1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /********************************************************************
4  * COPYRIGHT:
5  * Copyright (c) 1997-2016, International Business Machines Corporation and
6  * others. All Rights Reserved.
7  ********************************************************************/
8 
9 #include "unicode/utypes.h"
10 
11 #if !UCONFIG_NO_NORMALIZATION
12 
13 #include "unicode/uchar.h"
14 #include "unicode/errorcode.h"
15 #include "unicode/normlzr.h"
16 #include "unicode/stringoptions.h"
17 #include "unicode/uniset.h"
18 #include "unicode/usetiter.h"
19 #include "unicode/schriter.h"
20 #include "unicode/utf16.h"
21 #include "cmemory.h"
22 #include "cstring.h"
23 #include "normalizer2impl.h"
24 #include "testutil.h"
25 #include "tstnorm.h"
26 
27 #define ARRAY_LENGTH(array) UPRV_LENGTHOF(array)
28 
runIndexedTest(int32_t index,UBool exec,const char * & name,char *)29 void BasicNormalizerTest::runIndexedTest(int32_t index, UBool exec,
30                                          const char* &name, char* /*par*/) {
31     if(exec) {
32         logln("TestSuite BasicNormalizerTest: ");
33     }
34     TESTCASE_AUTO_BEGIN;
35     TESTCASE_AUTO(TestDecomp);
36     TESTCASE_AUTO(TestCompatDecomp);
37     TESTCASE_AUTO(TestCanonCompose);
38     TESTCASE_AUTO(TestCompatCompose);
39     TESTCASE_AUTO(TestPrevious);
40     TESTCASE_AUTO(TestHangulDecomp);
41     TESTCASE_AUTO(TestHangulCompose);
42     TESTCASE_AUTO(TestTibetan);
43     TESTCASE_AUTO(TestCompositionExclusion);
44     TESTCASE_AUTO(TestZeroIndex);
45     TESTCASE_AUTO(TestVerisign);
46     TESTCASE_AUTO(TestPreviousNext);
47     TESTCASE_AUTO(TestNormalizerAPI);
48     TESTCASE_AUTO(TestConcatenate);
49     TESTCASE_AUTO(FindFoldFCDExceptions);
50     TESTCASE_AUTO(TestCompare);
51     TESTCASE_AUTO(TestSkippable);
52 #if !UCONFIG_NO_FILE_IO && !UCONFIG_NO_LEGACY_CONVERSION
53     TESTCASE_AUTO(TestCustomComp);
54     TESTCASE_AUTO(TestCustomFCC);
55 #endif
56     TESTCASE_AUTO(TestFilteredNormalizer2Coverage);
57     TESTCASE_AUTO(TestNormalizeUTF8WithEdits);
58     TESTCASE_AUTO(TestLowMappingToEmpty_D);
59     TESTCASE_AUTO(TestLowMappingToEmpty_FCD);
60     TESTCASE_AUTO(TestNormalizeIllFormedText);
61     TESTCASE_AUTO(TestComposeJamoTBase);
62     TESTCASE_AUTO(TestComposeBoundaryAfter);
63     TESTCASE_AUTO_END;
64 }
65 
66 /**
67  * Convert Java-style strings with \u Unicode escapes into UnicodeString objects
68  */
str(const char * input)69 static UnicodeString str(const char *input)
70 {
71     UnicodeString str(input, ""); // Invariant conversion
72     return str.unescape();
73 }
74 
75 
BasicNormalizerTest()76 BasicNormalizerTest::BasicNormalizerTest()
77 {
78   // canonTest
79   // Input                    Decomposed                    Composed
80 
81     canonTests[0][0] = str("cat");  canonTests[0][1] = str("cat"); canonTests[0][2] =  str("cat");
82 
83     canonTests[1][0] = str("\\u00e0ardvark");    canonTests[1][1] = str("a\\u0300ardvark");  canonTests[1][2] = str("\\u00e0ardvark");
84 
85     canonTests[2][0] = str("\\u1e0a"); canonTests[2][1] = str("D\\u0307"); canonTests[2][2] = str("\\u1e0a");                 // D-dot_above
86 
87     canonTests[3][0] = str("D\\u0307");  canonTests[3][1] = str("D\\u0307"); canonTests[3][2] = str("\\u1e0a");            // D dot_above
88 
89     canonTests[4][0] = str("\\u1e0c\\u0307"); canonTests[4][1] = str("D\\u0323\\u0307");  canonTests[4][2] = str("\\u1e0c\\u0307");         // D-dot_below dot_above
90 
91     canonTests[5][0] = str("\\u1e0a\\u0323"); canonTests[5][1] = str("D\\u0323\\u0307");  canonTests[5][2] = str("\\u1e0c\\u0307");        // D-dot_above dot_below
92 
93     canonTests[6][0] = str("D\\u0307\\u0323"); canonTests[6][1] = str("D\\u0323\\u0307");  canonTests[6][2] = str("\\u1e0c\\u0307");         // D dot_below dot_above
94 
95     canonTests[7][0] = str("\\u1e10\\u0307\\u0323");  canonTests[7][1] = str("D\\u0327\\u0323\\u0307"); canonTests[7][2] = str("\\u1e10\\u0323\\u0307");     // D dot_below cedilla dot_above
96 
97     canonTests[8][0] = str("D\\u0307\\u0328\\u0323"); canonTests[8][1] = str("D\\u0328\\u0323\\u0307"); canonTests[8][2] = str("\\u1e0c\\u0328\\u0307");     // D dot_above ogonek dot_below
98 
99     canonTests[9][0] = str("\\u1E14"); canonTests[9][1] = str("E\\u0304\\u0300"); canonTests[9][2] = str("\\u1E14");         // E-macron-grave
100 
101     canonTests[10][0] = str("\\u0112\\u0300"); canonTests[10][1] = str("E\\u0304\\u0300");  canonTests[10][2] = str("\\u1E14");            // E-macron + grave
102 
103     canonTests[11][0] = str("\\u00c8\\u0304"); canonTests[11][1] = str("E\\u0300\\u0304");  canonTests[11][2] = str("\\u00c8\\u0304");         // E-grave + macron
104 
105     canonTests[12][0] = str("\\u212b"); canonTests[12][1] = str("A\\u030a"); canonTests[12][2] = str("\\u00c5");             // angstrom_sign
106 
107     canonTests[13][0] = str("\\u00c5");      canonTests[13][1] = str("A\\u030a");  canonTests[13][2] = str("\\u00c5");            // A-ring
108 
109     canonTests[14][0] = str("\\u00C4ffin");  canonTests[14][1] = str("A\\u0308ffin");  canonTests[14][2] = str("\\u00C4ffin");
110 
111     canonTests[15][0] = str("\\u00C4\\uFB03n"); canonTests[15][1] = str("A\\u0308\\uFB03n"); canonTests[15][2] = str("\\u00C4\\uFB03n");
112 
113     canonTests[16][0] = str("Henry IV"); canonTests[16][1] = str("Henry IV"); canonTests[16][2] = str("Henry IV");
114 
115     canonTests[17][0] = str("Henry \\u2163");  canonTests[17][1] = str("Henry \\u2163");  canonTests[17][2] = str("Henry \\u2163");
116 
117     canonTests[18][0] = str("\\u30AC");  canonTests[18][1] = str("\\u30AB\\u3099");  canonTests[18][2] = str("\\u30AC");              // ga (Katakana)
118 
119     canonTests[19][0] = str("\\u30AB\\u3099"); canonTests[19][1] = str("\\u30AB\\u3099");  canonTests[19][2] = str("\\u30AC");            // ka + ten
120 
121     canonTests[20][0] = str("\\uFF76\\uFF9E"); canonTests[20][1] = str("\\uFF76\\uFF9E");  canonTests[20][2] = str("\\uFF76\\uFF9E");       // hw_ka + hw_ten
122 
123     canonTests[21][0] = str("\\u30AB\\uFF9E"); canonTests[21][1] = str("\\u30AB\\uFF9E");  canonTests[21][2] = str("\\u30AB\\uFF9E");         // ka + hw_ten
124 
125     canonTests[22][0] = str("\\uFF76\\u3099"); canonTests[22][1] = str("\\uFF76\\u3099");  canonTests[22][2] = str("\\uFF76\\u3099");         // hw_ka + ten
126 
127     canonTests[23][0] = str("A\\u0300\\u0316"); canonTests[23][1] = str("A\\u0316\\u0300");  canonTests[23][2] = str("\\u00C0\\u0316");
128 
129     /* compatTest */
130   // Input                        Decomposed                        Composed
131   compatTests[0][0] = str("cat"); compatTests[0][1] = str("cat"); compatTests[0][2] = str("cat") ;
132 
133   compatTests[1][0] = str("\\uFB4f");  compatTests[1][1] = str("\\u05D0\\u05DC"); compatTests[1][2] = str("\\u05D0\\u05DC");  // Alef-Lamed vs. Alef, Lamed
134 
135   compatTests[2][0] = str("\\u00C4ffin"); compatTests[2][1] = str("A\\u0308ffin"); compatTests[2][2] = str("\\u00C4ffin") ;
136 
137   compatTests[3][0] = str("\\u00C4\\uFB03n"); compatTests[3][1] = str("A\\u0308ffin"); compatTests[3][2] = str("\\u00C4ffin") ; // ffi ligature -> f + f + i
138 
139   compatTests[4][0] = str("Henry IV"); compatTests[4][1] = str("Henry IV"); compatTests[4][2] = str("Henry IV") ;
140 
141   compatTests[5][0] = str("Henry \\u2163"); compatTests[5][1] = str("Henry IV");  compatTests[5][2] = str("Henry IV") ;
142 
143   compatTests[6][0] = str("\\u30AC"); compatTests[6][1] = str("\\u30AB\\u3099"); compatTests[6][2] = str("\\u30AC") ; // ga (Katakana)
144 
145   compatTests[7][0] = str("\\u30AB\\u3099"); compatTests[7][1] = str("\\u30AB\\u3099"); compatTests[7][2] = str("\\u30AC") ; // ka + ten
146 
147   compatTests[8][0] = str("\\uFF76\\u3099"); compatTests[8][1] = str("\\u30AB\\u3099"); compatTests[8][2] = str("\\u30AC") ; // hw_ka + ten
148 
149   /* These two are broken in Unicode 2.1.2 but fixed in 2.1.5 and later */
150   compatTests[9][0] = str("\\uFF76\\uFF9E"); compatTests[9][1] = str("\\u30AB\\u3099"); compatTests[9][2] = str("\\u30AC") ; // hw_ka + hw_ten
151 
152   compatTests[10][0] = str("\\u30AB\\uFF9E"); compatTests[10][1] = str("\\u30AB\\u3099"); compatTests[10][2] = str("\\u30AC") ; // ka + hw_ten
153 
154   /* Hangul Canonical */
155   // Input                        Decomposed                        Composed
156   hangulCanon[0][0] = str("\\ud4db"); hangulCanon[0][1] = str("\\u1111\\u1171\\u11b6"); hangulCanon[0][2] = str("\\ud4db") ;
157 
158   hangulCanon[1][0] = str("\\u1111\\u1171\\u11b6"), hangulCanon[1][1] = str("\\u1111\\u1171\\u11b6"),   hangulCanon[1][2] = str("\\ud4db");
159 }
160 
~BasicNormalizerTest()161 BasicNormalizerTest::~BasicNormalizerTest()
162 {
163 }
164 
TestPrevious()165 void BasicNormalizerTest::TestPrevious()
166 {
167   Normalizer* norm = new Normalizer("", UNORM_NFD);
168 
169   logln("testing decomp...");
170   uint32_t i;
171   for (i = 0; i < ARRAY_LENGTH(canonTests); i++) {
172     backAndForth(norm, canonTests[i][0]);
173   }
174 
175   logln("testing compose...");
176   norm->setMode(UNORM_NFC);
177   for (i = 0; i < ARRAY_LENGTH(canonTests); i++) {
178     backAndForth(norm, canonTests[i][0]);
179   }
180 
181   delete norm;
182 }
183 
TestDecomp()184 void BasicNormalizerTest::TestDecomp()
185 {
186   Normalizer* norm = new Normalizer("", UNORM_NFD);
187   iterateTest(norm, canonTests, ARRAY_LENGTH(canonTests), 1);
188   staticTest(UNORM_NFD, 0, canonTests, ARRAY_LENGTH(canonTests), 1);
189   delete norm;
190 }
191 
TestCompatDecomp()192 void BasicNormalizerTest::TestCompatDecomp()
193 {
194   Normalizer* norm = new Normalizer("", UNORM_NFKD);
195   iterateTest(norm, compatTests, ARRAY_LENGTH(compatTests), 1);
196 
197   staticTest(UNORM_NFKD, 0,
198          compatTests, ARRAY_LENGTH(compatTests), 1);
199   delete norm;
200 }
201 
TestCanonCompose()202 void BasicNormalizerTest::TestCanonCompose()
203 {
204   Normalizer* norm = new Normalizer("", UNORM_NFC);
205   iterateTest(norm, canonTests, ARRAY_LENGTH(canonTests), 2);
206 
207   staticTest(UNORM_NFC, 0, canonTests,
208          ARRAY_LENGTH(canonTests), 2);
209   delete norm;
210 }
211 
TestCompatCompose()212 void BasicNormalizerTest::TestCompatCompose()
213 {
214   Normalizer* norm = new Normalizer("", UNORM_NFKC);
215   iterateTest(norm, compatTests, ARRAY_LENGTH(compatTests), 2);
216 
217   staticTest(UNORM_NFKC, 0,
218          compatTests, ARRAY_LENGTH(compatTests), 2);
219   delete norm;
220 }
221 
222 
223 //-------------------------------------------------------------------------------
224 
TestHangulCompose()225 void BasicNormalizerTest::TestHangulCompose()
226 {
227   // Make sure that the static composition methods work
228   logln("Canonical composition...");
229   staticTest(UNORM_NFC, 0,                    hangulCanon,  ARRAY_LENGTH(hangulCanon),  2);
230   logln("Compatibility composition...");
231 
232   // Now try iterative composition....
233   logln("Static composition...");
234   Normalizer* norm = new Normalizer("", UNORM_NFC);
235   iterateTest(norm, hangulCanon, ARRAY_LENGTH(hangulCanon), 2);
236   norm->setMode(UNORM_NFKC);
237 
238   // And finally, make sure you can do it in reverse too
239   logln("Reverse iteration...");
240   norm->setMode(UNORM_NFC);
241   for (uint32_t i = 0; i < ARRAY_LENGTH(hangulCanon); i++) {
242     backAndForth(norm, hangulCanon[i][0]);
243   }
244   delete norm;
245 }
246 
TestHangulDecomp()247 void BasicNormalizerTest::TestHangulDecomp()
248 {
249   // Make sure that the static decomposition methods work
250   logln("Canonical decomposition...");
251   staticTest(UNORM_NFD, 0,                     hangulCanon,  ARRAY_LENGTH(hangulCanon),  1);
252   logln("Compatibility decomposition...");
253 
254   // Now the iterative decomposition methods...
255   logln("Iterative decomposition...");
256   Normalizer* norm = new Normalizer("", UNORM_NFD);
257   iterateTest(norm, hangulCanon, ARRAY_LENGTH(hangulCanon), 1);
258   norm->setMode(UNORM_NFKD);
259 
260   // And finally, make sure you can do it in reverse too
261   logln("Reverse iteration...");
262   norm->setMode(UNORM_NFD);
263   for (uint32_t i = 0; i < ARRAY_LENGTH(hangulCanon); i++) {
264     backAndForth(norm, hangulCanon[i][0]);
265   }
266   delete norm;
267 }
268 
269 /**
270  * The Tibetan vowel sign AA, 0f71, was messed up prior to Unicode version 2.1.9.
271  */
TestTibetan(void)272 void BasicNormalizerTest::TestTibetan(void) {
273     UnicodeString decomp[1][3];
274     decomp[0][0] = str("\\u0f77");
275     decomp[0][1] = str("\\u0f77");
276     decomp[0][2] = str("\\u0fb2\\u0f71\\u0f80");
277 
278     UnicodeString compose[1][3];
279     compose[0][0] = str("\\u0fb2\\u0f71\\u0f80");
280     compose[0][1] = str("\\u0fb2\\u0f71\\u0f80");
281     compose[0][2] = str("\\u0fb2\\u0f71\\u0f80");
282 
283     staticTest(UNORM_NFD,         0, decomp, ARRAY_LENGTH(decomp), 1);
284     staticTest(UNORM_NFKD,  0, decomp, ARRAY_LENGTH(decomp), 2);
285     staticTest(UNORM_NFC,        0, compose, ARRAY_LENGTH(compose), 1);
286     staticTest(UNORM_NFKC, 0, compose, ARRAY_LENGTH(compose), 2);
287 }
288 
289 /**
290  * Make sure characters in the CompositionExclusion.txt list do not get
291  * composed to.
292  */
TestCompositionExclusion(void)293 void BasicNormalizerTest::TestCompositionExclusion(void) {
294     // This list is generated from CompositionExclusion.txt.
295     // Update whenever the normalizer tables are updated.  Note
296     // that we test all characters listed, even those that can be
297     // derived from the Unicode DB and are therefore commented
298     // out.
299     // ### TODO read composition exclusion from source/data/unidata file
300     // and test against that
301     UnicodeString EXCLUDED = str(
302         "\\u0340\\u0341\\u0343\\u0344\\u0374\\u037E\\u0387\\u0958"
303         "\\u0959\\u095A\\u095B\\u095C\\u095D\\u095E\\u095F\\u09DC"
304         "\\u09DD\\u09DF\\u0A33\\u0A36\\u0A59\\u0A5A\\u0A5B\\u0A5E"
305         "\\u0B5C\\u0B5D\\u0F43\\u0F4D\\u0F52\\u0F57\\u0F5C\\u0F69"
306         "\\u0F73\\u0F75\\u0F76\\u0F78\\u0F81\\u0F93\\u0F9D\\u0FA2"
307         "\\u0FA7\\u0FAC\\u0FB9\\u1F71\\u1F73\\u1F75\\u1F77\\u1F79"
308         "\\u1F7B\\u1F7D\\u1FBB\\u1FBE\\u1FC9\\u1FCB\\u1FD3\\u1FDB"
309         "\\u1FE3\\u1FEB\\u1FEE\\u1FEF\\u1FF9\\u1FFB\\u1FFD\\u2000"
310         "\\u2001\\u2126\\u212A\\u212B\\u2329\\u232A\\uF900\\uFA10"
311         "\\uFA12\\uFA15\\uFA20\\uFA22\\uFA25\\uFA26\\uFA2A\\uFB1F"
312         "\\uFB2A\\uFB2B\\uFB2C\\uFB2D\\uFB2E\\uFB2F\\uFB30\\uFB31"
313         "\\uFB32\\uFB33\\uFB34\\uFB35\\uFB36\\uFB38\\uFB39\\uFB3A"
314         "\\uFB3B\\uFB3C\\uFB3E\\uFB40\\uFB41\\uFB43\\uFB44\\uFB46"
315         "\\uFB47\\uFB48\\uFB49\\uFB4A\\uFB4B\\uFB4C\\uFB4D\\uFB4E"
316         );
317     UErrorCode status = U_ZERO_ERROR;
318     for (int32_t i=0; i<EXCLUDED.length(); ++i) {
319         UnicodeString a(EXCLUDED.charAt(i));
320         UnicodeString b;
321         UnicodeString c;
322         Normalizer::normalize(a, UNORM_NFKD, 0, b, status);
323         Normalizer::normalize(b, UNORM_NFC, 0, c, status);
324         if (c == a) {
325             errln("FAIL: " + hex(a) + " x DECOMP_COMPAT => " +
326                   hex(b) + " x COMPOSE => " +
327                   hex(c));
328         } else if (verbose) {
329             logln("Ok: " + hex(a) + " x DECOMP_COMPAT => " +
330                   hex(b) + " x COMPOSE => " +
331                   hex(c));
332         }
333     }
334 }
335 
336 /**
337  * Test for a problem that showed up just before ICU 1.6 release
338  * having to do with combining characters with an index of zero.
339  * Such characters do not participate in any canonical
340  * decompositions.  However, having an index of zero means that
341  * they all share one typeMask[] entry, that is, they all have to
342  * map to the same canonical class, which is not the case, in
343  * reality.
344  */
TestZeroIndex(void)345 void BasicNormalizerTest::TestZeroIndex(void) {
346     const char* DATA[] = {
347         // Expect col1 x COMPOSE_COMPAT => col2
348         // Expect col2 x DECOMP => col3
349         "A\\u0316\\u0300", "\\u00C0\\u0316", "A\\u0316\\u0300",
350         "A\\u0300\\u0316", "\\u00C0\\u0316", "A\\u0316\\u0300",
351         "A\\u0327\\u0300", "\\u00C0\\u0327", "A\\u0327\\u0300",
352         "c\\u0321\\u0327", "c\\u0321\\u0327", "c\\u0321\\u0327",
353         "c\\u0327\\u0321", "\\u00E7\\u0321", "c\\u0327\\u0321",
354     };
355     int32_t DATA_length = UPRV_LENGTHOF(DATA);
356 
357     for (int32_t i=0; i<DATA_length; i+=3) {
358         UErrorCode status = U_ZERO_ERROR;
359         UnicodeString a(DATA[i], "");
360         a = a.unescape();
361         UnicodeString b;
362         Normalizer::normalize(a, UNORM_NFKC, 0, b, status);
363         if (U_FAILURE(status)) {
364             dataerrln("Error calling normalize UNORM_NFKC: %s", u_errorName(status));
365         } else {
366             UnicodeString exp(DATA[i+1], "");
367             exp = exp.unescape();
368             if (b == exp) {
369                 logln((UnicodeString)"Ok: " + hex(a) + " x COMPOSE_COMPAT => " + hex(b));
370             } else {
371                 errln((UnicodeString)"FAIL: " + hex(a) + " x COMPOSE_COMPAT => " + hex(b) +
372                       ", expect " + hex(exp));
373             }
374         }
375         Normalizer::normalize(b, UNORM_NFD, 0, a, status);
376         if (U_FAILURE(status)) {
377             dataerrln("Error calling normalize UNORM_NFD: %s", u_errorName(status));
378         } else {
379             UnicodeString exp = UnicodeString(DATA[i+2], "").unescape();
380             if (a == exp) {
381                 logln((UnicodeString)"Ok: " + hex(b) + " x DECOMP => " + hex(a));
382             } else {
383                 errln((UnicodeString)"FAIL: " + hex(b) + " x DECOMP => " + hex(a) +
384                       ", expect " + hex(exp));
385             }
386         }
387     }
388 }
389 
390 /**
391  * Run a few specific cases that are failing for Verisign.
392  */
TestVerisign(void)393 void BasicNormalizerTest::TestVerisign(void) {
394     /*
395       > Their input:
396       > 05B8 05B9 05B1 0591 05C3 05B0 05AC 059F
397       > Their output (supposedly from ICU):
398       > 05B8 05B1 05B9 0591 05C3 05B0 05AC 059F
399       > My output from charlint:
400       > 05B1 05B8 05B9 0591 05C3 05B0 05AC 059F
401 
402       05B8 05B9 05B1 0591 05C3 05B0 05AC 059F => 05B1 05B8 05B9 0591 05C3 05B0
403       05AC 059F
404 
405       U+05B8  18  E HEBREW POINT QAMATS
406       U+05B9  19  F HEBREW POINT HOLAM
407       U+05B1  11 HEBREW POINT HATAF SEGOL
408       U+0591 220 HEBREW ACCENT ETNAHTA
409       U+05C3   0 HEBREW PUNCTUATION SOF PASUQ
410       U+05B0  10 HEBREW POINT SHEVA
411       U+05AC 230 HEBREW ACCENT ILUY
412       U+059F 230 HEBREW ACCENT QARNEY PARA
413 
414       U+05B1  11 HEBREW POINT HATAF SEGOL
415       U+05B8  18 HEBREW POINT QAMATS
416       U+05B9  19 HEBREW POINT HOLAM
417       U+0591 220 HEBREW ACCENT ETNAHTA
418       U+05C3   0 HEBREW PUNCTUATION SOF PASUQ
419       U+05B0  10 HEBREW POINT SHEVA
420       U+05AC 230 HEBREW ACCENT ILUY
421       U+059F 230 HEBREW ACCENT QARNEY PARA
422 
423       Wrong result:
424       U+05B8  18 HEBREW POINT QAMATS
425       U+05B1  11 HEBREW POINT HATAF SEGOL
426       U+05B9  19 HEBREW POINT HOLAM
427       U+0591 220 HEBREW ACCENT ETNAHTA
428       U+05C3   0 HEBREW PUNCTUATION SOF PASUQ
429       U+05B0  10 HEBREW POINT SHEVA
430       U+05AC 230 HEBREW ACCENT ILUY
431       U+059F 230 HEBREW ACCENT QARNEY PARA
432 
433 
434       > Their input:
435       >0592 05B7 05BC 05A5 05B0 05C0 05C4 05AD
436       >Their output (supposedly from ICU):
437       >0592 05B0 05B7 05BC 05A5 05C0 05AD 05C4
438       >My output from charlint:
439       >05B0 05B7 05BC 05A5 0592 05C0 05AD 05C4
440 
441       0592 05B7 05BC 05A5 05B0 05C0 05C4 05AD => 05B0 05B7 05BC 05A5 0592 05C0
442       05AD 05C4
443 
444       U+0592 230 HEBREW ACCENT SEGOL
445       U+05B7  17 HEBREW POINT PATAH
446       U+05BC  21 HEBREW POINT DAGESH OR MAPIQ
447       U+05A5 220 HEBREW ACCENT MERKHA
448       U+05B0  10 HEBREW POINT SHEVA
449       U+05C0   0 HEBREW PUNCTUATION PASEQ
450       U+05C4 230 HEBREW MARK UPPER DOT
451       U+05AD 222 HEBREW ACCENT DEHI
452 
453       U+05B0  10 HEBREW POINT SHEVA
454       U+05B7  17 HEBREW POINT PATAH
455       U+05BC  21 HEBREW POINT DAGESH OR MAPIQ
456       U+05A5 220 HEBREW ACCENT MERKHA
457       U+0592 230 HEBREW ACCENT SEGOL
458       U+05C0   0 HEBREW PUNCTUATION PASEQ
459       U+05AD 222 HEBREW ACCENT DEHI
460       U+05C4 230 HEBREW MARK UPPER DOT
461 
462       Wrong result:
463       U+0592 230 HEBREW ACCENT SEGOL
464       U+05B0  10 HEBREW POINT SHEVA
465       U+05B7  17 HEBREW POINT PATAH
466       U+05BC  21 HEBREW POINT DAGESH OR MAPIQ
467       U+05A5 220 HEBREW ACCENT MERKHA
468       U+05C0   0 HEBREW PUNCTUATION PASEQ
469       U+05AD 222 HEBREW ACCENT DEHI
470       U+05C4 230 HEBREW MARK UPPER DOT
471     */
472     UnicodeString data[2][3];
473     data[0][0] = str("\\u05B8\\u05B9\\u05B1\\u0591\\u05C3\\u05B0\\u05AC\\u059F");
474     data[0][1] = str("\\u05B1\\u05B8\\u05B9\\u0591\\u05C3\\u05B0\\u05AC\\u059F");
475     data[0][2] = str("");
476     data[1][0] = str("\\u0592\\u05B7\\u05BC\\u05A5\\u05B0\\u05C0\\u05C4\\u05AD");
477     data[1][1] = str("\\u05B0\\u05B7\\u05BC\\u05A5\\u0592\\u05C0\\u05AD\\u05C4");
478     data[1][2] = str("");
479 
480     staticTest(UNORM_NFD, 0, data, ARRAY_LENGTH(data), 1);
481     staticTest(UNORM_NFC, 0, data, ARRAY_LENGTH(data), 1);
482 }
483 
484 //------------------------------------------------------------------------
485 // Internal utilities
486 //
487 
hex(UChar ch)488 UnicodeString BasicNormalizerTest::hex(UChar ch) {
489     UnicodeString result;
490     return appendHex(ch, 4, result);
491 }
492 
hex(const UnicodeString & s)493 UnicodeString BasicNormalizerTest::hex(const UnicodeString& s) {
494     UnicodeString result;
495     for (int i = 0; i < s.length(); ++i) {
496         if (i != 0) result += (UChar)0x2c/*,*/;
497         appendHex(s[i], 4, result);
498     }
499     return result;
500 }
501 
502 
insert(UnicodeString & dest,int pos,UChar32 ch)503 inline static void insert(UnicodeString& dest, int pos, UChar32 ch)
504 {
505     dest.replace(pos, 0, ch);
506 }
507 
backAndForth(Normalizer * iter,const UnicodeString & input)508 void BasicNormalizerTest::backAndForth(Normalizer* iter, const UnicodeString& input)
509 {
510     UChar32 ch;
511     UErrorCode status = U_ZERO_ERROR;
512     iter->setText(input, status);
513 
514     // Run through the iterator forwards and stick it into a StringBuffer
515     UnicodeString forward;
516     for (ch = iter->first(); ch != iter->DONE; ch = iter->next()) {
517         forward += ch;
518     }
519 
520     // Now do it backwards
521     UnicodeString reverse;
522     for (ch = iter->last(); ch != iter->DONE; ch = iter->previous()) {
523         insert(reverse, 0, ch);
524     }
525 
526     if (forward != reverse) {
527         errln("Forward/reverse mismatch for input " + hex(input)
528               + ", forward: " + hex(forward) + ", backward: " + hex(reverse));
529     }
530 }
531 
staticTest(UNormalizationMode mode,int options,UnicodeString tests[][3],int length,int outCol)532 void BasicNormalizerTest::staticTest(UNormalizationMode mode, int options,
533                      UnicodeString tests[][3], int length,
534                      int outCol)
535 {
536     UErrorCode status = U_ZERO_ERROR;
537     for (int i = 0; i < length; i++)
538     {
539         UnicodeString& input = tests[i][0];
540         UnicodeString& expect = tests[i][outCol];
541 
542         logln("Normalizing '" + input + "' (" + hex(input) + ")" );
543 
544         UnicodeString output;
545         Normalizer::normalize(input, mode, options, output, status);
546 
547         if (output != expect) {
548             dataerrln(UnicodeString("ERROR: case ") + i + " normalized " + hex(input) + "\n"
549                 + "                expected " + hex(expect) + "\n"
550                 + "              static got " + hex(output) );
551         }
552     }
553 }
554 
iterateTest(Normalizer * iter,UnicodeString tests[][3],int length,int outCol)555 void BasicNormalizerTest::iterateTest(Normalizer* iter,
556                                       UnicodeString tests[][3], int length,
557                                       int outCol)
558 {
559     UErrorCode status = U_ZERO_ERROR;
560     for (int i = 0; i < length; i++)
561     {
562         UnicodeString& input = tests[i][0];
563         UnicodeString& expect = tests[i][outCol];
564 
565         logln("Normalizing '" + input + "' (" + hex(input) + ")" );
566 
567         iter->setText(input, status);
568         assertEqual(input, expect, iter, UnicodeString("ERROR: case ") + i + " ");
569     }
570 }
571 
assertEqual(const UnicodeString & input,const UnicodeString & expected,Normalizer * iter,const UnicodeString & errPrefix)572 void BasicNormalizerTest::assertEqual(const UnicodeString&    input,
573                       const UnicodeString&    expected,
574                       Normalizer*        iter,
575                       const UnicodeString&    errPrefix)
576 {
577     UnicodeString result;
578 
579     for (UChar32 ch = iter->first(); ch != iter->DONE; ch = iter->next()) {
580         result += ch;
581     }
582     if (result != expected) {
583         dataerrln(errPrefix + "normalized " + hex(input) + "\n"
584             + "                expected " + hex(expected) + "\n"
585             + "             iterate got " + hex(result) );
586     }
587 }
588 
589 // helper class for TestPreviousNext()
590 // simple UTF-32 character iterator
591 class UChar32Iterator {
592 public:
UChar32Iterator(const UChar32 * text,int32_t len,int32_t index)593     UChar32Iterator(const UChar32 *text, int32_t len, int32_t index) :
594         s(text), length(len), i(index) {}
595 
current()596     UChar32 current() {
597         if(i<length) {
598             return s[i];
599         } else {
600             return 0xffff;
601         }
602     }
603 
next()604     UChar32 next() {
605         if(i<length) {
606             return s[i++];
607         } else {
608             return 0xffff;
609         }
610     }
611 
previous()612     UChar32 previous() {
613         if(i>0) {
614             return s[--i];
615         } else {
616             return 0xffff;
617         }
618     }
619 
getIndex()620     int32_t getIndex() {
621         return i;
622     }
623 private:
624     const UChar32 *s;
625     int32_t length, i;
626 };
627 
628 void
TestPreviousNext(const UChar * src,int32_t srcLength,const UChar32 * expect,int32_t expectLength,const int32_t * expectIndex,int32_t srcMiddle,int32_t expectMiddle,const char * moves,UNormalizationMode mode,const char * name)629 BasicNormalizerTest::TestPreviousNext(const UChar *src, int32_t srcLength,
630                                       const UChar32 *expect, int32_t expectLength,
631                                       const int32_t *expectIndex, // its length=expectLength+1
632                                       int32_t srcMiddle, int32_t expectMiddle,
633                                       const char *moves,
634                                       UNormalizationMode mode,
635                                       const char *name) {
636     // Sanity check non-iterative normalization.
637     {
638         IcuTestErrorCode errorCode(*this, "TestPreviousNext");
639         UnicodeString result;
640         Normalizer::normalize(UnicodeString(src, srcLength), mode, 0, result, errorCode);
641         if (errorCode.isFailure()) {
642             dataerrln("error: non-iterative normalization of %s failed: %s",
643                       name, errorCode.errorName());
644             errorCode.reset();
645             return;
646         }
647         // UnicodeString::fromUTF32(expect, expectLength)
648         // would turn unpaired surrogates into U+FFFD.
649         for (int32_t i = 0, j = 0; i < result.length(); ++j) {
650             UChar32 c = result.char32At(i);
651             if (c != expect[j]) {
652                 errln("error: non-iterative normalization of %s did not yield the expected result",
653                       name);
654             }
655             i += U16_LENGTH(c);
656         }
657     }
658 
659     // iterators
660     Normalizer iter(src, srcLength, mode);
661 
662     // test getStaticClassID and getDynamicClassID
663     if(iter.getDynamicClassID() != Normalizer::getStaticClassID()) {
664         errln("getStaticClassID != getDynamicClassID for Normalizer.");
665     }
666 
667     UChar32Iterator iter32(expect, expectLength, expectMiddle);
668 
669     UChar32 c1, c2;
670     char m;
671 
672     // initially set the indexes into the middle of the strings
673     iter.setIndexOnly(srcMiddle);
674 
675     // move around and compare the iteration code points with
676     // the expected ones
677     const char *move=moves;
678     while((m=*move++)!=0) {
679         if(m=='-') {
680             c1=iter.previous();
681             c2=iter32.previous();
682         } else if(m=='0') {
683             c1=iter.current();
684             c2=iter32.current();
685         } else /* m=='+' */ {
686             c1=iter.next();
687             c2=iter32.next();
688         }
689 
690         // compare results
691         if(c1!=c2) {
692             // copy the moves until the current (m) move, and terminate
693             char history[64];
694             uprv_strcpy(history, moves);
695             history[move-moves]=0;
696             dataerrln("error: mismatch in Normalizer iteration (%s) at %s: "
697                   "got c1=U+%04lx != expected c2=U+%04lx",
698                   name, history, c1, c2);
699             break;
700         }
701 
702         // compare indexes
703         if(iter.getIndex()!=expectIndex[iter32.getIndex()]) {
704             // copy the moves until the current (m) move, and terminate
705             char history[64];
706             uprv_strcpy(history, moves);
707             history[move-moves]=0;
708             errln("error: index mismatch in Normalizer iteration (%s) at %s: "
709                   "Normalizer index %ld expected %ld\n",
710                   name, history, iter.getIndex(), expectIndex[iter32.getIndex()]);
711             break;
712         }
713     }
714 }
715 
716 void
TestPreviousNext()717 BasicNormalizerTest::TestPreviousNext() {
718     // src and expect strings
719     static const UChar src[]={
720         U16_LEAD(0x2f999), U16_TRAIL(0x2f999),
721         U16_LEAD(0x1d15f), U16_TRAIL(0x1d15f),
722         0xc4,
723         0x1ed0
724     };
725     static const UChar32 expect[]={
726         0x831d,
727         0x1d158, 0x1d165,
728         0x41, 0x308,
729         0x4f, 0x302, 0x301
730     };
731 
732     // expected src indexes corresponding to expect indexes
733     static const int32_t expectIndex[]={
734         0,
735         2, 2,
736         4, 4,
737         5, 5, 5,
738         6 // behind last character
739     };
740 
741     // src and expect strings for regression test for j2911
742     static const UChar src_j2911[]={
743         U16_LEAD(0x2f999), U16_TRAIL(0x2f999),
744         0xdd00, 0xd900, // unpaired surrogates - regression test for j2911
745         0xc4,
746         0x4f, 0x302, 0x301
747     };
748     static const UChar32 expect_j2911[]={
749         0x831d,
750         0xdd00, 0xd900, // unpaired surrogates - regression test for j2911
751         0xc4,
752         0x1ed0
753     };
754 
755     // expected src indexes corresponding to expect indexes
756     static const int32_t expectIndex_j2911[]={
757         0,
758         2, 3,
759         4,
760         5,
761         8 // behind last character
762     };
763 
764     // initial indexes into the src and expect strings
765     // for both sets of test data
766     enum {
767         SRC_MIDDLE=4,
768         EXPECT_MIDDLE=3,
769         SRC_MIDDLE_2=2,
770         EXPECT_MIDDLE_2=1
771     };
772 
773     // movement vector
774     // - for previous(), 0 for current(), + for next()
775     // for both sets of test data
776     static const char *const moves="0+0+0--0-0-+++0--+++++++0--------";
777 
778     TestPreviousNext(src, UPRV_LENGTHOF(src),
779                      expect, UPRV_LENGTHOF(expect),
780                      expectIndex,
781                      SRC_MIDDLE, EXPECT_MIDDLE,
782                      moves, UNORM_NFD, "basic");
783 
784     TestPreviousNext(src_j2911, UPRV_LENGTHOF(src_j2911),
785                      expect_j2911, UPRV_LENGTHOF(expect_j2911),
786                      expectIndex_j2911,
787                      SRC_MIDDLE, EXPECT_MIDDLE,
788                      moves, UNORM_NFKC, "j2911");
789 
790     // try again from different "middle" indexes
791     TestPreviousNext(src, UPRV_LENGTHOF(src),
792                      expect, UPRV_LENGTHOF(expect),
793                      expectIndex,
794                      SRC_MIDDLE_2, EXPECT_MIDDLE_2,
795                      moves, UNORM_NFD, "basic_2");
796 
797     TestPreviousNext(src_j2911, UPRV_LENGTHOF(src_j2911),
798                      expect_j2911, UPRV_LENGTHOF(expect_j2911),
799                      expectIndex_j2911,
800                      SRC_MIDDLE_2, EXPECT_MIDDLE_2,
801                      moves, UNORM_NFKC, "j2911_2");
802 }
803 
TestConcatenate()804 void BasicNormalizerTest::TestConcatenate() {
805     static const char *const
806     cases[][4]={
807         /* mode, left, right, result */
808         {
809             "C",
810             "re",
811             "\\u0301sum\\u00e9",
812             "r\\u00e9sum\\u00e9"
813         },
814         {
815             "C",
816             "a\\u1100",
817             "\\u1161bcdefghijk",
818             "a\\uac00bcdefghijk"
819         },
820         /* ### TODO: add more interesting cases */
821         {
822             "D",
823             "\\u03B1\\u0345",
824             "\\u0C4D\\U000110BA\\U0001D169",
825             "\\u03B1\\U0001D169\\U000110BA\\u0C4D\\u0345"
826         }
827     };
828 
829     UnicodeString left, right, expect, result, r;
830     UErrorCode errorCode;
831     UNormalizationMode mode;
832     int32_t i;
833 
834     /* test concatenation */
835     for(i=0; i<UPRV_LENGTHOF(cases); ++i) {
836         switch(*cases[i][0]) {
837         case 'C': mode=UNORM_NFC; break;
838         case 'D': mode=UNORM_NFD; break;
839         case 'c': mode=UNORM_NFKC; break;
840         case 'd': mode=UNORM_NFKD; break;
841         default: mode=UNORM_NONE; break;
842         }
843 
844         left=UnicodeString(cases[i][1], "").unescape();
845         right=UnicodeString(cases[i][2], "").unescape();
846         expect=UnicodeString(cases[i][3], "").unescape();
847 
848         //result=r=UnicodeString();
849         errorCode=U_ZERO_ERROR;
850 
851         r=Normalizer::concatenate(left, right, result, mode, 0, errorCode);
852         if(U_FAILURE(errorCode) || /*result!=r ||*/ result!=expect) {
853             dataerrln("error in Normalizer::concatenate(), cases[] fails with "+
854                 UnicodeString(u_errorName(errorCode))+", result==expect: expected: "+
855                 hex(expect)+" =========> got: " + hex(result));
856         }
857     }
858 
859     /* test error cases */
860 
861     /* left.getBuffer()==result.getBuffer() */
862     result=r=expect=UnicodeString("zz", "");
863     errorCode=U_UNEXPECTED_TOKEN;
864     r=Normalizer::concatenate(left, right, result, mode, 0, errorCode);
865     if(errorCode!=U_UNEXPECTED_TOKEN || result!=r || !result.isBogus()) {
866         errln("error in Normalizer::concatenate(), violates UErrorCode protocol");
867     }
868 
869     left.setToBogus();
870     errorCode=U_ZERO_ERROR;
871     r=Normalizer::concatenate(left, right, result, mode, 0, errorCode);
872     if(errorCode!=U_ILLEGAL_ARGUMENT_ERROR || result!=r || !result.isBogus()) {
873         errln("error in Normalizer::concatenate(), does not detect left.isBogus()");
874     }
875 }
876 
877 // reference implementation of Normalizer::compare
878 static int32_t
ref_norm_compare(const UnicodeString & s1,const UnicodeString & s2,uint32_t options,UErrorCode & errorCode)879 ref_norm_compare(const UnicodeString &s1, const UnicodeString &s2, uint32_t options, UErrorCode &errorCode) {
880     UnicodeString r1, r2, t1, t2;
881     int32_t normOptions=(int32_t)(options>>UNORM_COMPARE_NORM_OPTIONS_SHIFT);
882 
883     if(options&U_COMPARE_IGNORE_CASE) {
884         Normalizer::decompose(s1, FALSE, normOptions, r1, errorCode);
885         Normalizer::decompose(s2, FALSE, normOptions, r2, errorCode);
886 
887         r1.foldCase(options);
888         r2.foldCase(options);
889     } else {
890         r1=s1;
891         r2=s2;
892     }
893 
894     Normalizer::decompose(r1, FALSE, normOptions, t1, errorCode);
895     Normalizer::decompose(r2, FALSE, normOptions, t2, errorCode);
896 
897     if(options&U_COMPARE_CODE_POINT_ORDER) {
898         return t1.compareCodePointOrder(t2);
899     } else {
900         return t1.compare(t2);
901     }
902 }
903 
904 // test wrapper for Normalizer::compare, sets UNORM_INPUT_IS_FCD appropriately
905 static int32_t
_norm_compare(const UnicodeString & s1,const UnicodeString & s2,uint32_t options,UErrorCode & errorCode)906 _norm_compare(const UnicodeString &s1, const UnicodeString &s2, uint32_t options, UErrorCode &errorCode) {
907     int32_t normOptions=(int32_t)(options>>UNORM_COMPARE_NORM_OPTIONS_SHIFT);
908 
909     if( UNORM_YES==Normalizer::quickCheck(s1, UNORM_FCD, normOptions, errorCode) &&
910         UNORM_YES==Normalizer::quickCheck(s2, UNORM_FCD, normOptions, errorCode)) {
911         options|=UNORM_INPUT_IS_FCD;
912     }
913 
914     return Normalizer::compare(s1, s2, options, errorCode);
915 }
916 
917 // reference implementation of UnicodeString::caseCompare
918 static int32_t
ref_case_compare(const UnicodeString & s1,const UnicodeString & s2,uint32_t options)919 ref_case_compare(const UnicodeString &s1, const UnicodeString &s2, uint32_t options) {
920     UnicodeString t1, t2;
921 
922     t1=s1;
923     t2=s2;
924 
925     t1.foldCase(options);
926     t2.foldCase(options);
927 
928     if(options&U_COMPARE_CODE_POINT_ORDER) {
929         return t1.compareCodePointOrder(t2);
930     } else {
931         return t1.compare(t2);
932     }
933 }
934 
935 // reduce an integer to -1/0/1
936 static inline int32_t
_sign(int32_t value)937 _sign(int32_t value) {
938     if(value==0) {
939         return 0;
940     } else {
941         return (value>>31)|1;
942     }
943 }
944 
945 static const char *
_signString(int32_t value)946 _signString(int32_t value) {
947     if(value<0) {
948         return "<0";
949     } else if(value==0) {
950         return "=0";
951     } else /* value>0 */ {
952         return ">0";
953     }
954 }
955 
956 void
TestCompare()957 BasicNormalizerTest::TestCompare() {
958     // test Normalizer::compare and unorm_compare (thinly wrapped by the former)
959     // by comparing it with its semantic equivalent
960     // since we trust the pieces, this is sufficient
961 
962     // test each string with itself and each other
963     // each time with all options
964     static const char *const
965     strings[]={
966         // some cases from NormalizationTest.txt
967         // 0..3
968         "D\\u031B\\u0307\\u0323",
969         "\\u1E0C\\u031B\\u0307",
970         "D\\u031B\\u0323\\u0307",
971         "d\\u031B\\u0323\\u0307",
972 
973         // 4..6
974         "\\u00E4",
975         "a\\u0308",
976         "A\\u0308",
977 
978         // Angstrom sign = A ring
979         // 7..10
980         "\\u212B",
981         "\\u00C5",
982         "A\\u030A",
983         "a\\u030A",
984 
985         // 11.14
986         "a\\u059A\\u0316\\u302A\\u032Fb",
987         "a\\u302A\\u0316\\u032F\\u059Ab",
988         "a\\u302A\\u0316\\u032F\\u059Ab",
989         "A\\u059A\\u0316\\u302A\\u032Fb",
990 
991         // from ICU case folding tests
992         // 15..20
993         "A\\u00df\\u00b5\\ufb03\\U0001040c\\u0131",
994         "ass\\u03bcffi\\U00010434i",
995         "\\u0061\\u0042\\u0131\\u03a3\\u00df\\ufb03\\ud93f\\udfff",
996         "\\u0041\\u0062\\u0069\\u03c3\\u0073\\u0053\\u0046\\u0066\\u0049\\ud93f\\udfff",
997         "\\u0041\\u0062\\u0131\\u03c3\\u0053\\u0073\\u0066\\u0046\\u0069\\ud93f\\udfff",
998         "\\u0041\\u0062\\u0069\\u03c3\\u0073\\u0053\\u0046\\u0066\\u0049\\ud93f\\udffd",
999 
1000         //     U+d800 U+10001   see implementation comment in unorm_cmpEquivFold
1001         // vs. U+10000          at bottom - code point order
1002         // 21..22
1003         "\\ud800\\ud800\\udc01",
1004         "\\ud800\\udc00",
1005 
1006         // other code point order tests from ustrtest.cpp
1007         // 23..31
1008         "\\u20ac\\ud801",
1009         "\\u20ac\\ud800\\udc00",
1010         "\\ud800",
1011         "\\ud800\\uff61",
1012         "\\udfff",
1013         "\\uff61\\udfff",
1014         "\\uff61\\ud800\\udc02",
1015         "\\ud800\\udc02",
1016         "\\ud84d\\udc56",
1017 
1018         // long strings, see cnormtst.c/TestNormCoverage()
1019         // equivalent if case-insensitive
1020         // 32..33
1021         "\\uAD8B\\uAD8B\\uAD8B\\uAD8B"
1022         "\\U0001d15e\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
1023         "\\U0001d15e\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
1024         "\\U0001d15e\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
1025         "\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
1026         "\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
1027         "aaaaaaaaaaaaaaaaaazzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz"
1028         "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
1029         "ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc"
1030         "ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd"
1031         "\\uAD8B\\uAD8B\\uAD8B\\uAD8B"
1032         "d\\u031B\\u0307\\u0323",
1033 
1034         "\\u1100\\u116f\\u11aa\\uAD8B\\uAD8B\\u1100\\u116f\\u11aa"
1035         "\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
1036         "\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
1037         "\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
1038         "\\U0001d15e\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
1039         "\\U0001d15e\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
1040         "aaaaaaaaaaAAAAAAAAZZZZZZZZZZZZZZZZzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz"
1041         "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
1042         "ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc"
1043         "ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd"
1044         "\\u1100\\u116f\\u11aa\\uAD8B\\uAD8B\\u1100\\u116f\\u11aa"
1045         "\\u1E0C\\u031B\\u0307",
1046 
1047         // some strings that may make a difference whether the compare function
1048         // case-folds or decomposes first
1049         // 34..41
1050         "\\u0360\\u0345\\u0334",
1051         "\\u0360\\u03b9\\u0334",
1052 
1053         "\\u0360\\u1f80\\u0334",
1054         "\\u0360\\u03b1\\u0313\\u03b9\\u0334",
1055 
1056         "\\u0360\\u1ffc\\u0334",
1057         "\\u0360\\u03c9\\u03b9\\u0334",
1058 
1059         "a\\u0360\\u0345\\u0360\\u0345b",
1060         "a\\u0345\\u0360\\u0345\\u0360b",
1061 
1062         // interesting cases for canonical caseless match with turkic i handling
1063         // 42..43
1064         "\\u00cc",
1065         "\\u0069\\u0300",
1066 
1067         // strings with post-Unicode 3.2 normalization or normalization corrections
1068         // 44..45
1069         "\\u00e4\\u193b\\U0002f868",
1070         "\\u0061\\u193b\\u0308\\u36fc",
1071 
1072         // empty string
1073         // 46
1074         ""
1075     };
1076 
1077     UnicodeString s[100]; // at least as many items as in strings[] !
1078 
1079     // all combinations of options
1080     // UNORM_INPUT_IS_FCD is set automatically if both input strings fulfill FCD conditions
1081     // set UNORM_UNICODE_3_2 in one additional combination
1082     static const struct {
1083         uint32_t options;
1084         const char *name;
1085     } opt[]={
1086         { 0, "default" },
1087         { U_COMPARE_CODE_POINT_ORDER, "c.p. order" },
1088         { U_COMPARE_IGNORE_CASE, "ignore case" },
1089         { U_COMPARE_CODE_POINT_ORDER|U_COMPARE_IGNORE_CASE, "c.p. order & ignore case" },
1090         { U_COMPARE_IGNORE_CASE|U_FOLD_CASE_EXCLUDE_SPECIAL_I, "ignore case & special i" },
1091         { U_COMPARE_CODE_POINT_ORDER|U_COMPARE_IGNORE_CASE|U_FOLD_CASE_EXCLUDE_SPECIAL_I, "c.p. order & ignore case & special i" },
1092         { UNORM_UNICODE_3_2<<UNORM_COMPARE_NORM_OPTIONS_SHIFT, "Unicode 3.2" }
1093     };
1094 
1095     int32_t i, j, k, count=UPRV_LENGTHOF(strings);
1096     int32_t result, refResult;
1097 
1098     UErrorCode errorCode;
1099 
1100     // create the UnicodeStrings
1101     for(i=0; i<count; ++i) {
1102         s[i]=UnicodeString(strings[i], "").unescape();
1103     }
1104 
1105     // test them each with each other
1106     for(i=0; i<count; ++i) {
1107         for(j=i; j<count; ++j) {
1108             for(k=0; k<UPRV_LENGTHOF(opt); ++k) {
1109                 // test Normalizer::compare
1110                 errorCode=U_ZERO_ERROR;
1111                 result=_norm_compare(s[i], s[j], opt[k].options, errorCode);
1112                 refResult=ref_norm_compare(s[i], s[j], opt[k].options, errorCode);
1113                 if(_sign(result)!=_sign(refResult)) {
1114                     errln("Normalizer::compare(%d, %d, %s)%s should be %s %s",
1115                         i, j, opt[k].name, _signString(result), _signString(refResult),
1116                         U_SUCCESS(errorCode) ? "" : u_errorName(errorCode));
1117                 }
1118 
1119                 // test UnicodeString::caseCompare - same internal implementation function
1120                 if(opt[k].options&U_COMPARE_IGNORE_CASE) {
1121                     errorCode=U_ZERO_ERROR;
1122                     result=s[i].caseCompare(s[j], opt[k].options);
1123                     refResult=ref_case_compare(s[i], s[j], opt[k].options);
1124                     if(_sign(result)!=_sign(refResult)) {
1125                         errln("UniStr::caseCompare(%d, %d, %s)%s should be %s %s",
1126                             i, j, opt[k].name, _signString(result), _signString(refResult),
1127                             U_SUCCESS(errorCode) ? "" : u_errorName(errorCode));
1128                     }
1129                 }
1130             }
1131         }
1132     }
1133 
1134     // test cases with i and I to make sure Turkic works
1135     static const UChar iI[]={ 0x49, 0x69, 0x130, 0x131 };
1136     UnicodeSet iSet, set;
1137 
1138     UnicodeString s1, s2;
1139 
1140     const Normalizer2Impl *nfcImpl=Normalizer2Factory::getNFCImpl(errorCode);
1141     if(U_FAILURE(errorCode) || !nfcImpl->ensureCanonIterData(errorCode)) {
1142         dataerrln("Normalizer2Factory::getNFCImpl().ensureCanonIterData() failed: %s",
1143               u_errorName(errorCode));
1144         return;
1145     }
1146 
1147     // collect all sets into one for contiguous output
1148     for(i=0; i<UPRV_LENGTHOF(iI); ++i) {
1149         if(nfcImpl->getCanonStartSet(iI[i], iSet)) {
1150             set.addAll(iSet);
1151         }
1152     }
1153 
1154     // test all of these precomposed characters
1155     const Normalizer2 *nfcNorm2=Normalizer2::getNFCInstance(errorCode);
1156     UnicodeSetIterator it(set);
1157     while(it.next() && !it.isString()) {
1158         UChar32 c=it.getCodepoint();
1159         if(!nfcNorm2->getDecomposition(c, s2)) {
1160             dataerrln("NFC.getDecomposition(i-composite U+%04lx) failed", (long)c);
1161             return;
1162         }
1163 
1164         s1.setTo(c);
1165         for(k=0; k<UPRV_LENGTHOF(opt); ++k) {
1166             // test Normalizer::compare
1167             errorCode=U_ZERO_ERROR;
1168             result=_norm_compare(s1, s2, opt[k].options, errorCode);
1169             refResult=ref_norm_compare(s1, s2, opt[k].options, errorCode);
1170             if(_sign(result)!=_sign(refResult)) {
1171                 errln("Normalizer::compare(U+%04x with its NFD, %s)%s should be %s %s",
1172                     c, opt[k].name, _signString(result), _signString(refResult),
1173                     U_SUCCESS(errorCode) ? "" : u_errorName(errorCode));
1174             }
1175 
1176             // test UnicodeString::caseCompare - same internal implementation function
1177             if(opt[k].options&U_COMPARE_IGNORE_CASE) {
1178                 errorCode=U_ZERO_ERROR;
1179                 result=s1.caseCompare(s2, opt[k].options);
1180                 refResult=ref_case_compare(s1, s2, opt[k].options);
1181                 if(_sign(result)!=_sign(refResult)) {
1182                     errln("UniStr::caseCompare(U+%04x with its NFD, %s)%s should be %s %s",
1183                         c, opt[k].name, _signString(result), _signString(refResult),
1184                         U_SUCCESS(errorCode) ? "" : u_errorName(errorCode));
1185                 }
1186             }
1187         }
1188     }
1189 
1190     // test getDecomposition() for some characters that do not decompose
1191     if( nfcNorm2->getDecomposition(0x20, s2) ||
1192         nfcNorm2->getDecomposition(0x4e00, s2) ||
1193         nfcNorm2->getDecomposition(0x20002, s2)
1194     ) {
1195         errln("NFC.getDecomposition() returns TRUE for characters which do not have decompositions");
1196     }
1197 
1198     // test getRawDecomposition() for some characters that do not decompose
1199     if( nfcNorm2->getRawDecomposition(0x20, s2) ||
1200         nfcNorm2->getRawDecomposition(0x4e00, s2) ||
1201         nfcNorm2->getRawDecomposition(0x20002, s2)
1202     ) {
1203         errln("NFC.getRawDecomposition() returns TRUE for characters which do not have decompositions");
1204     }
1205 
1206     // test composePair() for some pairs of characters that do not compose
1207     if( nfcNorm2->composePair(0x20, 0x301)>=0 ||
1208         nfcNorm2->composePair(0x61, 0x305)>=0 ||
1209         nfcNorm2->composePair(0x1100, 0x1160)>=0 ||
1210         nfcNorm2->composePair(0xac00, 0x11a7)>=0
1211     ) {
1212         errln("NFC.composePair() incorrectly composes some pairs of characters");
1213     }
1214 
1215     // test FilteredNormalizer2::getDecomposition()
1216     UnicodeSet filter(UNICODE_STRING_SIMPLE("[^\\u00a0-\\u00ff]"), errorCode);
1217     FilteredNormalizer2 fn2(*nfcNorm2, filter);
1218     if( fn2.getDecomposition(0xe4, s1) || !fn2.getDecomposition(0x100, s2) ||
1219         s2.length()!=2 || s2[0]!=0x41 || s2[1]!=0x304
1220     ) {
1221         errln("FilteredNormalizer2(NFC, ^A0-FF).getDecomposition() failed");
1222     }
1223 
1224     // test FilteredNormalizer2::getRawDecomposition()
1225     if( fn2.getRawDecomposition(0xe4, s1) || !fn2.getRawDecomposition(0x100, s2) ||
1226         s2.length()!=2 || s2[0]!=0x41 || s2[1]!=0x304
1227     ) {
1228         errln("FilteredNormalizer2(NFC, ^A0-FF).getRawDecomposition() failed");
1229     }
1230 
1231     // test FilteredNormalizer2::composePair()
1232     if( 0x100!=fn2.composePair(0x41, 0x304) ||
1233         fn2.composePair(0xc7, 0x301)>=0 // unfiltered result: U+1E08
1234     ) {
1235         errln("FilteredNormalizer2(NFC, ^A0-FF).composePair() failed");
1236     }
1237 }
1238 
1239 // verify that case-folding does not un-FCD strings
1240 int32_t
countFoldFCDExceptions(uint32_t foldingOptions)1241 BasicNormalizerTest::countFoldFCDExceptions(uint32_t foldingOptions) {
1242     UnicodeString s, fold, d;
1243     UChar32 c;
1244     int32_t count;
1245     uint8_t cc, trailCC, foldCC, foldTrailCC;
1246     UNormalizationCheckResult qcResult;
1247     int8_t category;
1248     UBool isNFD;
1249     UErrorCode errorCode;
1250 
1251     logln("Test if case folding may un-FCD a string (folding options %04lx)", foldingOptions);
1252 
1253     count=0;
1254     for(c=0; c<=0x10ffff; ++c) {
1255         errorCode = U_ZERO_ERROR;
1256         category=u_charType(c);
1257         if(category==U_UNASSIGNED) {
1258             continue; // skip unassigned code points
1259         }
1260         if(c==0xac00) {
1261             c=0xd7a3; // skip Hangul - no case folding there
1262             continue;
1263         }
1264         // skip Han blocks - no case folding there either
1265         if(c==0x3400) {
1266             c=0x4db5;
1267             continue;
1268         }
1269         if(c==0x4e00) {
1270             c=0x9fa5;
1271             continue;
1272         }
1273         if(c==0x20000) {
1274             c=0x2a6d6;
1275             continue;
1276         }
1277 
1278         s.setTo(c);
1279 
1280         // get leading and trailing cc for c
1281         Normalizer::decompose(s, FALSE, 0, d, errorCode);
1282         isNFD= s==d;
1283         cc=u_getCombiningClass(d.char32At(0));
1284         trailCC=u_getCombiningClass(d.char32At(d.length()-1));
1285 
1286         // get leading and trailing cc for the case-folding of c
1287         s.foldCase(foldingOptions);
1288         Normalizer::decompose(s, FALSE, 0, d, errorCode);
1289         foldCC=u_getCombiningClass(d.char32At(0));
1290         foldTrailCC=u_getCombiningClass(d.char32At(d.length()-1));
1291 
1292         qcResult=Normalizer::quickCheck(s, UNORM_FCD, errorCode);
1293 
1294         if (U_FAILURE(errorCode)) {
1295             ++count;
1296             dataerrln("U+%04lx: Failed with error %s", u_errorName(errorCode));
1297         }
1298 
1299         // bad:
1300         // - character maps to empty string: adjacent characters may then need reordering
1301         // - folding has different leading/trailing cc's, and they don't become just 0
1302         // - folding itself is not FCD
1303         if( qcResult!=UNORM_YES ||
1304             s.isEmpty() ||
1305             (cc!=foldCC && foldCC!=0) || (trailCC!=foldTrailCC && foldTrailCC!=0)
1306         ) {
1307             ++count;
1308             dataerrln("U+%04lx: case-folding may un-FCD a string (folding options %04lx)", c, foldingOptions);
1309             dataerrln("  cc %02x trailCC %02x    foldCC(U+%04lx) %02x foldTrailCC(U+%04lx) %02x   quickCheck(folded)=%d", cc, trailCC, d.char32At(0), foldCC, d.char32At(d.length()-1), foldTrailCC, qcResult);
1310             continue;
1311         }
1312 
1313         // also bad:
1314         // if a code point is in NFD but its case folding is not, then
1315         // unorm_compare will also fail
1316         if(isNFD && UNORM_YES!=Normalizer::quickCheck(s, UNORM_NFD, errorCode)) {
1317             ++count;
1318             errln("U+%04lx: case-folding un-NFDs this character (folding options %04lx)", c, foldingOptions);
1319         }
1320     }
1321 
1322     logln("There are %ld code points for which case-folding may un-FCD a string (folding options %04lx)", count, foldingOptions);
1323     return count;
1324 }
1325 
1326 void
FindFoldFCDExceptions()1327 BasicNormalizerTest::FindFoldFCDExceptions() {
1328     int32_t count;
1329 
1330     count=countFoldFCDExceptions(0);
1331     count+=countFoldFCDExceptions(U_FOLD_CASE_EXCLUDE_SPECIAL_I);
1332     if(count>0) {
1333         /*
1334          * If case-folding un-FCDs any strings, then unorm_compare() must be
1335          * re-implemented.
1336          * It currently assumes that one can check for FCD then case-fold
1337          * and then still have FCD strings for raw decomposition without reordering.
1338          */
1339         dataerrln("error: There are %ld code points for which case-folding may un-FCD a string for all folding options.\n"
1340               "See comment in BasicNormalizerTest::FindFoldFCDExceptions()!", count);
1341     }
1342 }
1343 
1344 static void
initExpectedSkippables(UnicodeSet skipSets[UNORM_MODE_COUNT],UErrorCode & errorCode)1345 initExpectedSkippables(UnicodeSet skipSets[UNORM_MODE_COUNT], UErrorCode &errorCode) {
1346     skipSets[UNORM_NFD].applyPattern(
1347         UNICODE_STRING_SIMPLE("[[:NFD_QC=Yes:]&[:ccc=0:]]"), errorCode);
1348     skipSets[UNORM_NFC].applyPattern(
1349         UNICODE_STRING_SIMPLE("[[:NFC_QC=Yes:]&[:ccc=0:]-[:HST=LV:]]"), errorCode);
1350     skipSets[UNORM_NFKD].applyPattern(
1351         UNICODE_STRING_SIMPLE("[[:NFKD_QC=Yes:]&[:ccc=0:]]"), errorCode);
1352     skipSets[UNORM_NFKC].applyPattern(
1353         UNICODE_STRING_SIMPLE("[[:NFKC_QC=Yes:]&[:ccc=0:]-[:HST=LV:]]"), errorCode);
1354 
1355     // Remove from the NFC and NFKC sets all those characters that change
1356     // when a back-combining character is added.
1357     // First, get all of the back-combining characters and their combining classes.
1358     UnicodeSet combineBack("[:NFC_QC=Maybe:]", errorCode);
1359     int32_t numCombineBack=combineBack.size();
1360     int32_t *combineBackCharsAndCc=new int32_t[numCombineBack*2];
1361     UnicodeSetIterator iter(combineBack);
1362     for(int32_t i=0; i<numCombineBack; ++i) {
1363         iter.next();
1364         UChar32 c=iter.getCodepoint();
1365         combineBackCharsAndCc[2*i]=c;
1366         combineBackCharsAndCc[2*i+1]=u_getCombiningClass(c);
1367     }
1368 
1369     // We need not look at control codes, Han characters nor Hangul LVT syllables because they
1370     // do not combine forward. LV syllables are already removed.
1371     UnicodeSet notInteresting("[[:C:][:Unified_Ideograph:][:HST=LVT:]]", errorCode);
1372     LocalPointer<UnicodeSet> unsure(&((UnicodeSet *)(skipSets[UNORM_NFC].clone()))->removeAll(notInteresting));
1373     // System.out.format("unsure.size()=%d\n", unsure.size());
1374 
1375     // For each character about which we are unsure, see if it changes when we add
1376     // one of the back-combining characters.
1377     const Normalizer2 *norm2=Normalizer2::getNFCInstance(errorCode);
1378     UnicodeString s;
1379     iter.reset(*unsure);
1380     while(iter.next()) {
1381         UChar32 c=iter.getCodepoint();
1382         s.setTo(c);
1383         int32_t cLength=s.length();
1384         int32_t tccc=u_getIntPropertyValue(c, UCHAR_TRAIL_CANONICAL_COMBINING_CLASS);
1385         for(int32_t i=0; i<numCombineBack; ++i) {
1386             // If c's decomposition ends with a character with non-zero combining class, then
1387             // c can only change if it combines with a character with a non-zero combining class.
1388             int32_t cc2=combineBackCharsAndCc[2*i+1];
1389             if(tccc==0 || cc2!=0) {
1390                 UChar32 c2=combineBackCharsAndCc[2*i];
1391                 s.append(c2);
1392                 if(!norm2->isNormalized(s, errorCode)) {
1393                     // System.out.format("remove U+%04x (tccc=%d) + U+%04x (cc=%d)\n", c, tccc, c2, cc2);
1394                     skipSets[UNORM_NFC].remove(c);
1395                     skipSets[UNORM_NFKC].remove(c);
1396                     break;
1397                 }
1398                 s.truncate(cLength);
1399             }
1400         }
1401     }
1402     delete [] combineBackCharsAndCc;
1403 }
1404 
1405 static const char *const kModeStrings[UNORM_MODE_COUNT] = {
1406     "?", "none", "D", "KD", "C", "KC", "FCD"
1407 };
1408 
1409 void
TestSkippable()1410 BasicNormalizerTest::TestSkippable() {
1411     UnicodeSet diff, skipSets[UNORM_MODE_COUNT], expectSets[UNORM_MODE_COUNT];
1412     UnicodeString s, pattern;
1413 
1414     /* build NF*Skippable sets from runtime data */
1415     IcuTestErrorCode errorCode(*this, "TestSkippable");
1416     skipSets[UNORM_NFD].applyPattern(UNICODE_STRING_SIMPLE("[:NFD_Inert:]"), errorCode);
1417     skipSets[UNORM_NFKD].applyPattern(UNICODE_STRING_SIMPLE("[:NFKD_Inert:]"), errorCode);
1418     skipSets[UNORM_NFC].applyPattern(UNICODE_STRING_SIMPLE("[:NFC_Inert:]"), errorCode);
1419     skipSets[UNORM_NFKC].applyPattern(UNICODE_STRING_SIMPLE("[:NFKC_Inert:]"), errorCode);
1420     if(errorCode.errDataIfFailureAndReset("UnicodeSet(NF..._Inert) failed")) {
1421         return;
1422     }
1423 
1424     /* get expected sets from hardcoded patterns */
1425     initExpectedSkippables(expectSets, errorCode);
1426     errorCode.assertSuccess();
1427 
1428     for(int32_t i=UNORM_NONE; i<UNORM_MODE_COUNT; ++i) {
1429         if(skipSets[i]!=expectSets[i]) {
1430             const char *ms=kModeStrings[i];
1431             errln("error: TestSkippable skipSets[%s]!=expectedSets[%s]\n", ms, ms);
1432             // Note: This used to depend on hardcoded UnicodeSet patterns generated by
1433             // Mark's unicodetools.com.ibm.text.UCD.NFSkippable, by
1434             // running com.ibm.text.UCD.Main with the option NFSkippable.
1435             // Since ICU 4.6/Unicode 6, we are generating the
1436             // expectSets ourselves in initSkippables().
1437 
1438             s=UNICODE_STRING_SIMPLE("skip-expect=");
1439             (diff=skipSets[i]).removeAll(expectSets[i]).toPattern(pattern, TRUE);
1440             s.append(pattern);
1441 
1442             pattern.remove();
1443             s.append(UNICODE_STRING_SIMPLE("\n\nexpect-skip="));
1444             (diff=expectSets[i]).removeAll(skipSets[i]).toPattern(pattern, TRUE);
1445             s.append(pattern);
1446             s.append(UNICODE_STRING_SIMPLE("\n\n"));
1447 
1448             errln(s);
1449         }
1450     }
1451 }
1452 
1453 struct StringPair { const char *input, *expected; };
1454 
1455 void
TestCustomComp()1456 BasicNormalizerTest::TestCustomComp() {
1457     static const StringPair pairs[]={
1458         // ICU 63 normalization with UCPTrie requires inert surrogate code points.
1459         // { "\\uD801\\uE000\\uDFFE", "" },
1460         // { "\\uD800\\uD801\\uE000\\uDFFE\\uDFFF", "\\uD7FF\\uFFFF" },
1461         // { "\\uD800\\uD801\\uDFFE\\uDFFF", "\\uD7FF\\U000107FE\\uFFFF" },
1462         { "\\uD801\\uE000\\uDFFE", "\\uD801\\uDFFE" },
1463         { "\\uD800\\uD801\\uE000\\uDFFE\\uDFFF", "\\uD800\\uD801\\uDFFE\\uDFFF" },
1464         { "\\uD800\\uD801\\uDFFE\\uDFFF", "\\uD800\\U000107FE\\uDFFF" },
1465 
1466         { "\\uE001\\U000110B9\\u0345\\u0308\\u0327", "\\uE002\\U000110B9\\u0327\\u0345" },
1467         { "\\uE010\\U000F0011\\uE012", "\\uE011\\uE012" },
1468         { "\\uE010\\U000F0011\\U000F0011\\uE012", "\\uE011\\U000F0010" },
1469         { "\\uE111\\u1161\\uE112\\u1162", "\\uAE4C\\u1102\\u0062\\u1162" },
1470         { "\\uFFF3\\uFFF7\\U00010036\\U00010077", "\\U00010037\\U00010037\\uFFF6\\U00010037" }
1471     };
1472     IcuTestErrorCode errorCode(*this, "BasicNormalizerTest/TestCustomComp");
1473     const Normalizer2 *customNorm2=
1474         Normalizer2::getInstance(loadTestData(errorCode), "testnorm",
1475                                  UNORM2_COMPOSE, errorCode);
1476     if(errorCode.errDataIfFailureAndReset("unable to load testdata/testnorm.nrm")) {
1477         return;
1478     }
1479     for(int32_t i=0; i<UPRV_LENGTHOF(pairs); ++i) {
1480         const StringPair &pair=pairs[i];
1481         UnicodeString input=UnicodeString(pair.input, -1, US_INV).unescape();
1482         UnicodeString expected=UnicodeString(pair.expected, -1, US_INV).unescape();
1483         UnicodeString result=customNorm2->normalize(input, errorCode);
1484         if(result!=expected) {
1485             errln("custom compose Normalizer2 did not normalize input %d as expected", i);
1486         }
1487     }
1488 }
1489 
1490 void
TestCustomFCC()1491 BasicNormalizerTest::TestCustomFCC() {
1492     static const StringPair pairs[]={
1493         // ICU 63 normalization with UCPTrie requires inert surrogate code points.
1494         // { "\\uD801\\uE000\\uDFFE", "" },
1495         // { "\\uD800\\uD801\\uE000\\uDFFE\\uDFFF", "\\uD7FF\\uFFFF" },
1496         // { "\\uD800\\uD801\\uDFFE\\uDFFF", "\\uD7FF\\U000107FE\\uFFFF" },
1497         { "\\uD801\\uE000\\uDFFE", "\\uD801\\uDFFE" },
1498         { "\\uD800\\uD801\\uE000\\uDFFE\\uDFFF", "\\uD800\\uD801\\uDFFE\\uDFFF" },
1499         { "\\uD800\\uD801\\uDFFE\\uDFFF", "\\uD800\\U000107FE\\uDFFF" },
1500 
1501         // The following expected result is different from CustomComp
1502         // because of only-contiguous composition.
1503         { "\\uE001\\U000110B9\\u0345\\u0308\\u0327", "\\uE001\\U000110B9\\u0327\\u0308\\u0345" },
1504         { "\\uE010\\U000F0011\\uE012", "\\uE011\\uE012" },
1505         { "\\uE010\\U000F0011\\U000F0011\\uE012", "\\uE011\\U000F0010" },
1506         { "\\uE111\\u1161\\uE112\\u1162", "\\uAE4C\\u1102\\u0062\\u1162" },
1507         { "\\uFFF3\\uFFF7\\U00010036\\U00010077", "\\U00010037\\U00010037\\uFFF6\\U00010037" }
1508     };
1509     IcuTestErrorCode errorCode(*this, "BasicNormalizerTest/TestCustomFCC");
1510     const Normalizer2 *customNorm2=
1511         Normalizer2::getInstance(loadTestData(errorCode), "testnorm",
1512                                  UNORM2_COMPOSE_CONTIGUOUS, errorCode);
1513     if(errorCode.errDataIfFailureAndReset("unable to load testdata/testnorm.nrm")) {
1514         return;
1515     }
1516     for(int32_t i=0; i<UPRV_LENGTHOF(pairs); ++i) {
1517         const StringPair &pair=pairs[i];
1518         UnicodeString input=UnicodeString(pair.input, -1, US_INV).unescape();
1519         UnicodeString expected=UnicodeString(pair.expected, -1, US_INV).unescape();
1520         UnicodeString result=customNorm2->normalize(input, errorCode);
1521         if(result!=expected) {
1522             errln("custom FCC Normalizer2 did not normalize input %d as expected", i);
1523         }
1524     }
1525 }
1526 
1527 /* Improve code coverage of Normalizer2 */
1528 void
TestFilteredNormalizer2Coverage()1529 BasicNormalizerTest::TestFilteredNormalizer2Coverage() {
1530     UErrorCode errorCode = U_ZERO_ERROR;
1531     const Normalizer2 *nfcNorm2=Normalizer2::getNFCInstance(errorCode);
1532     if (U_FAILURE(errorCode)) {
1533         dataerrln("Normalizer2::getNFCInstance() call failed - %s", u_errorName(errorCode));
1534         return;
1535     }
1536     UnicodeSet filter(UNICODE_STRING_SIMPLE("[^\\u00a0-\\u00ff\\u0310-\\u031f]"), errorCode);
1537     FilteredNormalizer2 fn2(*nfcNorm2, filter);
1538 
1539     UChar32 char32 = 0x0054;
1540 
1541     if (fn2.isInert(char32)) {
1542         errln("FilteredNormalizer2.isInert() failed.");
1543     }
1544 
1545     if (fn2.hasBoundaryAfter(char32)) {
1546         errln("FilteredNormalizer2.hasBoundaryAfter() failed.");
1547     }
1548 
1549     UChar32 c;
1550     for(c=0; c<=0x3ff; ++c) {
1551         uint8_t expectedCC= filter.contains(c) ? nfcNorm2->getCombiningClass(c) : 0;
1552         uint8_t cc=fn2.getCombiningClass(c);
1553         if(cc!=expectedCC) {
1554             errln(
1555                 UnicodeString("FilteredNormalizer2(NFC, ^A0-FF,310-31F).getCombiningClass(U+")+
1556                 hex(c)+
1557                 ")==filtered NFC.getCC()");
1558         }
1559     }
1560 
1561     UnicodeString newString1 = UNICODE_STRING_SIMPLE("[^\\u0100-\\u01ff]");
1562     UnicodeString newString2 = UNICODE_STRING_SIMPLE("[^\\u0200-\\u02ff]");
1563     fn2.append(newString1, newString2, errorCode);
1564     if (U_FAILURE(errorCode)) {
1565         errln("FilteredNormalizer2.append() failed.");
1566     }
1567 }
1568 
1569 void
TestNormalizeUTF8WithEdits()1570 BasicNormalizerTest::TestNormalizeUTF8WithEdits() {
1571     IcuTestErrorCode errorCode(*this, "TestNormalizeUTF8WithEdits");
1572     const Normalizer2 *nfkc_cf=Normalizer2::getNFKCCasefoldInstance(errorCode);
1573     if(errorCode.errDataIfFailureAndReset("Normalizer2::getNFKCCasefoldInstance() call failed")) {
1574         return;
1575     }
1576     static const char *const src =
1577         u8"  AÄA\u0308A\u0308\u00ad\u0323Ä\u0323,\u00ad\u1100\u1161가\u11A8가\u3133  ";
1578     std::string expected = u8"  aääạ\u0308ạ\u0308,가각갃  ";
1579     std::string result;
1580     StringByteSink<std::string> sink(&result, expected.length());
1581     Edits edits;
1582     nfkc_cf->normalizeUTF8(0, src, sink, &edits, errorCode);
1583     assertSuccess("normalizeUTF8 with Edits", errorCode.get());
1584     assertEquals("normalizeUTF8 with Edits", expected.c_str(), result.c_str());
1585     static const EditChange expectedChanges[] = {
1586         { FALSE, 2, 2 },  // 2 spaces
1587         { TRUE, 1, 1 },  // A→a
1588         { TRUE, 2, 2 },  // Ä→ä
1589         { TRUE, 3, 2 },  // A\u0308→ä
1590         { TRUE, 7, 5 },  // A\u0308\u00ad\u0323→ạ\u0308 removes the soft hyphen
1591         { TRUE, 4, 5 },  // Ä\u0323→ ạ\u0308
1592         { FALSE, 1, 1 },  // comma
1593         { TRUE, 2, 0 },  // U+00AD soft hyphen maps to empty
1594         { TRUE, 6, 3 },  // \u1100\u1161→ 가
1595         { TRUE, 6, 3 },  // 가\u11A8→ 각
1596         { TRUE, 6, 3 },  // 가\u3133→ 갃
1597         { FALSE, 2, 2 }  // 2 spaces
1598     };
1599     assertTrue("normalizeUTF8 with Edits hasChanges", edits.hasChanges());
1600     assertEquals("normalizeUTF8 with Edits numberOfChanges", 9, edits.numberOfChanges());
1601     TestUtility::checkEditsIter(*this, u"normalizeUTF8 with Edits",
1602             edits.getFineIterator(), edits.getFineIterator(),
1603             expectedChanges, UPRV_LENGTHOF(expectedChanges),
1604             TRUE, errorCode);
1605 
1606     assertFalse("isNormalizedUTF8(source)", nfkc_cf->isNormalizedUTF8(src, errorCode));
1607     assertTrue("isNormalizedUTF8(normalized)", nfkc_cf->isNormalizedUTF8(result, errorCode));
1608 
1609     // Omit unchanged text.
1610     expected = u8"aääạ\u0308ạ\u0308가각갃";
1611     result.clear();
1612     edits.reset();
1613     nfkc_cf->normalizeUTF8(U_OMIT_UNCHANGED_TEXT, src, sink, &edits, errorCode);
1614     assertSuccess("normalizeUTF8 omit unchanged", errorCode.get());
1615     assertEquals("normalizeUTF8 omit unchanged", expected.c_str(), result.c_str());
1616     assertTrue("normalizeUTF8 omit unchanged hasChanges", edits.hasChanges());
1617     assertEquals("normalizeUTF8 omit unchanged numberOfChanges", 9, edits.numberOfChanges());
1618     TestUtility::checkEditsIter(*this, u"normalizeUTF8 omit unchanged",
1619             edits.getFineIterator(), edits.getFineIterator(),
1620             expectedChanges, UPRV_LENGTHOF(expectedChanges),
1621             TRUE, errorCode);
1622 
1623     // With filter: The normalization code does not see the "A" substrings.
1624     UnicodeSet filter(u"[^A]", errorCode);
1625     FilteredNormalizer2 fn2(*nfkc_cf, filter);
1626     expected = u8"  AäA\u0308A\u0323\u0308ạ\u0308,가각갃  ";
1627     result.clear();
1628     edits.reset();
1629     fn2.normalizeUTF8(0, src, sink, &edits, errorCode);
1630     assertSuccess("filtered normalizeUTF8", errorCode.get());
1631     assertEquals("filtered normalizeUTF8", expected.c_str(), result.c_str());
1632     static const EditChange filteredChanges[] = {
1633         { FALSE, 3, 3 },  // 2 spaces + A
1634         { TRUE, 2, 2 },  // Ä→ä
1635         { FALSE, 4, 4 },  // A\u0308A
1636         { TRUE, 6, 4 },  // \u0308\u00ad\u0323→\u0323\u0308 removes the soft hyphen
1637         { TRUE, 4, 5 },  // Ä\u0323→ ạ\u0308
1638         { FALSE, 1, 1 },  // comma
1639         { TRUE, 2, 0 },  // U+00AD soft hyphen maps to empty
1640         { TRUE, 6, 3 },  // \u1100\u1161→ 가
1641         { TRUE, 6, 3 },  // 가\u11A8→ 각
1642         { TRUE, 6, 3 },  // 가\u3133→ 갃
1643         { FALSE, 2, 2 }  // 2 spaces
1644     };
1645     assertTrue("filtered normalizeUTF8 hasChanges", edits.hasChanges());
1646     assertEquals("filtered normalizeUTF8 numberOfChanges", 7, edits.numberOfChanges());
1647     TestUtility::checkEditsIter(*this, u"filtered normalizeUTF8",
1648             edits.getFineIterator(), edits.getFineIterator(),
1649             filteredChanges, UPRV_LENGTHOF(filteredChanges),
1650             TRUE, errorCode);
1651 
1652     assertFalse("filtered isNormalizedUTF8(source)", fn2.isNormalizedUTF8(src, errorCode));
1653     assertTrue("filtered isNormalizedUTF8(normalized)", fn2.isNormalizedUTF8(result, errorCode));
1654 
1655     // Omit unchanged text.
1656     // Note that the result is not normalized because the inner normalizer
1657     // does not see text across filter spans.
1658     expected = u8"ä\u0323\u0308ạ\u0308가각갃";
1659     result.clear();
1660     edits.reset();
1661     fn2.normalizeUTF8(U_OMIT_UNCHANGED_TEXT, src, sink, &edits, errorCode);
1662     assertSuccess("filtered normalizeUTF8 omit unchanged", errorCode.get());
1663     assertEquals("filtered normalizeUTF8 omit unchanged", expected.c_str(), result.c_str());
1664     assertTrue("filtered normalizeUTF8 omit unchanged hasChanges", edits.hasChanges());
1665     assertEquals("filtered normalizeUTF8 omit unchanged numberOfChanges", 7, edits.numberOfChanges());
1666     TestUtility::checkEditsIter(*this, u"filtered normalizeUTF8 omit unchanged",
1667             edits.getFineIterator(), edits.getFineIterator(),
1668             filteredChanges, UPRV_LENGTHOF(filteredChanges),
1669             TRUE, errorCode);
1670 }
1671 
1672 void
TestLowMappingToEmpty_D()1673 BasicNormalizerTest::TestLowMappingToEmpty_D() {
1674     IcuTestErrorCode errorCode(*this, "TestLowMappingToEmpty_D");
1675     const Normalizer2 *n2 = Normalizer2::getInstance(
1676         nullptr, "nfkc_cf", UNORM2_DECOMPOSE, errorCode);
1677     if (errorCode.errDataIfFailureAndReset("Normalizer2::getInstance() call failed")) {
1678         return;
1679     }
1680     checkLowMappingToEmpty(*n2);
1681 
1682     UnicodeString sh(u'\u00AD');
1683     assertFalse("soft hyphen is not normalized", n2->isNormalized(sh, errorCode));
1684     UnicodeString result = n2->normalize(sh, errorCode);
1685     assertTrue("soft hyphen normalizes to empty", result.isEmpty());
1686     assertEquals("soft hyphen QC=No", UNORM_NO, n2->quickCheck(sh, errorCode));
1687     assertEquals("soft hyphen spanQuickCheckYes", 0, n2->spanQuickCheckYes(sh, errorCode));
1688 
1689     UnicodeString s(u"\u00ADÄ\u00AD\u0323");
1690     result = n2->normalize(s, errorCode);
1691     assertEquals("normalize string with soft hyphens", u"a\u0323\u0308", result);
1692 }
1693 
1694 void
TestLowMappingToEmpty_FCD()1695 BasicNormalizerTest::TestLowMappingToEmpty_FCD() {
1696     IcuTestErrorCode errorCode(*this, "TestLowMappingToEmpty_FCD");
1697     const Normalizer2 *n2 = Normalizer2::getInstance(
1698         nullptr, "nfkc_cf", UNORM2_FCD, errorCode);
1699     if (errorCode.errDataIfFailureAndReset("Normalizer2::getInstance() call failed")) {
1700         return;
1701     }
1702     checkLowMappingToEmpty(*n2);
1703 
1704     UnicodeString sh(u'\u00AD');
1705     assertTrue("soft hyphen is FCD", n2->isNormalized(sh, errorCode));
1706 
1707     UnicodeString s(u"\u00ADÄ\u00AD\u0323");
1708     UnicodeString result = n2->normalize(s, errorCode);
1709     assertEquals("normalize string with soft hyphens", u"\u00ADa\u0323\u0308", result);
1710 }
1711 
1712 void
checkLowMappingToEmpty(const Normalizer2 & n2)1713 BasicNormalizerTest::checkLowMappingToEmpty(const Normalizer2 &n2) {
1714     UnicodeString mapping;
1715     assertTrue("getDecomposition(soft hyphen)", n2.getDecomposition(0xad, mapping));
1716     assertTrue("soft hyphen maps to empty", mapping.isEmpty());
1717     assertFalse("soft hyphen has no boundary before", n2.hasBoundaryBefore(0xad));
1718     assertFalse("soft hyphen has no boundary after", n2.hasBoundaryAfter(0xad));
1719     assertFalse("soft hyphen is not inert", n2.isInert(0xad));
1720 }
1721 
1722 void
TestNormalizeIllFormedText()1723 BasicNormalizerTest::TestNormalizeIllFormedText() {
1724     IcuTestErrorCode errorCode(*this, "TestNormalizeIllFormedText");
1725     const Normalizer2 *nfkc_cf = Normalizer2::getNFKCCasefoldInstance(errorCode);
1726     if(errorCode.errDataIfFailureAndReset("Normalizer2::getNFKCCasefoldInstance() call failed")) {
1727         return;
1728     }
1729     // Normalization behavior for ill-formed text is not defined.
1730     // ICU currently treats ill-formed sequences as normalization-inert
1731     // and copies them unchanged.
1732     UnicodeString src(u"  A");
1733     src.append((char16_t)0xD800).append(u"ÄA\u0308").append((char16_t)0xD900).
1734         append(u"A\u0308\u00ad\u0323").append((char16_t)0xDBFF).
1735         append(u"Ä\u0323,\u00ad").append((char16_t)0xDC00).
1736         append(u"\u1100\u1161가\u11A8가\u3133  ").append((char16_t)0xDFFF);
1737     UnicodeString expected(u"  a");
1738     expected.append((char16_t)0xD800).append(u"ää").append((char16_t)0xD900).
1739         append(u"ạ\u0308").append((char16_t)0xDBFF).
1740         append(u"ạ\u0308,").append((char16_t)0xDC00).
1741         append(u"가각갃  ").append((char16_t)0xDFFF);
1742     UnicodeString result = nfkc_cf->normalize(src, errorCode);
1743     assertSuccess("normalize", errorCode.get());
1744     assertEquals("normalize", expected, result);
1745 
1746     std::string src8(u8"  A");
1747     src8.append("\x80").append(u8"ÄA\u0308").append("\xC0\x80").
1748         append(u8"A\u0308\u00ad\u0323").append("\xED\xA0\x80").
1749         append(u8"Ä\u0323,\u00ad").append("\xF4\x90\x80\x80").
1750         append(u8"\u1100\u1161가\u11A8가\u3133  ").append("\xF0");
1751     std::string expected8(u8"  a");
1752     expected8.append("\x80").append(u8"ää").append("\xC0\x80").
1753         append(u8"ạ\u0308").append("\xED\xA0\x80").
1754         append(u8"ạ\u0308,").append("\xF4\x90\x80\x80").
1755         append(u8"가각갃  ").append("\xF0");
1756     std::string result8;
1757     StringByteSink<std::string> sink(&result8);
1758     nfkc_cf->normalizeUTF8(0, src8, sink, nullptr, errorCode);
1759     assertSuccess("normalizeUTF8", errorCode.get());
1760     assertEquals("normalizeUTF8", expected8.c_str(), result8.c_str());
1761 }
1762 
1763 void
TestComposeJamoTBase()1764 BasicNormalizerTest::TestComposeJamoTBase() {
1765     // Algorithmic composition of Hangul syllables must not combine with JAMO_T_BASE = U+11A7
1766     // which is not a conjoining Jamo Trailing consonant.
1767     IcuTestErrorCode errorCode(*this, "TestComposeJamoTBase");
1768     const Normalizer2 *nfkc = Normalizer2::getNFKCInstance(errorCode);
1769     if(errorCode.errDataIfFailureAndReset("Normalizer2::getNFKCInstance() call failed")) {
1770         return;
1771     }
1772     UnicodeString s(u"\u1100\u1161\u11A7\u1100\u314F\u11A7가\u11A7");
1773     UnicodeString expected(u"가\u11A7가\u11A7가\u11A7");
1774     UnicodeString result = nfkc->normalize(s, errorCode);
1775     assertSuccess("normalize(LV+11A7)", errorCode.get());
1776     assertEquals("normalize(LV+11A7)", expected, result);
1777     assertFalse("isNormalized(LV+11A7)", nfkc->isNormalized(s, errorCode));
1778     assertTrue("isNormalized(normalized)", nfkc->isNormalized(result, errorCode));
1779 
1780     std::string s8(u8"\u1100\u1161\u11A7\u1100\u314F\u11A7가\u11A7");
1781     std::string expected8(u8"가\u11A7가\u11A7가\u11A7");
1782     std::string result8;
1783     StringByteSink<std::string> sink(&result8, expected8.length());
1784     nfkc->normalizeUTF8(0, s8, sink, nullptr, errorCode);
1785     assertSuccess("normalizeUTF8(LV+11A7)", errorCode.get());
1786     assertEquals("normalizeUTF8(LV+11A7)", expected8.c_str(), result8.c_str());
1787     assertFalse("isNormalizedUTF8(LV+11A7)", nfkc->isNormalizedUTF8(s8, errorCode));
1788     assertTrue("isNormalizedUTF8(normalized)", nfkc->isNormalizedUTF8(result8, errorCode));
1789 }
1790 
1791 void
TestComposeBoundaryAfter()1792 BasicNormalizerTest::TestComposeBoundaryAfter() {
1793     IcuTestErrorCode errorCode(*this, "TestComposeBoundaryAfter");
1794     const Normalizer2 *nfkc = Normalizer2::getNFKCInstance(errorCode);
1795     if(errorCode.errDataIfFailureAndReset("Normalizer2::getNFKCInstance() call failed")) {
1796         return;
1797     }
1798     // U+02DA and U+FB2C do not have compose-boundaries-after.
1799     UnicodeString s(u"\u02DA\u0339 \uFB2C\u05B6");
1800     UnicodeString expected(u" \u0339\u030A \u05E9\u05B6\u05BC\u05C1");
1801     UnicodeString result = nfkc->normalize(s, errorCode);
1802     assertSuccess("nfkc", errorCode.get());
1803     assertEquals("nfkc", expected, result);
1804     assertFalse("U+02DA boundary-after", nfkc->hasBoundaryAfter(0x2DA));
1805     assertFalse("U+FB2C boundary-after", nfkc->hasBoundaryAfter(0xFB2C));
1806 }
1807 
1808 #endif /* #if !UCONFIG_NO_NORMALIZATION */
1809