1 //===- LowerTypeTests.cpp - type metadata lowering pass -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass lowers type metadata and calls to the llvm.type.test intrinsic.
11 // It also ensures that globals are properly laid out for the
12 // llvm.icall.branch.funnel intrinsic.
13 // See http://llvm.org/docs/TypeMetadata.html for more information.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/Transforms/IPO/LowerTypeTests.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/EquivalenceClasses.h"
22 #include "llvm/ADT/PointerUnion.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/Analysis/TypeMetadataUtils.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalAlias.h"
39 #include "llvm/IR/GlobalObject.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/IRBuilder.h"
43 #include "llvm/IR/InlineAsm.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/Metadata.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/ModuleSummaryIndex.h"
51 #include "llvm/IR/ModuleSummaryIndexYAML.h"
52 #include "llvm/IR/Operator.h"
53 #include "llvm/IR/PassManager.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Use.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Allocator.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/Error.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/FileSystem.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/MemoryBuffer.h"
68 #include "llvm/Support/TrailingObjects.h"
69 #include "llvm/Support/YAMLTraits.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/IPO.h"
72 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
73 #include "llvm/Transforms/Utils/ModuleUtils.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstdint>
77 #include <memory>
78 #include <set>
79 #include <string>
80 #include <system_error>
81 #include <utility>
82 #include <vector>
83
84 using namespace llvm;
85 using namespace lowertypetests;
86
87 #define DEBUG_TYPE "lowertypetests"
88
89 STATISTIC(ByteArraySizeBits, "Byte array size in bits");
90 STATISTIC(ByteArraySizeBytes, "Byte array size in bytes");
91 STATISTIC(NumByteArraysCreated, "Number of byte arrays created");
92 STATISTIC(NumTypeTestCallsLowered, "Number of type test calls lowered");
93 STATISTIC(NumTypeIdDisjointSets, "Number of disjoint sets of type identifiers");
94
95 static cl::opt<bool> AvoidReuse(
96 "lowertypetests-avoid-reuse",
97 cl::desc("Try to avoid reuse of byte array addresses using aliases"),
98 cl::Hidden, cl::init(true));
99
100 static cl::opt<PassSummaryAction> ClSummaryAction(
101 "lowertypetests-summary-action",
102 cl::desc("What to do with the summary when running this pass"),
103 cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
104 clEnumValN(PassSummaryAction::Import, "import",
105 "Import typeid resolutions from summary and globals"),
106 clEnumValN(PassSummaryAction::Export, "export",
107 "Export typeid resolutions to summary and globals")),
108 cl::Hidden);
109
110 static cl::opt<std::string> ClReadSummary(
111 "lowertypetests-read-summary",
112 cl::desc("Read summary from given YAML file before running pass"),
113 cl::Hidden);
114
115 static cl::opt<std::string> ClWriteSummary(
116 "lowertypetests-write-summary",
117 cl::desc("Write summary to given YAML file after running pass"),
118 cl::Hidden);
119
containsGlobalOffset(uint64_t Offset) const120 bool BitSetInfo::containsGlobalOffset(uint64_t Offset) const {
121 if (Offset < ByteOffset)
122 return false;
123
124 if ((Offset - ByteOffset) % (uint64_t(1) << AlignLog2) != 0)
125 return false;
126
127 uint64_t BitOffset = (Offset - ByteOffset) >> AlignLog2;
128 if (BitOffset >= BitSize)
129 return false;
130
131 return Bits.count(BitOffset);
132 }
133
print(raw_ostream & OS) const134 void BitSetInfo::print(raw_ostream &OS) const {
135 OS << "offset " << ByteOffset << " size " << BitSize << " align "
136 << (1 << AlignLog2);
137
138 if (isAllOnes()) {
139 OS << " all-ones\n";
140 return;
141 }
142
143 OS << " { ";
144 for (uint64_t B : Bits)
145 OS << B << ' ';
146 OS << "}\n";
147 }
148
build()149 BitSetInfo BitSetBuilder::build() {
150 if (Min > Max)
151 Min = 0;
152
153 // Normalize each offset against the minimum observed offset, and compute
154 // the bitwise OR of each of the offsets. The number of trailing zeros
155 // in the mask gives us the log2 of the alignment of all offsets, which
156 // allows us to compress the bitset by only storing one bit per aligned
157 // address.
158 uint64_t Mask = 0;
159 for (uint64_t &Offset : Offsets) {
160 Offset -= Min;
161 Mask |= Offset;
162 }
163
164 BitSetInfo BSI;
165 BSI.ByteOffset = Min;
166
167 BSI.AlignLog2 = 0;
168 if (Mask != 0)
169 BSI.AlignLog2 = countTrailingZeros(Mask, ZB_Undefined);
170
171 // Build the compressed bitset while normalizing the offsets against the
172 // computed alignment.
173 BSI.BitSize = ((Max - Min) >> BSI.AlignLog2) + 1;
174 for (uint64_t Offset : Offsets) {
175 Offset >>= BSI.AlignLog2;
176 BSI.Bits.insert(Offset);
177 }
178
179 return BSI;
180 }
181
addFragment(const std::set<uint64_t> & F)182 void GlobalLayoutBuilder::addFragment(const std::set<uint64_t> &F) {
183 // Create a new fragment to hold the layout for F.
184 Fragments.emplace_back();
185 std::vector<uint64_t> &Fragment = Fragments.back();
186 uint64_t FragmentIndex = Fragments.size() - 1;
187
188 for (auto ObjIndex : F) {
189 uint64_t OldFragmentIndex = FragmentMap[ObjIndex];
190 if (OldFragmentIndex == 0) {
191 // We haven't seen this object index before, so just add it to the current
192 // fragment.
193 Fragment.push_back(ObjIndex);
194 } else {
195 // This index belongs to an existing fragment. Copy the elements of the
196 // old fragment into this one and clear the old fragment. We don't update
197 // the fragment map just yet, this ensures that any further references to
198 // indices from the old fragment in this fragment do not insert any more
199 // indices.
200 std::vector<uint64_t> &OldFragment = Fragments[OldFragmentIndex];
201 Fragment.insert(Fragment.end(), OldFragment.begin(), OldFragment.end());
202 OldFragment.clear();
203 }
204 }
205
206 // Update the fragment map to point our object indices to this fragment.
207 for (uint64_t ObjIndex : Fragment)
208 FragmentMap[ObjIndex] = FragmentIndex;
209 }
210
allocate(const std::set<uint64_t> & Bits,uint64_t BitSize,uint64_t & AllocByteOffset,uint8_t & AllocMask)211 void ByteArrayBuilder::allocate(const std::set<uint64_t> &Bits,
212 uint64_t BitSize, uint64_t &AllocByteOffset,
213 uint8_t &AllocMask) {
214 // Find the smallest current allocation.
215 unsigned Bit = 0;
216 for (unsigned I = 1; I != BitsPerByte; ++I)
217 if (BitAllocs[I] < BitAllocs[Bit])
218 Bit = I;
219
220 AllocByteOffset = BitAllocs[Bit];
221
222 // Add our size to it.
223 unsigned ReqSize = AllocByteOffset + BitSize;
224 BitAllocs[Bit] = ReqSize;
225 if (Bytes.size() < ReqSize)
226 Bytes.resize(ReqSize);
227
228 // Set our bits.
229 AllocMask = 1 << Bit;
230 for (uint64_t B : Bits)
231 Bytes[AllocByteOffset + B] |= AllocMask;
232 }
233
234 namespace {
235
236 struct ByteArrayInfo {
237 std::set<uint64_t> Bits;
238 uint64_t BitSize;
239 GlobalVariable *ByteArray;
240 GlobalVariable *MaskGlobal;
241 uint8_t *MaskPtr = nullptr;
242 };
243
244 /// A POD-like structure that we use to store a global reference together with
245 /// its metadata types. In this pass we frequently need to query the set of
246 /// metadata types referenced by a global, which at the IR level is an expensive
247 /// operation involving a map lookup; this data structure helps to reduce the
248 /// number of times we need to do this lookup.
249 class GlobalTypeMember final : TrailingObjects<GlobalTypeMember, MDNode *> {
250 friend TrailingObjects;
251
252 GlobalObject *GO;
253 size_t NTypes;
254
255 // For functions: true if this is a definition (either in the merged module or
256 // in one of the thinlto modules).
257 bool IsDefinition;
258
259 // For functions: true if this function is either defined or used in a thinlto
260 // module and its jumptable entry needs to be exported to thinlto backends.
261 bool IsExported;
262
numTrailingObjects(OverloadToken<MDNode * >) const263 size_t numTrailingObjects(OverloadToken<MDNode *>) const { return NTypes; }
264
265 public:
create(BumpPtrAllocator & Alloc,GlobalObject * GO,bool IsDefinition,bool IsExported,ArrayRef<MDNode * > Types)266 static GlobalTypeMember *create(BumpPtrAllocator &Alloc, GlobalObject *GO,
267 bool IsDefinition, bool IsExported,
268 ArrayRef<MDNode *> Types) {
269 auto *GTM = static_cast<GlobalTypeMember *>(Alloc.Allocate(
270 totalSizeToAlloc<MDNode *>(Types.size()), alignof(GlobalTypeMember)));
271 GTM->GO = GO;
272 GTM->NTypes = Types.size();
273 GTM->IsDefinition = IsDefinition;
274 GTM->IsExported = IsExported;
275 std::uninitialized_copy(Types.begin(), Types.end(),
276 GTM->getTrailingObjects<MDNode *>());
277 return GTM;
278 }
279
getGlobal() const280 GlobalObject *getGlobal() const {
281 return GO;
282 }
283
isDefinition() const284 bool isDefinition() const {
285 return IsDefinition;
286 }
287
isExported() const288 bool isExported() const {
289 return IsExported;
290 }
291
types() const292 ArrayRef<MDNode *> types() const {
293 return makeArrayRef(getTrailingObjects<MDNode *>(), NTypes);
294 }
295 };
296
297 struct ICallBranchFunnel final
298 : TrailingObjects<ICallBranchFunnel, GlobalTypeMember *> {
create__anonf470a1fd0111::ICallBranchFunnel299 static ICallBranchFunnel *create(BumpPtrAllocator &Alloc, CallInst *CI,
300 ArrayRef<GlobalTypeMember *> Targets,
301 unsigned UniqueId) {
302 auto *Call = static_cast<ICallBranchFunnel *>(
303 Alloc.Allocate(totalSizeToAlloc<GlobalTypeMember *>(Targets.size()),
304 alignof(ICallBranchFunnel)));
305 Call->CI = CI;
306 Call->UniqueId = UniqueId;
307 Call->NTargets = Targets.size();
308 std::uninitialized_copy(Targets.begin(), Targets.end(),
309 Call->getTrailingObjects<GlobalTypeMember *>());
310 return Call;
311 }
312
313 CallInst *CI;
targets__anonf470a1fd0111::ICallBranchFunnel314 ArrayRef<GlobalTypeMember *> targets() const {
315 return makeArrayRef(getTrailingObjects<GlobalTypeMember *>(), NTargets);
316 }
317
318 unsigned UniqueId;
319
320 private:
321 size_t NTargets;
322 };
323
324 class LowerTypeTestsModule {
325 Module &M;
326
327 ModuleSummaryIndex *ExportSummary;
328 const ModuleSummaryIndex *ImportSummary;
329
330 Triple::ArchType Arch;
331 Triple::OSType OS;
332 Triple::ObjectFormatType ObjectFormat;
333
334 IntegerType *Int1Ty = Type::getInt1Ty(M.getContext());
335 IntegerType *Int8Ty = Type::getInt8Ty(M.getContext());
336 PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
337 ArrayType *Int8Arr0Ty = ArrayType::get(Type::getInt8Ty(M.getContext()), 0);
338 IntegerType *Int32Ty = Type::getInt32Ty(M.getContext());
339 PointerType *Int32PtrTy = PointerType::getUnqual(Int32Ty);
340 IntegerType *Int64Ty = Type::getInt64Ty(M.getContext());
341 IntegerType *IntPtrTy = M.getDataLayout().getIntPtrType(M.getContext(), 0);
342
343 // Indirect function call index assignment counter for WebAssembly
344 uint64_t IndirectIndex = 1;
345
346 // Mapping from type identifiers to the call sites that test them, as well as
347 // whether the type identifier needs to be exported to ThinLTO backends as
348 // part of the regular LTO phase of the ThinLTO pipeline (see exportTypeId).
349 struct TypeIdUserInfo {
350 std::vector<CallInst *> CallSites;
351 bool IsExported = false;
352 };
353 DenseMap<Metadata *, TypeIdUserInfo> TypeIdUsers;
354
355 /// This structure describes how to lower type tests for a particular type
356 /// identifier. It is either built directly from the global analysis (during
357 /// regular LTO or the regular LTO phase of ThinLTO), or indirectly using type
358 /// identifier summaries and external symbol references (in ThinLTO backends).
359 struct TypeIdLowering {
360 TypeTestResolution::Kind TheKind = TypeTestResolution::Unsat;
361
362 /// All except Unsat: the start address within the combined global.
363 Constant *OffsetedGlobal;
364
365 /// ByteArray, Inline, AllOnes: log2 of the required global alignment
366 /// relative to the start address.
367 Constant *AlignLog2;
368
369 /// ByteArray, Inline, AllOnes: one less than the size of the memory region
370 /// covering members of this type identifier as a multiple of 2^AlignLog2.
371 Constant *SizeM1;
372
373 /// ByteArray: the byte array to test the address against.
374 Constant *TheByteArray;
375
376 /// ByteArray: the bit mask to apply to bytes loaded from the byte array.
377 Constant *BitMask;
378
379 /// Inline: the bit mask to test the address against.
380 Constant *InlineBits;
381 };
382
383 std::vector<ByteArrayInfo> ByteArrayInfos;
384
385 Function *WeakInitializerFn = nullptr;
386
387 bool shouldExportConstantsAsAbsoluteSymbols();
388 uint8_t *exportTypeId(StringRef TypeId, const TypeIdLowering &TIL);
389 TypeIdLowering importTypeId(StringRef TypeId);
390 void importTypeTest(CallInst *CI);
391 void importFunction(Function *F, bool isDefinition);
392
393 BitSetInfo
394 buildBitSet(Metadata *TypeId,
395 const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout);
396 ByteArrayInfo *createByteArray(BitSetInfo &BSI);
397 void allocateByteArrays();
398 Value *createBitSetTest(IRBuilder<> &B, const TypeIdLowering &TIL,
399 Value *BitOffset);
400 void lowerTypeTestCalls(
401 ArrayRef<Metadata *> TypeIds, Constant *CombinedGlobalAddr,
402 const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout);
403 Value *lowerTypeTestCall(Metadata *TypeId, CallInst *CI,
404 const TypeIdLowering &TIL);
405
406 void buildBitSetsFromGlobalVariables(ArrayRef<Metadata *> TypeIds,
407 ArrayRef<GlobalTypeMember *> Globals);
408 unsigned getJumpTableEntrySize();
409 Type *getJumpTableEntryType();
410 void createJumpTableEntry(raw_ostream &AsmOS, raw_ostream &ConstraintOS,
411 Triple::ArchType JumpTableArch,
412 SmallVectorImpl<Value *> &AsmArgs, Function *Dest);
413 void verifyTypeMDNode(GlobalObject *GO, MDNode *Type);
414 void buildBitSetsFromFunctions(ArrayRef<Metadata *> TypeIds,
415 ArrayRef<GlobalTypeMember *> Functions);
416 void buildBitSetsFromFunctionsNative(ArrayRef<Metadata *> TypeIds,
417 ArrayRef<GlobalTypeMember *> Functions);
418 void buildBitSetsFromFunctionsWASM(ArrayRef<Metadata *> TypeIds,
419 ArrayRef<GlobalTypeMember *> Functions);
420 void
421 buildBitSetsFromDisjointSet(ArrayRef<Metadata *> TypeIds,
422 ArrayRef<GlobalTypeMember *> Globals,
423 ArrayRef<ICallBranchFunnel *> ICallBranchFunnels);
424
425 void replaceWeakDeclarationWithJumpTablePtr(Function *F, Constant *JT, bool IsDefinition);
426 void moveInitializerToModuleConstructor(GlobalVariable *GV);
427 void findGlobalVariableUsersOf(Constant *C,
428 SmallSetVector<GlobalVariable *, 8> &Out);
429
430 void createJumpTable(Function *F, ArrayRef<GlobalTypeMember *> Functions);
431
432 /// replaceCfiUses - Go through the uses list for this definition
433 /// and make each use point to "V" instead of "this" when the use is outside
434 /// the block. 'This's use list is expected to have at least one element.
435 /// Unlike replaceAllUsesWith this function skips blockaddr and direct call
436 /// uses.
437 void replaceCfiUses(Function *Old, Value *New, bool IsDefinition);
438
439 /// replaceDirectCalls - Go through the uses list for this definition and
440 /// replace each use, which is a direct function call.
441 void replaceDirectCalls(Value *Old, Value *New);
442
443 public:
444 LowerTypeTestsModule(Module &M, ModuleSummaryIndex *ExportSummary,
445 const ModuleSummaryIndex *ImportSummary);
446
447 bool lower();
448
449 // Lower the module using the action and summary passed as command line
450 // arguments. For testing purposes only.
451 static bool runForTesting(Module &M);
452 };
453
454 struct LowerTypeTests : public ModulePass {
455 static char ID;
456
457 bool UseCommandLine = false;
458
459 ModuleSummaryIndex *ExportSummary;
460 const ModuleSummaryIndex *ImportSummary;
461
LowerTypeTests__anonf470a1fd0111::LowerTypeTests462 LowerTypeTests() : ModulePass(ID), UseCommandLine(true) {
463 initializeLowerTypeTestsPass(*PassRegistry::getPassRegistry());
464 }
465
LowerTypeTests__anonf470a1fd0111::LowerTypeTests466 LowerTypeTests(ModuleSummaryIndex *ExportSummary,
467 const ModuleSummaryIndex *ImportSummary)
468 : ModulePass(ID), ExportSummary(ExportSummary),
469 ImportSummary(ImportSummary) {
470 initializeLowerTypeTestsPass(*PassRegistry::getPassRegistry());
471 }
472
runOnModule__anonf470a1fd0111::LowerTypeTests473 bool runOnModule(Module &M) override {
474 if (UseCommandLine)
475 return LowerTypeTestsModule::runForTesting(M);
476 return LowerTypeTestsModule(M, ExportSummary, ImportSummary).lower();
477 }
478 };
479
480 } // end anonymous namespace
481
482 char LowerTypeTests::ID = 0;
483
484 INITIALIZE_PASS(LowerTypeTests, "lowertypetests", "Lower type metadata", false,
485 false)
486
487 ModulePass *
createLowerTypeTestsPass(ModuleSummaryIndex * ExportSummary,const ModuleSummaryIndex * ImportSummary)488 llvm::createLowerTypeTestsPass(ModuleSummaryIndex *ExportSummary,
489 const ModuleSummaryIndex *ImportSummary) {
490 return new LowerTypeTests(ExportSummary, ImportSummary);
491 }
492
493 /// Build a bit set for TypeId using the object layouts in
494 /// GlobalLayout.
buildBitSet(Metadata * TypeId,const DenseMap<GlobalTypeMember *,uint64_t> & GlobalLayout)495 BitSetInfo LowerTypeTestsModule::buildBitSet(
496 Metadata *TypeId,
497 const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout) {
498 BitSetBuilder BSB;
499
500 // Compute the byte offset of each address associated with this type
501 // identifier.
502 for (auto &GlobalAndOffset : GlobalLayout) {
503 for (MDNode *Type : GlobalAndOffset.first->types()) {
504 if (Type->getOperand(1) != TypeId)
505 continue;
506 uint64_t Offset =
507 cast<ConstantInt>(
508 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
509 ->getZExtValue();
510 BSB.addOffset(GlobalAndOffset.second + Offset);
511 }
512 }
513
514 return BSB.build();
515 }
516
517 /// Build a test that bit BitOffset mod sizeof(Bits)*8 is set in
518 /// Bits. This pattern matches to the bt instruction on x86.
createMaskedBitTest(IRBuilder<> & B,Value * Bits,Value * BitOffset)519 static Value *createMaskedBitTest(IRBuilder<> &B, Value *Bits,
520 Value *BitOffset) {
521 auto BitsType = cast<IntegerType>(Bits->getType());
522 unsigned BitWidth = BitsType->getBitWidth();
523
524 BitOffset = B.CreateZExtOrTrunc(BitOffset, BitsType);
525 Value *BitIndex =
526 B.CreateAnd(BitOffset, ConstantInt::get(BitsType, BitWidth - 1));
527 Value *BitMask = B.CreateShl(ConstantInt::get(BitsType, 1), BitIndex);
528 Value *MaskedBits = B.CreateAnd(Bits, BitMask);
529 return B.CreateICmpNE(MaskedBits, ConstantInt::get(BitsType, 0));
530 }
531
createByteArray(BitSetInfo & BSI)532 ByteArrayInfo *LowerTypeTestsModule::createByteArray(BitSetInfo &BSI) {
533 // Create globals to stand in for byte arrays and masks. These never actually
534 // get initialized, we RAUW and erase them later in allocateByteArrays() once
535 // we know the offset and mask to use.
536 auto ByteArrayGlobal = new GlobalVariable(
537 M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);
538 auto MaskGlobal = new GlobalVariable(M, Int8Ty, /*isConstant=*/true,
539 GlobalValue::PrivateLinkage, nullptr);
540
541 ByteArrayInfos.emplace_back();
542 ByteArrayInfo *BAI = &ByteArrayInfos.back();
543
544 BAI->Bits = BSI.Bits;
545 BAI->BitSize = BSI.BitSize;
546 BAI->ByteArray = ByteArrayGlobal;
547 BAI->MaskGlobal = MaskGlobal;
548 return BAI;
549 }
550
allocateByteArrays()551 void LowerTypeTestsModule::allocateByteArrays() {
552 std::stable_sort(ByteArrayInfos.begin(), ByteArrayInfos.end(),
553 [](const ByteArrayInfo &BAI1, const ByteArrayInfo &BAI2) {
554 return BAI1.BitSize > BAI2.BitSize;
555 });
556
557 std::vector<uint64_t> ByteArrayOffsets(ByteArrayInfos.size());
558
559 ByteArrayBuilder BAB;
560 for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
561 ByteArrayInfo *BAI = &ByteArrayInfos[I];
562
563 uint8_t Mask;
564 BAB.allocate(BAI->Bits, BAI->BitSize, ByteArrayOffsets[I], Mask);
565
566 BAI->MaskGlobal->replaceAllUsesWith(
567 ConstantExpr::getIntToPtr(ConstantInt::get(Int8Ty, Mask), Int8PtrTy));
568 BAI->MaskGlobal->eraseFromParent();
569 if (BAI->MaskPtr)
570 *BAI->MaskPtr = Mask;
571 }
572
573 Constant *ByteArrayConst = ConstantDataArray::get(M.getContext(), BAB.Bytes);
574 auto ByteArray =
575 new GlobalVariable(M, ByteArrayConst->getType(), /*isConstant=*/true,
576 GlobalValue::PrivateLinkage, ByteArrayConst);
577
578 for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
579 ByteArrayInfo *BAI = &ByteArrayInfos[I];
580
581 Constant *Idxs[] = {ConstantInt::get(IntPtrTy, 0),
582 ConstantInt::get(IntPtrTy, ByteArrayOffsets[I])};
583 Constant *GEP = ConstantExpr::getInBoundsGetElementPtr(
584 ByteArrayConst->getType(), ByteArray, Idxs);
585
586 // Create an alias instead of RAUW'ing the gep directly. On x86 this ensures
587 // that the pc-relative displacement is folded into the lea instead of the
588 // test instruction getting another displacement.
589 GlobalAlias *Alias = GlobalAlias::create(
590 Int8Ty, 0, GlobalValue::PrivateLinkage, "bits", GEP, &M);
591 BAI->ByteArray->replaceAllUsesWith(Alias);
592 BAI->ByteArray->eraseFromParent();
593 }
594
595 ByteArraySizeBits = BAB.BitAllocs[0] + BAB.BitAllocs[1] + BAB.BitAllocs[2] +
596 BAB.BitAllocs[3] + BAB.BitAllocs[4] + BAB.BitAllocs[5] +
597 BAB.BitAllocs[6] + BAB.BitAllocs[7];
598 ByteArraySizeBytes = BAB.Bytes.size();
599 }
600
601 /// Build a test that bit BitOffset is set in the type identifier that was
602 /// lowered to TIL, which must be either an Inline or a ByteArray.
createBitSetTest(IRBuilder<> & B,const TypeIdLowering & TIL,Value * BitOffset)603 Value *LowerTypeTestsModule::createBitSetTest(IRBuilder<> &B,
604 const TypeIdLowering &TIL,
605 Value *BitOffset) {
606 if (TIL.TheKind == TypeTestResolution::Inline) {
607 // If the bit set is sufficiently small, we can avoid a load by bit testing
608 // a constant.
609 return createMaskedBitTest(B, TIL.InlineBits, BitOffset);
610 } else {
611 Constant *ByteArray = TIL.TheByteArray;
612 if (AvoidReuse && !ImportSummary) {
613 // Each use of the byte array uses a different alias. This makes the
614 // backend less likely to reuse previously computed byte array addresses,
615 // improving the security of the CFI mechanism based on this pass.
616 // This won't work when importing because TheByteArray is external.
617 ByteArray = GlobalAlias::create(Int8Ty, 0, GlobalValue::PrivateLinkage,
618 "bits_use", ByteArray, &M);
619 }
620
621 Value *ByteAddr = B.CreateGEP(Int8Ty, ByteArray, BitOffset);
622 Value *Byte = B.CreateLoad(ByteAddr);
623
624 Value *ByteAndMask =
625 B.CreateAnd(Byte, ConstantExpr::getPtrToInt(TIL.BitMask, Int8Ty));
626 return B.CreateICmpNE(ByteAndMask, ConstantInt::get(Int8Ty, 0));
627 }
628 }
629
isKnownTypeIdMember(Metadata * TypeId,const DataLayout & DL,Value * V,uint64_t COffset)630 static bool isKnownTypeIdMember(Metadata *TypeId, const DataLayout &DL,
631 Value *V, uint64_t COffset) {
632 if (auto GV = dyn_cast<GlobalObject>(V)) {
633 SmallVector<MDNode *, 2> Types;
634 GV->getMetadata(LLVMContext::MD_type, Types);
635 for (MDNode *Type : Types) {
636 if (Type->getOperand(1) != TypeId)
637 continue;
638 uint64_t Offset =
639 cast<ConstantInt>(
640 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
641 ->getZExtValue();
642 if (COffset == Offset)
643 return true;
644 }
645 return false;
646 }
647
648 if (auto GEP = dyn_cast<GEPOperator>(V)) {
649 APInt APOffset(DL.getPointerSizeInBits(0), 0);
650 bool Result = GEP->accumulateConstantOffset(DL, APOffset);
651 if (!Result)
652 return false;
653 COffset += APOffset.getZExtValue();
654 return isKnownTypeIdMember(TypeId, DL, GEP->getPointerOperand(), COffset);
655 }
656
657 if (auto Op = dyn_cast<Operator>(V)) {
658 if (Op->getOpcode() == Instruction::BitCast)
659 return isKnownTypeIdMember(TypeId, DL, Op->getOperand(0), COffset);
660
661 if (Op->getOpcode() == Instruction::Select)
662 return isKnownTypeIdMember(TypeId, DL, Op->getOperand(1), COffset) &&
663 isKnownTypeIdMember(TypeId, DL, Op->getOperand(2), COffset);
664 }
665
666 return false;
667 }
668
669 /// Lower a llvm.type.test call to its implementation. Returns the value to
670 /// replace the call with.
lowerTypeTestCall(Metadata * TypeId,CallInst * CI,const TypeIdLowering & TIL)671 Value *LowerTypeTestsModule::lowerTypeTestCall(Metadata *TypeId, CallInst *CI,
672 const TypeIdLowering &TIL) {
673 if (TIL.TheKind == TypeTestResolution::Unsat)
674 return ConstantInt::getFalse(M.getContext());
675
676 Value *Ptr = CI->getArgOperand(0);
677 const DataLayout &DL = M.getDataLayout();
678 if (isKnownTypeIdMember(TypeId, DL, Ptr, 0))
679 return ConstantInt::getTrue(M.getContext());
680
681 BasicBlock *InitialBB = CI->getParent();
682
683 IRBuilder<> B(CI);
684
685 Value *PtrAsInt = B.CreatePtrToInt(Ptr, IntPtrTy);
686
687 Constant *OffsetedGlobalAsInt =
688 ConstantExpr::getPtrToInt(TIL.OffsetedGlobal, IntPtrTy);
689 if (TIL.TheKind == TypeTestResolution::Single)
690 return B.CreateICmpEQ(PtrAsInt, OffsetedGlobalAsInt);
691
692 Value *PtrOffset = B.CreateSub(PtrAsInt, OffsetedGlobalAsInt);
693
694 // We need to check that the offset both falls within our range and is
695 // suitably aligned. We can check both properties at the same time by
696 // performing a right rotate by log2(alignment) followed by an integer
697 // comparison against the bitset size. The rotate will move the lower
698 // order bits that need to be zero into the higher order bits of the
699 // result, causing the comparison to fail if they are nonzero. The rotate
700 // also conveniently gives us a bit offset to use during the load from
701 // the bitset.
702 Value *OffsetSHR =
703 B.CreateLShr(PtrOffset, ConstantExpr::getZExt(TIL.AlignLog2, IntPtrTy));
704 Value *OffsetSHL = B.CreateShl(
705 PtrOffset, ConstantExpr::getZExt(
706 ConstantExpr::getSub(
707 ConstantInt::get(Int8Ty, DL.getPointerSizeInBits(0)),
708 TIL.AlignLog2),
709 IntPtrTy));
710 Value *BitOffset = B.CreateOr(OffsetSHR, OffsetSHL);
711
712 Value *OffsetInRange = B.CreateICmpULE(BitOffset, TIL.SizeM1);
713
714 // If the bit set is all ones, testing against it is unnecessary.
715 if (TIL.TheKind == TypeTestResolution::AllOnes)
716 return OffsetInRange;
717
718 // See if the intrinsic is used in the following common pattern:
719 // br(llvm.type.test(...), thenbb, elsebb)
720 // where nothing happens between the type test and the br.
721 // If so, create slightly simpler IR.
722 if (CI->hasOneUse())
723 if (auto *Br = dyn_cast<BranchInst>(*CI->user_begin()))
724 if (CI->getNextNode() == Br) {
725 BasicBlock *Then = InitialBB->splitBasicBlock(CI->getIterator());
726 BasicBlock *Else = Br->getSuccessor(1);
727 BranchInst *NewBr = BranchInst::Create(Then, Else, OffsetInRange);
728 NewBr->setMetadata(LLVMContext::MD_prof,
729 Br->getMetadata(LLVMContext::MD_prof));
730 ReplaceInstWithInst(InitialBB->getTerminator(), NewBr);
731
732 // Update phis in Else resulting from InitialBB being split
733 for (auto &Phi : Else->phis())
734 Phi.addIncoming(Phi.getIncomingValueForBlock(Then), InitialBB);
735
736 IRBuilder<> ThenB(CI);
737 return createBitSetTest(ThenB, TIL, BitOffset);
738 }
739
740 IRBuilder<> ThenB(SplitBlockAndInsertIfThen(OffsetInRange, CI, false));
741
742 // Now that we know that the offset is in range and aligned, load the
743 // appropriate bit from the bitset.
744 Value *Bit = createBitSetTest(ThenB, TIL, BitOffset);
745
746 // The value we want is 0 if we came directly from the initial block
747 // (having failed the range or alignment checks), or the loaded bit if
748 // we came from the block in which we loaded it.
749 B.SetInsertPoint(CI);
750 PHINode *P = B.CreatePHI(Int1Ty, 2);
751 P->addIncoming(ConstantInt::get(Int1Ty, 0), InitialBB);
752 P->addIncoming(Bit, ThenB.GetInsertBlock());
753 return P;
754 }
755
756 /// Given a disjoint set of type identifiers and globals, lay out the globals,
757 /// build the bit sets and lower the llvm.type.test calls.
buildBitSetsFromGlobalVariables(ArrayRef<Metadata * > TypeIds,ArrayRef<GlobalTypeMember * > Globals)758 void LowerTypeTestsModule::buildBitSetsFromGlobalVariables(
759 ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Globals) {
760 // Build a new global with the combined contents of the referenced globals.
761 // This global is a struct whose even-indexed elements contain the original
762 // contents of the referenced globals and whose odd-indexed elements contain
763 // any padding required to align the next element to the next power of 2.
764 std::vector<Constant *> GlobalInits;
765 const DataLayout &DL = M.getDataLayout();
766 for (GlobalTypeMember *G : Globals) {
767 GlobalVariable *GV = cast<GlobalVariable>(G->getGlobal());
768 GlobalInits.push_back(GV->getInitializer());
769 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
770
771 // Compute the amount of padding required.
772 uint64_t Padding = NextPowerOf2(InitSize - 1) - InitSize;
773
774 // Experiments of different caps with Chromium on both x64 and ARM64
775 // have shown that the 32-byte cap generates the smallest binary on
776 // both platforms while different caps yield similar performance.
777 // (see https://lists.llvm.org/pipermail/llvm-dev/2018-July/124694.html)
778 if (Padding > 32)
779 Padding = alignTo(InitSize, 32) - InitSize;
780
781 GlobalInits.push_back(
782 ConstantAggregateZero::get(ArrayType::get(Int8Ty, Padding)));
783 }
784 if (!GlobalInits.empty())
785 GlobalInits.pop_back();
786 Constant *NewInit = ConstantStruct::getAnon(M.getContext(), GlobalInits);
787 auto *CombinedGlobal =
788 new GlobalVariable(M, NewInit->getType(), /*isConstant=*/true,
789 GlobalValue::PrivateLinkage, NewInit);
790
791 StructType *NewTy = cast<StructType>(NewInit->getType());
792 const StructLayout *CombinedGlobalLayout = DL.getStructLayout(NewTy);
793
794 // Compute the offsets of the original globals within the new global.
795 DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
796 for (unsigned I = 0; I != Globals.size(); ++I)
797 // Multiply by 2 to account for padding elements.
798 GlobalLayout[Globals[I]] = CombinedGlobalLayout->getElementOffset(I * 2);
799
800 lowerTypeTestCalls(TypeIds, CombinedGlobal, GlobalLayout);
801
802 // Build aliases pointing to offsets into the combined global for each
803 // global from which we built the combined global, and replace references
804 // to the original globals with references to the aliases.
805 for (unsigned I = 0; I != Globals.size(); ++I) {
806 GlobalVariable *GV = cast<GlobalVariable>(Globals[I]->getGlobal());
807
808 // Multiply by 2 to account for padding elements.
809 Constant *CombinedGlobalIdxs[] = {ConstantInt::get(Int32Ty, 0),
810 ConstantInt::get(Int32Ty, I * 2)};
811 Constant *CombinedGlobalElemPtr = ConstantExpr::getGetElementPtr(
812 NewInit->getType(), CombinedGlobal, CombinedGlobalIdxs);
813 assert(GV->getType()->getAddressSpace() == 0);
814 GlobalAlias *GAlias =
815 GlobalAlias::create(NewTy->getElementType(I * 2), 0, GV->getLinkage(),
816 "", CombinedGlobalElemPtr, &M);
817 GAlias->setVisibility(GV->getVisibility());
818 GAlias->takeName(GV);
819 GV->replaceAllUsesWith(GAlias);
820 GV->eraseFromParent();
821 }
822 }
823
shouldExportConstantsAsAbsoluteSymbols()824 bool LowerTypeTestsModule::shouldExportConstantsAsAbsoluteSymbols() {
825 return (Arch == Triple::x86 || Arch == Triple::x86_64) &&
826 ObjectFormat == Triple::ELF;
827 }
828
829 /// Export the given type identifier so that ThinLTO backends may import it.
830 /// Type identifiers are exported by adding coarse-grained information about how
831 /// to test the type identifier to the summary, and creating symbols in the
832 /// object file (aliases and absolute symbols) containing fine-grained
833 /// information about the type identifier.
834 ///
835 /// Returns a pointer to the location in which to store the bitmask, if
836 /// applicable.
exportTypeId(StringRef TypeId,const TypeIdLowering & TIL)837 uint8_t *LowerTypeTestsModule::exportTypeId(StringRef TypeId,
838 const TypeIdLowering &TIL) {
839 TypeTestResolution &TTRes =
840 ExportSummary->getOrInsertTypeIdSummary(TypeId).TTRes;
841 TTRes.TheKind = TIL.TheKind;
842
843 auto ExportGlobal = [&](StringRef Name, Constant *C) {
844 GlobalAlias *GA =
845 GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
846 "__typeid_" + TypeId + "_" + Name, C, &M);
847 GA->setVisibility(GlobalValue::HiddenVisibility);
848 };
849
850 auto ExportConstant = [&](StringRef Name, uint64_t &Storage, Constant *C) {
851 if (shouldExportConstantsAsAbsoluteSymbols())
852 ExportGlobal(Name, ConstantExpr::getIntToPtr(C, Int8PtrTy));
853 else
854 Storage = cast<ConstantInt>(C)->getZExtValue();
855 };
856
857 if (TIL.TheKind != TypeTestResolution::Unsat)
858 ExportGlobal("global_addr", TIL.OffsetedGlobal);
859
860 if (TIL.TheKind == TypeTestResolution::ByteArray ||
861 TIL.TheKind == TypeTestResolution::Inline ||
862 TIL.TheKind == TypeTestResolution::AllOnes) {
863 ExportConstant("align", TTRes.AlignLog2, TIL.AlignLog2);
864 ExportConstant("size_m1", TTRes.SizeM1, TIL.SizeM1);
865
866 uint64_t BitSize = cast<ConstantInt>(TIL.SizeM1)->getZExtValue() + 1;
867 if (TIL.TheKind == TypeTestResolution::Inline)
868 TTRes.SizeM1BitWidth = (BitSize <= 32) ? 5 : 6;
869 else
870 TTRes.SizeM1BitWidth = (BitSize <= 128) ? 7 : 32;
871 }
872
873 if (TIL.TheKind == TypeTestResolution::ByteArray) {
874 ExportGlobal("byte_array", TIL.TheByteArray);
875 if (shouldExportConstantsAsAbsoluteSymbols())
876 ExportGlobal("bit_mask", TIL.BitMask);
877 else
878 return &TTRes.BitMask;
879 }
880
881 if (TIL.TheKind == TypeTestResolution::Inline)
882 ExportConstant("inline_bits", TTRes.InlineBits, TIL.InlineBits);
883
884 return nullptr;
885 }
886
887 LowerTypeTestsModule::TypeIdLowering
importTypeId(StringRef TypeId)888 LowerTypeTestsModule::importTypeId(StringRef TypeId) {
889 const TypeIdSummary *TidSummary = ImportSummary->getTypeIdSummary(TypeId);
890 if (!TidSummary)
891 return {}; // Unsat: no globals match this type id.
892 const TypeTestResolution &TTRes = TidSummary->TTRes;
893
894 TypeIdLowering TIL;
895 TIL.TheKind = TTRes.TheKind;
896
897 auto ImportGlobal = [&](StringRef Name) {
898 // Give the global a type of length 0 so that it is not assumed not to alias
899 // with any other global.
900 Constant *C = M.getOrInsertGlobal(("__typeid_" + TypeId + "_" + Name).str(),
901 Int8Arr0Ty);
902 if (auto *GV = dyn_cast<GlobalVariable>(C))
903 GV->setVisibility(GlobalValue::HiddenVisibility);
904 C = ConstantExpr::getBitCast(C, Int8PtrTy);
905 return C;
906 };
907
908 auto ImportConstant = [&](StringRef Name, uint64_t Const, unsigned AbsWidth,
909 Type *Ty) {
910 if (!shouldExportConstantsAsAbsoluteSymbols()) {
911 Constant *C =
912 ConstantInt::get(isa<IntegerType>(Ty) ? Ty : Int64Ty, Const);
913 if (!isa<IntegerType>(Ty))
914 C = ConstantExpr::getIntToPtr(C, Ty);
915 return C;
916 }
917
918 Constant *C = ImportGlobal(Name);
919 auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
920 if (isa<IntegerType>(Ty))
921 C = ConstantExpr::getPtrToInt(C, Ty);
922 if (GV->getMetadata(LLVMContext::MD_absolute_symbol))
923 return C;
924
925 auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
926 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
927 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
928 GV->setMetadata(LLVMContext::MD_absolute_symbol,
929 MDNode::get(M.getContext(), {MinC, MaxC}));
930 };
931 if (AbsWidth == IntPtrTy->getBitWidth())
932 SetAbsRange(~0ull, ~0ull); // Full set.
933 else
934 SetAbsRange(0, 1ull << AbsWidth);
935 return C;
936 };
937
938 if (TIL.TheKind != TypeTestResolution::Unsat)
939 TIL.OffsetedGlobal = ImportGlobal("global_addr");
940
941 if (TIL.TheKind == TypeTestResolution::ByteArray ||
942 TIL.TheKind == TypeTestResolution::Inline ||
943 TIL.TheKind == TypeTestResolution::AllOnes) {
944 TIL.AlignLog2 = ImportConstant("align", TTRes.AlignLog2, 8, Int8Ty);
945 TIL.SizeM1 =
946 ImportConstant("size_m1", TTRes.SizeM1, TTRes.SizeM1BitWidth, IntPtrTy);
947 }
948
949 if (TIL.TheKind == TypeTestResolution::ByteArray) {
950 TIL.TheByteArray = ImportGlobal("byte_array");
951 TIL.BitMask = ImportConstant("bit_mask", TTRes.BitMask, 8, Int8PtrTy);
952 }
953
954 if (TIL.TheKind == TypeTestResolution::Inline)
955 TIL.InlineBits = ImportConstant(
956 "inline_bits", TTRes.InlineBits, 1 << TTRes.SizeM1BitWidth,
957 TTRes.SizeM1BitWidth <= 5 ? Int32Ty : Int64Ty);
958
959 return TIL;
960 }
961
importTypeTest(CallInst * CI)962 void LowerTypeTestsModule::importTypeTest(CallInst *CI) {
963 auto TypeIdMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
964 if (!TypeIdMDVal)
965 report_fatal_error("Second argument of llvm.type.test must be metadata");
966
967 auto TypeIdStr = dyn_cast<MDString>(TypeIdMDVal->getMetadata());
968 if (!TypeIdStr)
969 report_fatal_error(
970 "Second argument of llvm.type.test must be a metadata string");
971
972 TypeIdLowering TIL = importTypeId(TypeIdStr->getString());
973 Value *Lowered = lowerTypeTestCall(TypeIdStr, CI, TIL);
974 CI->replaceAllUsesWith(Lowered);
975 CI->eraseFromParent();
976 }
977
978 // ThinLTO backend: the function F has a jump table entry; update this module
979 // accordingly. isDefinition describes the type of the jump table entry.
importFunction(Function * F,bool isDefinition)980 void LowerTypeTestsModule::importFunction(Function *F, bool isDefinition) {
981 assert(F->getType()->getAddressSpace() == 0);
982
983 GlobalValue::VisibilityTypes Visibility = F->getVisibility();
984 std::string Name = F->getName();
985
986 if (F->isDeclarationForLinker() && isDefinition) {
987 // Non-dso_local functions may be overriden at run time,
988 // don't short curcuit them
989 if (F->isDSOLocal()) {
990 Function *RealF = Function::Create(F->getFunctionType(),
991 GlobalValue::ExternalLinkage,
992 Name + ".cfi", &M);
993 RealF->setVisibility(GlobalVariable::HiddenVisibility);
994 replaceDirectCalls(F, RealF);
995 }
996 return;
997 }
998
999 Function *FDecl;
1000 if (F->isDeclarationForLinker() && !isDefinition) {
1001 // Declaration of an external function.
1002 FDecl = Function::Create(F->getFunctionType(), GlobalValue::ExternalLinkage,
1003 Name + ".cfi_jt", &M);
1004 FDecl->setVisibility(GlobalValue::HiddenVisibility);
1005 } else if (isDefinition) {
1006 F->setName(Name + ".cfi");
1007 F->setLinkage(GlobalValue::ExternalLinkage);
1008 FDecl = Function::Create(F->getFunctionType(), GlobalValue::ExternalLinkage,
1009 Name, &M);
1010 FDecl->setVisibility(Visibility);
1011 Visibility = GlobalValue::HiddenVisibility;
1012
1013 // Delete aliases pointing to this function, they'll be re-created in the
1014 // merged output
1015 SmallVector<GlobalAlias*, 4> ToErase;
1016 for (auto &U : F->uses()) {
1017 if (auto *A = dyn_cast<GlobalAlias>(U.getUser())) {
1018 Function *AliasDecl = Function::Create(
1019 F->getFunctionType(), GlobalValue::ExternalLinkage, "", &M);
1020 AliasDecl->takeName(A);
1021 A->replaceAllUsesWith(AliasDecl);
1022 ToErase.push_back(A);
1023 }
1024 }
1025 for (auto *A : ToErase)
1026 A->eraseFromParent();
1027 } else {
1028 // Function definition without type metadata, where some other translation
1029 // unit contained a declaration with type metadata. This normally happens
1030 // during mixed CFI + non-CFI compilation. We do nothing with the function
1031 // so that it is treated the same way as a function defined outside of the
1032 // LTO unit.
1033 return;
1034 }
1035
1036 if (F->isWeakForLinker())
1037 replaceWeakDeclarationWithJumpTablePtr(F, FDecl, isDefinition);
1038 else
1039 replaceCfiUses(F, FDecl, isDefinition);
1040
1041 // Set visibility late because it's used in replaceCfiUses() to determine
1042 // whether uses need to to be replaced.
1043 F->setVisibility(Visibility);
1044 }
1045
lowerTypeTestCalls(ArrayRef<Metadata * > TypeIds,Constant * CombinedGlobalAddr,const DenseMap<GlobalTypeMember *,uint64_t> & GlobalLayout)1046 void LowerTypeTestsModule::lowerTypeTestCalls(
1047 ArrayRef<Metadata *> TypeIds, Constant *CombinedGlobalAddr,
1048 const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout) {
1049 CombinedGlobalAddr = ConstantExpr::getBitCast(CombinedGlobalAddr, Int8PtrTy);
1050
1051 // For each type identifier in this disjoint set...
1052 for (Metadata *TypeId : TypeIds) {
1053 // Build the bitset.
1054 BitSetInfo BSI = buildBitSet(TypeId, GlobalLayout);
1055 LLVM_DEBUG({
1056 if (auto MDS = dyn_cast<MDString>(TypeId))
1057 dbgs() << MDS->getString() << ": ";
1058 else
1059 dbgs() << "<unnamed>: ";
1060 BSI.print(dbgs());
1061 });
1062
1063 ByteArrayInfo *BAI = nullptr;
1064 TypeIdLowering TIL;
1065 TIL.OffsetedGlobal = ConstantExpr::getGetElementPtr(
1066 Int8Ty, CombinedGlobalAddr, ConstantInt::get(IntPtrTy, BSI.ByteOffset)),
1067 TIL.AlignLog2 = ConstantInt::get(Int8Ty, BSI.AlignLog2);
1068 TIL.SizeM1 = ConstantInt::get(IntPtrTy, BSI.BitSize - 1);
1069 if (BSI.isAllOnes()) {
1070 TIL.TheKind = (BSI.BitSize == 1) ? TypeTestResolution::Single
1071 : TypeTestResolution::AllOnes;
1072 } else if (BSI.BitSize <= 64) {
1073 TIL.TheKind = TypeTestResolution::Inline;
1074 uint64_t InlineBits = 0;
1075 for (auto Bit : BSI.Bits)
1076 InlineBits |= uint64_t(1) << Bit;
1077 if (InlineBits == 0)
1078 TIL.TheKind = TypeTestResolution::Unsat;
1079 else
1080 TIL.InlineBits = ConstantInt::get(
1081 (BSI.BitSize <= 32) ? Int32Ty : Int64Ty, InlineBits);
1082 } else {
1083 TIL.TheKind = TypeTestResolution::ByteArray;
1084 ++NumByteArraysCreated;
1085 BAI = createByteArray(BSI);
1086 TIL.TheByteArray = BAI->ByteArray;
1087 TIL.BitMask = BAI->MaskGlobal;
1088 }
1089
1090 TypeIdUserInfo &TIUI = TypeIdUsers[TypeId];
1091
1092 if (TIUI.IsExported) {
1093 uint8_t *MaskPtr = exportTypeId(cast<MDString>(TypeId)->getString(), TIL);
1094 if (BAI)
1095 BAI->MaskPtr = MaskPtr;
1096 }
1097
1098 // Lower each call to llvm.type.test for this type identifier.
1099 for (CallInst *CI : TIUI.CallSites) {
1100 ++NumTypeTestCallsLowered;
1101 Value *Lowered = lowerTypeTestCall(TypeId, CI, TIL);
1102 CI->replaceAllUsesWith(Lowered);
1103 CI->eraseFromParent();
1104 }
1105 }
1106 }
1107
verifyTypeMDNode(GlobalObject * GO,MDNode * Type)1108 void LowerTypeTestsModule::verifyTypeMDNode(GlobalObject *GO, MDNode *Type) {
1109 if (Type->getNumOperands() != 2)
1110 report_fatal_error("All operands of type metadata must have 2 elements");
1111
1112 if (GO->isThreadLocal())
1113 report_fatal_error("Bit set element may not be thread-local");
1114 if (isa<GlobalVariable>(GO) && GO->hasSection())
1115 report_fatal_error(
1116 "A member of a type identifier may not have an explicit section");
1117
1118 // FIXME: We previously checked that global var member of a type identifier
1119 // must be a definition, but the IR linker may leave type metadata on
1120 // declarations. We should restore this check after fixing PR31759.
1121
1122 auto OffsetConstMD = dyn_cast<ConstantAsMetadata>(Type->getOperand(0));
1123 if (!OffsetConstMD)
1124 report_fatal_error("Type offset must be a constant");
1125 auto OffsetInt = dyn_cast<ConstantInt>(OffsetConstMD->getValue());
1126 if (!OffsetInt)
1127 report_fatal_error("Type offset must be an integer constant");
1128 }
1129
1130 static const unsigned kX86JumpTableEntrySize = 8;
1131 static const unsigned kARMJumpTableEntrySize = 4;
1132
getJumpTableEntrySize()1133 unsigned LowerTypeTestsModule::getJumpTableEntrySize() {
1134 switch (Arch) {
1135 case Triple::x86:
1136 case Triple::x86_64:
1137 return kX86JumpTableEntrySize;
1138 case Triple::arm:
1139 case Triple::thumb:
1140 case Triple::aarch64:
1141 return kARMJumpTableEntrySize;
1142 default:
1143 report_fatal_error("Unsupported architecture for jump tables");
1144 }
1145 }
1146
1147 // Create a jump table entry for the target. This consists of an instruction
1148 // sequence containing a relative branch to Dest. Appends inline asm text,
1149 // constraints and arguments to AsmOS, ConstraintOS and AsmArgs.
createJumpTableEntry(raw_ostream & AsmOS,raw_ostream & ConstraintOS,Triple::ArchType JumpTableArch,SmallVectorImpl<Value * > & AsmArgs,Function * Dest)1150 void LowerTypeTestsModule::createJumpTableEntry(
1151 raw_ostream &AsmOS, raw_ostream &ConstraintOS,
1152 Triple::ArchType JumpTableArch, SmallVectorImpl<Value *> &AsmArgs,
1153 Function *Dest) {
1154 unsigned ArgIndex = AsmArgs.size();
1155
1156 if (JumpTableArch == Triple::x86 || JumpTableArch == Triple::x86_64) {
1157 AsmOS << "jmp ${" << ArgIndex << ":c}@plt\n";
1158 AsmOS << "int3\nint3\nint3\n";
1159 } else if (JumpTableArch == Triple::arm || JumpTableArch == Triple::aarch64) {
1160 AsmOS << "b $" << ArgIndex << "\n";
1161 } else if (JumpTableArch == Triple::thumb) {
1162 AsmOS << "b.w $" << ArgIndex << "\n";
1163 } else {
1164 report_fatal_error("Unsupported architecture for jump tables");
1165 }
1166
1167 ConstraintOS << (ArgIndex > 0 ? ",s" : "s");
1168 AsmArgs.push_back(Dest);
1169 }
1170
getJumpTableEntryType()1171 Type *LowerTypeTestsModule::getJumpTableEntryType() {
1172 return ArrayType::get(Int8Ty, getJumpTableEntrySize());
1173 }
1174
1175 /// Given a disjoint set of type identifiers and functions, build the bit sets
1176 /// and lower the llvm.type.test calls, architecture dependently.
buildBitSetsFromFunctions(ArrayRef<Metadata * > TypeIds,ArrayRef<GlobalTypeMember * > Functions)1177 void LowerTypeTestsModule::buildBitSetsFromFunctions(
1178 ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Functions) {
1179 if (Arch == Triple::x86 || Arch == Triple::x86_64 || Arch == Triple::arm ||
1180 Arch == Triple::thumb || Arch == Triple::aarch64)
1181 buildBitSetsFromFunctionsNative(TypeIds, Functions);
1182 else if (Arch == Triple::wasm32 || Arch == Triple::wasm64)
1183 buildBitSetsFromFunctionsWASM(TypeIds, Functions);
1184 else
1185 report_fatal_error("Unsupported architecture for jump tables");
1186 }
1187
moveInitializerToModuleConstructor(GlobalVariable * GV)1188 void LowerTypeTestsModule::moveInitializerToModuleConstructor(
1189 GlobalVariable *GV) {
1190 if (WeakInitializerFn == nullptr) {
1191 WeakInitializerFn = Function::Create(
1192 FunctionType::get(Type::getVoidTy(M.getContext()),
1193 /* IsVarArg */ false),
1194 GlobalValue::InternalLinkage, "__cfi_global_var_init", &M);
1195 BasicBlock *BB =
1196 BasicBlock::Create(M.getContext(), "entry", WeakInitializerFn);
1197 ReturnInst::Create(M.getContext(), BB);
1198 WeakInitializerFn->setSection(
1199 ObjectFormat == Triple::MachO
1200 ? "__TEXT,__StaticInit,regular,pure_instructions"
1201 : ".text.startup");
1202 // This code is equivalent to relocation application, and should run at the
1203 // earliest possible time (i.e. with the highest priority).
1204 appendToGlobalCtors(M, WeakInitializerFn, /* Priority */ 0);
1205 }
1206
1207 IRBuilder<> IRB(WeakInitializerFn->getEntryBlock().getTerminator());
1208 GV->setConstant(false);
1209 IRB.CreateAlignedStore(GV->getInitializer(), GV, GV->getAlignment());
1210 GV->setInitializer(Constant::getNullValue(GV->getValueType()));
1211 }
1212
findGlobalVariableUsersOf(Constant * C,SmallSetVector<GlobalVariable *,8> & Out)1213 void LowerTypeTestsModule::findGlobalVariableUsersOf(
1214 Constant *C, SmallSetVector<GlobalVariable *, 8> &Out) {
1215 for (auto *U : C->users()){
1216 if (auto *GV = dyn_cast<GlobalVariable>(U))
1217 Out.insert(GV);
1218 else if (auto *C2 = dyn_cast<Constant>(U))
1219 findGlobalVariableUsersOf(C2, Out);
1220 }
1221 }
1222
1223 // Replace all uses of F with (F ? JT : 0).
replaceWeakDeclarationWithJumpTablePtr(Function * F,Constant * JT,bool IsDefinition)1224 void LowerTypeTestsModule::replaceWeakDeclarationWithJumpTablePtr(
1225 Function *F, Constant *JT, bool IsDefinition) {
1226 // The target expression can not appear in a constant initializer on most
1227 // (all?) targets. Switch to a runtime initializer.
1228 SmallSetVector<GlobalVariable *, 8> GlobalVarUsers;
1229 findGlobalVariableUsersOf(F, GlobalVarUsers);
1230 for (auto GV : GlobalVarUsers)
1231 moveInitializerToModuleConstructor(GV);
1232
1233 // Can not RAUW F with an expression that uses F. Replace with a temporary
1234 // placeholder first.
1235 Function *PlaceholderFn =
1236 Function::Create(cast<FunctionType>(F->getValueType()),
1237 GlobalValue::ExternalWeakLinkage, "", &M);
1238 replaceCfiUses(F, PlaceholderFn, IsDefinition);
1239
1240 Constant *Target = ConstantExpr::getSelect(
1241 ConstantExpr::getICmp(CmpInst::ICMP_NE, F,
1242 Constant::getNullValue(F->getType())),
1243 JT, Constant::getNullValue(F->getType()));
1244 PlaceholderFn->replaceAllUsesWith(Target);
1245 PlaceholderFn->eraseFromParent();
1246 }
1247
isThumbFunction(Function * F,Triple::ArchType ModuleArch)1248 static bool isThumbFunction(Function *F, Triple::ArchType ModuleArch) {
1249 Attribute TFAttr = F->getFnAttribute("target-features");
1250 if (!TFAttr.hasAttribute(Attribute::None)) {
1251 SmallVector<StringRef, 6> Features;
1252 TFAttr.getValueAsString().split(Features, ',');
1253 for (StringRef Feature : Features) {
1254 if (Feature == "-thumb-mode")
1255 return false;
1256 else if (Feature == "+thumb-mode")
1257 return true;
1258 }
1259 }
1260
1261 return ModuleArch == Triple::thumb;
1262 }
1263
1264 // Each jump table must be either ARM or Thumb as a whole for the bit-test math
1265 // to work. Pick one that matches the majority of members to minimize interop
1266 // veneers inserted by the linker.
1267 static Triple::ArchType
selectJumpTableArmEncoding(ArrayRef<GlobalTypeMember * > Functions,Triple::ArchType ModuleArch)1268 selectJumpTableArmEncoding(ArrayRef<GlobalTypeMember *> Functions,
1269 Triple::ArchType ModuleArch) {
1270 if (ModuleArch != Triple::arm && ModuleArch != Triple::thumb)
1271 return ModuleArch;
1272
1273 unsigned ArmCount = 0, ThumbCount = 0;
1274 for (const auto GTM : Functions) {
1275 if (!GTM->isDefinition()) {
1276 // PLT stubs are always ARM.
1277 ++ArmCount;
1278 continue;
1279 }
1280
1281 Function *F = cast<Function>(GTM->getGlobal());
1282 ++(isThumbFunction(F, ModuleArch) ? ThumbCount : ArmCount);
1283 }
1284
1285 return ArmCount > ThumbCount ? Triple::arm : Triple::thumb;
1286 }
1287
createJumpTable(Function * F,ArrayRef<GlobalTypeMember * > Functions)1288 void LowerTypeTestsModule::createJumpTable(
1289 Function *F, ArrayRef<GlobalTypeMember *> Functions) {
1290 std::string AsmStr, ConstraintStr;
1291 raw_string_ostream AsmOS(AsmStr), ConstraintOS(ConstraintStr);
1292 SmallVector<Value *, 16> AsmArgs;
1293 AsmArgs.reserve(Functions.size() * 2);
1294
1295 Triple::ArchType JumpTableArch = selectJumpTableArmEncoding(Functions, Arch);
1296
1297 for (unsigned I = 0; I != Functions.size(); ++I)
1298 createJumpTableEntry(AsmOS, ConstraintOS, JumpTableArch, AsmArgs,
1299 cast<Function>(Functions[I]->getGlobal()));
1300
1301 // Align the whole table by entry size.
1302 F->setAlignment(getJumpTableEntrySize());
1303 // Skip prologue.
1304 // Disabled on win32 due to https://llvm.org/bugs/show_bug.cgi?id=28641#c3.
1305 // Luckily, this function does not get any prologue even without the
1306 // attribute.
1307 if (OS != Triple::Win32)
1308 F->addFnAttr(Attribute::Naked);
1309 if (JumpTableArch == Triple::arm)
1310 F->addFnAttr("target-features", "-thumb-mode");
1311 if (JumpTableArch == Triple::thumb) {
1312 F->addFnAttr("target-features", "+thumb-mode");
1313 // Thumb jump table assembly needs Thumb2. The following attribute is added
1314 // by Clang for -march=armv7.
1315 F->addFnAttr("target-cpu", "cortex-a8");
1316 }
1317 // Make sure we don't emit .eh_frame for this function.
1318 F->addFnAttr(Attribute::NoUnwind);
1319
1320 BasicBlock *BB = BasicBlock::Create(M.getContext(), "entry", F);
1321 IRBuilder<> IRB(BB);
1322
1323 SmallVector<Type *, 16> ArgTypes;
1324 ArgTypes.reserve(AsmArgs.size());
1325 for (const auto &Arg : AsmArgs)
1326 ArgTypes.push_back(Arg->getType());
1327 InlineAsm *JumpTableAsm =
1328 InlineAsm::get(FunctionType::get(IRB.getVoidTy(), ArgTypes, false),
1329 AsmOS.str(), ConstraintOS.str(),
1330 /*hasSideEffects=*/true);
1331
1332 IRB.CreateCall(JumpTableAsm, AsmArgs);
1333 IRB.CreateUnreachable();
1334 }
1335
1336 /// Given a disjoint set of type identifiers and functions, build a jump table
1337 /// for the functions, build the bit sets and lower the llvm.type.test calls.
buildBitSetsFromFunctionsNative(ArrayRef<Metadata * > TypeIds,ArrayRef<GlobalTypeMember * > Functions)1338 void LowerTypeTestsModule::buildBitSetsFromFunctionsNative(
1339 ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Functions) {
1340 // Unlike the global bitset builder, the function bitset builder cannot
1341 // re-arrange functions in a particular order and base its calculations on the
1342 // layout of the functions' entry points, as we have no idea how large a
1343 // particular function will end up being (the size could even depend on what
1344 // this pass does!) Instead, we build a jump table, which is a block of code
1345 // consisting of one branch instruction for each of the functions in the bit
1346 // set that branches to the target function, and redirect any taken function
1347 // addresses to the corresponding jump table entry. In the object file's
1348 // symbol table, the symbols for the target functions also refer to the jump
1349 // table entries, so that addresses taken outside the module will pass any
1350 // verification done inside the module.
1351 //
1352 // In more concrete terms, suppose we have three functions f, g, h which are
1353 // of the same type, and a function foo that returns their addresses:
1354 //
1355 // f:
1356 // mov 0, %eax
1357 // ret
1358 //
1359 // g:
1360 // mov 1, %eax
1361 // ret
1362 //
1363 // h:
1364 // mov 2, %eax
1365 // ret
1366 //
1367 // foo:
1368 // mov f, %eax
1369 // mov g, %edx
1370 // mov h, %ecx
1371 // ret
1372 //
1373 // We output the jump table as module-level inline asm string. The end result
1374 // will (conceptually) look like this:
1375 //
1376 // f = .cfi.jumptable
1377 // g = .cfi.jumptable + 4
1378 // h = .cfi.jumptable + 8
1379 // .cfi.jumptable:
1380 // jmp f.cfi ; 5 bytes
1381 // int3 ; 1 byte
1382 // int3 ; 1 byte
1383 // int3 ; 1 byte
1384 // jmp g.cfi ; 5 bytes
1385 // int3 ; 1 byte
1386 // int3 ; 1 byte
1387 // int3 ; 1 byte
1388 // jmp h.cfi ; 5 bytes
1389 // int3 ; 1 byte
1390 // int3 ; 1 byte
1391 // int3 ; 1 byte
1392 //
1393 // f.cfi:
1394 // mov 0, %eax
1395 // ret
1396 //
1397 // g.cfi:
1398 // mov 1, %eax
1399 // ret
1400 //
1401 // h.cfi:
1402 // mov 2, %eax
1403 // ret
1404 //
1405 // foo:
1406 // mov f, %eax
1407 // mov g, %edx
1408 // mov h, %ecx
1409 // ret
1410 //
1411 // Because the addresses of f, g, h are evenly spaced at a power of 2, in the
1412 // normal case the check can be carried out using the same kind of simple
1413 // arithmetic that we normally use for globals.
1414
1415 // FIXME: find a better way to represent the jumptable in the IR.
1416 assert(!Functions.empty());
1417
1418 // Build a simple layout based on the regular layout of jump tables.
1419 DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
1420 unsigned EntrySize = getJumpTableEntrySize();
1421 for (unsigned I = 0; I != Functions.size(); ++I)
1422 GlobalLayout[Functions[I]] = I * EntrySize;
1423
1424 Function *JumpTableFn =
1425 Function::Create(FunctionType::get(Type::getVoidTy(M.getContext()),
1426 /* IsVarArg */ false),
1427 GlobalValue::PrivateLinkage, ".cfi.jumptable", &M);
1428 ArrayType *JumpTableType =
1429 ArrayType::get(getJumpTableEntryType(), Functions.size());
1430 auto JumpTable =
1431 ConstantExpr::getPointerCast(JumpTableFn, JumpTableType->getPointerTo(0));
1432
1433 lowerTypeTestCalls(TypeIds, JumpTable, GlobalLayout);
1434
1435 // Build aliases pointing to offsets into the jump table, and replace
1436 // references to the original functions with references to the aliases.
1437 for (unsigned I = 0; I != Functions.size(); ++I) {
1438 Function *F = cast<Function>(Functions[I]->getGlobal());
1439 bool IsDefinition = Functions[I]->isDefinition();
1440
1441 Constant *CombinedGlobalElemPtr = ConstantExpr::getBitCast(
1442 ConstantExpr::getInBoundsGetElementPtr(
1443 JumpTableType, JumpTable,
1444 ArrayRef<Constant *>{ConstantInt::get(IntPtrTy, 0),
1445 ConstantInt::get(IntPtrTy, I)}),
1446 F->getType());
1447 if (Functions[I]->isExported()) {
1448 if (IsDefinition) {
1449 ExportSummary->cfiFunctionDefs().insert(F->getName());
1450 } else {
1451 GlobalAlias *JtAlias = GlobalAlias::create(
1452 F->getValueType(), 0, GlobalValue::ExternalLinkage,
1453 F->getName() + ".cfi_jt", CombinedGlobalElemPtr, &M);
1454 JtAlias->setVisibility(GlobalValue::HiddenVisibility);
1455 ExportSummary->cfiFunctionDecls().insert(F->getName());
1456 }
1457 }
1458 if (!IsDefinition) {
1459 if (F->isWeakForLinker())
1460 replaceWeakDeclarationWithJumpTablePtr(F, CombinedGlobalElemPtr, IsDefinition);
1461 else
1462 replaceCfiUses(F, CombinedGlobalElemPtr, IsDefinition);
1463 } else {
1464 assert(F->getType()->getAddressSpace() == 0);
1465
1466 GlobalAlias *FAlias = GlobalAlias::create(
1467 F->getValueType(), 0, F->getLinkage(), "", CombinedGlobalElemPtr, &M);
1468 FAlias->setVisibility(F->getVisibility());
1469 FAlias->takeName(F);
1470 if (FAlias->hasName())
1471 F->setName(FAlias->getName() + ".cfi");
1472 replaceCfiUses(F, FAlias, IsDefinition);
1473 if (!F->hasLocalLinkage())
1474 F->setVisibility(GlobalVariable::HiddenVisibility);
1475 }
1476 }
1477
1478 createJumpTable(JumpTableFn, Functions);
1479 }
1480
1481 /// Assign a dummy layout using an incrementing counter, tag each function
1482 /// with its index represented as metadata, and lower each type test to an
1483 /// integer range comparison. During generation of the indirect function call
1484 /// table in the backend, it will assign the given indexes.
1485 /// Note: Dynamic linking is not supported, as the WebAssembly ABI has not yet
1486 /// been finalized.
buildBitSetsFromFunctionsWASM(ArrayRef<Metadata * > TypeIds,ArrayRef<GlobalTypeMember * > Functions)1487 void LowerTypeTestsModule::buildBitSetsFromFunctionsWASM(
1488 ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Functions) {
1489 assert(!Functions.empty());
1490
1491 // Build consecutive monotonic integer ranges for each call target set
1492 DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
1493
1494 for (GlobalTypeMember *GTM : Functions) {
1495 Function *F = cast<Function>(GTM->getGlobal());
1496
1497 // Skip functions that are not address taken, to avoid bloating the table
1498 if (!F->hasAddressTaken())
1499 continue;
1500
1501 // Store metadata with the index for each function
1502 MDNode *MD = MDNode::get(F->getContext(),
1503 ArrayRef<Metadata *>(ConstantAsMetadata::get(
1504 ConstantInt::get(Int64Ty, IndirectIndex))));
1505 F->setMetadata("wasm.index", MD);
1506
1507 // Assign the counter value
1508 GlobalLayout[GTM] = IndirectIndex++;
1509 }
1510
1511 // The indirect function table index space starts at zero, so pass a NULL
1512 // pointer as the subtracted "jump table" offset.
1513 lowerTypeTestCalls(TypeIds, ConstantPointerNull::get(Int32PtrTy),
1514 GlobalLayout);
1515 }
1516
buildBitSetsFromDisjointSet(ArrayRef<Metadata * > TypeIds,ArrayRef<GlobalTypeMember * > Globals,ArrayRef<ICallBranchFunnel * > ICallBranchFunnels)1517 void LowerTypeTestsModule::buildBitSetsFromDisjointSet(
1518 ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Globals,
1519 ArrayRef<ICallBranchFunnel *> ICallBranchFunnels) {
1520 DenseMap<Metadata *, uint64_t> TypeIdIndices;
1521 for (unsigned I = 0; I != TypeIds.size(); ++I)
1522 TypeIdIndices[TypeIds[I]] = I;
1523
1524 // For each type identifier, build a set of indices that refer to members of
1525 // the type identifier.
1526 std::vector<std::set<uint64_t>> TypeMembers(TypeIds.size());
1527 unsigned GlobalIndex = 0;
1528 DenseMap<GlobalTypeMember *, uint64_t> GlobalIndices;
1529 for (GlobalTypeMember *GTM : Globals) {
1530 for (MDNode *Type : GTM->types()) {
1531 // Type = { offset, type identifier }
1532 auto I = TypeIdIndices.find(Type->getOperand(1));
1533 if (I != TypeIdIndices.end())
1534 TypeMembers[I->second].insert(GlobalIndex);
1535 }
1536 GlobalIndices[GTM] = GlobalIndex;
1537 GlobalIndex++;
1538 }
1539
1540 for (ICallBranchFunnel *JT : ICallBranchFunnels) {
1541 TypeMembers.emplace_back();
1542 std::set<uint64_t> &TMSet = TypeMembers.back();
1543 for (GlobalTypeMember *T : JT->targets())
1544 TMSet.insert(GlobalIndices[T]);
1545 }
1546
1547 // Order the sets of indices by size. The GlobalLayoutBuilder works best
1548 // when given small index sets first.
1549 std::stable_sort(
1550 TypeMembers.begin(), TypeMembers.end(),
1551 [](const std::set<uint64_t> &O1, const std::set<uint64_t> &O2) {
1552 return O1.size() < O2.size();
1553 });
1554
1555 // Create a GlobalLayoutBuilder and provide it with index sets as layout
1556 // fragments. The GlobalLayoutBuilder tries to lay out members of fragments as
1557 // close together as possible.
1558 GlobalLayoutBuilder GLB(Globals.size());
1559 for (auto &&MemSet : TypeMembers)
1560 GLB.addFragment(MemSet);
1561
1562 // Build a vector of globals with the computed layout.
1563 bool IsGlobalSet =
1564 Globals.empty() || isa<GlobalVariable>(Globals[0]->getGlobal());
1565 std::vector<GlobalTypeMember *> OrderedGTMs(Globals.size());
1566 auto OGTMI = OrderedGTMs.begin();
1567 for (auto &&F : GLB.Fragments) {
1568 for (auto &&Offset : F) {
1569 if (IsGlobalSet != isa<GlobalVariable>(Globals[Offset]->getGlobal()))
1570 report_fatal_error("Type identifier may not contain both global "
1571 "variables and functions");
1572 *OGTMI++ = Globals[Offset];
1573 }
1574 }
1575
1576 // Build the bitsets from this disjoint set.
1577 if (IsGlobalSet)
1578 buildBitSetsFromGlobalVariables(TypeIds, OrderedGTMs);
1579 else
1580 buildBitSetsFromFunctions(TypeIds, OrderedGTMs);
1581 }
1582
1583 /// Lower all type tests in this module.
LowerTypeTestsModule(Module & M,ModuleSummaryIndex * ExportSummary,const ModuleSummaryIndex * ImportSummary)1584 LowerTypeTestsModule::LowerTypeTestsModule(
1585 Module &M, ModuleSummaryIndex *ExportSummary,
1586 const ModuleSummaryIndex *ImportSummary)
1587 : M(M), ExportSummary(ExportSummary), ImportSummary(ImportSummary) {
1588 assert(!(ExportSummary && ImportSummary));
1589 Triple TargetTriple(M.getTargetTriple());
1590 Arch = TargetTriple.getArch();
1591 OS = TargetTriple.getOS();
1592 ObjectFormat = TargetTriple.getObjectFormat();
1593 }
1594
runForTesting(Module & M)1595 bool LowerTypeTestsModule::runForTesting(Module &M) {
1596 ModuleSummaryIndex Summary(/*HaveGVs=*/false);
1597
1598 // Handle the command-line summary arguments. This code is for testing
1599 // purposes only, so we handle errors directly.
1600 if (!ClReadSummary.empty()) {
1601 ExitOnError ExitOnErr("-lowertypetests-read-summary: " + ClReadSummary +
1602 ": ");
1603 auto ReadSummaryFile =
1604 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
1605
1606 yaml::Input In(ReadSummaryFile->getBuffer());
1607 In >> Summary;
1608 ExitOnErr(errorCodeToError(In.error()));
1609 }
1610
1611 bool Changed =
1612 LowerTypeTestsModule(
1613 M, ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr,
1614 ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr)
1615 .lower();
1616
1617 if (!ClWriteSummary.empty()) {
1618 ExitOnError ExitOnErr("-lowertypetests-write-summary: " + ClWriteSummary +
1619 ": ");
1620 std::error_code EC;
1621 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::F_Text);
1622 ExitOnErr(errorCodeToError(EC));
1623
1624 yaml::Output Out(OS);
1625 Out << Summary;
1626 }
1627
1628 return Changed;
1629 }
1630
isDirectCall(Use & U)1631 static bool isDirectCall(Use& U) {
1632 auto *Usr = dyn_cast<CallInst>(U.getUser());
1633 if (Usr) {
1634 CallSite CS(Usr);
1635 if (CS.isCallee(&U))
1636 return true;
1637 }
1638 return false;
1639 }
1640
replaceCfiUses(Function * Old,Value * New,bool IsDefinition)1641 void LowerTypeTestsModule::replaceCfiUses(Function *Old, Value *New, bool IsDefinition) {
1642 SmallSetVector<Constant *, 4> Constants;
1643 auto UI = Old->use_begin(), E = Old->use_end();
1644 for (; UI != E;) {
1645 Use &U = *UI;
1646 ++UI;
1647
1648 // Skip block addresses
1649 if (isa<BlockAddress>(U.getUser()))
1650 continue;
1651
1652 // Skip direct calls to externally defined or non-dso_local functions
1653 if (isDirectCall(U) && (Old->isDSOLocal() || !IsDefinition))
1654 continue;
1655
1656 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
1657 // constant because they are uniqued.
1658 if (auto *C = dyn_cast<Constant>(U.getUser())) {
1659 if (!isa<GlobalValue>(C)) {
1660 // Save unique users to avoid processing operand replacement
1661 // more than once.
1662 Constants.insert(C);
1663 continue;
1664 }
1665 }
1666
1667 U.set(New);
1668 }
1669
1670 // Process operand replacement of saved constants.
1671 for (auto *C : Constants)
1672 C->handleOperandChange(Old, New);
1673 }
1674
replaceDirectCalls(Value * Old,Value * New)1675 void LowerTypeTestsModule::replaceDirectCalls(Value *Old, Value *New) {
1676 auto UI = Old->use_begin(), E = Old->use_end();
1677 for (; UI != E;) {
1678 Use &U = *UI;
1679 ++UI;
1680
1681 if (!isDirectCall(U))
1682 continue;
1683
1684 U.set(New);
1685 }
1686 }
1687
lower()1688 bool LowerTypeTestsModule::lower() {
1689 Function *TypeTestFunc =
1690 M.getFunction(Intrinsic::getName(Intrinsic::type_test));
1691 Function *ICallBranchFunnelFunc =
1692 M.getFunction(Intrinsic::getName(Intrinsic::icall_branch_funnel));
1693 if ((!TypeTestFunc || TypeTestFunc->use_empty()) &&
1694 (!ICallBranchFunnelFunc || ICallBranchFunnelFunc->use_empty()) &&
1695 !ExportSummary && !ImportSummary)
1696 return false;
1697
1698 if (ImportSummary) {
1699 if (TypeTestFunc) {
1700 for (auto UI = TypeTestFunc->use_begin(), UE = TypeTestFunc->use_end();
1701 UI != UE;) {
1702 auto *CI = cast<CallInst>((*UI++).getUser());
1703 importTypeTest(CI);
1704 }
1705 }
1706
1707 if (ICallBranchFunnelFunc && !ICallBranchFunnelFunc->use_empty())
1708 report_fatal_error(
1709 "unexpected call to llvm.icall.branch.funnel during import phase");
1710
1711 SmallVector<Function *, 8> Defs;
1712 SmallVector<Function *, 8> Decls;
1713 for (auto &F : M) {
1714 // CFI functions are either external, or promoted. A local function may
1715 // have the same name, but it's not the one we are looking for.
1716 if (F.hasLocalLinkage())
1717 continue;
1718 if (ImportSummary->cfiFunctionDefs().count(F.getName()))
1719 Defs.push_back(&F);
1720 else if (ImportSummary->cfiFunctionDecls().count(F.getName()))
1721 Decls.push_back(&F);
1722 }
1723
1724 for (auto F : Defs)
1725 importFunction(F, /*isDefinition*/ true);
1726 for (auto F : Decls)
1727 importFunction(F, /*isDefinition*/ false);
1728
1729 return true;
1730 }
1731
1732 // Equivalence class set containing type identifiers and the globals that
1733 // reference them. This is used to partition the set of type identifiers in
1734 // the module into disjoint sets.
1735 using GlobalClassesTy = EquivalenceClasses<
1736 PointerUnion3<GlobalTypeMember *, Metadata *, ICallBranchFunnel *>>;
1737 GlobalClassesTy GlobalClasses;
1738
1739 // Verify the type metadata and build a few data structures to let us
1740 // efficiently enumerate the type identifiers associated with a global:
1741 // a list of GlobalTypeMembers (a GlobalObject stored alongside a vector
1742 // of associated type metadata) and a mapping from type identifiers to their
1743 // list of GlobalTypeMembers and last observed index in the list of globals.
1744 // The indices will be used later to deterministically order the list of type
1745 // identifiers.
1746 BumpPtrAllocator Alloc;
1747 struct TIInfo {
1748 unsigned UniqueId;
1749 std::vector<GlobalTypeMember *> RefGlobals;
1750 };
1751 DenseMap<Metadata *, TIInfo> TypeIdInfo;
1752 unsigned CurUniqueId = 0;
1753 SmallVector<MDNode *, 2> Types;
1754
1755 // Cross-DSO CFI emits jumptable entries for exported functions as well as
1756 // address taken functions in case they are address taken in other modules.
1757 const bool CrossDsoCfi = M.getModuleFlag("Cross-DSO CFI") != nullptr;
1758
1759 struct ExportedFunctionInfo {
1760 CfiFunctionLinkage Linkage;
1761 MDNode *FuncMD; // {name, linkage, type[, type...]}
1762 };
1763 DenseMap<StringRef, ExportedFunctionInfo> ExportedFunctions;
1764 if (ExportSummary) {
1765 // A set of all functions that are address taken by a live global object.
1766 DenseSet<GlobalValue::GUID> AddressTaken;
1767 for (auto &I : *ExportSummary)
1768 for (auto &GVS : I.second.SummaryList)
1769 if (GVS->isLive())
1770 for (auto &Ref : GVS->refs())
1771 AddressTaken.insert(Ref.getGUID());
1772
1773 NamedMDNode *CfiFunctionsMD = M.getNamedMetadata("cfi.functions");
1774 if (CfiFunctionsMD) {
1775 for (auto FuncMD : CfiFunctionsMD->operands()) {
1776 assert(FuncMD->getNumOperands() >= 2);
1777 StringRef FunctionName =
1778 cast<MDString>(FuncMD->getOperand(0))->getString();
1779 CfiFunctionLinkage Linkage = static_cast<CfiFunctionLinkage>(
1780 cast<ConstantAsMetadata>(FuncMD->getOperand(1))
1781 ->getValue()
1782 ->getUniqueInteger()
1783 .getZExtValue());
1784 const GlobalValue::GUID GUID = GlobalValue::getGUID(
1785 GlobalValue::dropLLVMManglingEscape(FunctionName));
1786 // Do not emit jumptable entries for functions that are not-live and
1787 // have no live references (and are not exported with cross-DSO CFI.)
1788 if (!ExportSummary->isGUIDLive(GUID))
1789 continue;
1790 if (!AddressTaken.count(GUID)) {
1791 if (!CrossDsoCfi || Linkage != CFL_Definition)
1792 continue;
1793
1794 bool Exported = false;
1795 if (auto VI = ExportSummary->getValueInfo(GUID))
1796 for (auto &GVS : VI.getSummaryList())
1797 if (GVS->isLive() && !GlobalValue::isLocalLinkage(GVS->linkage()))
1798 Exported = true;
1799
1800 if (!Exported)
1801 continue;
1802 }
1803 auto P = ExportedFunctions.insert({FunctionName, {Linkage, FuncMD}});
1804 if (!P.second && P.first->second.Linkage != CFL_Definition)
1805 P.first->second = {Linkage, FuncMD};
1806 }
1807
1808 for (const auto &P : ExportedFunctions) {
1809 StringRef FunctionName = P.first;
1810 CfiFunctionLinkage Linkage = P.second.Linkage;
1811 MDNode *FuncMD = P.second.FuncMD;
1812 Function *F = M.getFunction(FunctionName);
1813 if (!F)
1814 F = Function::Create(
1815 FunctionType::get(Type::getVoidTy(M.getContext()), false),
1816 GlobalVariable::ExternalLinkage, FunctionName, &M);
1817
1818 // If the function is available_externally, remove its definition so
1819 // that it is handled the same way as a declaration. Later we will try
1820 // to create an alias using this function's linkage, which will fail if
1821 // the linkage is available_externally. This will also result in us
1822 // following the code path below to replace the type metadata.
1823 if (F->hasAvailableExternallyLinkage()) {
1824 F->setLinkage(GlobalValue::ExternalLinkage);
1825 F->deleteBody();
1826 F->setComdat(nullptr);
1827 F->clearMetadata();
1828 }
1829
1830 // Update the linkage for extern_weak declarations when a definition
1831 // exists.
1832 if (Linkage == CFL_Definition && F->hasExternalWeakLinkage())
1833 F->setLinkage(GlobalValue::ExternalLinkage);
1834
1835 // If the function in the full LTO module is a declaration, replace its
1836 // type metadata with the type metadata we found in cfi.functions. That
1837 // metadata is presumed to be more accurate than the metadata attached
1838 // to the declaration.
1839 if (F->isDeclaration()) {
1840 if (Linkage == CFL_WeakDeclaration)
1841 F->setLinkage(GlobalValue::ExternalWeakLinkage);
1842
1843 F->eraseMetadata(LLVMContext::MD_type);
1844 for (unsigned I = 2; I < FuncMD->getNumOperands(); ++I)
1845 F->addMetadata(LLVMContext::MD_type,
1846 *cast<MDNode>(FuncMD->getOperand(I).get()));
1847 }
1848 }
1849 }
1850 }
1851
1852 DenseMap<GlobalObject *, GlobalTypeMember *> GlobalTypeMembers;
1853 for (GlobalObject &GO : M.global_objects()) {
1854 if (isa<GlobalVariable>(GO) && GO.isDeclarationForLinker())
1855 continue;
1856
1857 Types.clear();
1858 GO.getMetadata(LLVMContext::MD_type, Types);
1859
1860 bool IsDefinition = !GO.isDeclarationForLinker();
1861 bool IsExported = false;
1862 if (Function *F = dyn_cast<Function>(&GO)) {
1863 if (ExportedFunctions.count(F->getName())) {
1864 IsDefinition |= ExportedFunctions[F->getName()].Linkage == CFL_Definition;
1865 IsExported = true;
1866 // TODO: The logic here checks only that the function is address taken,
1867 // not that the address takers are live. This can be updated to check
1868 // their liveness and emit fewer jumptable entries once monolithic LTO
1869 // builds also emit summaries.
1870 } else if (!F->hasAddressTaken()) {
1871 if (!CrossDsoCfi || !IsDefinition || F->hasLocalLinkage())
1872 continue;
1873 }
1874 }
1875
1876 auto *GTM =
1877 GlobalTypeMember::create(Alloc, &GO, IsDefinition, IsExported, Types);
1878 GlobalTypeMembers[&GO] = GTM;
1879 for (MDNode *Type : Types) {
1880 verifyTypeMDNode(&GO, Type);
1881 auto &Info = TypeIdInfo[Type->getOperand(1)];
1882 Info.UniqueId = ++CurUniqueId;
1883 Info.RefGlobals.push_back(GTM);
1884 }
1885 }
1886
1887 auto AddTypeIdUse = [&](Metadata *TypeId) -> TypeIdUserInfo & {
1888 // Add the call site to the list of call sites for this type identifier. We
1889 // also use TypeIdUsers to keep track of whether we have seen this type
1890 // identifier before. If we have, we don't need to re-add the referenced
1891 // globals to the equivalence class.
1892 auto Ins = TypeIdUsers.insert({TypeId, {}});
1893 if (Ins.second) {
1894 // Add the type identifier to the equivalence class.
1895 GlobalClassesTy::iterator GCI = GlobalClasses.insert(TypeId);
1896 GlobalClassesTy::member_iterator CurSet = GlobalClasses.findLeader(GCI);
1897
1898 // Add the referenced globals to the type identifier's equivalence class.
1899 for (GlobalTypeMember *GTM : TypeIdInfo[TypeId].RefGlobals)
1900 CurSet = GlobalClasses.unionSets(
1901 CurSet, GlobalClasses.findLeader(GlobalClasses.insert(GTM)));
1902 }
1903
1904 return Ins.first->second;
1905 };
1906
1907 if (TypeTestFunc) {
1908 for (const Use &U : TypeTestFunc->uses()) {
1909 auto CI = cast<CallInst>(U.getUser());
1910
1911 auto TypeIdMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
1912 if (!TypeIdMDVal)
1913 report_fatal_error("Second argument of llvm.type.test must be metadata");
1914 auto TypeId = TypeIdMDVal->getMetadata();
1915 AddTypeIdUse(TypeId).CallSites.push_back(CI);
1916 }
1917 }
1918
1919 if (ICallBranchFunnelFunc) {
1920 for (const Use &U : ICallBranchFunnelFunc->uses()) {
1921 if (Arch != Triple::x86_64)
1922 report_fatal_error(
1923 "llvm.icall.branch.funnel not supported on this target");
1924
1925 auto CI = cast<CallInst>(U.getUser());
1926
1927 std::vector<GlobalTypeMember *> Targets;
1928 if (CI->getNumArgOperands() % 2 != 1)
1929 report_fatal_error("number of arguments should be odd");
1930
1931 GlobalClassesTy::member_iterator CurSet;
1932 for (unsigned I = 1; I != CI->getNumArgOperands(); I += 2) {
1933 int64_t Offset;
1934 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
1935 CI->getOperand(I), Offset, M.getDataLayout()));
1936 if (!Base)
1937 report_fatal_error(
1938 "Expected branch funnel operand to be global value");
1939
1940 GlobalTypeMember *GTM = GlobalTypeMembers[Base];
1941 Targets.push_back(GTM);
1942 GlobalClassesTy::member_iterator NewSet =
1943 GlobalClasses.findLeader(GlobalClasses.insert(GTM));
1944 if (I == 1)
1945 CurSet = NewSet;
1946 else
1947 CurSet = GlobalClasses.unionSets(CurSet, NewSet);
1948 }
1949
1950 GlobalClasses.unionSets(
1951 CurSet, GlobalClasses.findLeader(
1952 GlobalClasses.insert(ICallBranchFunnel::create(
1953 Alloc, CI, Targets, ++CurUniqueId))));
1954 }
1955 }
1956
1957 if (ExportSummary) {
1958 DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
1959 for (auto &P : TypeIdInfo) {
1960 if (auto *TypeId = dyn_cast<MDString>(P.first))
1961 MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
1962 TypeId);
1963 }
1964
1965 for (auto &P : *ExportSummary) {
1966 for (auto &S : P.second.SummaryList) {
1967 if (!ExportSummary->isGlobalValueLive(S.get()))
1968 continue;
1969 if (auto *FS = dyn_cast<FunctionSummary>(S->getBaseObject()))
1970 for (GlobalValue::GUID G : FS->type_tests())
1971 for (Metadata *MD : MetadataByGUID[G])
1972 AddTypeIdUse(MD).IsExported = true;
1973 }
1974 }
1975 }
1976
1977 if (GlobalClasses.empty())
1978 return false;
1979
1980 // Build a list of disjoint sets ordered by their maximum global index for
1981 // determinism.
1982 std::vector<std::pair<GlobalClassesTy::iterator, unsigned>> Sets;
1983 for (GlobalClassesTy::iterator I = GlobalClasses.begin(),
1984 E = GlobalClasses.end();
1985 I != E; ++I) {
1986 if (!I->isLeader())
1987 continue;
1988 ++NumTypeIdDisjointSets;
1989
1990 unsigned MaxUniqueId = 0;
1991 for (GlobalClassesTy::member_iterator MI = GlobalClasses.member_begin(I);
1992 MI != GlobalClasses.member_end(); ++MI) {
1993 if (auto *MD = MI->dyn_cast<Metadata *>())
1994 MaxUniqueId = std::max(MaxUniqueId, TypeIdInfo[MD].UniqueId);
1995 else if (auto *BF = MI->dyn_cast<ICallBranchFunnel *>())
1996 MaxUniqueId = std::max(MaxUniqueId, BF->UniqueId);
1997 }
1998 Sets.emplace_back(I, MaxUniqueId);
1999 }
2000 llvm::sort(Sets.begin(), Sets.end(),
2001 [](const std::pair<GlobalClassesTy::iterator, unsigned> &S1,
2002 const std::pair<GlobalClassesTy::iterator, unsigned> &S2) {
2003 return S1.second < S2.second;
2004 });
2005
2006 // For each disjoint set we found...
2007 for (const auto &S : Sets) {
2008 // Build the list of type identifiers in this disjoint set.
2009 std::vector<Metadata *> TypeIds;
2010 std::vector<GlobalTypeMember *> Globals;
2011 std::vector<ICallBranchFunnel *> ICallBranchFunnels;
2012 for (GlobalClassesTy::member_iterator MI =
2013 GlobalClasses.member_begin(S.first);
2014 MI != GlobalClasses.member_end(); ++MI) {
2015 if (MI->is<Metadata *>())
2016 TypeIds.push_back(MI->get<Metadata *>());
2017 else if (MI->is<GlobalTypeMember *>())
2018 Globals.push_back(MI->get<GlobalTypeMember *>());
2019 else
2020 ICallBranchFunnels.push_back(MI->get<ICallBranchFunnel *>());
2021 }
2022
2023 // Order type identifiers by unique ID for determinism. This ordering is
2024 // stable as there is a one-to-one mapping between metadata and unique IDs.
2025 llvm::sort(TypeIds.begin(), TypeIds.end(), [&](Metadata *M1, Metadata *M2) {
2026 return TypeIdInfo[M1].UniqueId < TypeIdInfo[M2].UniqueId;
2027 });
2028
2029 // Same for the branch funnels.
2030 llvm::sort(ICallBranchFunnels.begin(), ICallBranchFunnels.end(),
2031 [&](ICallBranchFunnel *F1, ICallBranchFunnel *F2) {
2032 return F1->UniqueId < F2->UniqueId;
2033 });
2034
2035 // Build bitsets for this disjoint set.
2036 buildBitSetsFromDisjointSet(TypeIds, Globals, ICallBranchFunnels);
2037 }
2038
2039 allocateByteArrays();
2040
2041 // Parse alias data to replace stand-in function declarations for aliases
2042 // with an alias to the intended target.
2043 if (ExportSummary) {
2044 if (NamedMDNode *AliasesMD = M.getNamedMetadata("aliases")) {
2045 for (auto AliasMD : AliasesMD->operands()) {
2046 assert(AliasMD->getNumOperands() >= 4);
2047 StringRef AliasName =
2048 cast<MDString>(AliasMD->getOperand(0))->getString();
2049 StringRef Aliasee = cast<MDString>(AliasMD->getOperand(1))->getString();
2050
2051 if (!ExportedFunctions.count(Aliasee) ||
2052 ExportedFunctions[Aliasee].Linkage != CFL_Definition ||
2053 !M.getNamedAlias(Aliasee))
2054 continue;
2055
2056 GlobalValue::VisibilityTypes Visibility =
2057 static_cast<GlobalValue::VisibilityTypes>(
2058 cast<ConstantAsMetadata>(AliasMD->getOperand(2))
2059 ->getValue()
2060 ->getUniqueInteger()
2061 .getZExtValue());
2062 bool Weak =
2063 static_cast<bool>(cast<ConstantAsMetadata>(AliasMD->getOperand(3))
2064 ->getValue()
2065 ->getUniqueInteger()
2066 .getZExtValue());
2067
2068 auto *Alias = GlobalAlias::create("", M.getNamedAlias(Aliasee));
2069 Alias->setVisibility(Visibility);
2070 if (Weak)
2071 Alias->setLinkage(GlobalValue::WeakAnyLinkage);
2072
2073 if (auto *F = M.getFunction(AliasName)) {
2074 Alias->takeName(F);
2075 F->replaceAllUsesWith(Alias);
2076 F->eraseFromParent();
2077 } else {
2078 Alias->setName(AliasName);
2079 }
2080 }
2081 }
2082 }
2083
2084 // Emit .symver directives for exported functions, if they exist.
2085 if (ExportSummary) {
2086 if (NamedMDNode *SymversMD = M.getNamedMetadata("symvers")) {
2087 for (auto Symver : SymversMD->operands()) {
2088 assert(Symver->getNumOperands() >= 2);
2089 StringRef SymbolName =
2090 cast<MDString>(Symver->getOperand(0))->getString();
2091 StringRef Alias = cast<MDString>(Symver->getOperand(1))->getString();
2092
2093 if (!ExportedFunctions.count(SymbolName))
2094 continue;
2095
2096 M.appendModuleInlineAsm(
2097 (llvm::Twine(".symver ") + SymbolName + ", " + Alias).str());
2098 }
2099 }
2100 }
2101
2102 return true;
2103 }
2104
run(Module & M,ModuleAnalysisManager & AM)2105 PreservedAnalyses LowerTypeTestsPass::run(Module &M,
2106 ModuleAnalysisManager &AM) {
2107 bool Changed = LowerTypeTestsModule(M, ExportSummary, ImportSummary).lower();
2108 if (!Changed)
2109 return PreservedAnalyses::all();
2110 return PreservedAnalyses::none();
2111 }
2112