1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This library implements `print` family of functions in classes like
11 // Module, Function, Value, etc. In-memory representation of those classes is
12 // converted to IR strings.
13 //
14 // Note that these routines must be extremely tolerant of various errors in the
15 // LLVM code, because it can be used for debugging transformations.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/None.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/iterator_range.h"
32 #include "llvm/BinaryFormat/Dwarf.h"
33 #include "llvm/Config/llvm-config.h"
34 #include "llvm/IR/Argument.h"
35 #include "llvm/IR/AssemblyAnnotationWriter.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/CallSite.h"
40 #include "llvm/IR/CallingConv.h"
41 #include "llvm/IR/Comdat.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DebugInfoMetadata.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GlobalAlias.h"
48 #include "llvm/IR/GlobalIFunc.h"
49 #include "llvm/IR/GlobalIndirectSymbol.h"
50 #include "llvm/IR/GlobalObject.h"
51 #include "llvm/IR/GlobalValue.h"
52 #include "llvm/IR/GlobalVariable.h"
53 #include "llvm/IR/IRPrintingPasses.h"
54 #include "llvm/IR/InlineAsm.h"
55 #include "llvm/IR/InstrTypes.h"
56 #include "llvm/IR/Instruction.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/IR/Metadata.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ModuleSlotTracker.h"
62 #include "llvm/IR/ModuleSummaryIndex.h"
63 #include "llvm/IR/Operator.h"
64 #include "llvm/IR/Statepoint.h"
65 #include "llvm/IR/Type.h"
66 #include "llvm/IR/TypeFinder.h"
67 #include "llvm/IR/Use.h"
68 #include "llvm/IR/UseListOrder.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/Support/AtomicOrdering.h"
72 #include "llvm/Support/Casting.h"
73 #include "llvm/Support/Compiler.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/Format.h"
77 #include "llvm/Support/FormattedStream.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <cctype>
82 #include <cstddef>
83 #include <cstdint>
84 #include <iterator>
85 #include <memory>
86 #include <string>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
90 
91 using namespace llvm;
92 
93 // Make virtual table appear in this compilation unit.
94 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
95 
96 //===----------------------------------------------------------------------===//
97 // Helper Functions
98 //===----------------------------------------------------------------------===//
99 
100 namespace {
101 
102 struct OrderMap {
103   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
104 
size__anon5d5c8a720111::OrderMap105   unsigned size() const { return IDs.size(); }
operator []__anon5d5c8a720111::OrderMap106   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
107 
lookup__anon5d5c8a720111::OrderMap108   std::pair<unsigned, bool> lookup(const Value *V) const {
109     return IDs.lookup(V);
110   }
111 
index__anon5d5c8a720111::OrderMap112   void index(const Value *V) {
113     // Explicitly sequence get-size and insert-value operations to avoid UB.
114     unsigned ID = IDs.size() + 1;
115     IDs[V].first = ID;
116   }
117 };
118 
119 } // end anonymous namespace
120 
orderValue(const Value * V,OrderMap & OM)121 static void orderValue(const Value *V, OrderMap &OM) {
122   if (OM.lookup(V).first)
123     return;
124 
125   if (const Constant *C = dyn_cast<Constant>(V))
126     if (C->getNumOperands() && !isa<GlobalValue>(C))
127       for (const Value *Op : C->operands())
128         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
129           orderValue(Op, OM);
130 
131   // Note: we cannot cache this lookup above, since inserting into the map
132   // changes the map's size, and thus affects the other IDs.
133   OM.index(V);
134 }
135 
orderModule(const Module * M)136 static OrderMap orderModule(const Module *M) {
137   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
138   // and ValueEnumerator::incorporateFunction().
139   OrderMap OM;
140 
141   for (const GlobalVariable &G : M->globals()) {
142     if (G.hasInitializer())
143       if (!isa<GlobalValue>(G.getInitializer()))
144         orderValue(G.getInitializer(), OM);
145     orderValue(&G, OM);
146   }
147   for (const GlobalAlias &A : M->aliases()) {
148     if (!isa<GlobalValue>(A.getAliasee()))
149       orderValue(A.getAliasee(), OM);
150     orderValue(&A, OM);
151   }
152   for (const GlobalIFunc &I : M->ifuncs()) {
153     if (!isa<GlobalValue>(I.getResolver()))
154       orderValue(I.getResolver(), OM);
155     orderValue(&I, OM);
156   }
157   for (const Function &F : *M) {
158     for (const Use &U : F.operands())
159       if (!isa<GlobalValue>(U.get()))
160         orderValue(U.get(), OM);
161 
162     orderValue(&F, OM);
163 
164     if (F.isDeclaration())
165       continue;
166 
167     for (const Argument &A : F.args())
168       orderValue(&A, OM);
169     for (const BasicBlock &BB : F) {
170       orderValue(&BB, OM);
171       for (const Instruction &I : BB) {
172         for (const Value *Op : I.operands())
173           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
174               isa<InlineAsm>(*Op))
175             orderValue(Op, OM);
176         orderValue(&I, OM);
177       }
178     }
179   }
180   return OM;
181 }
182 
predictValueUseListOrderImpl(const Value * V,const Function * F,unsigned ID,const OrderMap & OM,UseListOrderStack & Stack)183 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
184                                          unsigned ID, const OrderMap &OM,
185                                          UseListOrderStack &Stack) {
186   // Predict use-list order for this one.
187   using Entry = std::pair<const Use *, unsigned>;
188   SmallVector<Entry, 64> List;
189   for (const Use &U : V->uses())
190     // Check if this user will be serialized.
191     if (OM.lookup(U.getUser()).first)
192       List.push_back(std::make_pair(&U, List.size()));
193 
194   if (List.size() < 2)
195     // We may have lost some users.
196     return;
197 
198   bool GetsReversed =
199       !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
200   if (auto *BA = dyn_cast<BlockAddress>(V))
201     ID = OM.lookup(BA->getBasicBlock()).first;
202   llvm::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
203     const Use *LU = L.first;
204     const Use *RU = R.first;
205     if (LU == RU)
206       return false;
207 
208     auto LID = OM.lookup(LU->getUser()).first;
209     auto RID = OM.lookup(RU->getUser()).first;
210 
211     // If ID is 4, then expect: 7 6 5 1 2 3.
212     if (LID < RID) {
213       if (GetsReversed)
214         if (RID <= ID)
215           return true;
216       return false;
217     }
218     if (RID < LID) {
219       if (GetsReversed)
220         if (LID <= ID)
221           return false;
222       return true;
223     }
224 
225     // LID and RID are equal, so we have different operands of the same user.
226     // Assume operands are added in order for all instructions.
227     if (GetsReversed)
228       if (LID <= ID)
229         return LU->getOperandNo() < RU->getOperandNo();
230     return LU->getOperandNo() > RU->getOperandNo();
231   });
232 
233   if (std::is_sorted(
234           List.begin(), List.end(),
235           [](const Entry &L, const Entry &R) { return L.second < R.second; }))
236     // Order is already correct.
237     return;
238 
239   // Store the shuffle.
240   Stack.emplace_back(V, F, List.size());
241   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
242   for (size_t I = 0, E = List.size(); I != E; ++I)
243     Stack.back().Shuffle[I] = List[I].second;
244 }
245 
predictValueUseListOrder(const Value * V,const Function * F,OrderMap & OM,UseListOrderStack & Stack)246 static void predictValueUseListOrder(const Value *V, const Function *F,
247                                      OrderMap &OM, UseListOrderStack &Stack) {
248   auto &IDPair = OM[V];
249   assert(IDPair.first && "Unmapped value");
250   if (IDPair.second)
251     // Already predicted.
252     return;
253 
254   // Do the actual prediction.
255   IDPair.second = true;
256   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
257     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
258 
259   // Recursive descent into constants.
260   if (const Constant *C = dyn_cast<Constant>(V))
261     if (C->getNumOperands()) // Visit GlobalValues.
262       for (const Value *Op : C->operands())
263         if (isa<Constant>(Op)) // Visit GlobalValues.
264           predictValueUseListOrder(Op, F, OM, Stack);
265 }
266 
predictUseListOrder(const Module * M)267 static UseListOrderStack predictUseListOrder(const Module *M) {
268   OrderMap OM = orderModule(M);
269 
270   // Use-list orders need to be serialized after all the users have been added
271   // to a value, or else the shuffles will be incomplete.  Store them per
272   // function in a stack.
273   //
274   // Aside from function order, the order of values doesn't matter much here.
275   UseListOrderStack Stack;
276 
277   // We want to visit the functions backward now so we can list function-local
278   // constants in the last Function they're used in.  Module-level constants
279   // have already been visited above.
280   for (const Function &F : make_range(M->rbegin(), M->rend())) {
281     if (F.isDeclaration())
282       continue;
283     for (const BasicBlock &BB : F)
284       predictValueUseListOrder(&BB, &F, OM, Stack);
285     for (const Argument &A : F.args())
286       predictValueUseListOrder(&A, &F, OM, Stack);
287     for (const BasicBlock &BB : F)
288       for (const Instruction &I : BB)
289         for (const Value *Op : I.operands())
290           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
291             predictValueUseListOrder(Op, &F, OM, Stack);
292     for (const BasicBlock &BB : F)
293       for (const Instruction &I : BB)
294         predictValueUseListOrder(&I, &F, OM, Stack);
295   }
296 
297   // Visit globals last.
298   for (const GlobalVariable &G : M->globals())
299     predictValueUseListOrder(&G, nullptr, OM, Stack);
300   for (const Function &F : *M)
301     predictValueUseListOrder(&F, nullptr, OM, Stack);
302   for (const GlobalAlias &A : M->aliases())
303     predictValueUseListOrder(&A, nullptr, OM, Stack);
304   for (const GlobalIFunc &I : M->ifuncs())
305     predictValueUseListOrder(&I, nullptr, OM, Stack);
306   for (const GlobalVariable &G : M->globals())
307     if (G.hasInitializer())
308       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
309   for (const GlobalAlias &A : M->aliases())
310     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
311   for (const GlobalIFunc &I : M->ifuncs())
312     predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
313   for (const Function &F : *M)
314     for (const Use &U : F.operands())
315       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
316 
317   return Stack;
318 }
319 
getModuleFromVal(const Value * V)320 static const Module *getModuleFromVal(const Value *V) {
321   if (const Argument *MA = dyn_cast<Argument>(V))
322     return MA->getParent() ? MA->getParent()->getParent() : nullptr;
323 
324   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
325     return BB->getParent() ? BB->getParent()->getParent() : nullptr;
326 
327   if (const Instruction *I = dyn_cast<Instruction>(V)) {
328     const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
329     return M ? M->getParent() : nullptr;
330   }
331 
332   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
333     return GV->getParent();
334 
335   if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
336     for (const User *U : MAV->users())
337       if (isa<Instruction>(U))
338         if (const Module *M = getModuleFromVal(U))
339           return M;
340     return nullptr;
341   }
342 
343   return nullptr;
344 }
345 
PrintCallingConv(unsigned cc,raw_ostream & Out)346 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
347   switch (cc) {
348   default:                         Out << "cc" << cc; break;
349   case CallingConv::Fast:          Out << "fastcc"; break;
350   case CallingConv::Cold:          Out << "coldcc"; break;
351   case CallingConv::WebKit_JS:     Out << "webkit_jscc"; break;
352   case CallingConv::AnyReg:        Out << "anyregcc"; break;
353   case CallingConv::PreserveMost:  Out << "preserve_mostcc"; break;
354   case CallingConv::PreserveAll:   Out << "preserve_allcc"; break;
355   case CallingConv::CXX_FAST_TLS:  Out << "cxx_fast_tlscc"; break;
356   case CallingConv::GHC:           Out << "ghccc"; break;
357   case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
358   case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
359   case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
360   case CallingConv::X86_RegCall:   Out << "x86_regcallcc"; break;
361   case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
362   case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
363   case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
364   case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
365   case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
366   case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
367   case CallingConv::AVR_INTR:      Out << "avr_intrcc "; break;
368   case CallingConv::AVR_SIGNAL:    Out << "avr_signalcc "; break;
369   case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
370   case CallingConv::PTX_Device:    Out << "ptx_device"; break;
371   case CallingConv::X86_64_SysV:   Out << "x86_64_sysvcc"; break;
372   case CallingConv::Win64:         Out << "win64cc"; break;
373   case CallingConv::SPIR_FUNC:     Out << "spir_func"; break;
374   case CallingConv::SPIR_KERNEL:   Out << "spir_kernel"; break;
375   case CallingConv::Swift:         Out << "swiftcc"; break;
376   case CallingConv::X86_INTR:      Out << "x86_intrcc"; break;
377   case CallingConv::HHVM:          Out << "hhvmcc"; break;
378   case CallingConv::HHVM_C:        Out << "hhvm_ccc"; break;
379   case CallingConv::AMDGPU_VS:     Out << "amdgpu_vs"; break;
380   case CallingConv::AMDGPU_LS:     Out << "amdgpu_ls"; break;
381   case CallingConv::AMDGPU_HS:     Out << "amdgpu_hs"; break;
382   case CallingConv::AMDGPU_ES:     Out << "amdgpu_es"; break;
383   case CallingConv::AMDGPU_GS:     Out << "amdgpu_gs"; break;
384   case CallingConv::AMDGPU_PS:     Out << "amdgpu_ps"; break;
385   case CallingConv::AMDGPU_CS:     Out << "amdgpu_cs"; break;
386   case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
387   }
388 }
389 
390 enum PrefixType {
391   GlobalPrefix,
392   ComdatPrefix,
393   LabelPrefix,
394   LocalPrefix,
395   NoPrefix
396 };
397 
printLLVMNameWithoutPrefix(raw_ostream & OS,StringRef Name)398 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
399   assert(!Name.empty() && "Cannot get empty name!");
400 
401   // Scan the name to see if it needs quotes first.
402   bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
403   if (!NeedsQuotes) {
404     for (unsigned i = 0, e = Name.size(); i != e; ++i) {
405       // By making this unsigned, the value passed in to isalnum will always be
406       // in the range 0-255.  This is important when building with MSVC because
407       // its implementation will assert.  This situation can arise when dealing
408       // with UTF-8 multibyte characters.
409       unsigned char C = Name[i];
410       if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
411           C != '_') {
412         NeedsQuotes = true;
413         break;
414       }
415     }
416   }
417 
418   // If we didn't need any quotes, just write out the name in one blast.
419   if (!NeedsQuotes) {
420     OS << Name;
421     return;
422   }
423 
424   // Okay, we need quotes.  Output the quotes and escape any scary characters as
425   // needed.
426   OS << '"';
427   printEscapedString(Name, OS);
428   OS << '"';
429 }
430 
431 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
432 /// (if the string only contains simple characters) or is surrounded with ""'s
433 /// (if it has special chars in it). Print it out.
PrintLLVMName(raw_ostream & OS,StringRef Name,PrefixType Prefix)434 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
435   switch (Prefix) {
436   case NoPrefix:
437     break;
438   case GlobalPrefix:
439     OS << '@';
440     break;
441   case ComdatPrefix:
442     OS << '$';
443     break;
444   case LabelPrefix:
445     break;
446   case LocalPrefix:
447     OS << '%';
448     break;
449   }
450   printLLVMNameWithoutPrefix(OS, Name);
451 }
452 
453 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
454 /// (if the string only contains simple characters) or is surrounded with ""'s
455 /// (if it has special chars in it). Print it out.
PrintLLVMName(raw_ostream & OS,const Value * V)456 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
457   PrintLLVMName(OS, V->getName(),
458                 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
459 }
460 
461 namespace {
462 
463 class TypePrinting {
464 public:
TypePrinting(const Module * M=nullptr)465   TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
466 
467   TypePrinting(const TypePrinting &) = delete;
468   TypePrinting &operator=(const TypePrinting &) = delete;
469 
470   /// The named types that are used by the current module.
471   TypeFinder &getNamedTypes();
472 
473   /// The numbered types, number to type mapping.
474   std::vector<StructType *> &getNumberedTypes();
475 
476   bool empty();
477 
478   void print(Type *Ty, raw_ostream &OS);
479 
480   void printStructBody(StructType *Ty, raw_ostream &OS);
481 
482 private:
483   void incorporateTypes();
484 
485   /// A module to process lazily when needed. Set to nullptr as soon as used.
486   const Module *DeferredM;
487 
488   TypeFinder NamedTypes;
489 
490   // The numbered types, along with their value.
491   DenseMap<StructType *, unsigned> Type2Number;
492 
493   std::vector<StructType *> NumberedTypes;
494 };
495 
496 } // end anonymous namespace
497 
getNamedTypes()498 TypeFinder &TypePrinting::getNamedTypes() {
499   incorporateTypes();
500   return NamedTypes;
501 }
502 
getNumberedTypes()503 std::vector<StructType *> &TypePrinting::getNumberedTypes() {
504   incorporateTypes();
505 
506   // We know all the numbers that each type is used and we know that it is a
507   // dense assignment. Convert the map to an index table, if it's not done
508   // already (judging from the sizes):
509   if (NumberedTypes.size() == Type2Number.size())
510     return NumberedTypes;
511 
512   NumberedTypes.resize(Type2Number.size());
513   for (const auto &P : Type2Number) {
514     assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
515     assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
516     NumberedTypes[P.second] = P.first;
517   }
518   return NumberedTypes;
519 }
520 
empty()521 bool TypePrinting::empty() {
522   incorporateTypes();
523   return NamedTypes.empty() && Type2Number.empty();
524 }
525 
incorporateTypes()526 void TypePrinting::incorporateTypes() {
527   if (!DeferredM)
528     return;
529 
530   NamedTypes.run(*DeferredM, false);
531   DeferredM = nullptr;
532 
533   // The list of struct types we got back includes all the struct types, split
534   // the unnamed ones out to a numbering and remove the anonymous structs.
535   unsigned NextNumber = 0;
536 
537   std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
538   for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
539     StructType *STy = *I;
540 
541     // Ignore anonymous types.
542     if (STy->isLiteral())
543       continue;
544 
545     if (STy->getName().empty())
546       Type2Number[STy] = NextNumber++;
547     else
548       *NextToUse++ = STy;
549   }
550 
551   NamedTypes.erase(NextToUse, NamedTypes.end());
552 }
553 
554 /// Write the specified type to the specified raw_ostream, making use of type
555 /// names or up references to shorten the type name where possible.
print(Type * Ty,raw_ostream & OS)556 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
557   switch (Ty->getTypeID()) {
558   case Type::VoidTyID:      OS << "void"; return;
559   case Type::HalfTyID:      OS << "half"; return;
560   case Type::FloatTyID:     OS << "float"; return;
561   case Type::DoubleTyID:    OS << "double"; return;
562   case Type::X86_FP80TyID:  OS << "x86_fp80"; return;
563   case Type::FP128TyID:     OS << "fp128"; return;
564   case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
565   case Type::LabelTyID:     OS << "label"; return;
566   case Type::MetadataTyID:  OS << "metadata"; return;
567   case Type::X86_MMXTyID:   OS << "x86_mmx"; return;
568   case Type::TokenTyID:     OS << "token"; return;
569   case Type::IntegerTyID:
570     OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
571     return;
572 
573   case Type::FunctionTyID: {
574     FunctionType *FTy = cast<FunctionType>(Ty);
575     print(FTy->getReturnType(), OS);
576     OS << " (";
577     for (FunctionType::param_iterator I = FTy->param_begin(),
578          E = FTy->param_end(); I != E; ++I) {
579       if (I != FTy->param_begin())
580         OS << ", ";
581       print(*I, OS);
582     }
583     if (FTy->isVarArg()) {
584       if (FTy->getNumParams()) OS << ", ";
585       OS << "...";
586     }
587     OS << ')';
588     return;
589   }
590   case Type::StructTyID: {
591     StructType *STy = cast<StructType>(Ty);
592 
593     if (STy->isLiteral())
594       return printStructBody(STy, OS);
595 
596     if (!STy->getName().empty())
597       return PrintLLVMName(OS, STy->getName(), LocalPrefix);
598 
599     incorporateTypes();
600     const auto I = Type2Number.find(STy);
601     if (I != Type2Number.end())
602       OS << '%' << I->second;
603     else  // Not enumerated, print the hex address.
604       OS << "%\"type " << STy << '\"';
605     return;
606   }
607   case Type::PointerTyID: {
608     PointerType *PTy = cast<PointerType>(Ty);
609     print(PTy->getElementType(), OS);
610     if (unsigned AddressSpace = PTy->getAddressSpace())
611       OS << " addrspace(" << AddressSpace << ')';
612     OS << '*';
613     return;
614   }
615   case Type::ArrayTyID: {
616     ArrayType *ATy = cast<ArrayType>(Ty);
617     OS << '[' << ATy->getNumElements() << " x ";
618     print(ATy->getElementType(), OS);
619     OS << ']';
620     return;
621   }
622   case Type::VectorTyID: {
623     VectorType *PTy = cast<VectorType>(Ty);
624     OS << "<" << PTy->getNumElements() << " x ";
625     print(PTy->getElementType(), OS);
626     OS << '>';
627     return;
628   }
629   }
630   llvm_unreachable("Invalid TypeID");
631 }
632 
printStructBody(StructType * STy,raw_ostream & OS)633 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
634   if (STy->isOpaque()) {
635     OS << "opaque";
636     return;
637   }
638 
639   if (STy->isPacked())
640     OS << '<';
641 
642   if (STy->getNumElements() == 0) {
643     OS << "{}";
644   } else {
645     StructType::element_iterator I = STy->element_begin();
646     OS << "{ ";
647     print(*I++, OS);
648     for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
649       OS << ", ";
650       print(*I, OS);
651     }
652 
653     OS << " }";
654   }
655   if (STy->isPacked())
656     OS << '>';
657 }
658 
659 namespace llvm {
660 
661 //===----------------------------------------------------------------------===//
662 // SlotTracker Class: Enumerate slot numbers for unnamed values
663 //===----------------------------------------------------------------------===//
664 /// This class provides computation of slot numbers for LLVM Assembly writing.
665 ///
666 class SlotTracker {
667 public:
668   /// ValueMap - A mapping of Values to slot numbers.
669   using ValueMap = DenseMap<const Value *, unsigned>;
670 
671 private:
672   /// TheModule - The module for which we are holding slot numbers.
673   const Module* TheModule;
674 
675   /// TheFunction - The function for which we are holding slot numbers.
676   const Function* TheFunction = nullptr;
677   bool FunctionProcessed = false;
678   bool ShouldInitializeAllMetadata;
679 
680   /// The summary index for which we are holding slot numbers.
681   const ModuleSummaryIndex *TheIndex = nullptr;
682 
683   /// mMap - The slot map for the module level data.
684   ValueMap mMap;
685   unsigned mNext = 0;
686 
687   /// fMap - The slot map for the function level data.
688   ValueMap fMap;
689   unsigned fNext = 0;
690 
691   /// mdnMap - Map for MDNodes.
692   DenseMap<const MDNode*, unsigned> mdnMap;
693   unsigned mdnNext = 0;
694 
695   /// asMap - The slot map for attribute sets.
696   DenseMap<AttributeSet, unsigned> asMap;
697   unsigned asNext = 0;
698 
699   /// ModulePathMap - The slot map for Module paths used in the summary index.
700   StringMap<unsigned> ModulePathMap;
701   unsigned ModulePathNext = 0;
702 
703   /// GUIDMap - The slot map for GUIDs used in the summary index.
704   DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
705   unsigned GUIDNext = 0;
706 
707 public:
708   /// Construct from a module.
709   ///
710   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
711   /// functions, giving correct numbering for metadata referenced only from
712   /// within a function (even if no functions have been initialized).
713   explicit SlotTracker(const Module *M,
714                        bool ShouldInitializeAllMetadata = false);
715 
716   /// Construct from a function, starting out in incorp state.
717   ///
718   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
719   /// functions, giving correct numbering for metadata referenced only from
720   /// within a function (even if no functions have been initialized).
721   explicit SlotTracker(const Function *F,
722                        bool ShouldInitializeAllMetadata = false);
723 
724   /// Construct from a module summary index.
725   explicit SlotTracker(const ModuleSummaryIndex *Index);
726 
727   SlotTracker(const SlotTracker &) = delete;
728   SlotTracker &operator=(const SlotTracker &) = delete;
729 
730   /// Return the slot number of the specified value in it's type
731   /// plane.  If something is not in the SlotTracker, return -1.
732   int getLocalSlot(const Value *V);
733   int getGlobalSlot(const GlobalValue *V);
734   int getMetadataSlot(const MDNode *N);
735   int getAttributeGroupSlot(AttributeSet AS);
736   int getModulePathSlot(StringRef Path);
737   int getGUIDSlot(GlobalValue::GUID GUID);
738 
739   /// If you'd like to deal with a function instead of just a module, use
740   /// this method to get its data into the SlotTracker.
incorporateFunction(const Function * F)741   void incorporateFunction(const Function *F) {
742     TheFunction = F;
743     FunctionProcessed = false;
744   }
745 
getFunction() const746   const Function *getFunction() const { return TheFunction; }
747 
748   /// After calling incorporateFunction, use this method to remove the
749   /// most recently incorporated function from the SlotTracker. This
750   /// will reset the state of the machine back to just the module contents.
751   void purgeFunction();
752 
753   /// MDNode map iterators.
754   using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
755 
mdn_begin()756   mdn_iterator mdn_begin() { return mdnMap.begin(); }
mdn_end()757   mdn_iterator mdn_end() { return mdnMap.end(); }
mdn_size() const758   unsigned mdn_size() const { return mdnMap.size(); }
mdn_empty() const759   bool mdn_empty() const { return mdnMap.empty(); }
760 
761   /// AttributeSet map iterators.
762   using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
763 
as_begin()764   as_iterator as_begin()   { return asMap.begin(); }
as_end()765   as_iterator as_end()     { return asMap.end(); }
as_size() const766   unsigned as_size() const { return asMap.size(); }
as_empty() const767   bool as_empty() const    { return asMap.empty(); }
768 
769   /// GUID map iterators.
770   using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
771 
772   /// These functions do the actual initialization.
773   inline void initializeIfNeeded();
774   void initializeIndexIfNeeded();
775 
776   // Implementation Details
777 private:
778   /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
779   void CreateModuleSlot(const GlobalValue *V);
780 
781   /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
782   void CreateMetadataSlot(const MDNode *N);
783 
784   /// CreateFunctionSlot - Insert the specified Value* into the slot table.
785   void CreateFunctionSlot(const Value *V);
786 
787   /// Insert the specified AttributeSet into the slot table.
788   void CreateAttributeSetSlot(AttributeSet AS);
789 
790   inline void CreateModulePathSlot(StringRef Path);
791   void CreateGUIDSlot(GlobalValue::GUID GUID);
792 
793   /// Add all of the module level global variables (and their initializers)
794   /// and function declarations, but not the contents of those functions.
795   void processModule();
796   void processIndex();
797 
798   /// Add all of the functions arguments, basic blocks, and instructions.
799   void processFunction();
800 
801   /// Add the metadata directly attached to a GlobalObject.
802   void processGlobalObjectMetadata(const GlobalObject &GO);
803 
804   /// Add all of the metadata from a function.
805   void processFunctionMetadata(const Function &F);
806 
807   /// Add all of the metadata from an instruction.
808   void processInstructionMetadata(const Instruction &I);
809 };
810 
811 } // end namespace llvm
812 
ModuleSlotTracker(SlotTracker & Machine,const Module * M,const Function * F)813 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
814                                      const Function *F)
815     : M(M), F(F), Machine(&Machine) {}
816 
ModuleSlotTracker(const Module * M,bool ShouldInitializeAllMetadata)817 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
818                                      bool ShouldInitializeAllMetadata)
819     : ShouldCreateStorage(M),
820       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
821 
822 ModuleSlotTracker::~ModuleSlotTracker() = default;
823 
getMachine()824 SlotTracker *ModuleSlotTracker::getMachine() {
825   if (!ShouldCreateStorage)
826     return Machine;
827 
828   ShouldCreateStorage = false;
829   MachineStorage =
830       llvm::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
831   Machine = MachineStorage.get();
832   return Machine;
833 }
834 
incorporateFunction(const Function & F)835 void ModuleSlotTracker::incorporateFunction(const Function &F) {
836   // Using getMachine() may lazily create the slot tracker.
837   if (!getMachine())
838     return;
839 
840   // Nothing to do if this is the right function already.
841   if (this->F == &F)
842     return;
843   if (this->F)
844     Machine->purgeFunction();
845   Machine->incorporateFunction(&F);
846   this->F = &F;
847 }
848 
getLocalSlot(const Value * V)849 int ModuleSlotTracker::getLocalSlot(const Value *V) {
850   assert(F && "No function incorporated");
851   return Machine->getLocalSlot(V);
852 }
853 
createSlotTracker(const Value * V)854 static SlotTracker *createSlotTracker(const Value *V) {
855   if (const Argument *FA = dyn_cast<Argument>(V))
856     return new SlotTracker(FA->getParent());
857 
858   if (const Instruction *I = dyn_cast<Instruction>(V))
859     if (I->getParent())
860       return new SlotTracker(I->getParent()->getParent());
861 
862   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
863     return new SlotTracker(BB->getParent());
864 
865   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
866     return new SlotTracker(GV->getParent());
867 
868   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
869     return new SlotTracker(GA->getParent());
870 
871   if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
872     return new SlotTracker(GIF->getParent());
873 
874   if (const Function *Func = dyn_cast<Function>(V))
875     return new SlotTracker(Func);
876 
877   return nullptr;
878 }
879 
880 #if 0
881 #define ST_DEBUG(X) dbgs() << X
882 #else
883 #define ST_DEBUG(X)
884 #endif
885 
886 // Module level constructor. Causes the contents of the Module (sans functions)
887 // to be added to the slot table.
SlotTracker(const Module * M,bool ShouldInitializeAllMetadata)888 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
889     : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
890 
891 // Function level constructor. Causes the contents of the Module and the one
892 // function provided to be added to the slot table.
SlotTracker(const Function * F,bool ShouldInitializeAllMetadata)893 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
894     : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
895       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
896 
SlotTracker(const ModuleSummaryIndex * Index)897 SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
898     : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
899 
initializeIfNeeded()900 inline void SlotTracker::initializeIfNeeded() {
901   if (TheModule) {
902     processModule();
903     TheModule = nullptr; ///< Prevent re-processing next time we're called.
904   }
905 
906   if (TheFunction && !FunctionProcessed)
907     processFunction();
908 }
909 
initializeIndexIfNeeded()910 void SlotTracker::initializeIndexIfNeeded() {
911   if (!TheIndex)
912     return;
913   processIndex();
914   TheIndex = nullptr; ///< Prevent re-processing next time we're called.
915 }
916 
917 // Iterate through all the global variables, functions, and global
918 // variable initializers and create slots for them.
processModule()919 void SlotTracker::processModule() {
920   ST_DEBUG("begin processModule!\n");
921 
922   // Add all of the unnamed global variables to the value table.
923   for (const GlobalVariable &Var : TheModule->globals()) {
924     if (!Var.hasName())
925       CreateModuleSlot(&Var);
926     processGlobalObjectMetadata(Var);
927     auto Attrs = Var.getAttributes();
928     if (Attrs.hasAttributes())
929       CreateAttributeSetSlot(Attrs);
930   }
931 
932   for (const GlobalAlias &A : TheModule->aliases()) {
933     if (!A.hasName())
934       CreateModuleSlot(&A);
935   }
936 
937   for (const GlobalIFunc &I : TheModule->ifuncs()) {
938     if (!I.hasName())
939       CreateModuleSlot(&I);
940   }
941 
942   // Add metadata used by named metadata.
943   for (const NamedMDNode &NMD : TheModule->named_metadata()) {
944     for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
945       CreateMetadataSlot(NMD.getOperand(i));
946   }
947 
948   for (const Function &F : *TheModule) {
949     if (!F.hasName())
950       // Add all the unnamed functions to the table.
951       CreateModuleSlot(&F);
952 
953     if (ShouldInitializeAllMetadata)
954       processFunctionMetadata(F);
955 
956     // Add all the function attributes to the table.
957     // FIXME: Add attributes of other objects?
958     AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
959     if (FnAttrs.hasAttributes())
960       CreateAttributeSetSlot(FnAttrs);
961   }
962 
963   ST_DEBUG("end processModule!\n");
964 }
965 
966 // Process the arguments, basic blocks, and instructions  of a function.
processFunction()967 void SlotTracker::processFunction() {
968   ST_DEBUG("begin processFunction!\n");
969   fNext = 0;
970 
971   // Process function metadata if it wasn't hit at the module-level.
972   if (!ShouldInitializeAllMetadata)
973     processFunctionMetadata(*TheFunction);
974 
975   // Add all the function arguments with no names.
976   for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
977       AE = TheFunction->arg_end(); AI != AE; ++AI)
978     if (!AI->hasName())
979       CreateFunctionSlot(&*AI);
980 
981   ST_DEBUG("Inserting Instructions:\n");
982 
983   // Add all of the basic blocks and instructions with no names.
984   for (auto &BB : *TheFunction) {
985     if (!BB.hasName())
986       CreateFunctionSlot(&BB);
987 
988     for (auto &I : BB) {
989       if (!I.getType()->isVoidTy() && !I.hasName())
990         CreateFunctionSlot(&I);
991 
992       // We allow direct calls to any llvm.foo function here, because the
993       // target may not be linked into the optimizer.
994       if (auto CS = ImmutableCallSite(&I)) {
995         // Add all the call attributes to the table.
996         AttributeSet Attrs = CS.getAttributes().getFnAttributes();
997         if (Attrs.hasAttributes())
998           CreateAttributeSetSlot(Attrs);
999       }
1000     }
1001   }
1002 
1003   FunctionProcessed = true;
1004 
1005   ST_DEBUG("end processFunction!\n");
1006 }
1007 
1008 // Iterate through all the GUID in the index and create slots for them.
processIndex()1009 void SlotTracker::processIndex() {
1010   ST_DEBUG("begin processIndex!\n");
1011   assert(TheIndex);
1012 
1013   // The first block of slots are just the module ids, which start at 0 and are
1014   // assigned consecutively. Since the StringMap iteration order isn't
1015   // guaranteed, use a std::map to order by module ID before assigning slots.
1016   std::map<uint64_t, StringRef> ModuleIdToPathMap;
1017   for (auto &ModPath : TheIndex->modulePaths())
1018     ModuleIdToPathMap[ModPath.second.first] = ModPath.first();
1019   for (auto &ModPair : ModuleIdToPathMap)
1020     CreateModulePathSlot(ModPair.second);
1021 
1022   // Start numbering the GUIDs after the module ids.
1023   GUIDNext = ModulePathNext;
1024 
1025   for (auto &GlobalList : *TheIndex)
1026     CreateGUIDSlot(GlobalList.first);
1027 
1028   for (auto &TId : TheIndex->typeIds())
1029     CreateGUIDSlot(GlobalValue::getGUID(TId.first));
1030 
1031   ST_DEBUG("end processIndex!\n");
1032 }
1033 
processGlobalObjectMetadata(const GlobalObject & GO)1034 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
1035   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1036   GO.getAllMetadata(MDs);
1037   for (auto &MD : MDs)
1038     CreateMetadataSlot(MD.second);
1039 }
1040 
processFunctionMetadata(const Function & F)1041 void SlotTracker::processFunctionMetadata(const Function &F) {
1042   processGlobalObjectMetadata(F);
1043   for (auto &BB : F) {
1044     for (auto &I : BB)
1045       processInstructionMetadata(I);
1046   }
1047 }
1048 
processInstructionMetadata(const Instruction & I)1049 void SlotTracker::processInstructionMetadata(const Instruction &I) {
1050   // Process metadata used directly by intrinsics.
1051   if (const CallInst *CI = dyn_cast<CallInst>(&I))
1052     if (Function *F = CI->getCalledFunction())
1053       if (F->isIntrinsic())
1054         for (auto &Op : I.operands())
1055           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
1056             if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
1057               CreateMetadataSlot(N);
1058 
1059   // Process metadata attached to this instruction.
1060   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1061   I.getAllMetadata(MDs);
1062   for (auto &MD : MDs)
1063     CreateMetadataSlot(MD.second);
1064 }
1065 
1066 /// Clean up after incorporating a function. This is the only way to get out of
1067 /// the function incorporation state that affects get*Slot/Create*Slot. Function
1068 /// incorporation state is indicated by TheFunction != 0.
purgeFunction()1069 void SlotTracker::purgeFunction() {
1070   ST_DEBUG("begin purgeFunction!\n");
1071   fMap.clear(); // Simply discard the function level map
1072   TheFunction = nullptr;
1073   FunctionProcessed = false;
1074   ST_DEBUG("end purgeFunction!\n");
1075 }
1076 
1077 /// getGlobalSlot - Get the slot number of a global value.
getGlobalSlot(const GlobalValue * V)1078 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
1079   // Check for uninitialized state and do lazy initialization.
1080   initializeIfNeeded();
1081 
1082   // Find the value in the module map
1083   ValueMap::iterator MI = mMap.find(V);
1084   return MI == mMap.end() ? -1 : (int)MI->second;
1085 }
1086 
1087 /// getMetadataSlot - Get the slot number of a MDNode.
getMetadataSlot(const MDNode * N)1088 int SlotTracker::getMetadataSlot(const MDNode *N) {
1089   // Check for uninitialized state and do lazy initialization.
1090   initializeIfNeeded();
1091 
1092   // Find the MDNode in the module map
1093   mdn_iterator MI = mdnMap.find(N);
1094   return MI == mdnMap.end() ? -1 : (int)MI->second;
1095 }
1096 
1097 /// getLocalSlot - Get the slot number for a value that is local to a function.
getLocalSlot(const Value * V)1098 int SlotTracker::getLocalSlot(const Value *V) {
1099   assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1100 
1101   // Check for uninitialized state and do lazy initialization.
1102   initializeIfNeeded();
1103 
1104   ValueMap::iterator FI = fMap.find(V);
1105   return FI == fMap.end() ? -1 : (int)FI->second;
1106 }
1107 
getAttributeGroupSlot(AttributeSet AS)1108 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
1109   // Check for uninitialized state and do lazy initialization.
1110   initializeIfNeeded();
1111 
1112   // Find the AttributeSet in the module map.
1113   as_iterator AI = asMap.find(AS);
1114   return AI == asMap.end() ? -1 : (int)AI->second;
1115 }
1116 
getModulePathSlot(StringRef Path)1117 int SlotTracker::getModulePathSlot(StringRef Path) {
1118   // Check for uninitialized state and do lazy initialization.
1119   initializeIndexIfNeeded();
1120 
1121   // Find the Module path in the map
1122   auto I = ModulePathMap.find(Path);
1123   return I == ModulePathMap.end() ? -1 : (int)I->second;
1124 }
1125 
getGUIDSlot(GlobalValue::GUID GUID)1126 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
1127   // Check for uninitialized state and do lazy initialization.
1128   initializeIndexIfNeeded();
1129 
1130   // Find the GUID in the map
1131   guid_iterator I = GUIDMap.find(GUID);
1132   return I == GUIDMap.end() ? -1 : (int)I->second;
1133 }
1134 
1135 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
CreateModuleSlot(const GlobalValue * V)1136 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1137   assert(V && "Can't insert a null Value into SlotTracker!");
1138   assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
1139   assert(!V->hasName() && "Doesn't need a slot!");
1140 
1141   unsigned DestSlot = mNext++;
1142   mMap[V] = DestSlot;
1143 
1144   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1145            DestSlot << " [");
1146   // G = Global, F = Function, A = Alias, I = IFunc, o = other
1147   ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1148             (isa<Function>(V) ? 'F' :
1149              (isa<GlobalAlias>(V) ? 'A' :
1150               (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
1151 }
1152 
1153 /// CreateSlot - Create a new slot for the specified value if it has no name.
CreateFunctionSlot(const Value * V)1154 void SlotTracker::CreateFunctionSlot(const Value *V) {
1155   assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
1156 
1157   unsigned DestSlot = fNext++;
1158   fMap[V] = DestSlot;
1159 
1160   // G = Global, F = Function, o = other
1161   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1162            DestSlot << " [o]\n");
1163 }
1164 
1165 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
CreateMetadataSlot(const MDNode * N)1166 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1167   assert(N && "Can't insert a null Value into SlotTracker!");
1168 
1169   // Don't make slots for DIExpressions. We just print them inline everywhere.
1170   if (isa<DIExpression>(N))
1171     return;
1172 
1173   unsigned DestSlot = mdnNext;
1174   if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1175     return;
1176   ++mdnNext;
1177 
1178   // Recursively add any MDNodes referenced by operands.
1179   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1180     if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1181       CreateMetadataSlot(Op);
1182 }
1183 
CreateAttributeSetSlot(AttributeSet AS)1184 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1185   assert(AS.hasAttributes() && "Doesn't need a slot!");
1186 
1187   as_iterator I = asMap.find(AS);
1188   if (I != asMap.end())
1189     return;
1190 
1191   unsigned DestSlot = asNext++;
1192   asMap[AS] = DestSlot;
1193 }
1194 
1195 /// Create a new slot for the specified Module
CreateModulePathSlot(StringRef Path)1196 void SlotTracker::CreateModulePathSlot(StringRef Path) {
1197   ModulePathMap[Path] = ModulePathNext++;
1198 }
1199 
1200 /// Create a new slot for the specified GUID
CreateGUIDSlot(GlobalValue::GUID GUID)1201 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
1202   GUIDMap[GUID] = GUIDNext++;
1203 }
1204 
1205 //===----------------------------------------------------------------------===//
1206 // AsmWriter Implementation
1207 //===----------------------------------------------------------------------===//
1208 
1209 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1210                                    TypePrinting *TypePrinter,
1211                                    SlotTracker *Machine,
1212                                    const Module *Context);
1213 
1214 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1215                                    TypePrinting *TypePrinter,
1216                                    SlotTracker *Machine, const Module *Context,
1217                                    bool FromValue = false);
1218 
writeAtomicRMWOperation(raw_ostream & Out,AtomicRMWInst::BinOp Op)1219 static void writeAtomicRMWOperation(raw_ostream &Out,
1220                                     AtomicRMWInst::BinOp Op) {
1221   switch (Op) {
1222   default: Out << " <unknown operation " << Op << ">"; break;
1223   case AtomicRMWInst::Xchg: Out << " xchg"; break;
1224   case AtomicRMWInst::Add:  Out << " add"; break;
1225   case AtomicRMWInst::Sub:  Out << " sub"; break;
1226   case AtomicRMWInst::And:  Out << " and"; break;
1227   case AtomicRMWInst::Nand: Out << " nand"; break;
1228   case AtomicRMWInst::Or:   Out << " or"; break;
1229   case AtomicRMWInst::Xor:  Out << " xor"; break;
1230   case AtomicRMWInst::Max:  Out << " max"; break;
1231   case AtomicRMWInst::Min:  Out << " min"; break;
1232   case AtomicRMWInst::UMax: Out << " umax"; break;
1233   case AtomicRMWInst::UMin: Out << " umin"; break;
1234   }
1235 }
1236 
WriteOptimizationInfo(raw_ostream & Out,const User * U)1237 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1238   if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
1239     // 'Fast' is an abbreviation for all fast-math-flags.
1240     if (FPO->isFast())
1241       Out << " fast";
1242     else {
1243       if (FPO->hasAllowReassoc())
1244         Out << " reassoc";
1245       if (FPO->hasNoNaNs())
1246         Out << " nnan";
1247       if (FPO->hasNoInfs())
1248         Out << " ninf";
1249       if (FPO->hasNoSignedZeros())
1250         Out << " nsz";
1251       if (FPO->hasAllowReciprocal())
1252         Out << " arcp";
1253       if (FPO->hasAllowContract())
1254         Out << " contract";
1255       if (FPO->hasApproxFunc())
1256         Out << " afn";
1257     }
1258   }
1259 
1260   if (const OverflowingBinaryOperator *OBO =
1261         dyn_cast<OverflowingBinaryOperator>(U)) {
1262     if (OBO->hasNoUnsignedWrap())
1263       Out << " nuw";
1264     if (OBO->hasNoSignedWrap())
1265       Out << " nsw";
1266   } else if (const PossiblyExactOperator *Div =
1267                dyn_cast<PossiblyExactOperator>(U)) {
1268     if (Div->isExact())
1269       Out << " exact";
1270   } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1271     if (GEP->isInBounds())
1272       Out << " inbounds";
1273   }
1274 }
1275 
WriteConstantInternal(raw_ostream & Out,const Constant * CV,TypePrinting & TypePrinter,SlotTracker * Machine,const Module * Context)1276 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1277                                   TypePrinting &TypePrinter,
1278                                   SlotTracker *Machine,
1279                                   const Module *Context) {
1280   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1281     if (CI->getType()->isIntegerTy(1)) {
1282       Out << (CI->getZExtValue() ? "true" : "false");
1283       return;
1284     }
1285     Out << CI->getValue();
1286     return;
1287   }
1288 
1289   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1290     const APFloat &APF = CFP->getValueAPF();
1291     if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
1292         &APF.getSemantics() == &APFloat::IEEEdouble()) {
1293       // We would like to output the FP constant value in exponential notation,
1294       // but we cannot do this if doing so will lose precision.  Check here to
1295       // make sure that we only output it in exponential format if we can parse
1296       // the value back and get the same value.
1297       //
1298       bool ignored;
1299       bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
1300       bool isInf = APF.isInfinity();
1301       bool isNaN = APF.isNaN();
1302       if (!isInf && !isNaN) {
1303         double Val = isDouble ? APF.convertToDouble() : APF.convertToFloat();
1304         SmallString<128> StrVal;
1305         APF.toString(StrVal, 6, 0, false);
1306         // Check to make sure that the stringized number is not some string like
1307         // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
1308         // that the string matches the "[-+]?[0-9]" regex.
1309         //
1310         assert(((StrVal[0] >= '0' && StrVal[0] <= '9') ||
1311                 ((StrVal[0] == '-' || StrVal[0] == '+') &&
1312                  (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
1313                "[-+]?[0-9] regex does not match!");
1314         // Reparse stringized version!
1315         if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
1316           Out << StrVal;
1317           return;
1318         }
1319       }
1320       // Otherwise we could not reparse it to exactly the same value, so we must
1321       // output the string in hexadecimal format!  Note that loading and storing
1322       // floating point types changes the bits of NaNs on some hosts, notably
1323       // x86, so we must not use these types.
1324       static_assert(sizeof(double) == sizeof(uint64_t),
1325                     "assuming that double is 64 bits!");
1326       APFloat apf = APF;
1327       // Floats are represented in ASCII IR as double, convert.
1328       if (!isDouble)
1329         apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1330                           &ignored);
1331       Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1332       return;
1333     }
1334 
1335     // Either half, or some form of long double.
1336     // These appear as a magic letter identifying the type, then a
1337     // fixed number of hex digits.
1338     Out << "0x";
1339     APInt API = APF.bitcastToAPInt();
1340     if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
1341       Out << 'K';
1342       Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1343                                   /*Upper=*/true);
1344       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1345                                   /*Upper=*/true);
1346       return;
1347     } else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
1348       Out << 'L';
1349       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1350                                   /*Upper=*/true);
1351       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1352                                   /*Upper=*/true);
1353     } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
1354       Out << 'M';
1355       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1356                                   /*Upper=*/true);
1357       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1358                                   /*Upper=*/true);
1359     } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
1360       Out << 'H';
1361       Out << format_hex_no_prefix(API.getZExtValue(), 4,
1362                                   /*Upper=*/true);
1363     } else
1364       llvm_unreachable("Unsupported floating point type");
1365     return;
1366   }
1367 
1368   if (isa<ConstantAggregateZero>(CV)) {
1369     Out << "zeroinitializer";
1370     return;
1371   }
1372 
1373   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1374     Out << "blockaddress(";
1375     WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
1376                            Context);
1377     Out << ", ";
1378     WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
1379                            Context);
1380     Out << ")";
1381     return;
1382   }
1383 
1384   if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1385     Type *ETy = CA->getType()->getElementType();
1386     Out << '[';
1387     TypePrinter.print(ETy, Out);
1388     Out << ' ';
1389     WriteAsOperandInternal(Out, CA->getOperand(0),
1390                            &TypePrinter, Machine,
1391                            Context);
1392     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1393       Out << ", ";
1394       TypePrinter.print(ETy, Out);
1395       Out << ' ';
1396       WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
1397                              Context);
1398     }
1399     Out << ']';
1400     return;
1401   }
1402 
1403   if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1404     // As a special case, print the array as a string if it is an array of
1405     // i8 with ConstantInt values.
1406     if (CA->isString()) {
1407       Out << "c\"";
1408       printEscapedString(CA->getAsString(), Out);
1409       Out << '"';
1410       return;
1411     }
1412 
1413     Type *ETy = CA->getType()->getElementType();
1414     Out << '[';
1415     TypePrinter.print(ETy, Out);
1416     Out << ' ';
1417     WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
1418                            &TypePrinter, Machine,
1419                            Context);
1420     for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1421       Out << ", ";
1422       TypePrinter.print(ETy, Out);
1423       Out << ' ';
1424       WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
1425                              Machine, Context);
1426     }
1427     Out << ']';
1428     return;
1429   }
1430 
1431   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1432     if (CS->getType()->isPacked())
1433       Out << '<';
1434     Out << '{';
1435     unsigned N = CS->getNumOperands();
1436     if (N) {
1437       Out << ' ';
1438       TypePrinter.print(CS->getOperand(0)->getType(), Out);
1439       Out << ' ';
1440 
1441       WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
1442                              Context);
1443 
1444       for (unsigned i = 1; i < N; i++) {
1445         Out << ", ";
1446         TypePrinter.print(CS->getOperand(i)->getType(), Out);
1447         Out << ' ';
1448 
1449         WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
1450                                Context);
1451       }
1452       Out << ' ';
1453     }
1454 
1455     Out << '}';
1456     if (CS->getType()->isPacked())
1457       Out << '>';
1458     return;
1459   }
1460 
1461   if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1462     Type *ETy = CV->getType()->getVectorElementType();
1463     Out << '<';
1464     TypePrinter.print(ETy, Out);
1465     Out << ' ';
1466     WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
1467                            Machine, Context);
1468     for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
1469       Out << ", ";
1470       TypePrinter.print(ETy, Out);
1471       Out << ' ';
1472       WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
1473                              Machine, Context);
1474     }
1475     Out << '>';
1476     return;
1477   }
1478 
1479   if (isa<ConstantPointerNull>(CV)) {
1480     Out << "null";
1481     return;
1482   }
1483 
1484   if (isa<ConstantTokenNone>(CV)) {
1485     Out << "none";
1486     return;
1487   }
1488 
1489   if (isa<UndefValue>(CV)) {
1490     Out << "undef";
1491     return;
1492   }
1493 
1494   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1495     Out << CE->getOpcodeName();
1496     WriteOptimizationInfo(Out, CE);
1497     if (CE->isCompare())
1498       Out << ' ' << CmpInst::getPredicateName(
1499                         static_cast<CmpInst::Predicate>(CE->getPredicate()));
1500     Out << " (";
1501 
1502     Optional<unsigned> InRangeOp;
1503     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1504       TypePrinter.print(GEP->getSourceElementType(), Out);
1505       Out << ", ";
1506       InRangeOp = GEP->getInRangeIndex();
1507       if (InRangeOp)
1508         ++*InRangeOp;
1509     }
1510 
1511     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1512       if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp)
1513         Out << "inrange ";
1514       TypePrinter.print((*OI)->getType(), Out);
1515       Out << ' ';
1516       WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1517       if (OI+1 != CE->op_end())
1518         Out << ", ";
1519     }
1520 
1521     if (CE->hasIndices()) {
1522       ArrayRef<unsigned> Indices = CE->getIndices();
1523       for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1524         Out << ", " << Indices[i];
1525     }
1526 
1527     if (CE->isCast()) {
1528       Out << " to ";
1529       TypePrinter.print(CE->getType(), Out);
1530     }
1531 
1532     Out << ')';
1533     return;
1534   }
1535 
1536   Out << "<placeholder or erroneous Constant>";
1537 }
1538 
writeMDTuple(raw_ostream & Out,const MDTuple * Node,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1539 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1540                          TypePrinting *TypePrinter, SlotTracker *Machine,
1541                          const Module *Context) {
1542   Out << "!{";
1543   for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1544     const Metadata *MD = Node->getOperand(mi);
1545     if (!MD)
1546       Out << "null";
1547     else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1548       Value *V = MDV->getValue();
1549       TypePrinter->print(V->getType(), Out);
1550       Out << ' ';
1551       WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
1552     } else {
1553       WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1554     }
1555     if (mi + 1 != me)
1556       Out << ", ";
1557   }
1558 
1559   Out << "}";
1560 }
1561 
1562 namespace {
1563 
1564 struct FieldSeparator {
1565   bool Skip = true;
1566   const char *Sep;
1567 
FieldSeparator__anon5d5c8a720511::FieldSeparator1568   FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
1569 };
1570 
operator <<(raw_ostream & OS,FieldSeparator & FS)1571 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1572   if (FS.Skip) {
1573     FS.Skip = false;
1574     return OS;
1575   }
1576   return OS << FS.Sep;
1577 }
1578 
1579 struct MDFieldPrinter {
1580   raw_ostream &Out;
1581   FieldSeparator FS;
1582   TypePrinting *TypePrinter = nullptr;
1583   SlotTracker *Machine = nullptr;
1584   const Module *Context = nullptr;
1585 
MDFieldPrinter__anon5d5c8a720511::MDFieldPrinter1586   explicit MDFieldPrinter(raw_ostream &Out) : Out(Out) {}
MDFieldPrinter__anon5d5c8a720511::MDFieldPrinter1587   MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
1588                  SlotTracker *Machine, const Module *Context)
1589       : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
1590   }
1591 
1592   void printTag(const DINode *N);
1593   void printMacinfoType(const DIMacroNode *N);
1594   void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
1595   void printString(StringRef Name, StringRef Value,
1596                    bool ShouldSkipEmpty = true);
1597   void printMetadata(StringRef Name, const Metadata *MD,
1598                      bool ShouldSkipNull = true);
1599   template <class IntTy>
1600   void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1601   void printBool(StringRef Name, bool Value, Optional<bool> Default = None);
1602   void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1603   template <class IntTy, class Stringifier>
1604   void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1605                       bool ShouldSkipZero = true);
1606   void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1607 };
1608 
1609 } // end anonymous namespace
1610 
printTag(const DINode * N)1611 void MDFieldPrinter::printTag(const DINode *N) {
1612   Out << FS << "tag: ";
1613   auto Tag = dwarf::TagString(N->getTag());
1614   if (!Tag.empty())
1615     Out << Tag;
1616   else
1617     Out << N->getTag();
1618 }
1619 
printMacinfoType(const DIMacroNode * N)1620 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1621   Out << FS << "type: ";
1622   auto Type = dwarf::MacinfoString(N->getMacinfoType());
1623   if (!Type.empty())
1624     Out << Type;
1625   else
1626     Out << N->getMacinfoType();
1627 }
1628 
printChecksum(const DIFile::ChecksumInfo<StringRef> & Checksum)1629 void MDFieldPrinter::printChecksum(
1630     const DIFile::ChecksumInfo<StringRef> &Checksum) {
1631   Out << FS << "checksumkind: " << Checksum.getKindAsString();
1632   printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
1633 }
1634 
printString(StringRef Name,StringRef Value,bool ShouldSkipEmpty)1635 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1636                                  bool ShouldSkipEmpty) {
1637   if (ShouldSkipEmpty && Value.empty())
1638     return;
1639 
1640   Out << FS << Name << ": \"";
1641   printEscapedString(Value, Out);
1642   Out << "\"";
1643 }
1644 
writeMetadataAsOperand(raw_ostream & Out,const Metadata * MD,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1645 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1646                                    TypePrinting *TypePrinter,
1647                                    SlotTracker *Machine,
1648                                    const Module *Context) {
1649   if (!MD) {
1650     Out << "null";
1651     return;
1652   }
1653   WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1654 }
1655 
printMetadata(StringRef Name,const Metadata * MD,bool ShouldSkipNull)1656 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1657                                    bool ShouldSkipNull) {
1658   if (ShouldSkipNull && !MD)
1659     return;
1660 
1661   Out << FS << Name << ": ";
1662   writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
1663 }
1664 
1665 template <class IntTy>
printInt(StringRef Name,IntTy Int,bool ShouldSkipZero)1666 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1667   if (ShouldSkipZero && !Int)
1668     return;
1669 
1670   Out << FS << Name << ": " << Int;
1671 }
1672 
printBool(StringRef Name,bool Value,Optional<bool> Default)1673 void MDFieldPrinter::printBool(StringRef Name, bool Value,
1674                                Optional<bool> Default) {
1675   if (Default && Value == *Default)
1676     return;
1677   Out << FS << Name << ": " << (Value ? "true" : "false");
1678 }
1679 
printDIFlags(StringRef Name,DINode::DIFlags Flags)1680 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1681   if (!Flags)
1682     return;
1683 
1684   Out << FS << Name << ": ";
1685 
1686   SmallVector<DINode::DIFlags, 8> SplitFlags;
1687   auto Extra = DINode::splitFlags(Flags, SplitFlags);
1688 
1689   FieldSeparator FlagsFS(" | ");
1690   for (auto F : SplitFlags) {
1691     auto StringF = DINode::getFlagString(F);
1692     assert(!StringF.empty() && "Expected valid flag");
1693     Out << FlagsFS << StringF;
1694   }
1695   if (Extra || SplitFlags.empty())
1696     Out << FlagsFS << Extra;
1697 }
1698 
printEmissionKind(StringRef Name,DICompileUnit::DebugEmissionKind EK)1699 void MDFieldPrinter::printEmissionKind(StringRef Name,
1700                                        DICompileUnit::DebugEmissionKind EK) {
1701   Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
1702 }
1703 
1704 template <class IntTy, class Stringifier>
printDwarfEnum(StringRef Name,IntTy Value,Stringifier toString,bool ShouldSkipZero)1705 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1706                                     Stringifier toString, bool ShouldSkipZero) {
1707   if (!Value)
1708     return;
1709 
1710   Out << FS << Name << ": ";
1711   auto S = toString(Value);
1712   if (!S.empty())
1713     Out << S;
1714   else
1715     Out << Value;
1716 }
1717 
writeGenericDINode(raw_ostream & Out,const GenericDINode * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1718 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1719                                TypePrinting *TypePrinter, SlotTracker *Machine,
1720                                const Module *Context) {
1721   Out << "!GenericDINode(";
1722   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1723   Printer.printTag(N);
1724   Printer.printString("header", N->getHeader());
1725   if (N->getNumDwarfOperands()) {
1726     Out << Printer.FS << "operands: {";
1727     FieldSeparator IFS;
1728     for (auto &I : N->dwarf_operands()) {
1729       Out << IFS;
1730       writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
1731     }
1732     Out << "}";
1733   }
1734   Out << ")";
1735 }
1736 
writeDILocation(raw_ostream & Out,const DILocation * DL,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1737 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1738                             TypePrinting *TypePrinter, SlotTracker *Machine,
1739                             const Module *Context) {
1740   Out << "!DILocation(";
1741   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1742   // Always output the line, since 0 is a relevant and important value for it.
1743   Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1744   Printer.printInt("column", DL->getColumn());
1745   Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1746   Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1747   Out << ")";
1748 }
1749 
writeDISubrange(raw_ostream & Out,const DISubrange * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1750 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1751                             TypePrinting *TypePrinter, SlotTracker *Machine,
1752                             const Module *Context) {
1753   Out << "!DISubrange(";
1754   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1755   if (auto *CE = N->getCount().dyn_cast<ConstantInt*>())
1756     Printer.printInt("count", CE->getSExtValue(), /* ShouldSkipZero */ false);
1757   else
1758     Printer.printMetadata("count", N->getCount().dyn_cast<DIVariable*>(),
1759                           /*ShouldSkipNull */ false);
1760   Printer.printInt("lowerBound", N->getLowerBound());
1761   Out << ")";
1762 }
1763 
writeDIEnumerator(raw_ostream & Out,const DIEnumerator * N,TypePrinting *,SlotTracker *,const Module *)1764 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1765                               TypePrinting *, SlotTracker *, const Module *) {
1766   Out << "!DIEnumerator(";
1767   MDFieldPrinter Printer(Out);
1768   Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1769   if (N->isUnsigned()) {
1770     auto Value = static_cast<uint64_t>(N->getValue());
1771     Printer.printInt("value", Value, /* ShouldSkipZero */ false);
1772     Printer.printBool("isUnsigned", true);
1773   } else {
1774     Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false);
1775   }
1776   Out << ")";
1777 }
1778 
writeDIBasicType(raw_ostream & Out,const DIBasicType * N,TypePrinting *,SlotTracker *,const Module *)1779 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
1780                              TypePrinting *, SlotTracker *, const Module *) {
1781   Out << "!DIBasicType(";
1782   MDFieldPrinter Printer(Out);
1783   if (N->getTag() != dwarf::DW_TAG_base_type)
1784     Printer.printTag(N);
1785   Printer.printString("name", N->getName());
1786   Printer.printInt("size", N->getSizeInBits());
1787   Printer.printInt("align", N->getAlignInBits());
1788   Printer.printDwarfEnum("encoding", N->getEncoding(),
1789                          dwarf::AttributeEncodingString);
1790   Out << ")";
1791 }
1792 
writeDIDerivedType(raw_ostream & Out,const DIDerivedType * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1793 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
1794                                TypePrinting *TypePrinter, SlotTracker *Machine,
1795                                const Module *Context) {
1796   Out << "!DIDerivedType(";
1797   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1798   Printer.printTag(N);
1799   Printer.printString("name", N->getName());
1800   Printer.printMetadata("scope", N->getRawScope());
1801   Printer.printMetadata("file", N->getRawFile());
1802   Printer.printInt("line", N->getLine());
1803   Printer.printMetadata("baseType", N->getRawBaseType(),
1804                         /* ShouldSkipNull */ false);
1805   Printer.printInt("size", N->getSizeInBits());
1806   Printer.printInt("align", N->getAlignInBits());
1807   Printer.printInt("offset", N->getOffsetInBits());
1808   Printer.printDIFlags("flags", N->getFlags());
1809   Printer.printMetadata("extraData", N->getRawExtraData());
1810   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1811     Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
1812                      /* ShouldSkipZero */ false);
1813   Out << ")";
1814 }
1815 
writeDICompositeType(raw_ostream & Out,const DICompositeType * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1816 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
1817                                  TypePrinting *TypePrinter,
1818                                  SlotTracker *Machine, const Module *Context) {
1819   Out << "!DICompositeType(";
1820   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1821   Printer.printTag(N);
1822   Printer.printString("name", N->getName());
1823   Printer.printMetadata("scope", N->getRawScope());
1824   Printer.printMetadata("file", N->getRawFile());
1825   Printer.printInt("line", N->getLine());
1826   Printer.printMetadata("baseType", N->getRawBaseType());
1827   Printer.printInt("size", N->getSizeInBits());
1828   Printer.printInt("align", N->getAlignInBits());
1829   Printer.printInt("offset", N->getOffsetInBits());
1830   Printer.printDIFlags("flags", N->getFlags());
1831   Printer.printMetadata("elements", N->getRawElements());
1832   Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
1833                          dwarf::LanguageString);
1834   Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
1835   Printer.printMetadata("templateParams", N->getRawTemplateParams());
1836   Printer.printString("identifier", N->getIdentifier());
1837   Printer.printMetadata("discriminator", N->getRawDiscriminator());
1838   Out << ")";
1839 }
1840 
writeDISubroutineType(raw_ostream & Out,const DISubroutineType * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1841 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
1842                                   TypePrinting *TypePrinter,
1843                                   SlotTracker *Machine, const Module *Context) {
1844   Out << "!DISubroutineType(";
1845   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1846   Printer.printDIFlags("flags", N->getFlags());
1847   Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
1848   Printer.printMetadata("types", N->getRawTypeArray(),
1849                         /* ShouldSkipNull */ false);
1850   Out << ")";
1851 }
1852 
writeDIFile(raw_ostream & Out,const DIFile * N,TypePrinting *,SlotTracker *,const Module *)1853 static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
1854                         SlotTracker *, const Module *) {
1855   Out << "!DIFile(";
1856   MDFieldPrinter Printer(Out);
1857   Printer.printString("filename", N->getFilename(),
1858                       /* ShouldSkipEmpty */ false);
1859   Printer.printString("directory", N->getDirectory(),
1860                       /* ShouldSkipEmpty */ false);
1861   // Print all values for checksum together, or not at all.
1862   if (N->getChecksum())
1863     Printer.printChecksum(*N->getChecksum());
1864   Printer.printString("source", N->getSource().getValueOr(StringRef()),
1865                       /* ShouldSkipEmpty */ true);
1866   Out << ")";
1867 }
1868 
writeDICompileUnit(raw_ostream & Out,const DICompileUnit * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1869 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
1870                                TypePrinting *TypePrinter, SlotTracker *Machine,
1871                                const Module *Context) {
1872   Out << "!DICompileUnit(";
1873   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1874   Printer.printDwarfEnum("language", N->getSourceLanguage(),
1875                          dwarf::LanguageString, /* ShouldSkipZero */ false);
1876   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
1877   Printer.printString("producer", N->getProducer());
1878   Printer.printBool("isOptimized", N->isOptimized());
1879   Printer.printString("flags", N->getFlags());
1880   Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
1881                    /* ShouldSkipZero */ false);
1882   Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
1883   Printer.printEmissionKind("emissionKind", N->getEmissionKind());
1884   Printer.printMetadata("enums", N->getRawEnumTypes());
1885   Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
1886   Printer.printMetadata("globals", N->getRawGlobalVariables());
1887   Printer.printMetadata("imports", N->getRawImportedEntities());
1888   Printer.printMetadata("macros", N->getRawMacros());
1889   Printer.printInt("dwoId", N->getDWOId());
1890   Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
1891   Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
1892                     false);
1893   Printer.printBool("gnuPubnames", N->getGnuPubnames(), false);
1894   Out << ")";
1895 }
1896 
writeDISubprogram(raw_ostream & Out,const DISubprogram * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1897 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
1898                               TypePrinting *TypePrinter, SlotTracker *Machine,
1899                               const Module *Context) {
1900   Out << "!DISubprogram(";
1901   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1902   Printer.printString("name", N->getName());
1903   Printer.printString("linkageName", N->getLinkageName());
1904   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1905   Printer.printMetadata("file", N->getRawFile());
1906   Printer.printInt("line", N->getLine());
1907   Printer.printMetadata("type", N->getRawType());
1908   Printer.printBool("isLocal", N->isLocalToUnit());
1909   Printer.printBool("isDefinition", N->isDefinition());
1910   Printer.printInt("scopeLine", N->getScopeLine());
1911   Printer.printMetadata("containingType", N->getRawContainingType());
1912   Printer.printDwarfEnum("virtuality", N->getVirtuality(),
1913                          dwarf::VirtualityString);
1914   if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
1915       N->getVirtualIndex() != 0)
1916     Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
1917   Printer.printInt("thisAdjustment", N->getThisAdjustment());
1918   Printer.printDIFlags("flags", N->getFlags());
1919   Printer.printBool("isOptimized", N->isOptimized());
1920   Printer.printMetadata("unit", N->getRawUnit());
1921   Printer.printMetadata("templateParams", N->getRawTemplateParams());
1922   Printer.printMetadata("declaration", N->getRawDeclaration());
1923   Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
1924   Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
1925   Out << ")";
1926 }
1927 
writeDILexicalBlock(raw_ostream & Out,const DILexicalBlock * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1928 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
1929                                 TypePrinting *TypePrinter, SlotTracker *Machine,
1930                                 const Module *Context) {
1931   Out << "!DILexicalBlock(";
1932   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1933   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1934   Printer.printMetadata("file", N->getRawFile());
1935   Printer.printInt("line", N->getLine());
1936   Printer.printInt("column", N->getColumn());
1937   Out << ")";
1938 }
1939 
writeDILexicalBlockFile(raw_ostream & Out,const DILexicalBlockFile * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1940 static void writeDILexicalBlockFile(raw_ostream &Out,
1941                                     const DILexicalBlockFile *N,
1942                                     TypePrinting *TypePrinter,
1943                                     SlotTracker *Machine,
1944                                     const Module *Context) {
1945   Out << "!DILexicalBlockFile(";
1946   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1947   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1948   Printer.printMetadata("file", N->getRawFile());
1949   Printer.printInt("discriminator", N->getDiscriminator(),
1950                    /* ShouldSkipZero */ false);
1951   Out << ")";
1952 }
1953 
writeDINamespace(raw_ostream & Out,const DINamespace * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1954 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
1955                              TypePrinting *TypePrinter, SlotTracker *Machine,
1956                              const Module *Context) {
1957   Out << "!DINamespace(";
1958   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1959   Printer.printString("name", N->getName());
1960   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1961   Printer.printBool("exportSymbols", N->getExportSymbols(), false);
1962   Out << ")";
1963 }
1964 
writeDIMacro(raw_ostream & Out,const DIMacro * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1965 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
1966                          TypePrinting *TypePrinter, SlotTracker *Machine,
1967                          const Module *Context) {
1968   Out << "!DIMacro(";
1969   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1970   Printer.printMacinfoType(N);
1971   Printer.printInt("line", N->getLine());
1972   Printer.printString("name", N->getName());
1973   Printer.printString("value", N->getValue());
1974   Out << ")";
1975 }
1976 
writeDIMacroFile(raw_ostream & Out,const DIMacroFile * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1977 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
1978                              TypePrinting *TypePrinter, SlotTracker *Machine,
1979                              const Module *Context) {
1980   Out << "!DIMacroFile(";
1981   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1982   Printer.printInt("line", N->getLine());
1983   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
1984   Printer.printMetadata("nodes", N->getRawElements());
1985   Out << ")";
1986 }
1987 
writeDIModule(raw_ostream & Out,const DIModule * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1988 static void writeDIModule(raw_ostream &Out, const DIModule *N,
1989                           TypePrinting *TypePrinter, SlotTracker *Machine,
1990                           const Module *Context) {
1991   Out << "!DIModule(";
1992   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1993   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1994   Printer.printString("name", N->getName());
1995   Printer.printString("configMacros", N->getConfigurationMacros());
1996   Printer.printString("includePath", N->getIncludePath());
1997   Printer.printString("isysroot", N->getISysRoot());
1998   Out << ")";
1999 }
2000 
2001 
writeDITemplateTypeParameter(raw_ostream & Out,const DITemplateTypeParameter * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2002 static void writeDITemplateTypeParameter(raw_ostream &Out,
2003                                          const DITemplateTypeParameter *N,
2004                                          TypePrinting *TypePrinter,
2005                                          SlotTracker *Machine,
2006                                          const Module *Context) {
2007   Out << "!DITemplateTypeParameter(";
2008   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2009   Printer.printString("name", N->getName());
2010   Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
2011   Out << ")";
2012 }
2013 
writeDITemplateValueParameter(raw_ostream & Out,const DITemplateValueParameter * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2014 static void writeDITemplateValueParameter(raw_ostream &Out,
2015                                           const DITemplateValueParameter *N,
2016                                           TypePrinting *TypePrinter,
2017                                           SlotTracker *Machine,
2018                                           const Module *Context) {
2019   Out << "!DITemplateValueParameter(";
2020   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2021   if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
2022     Printer.printTag(N);
2023   Printer.printString("name", N->getName());
2024   Printer.printMetadata("type", N->getRawType());
2025   Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
2026   Out << ")";
2027 }
2028 
writeDIGlobalVariable(raw_ostream & Out,const DIGlobalVariable * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2029 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
2030                                   TypePrinting *TypePrinter,
2031                                   SlotTracker *Machine, const Module *Context) {
2032   Out << "!DIGlobalVariable(";
2033   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2034   Printer.printString("name", N->getName());
2035   Printer.printString("linkageName", N->getLinkageName());
2036   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2037   Printer.printMetadata("file", N->getRawFile());
2038   Printer.printInt("line", N->getLine());
2039   Printer.printMetadata("type", N->getRawType());
2040   Printer.printBool("isLocal", N->isLocalToUnit());
2041   Printer.printBool("isDefinition", N->isDefinition());
2042   Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
2043   Printer.printInt("align", N->getAlignInBits());
2044   Out << ")";
2045 }
2046 
writeDILocalVariable(raw_ostream & Out,const DILocalVariable * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2047 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
2048                                  TypePrinting *TypePrinter,
2049                                  SlotTracker *Machine, const Module *Context) {
2050   Out << "!DILocalVariable(";
2051   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2052   Printer.printString("name", N->getName());
2053   Printer.printInt("arg", N->getArg());
2054   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2055   Printer.printMetadata("file", N->getRawFile());
2056   Printer.printInt("line", N->getLine());
2057   Printer.printMetadata("type", N->getRawType());
2058   Printer.printDIFlags("flags", N->getFlags());
2059   Printer.printInt("align", N->getAlignInBits());
2060   Out << ")";
2061 }
2062 
writeDILabel(raw_ostream & Out,const DILabel * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2063 static void writeDILabel(raw_ostream &Out, const DILabel *N,
2064                          TypePrinting *TypePrinter,
2065                          SlotTracker *Machine, const Module *Context) {
2066   Out << "!DILabel(";
2067   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2068   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2069   Printer.printString("name", N->getName());
2070   Printer.printMetadata("file", N->getRawFile());
2071   Printer.printInt("line", N->getLine());
2072   Out << ")";
2073 }
2074 
writeDIExpression(raw_ostream & Out,const DIExpression * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2075 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
2076                               TypePrinting *TypePrinter, SlotTracker *Machine,
2077                               const Module *Context) {
2078   Out << "!DIExpression(";
2079   FieldSeparator FS;
2080   if (N->isValid()) {
2081     for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) {
2082       auto OpStr = dwarf::OperationEncodingString(I->getOp());
2083       assert(!OpStr.empty() && "Expected valid opcode");
2084 
2085       Out << FS << OpStr;
2086       for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A)
2087         Out << FS << I->getArg(A);
2088     }
2089   } else {
2090     for (const auto &I : N->getElements())
2091       Out << FS << I;
2092   }
2093   Out << ")";
2094 }
2095 
writeDIGlobalVariableExpression(raw_ostream & Out,const DIGlobalVariableExpression * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2096 static void writeDIGlobalVariableExpression(raw_ostream &Out,
2097                                             const DIGlobalVariableExpression *N,
2098                                             TypePrinting *TypePrinter,
2099                                             SlotTracker *Machine,
2100                                             const Module *Context) {
2101   Out << "!DIGlobalVariableExpression(";
2102   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2103   Printer.printMetadata("var", N->getVariable());
2104   Printer.printMetadata("expr", N->getExpression());
2105   Out << ")";
2106 }
2107 
writeDIObjCProperty(raw_ostream & Out,const DIObjCProperty * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2108 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
2109                                 TypePrinting *TypePrinter, SlotTracker *Machine,
2110                                 const Module *Context) {
2111   Out << "!DIObjCProperty(";
2112   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2113   Printer.printString("name", N->getName());
2114   Printer.printMetadata("file", N->getRawFile());
2115   Printer.printInt("line", N->getLine());
2116   Printer.printString("setter", N->getSetterName());
2117   Printer.printString("getter", N->getGetterName());
2118   Printer.printInt("attributes", N->getAttributes());
2119   Printer.printMetadata("type", N->getRawType());
2120   Out << ")";
2121 }
2122 
writeDIImportedEntity(raw_ostream & Out,const DIImportedEntity * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2123 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
2124                                   TypePrinting *TypePrinter,
2125                                   SlotTracker *Machine, const Module *Context) {
2126   Out << "!DIImportedEntity(";
2127   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2128   Printer.printTag(N);
2129   Printer.printString("name", N->getName());
2130   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2131   Printer.printMetadata("entity", N->getRawEntity());
2132   Printer.printMetadata("file", N->getRawFile());
2133   Printer.printInt("line", N->getLine());
2134   Out << ")";
2135 }
2136 
WriteMDNodeBodyInternal(raw_ostream & Out,const MDNode * Node,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2137 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
2138                                     TypePrinting *TypePrinter,
2139                                     SlotTracker *Machine,
2140                                     const Module *Context) {
2141   if (Node->isDistinct())
2142     Out << "distinct ";
2143   else if (Node->isTemporary())
2144     Out << "<temporary!> "; // Handle broken code.
2145 
2146   switch (Node->getMetadataID()) {
2147   default:
2148     llvm_unreachable("Expected uniquable MDNode");
2149 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
2150   case Metadata::CLASS##Kind:                                                  \
2151     write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context);       \
2152     break;
2153 #include "llvm/IR/Metadata.def"
2154   }
2155 }
2156 
2157 // Full implementation of printing a Value as an operand with support for
2158 // TypePrinting, etc.
WriteAsOperandInternal(raw_ostream & Out,const Value * V,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2159 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
2160                                    TypePrinting *TypePrinter,
2161                                    SlotTracker *Machine,
2162                                    const Module *Context) {
2163   if (V->hasName()) {
2164     PrintLLVMName(Out, V);
2165     return;
2166   }
2167 
2168   const Constant *CV = dyn_cast<Constant>(V);
2169   if (CV && !isa<GlobalValue>(CV)) {
2170     assert(TypePrinter && "Constants require TypePrinting!");
2171     WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
2172     return;
2173   }
2174 
2175   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2176     Out << "asm ";
2177     if (IA->hasSideEffects())
2178       Out << "sideeffect ";
2179     if (IA->isAlignStack())
2180       Out << "alignstack ";
2181     // We don't emit the AD_ATT dialect as it's the assumed default.
2182     if (IA->getDialect() == InlineAsm::AD_Intel)
2183       Out << "inteldialect ";
2184     Out << '"';
2185     printEscapedString(IA->getAsmString(), Out);
2186     Out << "\", \"";
2187     printEscapedString(IA->getConstraintString(), Out);
2188     Out << '"';
2189     return;
2190   }
2191 
2192   if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
2193     WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
2194                            Context, /* FromValue */ true);
2195     return;
2196   }
2197 
2198   char Prefix = '%';
2199   int Slot;
2200   // If we have a SlotTracker, use it.
2201   if (Machine) {
2202     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2203       Slot = Machine->getGlobalSlot(GV);
2204       Prefix = '@';
2205     } else {
2206       Slot = Machine->getLocalSlot(V);
2207 
2208       // If the local value didn't succeed, then we may be referring to a value
2209       // from a different function.  Translate it, as this can happen when using
2210       // address of blocks.
2211       if (Slot == -1)
2212         if ((Machine = createSlotTracker(V))) {
2213           Slot = Machine->getLocalSlot(V);
2214           delete Machine;
2215         }
2216     }
2217   } else if ((Machine = createSlotTracker(V))) {
2218     // Otherwise, create one to get the # and then destroy it.
2219     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2220       Slot = Machine->getGlobalSlot(GV);
2221       Prefix = '@';
2222     } else {
2223       Slot = Machine->getLocalSlot(V);
2224     }
2225     delete Machine;
2226     Machine = nullptr;
2227   } else {
2228     Slot = -1;
2229   }
2230 
2231   if (Slot != -1)
2232     Out << Prefix << Slot;
2233   else
2234     Out << "<badref>";
2235 }
2236 
WriteAsOperandInternal(raw_ostream & Out,const Metadata * MD,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context,bool FromValue)2237 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2238                                    TypePrinting *TypePrinter,
2239                                    SlotTracker *Machine, const Module *Context,
2240                                    bool FromValue) {
2241   // Write DIExpressions inline when used as a value. Improves readability of
2242   // debug info intrinsics.
2243   if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
2244     writeDIExpression(Out, Expr, TypePrinter, Machine, Context);
2245     return;
2246   }
2247 
2248   if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2249     std::unique_ptr<SlotTracker> MachineStorage;
2250     if (!Machine) {
2251       MachineStorage = make_unique<SlotTracker>(Context);
2252       Machine = MachineStorage.get();
2253     }
2254     int Slot = Machine->getMetadataSlot(N);
2255     if (Slot == -1)
2256       // Give the pointer value instead of "badref", since this comes up all
2257       // the time when debugging.
2258       Out << "<" << N << ">";
2259     else
2260       Out << '!' << Slot;
2261     return;
2262   }
2263 
2264   if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2265     Out << "!\"";
2266     printEscapedString(MDS->getString(), Out);
2267     Out << '"';
2268     return;
2269   }
2270 
2271   auto *V = cast<ValueAsMetadata>(MD);
2272   assert(TypePrinter && "TypePrinter required for metadata values");
2273   assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2274          "Unexpected function-local metadata outside of value argument");
2275 
2276   TypePrinter->print(V->getValue()->getType(), Out);
2277   Out << ' ';
2278   WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
2279 }
2280 
2281 namespace {
2282 
2283 class AssemblyWriter {
2284   formatted_raw_ostream &Out;
2285   const Module *TheModule = nullptr;
2286   const ModuleSummaryIndex *TheIndex = nullptr;
2287   std::unique_ptr<SlotTracker> SlotTrackerStorage;
2288   SlotTracker &Machine;
2289   TypePrinting TypePrinter;
2290   AssemblyAnnotationWriter *AnnotationWriter = nullptr;
2291   SetVector<const Comdat *> Comdats;
2292   bool IsForDebug;
2293   bool ShouldPreserveUseListOrder;
2294   UseListOrderStack UseListOrders;
2295   SmallVector<StringRef, 8> MDNames;
2296   /// Synchronization scope names registered with LLVMContext.
2297   SmallVector<StringRef, 8> SSNs;
2298   DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2299 
2300 public:
2301   /// Construct an AssemblyWriter with an external SlotTracker
2302   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2303                  AssemblyAnnotationWriter *AAW, bool IsForDebug,
2304                  bool ShouldPreserveUseListOrder = false);
2305 
2306   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2307                  const ModuleSummaryIndex *Index, bool IsForDebug);
2308 
2309   void printMDNodeBody(const MDNode *MD);
2310   void printNamedMDNode(const NamedMDNode *NMD);
2311 
2312   void printModule(const Module *M);
2313 
2314   void writeOperand(const Value *Op, bool PrintType);
2315   void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2316   void writeOperandBundles(ImmutableCallSite CS);
2317   void writeSyncScope(const LLVMContext &Context,
2318                       SyncScope::ID SSID);
2319   void writeAtomic(const LLVMContext &Context,
2320                    AtomicOrdering Ordering,
2321                    SyncScope::ID SSID);
2322   void writeAtomicCmpXchg(const LLVMContext &Context,
2323                           AtomicOrdering SuccessOrdering,
2324                           AtomicOrdering FailureOrdering,
2325                           SyncScope::ID SSID);
2326 
2327   void writeAllMDNodes();
2328   void writeMDNode(unsigned Slot, const MDNode *Node);
2329   void writeAllAttributeGroups();
2330 
2331   void printTypeIdentities();
2332   void printGlobal(const GlobalVariable *GV);
2333   void printIndirectSymbol(const GlobalIndirectSymbol *GIS);
2334   void printComdat(const Comdat *C);
2335   void printFunction(const Function *F);
2336   void printArgument(const Argument *FA, AttributeSet Attrs);
2337   void printBasicBlock(const BasicBlock *BB);
2338   void printInstructionLine(const Instruction &I);
2339   void printInstruction(const Instruction &I);
2340 
2341   void printUseListOrder(const UseListOrder &Order);
2342   void printUseLists(const Function *F);
2343 
2344   void printModuleSummaryIndex();
2345   void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
2346   void printSummary(const GlobalValueSummary &Summary);
2347   void printAliasSummary(const AliasSummary *AS);
2348   void printGlobalVarSummary(const GlobalVarSummary *GS);
2349   void printFunctionSummary(const FunctionSummary *FS);
2350   void printTypeIdSummary(const TypeIdSummary &TIS);
2351   void printTypeTestResolution(const TypeTestResolution &TTRes);
2352   void printArgs(const std::vector<uint64_t> &Args);
2353   void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
2354   void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
2355   void printVFuncId(const FunctionSummary::VFuncId VFId);
2356   void
2357   printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> VCallList,
2358                       const char *Tag);
2359   void
2360   printConstVCalls(const std::vector<FunctionSummary::ConstVCall> VCallList,
2361                    const char *Tag);
2362 
2363 private:
2364   /// Print out metadata attachments.
2365   void printMetadataAttachments(
2366       const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2367       StringRef Separator);
2368 
2369   // printInfoComment - Print a little comment after the instruction indicating
2370   // which slot it occupies.
2371   void printInfoComment(const Value &V);
2372 
2373   // printGCRelocateComment - print comment after call to the gc.relocate
2374   // intrinsic indicating base and derived pointer names.
2375   void printGCRelocateComment(const GCRelocateInst &Relocate);
2376 };
2377 
2378 } // end anonymous namespace
2379 
AssemblyWriter(formatted_raw_ostream & o,SlotTracker & Mac,const Module * M,AssemblyAnnotationWriter * AAW,bool IsForDebug,bool ShouldPreserveUseListOrder)2380 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2381                                const Module *M, AssemblyAnnotationWriter *AAW,
2382                                bool IsForDebug, bool ShouldPreserveUseListOrder)
2383     : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
2384       IsForDebug(IsForDebug),
2385       ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2386   if (!TheModule)
2387     return;
2388   for (const GlobalObject &GO : TheModule->global_objects())
2389     if (const Comdat *C = GO.getComdat())
2390       Comdats.insert(C);
2391 }
2392 
AssemblyWriter(formatted_raw_ostream & o,SlotTracker & Mac,const ModuleSummaryIndex * Index,bool IsForDebug)2393 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2394                                const ModuleSummaryIndex *Index, bool IsForDebug)
2395     : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
2396       IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
2397 
writeOperand(const Value * Operand,bool PrintType)2398 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2399   if (!Operand) {
2400     Out << "<null operand!>";
2401     return;
2402   }
2403   if (PrintType) {
2404     TypePrinter.print(Operand->getType(), Out);
2405     Out << ' ';
2406   }
2407   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2408 }
2409 
writeSyncScope(const LLVMContext & Context,SyncScope::ID SSID)2410 void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2411                                     SyncScope::ID SSID) {
2412   switch (SSID) {
2413   case SyncScope::System: {
2414     break;
2415   }
2416   default: {
2417     if (SSNs.empty())
2418       Context.getSyncScopeNames(SSNs);
2419 
2420     Out << " syncscope(\"";
2421     printEscapedString(SSNs[SSID], Out);
2422     Out << "\")";
2423     break;
2424   }
2425   }
2426 }
2427 
writeAtomic(const LLVMContext & Context,AtomicOrdering Ordering,SyncScope::ID SSID)2428 void AssemblyWriter::writeAtomic(const LLVMContext &Context,
2429                                  AtomicOrdering Ordering,
2430                                  SyncScope::ID SSID) {
2431   if (Ordering == AtomicOrdering::NotAtomic)
2432     return;
2433 
2434   writeSyncScope(Context, SSID);
2435   Out << " " << toIRString(Ordering);
2436 }
2437 
writeAtomicCmpXchg(const LLVMContext & Context,AtomicOrdering SuccessOrdering,AtomicOrdering FailureOrdering,SyncScope::ID SSID)2438 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
2439                                         AtomicOrdering SuccessOrdering,
2440                                         AtomicOrdering FailureOrdering,
2441                                         SyncScope::ID SSID) {
2442   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2443          FailureOrdering != AtomicOrdering::NotAtomic);
2444 
2445   writeSyncScope(Context, SSID);
2446   Out << " " << toIRString(SuccessOrdering);
2447   Out << " " << toIRString(FailureOrdering);
2448 }
2449 
writeParamOperand(const Value * Operand,AttributeSet Attrs)2450 void AssemblyWriter::writeParamOperand(const Value *Operand,
2451                                        AttributeSet Attrs) {
2452   if (!Operand) {
2453     Out << "<null operand!>";
2454     return;
2455   }
2456 
2457   // Print the type
2458   TypePrinter.print(Operand->getType(), Out);
2459   // Print parameter attributes list
2460   if (Attrs.hasAttributes())
2461     Out << ' ' << Attrs.getAsString();
2462   Out << ' ';
2463   // Print the operand
2464   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2465 }
2466 
writeOperandBundles(ImmutableCallSite CS)2467 void AssemblyWriter::writeOperandBundles(ImmutableCallSite CS) {
2468   if (!CS.hasOperandBundles())
2469     return;
2470 
2471   Out << " [ ";
2472 
2473   bool FirstBundle = true;
2474   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2475     OperandBundleUse BU = CS.getOperandBundleAt(i);
2476 
2477     if (!FirstBundle)
2478       Out << ", ";
2479     FirstBundle = false;
2480 
2481     Out << '"';
2482     printEscapedString(BU.getTagName(), Out);
2483     Out << '"';
2484 
2485     Out << '(';
2486 
2487     bool FirstInput = true;
2488     for (const auto &Input : BU.Inputs) {
2489       if (!FirstInput)
2490         Out << ", ";
2491       FirstInput = false;
2492 
2493       TypePrinter.print(Input->getType(), Out);
2494       Out << " ";
2495       WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule);
2496     }
2497 
2498     Out << ')';
2499   }
2500 
2501   Out << " ]";
2502 }
2503 
printModule(const Module * M)2504 void AssemblyWriter::printModule(const Module *M) {
2505   Machine.initializeIfNeeded();
2506 
2507   if (ShouldPreserveUseListOrder)
2508     UseListOrders = predictUseListOrder(M);
2509 
2510   if (!M->getModuleIdentifier().empty() &&
2511       // Don't print the ID if it will start a new line (which would
2512       // require a comment char before it).
2513       M->getModuleIdentifier().find('\n') == std::string::npos)
2514     Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2515 
2516   if (!M->getSourceFileName().empty()) {
2517     Out << "source_filename = \"";
2518     printEscapedString(M->getSourceFileName(), Out);
2519     Out << "\"\n";
2520   }
2521 
2522   const std::string &DL = M->getDataLayoutStr();
2523   if (!DL.empty())
2524     Out << "target datalayout = \"" << DL << "\"\n";
2525   if (!M->getTargetTriple().empty())
2526     Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2527 
2528   if (!M->getModuleInlineAsm().empty()) {
2529     Out << '\n';
2530 
2531     // Split the string into lines, to make it easier to read the .ll file.
2532     StringRef Asm = M->getModuleInlineAsm();
2533     do {
2534       StringRef Front;
2535       std::tie(Front, Asm) = Asm.split('\n');
2536 
2537       // We found a newline, print the portion of the asm string from the
2538       // last newline up to this newline.
2539       Out << "module asm \"";
2540       printEscapedString(Front, Out);
2541       Out << "\"\n";
2542     } while (!Asm.empty());
2543   }
2544 
2545   printTypeIdentities();
2546 
2547   // Output all comdats.
2548   if (!Comdats.empty())
2549     Out << '\n';
2550   for (const Comdat *C : Comdats) {
2551     printComdat(C);
2552     if (C != Comdats.back())
2553       Out << '\n';
2554   }
2555 
2556   // Output all globals.
2557   if (!M->global_empty()) Out << '\n';
2558   for (const GlobalVariable &GV : M->globals()) {
2559     printGlobal(&GV); Out << '\n';
2560   }
2561 
2562   // Output all aliases.
2563   if (!M->alias_empty()) Out << "\n";
2564   for (const GlobalAlias &GA : M->aliases())
2565     printIndirectSymbol(&GA);
2566 
2567   // Output all ifuncs.
2568   if (!M->ifunc_empty()) Out << "\n";
2569   for (const GlobalIFunc &GI : M->ifuncs())
2570     printIndirectSymbol(&GI);
2571 
2572   // Output global use-lists.
2573   printUseLists(nullptr);
2574 
2575   // Output all of the functions.
2576   for (const Function &F : *M)
2577     printFunction(&F);
2578   assert(UseListOrders.empty() && "All use-lists should have been consumed");
2579 
2580   // Output all attribute groups.
2581   if (!Machine.as_empty()) {
2582     Out << '\n';
2583     writeAllAttributeGroups();
2584   }
2585 
2586   // Output named metadata.
2587   if (!M->named_metadata_empty()) Out << '\n';
2588 
2589   for (const NamedMDNode &Node : M->named_metadata())
2590     printNamedMDNode(&Node);
2591 
2592   // Output metadata.
2593   if (!Machine.mdn_empty()) {
2594     Out << '\n';
2595     writeAllMDNodes();
2596   }
2597 }
2598 
printModuleSummaryIndex()2599 void AssemblyWriter::printModuleSummaryIndex() {
2600   assert(TheIndex);
2601   Machine.initializeIndexIfNeeded();
2602 
2603   Out << "\n";
2604 
2605   // Print module path entries. To print in order, add paths to a vector
2606   // indexed by module slot.
2607   std::vector<std::pair<std::string, ModuleHash>> moduleVec;
2608   std::string RegularLTOModuleName = "[Regular LTO]";
2609   moduleVec.resize(TheIndex->modulePaths().size());
2610   for (auto &ModPath : TheIndex->modulePaths())
2611     moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair(
2612         // A module id of -1 is a special entry for a regular LTO module created
2613         // during the thin link.
2614         ModPath.second.first == -1u ? RegularLTOModuleName
2615                                     : (std::string)ModPath.first(),
2616         ModPath.second.second);
2617 
2618   unsigned i = 0;
2619   for (auto &ModPair : moduleVec) {
2620     Out << "^" << i++ << " = module: (";
2621     Out << "path: \"";
2622     printEscapedString(ModPair.first, Out);
2623     Out << "\", hash: (";
2624     FieldSeparator FS;
2625     for (auto Hash : ModPair.second)
2626       Out << FS << Hash;
2627     Out << "))\n";
2628   }
2629 
2630   // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
2631   // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
2632   for (auto &GlobalList : *TheIndex) {
2633     auto GUID = GlobalList.first;
2634     for (auto &Summary : GlobalList.second.SummaryList)
2635       SummaryToGUIDMap[Summary.get()] = GUID;
2636   }
2637 
2638   // Print the global value summary entries.
2639   for (auto &GlobalList : *TheIndex) {
2640     auto GUID = GlobalList.first;
2641     auto VI = TheIndex->getValueInfo(GlobalList);
2642     printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
2643   }
2644 
2645   // Print the TypeIdMap entries.
2646   for (auto &TId : TheIndex->typeIds()) {
2647     auto GUID = GlobalValue::getGUID(TId.first);
2648     Out << "^" << Machine.getGUIDSlot(GUID) << " = typeid: (name: \""
2649         << TId.first << "\"";
2650     printTypeIdSummary(TId.second);
2651     Out << ") ; guid = " << GUID << "\n";
2652   }
2653 }
2654 
2655 static const char *
getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K)2656 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
2657   switch (K) {
2658   case WholeProgramDevirtResolution::Indir:
2659     return "indir";
2660   case WholeProgramDevirtResolution::SingleImpl:
2661     return "singleImpl";
2662   case WholeProgramDevirtResolution::BranchFunnel:
2663     return "branchFunnel";
2664   }
2665   llvm_unreachable("invalid WholeProgramDevirtResolution kind");
2666 }
2667 
getWholeProgDevirtResByArgKindName(WholeProgramDevirtResolution::ByArg::Kind K)2668 static const char *getWholeProgDevirtResByArgKindName(
2669     WholeProgramDevirtResolution::ByArg::Kind K) {
2670   switch (K) {
2671   case WholeProgramDevirtResolution::ByArg::Indir:
2672     return "indir";
2673   case WholeProgramDevirtResolution::ByArg::UniformRetVal:
2674     return "uniformRetVal";
2675   case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
2676     return "uniqueRetVal";
2677   case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
2678     return "virtualConstProp";
2679   }
2680   llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
2681 }
2682 
getTTResKindName(TypeTestResolution::Kind K)2683 static const char *getTTResKindName(TypeTestResolution::Kind K) {
2684   switch (K) {
2685   case TypeTestResolution::Unsat:
2686     return "unsat";
2687   case TypeTestResolution::ByteArray:
2688     return "byteArray";
2689   case TypeTestResolution::Inline:
2690     return "inline";
2691   case TypeTestResolution::Single:
2692     return "single";
2693   case TypeTestResolution::AllOnes:
2694     return "allOnes";
2695   }
2696   llvm_unreachable("invalid TypeTestResolution kind");
2697 }
2698 
printTypeTestResolution(const TypeTestResolution & TTRes)2699 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
2700   Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
2701       << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
2702 
2703   // The following fields are only used if the target does not support the use
2704   // of absolute symbols to store constants. Print only if non-zero.
2705   if (TTRes.AlignLog2)
2706     Out << ", alignLog2: " << TTRes.AlignLog2;
2707   if (TTRes.SizeM1)
2708     Out << ", sizeM1: " << TTRes.SizeM1;
2709   if (TTRes.BitMask)
2710     // BitMask is uint8_t which causes it to print the corresponding char.
2711     Out << ", bitMask: " << (unsigned)TTRes.BitMask;
2712   if (TTRes.InlineBits)
2713     Out << ", inlineBits: " << TTRes.InlineBits;
2714 
2715   Out << ")";
2716 }
2717 
printTypeIdSummary(const TypeIdSummary & TIS)2718 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
2719   Out << ", summary: (";
2720   printTypeTestResolution(TIS.TTRes);
2721   if (!TIS.WPDRes.empty()) {
2722     Out << ", wpdResolutions: (";
2723     FieldSeparator FS;
2724     for (auto &WPDRes : TIS.WPDRes) {
2725       Out << FS;
2726       Out << "(offset: " << WPDRes.first << ", ";
2727       printWPDRes(WPDRes.second);
2728       Out << ")";
2729     }
2730     Out << ")";
2731   }
2732   Out << ")";
2733 }
2734 
printArgs(const std::vector<uint64_t> & Args)2735 void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
2736   Out << "args: (";
2737   FieldSeparator FS;
2738   for (auto arg : Args) {
2739     Out << FS;
2740     Out << arg;
2741   }
2742   Out << ")";
2743 }
2744 
printWPDRes(const WholeProgramDevirtResolution & WPDRes)2745 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
2746   Out << "wpdRes: (kind: ";
2747   Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
2748 
2749   if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
2750     Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
2751 
2752   if (!WPDRes.ResByArg.empty()) {
2753     Out << ", resByArg: (";
2754     FieldSeparator FS;
2755     for (auto &ResByArg : WPDRes.ResByArg) {
2756       Out << FS;
2757       printArgs(ResByArg.first);
2758       Out << ", byArg: (kind: ";
2759       Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
2760       if (ResByArg.second.TheKind ==
2761               WholeProgramDevirtResolution::ByArg::UniformRetVal ||
2762           ResByArg.second.TheKind ==
2763               WholeProgramDevirtResolution::ByArg::UniqueRetVal)
2764         Out << ", info: " << ResByArg.second.Info;
2765 
2766       // The following fields are only used if the target does not support the
2767       // use of absolute symbols to store constants. Print only if non-zero.
2768       if (ResByArg.second.Byte || ResByArg.second.Bit)
2769         Out << ", byte: " << ResByArg.second.Byte
2770             << ", bit: " << ResByArg.second.Bit;
2771 
2772       Out << ")";
2773     }
2774     Out << ")";
2775   }
2776   Out << ")";
2777 }
2778 
getSummaryKindName(GlobalValueSummary::SummaryKind SK)2779 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
2780   switch (SK) {
2781   case GlobalValueSummary::AliasKind:
2782     return "alias";
2783   case GlobalValueSummary::FunctionKind:
2784     return "function";
2785   case GlobalValueSummary::GlobalVarKind:
2786     return "variable";
2787   }
2788   llvm_unreachable("invalid summary kind");
2789 }
2790 
printAliasSummary(const AliasSummary * AS)2791 void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
2792   Out << ", aliasee: ";
2793   // The indexes emitted for distributed backends may not include the
2794   // aliasee summary (only if it is being imported directly). Handle
2795   // that case by just emitting "null" as the aliasee.
2796   if (AS->hasAliasee())
2797     Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
2798   else
2799     Out << "null";
2800 }
2801 
printGlobalVarSummary(const GlobalVarSummary * GS)2802 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
2803   // Nothing for now
2804 }
2805 
getLinkageName(GlobalValue::LinkageTypes LT)2806 static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
2807   switch (LT) {
2808   case GlobalValue::ExternalLinkage:
2809     return "external";
2810   case GlobalValue::PrivateLinkage:
2811     return "private";
2812   case GlobalValue::InternalLinkage:
2813     return "internal";
2814   case GlobalValue::LinkOnceAnyLinkage:
2815     return "linkonce";
2816   case GlobalValue::LinkOnceODRLinkage:
2817     return "linkonce_odr";
2818   case GlobalValue::WeakAnyLinkage:
2819     return "weak";
2820   case GlobalValue::WeakODRLinkage:
2821     return "weak_odr";
2822   case GlobalValue::CommonLinkage:
2823     return "common";
2824   case GlobalValue::AppendingLinkage:
2825     return "appending";
2826   case GlobalValue::ExternalWeakLinkage:
2827     return "extern_weak";
2828   case GlobalValue::AvailableExternallyLinkage:
2829     return "available_externally";
2830   }
2831   llvm_unreachable("invalid linkage");
2832 }
2833 
2834 // When printing the linkage types in IR where the ExternalLinkage is
2835 // not printed, and other linkage types are expected to be printed with
2836 // a space after the name.
getLinkageNameWithSpace(GlobalValue::LinkageTypes LT)2837 static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
2838   if (LT == GlobalValue::ExternalLinkage)
2839     return "";
2840   return getLinkageName(LT) + " ";
2841 }
2842 
getHotnessName(CalleeInfo::HotnessType HT)2843 static const char *getHotnessName(CalleeInfo::HotnessType HT) {
2844   switch (HT) {
2845   case CalleeInfo::HotnessType::Unknown:
2846     return "unknown";
2847   case CalleeInfo::HotnessType::Cold:
2848     return "cold";
2849   case CalleeInfo::HotnessType::None:
2850     return "none";
2851   case CalleeInfo::HotnessType::Hot:
2852     return "hot";
2853   case CalleeInfo::HotnessType::Critical:
2854     return "critical";
2855   }
2856   llvm_unreachable("invalid hotness");
2857 }
2858 
printFunctionSummary(const FunctionSummary * FS)2859 void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
2860   Out << ", insts: " << FS->instCount();
2861 
2862   FunctionSummary::FFlags FFlags = FS->fflags();
2863   if (FFlags.ReadNone | FFlags.ReadOnly | FFlags.NoRecurse |
2864       FFlags.ReturnDoesNotAlias) {
2865     Out << ", funcFlags: (";
2866     Out << "readNone: " << FFlags.ReadNone;
2867     Out << ", readOnly: " << FFlags.ReadOnly;
2868     Out << ", noRecurse: " << FFlags.NoRecurse;
2869     Out << ", returnDoesNotAlias: " << FFlags.ReturnDoesNotAlias;
2870     Out << ")";
2871   }
2872   if (!FS->calls().empty()) {
2873     Out << ", calls: (";
2874     FieldSeparator IFS;
2875     for (auto &Call : FS->calls()) {
2876       Out << IFS;
2877       Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
2878       if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
2879         Out << ", hotness: " << getHotnessName(Call.second.getHotness());
2880       else if (Call.second.RelBlockFreq)
2881         Out << ", relbf: " << Call.second.RelBlockFreq;
2882       Out << ")";
2883     }
2884     Out << ")";
2885   }
2886 
2887   if (const auto *TIdInfo = FS->getTypeIdInfo())
2888     printTypeIdInfo(*TIdInfo);
2889 }
2890 
printTypeIdInfo(const FunctionSummary::TypeIdInfo & TIDInfo)2891 void AssemblyWriter::printTypeIdInfo(
2892     const FunctionSummary::TypeIdInfo &TIDInfo) {
2893   Out << ", typeIdInfo: (";
2894   FieldSeparator TIDFS;
2895   if (!TIDInfo.TypeTests.empty()) {
2896     Out << TIDFS;
2897     Out << "typeTests: (";
2898     FieldSeparator FS;
2899     for (auto &GUID : TIDInfo.TypeTests) {
2900       Out << FS;
2901       auto Slot = Machine.getGUIDSlot(GUID);
2902       if (Slot != -1)
2903         Out << "^" << Slot;
2904       else
2905         Out << GUID;
2906     }
2907     Out << ")";
2908   }
2909   if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
2910     Out << TIDFS;
2911     printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
2912   }
2913   if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
2914     Out << TIDFS;
2915     printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
2916   }
2917   if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
2918     Out << TIDFS;
2919     printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
2920                      "typeTestAssumeConstVCalls");
2921   }
2922   if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
2923     Out << TIDFS;
2924     printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
2925                      "typeCheckedLoadConstVCalls");
2926   }
2927   Out << ")";
2928 }
2929 
printVFuncId(const FunctionSummary::VFuncId VFId)2930 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
2931   Out << "vFuncId: (";
2932   auto Slot = Machine.getGUIDSlot(VFId.GUID);
2933   if (Slot != -1)
2934     Out << "^" << Slot;
2935   else
2936     Out << "guid: " << VFId.GUID;
2937   Out << ", offset: " << VFId.Offset;
2938   Out << ")";
2939 }
2940 
printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> VCallList,const char * Tag)2941 void AssemblyWriter::printNonConstVCalls(
2942     const std::vector<FunctionSummary::VFuncId> VCallList, const char *Tag) {
2943   Out << Tag << ": (";
2944   FieldSeparator FS;
2945   for (auto &VFuncId : VCallList) {
2946     Out << FS;
2947     printVFuncId(VFuncId);
2948   }
2949   Out << ")";
2950 }
2951 
printConstVCalls(const std::vector<FunctionSummary::ConstVCall> VCallList,const char * Tag)2952 void AssemblyWriter::printConstVCalls(
2953     const std::vector<FunctionSummary::ConstVCall> VCallList, const char *Tag) {
2954   Out << Tag << ": (";
2955   FieldSeparator FS;
2956   for (auto &ConstVCall : VCallList) {
2957     Out << FS;
2958     printVFuncId(ConstVCall.VFunc);
2959     if (!ConstVCall.Args.empty()) {
2960       Out << ", ";
2961       printArgs(ConstVCall.Args);
2962     }
2963   }
2964   Out << ")";
2965 }
2966 
printSummary(const GlobalValueSummary & Summary)2967 void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
2968   GlobalValueSummary::GVFlags GVFlags = Summary.flags();
2969   GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
2970   Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
2971   Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
2972       << ", flags: (";
2973   Out << "linkage: " << getLinkageName(LT);
2974   Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
2975   Out << ", live: " << GVFlags.Live;
2976   Out << ", dsoLocal: " << GVFlags.DSOLocal;
2977   Out << ")";
2978 
2979   if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
2980     printAliasSummary(cast<AliasSummary>(&Summary));
2981   else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
2982     printFunctionSummary(cast<FunctionSummary>(&Summary));
2983   else
2984     printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
2985 
2986   auto RefList = Summary.refs();
2987   if (!RefList.empty()) {
2988     Out << ", refs: (";
2989     FieldSeparator FS;
2990     for (auto &Ref : RefList) {
2991       Out << FS;
2992       Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
2993     }
2994     Out << ")";
2995   }
2996 
2997   Out << ")";
2998 }
2999 
printSummaryInfo(unsigned Slot,const ValueInfo & VI)3000 void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
3001   Out << "^" << Slot << " = gv: (";
3002   if (!VI.name().empty())
3003     Out << "name: \"" << VI.name() << "\"";
3004   else
3005     Out << "guid: " << VI.getGUID();
3006   if (!VI.getSummaryList().empty()) {
3007     Out << ", summaries: (";
3008     FieldSeparator FS;
3009     for (auto &Summary : VI.getSummaryList()) {
3010       Out << FS;
3011       printSummary(*Summary);
3012     }
3013     Out << ")";
3014   }
3015   Out << ")";
3016   if (!VI.name().empty())
3017     Out << " ; guid = " << VI.getGUID();
3018   Out << "\n";
3019 }
3020 
printMetadataIdentifier(StringRef Name,formatted_raw_ostream & Out)3021 static void printMetadataIdentifier(StringRef Name,
3022                                     formatted_raw_ostream &Out) {
3023   if (Name.empty()) {
3024     Out << "<empty name> ";
3025   } else {
3026     if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
3027         Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
3028       Out << Name[0];
3029     else
3030       Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
3031     for (unsigned i = 1, e = Name.size(); i != e; ++i) {
3032       unsigned char C = Name[i];
3033       if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
3034           C == '.' || C == '_')
3035         Out << C;
3036       else
3037         Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
3038     }
3039   }
3040 }
3041 
printNamedMDNode(const NamedMDNode * NMD)3042 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
3043   Out << '!';
3044   printMetadataIdentifier(NMD->getName(), Out);
3045   Out << " = !{";
3046   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3047     if (i)
3048       Out << ", ";
3049 
3050     // Write DIExpressions inline.
3051     // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3052     MDNode *Op = NMD->getOperand(i);
3053     if (auto *Expr = dyn_cast<DIExpression>(Op)) {
3054       writeDIExpression(Out, Expr, nullptr, nullptr, nullptr);
3055       continue;
3056     }
3057 
3058     int Slot = Machine.getMetadataSlot(Op);
3059     if (Slot == -1)
3060       Out << "<badref>";
3061     else
3062       Out << '!' << Slot;
3063   }
3064   Out << "}\n";
3065 }
3066 
PrintVisibility(GlobalValue::VisibilityTypes Vis,formatted_raw_ostream & Out)3067 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
3068                             formatted_raw_ostream &Out) {
3069   switch (Vis) {
3070   case GlobalValue::DefaultVisibility: break;
3071   case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
3072   case GlobalValue::ProtectedVisibility: Out << "protected "; break;
3073   }
3074 }
3075 
PrintDSOLocation(const GlobalValue & GV,formatted_raw_ostream & Out)3076 static void PrintDSOLocation(const GlobalValue &GV,
3077                              formatted_raw_ostream &Out) {
3078   // GVs with local linkage or non default visibility are implicitly dso_local,
3079   // so we don't print it.
3080   bool Implicit = GV.hasLocalLinkage() ||
3081                   (!GV.hasExternalWeakLinkage() && !GV.hasDefaultVisibility());
3082   if (GV.isDSOLocal() && !Implicit)
3083     Out << "dso_local ";
3084 }
3085 
PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,formatted_raw_ostream & Out)3086 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
3087                                  formatted_raw_ostream &Out) {
3088   switch (SCT) {
3089   case GlobalValue::DefaultStorageClass: break;
3090   case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
3091   case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
3092   }
3093 }
3094 
PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,formatted_raw_ostream & Out)3095 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
3096                                   formatted_raw_ostream &Out) {
3097   switch (TLM) {
3098     case GlobalVariable::NotThreadLocal:
3099       break;
3100     case GlobalVariable::GeneralDynamicTLSModel:
3101       Out << "thread_local ";
3102       break;
3103     case GlobalVariable::LocalDynamicTLSModel:
3104       Out << "thread_local(localdynamic) ";
3105       break;
3106     case GlobalVariable::InitialExecTLSModel:
3107       Out << "thread_local(initialexec) ";
3108       break;
3109     case GlobalVariable::LocalExecTLSModel:
3110       Out << "thread_local(localexec) ";
3111       break;
3112   }
3113 }
3114 
getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA)3115 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
3116   switch (UA) {
3117   case GlobalVariable::UnnamedAddr::None:
3118     return "";
3119   case GlobalVariable::UnnamedAddr::Local:
3120     return "local_unnamed_addr";
3121   case GlobalVariable::UnnamedAddr::Global:
3122     return "unnamed_addr";
3123   }
3124   llvm_unreachable("Unknown UnnamedAddr");
3125 }
3126 
maybePrintComdat(formatted_raw_ostream & Out,const GlobalObject & GO)3127 static void maybePrintComdat(formatted_raw_ostream &Out,
3128                              const GlobalObject &GO) {
3129   const Comdat *C = GO.getComdat();
3130   if (!C)
3131     return;
3132 
3133   if (isa<GlobalVariable>(GO))
3134     Out << ',';
3135   Out << " comdat";
3136 
3137   if (GO.getName() == C->getName())
3138     return;
3139 
3140   Out << '(';
3141   PrintLLVMName(Out, C->getName(), ComdatPrefix);
3142   Out << ')';
3143 }
3144 
printGlobal(const GlobalVariable * GV)3145 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
3146   if (GV->isMaterializable())
3147     Out << "; Materializable\n";
3148 
3149   WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
3150   Out << " = ";
3151 
3152   if (!GV->hasInitializer() && GV->hasExternalLinkage())
3153     Out << "external ";
3154 
3155   Out << getLinkageNameWithSpace(GV->getLinkage());
3156   PrintDSOLocation(*GV, Out);
3157   PrintVisibility(GV->getVisibility(), Out);
3158   PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
3159   PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
3160   StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
3161   if (!UA.empty())
3162       Out << UA << ' ';
3163 
3164   if (unsigned AddressSpace = GV->getType()->getAddressSpace())
3165     Out << "addrspace(" << AddressSpace << ") ";
3166   if (GV->isExternallyInitialized()) Out << "externally_initialized ";
3167   Out << (GV->isConstant() ? "constant " : "global ");
3168   TypePrinter.print(GV->getValueType(), Out);
3169 
3170   if (GV->hasInitializer()) {
3171     Out << ' ';
3172     writeOperand(GV->getInitializer(), false);
3173   }
3174 
3175   if (GV->hasSection()) {
3176     Out << ", section \"";
3177     printEscapedString(GV->getSection(), Out);
3178     Out << '"';
3179   }
3180   maybePrintComdat(Out, *GV);
3181   if (GV->getAlignment())
3182     Out << ", align " << GV->getAlignment();
3183 
3184   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3185   GV->getAllMetadata(MDs);
3186   printMetadataAttachments(MDs, ", ");
3187 
3188   auto Attrs = GV->getAttributes();
3189   if (Attrs.hasAttributes())
3190     Out << " #" << Machine.getAttributeGroupSlot(Attrs);
3191 
3192   printInfoComment(*GV);
3193 }
3194 
printIndirectSymbol(const GlobalIndirectSymbol * GIS)3195 void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) {
3196   if (GIS->isMaterializable())
3197     Out << "; Materializable\n";
3198 
3199   WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent());
3200   Out << " = ";
3201 
3202   Out << getLinkageNameWithSpace(GIS->getLinkage());
3203   PrintDSOLocation(*GIS, Out);
3204   PrintVisibility(GIS->getVisibility(), Out);
3205   PrintDLLStorageClass(GIS->getDLLStorageClass(), Out);
3206   PrintThreadLocalModel(GIS->getThreadLocalMode(), Out);
3207   StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr());
3208   if (!UA.empty())
3209       Out << UA << ' ';
3210 
3211   if (isa<GlobalAlias>(GIS))
3212     Out << "alias ";
3213   else if (isa<GlobalIFunc>(GIS))
3214     Out << "ifunc ";
3215   else
3216     llvm_unreachable("Not an alias or ifunc!");
3217 
3218   TypePrinter.print(GIS->getValueType(), Out);
3219 
3220   Out << ", ";
3221 
3222   const Constant *IS = GIS->getIndirectSymbol();
3223 
3224   if (!IS) {
3225     TypePrinter.print(GIS->getType(), Out);
3226     Out << " <<NULL ALIASEE>>";
3227   } else {
3228     writeOperand(IS, !isa<ConstantExpr>(IS));
3229   }
3230 
3231   printInfoComment(*GIS);
3232   Out << '\n';
3233 }
3234 
printComdat(const Comdat * C)3235 void AssemblyWriter::printComdat(const Comdat *C) {
3236   C->print(Out);
3237 }
3238 
printTypeIdentities()3239 void AssemblyWriter::printTypeIdentities() {
3240   if (TypePrinter.empty())
3241     return;
3242 
3243   Out << '\n';
3244 
3245   // Emit all numbered types.
3246   auto &NumberedTypes = TypePrinter.getNumberedTypes();
3247   for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
3248     Out << '%' << I << " = type ";
3249 
3250     // Make sure we print out at least one level of the type structure, so
3251     // that we do not get %2 = type %2
3252     TypePrinter.printStructBody(NumberedTypes[I], Out);
3253     Out << '\n';
3254   }
3255 
3256   auto &NamedTypes = TypePrinter.getNamedTypes();
3257   for (unsigned I = 0, E = NamedTypes.size(); I != E; ++I) {
3258     PrintLLVMName(Out, NamedTypes[I]->getName(), LocalPrefix);
3259     Out << " = type ";
3260 
3261     // Make sure we print out at least one level of the type structure, so
3262     // that we do not get %FILE = type %FILE
3263     TypePrinter.printStructBody(NamedTypes[I], Out);
3264     Out << '\n';
3265   }
3266 }
3267 
3268 /// printFunction - Print all aspects of a function.
printFunction(const Function * F)3269 void AssemblyWriter::printFunction(const Function *F) {
3270   // Print out the return type and name.
3271   Out << '\n';
3272 
3273   if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
3274 
3275   if (F->isMaterializable())
3276     Out << "; Materializable\n";
3277 
3278   const AttributeList &Attrs = F->getAttributes();
3279   if (Attrs.hasAttributes(AttributeList::FunctionIndex)) {
3280     AttributeSet AS = Attrs.getFnAttributes();
3281     std::string AttrStr;
3282 
3283     for (const Attribute &Attr : AS) {
3284       if (!Attr.isStringAttribute()) {
3285         if (!AttrStr.empty()) AttrStr += ' ';
3286         AttrStr += Attr.getAsString();
3287       }
3288     }
3289 
3290     if (!AttrStr.empty())
3291       Out << "; Function Attrs: " << AttrStr << '\n';
3292   }
3293 
3294   Machine.incorporateFunction(F);
3295 
3296   if (F->isDeclaration()) {
3297     Out << "declare";
3298     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3299     F->getAllMetadata(MDs);
3300     printMetadataAttachments(MDs, " ");
3301     Out << ' ';
3302   } else
3303     Out << "define ";
3304 
3305   Out << getLinkageNameWithSpace(F->getLinkage());
3306   PrintDSOLocation(*F, Out);
3307   PrintVisibility(F->getVisibility(), Out);
3308   PrintDLLStorageClass(F->getDLLStorageClass(), Out);
3309 
3310   // Print the calling convention.
3311   if (F->getCallingConv() != CallingConv::C) {
3312     PrintCallingConv(F->getCallingConv(), Out);
3313     Out << " ";
3314   }
3315 
3316   FunctionType *FT = F->getFunctionType();
3317   if (Attrs.hasAttributes(AttributeList::ReturnIndex))
3318     Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
3319   TypePrinter.print(F->getReturnType(), Out);
3320   Out << ' ';
3321   WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
3322   Out << '(';
3323 
3324   // Loop over the arguments, printing them...
3325   if (F->isDeclaration() && !IsForDebug) {
3326     // We're only interested in the type here - don't print argument names.
3327     for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
3328       // Insert commas as we go... the first arg doesn't get a comma
3329       if (I)
3330         Out << ", ";
3331       // Output type...
3332       TypePrinter.print(FT->getParamType(I), Out);
3333 
3334       AttributeSet ArgAttrs = Attrs.getParamAttributes(I);
3335       if (ArgAttrs.hasAttributes())
3336         Out << ' ' << ArgAttrs.getAsString();
3337     }
3338   } else {
3339     // The arguments are meaningful here, print them in detail.
3340     for (const Argument &Arg : F->args()) {
3341       // Insert commas as we go... the first arg doesn't get a comma
3342       if (Arg.getArgNo() != 0)
3343         Out << ", ";
3344       printArgument(&Arg, Attrs.getParamAttributes(Arg.getArgNo()));
3345     }
3346   }
3347 
3348   // Finish printing arguments...
3349   if (FT->isVarArg()) {
3350     if (FT->getNumParams()) Out << ", ";
3351     Out << "...";  // Output varargs portion of signature!
3352   }
3353   Out << ')';
3354   StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
3355   if (!UA.empty())
3356     Out << ' ' << UA;
3357   if (Attrs.hasAttributes(AttributeList::FunctionIndex))
3358     Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
3359   if (F->hasSection()) {
3360     Out << " section \"";
3361     printEscapedString(F->getSection(), Out);
3362     Out << '"';
3363   }
3364   maybePrintComdat(Out, *F);
3365   if (F->getAlignment())
3366     Out << " align " << F->getAlignment();
3367   if (F->hasGC())
3368     Out << " gc \"" << F->getGC() << '"';
3369   if (F->hasPrefixData()) {
3370     Out << " prefix ";
3371     writeOperand(F->getPrefixData(), true);
3372   }
3373   if (F->hasPrologueData()) {
3374     Out << " prologue ";
3375     writeOperand(F->getPrologueData(), true);
3376   }
3377   if (F->hasPersonalityFn()) {
3378     Out << " personality ";
3379     writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
3380   }
3381 
3382   if (F->isDeclaration()) {
3383     Out << '\n';
3384   } else {
3385     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3386     F->getAllMetadata(MDs);
3387     printMetadataAttachments(MDs, " ");
3388 
3389     Out << " {";
3390     // Output all of the function's basic blocks.
3391     for (const BasicBlock &BB : *F)
3392       printBasicBlock(&BB);
3393 
3394     // Output the function's use-lists.
3395     printUseLists(F);
3396 
3397     Out << "}\n";
3398   }
3399 
3400   Machine.purgeFunction();
3401 }
3402 
3403 /// printArgument - This member is called for every argument that is passed into
3404 /// the function.  Simply print it out
printArgument(const Argument * Arg,AttributeSet Attrs)3405 void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
3406   // Output type...
3407   TypePrinter.print(Arg->getType(), Out);
3408 
3409   // Output parameter attributes list
3410   if (Attrs.hasAttributes())
3411     Out << ' ' << Attrs.getAsString();
3412 
3413   // Output name, if available...
3414   if (Arg->hasName()) {
3415     Out << ' ';
3416     PrintLLVMName(Out, Arg);
3417   }
3418 }
3419 
3420 /// printBasicBlock - This member is called for each basic block in a method.
printBasicBlock(const BasicBlock * BB)3421 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
3422   if (BB->hasName()) {              // Print out the label if it exists...
3423     Out << "\n";
3424     PrintLLVMName(Out, BB->getName(), LabelPrefix);
3425     Out << ':';
3426   } else if (!BB->use_empty()) {      // Don't print block # of no uses...
3427     Out << "\n; <label>:";
3428     int Slot = Machine.getLocalSlot(BB);
3429     if (Slot != -1)
3430       Out << Slot << ":";
3431     else
3432       Out << "<badref>";
3433   }
3434 
3435   if (!BB->getParent()) {
3436     Out.PadToColumn(50);
3437     Out << "; Error: Block without parent!";
3438   } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
3439     // Output predecessors for the block.
3440     Out.PadToColumn(50);
3441     Out << ";";
3442     const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
3443 
3444     if (PI == PE) {
3445       Out << " No predecessors!";
3446     } else {
3447       Out << " preds = ";
3448       writeOperand(*PI, false);
3449       for (++PI; PI != PE; ++PI) {
3450         Out << ", ";
3451         writeOperand(*PI, false);
3452       }
3453     }
3454   }
3455 
3456   Out << "\n";
3457 
3458   if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
3459 
3460   // Output all of the instructions in the basic block...
3461   for (const Instruction &I : *BB) {
3462     printInstructionLine(I);
3463   }
3464 
3465   if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
3466 }
3467 
3468 /// printInstructionLine - Print an instruction and a newline character.
printInstructionLine(const Instruction & I)3469 void AssemblyWriter::printInstructionLine(const Instruction &I) {
3470   printInstruction(I);
3471   Out << '\n';
3472 }
3473 
3474 /// printGCRelocateComment - print comment after call to the gc.relocate
3475 /// intrinsic indicating base and derived pointer names.
printGCRelocateComment(const GCRelocateInst & Relocate)3476 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
3477   Out << " ; (";
3478   writeOperand(Relocate.getBasePtr(), false);
3479   Out << ", ";
3480   writeOperand(Relocate.getDerivedPtr(), false);
3481   Out << ")";
3482 }
3483 
3484 /// printInfoComment - Print a little comment after the instruction indicating
3485 /// which slot it occupies.
printInfoComment(const Value & V)3486 void AssemblyWriter::printInfoComment(const Value &V) {
3487   if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
3488     printGCRelocateComment(*Relocate);
3489 
3490   if (AnnotationWriter)
3491     AnnotationWriter->printInfoComment(V, Out);
3492 }
3493 
3494 // This member is called for each Instruction in a function..
printInstruction(const Instruction & I)3495 void AssemblyWriter::printInstruction(const Instruction &I) {
3496   if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
3497 
3498   // Print out indentation for an instruction.
3499   Out << "  ";
3500 
3501   // Print out name if it exists...
3502   if (I.hasName()) {
3503     PrintLLVMName(Out, &I);
3504     Out << " = ";
3505   } else if (!I.getType()->isVoidTy()) {
3506     // Print out the def slot taken.
3507     int SlotNum = Machine.getLocalSlot(&I);
3508     if (SlotNum == -1)
3509       Out << "<badref> = ";
3510     else
3511       Out << '%' << SlotNum << " = ";
3512   }
3513 
3514   if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3515     if (CI->isMustTailCall())
3516       Out << "musttail ";
3517     else if (CI->isTailCall())
3518       Out << "tail ";
3519     else if (CI->isNoTailCall())
3520       Out << "notail ";
3521   }
3522 
3523   // Print out the opcode...
3524   Out << I.getOpcodeName();
3525 
3526   // If this is an atomic load or store, print out the atomic marker.
3527   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
3528       (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
3529     Out << " atomic";
3530 
3531   if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
3532     Out << " weak";
3533 
3534   // If this is a volatile operation, print out the volatile marker.
3535   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
3536       (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
3537       (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
3538       (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
3539     Out << " volatile";
3540 
3541   // Print out optimization information.
3542   WriteOptimizationInfo(Out, &I);
3543 
3544   // Print out the compare instruction predicates
3545   if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
3546     Out << ' ' << CmpInst::getPredicateName(CI->getPredicate());
3547 
3548   // Print out the atomicrmw operation
3549   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
3550     writeAtomicRMWOperation(Out, RMWI->getOperation());
3551 
3552   // Print out the type of the operands...
3553   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
3554 
3555   // Special case conditional branches to swizzle the condition out to the front
3556   if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
3557     const BranchInst &BI(cast<BranchInst>(I));
3558     Out << ' ';
3559     writeOperand(BI.getCondition(), true);
3560     Out << ", ";
3561     writeOperand(BI.getSuccessor(0), true);
3562     Out << ", ";
3563     writeOperand(BI.getSuccessor(1), true);
3564 
3565   } else if (isa<SwitchInst>(I)) {
3566     const SwitchInst& SI(cast<SwitchInst>(I));
3567     // Special case switch instruction to get formatting nice and correct.
3568     Out << ' ';
3569     writeOperand(SI.getCondition(), true);
3570     Out << ", ";
3571     writeOperand(SI.getDefaultDest(), true);
3572     Out << " [";
3573     for (auto Case : SI.cases()) {
3574       Out << "\n    ";
3575       writeOperand(Case.getCaseValue(), true);
3576       Out << ", ";
3577       writeOperand(Case.getCaseSuccessor(), true);
3578     }
3579     Out << "\n  ]";
3580   } else if (isa<IndirectBrInst>(I)) {
3581     // Special case indirectbr instruction to get formatting nice and correct.
3582     Out << ' ';
3583     writeOperand(Operand, true);
3584     Out << ", [";
3585 
3586     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
3587       if (i != 1)
3588         Out << ", ";
3589       writeOperand(I.getOperand(i), true);
3590     }
3591     Out << ']';
3592   } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
3593     Out << ' ';
3594     TypePrinter.print(I.getType(), Out);
3595     Out << ' ';
3596 
3597     for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
3598       if (op) Out << ", ";
3599       Out << "[ ";
3600       writeOperand(PN->getIncomingValue(op), false); Out << ", ";
3601       writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
3602     }
3603   } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
3604     Out << ' ';
3605     writeOperand(I.getOperand(0), true);
3606     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
3607       Out << ", " << *i;
3608   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
3609     Out << ' ';
3610     writeOperand(I.getOperand(0), true); Out << ", ";
3611     writeOperand(I.getOperand(1), true);
3612     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
3613       Out << ", " << *i;
3614   } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
3615     Out << ' ';
3616     TypePrinter.print(I.getType(), Out);
3617     if (LPI->isCleanup() || LPI->getNumClauses() != 0)
3618       Out << '\n';
3619 
3620     if (LPI->isCleanup())
3621       Out << "          cleanup";
3622 
3623     for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
3624       if (i != 0 || LPI->isCleanup()) Out << "\n";
3625       if (LPI->isCatch(i))
3626         Out << "          catch ";
3627       else
3628         Out << "          filter ";
3629 
3630       writeOperand(LPI->getClause(i), true);
3631     }
3632   } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
3633     Out << " within ";
3634     writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
3635     Out << " [";
3636     unsigned Op = 0;
3637     for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
3638       if (Op > 0)
3639         Out << ", ";
3640       writeOperand(PadBB, /*PrintType=*/true);
3641       ++Op;
3642     }
3643     Out << "] unwind ";
3644     if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
3645       writeOperand(UnwindDest, /*PrintType=*/true);
3646     else
3647       Out << "to caller";
3648   } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
3649     Out << " within ";
3650     writeOperand(FPI->getParentPad(), /*PrintType=*/false);
3651     Out << " [";
3652     for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
3653          ++Op) {
3654       if (Op > 0)
3655         Out << ", ";
3656       writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
3657     }
3658     Out << ']';
3659   } else if (isa<ReturnInst>(I) && !Operand) {
3660     Out << " void";
3661   } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
3662     Out << " from ";
3663     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
3664 
3665     Out << " to ";
3666     writeOperand(CRI->getOperand(1), /*PrintType=*/true);
3667   } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
3668     Out << " from ";
3669     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
3670 
3671     Out << " unwind ";
3672     if (CRI->hasUnwindDest())
3673       writeOperand(CRI->getOperand(1), /*PrintType=*/true);
3674     else
3675       Out << "to caller";
3676   } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3677     // Print the calling convention being used.
3678     if (CI->getCallingConv() != CallingConv::C) {
3679       Out << " ";
3680       PrintCallingConv(CI->getCallingConv(), Out);
3681     }
3682 
3683     Operand = CI->getCalledValue();
3684     FunctionType *FTy = CI->getFunctionType();
3685     Type *RetTy = FTy->getReturnType();
3686     const AttributeList &PAL = CI->getAttributes();
3687 
3688     if (PAL.hasAttributes(AttributeList::ReturnIndex))
3689       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
3690 
3691     // If possible, print out the short form of the call instruction.  We can
3692     // only do this if the first argument is a pointer to a nonvararg function,
3693     // and if the return type is not a pointer to a function.
3694     //
3695     Out << ' ';
3696     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3697     Out << ' ';
3698     writeOperand(Operand, false);
3699     Out << '(';
3700     for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
3701       if (op > 0)
3702         Out << ", ";
3703       writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op));
3704     }
3705 
3706     // Emit an ellipsis if this is a musttail call in a vararg function.  This
3707     // is only to aid readability, musttail calls forward varargs by default.
3708     if (CI->isMustTailCall() && CI->getParent() &&
3709         CI->getParent()->getParent() &&
3710         CI->getParent()->getParent()->isVarArg())
3711       Out << ", ...";
3712 
3713     Out << ')';
3714     if (PAL.hasAttributes(AttributeList::FunctionIndex))
3715       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3716 
3717     writeOperandBundles(CI);
3718   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
3719     Operand = II->getCalledValue();
3720     FunctionType *FTy = II->getFunctionType();
3721     Type *RetTy = FTy->getReturnType();
3722     const AttributeList &PAL = II->getAttributes();
3723 
3724     // Print the calling convention being used.
3725     if (II->getCallingConv() != CallingConv::C) {
3726       Out << " ";
3727       PrintCallingConv(II->getCallingConv(), Out);
3728     }
3729 
3730     if (PAL.hasAttributes(AttributeList::ReturnIndex))
3731       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
3732 
3733     // If possible, print out the short form of the invoke instruction. We can
3734     // only do this if the first argument is a pointer to a nonvararg function,
3735     // and if the return type is not a pointer to a function.
3736     //
3737     Out << ' ';
3738     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3739     Out << ' ';
3740     writeOperand(Operand, false);
3741     Out << '(';
3742     for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
3743       if (op)
3744         Out << ", ";
3745       writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op));
3746     }
3747 
3748     Out << ')';
3749     if (PAL.hasAttributes(AttributeList::FunctionIndex))
3750       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3751 
3752     writeOperandBundles(II);
3753 
3754     Out << "\n          to ";
3755     writeOperand(II->getNormalDest(), true);
3756     Out << " unwind ";
3757     writeOperand(II->getUnwindDest(), true);
3758   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
3759     Out << ' ';
3760     if (AI->isUsedWithInAlloca())
3761       Out << "inalloca ";
3762     if (AI->isSwiftError())
3763       Out << "swifterror ";
3764     TypePrinter.print(AI->getAllocatedType(), Out);
3765 
3766     // Explicitly write the array size if the code is broken, if it's an array
3767     // allocation, or if the type is not canonical for scalar allocations.  The
3768     // latter case prevents the type from mutating when round-tripping through
3769     // assembly.
3770     if (!AI->getArraySize() || AI->isArrayAllocation() ||
3771         !AI->getArraySize()->getType()->isIntegerTy(32)) {
3772       Out << ", ";
3773       writeOperand(AI->getArraySize(), true);
3774     }
3775     if (AI->getAlignment()) {
3776       Out << ", align " << AI->getAlignment();
3777     }
3778 
3779     unsigned AddrSpace = AI->getType()->getAddressSpace();
3780     if (AddrSpace != 0) {
3781       Out << ", addrspace(" << AddrSpace << ')';
3782     }
3783   } else if (isa<CastInst>(I)) {
3784     if (Operand) {
3785       Out << ' ';
3786       writeOperand(Operand, true);   // Work with broken code
3787     }
3788     Out << " to ";
3789     TypePrinter.print(I.getType(), Out);
3790   } else if (isa<VAArgInst>(I)) {
3791     if (Operand) {
3792       Out << ' ';
3793       writeOperand(Operand, true);   // Work with broken code
3794     }
3795     Out << ", ";
3796     TypePrinter.print(I.getType(), Out);
3797   } else if (Operand) {   // Print the normal way.
3798     if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
3799       Out << ' ';
3800       TypePrinter.print(GEP->getSourceElementType(), Out);
3801       Out << ',';
3802     } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
3803       Out << ' ';
3804       TypePrinter.print(LI->getType(), Out);
3805       Out << ',';
3806     }
3807 
3808     // PrintAllTypes - Instructions who have operands of all the same type
3809     // omit the type from all but the first operand.  If the instruction has
3810     // different type operands (for example br), then they are all printed.
3811     bool PrintAllTypes = false;
3812     Type *TheType = Operand->getType();
3813 
3814     // Select, Store and ShuffleVector always print all types.
3815     if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
3816         || isa<ReturnInst>(I)) {
3817       PrintAllTypes = true;
3818     } else {
3819       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
3820         Operand = I.getOperand(i);
3821         // note that Operand shouldn't be null, but the test helps make dump()
3822         // more tolerant of malformed IR
3823         if (Operand && Operand->getType() != TheType) {
3824           PrintAllTypes = true;    // We have differing types!  Print them all!
3825           break;
3826         }
3827       }
3828     }
3829 
3830     if (!PrintAllTypes) {
3831       Out << ' ';
3832       TypePrinter.print(TheType, Out);
3833     }
3834 
3835     Out << ' ';
3836     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
3837       if (i) Out << ", ";
3838       writeOperand(I.getOperand(i), PrintAllTypes);
3839     }
3840   }
3841 
3842   // Print atomic ordering/alignment for memory operations
3843   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
3844     if (LI->isAtomic())
3845       writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
3846     if (LI->getAlignment())
3847       Out << ", align " << LI->getAlignment();
3848   } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
3849     if (SI->isAtomic())
3850       writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
3851     if (SI->getAlignment())
3852       Out << ", align " << SI->getAlignment();
3853   } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
3854     writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
3855                        CXI->getFailureOrdering(), CXI->getSyncScopeID());
3856   } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
3857     writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
3858                 RMWI->getSyncScopeID());
3859   } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
3860     writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
3861   }
3862 
3863   // Print Metadata info.
3864   SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
3865   I.getAllMetadata(InstMD);
3866   printMetadataAttachments(InstMD, ", ");
3867 
3868   // Print a nice comment.
3869   printInfoComment(I);
3870 }
3871 
printMetadataAttachments(const SmallVectorImpl<std::pair<unsigned,MDNode * >> & MDs,StringRef Separator)3872 void AssemblyWriter::printMetadataAttachments(
3873     const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
3874     StringRef Separator) {
3875   if (MDs.empty())
3876     return;
3877 
3878   if (MDNames.empty())
3879     MDs[0].second->getContext().getMDKindNames(MDNames);
3880 
3881   for (const auto &I : MDs) {
3882     unsigned Kind = I.first;
3883     Out << Separator;
3884     if (Kind < MDNames.size()) {
3885       Out << "!";
3886       printMetadataIdentifier(MDNames[Kind], Out);
3887     } else
3888       Out << "!<unknown kind #" << Kind << ">";
3889     Out << ' ';
3890     WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
3891   }
3892 }
3893 
writeMDNode(unsigned Slot,const MDNode * Node)3894 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
3895   Out << '!' << Slot << " = ";
3896   printMDNodeBody(Node);
3897   Out << "\n";
3898 }
3899 
writeAllMDNodes()3900 void AssemblyWriter::writeAllMDNodes() {
3901   SmallVector<const MDNode *, 16> Nodes;
3902   Nodes.resize(Machine.mdn_size());
3903   for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
3904        I != E; ++I)
3905     Nodes[I->second] = cast<MDNode>(I->first);
3906 
3907   for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3908     writeMDNode(i, Nodes[i]);
3909   }
3910 }
3911 
printMDNodeBody(const MDNode * Node)3912 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
3913   WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
3914 }
3915 
writeAllAttributeGroups()3916 void AssemblyWriter::writeAllAttributeGroups() {
3917   std::vector<std::pair<AttributeSet, unsigned>> asVec;
3918   asVec.resize(Machine.as_size());
3919 
3920   for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
3921        I != E; ++I)
3922     asVec[I->second] = *I;
3923 
3924   for (const auto &I : asVec)
3925     Out << "attributes #" << I.second << " = { "
3926         << I.first.getAsString(true) << " }\n";
3927 }
3928 
printUseListOrder(const UseListOrder & Order)3929 void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
3930   bool IsInFunction = Machine.getFunction();
3931   if (IsInFunction)
3932     Out << "  ";
3933 
3934   Out << "uselistorder";
3935   if (const BasicBlock *BB =
3936           IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
3937     Out << "_bb ";
3938     writeOperand(BB->getParent(), false);
3939     Out << ", ";
3940     writeOperand(BB, false);
3941   } else {
3942     Out << " ";
3943     writeOperand(Order.V, true);
3944   }
3945   Out << ", { ";
3946 
3947   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3948   Out << Order.Shuffle[0];
3949   for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
3950     Out << ", " << Order.Shuffle[I];
3951   Out << " }\n";
3952 }
3953 
printUseLists(const Function * F)3954 void AssemblyWriter::printUseLists(const Function *F) {
3955   auto hasMore =
3956       [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
3957   if (!hasMore())
3958     // Nothing to do.
3959     return;
3960 
3961   Out << "\n; uselistorder directives\n";
3962   while (hasMore()) {
3963     printUseListOrder(UseListOrders.back());
3964     UseListOrders.pop_back();
3965   }
3966 }
3967 
3968 //===----------------------------------------------------------------------===//
3969 //                       External Interface declarations
3970 //===----------------------------------------------------------------------===//
3971 
print(raw_ostream & ROS,AssemblyAnnotationWriter * AAW,bool ShouldPreserveUseListOrder,bool IsForDebug) const3972 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
3973                      bool ShouldPreserveUseListOrder,
3974                      bool IsForDebug) const {
3975   SlotTracker SlotTable(this->getParent());
3976   formatted_raw_ostream OS(ROS);
3977   AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
3978                    IsForDebug,
3979                    ShouldPreserveUseListOrder);
3980   W.printFunction(this);
3981 }
3982 
print(raw_ostream & ROS,AssemblyAnnotationWriter * AAW,bool ShouldPreserveUseListOrder,bool IsForDebug) const3983 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
3984                    bool ShouldPreserveUseListOrder, bool IsForDebug) const {
3985   SlotTracker SlotTable(this);
3986   formatted_raw_ostream OS(ROS);
3987   AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
3988                    ShouldPreserveUseListOrder);
3989   W.printModule(this);
3990 }
3991 
print(raw_ostream & ROS,bool IsForDebug) const3992 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
3993   SlotTracker SlotTable(getParent());
3994   formatted_raw_ostream OS(ROS);
3995   AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
3996   W.printNamedMDNode(this);
3997 }
3998 
print(raw_ostream & ROS,ModuleSlotTracker & MST,bool IsForDebug) const3999 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4000                         bool IsForDebug) const {
4001   Optional<SlotTracker> LocalST;
4002   SlotTracker *SlotTable;
4003   if (auto *ST = MST.getMachine())
4004     SlotTable = ST;
4005   else {
4006     LocalST.emplace(getParent());
4007     SlotTable = &*LocalST;
4008   }
4009 
4010   formatted_raw_ostream OS(ROS);
4011   AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
4012   W.printNamedMDNode(this);
4013 }
4014 
print(raw_ostream & ROS,bool) const4015 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
4016   PrintLLVMName(ROS, getName(), ComdatPrefix);
4017   ROS << " = comdat ";
4018 
4019   switch (getSelectionKind()) {
4020   case Comdat::Any:
4021     ROS << "any";
4022     break;
4023   case Comdat::ExactMatch:
4024     ROS << "exactmatch";
4025     break;
4026   case Comdat::Largest:
4027     ROS << "largest";
4028     break;
4029   case Comdat::NoDuplicates:
4030     ROS << "noduplicates";
4031     break;
4032   case Comdat::SameSize:
4033     ROS << "samesize";
4034     break;
4035   }
4036 
4037   ROS << '\n';
4038 }
4039 
print(raw_ostream & OS,bool,bool NoDetails) const4040 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
4041   TypePrinting TP;
4042   TP.print(const_cast<Type*>(this), OS);
4043 
4044   if (NoDetails)
4045     return;
4046 
4047   // If the type is a named struct type, print the body as well.
4048   if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
4049     if (!STy->isLiteral()) {
4050       OS << " = type ";
4051       TP.printStructBody(STy, OS);
4052     }
4053 }
4054 
isReferencingMDNode(const Instruction & I)4055 static bool isReferencingMDNode(const Instruction &I) {
4056   if (const auto *CI = dyn_cast<CallInst>(&I))
4057     if (Function *F = CI->getCalledFunction())
4058       if (F->isIntrinsic())
4059         for (auto &Op : I.operands())
4060           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
4061             if (isa<MDNode>(V->getMetadata()))
4062               return true;
4063   return false;
4064 }
4065 
print(raw_ostream & ROS,bool IsForDebug) const4066 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
4067   bool ShouldInitializeAllMetadata = false;
4068   if (auto *I = dyn_cast<Instruction>(this))
4069     ShouldInitializeAllMetadata = isReferencingMDNode(*I);
4070   else if (isa<Function>(this) || isa<MetadataAsValue>(this))
4071     ShouldInitializeAllMetadata = true;
4072 
4073   ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
4074   print(ROS, MST, IsForDebug);
4075 }
4076 
print(raw_ostream & ROS,ModuleSlotTracker & MST,bool IsForDebug) const4077 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4078                   bool IsForDebug) const {
4079   formatted_raw_ostream OS(ROS);
4080   SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
4081   SlotTracker &SlotTable =
4082       MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
4083   auto incorporateFunction = [&](const Function *F) {
4084     if (F)
4085       MST.incorporateFunction(*F);
4086   };
4087 
4088   if (const Instruction *I = dyn_cast<Instruction>(this)) {
4089     incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
4090     AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
4091     W.printInstruction(*I);
4092   } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
4093     incorporateFunction(BB->getParent());
4094     AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
4095     W.printBasicBlock(BB);
4096   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
4097     AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
4098     if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
4099       W.printGlobal(V);
4100     else if (const Function *F = dyn_cast<Function>(GV))
4101       W.printFunction(F);
4102     else
4103       W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV));
4104   } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
4105     V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
4106   } else if (const Constant *C = dyn_cast<Constant>(this)) {
4107     TypePrinting TypePrinter;
4108     TypePrinter.print(C->getType(), OS);
4109     OS << ' ';
4110     WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
4111   } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
4112     this->printAsOperand(OS, /* PrintType */ true, MST);
4113   } else {
4114     llvm_unreachable("Unknown value to print out!");
4115   }
4116 }
4117 
4118 /// Print without a type, skipping the TypePrinting object.
4119 ///
4120 /// \return \c true iff printing was successful.
printWithoutType(const Value & V,raw_ostream & O,SlotTracker * Machine,const Module * M)4121 static bool printWithoutType(const Value &V, raw_ostream &O,
4122                              SlotTracker *Machine, const Module *M) {
4123   if (V.hasName() || isa<GlobalValue>(V) ||
4124       (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
4125     WriteAsOperandInternal(O, &V, nullptr, Machine, M);
4126     return true;
4127   }
4128   return false;
4129 }
4130 
printAsOperandImpl(const Value & V,raw_ostream & O,bool PrintType,ModuleSlotTracker & MST)4131 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
4132                                ModuleSlotTracker &MST) {
4133   TypePrinting TypePrinter(MST.getModule());
4134   if (PrintType) {
4135     TypePrinter.print(V.getType(), O);
4136     O << ' ';
4137   }
4138 
4139   WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
4140                          MST.getModule());
4141 }
4142 
printAsOperand(raw_ostream & O,bool PrintType,const Module * M) const4143 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4144                            const Module *M) const {
4145   if (!M)
4146     M = getModuleFromVal(this);
4147 
4148   if (!PrintType)
4149     if (printWithoutType(*this, O, nullptr, M))
4150       return;
4151 
4152   SlotTracker Machine(
4153       M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
4154   ModuleSlotTracker MST(Machine, M);
4155   printAsOperandImpl(*this, O, PrintType, MST);
4156 }
4157 
printAsOperand(raw_ostream & O,bool PrintType,ModuleSlotTracker & MST) const4158 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4159                            ModuleSlotTracker &MST) const {
4160   if (!PrintType)
4161     if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
4162       return;
4163 
4164   printAsOperandImpl(*this, O, PrintType, MST);
4165 }
4166 
printMetadataImpl(raw_ostream & ROS,const Metadata & MD,ModuleSlotTracker & MST,const Module * M,bool OnlyAsOperand)4167 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
4168                               ModuleSlotTracker &MST, const Module *M,
4169                               bool OnlyAsOperand) {
4170   formatted_raw_ostream OS(ROS);
4171 
4172   TypePrinting TypePrinter(M);
4173 
4174   WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
4175                          /* FromValue */ true);
4176 
4177   auto *N = dyn_cast<MDNode>(&MD);
4178   if (OnlyAsOperand || !N || isa<DIExpression>(MD))
4179     return;
4180 
4181   OS << " = ";
4182   WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
4183 }
4184 
printAsOperand(raw_ostream & OS,const Module * M) const4185 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
4186   ModuleSlotTracker MST(M, isa<MDNode>(this));
4187   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4188 }
4189 
printAsOperand(raw_ostream & OS,ModuleSlotTracker & MST,const Module * M) const4190 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
4191                               const Module *M) const {
4192   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4193 }
4194 
print(raw_ostream & OS,const Module * M,bool) const4195 void Metadata::print(raw_ostream &OS, const Module *M,
4196                      bool /*IsForDebug*/) const {
4197   ModuleSlotTracker MST(M, isa<MDNode>(this));
4198   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4199 }
4200 
print(raw_ostream & OS,ModuleSlotTracker & MST,const Module * M,bool) const4201 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
4202                      const Module *M, bool /*IsForDebug*/) const {
4203   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4204 }
4205 
print(raw_ostream & ROS,bool IsForDebug) const4206 void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
4207   SlotTracker SlotTable(this);
4208   formatted_raw_ostream OS(ROS);
4209   AssemblyWriter W(OS, SlotTable, this, IsForDebug);
4210   W.printModuleSummaryIndex();
4211 }
4212 
4213 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4214 // Value::dump - allow easy printing of Values from the debugger.
4215 LLVM_DUMP_METHOD
dump() const4216 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4217 
4218 // Type::dump - allow easy printing of Types from the debugger.
4219 LLVM_DUMP_METHOD
dump() const4220 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4221 
4222 // Module::dump() - Allow printing of Modules from the debugger.
4223 LLVM_DUMP_METHOD
dump() const4224 void Module::dump() const {
4225   print(dbgs(), nullptr,
4226         /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
4227 }
4228 
4229 // Allow printing of Comdats from the debugger.
4230 LLVM_DUMP_METHOD
dump() const4231 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4232 
4233 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
4234 LLVM_DUMP_METHOD
dump() const4235 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4236 
4237 LLVM_DUMP_METHOD
dump() const4238 void Metadata::dump() const { dump(nullptr); }
4239 
4240 LLVM_DUMP_METHOD
dump(const Module * M) const4241 void Metadata::dump(const Module *M) const {
4242   print(dbgs(), M, /*IsForDebug=*/true);
4243   dbgs() << '\n';
4244 }
4245 
4246 // Allow printing of ModuleSummaryIndex from the debugger.
4247 LLVM_DUMP_METHOD
dump() const4248 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4249 #endif
4250