1 /*
2 * Copyright (C) 2018 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <algorithm>
18 #include <utility>
19
20 #include "src/trace_processor/proto_trace_parser.h"
21 #include "src/trace_processor/trace_sorter.h"
22
23 namespace perfetto {
24 namespace trace_processor {
25
TraceSorter(TraceProcessorContext * context,int64_t window_size_ns)26 TraceSorter::TraceSorter(TraceProcessorContext* context, int64_t window_size_ns)
27 : context_(context), window_size_ns_(window_size_ns) {
28 const char* env = getenv("TRACE_PROCESSOR_SORT_ONLY");
29 bypass_next_stage_for_testing_ = env && !strcmp(env, "1");
30 if (bypass_next_stage_for_testing_)
31 PERFETTO_ELOG("TEST MODE: bypassing protobuf parsing stage");
32 }
33
Sort()34 void TraceSorter::Queue::Sort() {
35 PERFETTO_DCHECK(needs_sorting());
36 PERFETTO_DCHECK(sort_start_idx_ < events_.size());
37
38 // If sort_min_ts_ has been set, it will no long be max_int, and so will be
39 // smaller than max_ts_.
40 PERFETTO_DCHECK(sort_min_ts_ < max_ts_);
41
42 // We know that all events between [0, sort_start_idx_] are sorted. Witin
43 // this range, perform a bound search and find the iterator for the min
44 // timestamp that broke the monotonicity. Re-sort from there to the end.
45 auto sort_end = events_.begin() + static_cast<ssize_t>(sort_start_idx_);
46 PERFETTO_DCHECK(std::is_sorted(events_.begin(), sort_end));
47 auto sort_begin = std::lower_bound(events_.begin(), sort_end, sort_min_ts_,
48 &TimestampedTracePiece::Compare);
49 std::sort(sort_begin, events_.end());
50 sort_start_idx_ = 0;
51 sort_min_ts_ = 0;
52
53 // At this point |events_| must be fully sorted.
54 PERFETTO_DCHECK(std::is_sorted(events_.begin(), events_.end()));
55 }
56
57 // Removes all the events in |queues_| that are earlier than the given window
58 // size and moves them to the next parser stages, respecting global timestamp
59 // order. This function is a "extract min from N sorted queues", with some
60 // little cleverness: we know that events tend to be bursty, so events are
61 // not going to be randomly distributed on the N |queues_|.
62 // Upon each iteration this function finds the first two queues (if any) that
63 // have the oldest events, and extracts events from the 1st until hitting the
64 // min_ts of the 2nd. Imagine the queues are as follows:
65 //
66 // q0 {min_ts: 10 max_ts: 30}
67 // q1 {min_ts:5 max_ts: 35}
68 // q2 {min_ts: 12 max_ts: 40}
69 //
70 // We know that we can extract all events from q1 until we hit ts=10 without
71 // looking at any other queue. After hitting ts=10, we need to re-look to all of
72 // them to figure out the next min-event.
73 // There are more suitable data structures to do this (e.g. keeping a min-heap
74 // to avoid re-scanning all the queues all the times) but doesn't seem worth it.
75 // With Android traces (that have 8 CPUs) this function accounts for ~1-3% cpu
76 // time in a profiler.
SortAndExtractEventsBeyondWindow(int64_t window_size_ns)77 void TraceSorter::SortAndExtractEventsBeyondWindow(int64_t window_size_ns) {
78 DCHECK_ftrace_batch_cpu(kNoBatch);
79 constexpr int64_t kTsMax = std::numeric_limits<int64_t>::max();
80 const bool was_empty = global_min_ts_ == kTsMax && global_max_ts_ == 0;
81 int64_t extract_end_ts = global_max_ts_ - window_size_ns;
82 auto* next_stage = context_->parser.get();
83 size_t iterations = 0;
84 for (;; iterations++) {
85 size_t min_queue_idx = 0; // The index of the queue with the min(ts).
86
87 // The top-2 min(ts) among all queues.
88 // queues_[min_queue_idx].events.timestamp == min_queue_ts[0].
89 int64_t min_queue_ts[2]{kTsMax, kTsMax};
90
91 // This loop identifies the queue which starts with the earliest event and
92 // also remembers the earliest event of the 2nd queue (in min_queue_ts[1]).
93 bool has_queues_with_expired_events = false;
94 for (size_t i = 0; i < queues_.size(); i++) {
95 auto& queue = queues_[i];
96 if (queue.events_.empty())
97 continue;
98 PERFETTO_DCHECK(queue.min_ts_ >= global_min_ts_);
99 PERFETTO_DCHECK(queue.max_ts_ <= global_max_ts_);
100 if (queue.min_ts_ < min_queue_ts[0]) {
101 min_queue_ts[1] = min_queue_ts[0];
102 min_queue_ts[0] = queue.min_ts_;
103 min_queue_idx = i;
104 has_queues_with_expired_events = true;
105 } else if (queue.min_ts_ < min_queue_ts[1]) {
106 min_queue_ts[1] = queue.min_ts_;
107 }
108 }
109 if (!has_queues_with_expired_events) {
110 // All the queues have events that start after the window (i.e. they are
111 // too recent and not eligible to be extracted given the current window).
112 break;
113 }
114
115 Queue& queue = queues_[min_queue_idx];
116 auto& events = queue.events_;
117 if (queue.needs_sorting())
118 queue.Sort();
119 PERFETTO_DCHECK(queue.min_ts_ == events.front().timestamp);
120 PERFETTO_DCHECK(queue.min_ts_ == global_min_ts_);
121
122 // Now that we identified the min-queue, extract all events from it until
123 // we hit either: (1) the min-ts of the 2nd queue or (2) the window limit,
124 // whichever comes first.
125 int64_t extract_until_ts = std::min(extract_end_ts, min_queue_ts[1]);
126 size_t num_extracted = 0;
127 for (auto& event : events) {
128 int64_t timestamp = event.timestamp;
129 if (timestamp > extract_until_ts)
130 break;
131
132 ++num_extracted;
133 if (bypass_next_stage_for_testing_)
134 continue;
135
136 if (min_queue_idx == 0) {
137 // queues_[0] is for non-ftrace packets.
138 next_stage->ParseTracePacket(timestamp, std::move(event));
139 } else {
140 // Ftrace queues start at offset 1. So queues_[1] = cpu[0] and so on.
141 uint32_t cpu = static_cast<uint32_t>(min_queue_idx - 1);
142 next_stage->ParseFtracePacket(cpu, timestamp, std::move(event));
143 }
144 } // for (event: events)
145
146 if (!num_extracted) {
147 // No events can be extracted from any of the queues. This means that
148 // either we hit the window or all queues are empty.
149 break;
150 }
151
152 // Now remove the entries from the event buffer and update the queue-local
153 // and global time bounds.
154 events.erase_front(num_extracted);
155
156 // Update the global_{min,max}_ts to reflect the bounds after extraction.
157 if (events.empty()) {
158 queue.min_ts_ = kTsMax;
159 queue.max_ts_ = 0;
160 global_min_ts_ = min_queue_ts[1];
161
162 // If we extraced the max entry from a queue (i.e. we emptied the queue)
163 // we need to recompute the global max, because it might have been the one
164 // just extracted.
165 global_max_ts_ = 0;
166 for (auto& q : queues_)
167 global_max_ts_ = std::max(global_max_ts_, q.max_ts_);
168 } else {
169 queue.min_ts_ = queue.events_.front().timestamp;
170 global_min_ts_ = std::min(queue.min_ts_, min_queue_ts[1]);
171 }
172 } // for(;;)
173
174 // We decide to extract events only when we know (using the global_{min,max}
175 // bounds) that there are eligible events. We should never end up in a
176 // situation where we call this function but then realize that there was
177 // nothing to extract.
178 PERFETTO_DCHECK(iterations > 0 || was_empty);
179
180 #if PERFETTO_DCHECK_IS_ON()
181 // Check that the global min/max are consistent.
182 int64_t dbg_min_ts = kTsMax;
183 int64_t dbg_max_ts = 0;
184 for (auto& q : queues_) {
185 dbg_min_ts = std::min(dbg_min_ts, q.min_ts_);
186 dbg_max_ts = std::max(dbg_max_ts, q.max_ts_);
187 }
188 PERFETTO_DCHECK(global_min_ts_ == dbg_min_ts);
189 PERFETTO_DCHECK(global_max_ts_ == dbg_max_ts);
190 #endif
191 }
192
193 } // namespace trace_processor
194 } // namespace perfetto
195