1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_COMPILER_TYPES_H_
6 #define V8_COMPILER_TYPES_H_
7 
8 #include "src/base/compiler-specific.h"
9 #include "src/compiler/js-heap-broker.h"
10 #include "src/conversions.h"
11 #include "src/globals.h"
12 #include "src/handles.h"
13 #include "src/objects.h"
14 #include "src/ostreams.h"
15 
16 namespace v8 {
17 namespace internal {
18 namespace compiler {
19 
20 // SUMMARY
21 //
22 // A simple type system for compiler-internal use. It is based entirely on
23 // union types, and all subtyping hence amounts to set inclusion. Besides the
24 // obvious primitive types and some predefined unions, the type language also
25 // can express class types (a.k.a. specific maps) and singleton types (i.e.,
26 // concrete constants).
27 //
28 // The following equations and inequations hold:
29 //
30 //   None <= T
31 //   T <= Any
32 //
33 //   Number = Signed32 \/ Unsigned32 \/ Double
34 //   Smi <= Signed32
35 //   Name = String \/ Symbol
36 //   UniqueName = InternalizedString \/ Symbol
37 //   InternalizedString < String
38 //
39 //   Receiver = Object \/ Proxy
40 //   OtherUndetectable < Object
41 //   DetectableReceiver = Receiver - OtherUndetectable
42 //
43 //   Constant(x) < T  iff instance_type(map(x)) < T
44 //
45 //
46 // RANGE TYPES
47 //
48 // A range type represents a continuous integer interval by its minimum and
49 // maximum value.  Either value may be an infinity, in which case that infinity
50 // itself is also included in the range.   A range never contains NaN or -0.
51 //
52 // If a value v happens to be an integer n, then Constant(v) is considered a
53 // subtype of Range(n, n) (and therefore also a subtype of any larger range).
54 // In order to avoid large unions, however, it is usually a good idea to use
55 // Range rather than Constant.
56 //
57 //
58 // PREDICATES
59 //
60 // There are two main functions for testing types:
61 //
62 //   T1.Is(T2)     -- tests whether T1 is included in T2 (i.e., T1 <= T2)
63 //   T1.Maybe(T2)  -- tests whether T1 and T2 overlap (i.e., T1 /\ T2 =/= 0)
64 //
65 // Typically, the former is to be used to select representations (e.g., via
66 // T.Is(SignedSmall())), and the latter to check whether a specific case needs
67 // handling (e.g., via T.Maybe(Number())).
68 //
69 // There is no functionality to discover whether a type is a leaf in the
70 // lattice. That is intentional. It should always be possible to refine the
71 // lattice (e.g., splitting up number types further) without invalidating any
72 // existing assumptions or tests.
73 // Consequently, do not normally use Equals for type tests, always use Is!
74 //
75 // The NowIs operator implements state-sensitive subtying, as described above.
76 // Any compilation decision based on such temporary properties requires runtime
77 // guarding!
78 //
79 //
80 // PROPERTIES
81 //
82 // Various formal properties hold for constructors, operators, and predicates
83 // over types. For example, constructors are injective and subtyping is a
84 // complete partial order.
85 //
86 // See test/cctest/test-types.cc for a comprehensive executable specification,
87 // especially with respect to the properties of the more exotic 'temporal'
88 // constructors and predicates (those prefixed 'Now').
89 //
90 //
91 // IMPLEMENTATION
92 //
93 // Internally, all 'primitive' types, and their unions, are represented as
94 // bitsets. Bit 0 is reserved for tagging. Only structured types require
95 // allocation.
96 
97 // -----------------------------------------------------------------------------
98 // Values for bitset types
99 
100 // clang-format off
101 
102 #define INTERNAL_BITSET_TYPE_LIST(V)                                      \
103   V(OtherUnsigned31, 1u << 1)  \
104   V(OtherUnsigned32, 1u << 2)  \
105   V(OtherSigned32,   1u << 3)  \
106   V(OtherNumber,     1u << 4)  \
107   V(OtherString,     1u << 5)  \
108 
109 #define PROPER_BITSET_TYPE_LIST(V) \
110   V(None,                     0u)        \
111   V(Negative31,               1u << 6)   \
112   V(Null,                     1u << 7)   \
113   V(Undefined,                1u << 8)   \
114   V(Boolean,                  1u << 9)   \
115   V(Unsigned30,               1u << 10)   \
116   V(MinusZero,                1u << 11)  \
117   V(NaN,                      1u << 12)  \
118   V(Symbol,                   1u << 13)  \
119   V(InternalizedString,       1u << 14)  \
120   V(OtherCallable,            1u << 16)  \
121   V(OtherObject,              1u << 17)  \
122   V(OtherUndetectable,        1u << 18)  \
123   V(CallableProxy,            1u << 19)  \
124   V(OtherProxy,               1u << 20)  \
125   V(Function,                 1u << 21)  \
126   V(BoundFunction,            1u << 22)  \
127   V(Hole,                     1u << 23)  \
128   V(OtherInternal,            1u << 24)  \
129   V(ExternalPointer,          1u << 25)  \
130   V(Array,                    1u << 26)  \
131   V(BigInt,                   1u << 27)  \
132   \
133   V(Signed31,                     kUnsigned30 | kNegative31) \
134   V(Signed32,                     kSigned31 | kOtherUnsigned31 | \
135                                   kOtherSigned32) \
136   V(Signed32OrMinusZero,          kSigned32 | kMinusZero) \
137   V(Signed32OrMinusZeroOrNaN,     kSigned32 | kMinusZero | kNaN) \
138   V(Negative32,                   kNegative31 | kOtherSigned32) \
139   V(Unsigned31,                   kUnsigned30 | kOtherUnsigned31) \
140   V(Unsigned32,                   kUnsigned30 | kOtherUnsigned31 | \
141                                   kOtherUnsigned32) \
142   V(Unsigned32OrMinusZero,        kUnsigned32 | kMinusZero) \
143   V(Unsigned32OrMinusZeroOrNaN,   kUnsigned32 | kMinusZero | kNaN) \
144   V(Integral32,                   kSigned32 | kUnsigned32) \
145   V(Integral32OrMinusZero,        kIntegral32 | kMinusZero) \
146   V(Integral32OrMinusZeroOrNaN,   kIntegral32OrMinusZero | kNaN) \
147   V(PlainNumber,                  kIntegral32 | kOtherNumber) \
148   V(OrderedNumber,                kPlainNumber | kMinusZero) \
149   V(MinusZeroOrNaN,               kMinusZero | kNaN) \
150   V(Number,                       kOrderedNumber | kNaN) \
151   V(Numeric,                      kNumber | kBigInt) \
152   V(String,                       kInternalizedString | kOtherString) \
153   V(UniqueName,                   kSymbol | kInternalizedString) \
154   V(Name,                         kSymbol | kString) \
155   V(InternalizedStringOrNull,     kInternalizedString | kNull) \
156   V(BooleanOrNumber,              kBoolean | kNumber) \
157   V(BooleanOrNullOrNumber,        kBooleanOrNumber | kNull) \
158   V(BooleanOrNullOrUndefined,     kBoolean | kNull | kUndefined) \
159   V(Oddball,                      kBooleanOrNullOrUndefined | kHole) \
160   V(NullOrNumber,                 kNull | kNumber) \
161   V(NullOrUndefined,              kNull | kUndefined) \
162   V(Undetectable,                 kNullOrUndefined | kOtherUndetectable) \
163   V(NumberOrHole,                 kNumber | kHole) \
164   V(NumberOrOddball,              kNumber | kNullOrUndefined | kBoolean | \
165                                   kHole) \
166   V(NumericOrString,              kNumeric | kString) \
167   V(NumberOrUndefined,            kNumber | kUndefined) \
168   V(NumberOrUndefinedOrNullOrBoolean,  \
169                                   kNumber | kNullOrUndefined | kBoolean) \
170   V(PlainPrimitive,               kNumber | kString | kBoolean | \
171                                   kNullOrUndefined) \
172   V(Primitive,                    kSymbol | kBigInt | kPlainPrimitive) \
173   V(OtherUndetectableOrUndefined, kOtherUndetectable | kUndefined) \
174   V(Proxy,                        kCallableProxy | kOtherProxy) \
175   V(ArrayOrOtherObject,           kArray | kOtherObject) \
176   V(ArrayOrProxy,                 kArray | kProxy) \
177   V(DetectableCallable,           kFunction | kBoundFunction | \
178                                   kOtherCallable | kCallableProxy) \
179   V(Callable,                     kDetectableCallable | kOtherUndetectable) \
180   V(NonCallable,                  kArray | kOtherObject | kOtherProxy) \
181   V(NonCallableOrNull,            kNonCallable | kNull) \
182   V(DetectableObject,             kArray | kFunction | kBoundFunction | \
183                                   kOtherCallable | kOtherObject) \
184   V(DetectableReceiver,           kDetectableObject | kProxy) \
185   V(DetectableReceiverOrNull,     kDetectableReceiver | kNull) \
186   V(Object,                       kDetectableObject | kOtherUndetectable) \
187   V(Receiver,                     kObject | kProxy) \
188   V(ReceiverOrUndefined,          kReceiver | kUndefined) \
189   V(ReceiverOrNullOrUndefined,    kReceiver | kNull | kUndefined) \
190   V(SymbolOrReceiver,             kSymbol | kReceiver) \
191   V(StringOrReceiver,             kString | kReceiver) \
192   V(Unique,                       kBoolean | kUniqueName | kNull | \
193                                   kUndefined | kReceiver) \
194   V(Internal,                     kHole | kExternalPointer | kOtherInternal) \
195   V(NonInternal,                  kPrimitive | kReceiver) \
196   V(NonNumber,                    kUnique | kString | kInternal) \
197   V(Any,                          0xfffffffeu)
198 
199 // clang-format on
200 
201 /*
202  * The following diagrams show how integers (in the mathematical sense) are
203  * divided among the different atomic numerical types.
204  *
205  *   ON    OS32     N31     U30     OU31    OU32     ON
206  * ______[_______[_______[_______[_______[_______[_______
207  *     -2^31   -2^30     0      2^30    2^31    2^32
208  *
209  * E.g., OtherUnsigned32 (OU32) covers all integers from 2^31 to 2^32-1.
210  *
211  * Some of the atomic numerical bitsets are internal only (see
212  * INTERNAL_BITSET_TYPE_LIST).  To a types user, they should only occur in
213  * union with certain other bitsets.  For instance, OtherNumber should only
214  * occur as part of PlainNumber.
215  */
216 
217 #define BITSET_TYPE_LIST(V)    \
218   INTERNAL_BITSET_TYPE_LIST(V) \
219   PROPER_BITSET_TYPE_LIST(V)
220 
221 class HeapConstantType;
222 class OtherNumberConstantType;
223 class TupleType;
224 class Type;
225 class UnionType;
226 
227 // -----------------------------------------------------------------------------
228 // Bitset types (internal).
229 
230 class V8_EXPORT_PRIVATE BitsetType {
231  public:
232   typedef uint32_t bitset;  // Internal
233 
234   enum : uint32_t {
235 #define DECLARE_TYPE(type, value) k##type = (value),
236     BITSET_TYPE_LIST(DECLARE_TYPE)
237 #undef DECLARE_TYPE
238         kUnusedEOL = 0
239   };
240 
241   static bitset SignedSmall();
242   static bitset UnsignedSmall();
243 
IsNone(bitset bits)244   static bool IsNone(bitset bits) { return bits == kNone; }
245 
Is(bitset bits1,bitset bits2)246   static bool Is(bitset bits1, bitset bits2) {
247     return (bits1 | bits2) == bits2;
248   }
249 
250   static double Min(bitset);
251   static double Max(bitset);
252 
253   static bitset Glb(double min, double max);
254   static bitset Lub(HeapObjectType const& type);
255   static bitset Lub(double value);
256   static bitset Lub(double min, double max);
257   static bitset ExpandInternals(bitset bits);
258 
259   static const char* Name(bitset);
260   static void Print(std::ostream& os, bitset);  // NOLINT
261 #ifdef DEBUG
262   static void Print(bitset);
263 #endif
264 
265   static bitset NumberBits(bitset bits);
266 
267  private:
268   struct Boundary {
269     bitset internal;
270     bitset external;
271     double min;
272   };
273   static const Boundary BoundariesArray[];
274   static inline const Boundary* Boundaries();
275   static inline size_t BoundariesSize();
276 };
277 
278 // -----------------------------------------------------------------------------
279 // Superclass for non-bitset types (internal).
280 class TypeBase {
281  protected:
282   friend class Type;
283 
284   enum Kind { kHeapConstant, kOtherNumberConstant, kTuple, kUnion, kRange };
285 
kind()286   Kind kind() const { return kind_; }
TypeBase(Kind kind)287   explicit TypeBase(Kind kind) : kind_(kind) {}
288 
289   static bool IsKind(Type type, Kind kind);
290 
291  private:
292   Kind kind_;
293 };
294 
295 // -----------------------------------------------------------------------------
296 // Range types.
297 
298 class RangeType : public TypeBase {
299  public:
300   struct Limits {
301     double min;
302     double max;
LimitsLimits303     Limits(double min, double max) : min(min), max(max) {}
LimitsLimits304     explicit Limits(const RangeType* range)
305         : min(range->Min()), max(range->Max()) {}
306     bool IsEmpty();
EmptyLimits307     static Limits Empty() { return Limits(1, 0); }
308     static Limits Intersect(Limits lhs, Limits rhs);
309     static Limits Union(Limits lhs, Limits rhs);
310   };
311 
Min()312   double Min() const { return limits_.min; }
Max()313   double Max() const { return limits_.max; }
314 
IsInteger(double x)315   static bool IsInteger(double x) {
316     return nearbyint(x) == x && !IsMinusZero(x);  // Allows for infinities.
317   }
318 
319  private:
320   friend class Type;
321   friend class BitsetType;
322   friend class UnionType;
323 
New(double min,double max,Zone * zone)324   static RangeType* New(double min, double max, Zone* zone) {
325     return New(Limits(min, max), zone);
326   }
327 
New(Limits lim,Zone * zone)328   static RangeType* New(Limits lim, Zone* zone) {
329     DCHECK(IsInteger(lim.min) && IsInteger(lim.max));
330     DCHECK(lim.min <= lim.max);
331     BitsetType::bitset bits = BitsetType::Lub(lim.min, lim.max);
332 
333     return new (zone->New(sizeof(RangeType))) RangeType(bits, lim);
334   }
335 
RangeType(BitsetType::bitset bitset,Limits limits)336   RangeType(BitsetType::bitset bitset, Limits limits)
337       : TypeBase(kRange), bitset_(bitset), limits_(limits) {}
338 
Lub()339   BitsetType::bitset Lub() const { return bitset_; }
340 
341   BitsetType::bitset bitset_;
342   Limits limits_;
343 };
344 
345 // -----------------------------------------------------------------------------
346 // The actual type.
347 
348 class V8_EXPORT_PRIVATE Type {
349  public:
350   typedef BitsetType::bitset bitset;  // Internal
351 
352 // Constructors.
353 #define DEFINE_TYPE_CONSTRUCTOR(type, value) \
354   static Type type() { return NewBitset(BitsetType::k##type); }
355   PROPER_BITSET_TYPE_LIST(DEFINE_TYPE_CONSTRUCTOR)
356 #undef DEFINE_TYPE_CONSTRUCTOR
357 
Type()358   Type() : payload_(0) {}
359 
SignedSmall()360   static Type SignedSmall() { return NewBitset(BitsetType::SignedSmall()); }
UnsignedSmall()361   static Type UnsignedSmall() { return NewBitset(BitsetType::UnsignedSmall()); }
362 
363   static Type OtherNumberConstant(double value, Zone* zone);
364   static Type HeapConstant(JSHeapBroker* js_heap_broker,
365                            Handle<i::Object> value, Zone* zone);
366   static Type HeapConstant(const HeapObjectRef& value, Zone* zone);
367   static Type Range(double min, double max, Zone* zone);
368   static Type Range(RangeType::Limits lims, Zone* zone);
369   static Type Tuple(Type first, Type second, Type third, Zone* zone);
370   static Type Union(int length, Zone* zone);
371 
372   // NewConstant is a factory that returns Constant, Range or Number.
373   static Type NewConstant(JSHeapBroker* js_heap_broker, Handle<i::Object> value,
374                           Zone* zone);
375   static Type NewConstant(double value, Zone* zone);
376 
377   static Type Union(Type type1, Type type2, Zone* zone);
378   static Type Intersect(Type type1, Type type2, Zone* zone);
379 
For(JSHeapBroker * js_heap_broker,Handle<i::Map> map)380   static Type For(JSHeapBroker* js_heap_broker, Handle<i::Map> map) {
381     HeapObjectType type = js_heap_broker->HeapObjectTypeFromMap(map);
382     return NewBitset(BitsetType::ExpandInternals(BitsetType::Lub(type)));
383   }
384 
385   // Predicates.
IsNone()386   bool IsNone() const { return payload_ == None().payload_; }
IsInvalid()387   bool IsInvalid() const { return payload_ == 0u; }
388 
Is(Type that)389   bool Is(Type that) const {
390     return payload_ == that.payload_ || this->SlowIs(that);
391   }
392   bool Maybe(Type that) const;
Equals(Type that)393   bool Equals(Type that) const { return this->Is(that) && that.Is(*this); }
394 
395   // Inspection.
IsBitset()396   bool IsBitset() const { return payload_ & 1; }
IsRange()397   bool IsRange() const { return IsKind(TypeBase::kRange); }
IsHeapConstant()398   bool IsHeapConstant() const { return IsKind(TypeBase::kHeapConstant); }
IsOtherNumberConstant()399   bool IsOtherNumberConstant() const {
400     return IsKind(TypeBase::kOtherNumberConstant);
401   }
IsTuple()402   bool IsTuple() const { return IsKind(TypeBase::kTuple); }
403 
404   const HeapConstantType* AsHeapConstant() const;
405   const OtherNumberConstantType* AsOtherNumberConstant() const;
406   const RangeType* AsRange() const;
407   const TupleType* AsTuple() const;
408 
409   // Minimum and maximum of a numeric type.
410   // These functions do not distinguish between -0 and +0.  NaN is ignored.
411   // Only call them on subtypes of Number whose intersection with OrderedNumber
412   // is not empty.
413   double Min() const;
414   double Max() const;
415 
416   // Extracts a range from the type: if the type is a range or a union
417   // containing a range, that range is returned; otherwise, nullptr is returned.
418   Type GetRange() const;
419 
420   int NumConstants() const;
421 
Invalid()422   static Type Invalid() { return Type(); }
423 
424   bool operator==(Type other) const { return payload_ == other.payload_; }
425   bool operator!=(Type other) const { return payload_ != other.payload_; }
426 
427   // Printing.
428 
429   void PrintTo(std::ostream& os) const;
430 
431 #ifdef DEBUG
432   void Print() const;
433 #endif
434 
435   // Helpers for testing.
IsUnionForTesting()436   bool IsUnionForTesting() { return IsUnion(); }
AsBitsetForTesting()437   bitset AsBitsetForTesting() { return AsBitset(); }
AsUnionForTesting()438   const UnionType* AsUnionForTesting() { return AsUnion(); }
BitsetGlbForTesting()439   Type BitsetGlbForTesting() { return NewBitset(BitsetGlb()); }
BitsetLubForTesting()440   Type BitsetLubForTesting() { return NewBitset(BitsetLub()); }
441 
442  private:
443   // Friends.
444   template <class>
445   friend class Iterator;
446   friend BitsetType;
447   friend UnionType;
448   friend size_t hash_value(Type type);
449 
Type(bitset bits)450   Type(bitset bits) : payload_(bits | 1u) {}
Type(TypeBase * type_base)451   Type(TypeBase* type_base)
452       : payload_(reinterpret_cast<uintptr_t>(type_base)) {}
453 
454   // Internal inspection.
IsKind(TypeBase::Kind kind)455   bool IsKind(TypeBase::Kind kind) const {
456     if (IsBitset()) return false;
457     const TypeBase* base = ToTypeBase();
458     return base->kind() == kind;
459   }
460 
ToTypeBase()461   const TypeBase* ToTypeBase() const {
462     return reinterpret_cast<TypeBase*>(payload_);
463   }
FromTypeBase(TypeBase * type)464   static Type FromTypeBase(TypeBase* type) { return Type(type); }
465 
IsAny()466   bool IsAny() const { return payload_ == Any().payload_; }
IsUnion()467   bool IsUnion() const { return IsKind(TypeBase::kUnion); }
468 
AsBitset()469   bitset AsBitset() const {
470     DCHECK(IsBitset());
471     return static_cast<bitset>(payload_) ^ 1u;
472   }
473 
474   const UnionType* AsUnion() const;
475 
476   bitset BitsetGlb() const;  // greatest lower bound that's a bitset
477   bitset BitsetLub() const;  // least upper bound that's a bitset
478 
479   bool SlowIs(Type that) const;
480 
NewBitset(bitset bits)481   static Type NewBitset(bitset bits) { return Type(bits); }
482 
483   static bool Overlap(const RangeType* lhs, const RangeType* rhs);
484   static bool Contains(const RangeType* lhs, const RangeType* rhs);
485 
486   static int UpdateRange(Type type, UnionType* result, int size, Zone* zone);
487 
488   static RangeType::Limits IntersectRangeAndBitset(Type range, Type bits,
489                                                    Zone* zone);
490   static RangeType::Limits ToLimits(bitset bits, Zone* zone);
491 
492   bool SimplyEquals(Type that) const;
493 
494   static int AddToUnion(Type type, UnionType* result, int size, Zone* zone);
495   static int IntersectAux(Type type, Type other, UnionType* result, int size,
496                           RangeType::Limits* limits, Zone* zone);
497   static Type NormalizeUnion(UnionType* unioned, int size, Zone* zone);
498   static Type NormalizeRangeAndBitset(Type range, bitset* bits, Zone* zone);
499 
500   // If LSB is set, the payload is a bitset; if LSB is clear, the payload is
501   // a pointer to a subtype of the TypeBase class.
502   uintptr_t payload_;
503 };
504 
hash_value(Type type)505 inline size_t hash_value(Type type) { return type.payload_; }
506 V8_EXPORT_PRIVATE std::ostream& operator<<(std::ostream& os, Type type);
507 
508 // -----------------------------------------------------------------------------
509 // Constant types.
510 
511 class OtherNumberConstantType : public TypeBase {
512  public:
Value()513   double Value() const { return value_; }
514 
515   static bool IsOtherNumberConstant(double value);
516 
517  private:
518   friend class Type;
519   friend class BitsetType;
520 
New(double value,Zone * zone)521   static OtherNumberConstantType* New(double value, Zone* zone) {
522     return new (zone->New(sizeof(OtherNumberConstantType)))
523         OtherNumberConstantType(value);  // NOLINT
524   }
525 
OtherNumberConstantType(double value)526   explicit OtherNumberConstantType(double value)
527       : TypeBase(kOtherNumberConstant), value_(value) {
528     CHECK(IsOtherNumberConstant(value));
529   }
530 
Lub()531   BitsetType::bitset Lub() const { return BitsetType::kOtherNumber; }
532 
533   double value_;
534 };
535 
NON_EXPORTED_BASE(TypeBase)536 class V8_EXPORT_PRIVATE HeapConstantType : public NON_EXPORTED_BASE(TypeBase) {
537  public:
538   Handle<HeapObject> Value() const;
539   const HeapObjectRef& Ref() const { return heap_ref_; }
540 
541  private:
542   friend class Type;
543   friend class BitsetType;
544 
545   static HeapConstantType* New(const HeapObjectRef& heap_ref, Zone* zone) {
546     DCHECK(!heap_ref.IsHeapNumber());
547     DCHECK_IMPLIES(heap_ref.IsString(), heap_ref.IsInternalizedString());
548     BitsetType::bitset bitset = BitsetType::Lub(heap_ref.type());
549     return new (zone->New(sizeof(HeapConstantType)))
550         HeapConstantType(bitset, heap_ref);
551   }
552 
553   HeapConstantType(BitsetType::bitset bitset, const HeapObjectRef& heap_ref);
554 
555   BitsetType::bitset Lub() const { return bitset_; }
556 
557   BitsetType::bitset bitset_;
558   HeapObjectRef heap_ref_;
559 };
560 
561 // -----------------------------------------------------------------------------
562 // Superclass for types with variable number of type fields.
563 class StructuralType : public TypeBase {
564  public:
LengthForTesting()565   int LengthForTesting() const { return Length(); }
566 
567  protected:
568   friend class Type;
569 
Length()570   int Length() const { return length_; }
571 
Get(int i)572   Type Get(int i) const {
573     DCHECK(0 <= i && i < this->Length());
574     return elements_[i];
575   }
576 
Set(int i,Type type)577   void Set(int i, Type type) {
578     DCHECK(0 <= i && i < this->Length());
579     elements_[i] = type;
580   }
581 
Shrink(int length)582   void Shrink(int length) {
583     DCHECK(2 <= length && length <= this->Length());
584     length_ = length;
585   }
586 
StructuralType(Kind kind,int length,Zone * zone)587   StructuralType(Kind kind, int length, Zone* zone)
588       : TypeBase(kind), length_(length) {
589     elements_ = reinterpret_cast<Type*>(zone->New(sizeof(Type) * length));
590   }
591 
592  private:
593   int length_;
594   Type* elements_;
595 };
596 
597 // -----------------------------------------------------------------------------
598 // Tuple types.
599 
600 class TupleType : public StructuralType {
601  public:
Arity()602   int Arity() const { return this->Length(); }
Element(int i)603   Type Element(int i) const { return this->Get(i); }
604 
InitElement(int i,Type type)605   void InitElement(int i, Type type) { this->Set(i, type); }
606 
607  private:
608   friend class Type;
609 
TupleType(int length,Zone * zone)610   TupleType(int length, Zone* zone) : StructuralType(kTuple, length, zone) {}
611 
New(int length,Zone * zone)612   static TupleType* New(int length, Zone* zone) {
613     return new (zone->New(sizeof(TupleType))) TupleType(length, zone);
614   }
615 };
616 
617 // -----------------------------------------------------------------------------
618 // Union types (internal).
619 // A union is a structured type with the following invariants:
620 // - its length is at least 2
621 // - at most one field is a bitset, and it must go into index 0
622 // - no field is a union
623 // - no field is a subtype of any other field
624 class UnionType : public StructuralType {
625  private:
626   friend Type;
627   friend BitsetType;
628 
UnionType(int length,Zone * zone)629   UnionType(int length, Zone* zone) : StructuralType(kUnion, length, zone) {}
630 
New(int length,Zone * zone)631   static UnionType* New(int length, Zone* zone) {
632     return new (zone->New(sizeof(UnionType))) UnionType(length, zone);
633   }
634 
635   bool Wellformed() const;
636 };
637 
638 }  // namespace compiler
639 }  // namespace internal
640 }  // namespace v8
641 
642 #endif  // V8_COMPILER_TYPES_H_
643