799 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3800 FalseVal)
3801 return TrueVal;
3802 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3803 TrueVal ||
3804 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3805 TrueVal)
3806 return TrueVal;
3807 }
3808
3809 return nullptr;
3810 }
3811
3812 /// Given operands for a SelectInst, see if we can fold the result.
3813 /// If not, this returns null.
SimplifySelectInst(Value * Cond,Value * TrueVal,Value * FalseVal,const SimplifyQuery & Q,unsigned MaxRecurse)3814 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3815 const SimplifyQuery &Q, unsigned MaxRecurse) {
3816 if (auto *CondC = dyn_cast<Constant>(Cond)) {
3817 if (auto *TrueC = dyn_cast<Constant>(TrueVal))
3818 if (auto *FalseC = dyn_cast<Constant>(FalseVal))
3819 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
3820
3821 // select undef, X, Y -> X or Y
3822 if (isa<UndefValue>(CondC))
3823 return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
3824
3825 // TODO: Vector constants with undef elements don't simplify.
3826
3827 // select true, X, Y -> X
3828 if (CondC->isAllOnesValue())
3829 return TrueVal;
3830 // select false, X, Y -> Y
3831 if (CondC->isNullValue())
3832 return FalseVal;
3833 }
3834
3835 // select ?, X, X -> X
3836 if (TrueVal == FalseVal)
3837 return TrueVal;
3838
3839 if (isa<UndefValue>(TrueVal)) // select ?, undef, X -> X
3840 return FalseVal;
3841 if (isa<UndefValue>(FalseVal)) // select ?, X, undef -> X
3842 return TrueVal;
3843
3844 if (Value *V =
3845 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
3846 return V;
3847
3848 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
3849 return V;
3850
3851 return nullptr;
3852 }
3853
SimplifySelectInst(Value * Cond,Value * TrueVal,Value * FalseVal,const SimplifyQuery & Q)3854 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3855 const SimplifyQuery &Q) {
3856 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
3857 }
3858
3859 /// Given operands for an GetElementPtrInst, see if we can fold the result.
3860 /// If not, this returns null.
SimplifyGEPInst(Type * SrcTy,ArrayRef<Value * > Ops,const SimplifyQuery & Q,unsigned)3861 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3862 const SimplifyQuery &Q, unsigned) {
3863 // The type of the GEP pointer operand.
3864 unsigned AS =
3865 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
3866
3867 // getelementptr P -> P.
3868 if (Ops.size() == 1)
3869 return Ops[0];
3870
3871 // Compute the (pointer) type returned by the GEP instruction.
3872 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
3873 Type *GEPTy = PointerType::get(LastType, AS);
3874 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
3875 GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3876 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType()))
3877 GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3878
3879 if (isa<UndefValue>(Ops[0]))
3880 return UndefValue::get(GEPTy);
3881
3882 if (Ops.size() == 2) {
3883 // getelementptr P, 0 -> P.
3884 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
3885 return Ops[0];
3886
3887 Type *Ty = SrcTy;
3888 if (Ty->isSized()) {
3889 Value *P;
3890 uint64_t C;
3891 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
3892 // getelementptr P, N -> P if P points to a type of zero size.
3893 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
3894 return Ops[0];
3895
3896 // The following transforms are only safe if the ptrtoint cast
3897 // doesn't truncate the pointers.
3898 if (Ops[1]->getType()->getScalarSizeInBits() ==
3899 Q.DL.getIndexSizeInBits(AS)) {
3900 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
3901 if (match(P, m_Zero()))
3902 return Constant::getNullValue(GEPTy);
3903 Value *Temp;
3904 if (match(P, m_PtrToInt(m_Value(Temp))))
3905 if (Temp->getType() == GEPTy)
3906 return Temp;
3907 return nullptr;
3908 };
3909
3910 // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
3911 if (TyAllocSize == 1 &&
3912 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
3913 if (Value *R = PtrToIntOrZero(P))
3914 return R;
3915
3916 // getelementptr V, (ashr (sub P, V), C) -> Q
3917 // if P points to a type of size 1 << C.
3918 if (match(Ops[1],
3919 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3920 m_ConstantInt(C))) &&
3921 TyAllocSize == 1ULL << C)
3922 if (Value *R = PtrToIntOrZero(P))
3923 return R;
3924
3925 // getelementptr V, (sdiv (sub P, V), C) -> Q
3926 // if P points to a type of size C.
3927 if (match(Ops[1],
3928 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3929 m_SpecificInt(TyAllocSize))))
3930 if (Value *R = PtrToIntOrZero(P))
3931 return R;
3932 }
3933 }
3934 }
3935
3936 if (Q.DL.getTypeAllocSize(LastType) == 1 &&
3937 all_of(Ops.slice(1).drop_back(1),
3938 [](Value *Idx) { return match(Idx, m_Zero()); })) {
3939 unsigned IdxWidth =
3940 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
3941 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
3942 APInt BasePtrOffset(IdxWidth, 0);
3943 Value *StrippedBasePtr =
3944 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
3945 BasePtrOffset);
3946
3947 // gep (gep V, C), (sub 0, V) -> C
3948 if (match(Ops.back(),
3949 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) {
3950 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
3951 return ConstantExpr::getIntToPtr(CI, GEPTy);
3952 }
3953 // gep (gep V, C), (xor V, -1) -> C-1
3954 if (match(Ops.back(),
3955 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) {
3956 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
3957 return ConstantExpr::getIntToPtr(CI, GEPTy);
3958 }
3959 }
3960 }
3961
3962 // Check to see if this is constant foldable.
3963 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
3964 return nullptr;
3965
3966 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
3967 Ops.slice(1));
3968 if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL))
3969 return CEFolded;
3970 return CE;
3971 }
3972
SimplifyGEPInst(Type * SrcTy,ArrayRef<Value * > Ops,const SimplifyQuery & Q)3973 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3974 const SimplifyQuery &Q) {
3975 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit);
3976 }
3977
3978 /// Given operands for an InsertValueInst, see if we can fold the result.
3979 /// If not, this returns null.
SimplifyInsertValueInst(Value * Agg,Value * Val,ArrayRef<unsigned> Idxs,const SimplifyQuery & Q,unsigned)3980 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
3981 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
3982 unsigned) {
3983 if (Constant *CAgg = dyn_cast<Constant>(Agg))
3984 if (Constant *CVal = dyn_cast<Constant>(Val))
3985 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
3986
3987 // insertvalue x, undef, n -> x
3988 if (match(Val, m_Undef()))
3989 return Agg;
3990
3991 // insertvalue x, (extractvalue y, n), n
3992 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
3993 if (EV->getAggregateOperand()->getType() == Agg->getType() &&
3994 EV->getIndices() == Idxs) {
3995 // insertvalue undef, (extractvalue y, n), n -> y
3996 if (match(Agg, m_Undef()))
3997 return EV->getAggregateOperand();
3998
3999 // insertvalue y, (extractvalue y, n), n -> y
4000 if (Agg == EV->getAggregateOperand())
4001 return Agg;
4002 }
4003
4004 return nullptr;
4005 }
4006
SimplifyInsertValueInst(Value * Agg,Value * Val,ArrayRef<unsigned> Idxs,const SimplifyQuery & Q)4007 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
4008 ArrayRef<unsigned> Idxs,
4009 const SimplifyQuery &Q) {
4010 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
4011 }
4012
SimplifyInsertElementInst(Value * Vec,Value * Val,Value * Idx,const SimplifyQuery & Q)4013 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
4014 const SimplifyQuery &Q) {
4015 // Try to constant fold.
4016 auto *VecC = dyn_cast<Constant>(Vec);
4017 auto *ValC = dyn_cast<Constant>(Val);
4018 auto *IdxC = dyn_cast<Constant>(Idx);
4019 if (VecC && ValC && IdxC)
4020 return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC);
4021
4022 // Fold into undef if index is out of bounds.
4023 if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
4024 uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements();
4025 if (CI->uge(NumElements))
4026 return UndefValue::get(Vec->getType());
4027 }
4028
4029 // If index is undef, it might be out of bounds (see above case)
4030 if (isa<UndefValue>(Idx))
4031 return UndefValue::get(Vec->getType());
4032
4033 return nullptr;
4034 }
4035
4036 /// Given operands for an ExtractValueInst, see if we can fold the result.
4037 /// If not, this returns null.
SimplifyExtractValueInst(Value * Agg,ArrayRef<unsigned> Idxs,const SimplifyQuery &,unsigned)4038 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4039 const SimplifyQuery &, unsigned) {
4040 if (auto *CAgg = dyn_cast<Constant>(Agg))
4041 return ConstantFoldExtractValueInstruction(CAgg, Idxs);
4042
4043 // extractvalue x, (insertvalue y, elt, n), n -> elt
4044 unsigned NumIdxs = Idxs.size();
4045 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
4046 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
4047 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
4048 unsigned NumInsertValueIdxs = InsertValueIdxs.size();
4049 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
4050 if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
4051 Idxs.slice(0, NumCommonIdxs)) {
4052 if (NumIdxs == NumInsertValueIdxs)
4053 return IVI->getInsertedValueOperand();
4054 break;
4055 }
4056 }
4057
4058 return nullptr;
4059 }
4060
SimplifyExtractValueInst(Value * Agg,ArrayRef<unsigned> Idxs,const SimplifyQuery & Q)4061 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4062 const SimplifyQuery &Q) {
4063 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4064 }
4065
4066 /// Given operands for an ExtractElementInst, see if we can fold the result.
4067 /// If not, this returns null.
SimplifyExtractElementInst(Value * Vec,Value * Idx,const SimplifyQuery &,unsigned)4068 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &,
4069 unsigned) {
4070 if (auto *CVec = dyn_cast<Constant>(Vec)) {
4071 if (auto *CIdx = dyn_cast<Constant>(Idx))
4072 return ConstantFoldExtractElementInstruction(CVec, CIdx);
4073
4074 // The index is not relevant if our vector is a splat.
4075 if (auto *Splat = CVec->getSplatValue())
4076 return Splat;
4077
4078 if (isa<UndefValue>(Vec))
4079 return UndefValue::get(Vec->getType()->getVectorElementType());
4080 }
4081
4082 // If extracting a specified index from the vector, see if we can recursively
4083 // find a previously computed scalar that was inserted into the vector.
4084 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4085 if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements()))
4086 // definitely out of bounds, thus undefined result
4087 return UndefValue::get(Vec->getType()->getVectorElementType());
4088 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4089 return Elt;
4090 }
4091
4092 // An undef extract index can be arbitrarily chosen to be an out-of-range
4093 // index value, which would result in the instruction being undef.
4094 if (isa<UndefValue>(Idx))
4095 return UndefValue::get(Vec->getType()->getVectorElementType());
4096
4097 return nullptr;
4098 }
4099
SimplifyExtractElementInst(Value * Vec,Value * Idx,const SimplifyQuery & Q)4100 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
4101 const SimplifyQuery &Q) {
4102 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
4103 }
4104
4105 /// See if we can fold the given phi. If not, returns null.
SimplifyPHINode(PHINode * PN,const SimplifyQuery & Q)4106 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) {
4107 // If all of the PHI's incoming values are the same then replace the PHI node
4108 // with the common value.
4109 Value *CommonValue = nullptr;
4110 bool HasUndefInput = false;
4111 for (Value *Incoming : PN->incoming_values()) {
4112 // If the incoming value is the phi node itself, it can safely be skipped.
4113 if (Incoming == PN) continue;
4114 if (isa<UndefValue>(Incoming)) {
4115 // Remember that we saw an undef value, but otherwise ignore them.
4116 HasUndefInput = true;
4117 continue;
4118 }
4119 if (CommonValue && Incoming != CommonValue)
4120 return nullptr; // Not the same, bail out.
4121 CommonValue = Incoming;
4122 }
4123
4124 // If CommonValue is null then all of the incoming values were either undef or
4125 // equal to the phi node itself.
4126 if (!CommonValue)
4127 return UndefValue::get(PN->getType());
4128
4129 // If we have a PHI node like phi(X, undef, X), where X is defined by some
4130 // instruction, we cannot return X as the result of the PHI node unless it
4131 // dominates the PHI block.
4132 if (HasUndefInput)
4133 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4134
4135 return CommonValue;
4136 }
4137
SimplifyCastInst(unsigned CastOpc,Value * Op,Type * Ty,const SimplifyQuery & Q,unsigned MaxRecurse)4138 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4139 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
4140 if (auto *C = dyn_cast<Constant>(Op))
4141 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4142
4143 if (auto *CI = dyn_cast<CastInst>(Op)) {
4144 auto *Src = CI->getOperand(0);
4145 Type *SrcTy = Src->getType();
4146 Type *MidTy = CI->getType();
4147 Type *DstTy = Ty;
4148 if (Src->getType() == Ty) {
4149 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4150 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4151 Type *SrcIntPtrTy =
4152 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4153 Type *MidIntPtrTy =
4154 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4155 Type *DstIntPtrTy =
4156 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4157 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4158 SrcIntPtrTy, MidIntPtrTy,
4159 DstIntPtrTy) == Instruction::BitCast)
4160 return Src;
4161 }
4162 }
4163
4164 // bitcast x -> x
4165 if (CastOpc == Instruction::BitCast)
4166 if (Op->getType() == Ty)
4167 return Op;
4168
4169 return nullptr;
4170 }
4171
SimplifyCastInst(unsigned CastOpc,Value * Op,Type * Ty,const SimplifyQuery & Q)4172 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4173 const SimplifyQuery &Q) {
4174 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4175 }
4176
4177 /// For the given destination element of a shuffle, peek through shuffles to
4178 /// match a root vector source operand that contains that element in the same
4179 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
foldIdentityShuffles(int DestElt,Value * Op0,Value * Op1,int MaskVal,Value * RootVec,unsigned MaxRecurse)4180 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4181 int MaskVal, Value *RootVec,
4182 unsigned MaxRecurse) {
4183 if (!MaxRecurse--)
4184 return nullptr;
4185
4186 // Bail out if any mask value is undefined. That kind of shuffle may be
4187 // simplified further based on demanded bits or other folds.
4188 if (MaskVal == -1)
4189 return nullptr;
4190
4191 // The mask value chooses which source operand we need to look at next.
4192 int InVecNumElts = Op0->getType()->getVectorNumElements();
4193 int RootElt = MaskVal;
4194 Value *SourceOp = Op0;
4195 if (MaskVal >= InVecNumElts) {
4196 RootElt = MaskVal - InVecNumElts;
4197 SourceOp = Op1;
4198 }
4199
4200 // If the source operand is a shuffle itself, look through it to find the
4201 // matching root vector.
4202 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4203 return foldIdentityShuffles(
4204 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4205 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4206 }
4207
4208 // TODO: Look through bitcasts? What if the bitcast changes the vector element
4209 // size?
4210
4211 // The source operand is not a shuffle. Initialize the root vector value for
4212 // this shuffle if that has not been done yet.
4213 if (!RootVec)
4214 RootVec = SourceOp;
4215
4216 // Give up as soon as a source operand does not match the existing root value.
4217 if (RootVec != SourceOp)
4218 return nullptr;
4219
4220 // The element must be coming from the same lane in the source vector
4221 // (although it may have crossed lanes in intermediate shuffles).
4222 if (RootElt != DestElt)
4223 return nullptr;
4224
4225 return RootVec;
4226 }
4227
SimplifyShuffleVectorInst(Value * Op0,Value * Op1,Constant * Mask,Type * RetTy,const SimplifyQuery & Q,unsigned MaxRecurse)4228 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4229 Type *RetTy, const SimplifyQuery &Q,
4230 unsigned MaxRecurse) {
4231 if (isa<UndefValue>(Mask))
4232 return UndefValue::get(RetTy);
4233
4234 Type *InVecTy = Op0->getType();
4235 unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
4236 unsigned InVecNumElts = InVecTy->getVectorNumElements();
4237
4238 SmallVector<int, 32> Indices;
4239 ShuffleVectorInst::getShuffleMask(Mask, Indices);
4240 assert(MaskNumElts == Indices.size() &&
4241 "Size of Indices not same as number of mask elements?");
4242
4243 // Canonicalization: If mask does not select elements from an input vector,
4244 // replace that input vector with undef.
4245 bool MaskSelects0 = false, MaskSelects1 = false;
4246 for (unsigned i = 0; i != MaskNumElts; ++i) {
4247 if (Indices[i] == -1)
4248 continue;
4249 if ((unsigned)Indices[i] < InVecNumElts)
4250 MaskSelects0 = true;
4251 else
4252 MaskSelects1 = true;
4253 }
4254 if (!MaskSelects0)
4255 Op0 = UndefValue::get(InVecTy);
4256 if (!MaskSelects1)
4257 Op1 = UndefValue::get(InVecTy);
4258
4259 auto *Op0Const = dyn_cast<Constant>(Op0);
4260 auto *Op1Const = dyn_cast<Constant>(Op1);
4261
4262 // If all operands are constant, constant fold the shuffle.
4263 if (Op0Const && Op1Const)
4264 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask);
4265
4266 // Canonicalization: if only one input vector is constant, it shall be the
4267 // second one.
4268 if (Op0Const && !Op1Const) {
4269 std::swap(Op0, Op1);
4270 ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts);
4271 }
4272
4273 // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4274 // value type is same as the input vectors' type.
4275 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4276 if (isa<UndefValue>(Op1) && RetTy == InVecTy &&
4277 OpShuf->getMask()->getSplatValue())
4278 return Op0;
4279
4280 // Don't fold a shuffle with undef mask elements. This may get folded in a
4281 // better way using demanded bits or other analysis.
4282 // TODO: Should we allow this?
4283 if (find(Indices, -1) != Indices.end())
4284 return nullptr;
4285
4286 // Check if every element of this shuffle can be mapped back to the
4287 // corresponding element of a single root vector. If so, we don't need this
4288 // shuffle. This handles simple identity shuffles as well as chains of
4289 // shuffles that may widen/narrow and/or move elements across lanes and back.
4290 Value *RootVec = nullptr;
4291 for (unsigned i = 0; i != MaskNumElts; ++i) {
4292 // Note that recursion is limited for each vector element, so if any element
4293 // exceeds the limit, this will fail to simplify.
4294 RootVec =
4295 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4296
4297 // We can't replace a widening/narrowing shuffle with one of its operands.
4298 if (!RootVec || RootVec->getType() != RetTy)
4299 return nullptr;
4300 }
4301 return RootVec;
4302 }
4303
4304 /// Given operands for a ShuffleVectorInst, fold the result or return null.
SimplifyShuffleVectorInst(Value * Op0,Value * Op1,Constant * Mask,Type * RetTy,const SimplifyQuery & Q)4305 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4306 Type *RetTy, const SimplifyQuery &Q) {
4307 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4308 }
4309
propagateNaN(Constant * In)4310 static Constant *propagateNaN(Constant *In) {
4311 // If the input is a vector with undef elements, just return a default NaN.
4312 if (!In->isNaN())
4313 return ConstantFP::getNaN(In->getType());
4314
4315 // Propagate the existing NaN constant when possible.
4316 // TODO: Should we quiet a signaling NaN?
4317 return In;
4318 }
4319
simplifyFPBinop(Value * Op0,Value * Op1)4320 static Constant *simplifyFPBinop(Value *Op0, Value *Op1) {
4321 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
4322 return ConstantFP::getNaN(Op0->getType());
4323
4324 if (match(Op0, m_NaN()))
4325 return propagateNaN(cast<Constant>(Op0));
4326 if (match(Op1, m_NaN()))
4327 return propagateNaN(cast<Constant>(Op1));
4328
4329 return nullptr;
4330 }
4331
4332 /// Given operands for an FAdd, see if we can fold the result. If not, this
4333 /// returns null.
SimplifyFAddInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q,unsigned MaxRecurse)4334 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4335 const SimplifyQuery &Q, unsigned MaxRecurse) {
4336 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
4337 return C;
4338
4339 if (Constant *C = simplifyFPBinop(Op0, Op1))
4340 return C;
4341
4342 // fadd X, -0 ==> X
4343 if (match(Op1, m_NegZeroFP()))
4344 return Op0;
4345
4346 // fadd X, 0 ==> X, when we know X is not -0
4347 if (match(Op1, m_PosZeroFP()) &&
4348 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4349 return Op0;
4350
4351 // With nnan: (+/-0.0 - X) + X --> 0.0 (and commuted variant)
4352 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
4353 // Negative zeros are allowed because we always end up with positive zero:
4354 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4355 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4356 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
4357 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
4358 if (FMF.noNaNs() && (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
4359 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))))
4360 return ConstantFP::getNullValue(Op0->getType());
4361
4362 return nullptr;
4363 }
4364
4365 /// Given operands for an FSub, see if we can fold the result. If not, this
4366 /// returns null.
SimplifyFSubInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q,unsigned MaxRecurse)4367 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4368 const SimplifyQuery &Q, unsigned MaxRecurse) {
4369 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
4370 return C;
4371
4372 if (Constant *C = simplifyFPBinop(Op0, Op1))
4373 return C;
4374
4375 // fsub X, +0 ==> X
4376 if (match(Op1, m_PosZeroFP()))
4377 return Op0;
4378
4379 // fsub X, -0 ==> X, when we know X is not -0
4380 if (match(Op1, m_NegZeroFP()) &&
4381 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4382 return Op0;
4383
4384 // fsub -0.0, (fsub -0.0, X) ==> X
4385 Value *X;
4386 if (match(Op0, m_NegZeroFP()) &&
4387 match(Op1, m_FSub(m_NegZeroFP(), m_Value(X))))
4388 return X;
4389
4390 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
4391 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
4392 match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))))
4393 return X;
4394
4395 // fsub nnan x, x ==> 0.0
4396 if (FMF.noNaNs() && Op0 == Op1)
4397 return Constant::getNullValue(Op0->getType());
4398
4399 return nullptr;
4400 }
4401
4402 /// Given the operands for an FMul, see if we can fold the result
SimplifyFMulInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q,unsigned MaxRecurse)4403 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4404 const SimplifyQuery &Q, unsigned MaxRecurse) {
4405 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
4406 return C;
4407
4408 if (Constant *C = simplifyFPBinop(Op0, Op1))
4409 return C;
4410
4411 // fmul X, 1.0 ==> X
4412 if (match(Op1, m_FPOne()))
4413 return Op0;
4414
4415 // fmul nnan nsz X, 0 ==> 0
4416 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
4417 return ConstantFP::getNullValue(Op0->getType());
4418
4419 // sqrt(X) * sqrt(X) --> X, if we can:
4420 // 1. Remove the intermediate rounding (reassociate).
4421 // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
4422 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
4423 Value *X;
4424 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
4425 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
4426 return X;
4427
4428 return nullptr;
4429 }
4430
SimplifyFAddInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q)4431 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4432 const SimplifyQuery &Q) {
4433 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit);
4434 }
4435
4436
SimplifyFSubInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q)4437 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4438 const SimplifyQuery &Q) {
4439 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit);
4440 }
4441
SimplifyFMulInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q)4442 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4443 const SimplifyQuery &Q) {
4444 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit);
4445 }
4446
SimplifyFDivInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q,unsigned)4447 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4448 const SimplifyQuery &Q, unsigned) {
4449 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
4450 return C;
4451
4452 if (Constant *C = simplifyFPBinop(Op0, Op1))
4453 return C;
4454
4455 // X / 1.0 -> X
4456 if (match(Op1, m_FPOne()))
4457 return Op0;
4458
4459 // 0 / X -> 0
4460 // Requires that NaNs are off (X could be zero) and signed zeroes are
4461 // ignored (X could be positive or negative, so the output sign is unknown).
4462 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
4463 return ConstantFP::getNullValue(Op0->getType());
4464
4465 if (FMF.noNaNs()) {
4466 // X / X -> 1.0 is legal when NaNs are ignored.
4467 // We can ignore infinities because INF/INF is NaN.
4468 if (Op0 == Op1)
4469 return ConstantFP::get(Op0->getType(), 1.0);
4470
4471 // (X * Y) / Y --> X if we can reassociate to the above form.
4472 Value *X;
4473 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
4474 return X;
4475
4476 // -X / X -> -1.0 and
4477 // X / -X -> -1.0 are legal when NaNs are ignored.
4478 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
4479 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) &&
4480 BinaryOperator::getFNegArgument(Op0) == Op1) ||
4481 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) &&
4482 BinaryOperator::getFNegArgument(Op1) == Op0))
4483 return ConstantFP::get(Op0->getType(), -1.0);
4484 }
4485
4486 return nullptr;
4487 }
4488
SimplifyFDivInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q)4489 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4490 const SimplifyQuery &Q) {
4491 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit);
4492 }
4493
SimplifyFRemInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q,unsigned)4494 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4495 const SimplifyQuery &Q, unsigned) {
4496 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
4497 return C;
4498
4499 if (Constant *C = simplifyFPBinop(Op0, Op1))
4500 return C;
4501
4502 // Unlike fdiv, the result of frem always matches the sign of the dividend.
4503 // The constant match may include undef elements in a vector, so return a full
4504 // zero constant as the result.
4505 if (FMF.noNaNs()) {
4506 // +0 % X -> 0
4507 if (match(Op0, m_PosZeroFP()))
4508 return ConstantFP::getNullValue(Op0->getType());
4509 // -0 % X -> -0
4510 if (match(Op0, m_NegZeroFP()))
4511 return ConstantFP::getNegativeZero(Op0->getType());
4512 }
4513
4514 return nullptr;
4515 }
4516
SimplifyFRemInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q)4517 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4518 const SimplifyQuery &Q) {
4519 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit);
4520 }
4521
4522 //=== Helper functions for higher up the class hierarchy.
4523
4524 /// Given operands for a BinaryOperator, see if we can fold the result.
4525 /// If not, this returns null.
SimplifyBinOp(unsigned Opcode,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)4526 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4527 const SimplifyQuery &Q, unsigned MaxRecurse) {
4528 switch (Opcode) {
4529 case Instruction::Add:
4530 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
4531 case Instruction::Sub:
4532 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
4533 case Instruction::Mul:
4534 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
4535 case Instruction::SDiv:
4536 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
4537 case Instruction::UDiv:
4538 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
4539 case Instruction::SRem:
4540 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
4541 case Instruction::URem:
4542 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
4543 case Instruction::Shl:
4544 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
4545 case Instruction::LShr:
4546 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
4547 case Instruction::AShr:
4548 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
4549 case Instruction::And:
4550 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
4551 case Instruction::Or:
4552 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
4553 case Instruction::Xor:
4554 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
4555 case Instruction::FAdd:
4556 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4557 case Instruction::FSub:
4558 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4559 case Instruction::FMul:
4560 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4561 case Instruction::FDiv:
4562 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4563 case Instruction::FRem:
4564 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4565 default:
4566 llvm_unreachable("Unexpected opcode");
4567 }
4568 }
4569
4570 /// Given operands for a BinaryOperator, see if we can fold the result.
4571 /// If not, this returns null.
4572 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
4573 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
SimplifyFPBinOp(unsigned Opcode,Value * LHS,Value * RHS,const FastMathFlags & FMF,const SimplifyQuery & Q,unsigned MaxRecurse)4574 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4575 const FastMathFlags &FMF, const SimplifyQuery &Q,
4576 unsigned MaxRecurse) {
4577 switch (Opcode) {
4578 case Instruction::FAdd:
4579 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
4580 case Instruction::FSub:
4581 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
4582 case Instruction::FMul:
4583 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
4584 case Instruction::FDiv:
4585 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
4586 default:
4587 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
4588 }
4589 }
4590
SimplifyBinOp(unsigned Opcode,Value * LHS,Value * RHS,const SimplifyQuery & Q)4591 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4592 const SimplifyQuery &Q) {
4593 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
4594 }
4595
SimplifyFPBinOp(unsigned Opcode,Value * LHS,Value * RHS,FastMathFlags FMF,const SimplifyQuery & Q)4596 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4597 FastMathFlags FMF, const SimplifyQuery &Q) {
4598 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
4599 }
4600
4601 /// Given operands for a CmpInst, see if we can fold the result.
SimplifyCmpInst(unsigned Predicate,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)4602 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4603 const SimplifyQuery &Q, unsigned MaxRecurse) {
4604 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
4605 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
4606 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4607 }
4608
SimplifyCmpInst(unsigned Predicate,Value * LHS,Value * RHS,const SimplifyQuery & Q)4609 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4610 const SimplifyQuery &Q) {
4611 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
4612 }
4613
IsIdempotent(Intrinsic::ID ID)4614 static bool IsIdempotent(Intrinsic::ID ID) {
4615 switch (ID) {
4616 default: return false;
4617
4618 // Unary idempotent: f(f(x)) = f(x)
4619 case Intrinsic::fabs:
4620 case Intrinsic::floor:
4621 case Intrinsic::ceil:
4622 case Intrinsic::trunc:
4623 case Intrinsic::rint:
4624 case Intrinsic::nearbyint:
4625 case Intrinsic::round:
4626 case Intrinsic::canonicalize:
4627 return true;
4628 }
4629 }
4630
SimplifyRelativeLoad(Constant * Ptr,Constant * Offset,const DataLayout & DL)4631 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
4632 const DataLayout &DL) {
4633 GlobalValue *PtrSym;
4634 APInt PtrOffset;
4635 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
4636 return nullptr;
4637
4638 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
4639 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
4640 Type *Int32PtrTy = Int32Ty->getPointerTo();
4641 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
4642
4643 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
4644 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
4645 return nullptr;
4646
4647 uint64_t OffsetInt = OffsetConstInt->getSExtValue();
4648 if (OffsetInt % 4 != 0)
4649 return nullptr;
4650
4651 Constant *C = ConstantExpr::getGetElementPtr(
4652 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
4653 ConstantInt::get(Int64Ty, OffsetInt / 4));
4654 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
4655 if (!Loaded)
4656 return nullptr;
4657
4658 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
4659 if (!LoadedCE)
4660 return nullptr;
4661
4662 if (LoadedCE->getOpcode() == Instruction::Trunc) {
4663 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4664 if (!LoadedCE)
4665 return nullptr;
4666 }
4667
4668 if (LoadedCE->getOpcode() != Instruction::Sub)
4669 return nullptr;
4670
4671 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4672 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
4673 return nullptr;
4674 auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
4675
4676 Constant *LoadedRHS = LoadedCE->getOperand(1);
4677 GlobalValue *LoadedRHSSym;
4678 APInt LoadedRHSOffset;
4679 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
4680 DL) ||
4681 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
4682 return nullptr;
4683
4684 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
4685 }
4686
maskIsAllZeroOrUndef(Value * Mask)4687 static bool maskIsAllZeroOrUndef(Value *Mask) {
4688 auto *ConstMask = dyn_cast<Constant>(Mask);
4689 if (!ConstMask)
4690 return false;
4691 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
4692 return true;
4693 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
4694 ++I) {
4695 if (auto *MaskElt = ConstMask->getAggregateElement(I))
4696 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
4697 continue;
4698 return false;
4699 }
4700 return true;
4701 }
4702
simplifyUnaryIntrinsic(Function * F,Value * Op0,const SimplifyQuery & Q)4703 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
4704 const SimplifyQuery &Q) {
4705 // Idempotent functions return the same result when called repeatedly.
4706 Intrinsic::ID IID = F->getIntrinsicID();
4707 if (IsIdempotent(IID))
4708 if (auto *II = dyn_cast<IntrinsicInst>(Op0))
4709 if (II->getIntrinsicID() == IID)
4710 return II;
4711
4712 Value *X;
4713 switch (IID) {
4714 case Intrinsic::fabs:
4715 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
4716 break;
4717 case Intrinsic::bswap:
4718 // bswap(bswap(x)) -> x
4719 if (match(Op0, m_BSwap(m_Value(X)))) return X;
4720 break;
4721 case Intrinsic::bitreverse:
4722 // bitreverse(bitreverse(x)) -> x
4723 if (match(Op0, m_BitReverse(m_Value(X)))) return X;
4724 break;
4725 case Intrinsic::exp:
4726 // exp(log(x)) -> x
4727 if (Q.CxtI->hasAllowReassoc() &&
4728 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
4729 break;
4730 case Intrinsic::exp2:
4731 // exp2(log2(x)) -> x
4732 if (Q.CxtI->hasAllowReassoc() &&
4733 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
4734 break;
4735 case Intrinsic::log:
4736 // log(exp(x)) -> x
4737 if (Q.CxtI->hasAllowReassoc() &&
4738 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
4739 break;
4740 case Intrinsic::log2:
4741 // log2(exp2(x)) -> x
4742 if (Q.CxtI->hasAllowReassoc() &&
4743 match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X)))) return X;
4744 break;
4745 default:
4746 break;
4747 }
4748
4749 return nullptr;
4750 }
4751
simplifyBinaryIntrinsic(Function * F,Value * Op0,Value * Op1,const SimplifyQuery & Q)4752 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
4753 const SimplifyQuery &Q) {
4754 Intrinsic::ID IID = F->getIntrinsicID();
4755 Type *ReturnType = F->getReturnType();
4756 switch (IID) {
4757 case Intrinsic::usub_with_overflow:
4758 case Intrinsic::ssub_with_overflow:
4759 // X - X -> { 0, false }
4760 if (Op0 == Op1)
4761 return Constant::getNullValue(ReturnType);
4762 // X - undef -> undef
4763 // undef - X -> undef
4764 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
4765 return UndefValue::get(ReturnType);
4766 break;
4767 case Intrinsic::uadd_with_overflow:
4768 case Intrinsic::sadd_with_overflow:
4769 // X + undef -> undef
4770 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
4771 return UndefValue::get(ReturnType);
4772 break;
4773 case Intrinsic::umul_with_overflow:
4774 case Intrinsic::smul_with_overflow:
4775 // 0 * X -> { 0, false }
4776 // X * 0 -> { 0, false }
4777 if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
4778 return Constant::getNullValue(ReturnType);
4779 // undef * X -> { 0, false }
4780 // X * undef -> { 0, false }
4781 if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
4782 return Constant::getNullValue(ReturnType);
4783 break;
4784 case Intrinsic::load_relative:
4785 if (auto *C0 = dyn_cast<Constant>(Op0))
4786 if (auto *C1 = dyn_cast<Constant>(Op1))
4787 return SimplifyRelativeLoad(C0, C1, Q.DL);
4788 break;
4789 case Intrinsic::powi:
4790 if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
4791 // powi(x, 0) -> 1.0
4792 if (Power->isZero())
4793 return ConstantFP::get(Op0->getType(), 1.0);
4794 // powi(x, 1) -> x
4795 if (Power->isOne())
4796 return Op0;
4797 }
4798 break;
4799 case Intrinsic::maxnum:
4800 case Intrinsic::minnum:
4801 // If one argument is NaN, return the other argument.
4802 if (match(Op0, m_NaN())) return Op1;
4803 if (match(Op1, m_NaN())) return Op0;
4804 break;
4805 default:
4806 break;
4807 }
4808
4809 return nullptr;
4810 }
4811
4812 template <typename IterTy>
simplifyIntrinsic(Function * F,IterTy ArgBegin,IterTy ArgEnd,const SimplifyQuery & Q)4813 static Value *simplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
4814 const SimplifyQuery &Q) {
4815 // Intrinsics with no operands have some kind of side effect. Don't simplify.
4816 unsigned NumOperands = std::distance(ArgBegin, ArgEnd);
4817 if (NumOperands == 0)
4818 return nullptr;
4819
4820 Intrinsic::ID IID = F->getIntrinsicID();
4821 if (NumOperands == 1)
4822 return simplifyUnaryIntrinsic(F, ArgBegin[0], Q);
4823
4824 if (NumOperands == 2)
4825 return simplifyBinaryIntrinsic(F, ArgBegin[0], ArgBegin[1], Q);
4826
4827 // Handle intrinsics with 3 or more arguments.
4828 switch (IID) {
4829 case Intrinsic::masked_load: {
4830 Value *MaskArg = ArgBegin[2];
4831 Value *PassthruArg = ArgBegin[3];
4832 // If the mask is all zeros or undef, the "passthru" argument is the result.
4833 if (maskIsAllZeroOrUndef(MaskArg))
4834 return PassthruArg;
4835 return nullptr;
4836 }
4837 case Intrinsic::fshl:
4838 case Intrinsic::fshr: {
4839 Value *ShAmtArg = ArgBegin[2];
4840 const APInt *ShAmtC;
4841 if (match(ShAmtArg, m_APInt(ShAmtC))) {
4842 // If there's effectively no shift, return the 1st arg or 2nd arg.
4843 // TODO: For vectors, we could check each element of a non-splat constant.
4844 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
4845 if (ShAmtC->urem(BitWidth).isNullValue())
4846 return ArgBegin[IID == Intrinsic::fshl ? 0 : 1];
4847 }
4848 return nullptr;
4849 }
4850 default:
4851 return nullptr;
4852 }
4853 }
4854
4855 template <typename IterTy>
SimplifyCall(ImmutableCallSite CS,Value * V,IterTy ArgBegin,IterTy ArgEnd,const SimplifyQuery & Q,unsigned MaxRecurse)4856 static Value *SimplifyCall(ImmutableCallSite CS, Value *V, IterTy ArgBegin,
4857 IterTy ArgEnd, const SimplifyQuery &Q,
4858 unsigned MaxRecurse) {
4859 Type *Ty = V->getType();
4860 if (PointerType *PTy = dyn_cast<PointerType>(Ty))
4861 Ty = PTy->getElementType();
4862 FunctionType *FTy = cast<FunctionType>(Ty);
4863
4864 // call undef -> undef
4865 // call null -> undef
4866 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
4867 return UndefValue::get(FTy->getReturnType());
4868
4869 Function *F = dyn_cast<Function>(V);
4870 if (!F)
4871 return nullptr;
4872
4873 if (F->isIntrinsic())
4874 if (Value *Ret = simplifyIntrinsic(F, ArgBegin, ArgEnd, Q))
4875 return Ret;
4876
4877 if (!canConstantFoldCallTo(CS, F))
4878 return nullptr;
4879
4880 SmallVector<Constant *, 4> ConstantArgs;
4881 ConstantArgs.reserve(ArgEnd - ArgBegin);
4882 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
4883 Constant *C = dyn_cast<Constant>(*I);
4884 if (!C)
4885 return nullptr;
4886 ConstantArgs.push_back(C);
4887 }
4888
4889 return ConstantFoldCall(CS, F, ConstantArgs, Q.TLI);
4890 }
4891
SimplifyCall(ImmutableCallSite CS,Value * V,User::op_iterator ArgBegin,User::op_iterator ArgEnd,const SimplifyQuery & Q)4892 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V,
4893 User::op_iterator ArgBegin, User::op_iterator ArgEnd,
4894 const SimplifyQuery &Q) {
4895 return ::SimplifyCall(CS, V, ArgBegin, ArgEnd, Q, RecursionLimit);
4896 }
4897
SimplifyCall(ImmutableCallSite CS,Value * V,ArrayRef<Value * > Args,const SimplifyQuery & Q)4898 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V,
4899 ArrayRef<Value *> Args, const SimplifyQuery &Q) {
4900 return ::SimplifyCall(CS, V, Args.begin(), Args.end(), Q, RecursionLimit);
4901 }
4902
SimplifyCall(ImmutableCallSite ICS,const SimplifyQuery & Q)4903 Value *llvm::SimplifyCall(ImmutableCallSite ICS, const SimplifyQuery &Q) {
4904 CallSite CS(const_cast<Instruction*>(ICS.getInstruction()));
4905 return ::SimplifyCall(CS, CS.getCalledValue(), CS.arg_begin(), CS.arg_end(),
4906 Q, RecursionLimit);
4907 }
4908
4909 /// See if we can compute a simplified version of this instruction.
4910 /// If not, this returns null.
4911
SimplifyInstruction(Instruction * I,const SimplifyQuery & SQ,OptimizationRemarkEmitter * ORE)4912 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
4913 OptimizationRemarkEmitter *ORE) {
4914 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
4915 Value *Result;
4916
4917 switch (I->getOpcode()) {
4918 default:
4919 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI);
4920 break;
4921 case Instruction::FAdd:
4922 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
4923 I->getFastMathFlags(), Q);
4924 break;
4925 case Instruction::Add:
4926 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
4927 cast<BinaryOperator>(I)->hasNoSignedWrap(),
4928 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q);
4929 break;
4930 case Instruction::FSub:
4931 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
4932 I->getFastMathFlags(), Q);
4933 break;
4934 case Instruction::Sub:
4935 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
4936 cast<BinaryOperator>(I)->hasNoSignedWrap(),
4937 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q);
4938 break;
4939 case Instruction::FMul:
4940 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
4941 I->getFastMathFlags(), Q);
4942 break;
4943 case Instruction::Mul:
4944 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q);
4945 break;
4946 case Instruction::SDiv:
4947 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q);
4948 break;
4949 case Instruction::UDiv:
4950 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q);
4951 break;
4952 case Instruction::FDiv:
4953 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
4954 I->getFastMathFlags(), Q);
4955 break;
4956 case Instruction::SRem:
4957 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q);
4958 break;
4959 case Instruction::URem:
4960 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q);
4961 break;
4962 case Instruction::FRem:
4963 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
4964 I->getFastMathFlags(), Q);
4965 break;
4966 case Instruction::Shl:
4967 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
4968 cast<BinaryOperator>(I)->hasNoSignedWrap(),
4969 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q);
4970 break;
4971 case Instruction::LShr:
4972 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
4973 cast<BinaryOperator>(I)->isExact(), Q);
4974 break;
4975 case Instruction::AShr:
4976 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
4977 cast<BinaryOperator>(I)->isExact(), Q);
4978 break;
4979 case Instruction::And:
4980 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q);
4981 break;
4982 case Instruction::Or:
4983 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q);
4984 break;
4985 case Instruction::Xor:
4986 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q);
4987 break;
4988 case Instruction::ICmp:
4989 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
4990 I->getOperand(0), I->getOperand(1), Q);
4991 break;
4992 case Instruction::FCmp:
4993 Result =
4994 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
4995 I->getOperand(1), I->getFastMathFlags(), Q);
4996 break;
4997 case Instruction::Select:
4998 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
4999 I->getOperand(2), Q);
5000 break;
5001 case Instruction::GetElementPtr: {
5002 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end());
5003 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
5004 Ops, Q);
5005 break;
5006 }
5007 case Instruction::InsertValue: {
5008 InsertValueInst *IV = cast<InsertValueInst>(I);
5009 Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
5010 IV->getInsertedValueOperand(),
5011 IV->getIndices(), Q);
5012 break;
5013 }
5014 case Instruction::InsertElement: {
5015 auto *IE = cast<InsertElementInst>(I);
5016 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1),
5017 IE->getOperand(2), Q);
5018 break;
5019 }
5020 case Instruction::ExtractValue: {
5021 auto *EVI = cast<ExtractValueInst>(I);
5022 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
5023 EVI->getIndices(), Q);
5024 break;
5025 }
5026 case Instruction::ExtractElement: {
5027 auto *EEI = cast<ExtractElementInst>(I);
5028 Result = SimplifyExtractElementInst(EEI->getVectorOperand(),
5029 EEI->getIndexOperand(), Q);
5030 break;
5031 }
5032 case Instruction::ShuffleVector: {
5033 auto *SVI = cast<ShuffleVectorInst>(I);
5034 Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5035 SVI->getMask(), SVI->getType(), Q);
5036 break;
5037 }
5038 case Instruction::PHI:
5039 Result = SimplifyPHINode(cast<PHINode>(I), Q);
5040 break;
5041 case Instruction::Call: {
5042 CallSite CS(cast<CallInst>(I));
5043 Result = SimplifyCall(CS, Q);
5044 break;
5045 }
5046 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
5047 #include "llvm/IR/Instruction.def"
5048 #undef HANDLE_CAST_INST
5049 Result =
5050 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q);
5051 break;
5052 case Instruction::Alloca:
5053 // No simplifications for Alloca and it can't be constant folded.
5054 Result = nullptr;
5055 break;
5056 }
5057
5058 // In general, it is possible for computeKnownBits to determine all bits in a
5059 // value even when the operands are not all constants.
5060 if (!Result && I->getType()->isIntOrIntVectorTy()) {
5061 KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE);
5062 if (Known.isConstant())
5063 Result = ConstantInt::get(I->getType(), Known.getConstant());
5064 }
5065
5066 /// If called on unreachable code, the above logic may report that the
5067 /// instruction simplified to itself. Make life easier for users by
5068 /// detecting that case here, returning a safe value instead.
5069 return Result == I ? UndefValue::get(I->getType()) : Result;
5070 }
5071
5072 /// Implementation of recursive simplification through an instruction's
5073 /// uses.
5074 ///
5075 /// This is the common implementation of the recursive simplification routines.
5076 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
5077 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
5078 /// instructions to process and attempt to simplify it using
5079 /// InstructionSimplify.
5080 ///
5081 /// This routine returns 'true' only when *it* simplifies something. The passed
5082 /// in simplified value does not count toward this.
replaceAndRecursivelySimplifyImpl(Instruction * I,Value * SimpleV,const TargetLibraryInfo * TLI,const DominatorTree * DT,AssumptionCache * AC)5083 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
5084 const TargetLibraryInfo *TLI,
5085 const DominatorTree *DT,
5086 AssumptionCache *AC) {
5087 bool Simplified = false;
5088 SmallSetVector<Instruction *, 8> Worklist;
5089 const DataLayout &DL = I->getModule()->getDataLayout();
5090
5091 // If we have an explicit value to collapse to, do that round of the
5092 // simplification loop by hand initially.
5093 if (SimpleV) {
5094 for (User *U : I->users())
5095 if (U != I)
5096 Worklist.insert(cast<Instruction>(U));
5097
5098 // Replace the instruction with its simplified value.
5099 I->replaceAllUsesWith(SimpleV);
5100
5101 // Gracefully handle edge cases where the instruction is not wired into any
5102 // parent block.
5103 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) &&
5104 !I->mayHaveSideEffects())
5105 I->eraseFromParent();
5106 } else {
5107 Worklist.insert(I);
5108 }
5109
5110 // Note that we must test the size on each iteration, the worklist can grow.
5111 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
5112 I = Worklist[Idx];
5113
5114 // See if this instruction simplifies.
5115 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
5116 if (!SimpleV)
5117 continue;
5118
5119 Simplified = true;
5120
5121 // Stash away all the uses of the old instruction so we can check them for
5122 // recursive simplifications after a RAUW. This is cheaper than checking all
5123 // uses of To on the recursive step in most cases.
5124 for (User *U : I->users())
5125 Worklist.insert(cast<Instruction>(U));
5126
5127 // Replace the instruction with its simplified value.
5128 I->replaceAllUsesWith(SimpleV);
5129
5130 // Gracefully handle edge cases where the instruction is not wired into any
5131 // parent block.
5132 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) &&
5133 !I->mayHaveSideEffects())
5134 I->eraseFromParent();
5135 }
5136 return Simplified;
5137 }
5138
recursivelySimplifyInstruction(Instruction * I,const TargetLibraryInfo * TLI,const DominatorTree * DT,AssumptionCache * AC)5139 bool llvm::recursivelySimplifyInstruction(Instruction *I,
5140 const TargetLibraryInfo *TLI,
5141 const DominatorTree *DT,
5142 AssumptionCache *AC) {
5143 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC);
5144 }
5145
replaceAndRecursivelySimplify(Instruction * I,Value * SimpleV,const TargetLibraryInfo * TLI,const DominatorTree * DT,AssumptionCache * AC)5146 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
5147 const TargetLibraryInfo *TLI,
5148 const DominatorTree *DT,
5149 AssumptionCache *AC) {
5150 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
5151 assert(SimpleV && "Must provide a simplified value.");
5152 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC);
5153 }
5154
5155 namespace llvm {
getBestSimplifyQuery(Pass & P,Function & F)5156 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
5157 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
5158 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
5159 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
5160 auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr;
5161 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
5162 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
5163 return {F.getParent()->getDataLayout(), TLI, DT, AC};
5164 }
5165
getBestSimplifyQuery(LoopStandardAnalysisResults & AR,const DataLayout & DL)5166 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
5167 const DataLayout &DL) {
5168 return {DL, &AR.TLI, &AR.DT, &AR.AC};
5169 }
5170
5171 template <class T, class... TArgs>
getBestSimplifyQuery(AnalysisManager<T,TArgs...> & AM,Function & F)5172 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
5173 Function &F) {
5174 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
5175 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
5176 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
5177 return {F.getParent()->getDataLayout(), TLI, DT, AC};
5178 }
5179 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
5180 Function &);
5181 }
5182